WO2019066096A1 - Demineralized biomass, multi-fuel producing system using same and preparation method therefor - Google Patents

Demineralized biomass, multi-fuel producing system using same and preparation method therefor Download PDF

Info

Publication number
WO2019066096A1
WO2019066096A1 PCT/KR2017/010648 KR2017010648W WO2019066096A1 WO 2019066096 A1 WO2019066096 A1 WO 2019066096A1 KR 2017010648 W KR2017010648 W KR 2017010648W WO 2019066096 A1 WO2019066096 A1 WO 2019066096A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
biomass
component
fuel
liquid
Prior art date
Application number
PCT/KR2017/010648
Other languages
French (fr)
Korean (ko)
Inventor
최영찬
김정근
이동욱
박세준
이영주
박주형
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to PCT/KR2017/010648 priority Critical patent/WO2019066096A1/en
Publication of WO2019066096A1 publication Critical patent/WO2019066096A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L7/00Fuels produced by solidifying fluid fuels
    • C10L7/02Fuels produced by solidifying fluid fuels liquid fuels
    • C10L7/04Fuels produced by solidifying fluid fuels liquid fuels alcohol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a denitrifying biomass, a complex fuel production system using the same and a method for producing the same, and more particularly, to a method for producing a denitrifying biomass, which comprises solid phase components originating from cellulose and hemicellulose from an herbaceous or woody biomass, Separating and separating inorganic components including metal ions by using a method including acid treatment, alkali treatment, hydrothermal treatment and membrane filtration, thereby separating the separated cellulose, which is capable of fundamentally eliminating problems such as clinker fouling caused by an inorganic substance
  • a liquid phase component containing hemicellulose, a liquid component containing lignin and / or water is selectively supplied to various fuel production systems to produce a high-quality coal, an ashfree-formed fuel, an ashfree carbonized fuel and a bioethanol Applicable de-mineral biomass, use it To a composite fuel production system and a manufacturing method thereof.
  • the present invention relates to a system for producing a semi-carbonized fuel for a boiler for improving a biomass mixing ratio, and more particularly, to a system for producing a semi-carbonized fuel for a boiler from an herbaceous system, woody system, algae biomass, Etc., which are adversely affecting the surface of the reactor wall, heat exchanger, etc., are removed by physical and chemical methods, and then the solid phase component is applied to the boiler suck as a semi-carbonized solid fuel to remove the biomass solubility And more particularly, to a semi-carbonized fuel production system for a boiler for improving the biomass mixing ratio.
  • the present invention relates to a fuel production system for a boiler in which fouling-inducing components are removed. More particularly, the present invention relates to a fuel production system for a boiler in which a fouling- The fouling inducing components that cause adverse effects on the heat transfer surface such as the wall surface and the heat exchanger are removed by physical and chemical methods, and the solid phase component is used as a solid fuel for burning or burning, and the liquid component containing the fouling inducing component
  • the present invention relates to a fuel production system for a boiler in which a fouling inducing component is removed by applying a water treatment method using a method including an acid treatment, an alkali treatment, a hydrothermal treatment, a membrane filtration, an ion exchange, flocculation, adsorption and centrifugation.
  • the present invention relates to a method for separating and recovering a combustible material by adding a powder to a liquid material obtained by hydrothermally treating the biomass.
  • the energy source that generates the largest amount of carbon dioxide and which is not competitive with global warming is an energy source based on fossil fuel.
  • the use of renewable energy is one of the issues that are currently being addressed globally as an energy source. This means that the emission of carbon dioxide is reduced compared to conventional fossil fuels such as petroleum and coal, Because it is an energy source.
  • the typical aggregation phenomena of ash in the biomass are the slagging and clinker fouling, which is mainly generated in the surface of the combustion furnace and the convection transfer surface in the pulverized coal combustion furnace, and the ash aggregation in the fluidized bed combustion furnace agglomeration).
  • KCl is a viscous material and is well known to accelerate corrosion by chlorine reaction and the like.
  • Such a phenomenon in the furnace not only becomes a major cause of the decrease in the efficiency of the process, but ultimately, if such a phenomenon becomes severe, the operation must be stopped, thereby causing a great economic loss.
  • the coagulation phenomena of ash is generally influenced by ash composition, temperature, particle size, gas atmosphere, operating conditions, etc. Especially, when a part of ash is melted at high temperature, such phenomenon accelerates.
  • Korean Patent Laid-Open Publication No. 2012-0077991 discloses a pretreatment apparatus for producing a substrate for ethanol fermentation from lignocellulosic biomass.
  • Korean Patent No. 10-1171922 discloses a method for manufacturing and treating carbohydrate-containing materials to change their structure and a system for providing structurally modified materials.
  • Japanese Laid-Open Patent Publication No. 2011-205933 discloses a method for producing a saccharified liquid from an enzyme from biomass.
  • Korean Patent Publication No. 10-1195416 discloses a method for producing a hybrid of high calorific value, in which the hydrophilic surface present in the lower carbon is coated with the carbon component of the biomass-derived material to modify it to thereby prevent re-adsorption of moisture even after drying have.
  • the bran is washed with water to remove the water-soluble substance, and then treated with an aqueous alkali solution of 0.1 to 0.4.
  • the fraction mainly composed of hemicellulose is eluted into the aqueous alkali solution.
  • a method for extracting and purifying hemicellulose is also known as Japanese Patent No. 2688509.
  • Korean Patent No. 10-0476239 discloses a process for preparing water soluble and insoluble hemicellulose from rice hulls, comprising the steps of (1) removing protein from rice hulls and washing rice hulls; (2) extracting the rice hulls with a sodium hydroxide solution having a concentration of 0.5 to 1 M and filtering the same; (3) adding phosphoric acid to the alkali extraction solution obtained in step (2) to lower the pH of the solution to recover hemicellulose by precipitation; (4) a step in which the precipitate obtained in step (3) is further washed with phosphoric acid or oxalic acid and then decolorized by treatment with oxalate-potassium permanganate; (5) Separation of water-soluble and insoluble hemicelluloses is possible through pH control of the solution from the decolorized hemicellulose fraction obtained in the above step.
  • a process for producing fine powder from a rice husk comprising a step of obtaining a powder by natural drying or spray drying the water-soluble and insoluble hemicellulose obtained through a series of such continuous processes, and then milling and passing the fine- Discloses a process for preparing water-soluble and insoluble hemicellulose.
  • Korean Patent Laid-Open Publication No. 2002-0017572 discloses a method of mixing and dewatering a waste water treatment sludge, a crushing step, and a manufacturing step of a regenerated sludge.
  • Korean Patent Publication No. 10-0413384 discloses a process for removing (i) starch and protein from a corn husk; (ii) a step of extracting the corn husk from which the starch and protein have been removed with an alkaline solution and filtering with a filter cloth; (iii) treating the alkali extract obtained in step (ii) with cellulase and cellobiase to react; (iv) a step of treating the enzyme reaction solution obtained in step (iii) with an adsorbent to obtain a filtrate through membrane filtration; and (v) purifying the filtrate.
  • the present invention also provides a method for producing a water-soluble dietary fiber.
  • Korean Patent Publication No. 10-1457470 discloses a process for extracting hemicellulose from a biomass; b) precipitating and separating hemicellulose from the hemicellulose extract; And c) introducing the separated hemicellulose into a papermaking process, wherein the a) extracting step comprises the steps of: adding NaOH to the bran biomass at 135-160 for 70-180 minutes; To 25% of the total weight of the extract, the extraction ratio is 1: 8 to 1:16.
  • acetone is mixed with the hemicellulose extract to precipitate and separate hemicellulose.
  • a paper manufacturing method is disclosed.
  • Japanese Patent Application Laid-Open No. 11-240902 discloses a method of extracting water from a raw material containing water-soluble hemicellulose at a temperature of 80 or more and 140 or less at a pH of 2 to 7 for extracting water-soluble hemicellulose into an aqueous medium, , And then removing the insoluble matter.
  • lignin is removed from biomass and physicochemical treatment is applied to extract hemicellulose, which is a main component of cellulose and xylose, which glucose is a main component, but a drug such as acid or alkali
  • hemicellulose which is a main component of cellulose and xylose, which glucose is a main component, but a drug such as acid or alkali
  • the process is complicated because it involves a process of recovering used chemicals as well as an increase in the cost of the medicament.
  • In order to apply the separated ingredients to a desired raw material In many cases.
  • the present invention has been conceived in order to solve the above-mentioned problems, and it is an object of the present invention to provide a process for producing a biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable, Method, a solid phase component derived from the separated cellulose and hemicellulose, a liquid component including lignin, a metal ion component and
  • the present invention provides a system for producing a semi-carbonized fuel for a boiler for enhancing the biomass mixing ratio by which the solid phase component is removed by physical and chemical methods and then the solid phase component is applied to the boiler submerged by the semi-carbonized solid fuel .
  • the solid phase component after the removal is used as a solid fuel for burning or firing
  • the liquid component containing the fouling inducing component includes acid treatment, alkali, hydrothermal treatment, membrane filtration, ion exchange, flocculation, adsorption
  • the present invention is to provide a fuel production system for a boiler in which a fouling inducing component is removed by applying a water treatment method using a method.
  • the present invention provides a composite fuel production system using ash pre-biomass, comprising: a first processing unit (100) for treating the biomass with first treated water containing hot water at a predetermined temperature and pressure; And a second processing unit (200) for generating a liquid component and a solid-phase component from the biomass processed in the first processing unit with a second process water containing hot water at a predetermined temperature and pressure; And a composite fuel production system using ash-free biomass.
  • the apparatus may further include a third processing unit (300) for selectively adding a pH adjusting agent so that the liquid component processed in the second processing unit has a predetermined pH.
  • a third processing unit 300 for selectively adding a pH adjusting agent so that the liquid component processed in the second processing unit has a predetermined pH.
  • the fourth processing unit (400) further separates the liquid component processed in the third processing unit from the ash-free concentrated component present in the liquid component by using a predetermined solid-liquid separating device .
  • the fifth processing unit 500 may further include a fifth processing unit 500 for processing the solid-phase components processed in the second processing unit with hot water at a predetermined temperature and pressure.
  • a hydrothermal treatment unit (600) for treating the solid phase component treated in the second treatment unit or the fifth treatment unit with hot water at a high temperature and a high pressure to produce a liquid fiber component containing hemicellulose and a solid fiber component including cellulose; May be further included.
  • the first discharge unit 610 discharges and separates the solid fiber component in the process of collecting steam discharged from the low-pressure region of the hydrothermal treatment unit without air contact.
  • the second discharge unit 620 discharges and separates the fiber liquid fraction in the process of collecting steam discharged from the other end of the hydrothermal treatment unit without air contact in a low pressure region.
  • an enzyme saccharification unit (700) for performing an enzymatic saccharification reaction for the production of bioethanol may be further included in the solid fiber component including cellulose discharged from the first discharge unit.
  • the present invention further includes an extraction unit 800 for extracting acetic acid in a predetermined amount from the fiber liquid fraction containing hemicellulose treated in the hydrothermal treatment unit and recirculating the acetic acid to the fifth treatment unit and / or the hydrothermal treatment unit can do.
  • the spraying unit may further include a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit.
  • a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit.
  • the spray solution is sprayed onto the coal while rotating coal having an average particle size of less than 4 mm among the coarsely pulverized coals using the spray solution generated through the spraying generating unit to granulate the coal while impregnating or coating the coal.
  • any one or two of the cleaning unit and the moisture removal unit for cleaning are provided at the rear end of any one of the first processing unit, the second processing unit, the fourth processing unit and the fifth processing unit, A unit can be added.
  • either one or two units of the cleaning unit and the moisture removal unit for cleaning may be added to the rear end of the hydrothermal processing unit.
  • a semi-carbonization unit 1300 for producing an ash-free semi-carbonized fuel by heat-treating the solid-phase component processed in the fifth processing unit with the hydrophobic binder from the ash-free concentrated fraction separated from the fourth processing unit; May be further included.
  • the separation liquid containing sodium separated from the liquid component via the filter unit may further include a recycle unit recirculating the first soaking unit and / or the steam unit.
  • the ash-free condensed fraction separated from the fourth treatment unit and / or the solid-phase component treated in the fifth treatment unit may be selectively used as a phenol formaldehyde resin extender, a phenol formaldehyde resin extender,
  • a phenol formaldehyde resin extender In the production of molding compounds, the use of urethane and epoxy resins, antioxidants, sustained release formulations, flow control agents, cement / concrete blends, gypsum board manufacturing, oil excavation, general dispersion, tanning leather, road coverings, vanillin manufacture, (Phenol) monomers, additional diverse monomers, carbon fibers, metal removal from solution, basis of gel formation, polyurethane copolymers, and combinations thereof, in the preparation of polyesters, side-products, phenol resins in polyolefin blends.
  • the separation liquid containing the inorganic matter separated from the liquid component through the fourth processing unit may further include a recycle unit 1400 that recirculates the first and second processing units to the first processing unit and / or the second processing unit .
  • bio-ethanol produced by the complex fuel production system using the ash-free biomass which further comprises the enzyme saccharification unit, may be used.
  • the coal may be manufactured by a composite fuel production system using ash-free biomass, further comprising the coal pretreatment unit.
  • the coal produced by the composite fuel production system using ash-free biomass, which further comprises the coal granulating unit, may be used.
  • it may be an ash-free forming fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-mentioned shaped fuel unit.
  • it may be an ash-free semi-carbonized fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-described semi-carbonization unit.
  • the inorganic-liquid-phase liquid component pretreated in the first treatment unit and eluted from the inorganic component containing the metal in the biomass may be supplied to the third treatment unit or the fourth treatment unit.
  • a grinding unit 101 for forming a biomass into a raw material of a predetermined size;
  • a hopper 201 for storing the raw material;
  • a feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock;
  • a component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion;
  • a pelletizing unit (401) for pelletizing the separated fuel in the component separating unit;
  • a semi-carbonization unit (501) for carbonizing the pelletized fuel in the pelletizing unit.
  • the semi-carbonized fuel production system for a boiler for improving the biomass mixture rate may be included.
  • a grinding unit 101 for forming the biomass into a raw material of a predetermined size;
  • a hopper 201 for storing the raw material;
  • a feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock;
  • a component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion;
  • a semi-carbonization unit (501) for carbonizing the fuel from which the fusion and high-temperature corrosion-inducing components supplied from the component separation unit have been removed, and a pelletizing unit (401) for pelletizing the semi-carbonized fuel in the semi-carbonization unit;
  • Carbonized fuel production system for a boiler for improving the biomass mixing ratio.
  • liquid component discharged from the component separation unit may include the fusion-bonding and high-temperature corrosion-inducing component.
  • the solid phase component discharged from the component separation unit may include a combustible component in which the fusion-bonding and high-temperature corrosion-inducing component are separated.
  • the pH of the liquid component discharged from the component separation unit may be 6 or less.
  • liquid component separated from the organic compound in the liquid component may be recycled to the component separation unit.
  • the gaseous component discharged from the semi-carbonization unit may include an organic compound including an acid gas.
  • the semi-carbonized fuel may be mixed up to 50 parts by weight or less in a boiler using fossil fuel.
  • a grinding unit 101 for forming the biomass into a raw material of a predetermined size;
  • a hopper 201 for storing the raw material;
  • a feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock;
  • a carbonization unit (501) for carbonizing the fuel supplied from the raw material feeder;
  • a pelletizing unit (401) for pelletizing the semi-carbonized fuel in the semi-carbonizing unit;
  • a component separation unit (301) for treating the raw material supplied from the pelletizing unit with hot water at a predetermined temperature so as to maximally separate the fusion-welding and hot corrosion-inducing components from the raw material supplied from the pelletizing unit.
  • Carbonized fuel production system for a boiler to improve the biomass mixing ratio.
  • the semi-carbonized fuel for boiler may be a method for producing a boiler for improving the biomass mixing ratio.
  • the present invention also includes a grinding unit 102 for forming a feedstock of a predetermined size; A hopper 202 for storing the raw material; A raw material feeder 212 for feeding the raw material stored in the hopper to a downstream end in a fixed amount; And a fouling-inducing component separation unit (302) for treating the fouling-inducing component of the raw material supplied from the raw material feeder with hot water at a predetermined temperature so as to maximally separate the fouling- And a fuel production system in which the ring inducing component is removed.
  • a grinding unit 102 for forming a feedstock of a predetermined size
  • a hopper 202 for storing the raw material
  • a raw material feeder 212 for feeding the raw material stored in the hopper to a downstream end in a fixed amount
  • a fouling-inducing component separation unit (302) for treating the fouling-inducing component of the raw material supplied from the raw material feeder with hot water at a predetermined temperature so as to maximally separate the fouling- And a
  • the fouling inducing component may include the fouling inducing component in the liquid component discharged from the fouling inducing component separating unit.
  • the solid phase component discharged from the fouling inducing component separating unit may include a combustible component in which the fouling inducing component is separated.
  • the pH of the liquid component may be 6 or less.
  • an aqueous solution having a low pH, from which the organic compound is separated from the liquid component may be recycled to the fouling-induced component separation unit.
  • the raw material may be supplied to a pretreatment unit that is pretreated with an alkali solution before being supplied to the fouling-inducing component separation unit.
  • the pretreatment solid-phase component generated in the pretreatment unit is supplied to the fouling-inducing component separation unit, and the pretreatment liquid-phase component can be separated and discharged.
  • a molded fuel unit for producing a molded fuel by applying the solid phase component May be further included.
  • a membrane filter unit may be further included for separating the liquid component from the organic compound.
  • the fouling-inducing component separating unit or the pretreatment unit may further include one or two of a cleaning unit and a moisture removal unit at the rear end thereof.
  • the method for separating the combustible component from the biomass hot water extract of the present invention comprises the steps of S-1 for crushing biomass by crushing means, S-2 for supplying hot water to the crushed biomass, S-3 step of separating the biomass into a liquid phase material and a solid phase material, S-4 step of adding a pulverizer to the liquid phase material, and a mixture of the pulverized and liquid phase material to a first separation means to recover the pulverized coal, And step S-5 of obtaining a filtrate.
  • the method further comprises S-7 step of recovering the first concentrated liquid and supplying the first permeated liquid to the third separation means, and after step S-7, To obtain a second concentrated liquid and a second permeated liquid, and recovering the second concentrated liquid.
  • step S-5 the filtrate from which the flour has been removed is fed to the third separating means, and the second concentrate and the second permeate are obtained by the third separating means, and the second concentrate is fed It is also possible to carry out the step S-8 to recover.
  • the pulverized coal preferably has a particle diameter of 10 ⁇ to 10 ⁇ , and more preferably a particle diameter of 70 ⁇ to 5 ⁇ .
  • the second separation means may be an ultrafiltration membrane or a microfiltration membrane
  • the third separation means may be a nanofiltration membrane or a reverse osmosis membrane.
  • the method for separating the combustible component from the biomass hot water extraction solution comprises the steps of S-1 for crushing biomass by crushing means, S-2 for supplying hot water to the crushed biomass, An S-3 step of separating the biomass into a liquid phase material and a solid phase material, an S-4 'step of centrifuging the liquid phase material, and an S-5' step of recovering the concentrated slurry and obtaining a supernatant.
  • the composite fuel production system using the ash free biomass of the present invention it is possible to effectively and easily extract the glucose component and the like from the herbaceous or woody biomass through the high temperature and high pressure reaction condition without using any chemical such as acid or alkali.
  • the raw material for producing bioethanol can be selectively secured.
  • ash-free fuel can be applied to a power generation fuel, thereby effectively reducing fouling of clinker and alkali corrosion that may occur during operation of the combustion system.
  • biomass component is impregnated and carbonized after impregnation with low grade coal, it is not necessary to separate biomass undiluted apparatus, which is an important factor that only biomass of less than 3.5 wt% There is an effect that it is possible.
  • the ash-free biomass produces molded fuel and semi-carbonized fuel using cellulose, hemicellulose and lignin, clinker fouling expected from ash due to biomass after combustion and gasification in fluidized bed and undifferentiated combustion furnaces and gasification furnaces, There is an effect that the problem of high temperature corrosion can be fundamentally eliminated.
  • the combustible component can be easily separated and recovered from the discarded biomass, thereby contributing greatly to the reduction of greenhouse gas.
  • the cost of separating and recovering the combustible component can be greatly reduced.
  • the coal injection according to the present invention can greatly reduce the concentration of the combustible component contained in the hydrothermal reaction solution, thereby improving the operation performance of the separation membrane, and it is possible to greatly increase the recovery ratio of the combustible component contained in the hydrothermal reaction solution have.
  • FIG. 1 is a flowchart showing a composite fuel production system using ash-free biomass according to the present invention.
  • FIG. 2 is a flowchart illustrating a system for producing a semi-carbonized fuel for a boiler for improving a biomass mixing ratio according to the present invention.
  • FIG. 3 is a graph showing changes in the composition of raw materials before and after the fusion and high-temperature corrosion-inducing component separation unit in the semi-carbonized fuel production system for boilers for improving the biomass mixing ratio according to the present invention.
  • FIG. 4 is a flowchart illustrating a fuel production system for a boiler in which a fouling inducing component is removed according to the present invention.
  • FIG. 5 is a graph showing changes in the composition of raw materials before and after the fouling-inducing component separation unit in the fuel production system for a boiler in which the fouling-inducing component is removed according to the present invention.
  • FIG. 6 shows a state change of a raw material component according to an embodiment of the fuel production system for a boiler from which a fouling-inducing component is removed according to the present invention.
  • FIG. 7 shows the ash removal rate and the ash composition according to the treatment conditions of the fouling-induced component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • FIG. 8 is a graph showing changes in XMG content and lower calorific value according to processing conditions of the fouling-inducing component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • FIG. 9 is a graph showing the relationship between the amount of ash and XMG in the fouling inducing component separation unit and the amount of XMG in the fouling inducing component separation unit according to the present invention, This shows the change in calorific value.
  • FIG 10 shows the ash removal rate and ash composition according to the treatment conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • FIG. 11 is a graph showing changes in lignin content and lower calorific value according to processing conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • FIG. 12 is a graph showing changes in ash content, lignin content and lower calorific value according to the temperature and the treatment time of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling- will be.
  • FIG. 13 is a graph showing fuel NOx reduction amount, heating value increase rate and ash removal rate according to a temperature condition of a fouling-inducing component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling inducing component according to the present invention is removed.
  • FIG. 14 is a schematic view showing a process of separating the combustible component from the biomass.
  • 15 is a flowchart showing a method of separating a combustible component according to a third embodiment of the present invention.
  • 16 is a flowchart of a method for separating combustible components according to a fourth embodiment of the present invention.
  • the coal used in the present invention means at least one selected from among low grade coal recognized in the art such as peat, lignite, bituminous coal, bituminous coal or anthracite coal.
  • FIG. 1 is a flowchart showing a composite fuel production system using ash-free biomass according to the present invention.
  • a combined fuel production system using ashless biomass comprising: a first processing unit (100) for treating the biomass with first treated water containing hot water at a predetermined temperature and pressure; And a second processing unit (200) for generating a liquid component and a solid-phase component from the biomass processed in the first processing unit with a second process water containing hot water at a predetermined temperature and pressure; And a composite fuel production system using ash-free biomass.
  • the physical treatment of biomass is not limited as long as it can achieve the purpose of reducing the size of the biomass, such as crushing, shearing, cutting, and increasing the surface area.
  • the device for performing the physical treatment of the biomass may be a mill, a mixer, a screw extruder, a rotary knife cutter, but is not limited thereto.
  • Woody lines include wood blocks, wood chips, logs, tree branches, wood crumbs, deciduous woods, sawdust, lignin, xylenes, lignocellulosic, palm trees, palm kernel shells, palm kernel fiber, empty fruit bunches ), Fresh fruit bunches (FFB), palm leaves, coconut crumbs, and the like.
  • Herbal products include corn stover, straw straw, canteen, sugar cane, grain (rice, millet, coffee, etc.) husks, candy leaves, bagasse, millet, artichoke, molasses, flax, hemp, Biomass such as starchy maize, potato, cassava, wheat, barley, lime, other starch-based remnants, fruit-bearing avocados, jatropha and their processing residues can be used.
  • the biomass thus pulverized into an appropriate size is transferred to the first processing unit.
  • the biomass refers to lignocellulose-based herbaceous and woody biomass, and the material belonging to the biomass is not limited. It is also apparent that first- or third-generation biomass is also applicable.
  • Cellulose which is a major component of lignocellulose, is a stable polysaccharide in which glucose is linked by ⁇ -1,4 bonds.
  • Another major component is a polymer of xylose, which is a pentane. In addition, it is composed of a polymer such as 5-valent arabinose, 6-valent mannose, galactose, glucose, rhamnose, etc. Of a polymer.
  • Glucan is a generic term for polysaccharides composed of glucose. There are various types of polysaccharides depending on the binding style of D-glucose. They are largely divided into ⁇ -glucan and ⁇ -glucan by the arrangement of the adduct carbon atoms.
  • the ⁇ -glucan includes amylose ( ⁇ -1,4 bond), amylopectin ( ⁇ -1,4 and ⁇ -1,6 bonds), glycogen ( ⁇ -1,4 and ⁇ -1,6 bonds), bacterial dextran (-1,6 bond) and the like.
  • Typical examples of? -glucan include cellulose (? -1,4-linked), brown alga laminaran (? -1,3-linked), lichenous lichenan (? -1,3 and? -1,4-linked) have.
  • Xylene is the liquid component containing xylene. Glucuronoxylan, arabinoxylan, glucomannan, xyloglucan, and the like may be included.
  • the liquid component containing xylene as the above-described components is not limited, and various components may be separated depending on the components of the biomass to be injected.
  • the saccharides are not limited to the above-described compounds and can be variously produced depending on the kind of the second generation biomass. Therefore, it is divided into 2, 3, 4, 5, and 6-carbon sugars according to the number of carbon atoms.
  • xylulose and 6-carbon sugars can be glucose, glucose, fructose, fructose, galactose and mannose.
  • Examples of the disaccharide to which two monosaccharides are combined may include lactose, lactose, lactose, glucose, maltose, maltose, sugar, sucrose, trehalose, melibiose and cellobiose.
  • small sugars that are sugar-bonded sugars having 2 to 10 molecules include raffinose, melezitose and maltoriose as three saccharides, starchose and schrodose as four saccharides, And oligosaccharides may be galactooligosaccharides, isomaltooligosaccharides, and fructooligosaccharides.
  • polysaccharides examples include pentosan, which is a simple polysaccharide with pentoses attached thereto, and may include xylan and araban.
  • Hexoxanes condensed with 6-valent sugars include starch, starch, polymers of glucose such as amylose, dextrin, glycogen, cellulose, fructan, galactan galactan, mannan, and the like.
  • Composite polysaccharides may include agar, alginic acid, carrageenan, chitin, hemicellulose, pectin, and the like.
  • the temperature condition of the first processing unit may be 80 ⁇ to 140 ⁇ . Preferably 90 < 0 > C to 130 < 0 > C. And more preferably 100 ° C to 120 ° C.
  • the pressure condition of the first soaking unit may be between 1 and 1.5 bar.
  • the purpose of air discharge and liquefaction in the biomass the purpose of securing energy for raising the temperature, the purpose of impregnating the biomass with the organic acid generated in the subsequent step, For the purpose of increasing < / RTI >
  • the first treated water may be hot water at a predetermined temperature and pressure, and may further include an alkaline liquid.
  • the alkali component may be NaOH, KOH, ammonia, lime, hydrogen peroxide, etc., and is not limited as long as it is water-soluble and can raise the pH of the aqueous solution.
  • the weakly acidic component may be acetic acid, formic acid, and the like, and is not limited as long as it is water-soluble and can lower the pH of the aqueous solution. Additional carbon dioxide can be supplied.
  • the acidic component may be sulfuric acid, nitric acid, hydrochloric acid, and the like, and is not limited as long as it is water-soluble and can lower the pH of the aqueous solution.
  • the temperature condition of the second processing unit may be 100 ⁇ to 300 ⁇ . Preferably from 120 [deg.] C to 250 [deg.] C. And more preferably 150 ° C to 170 ° C.
  • the pressure condition of the second processing unit may be between 1 and 20 bar. Preferably 1.5 to 7 bar. More preferably from 2 to 2.5 bar.
  • the pH condition of the second processing unit may be 8 to 14 hours. Preferably 11 to 13.5. More preferably from 12 to 13 carbon atoms.
  • the purpose of elution of the lignin component in the biomass is lower or higher than the above-mentioned conditions, the purpose of elution of the lignin component in the biomass, the purpose of discharging air in the biomass and the liquid saturation, the purpose of securing energy for raising the temperature, It is not effective for the purpose of impregnating the mass, and for the purpose of increasing the dry matter in the liquid phase.
  • the second treated water of the second processing unit further contains an alkaline liquid in addition to hot water at a predetermined temperature and pressure.
  • the alkali component may be NaOH, KOH, ammonia, lime, hydrogen peroxide, etc., and is not limited as long as it is water-soluble and can raise the pH of the aqueous solution.
  • the third processing unit adds a pH adjusting agent to lower the pH in order to selectively filter the liquid component containing lignin in the fourth processing unit in the second processing unit.
  • the pH adjusting agent is not limited if the pH can be lowered. Sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. may be added, and hydrogen sulfide, sulfur dioxide, CO 2 and the like may be added. Additional water may be added.
  • the desired pH through the pH adjusting agent may be from 7 to 12. Preferably from 8 to 11. More preferably from 9 to 10 carbon atoms. If the pH is higher than the above-mentioned pH, the separation membrane may be damaged during the filtering of the liquid component.
  • the fourth treatment unit is not particularly limited as long as it is capable of selectively separating components containing lignin of the liquid component. It is possible to selectively use one or more of a general filter, a micro filter, an ultrafiltration filter, a nanofiltration membrane, and a reverse osmosis membrane. They can be connected in parallel or in series. In addition, a screen for pretreatment and a micrometer-level particle removal filter can be applied as a pre-treatment filter.
  • the inorganic-liquid-containing liquid fraction pretreated in the first treatment unit and eluted from the inorganic component containing the metal in the biomass may be supplied to the third treatment unit or the fourth treatment unit.
  • This process means that the process of eluting the ashfree component in the biomass can be variously combined in process conditions that are optimized.
  • the membrane When the microfiltration membrane and the ultrafiltration membrane are applied, the membrane can be classified into a sheet type plate type, a hollow hollow type hollow fiber type, and a tubular type tubular type.
  • a housing containment film in which the film is placed in the case and a deposition film in which the film is directly immersed in water.
  • an external pressure type which supplies the substance to be treated from the outside of the membrane
  • a pressure type which supplies the substance from the inside.
  • the filtration method is a method of filtrating the total amount of feed water, such as sand filtration, a dead-end flow method in which the filtration is continued while discharging the contaminants accumulated on the membrane surface regularly,
  • Cross-flow filtration which suppresses the accumulation of suspended matter or colloidal material on the membrane surface, is a filtration method in which the membrane module is immersed in a dipping bath, While there is an advantage in that it is easy to operate, when the operation under high pressure conditions is impossible, there is a limit to the operation of high flux (flux).
  • a screen or strainer facility for removing contaminants As a pretreatment unit, a screen or strainer facility for removing contaminants, a general filter of 1 to 1001 m, a coagulant for improving filtration performance, a solidifying agent, a polymeric absorbent, an injection facility, a sand filtration facility, And chlorine injection equipment for oxidation of manganese.
  • the membrane filtration facility can be selectively provided with a raw water tank, a pump, a membrane module, and a cleaning unit.
  • the wastewater treatment facility may perform filtration for the washing wastewater again to recover the desired components or to improve the recovery rate, or to install the concentration tank and perform gravity sedimentation to return the supernatant to the raw water.
  • a Christmas tree method is used in which the module is arranged in a multi-stage in the separation membrane.
  • the concentrated tree is a Christmas tree method in which the concentrated water is discharged from the end to the system, and the concentrated water is returned to the supply water line.
  • the pump circulation system for discharging the refrigerant to the outside can be applied.
  • Such nanofiltration membranes are also capable of separating minerals such as calcium and magnesium.
  • the membrane module When the reverse osmosis membrane is applied, the membrane module may be divided into a spiral type, a hollow-fiber type, a tubular type, and a flat and frame type depending on the structure.
  • the molecular weight of a material derived from biomass is selected from the group consisting of glucose 180, xylose 150.13, mannose 180.2, galactose 180, arabinose 150.13, lignin 800-10000, furfural 96.09, levulinic acid 116, It is known as formic acid 46.03, acetic acid 60, Na 2 O 3 Si 122.06, NaOH 40, and SiO 2 60, so that a separation membrane can be applied for selective separation according to the molecular weight.
  • the fifth processing unit 500 may further include a fifth processing unit 500 for processing the solid-phase components processed in the second processing unit with hot water at a predetermined temperature and pressure.
  • the temperature condition of the fifth processing unit may be 80 ⁇ to 140 ⁇ .
  • the pressure condition of the first soaking unit may be between 1 and 1.5 bar.
  • the treated water may be hot water at a predetermined temperature and pressure, and may further include a weak acid liquid.
  • the weak acid component may be acetic acid, formic acid, etc., and is not limited as long as it is water-soluble and can lower the pH of the aqueous solution.
  • a hydrothermal treatment unit (600) for treating the solid phase component treated in the second treatment unit or the fifth treatment unit with hot water at a high temperature and a high pressure to produce a liquid fiber component containing hemicellulose and a solid fiber component including cellulose; May be further included.
  • the hydrothermal processing unit is operated so that a predetermined temperature, pressure, and reaction time are maintained.
  • the solid phase components supplied to the hydrothermal treatment unit are broken up into a solid phase containing hemicellulose, a liquid phase containing cellulose and lignin, and a high pressure and temperature, resulting in breakage of the structure.
  • the liquid phase containing hemicellulose is finally subjected to glycosylation to obtain xylose.
  • the obtained sugar is not particularly limited as long as it can be obtained from hemicellulose, but it may be preferably Arabinose or Xylose.
  • the hydrothermal treatment unit is operated so that the reaction is maintained at 160 to 250, 9 to 30 bar, and 1 to 5 hours so that the supplied solid phase component particles are broken and separated into a liquid phase containing hemicellulose and a solid phase containing cellulose and the like do.
  • Reaction If the temperature is out of the above-mentioned range, the pressure range or the reaction time, it may be preferable to operate under the reaction conditions since the recovery rate of the finally obtained glucose may be lowered, the reaction time may become excessively long, or the operation cost may increase.
  • hemicellulose which is a major component of xylose, has a weak heat characteristic, and when a long time treatment is performed at a high temperature, a part of hemicellulose is changed into a fermentation inhibiting substance to cause not only xylose loss but also fermentation inhibition problem. It is possible to prevent the loss of the xylose and the fermentation degradation problem in advance.
  • the acid participating in the reaction are sulfuric acid (H 2 SO 4), hydrochloric acid (HCl), nitric acid (HNO 3), phosphoric acid (H 3 PO 4), and acetic acid (C 2 H 4 O 3) , oxalic acid (C 2 H 2 O 4 ), and the like.
  • the acid is not limited to the acid described above, and any acid which decomposes hemicellulose and cellulose may be used.
  • Examples of the base involved in the reaction include sodium hydroxide, calcium hydroxide, urea, and the like.
  • the base is not limited to the base described, and any base that promotes the reaction characteristics can be used.
  • Examples of the ionic liquid participating in the reaction include imidazolium compounds such as 1-ethyl acrylate-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, Butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium chloride, 1-butyl- Butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium 1-ethyl-3-methylimidazolium acetate, 1-benzyl-3-methylimidazoliumchloride, 1,3-dimethylimidazoliummethylsulfate, sulfate, 1-butyl-3-methylimidazolium chloride, 1- Ethylimidazolium bromide ([EMIM] Br), ethylmethylimidazolium
  • the amount of one or more of the enzyme, acid, alkali, and ionic liquid introduced into the reaction unit may not be supplied depending on the reaction conditions.
  • a compound such as furfural may be generated while the solid phase component participates in the high-temperature high-pressure reaction through the hydrothermal processing unit.
  • the first discharge unit 610 discharges and separates the solid fiber component in the process of collecting steam discharged from the low-pressure region of the hydrothermal treatment unit without air contact.
  • the second discharge unit 620 discharges and separates the fiber liquid fraction in the process of collecting steam discharged from the other end of the hydrothermal treatment unit without air contact in a low pressure region.
  • an enzyme saccharification unit 700 for performing an enzymatic saccharification reaction for the production of bioethanol may be further included in the solid fiber component including the cellulose treated in the hydrothermal treatment unit.
  • the enzyme saccharification unit is characterized in that any one or two or more of enzyme, acid, alkali, and ionic liquid is added.
  • enzymes involved in the degradation of hemicellulose include enzymes such as Endo-1,4- ⁇ -D-xylanases, exo-1,4- ⁇ -D-xylosidases, endo-1,4- L-arabinofuranosidases, ⁇ -galactosidases, and ferulic acid esterases. Endo-glucanase (EG), cellobiogydrase (CBH), and ⁇ -mannosidase ), ⁇ -glucosidase (BGL), and the like.
  • the enzyme is not limited to the enzymes described, and any enzymes capable of decomposing hemicellulose and cellulose may be used.
  • the spraying unit may further include a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit.
  • a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit.
  • the concentration of the spraying solution is selected from the group consisting of a solid phase component containing glucan due to cellulose separated from the hydrothermal treatment unit, a liquid component containing glucan due to cellulose, and a liquid component containing glucose generated through the enzyme saccharification unit A certain amount of moisture is contained in the solid phase containing one or two or more liquid phase components and lignin separated in the fourth treatment unit.
  • the concentration is expressed as a solution ratio of the liquid component to be added to the total spraying solution, and may be more than 0 and less than 1. Preferably from 0.3 or more to 0.95 or less, and more preferably from 0.5 or more to 0.9 or less.
  • solution ratio is lower than the above-mentioned range, there is a disadvantage in that the amount of water is large and thus the process ratio is large, and when it is higher than the solution ratio, viscosity conditions for spraying and the like are difficult.
  • the spray solution is sprayed onto the coal while rotating coal having an average particle size of less than 4 mm among the coarsely pulverized coals using the spray solution generated through the spraying generating unit to granulate the coal while impregnating or coating the coal.
  • the fuel produced through the coal granulation unit may produce fuel in the form of pellets.
  • the coal pretreatment unit or the coal granulation unit may be operated independently or simultaneously depending on whether or not the coal satisfies the average grain size condition.
  • a waste liquid generated in the bleaching unit for pulp production utilizing the solid-phase component generated through the second processing unit may be additionally supplied.
  • a cleaning unit and a moisture removal unit for cleaning are provided at the rear end of any one or two or more of the first processing unit, the second processing unit, the fourth processing unit, the fifth processing unit and the hydrothermal processing unit, Any one or two units may be added.
  • the cleaning unit may be any one or more of a cleaning pump, air pressure, back pressure, air stripping, raw water cleaning, and mechanical vibration.
  • Separated ash-free concentrates can contain large quantities of lignin and are characterized by hydrophobicity of lignin.
  • the molded fuel can be produced using a solid phase component containing a large amount of cellulose and / or hemicellulose treated in the fifth treatment unit with a binder as a separated ash-free concentrated fraction.
  • Such molded fuel can be used in a fluidized bed, grate, undifferentiated boiler, gasifier, and the like.
  • the clogging phenomenon of clinker fouling caused by an inorganic component including a metal element in fuel during combustion and gasification and corrosion caused by alkali metal The origin of the phenomenon can be ruled out.
  • the ash-free condensed fraction separated from the fourth treatment unit and / or the solid-phase component treated in the fifth treatment unit are selectively used as a phenol formaldehyde resin extender, a molding compound Cement / concrete mix, gypsum board manufacturing, oil excavation, general dispersing, tanning leather, road coverings, vanillin manufacture, dimethyl sulfide and dimethyl sulfoxide manufacture in the manufacture of urethane and epoxy resins, antioxidants, release agents, flow control agents, , Phenol substitution with phenol resin in a polyolefin mixture, aromatic (phenol) monomers, additional various monomers, carbon fibers, metal removal from solution, basis of gel formation, polyurethane copolymer, and combinations thereof.
  • a semi-carbonization unit 1300 for producing an ash-free semi-carbonized fuel by heat-treating the solid-phase component processed in the fifth processing unit with the hydrophobic binder from the ash-free concentrated fraction separated from the fourth processing unit; May be further included.
  • the heating temperature for carbonization is preferably 180 to 220, not particularly limited. More preferably, the carbonization can be carried out at a temperature of 190 to 210 ° C.
  • moisture can be prevented from being adsorbed again to the surface of the ashfree semi-carbonized fuel powder or into the micropores, and it is possible to facilitate the transportation and storage of the ashfree biomass fuel, An ash-free biomass semi-carbonized fuel having a high calorific value can be obtained.
  • the separation liquid containing the inorganic matter separated from the liquid component through the fourth processing unit may further include a recycle unit 1400 that recirculates to the first processing unit and / or the second processing unit .
  • bio-ethanol produced by the complex fuel production system using the ash-free biomass which further comprises the enzyme saccharification unit, may be used.
  • the coal may be manufactured by a composite fuel production system using ash-free biomass, further comprising the coal pretreatment unit.
  • the coal produced by the composite fuel production system using ash-free biomass, which further comprises the coal granulating unit, may be used.
  • it may be an ash-free forming fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-mentioned shaped fuel unit.
  • it may be an ash-free semi-carbonized fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-described semi-carbonization unit.
  • FIG. 2 is a flowchart showing a fuel production system for a boiler in which fusing and hot corrosion-inducing components are removed according to the present invention.
  • the semi-carbonized fuel production system for the boiler for improving the biomass mixing ratio may be used.
  • the biomass may be a herb, cornstalks, wood pellets, or the like.
  • the biomass may be at least one of second generation, third generation biomass, and combustible solid waste.
  • the combustible solid waste may include waste paper, agricultural waste, scrap wood, vegetable residue, herbaceous waste, and the like.
  • Class 2 and 3 Waste wood (Class 2: Waste wood that has been contaminated with or contaminated with adhesives, paints, oils, and concrete during processing, processing, or use (except for halogenated organic compounds and waste wood treated and contaminated with preservatives) ), Class 3: Waste wood that has been or is contaminated with halogenated organic compounds or preservatives during the processing process and quality grade of solid fuel products as defined in Article 20-3, Paragraph 2 of the Enforcement Rule of the Law Concerning the Promotion of Reduction and Recycling of Resources Waste wood chips that do not meet the criteria, and other waste wood that does not fall in classes 1 to 2 above). (Ministry of Environment Notification No. 2012-117)
  • the predetermined size may be 500 mm or less.
  • the pulverization cost may be excessively high, or the efficiency of the fusion and removal of the high temperature corrosion-inducing component may be lowered.
  • the crushing unit may perform crushing and / or grinding.
  • the crushing unit can use any of physical characteristics such as compression, impact, friction, shearing and bending, and the method is not limited as long as it can achieve the purpose of reducing the size of the biomass such as cutting and enlarging the surface area.
  • the crushing unit may be a jaw crusher, a gyratory crusher, a roll crusher, an edge runner, a hammer crusher, a ball mill, a jet mill mill, and a disk crusher.
  • the raw material supply feeder is not particularly limited as long as it can supply the raw material quantitatively to the downstream end.
  • the fusion and high-temperature corrosion-inducing components are physically and chemically adhered to the surface of the reactor wall, the heat exchanger, and the downstream-end flue-gas treating facility of the downstream reaction stage among the inorganic components contained in the biomass used in the combustion reaction to generate fouling, slagging, , Cracking, and the like.
  • the fusing and hot corrosion-inducing component may be an alkali, alkaline earth metal, or a halogen group element.
  • it may be sodium, potassium or chlorine.
  • the temperature of the injection water for the hot water treatment at the predetermined temperature may be 0 to 100. And preferably from 40 to 80.
  • the time for the feedstock to stay in the fusing and hot corrosion-inducing component separation unit may be 10 minutes to 2 hours.
  • the amount of heat input per unit feedstock varies depending on the type of biomass, and may be defined as BTW (Biomass to Water, kg / kg). Preferably 0.02 to 0.5, and more preferably 0.11 to 0.18 (based on weight, wood pellet, corn vs. 1/6).
  • the blending condition may be 1 wt% to 50 wt% of the conventional fossil fuel. , Preferably from 3 wt% to 40 wt%, and more preferably from 5 wt% to 30 wt%.
  • the fusion component and the hot corrosion-inducing component may be included in the liquid component discharged from the fusion-bonding and high-temperature corrosion-inducing component separation unit.
  • the liquid component may be an aqueous solution containing a small amount of organic compounds and fusion and hot corrosion-inducing components.
  • the organic compound may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
  • the liquid component may comprise hemicellulose, organic acid, furfural, 5-hydroxymethylfufural (5-HMF) and inorganic.
  • the solid phase component discharged from the fusing and high temperature corrosion-inducing component separating unit may include a combustible component in which the fusion-bonding and high-temperature corrosion-inducing component are separated.
  • the combustible component may be an organic compound.
  • the combustible component may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
  • the pH of the liquid component may be 6 or less.
  • the pH may be 2.5 to 4 or less.
  • the pH of the liquid component has a technical feature that the pH is lowered by the organic acid in the raw material.
  • the organic acid include acetic acid, formic acid, propanoic acid, 4-hydroxybutanoic acid, and 2-butenoic acid.
  • acetic acid C 2 H 4 O 2
  • formic acid HCOOH
  • propanoic acid CH 3 CH 2 COOH
  • 4-hydroxybutanoic acid It is possible to add at least one of 2-butenoic acid, sulfuric acid (H2SO4), hydrochloric acid (HCl), nitric acid (HNO3), phosphoric acid (H3PO4), peracetic acid (C2H4O3), acetic acid (CH3COOH), oxalic acid (C2H2O4) have.
  • the added amount of the acid solution may be 10 wt% or less with respect to the total amount of applied heat.
  • the pH by adding the acid solution may preferably be 4 or less.
  • the pH may be 2.5 to 4 or less.
  • the aqueous solution having a low pH, from which the organic compound in the liquid component is separated, may be recycled to the fusion and hot corrosion-inducing component separation unit (401).
  • At least one of centrifugal separation, flocculation, adsorption, filtration membrane and ion exchange resin may be applied.
  • the semi-carbonizing unit may include a fuel storage device, a transfer device, and a raw material collecting part in which the fusing and hot corrosion-inducing components are removed through rotation.
  • the inside of the rotator may include an inner rotating tube.
  • the ratio of the outer diameter of the inner rotating tube to the inner diameter of the rotating tube may be 0.9 or less.
  • the ratio of the outer diameter of the inner rotating tube to the inner diameter of the rotating body may be 0.6 or less.
  • the carbonization efficiency may be effective only within the above-described range of the diameter ratio.
  • the rotation of the inner rotary tube may be opposite to the rotation direction of the rotary shaft.
  • the inner rotating tube may have a concavoconvex shape or a screw shape.
  • the raw material collecting part may include a pressure and / or temperature sensor.
  • the raw material collecting portion may include a gas discharge valve.
  • the raw material collecting unit may include a load cell.
  • the raw material collecting part may include a gas concentration sensor.
  • the semi-carbonization temperature of the inner rotating tube of the semi-carbonization unit may be from 150 to 250. Preferably from 180 to 230, and more preferably from 190 to 210. [ Outside the semi-carbonization temperature range, the raw material may be completely carbonized or its volume, calorific value, and crushability may be deteriorated.
  • the semi-carbonization condition of the semi-carbonization unit may be performed on an inert gas.
  • the recycling unit may be any one or more of a microfilter, an ultrafilter, a nanofilter, and a reverse osmosis membrane.
  • water, an acidic solution, and a basic solution can be injected to the front end or the rear end of the recirculation unit for adjusting pH and concentration.
  • the solid component in the liquid phase component can be separated at the front end or the rear end of the recirculation unit by using at least one of water evaporation, centrifugal separation, precipitation, precipitation, agglomeration, and adsorption. Hemicellulose in the liquid component can be separated and used as dietary fiber.
  • Any one or two units of the cleaning unit and the moisture removal unit for cleaning may be added to the downstream of the fusion and high-temperature corrosion-inducing component separation unit.
  • the gas phase component discharged from the semi-carbonization unit may include an organic compound including an acid gas.
  • the organic compound may be used as a heat source for the semi-carbonized fuel production system for the boiler.
  • the organic compound may include hemicellulose, acid gas, furfural, pyrolysis flammable gas, and the like.
  • the organic compound may be used as a heat source in a semi-carbonized fuel production system for boilers for improving the biomass mixing ratio.
  • the semi-carbonized fuel may be mixed with less than 50 parts by weight in a boiler using fossil fuel.
  • the semi-carbonized fuel may be in the range of 0.01 to 0.5 in the boiler using fossil fuel.
  • the method may further include a step of producing a semi-carbonized fuel for boiler for improving the biomass mixing ratio.
  • FIG. 4 is a flowchart illustrating a fuel production system for a boiler in which a fouling inducing component is removed according to the present invention.
  • the feedstock may be any one or more of fossil fuel, biomass, and combustible solid waste.
  • it may be a mustard, a corn stand, or a wood pellet.
  • the feedstock may be second generation and / or third generation biomass.
  • Flammable solid wastes may include waste paper, agricultural waste, scrap wood, vegetable residues, and herbaceous waste.
  • the predetermined size may be 500 mm or less.
  • the pulverization cost may be excessive or the removal efficiency of the fouling-inducing component may be lowered.
  • the crushing unit may perform crushing and / or grinding.
  • the crushing unit can use any of physical characteristics such as compression, impact, friction, shearing and bending, and the method is not limited as long as it can achieve the purpose of reducing the size of the biomass such as cutting and enlarging the surface area.
  • the crushing unit may be a jaw crusher, a gyratory crusher, a roll crusher, an edge runner, a hammer crusher, a ball mill, a jet mill mill, and a disk crusher.
  • the raw material supply feeder is not particularly limited as long as it can supply the raw material quantitatively to the downstream end.
  • the fouling-inducing component physically and chemically attaches to the surface of the reactor wall, the heat exchanger, and the downstream-end flue-gas treating facility in the downstream of the reaction among the inorganic components contained in the feedstock used for the combustion reaction to form fouling, slagging, And the like.
  • the fouling-inducing component may be an alkali, an alkaline earth metal, or a halogen group element.
  • it may be sodium, potassium or chlorine.
  • the temperature of the injection water for the hydrothermal treatment at the predetermined temperature may be 100 to 500. Preferably from 120 to 300, and more preferably from 180 to 220. [ The time for the feedstock to stay in the fouling-inducing component separation unit may be 10 minutes to 2 hours.
  • the time for the feedstock to stay in the fouling-inducing component separation unit may be 30 minutes.
  • the amount of heat input per unit feedstock varies depending on the type of biomass, and may be defined as BTW (Biomass to Water, kg / kg). Preferably from 0.02 to 0.5, and more preferably from 0.11 to 0.18 (based on weight, wood pellets, 1 kg / 6 kg of corn).
  • Additional hot water may be supplied with steam.
  • the blending condition may be 1 wt% to 50 wt% of the conventional fossil fuel. , Preferably from 3 wt% to 40 wt%, and more preferably from 5 wt% to 30 wt%.
  • the fouling inducing component may be included in the liquid component discharged from the fouling inducing component separating unit.
  • the liquid component may be an aqueous solution containing a small amount of an organic compound and a fouling-inducing component.
  • the organic compound may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
  • the liquid component may comprise hemicellulose, organic acid, furfural, 5-hydroxymethylfufural (5-HMF) and inorganic.
  • the solid phase component discharged from the fouling inducing component separating unit may include a combustible component in which the fouling inducing component is separated.
  • the combustible component may be an organic compound.
  • the combustible component may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
  • the combustible component is characterized in that the carbon fraction of carbon, hydrogen, nitrogen, oxygen and sulfur of the raw material per unit mass is increased and the hydrogen, nitrogen, oxygen and sulfur components are decreased.
  • the pH of the liquid component may be 6 or less.
  • the pH can be 2.5 to 5 or less.
  • the pH of the liquid component may be approximately 4.
  • the pH of the liquid component has a technical feature that the pH is lowered by the organic acid in the raw material.
  • the organic acid include acetic acid, formic acid, propanoic acid, 4-hydroxybutanoic acid, and 2-butenoic acid.
  • acetic acid C 2 H 4 O 2
  • formic acid HCOOH
  • propanoic acid CH 3 CH 2 COOH
  • 4-hydroxybutanoic acid 2- at least one of butenoic acid, sulfuric acid (H2SO4), hydrochloric acid (HCl), nitric acid (HNO3), phosphoric acid (H3PO4), peracetic acid (C2H4O3), acetic acid (CH3COOH) and oxalic acid (C2H2O4).
  • the added amount of the acid solution may be 10 wt% or less with respect to the total amount of applied heat.
  • the pH by adding the acid solution may preferably be 4 or less.
  • the pH may be 2.5 to 4 or less.
  • the aqueous solution having a low pH, from which the organic compound in the liquid component is separated, may be recycled to the fouling-inducing component separation unit (402).
  • At least one of centrifugal separation, flocculation, adsorption, filtration membrane and ion exchange resin may be applied.
  • the raw material may be supplied to a pretreatment unit which is treated with an alkali solution before being supplied to the fouling-inducing component separation unit.
  • the pretreatment solid phase component generated in the pretreatment unit is supplied to the fouling inducing component separation unit, and the pretreatment liquid phase component can be separated and discharged.
  • the pre-treatment solid phase component may be an organic compound.
  • the combustible component may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
  • the combustible component is characterized in that the carbon fraction of carbon, hydrogen, nitrogen, oxygen and sulfur of the raw material per unit mass is increased and the hydrogen, nitrogen, oxygen and sulfur components are decreased.
  • the pretreatment liquid phase component may be an aqueous solution containing a small amount of an organic compound and an inorganic substance.
  • the organic compound may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
  • the organic compound may be lignin.
  • the inorganic material may include at least one of Al, Si, P, Ca, Ti, Mn, and Fe.
  • a membrane filter unit for separating the liquid component of the organic compound.
  • the membrane filter unit may be any one or more of a micro filter, an ultrafilter, a nanofilter, and a reverse osmosis membrane.
  • water, an acidic solution, and a basic solution can be injected to the front or rear end of the membrane filter unit for pH and concentration control.
  • the solid component in the liquid component can be separated by using one or more methods such as evaporation, centrifugation, precipitation, precipitation, coagulation, and adsorption at the front end or the rear end of the membrane filter unit. Hemicellulose in the liquid component can be separated and used as dietary fiber.
  • Any one or two units of the cleaning unit and the water removal unit for cleaning may be added to the rear end of the fouling-inducing component separation unit or the pretreatment unit.
  • the biomass refers to lignocellulose-based herbaceous and woody biomass, and the material belonging to the biomass is not limited. It is also apparent that first- or third-generation biomass is also applicable.
  • Cellulose which is a major component of lignocellulose, is a stable polysaccharide in which glucose is linked by ⁇ -1,4 bonds.
  • Another major component is a polymer of xylose, which is a pentane. In addition, it is composed of a polymer such as 5-valent arabinose, 6-valent mannose, galactose, glucose, rhamnose, etc. Of a polymer.
  • Glucan is a generic term for polysaccharides composed of glucose. There are various kinds of polysaccharides depending on the binding style of D-glucose. They are largely divided into ⁇ ⁇ -glucan and ⁇ ⁇ -glucan by the arrangement of the adduct carbon atoms.
  • the ⁇ ⁇ -glucan includes amylose ( ⁇ ⁇ -1,4 bonds), amylopectin ( ⁇ ⁇ -1,4 and ⁇ ⁇ -1,6 bonds), glycogen ( ⁇ ⁇ -1,4 and ⁇ ⁇ -1,6 bonds), bacterial dextran (alpha alpha-1,6 linkages) and the like.
  • beta -glucan include cellulose (beta beta-1,4 linkage), brown alga laminarane beta beta-1,3 linkage, lichen lignan beta beta 1,3 beta beta beta 1,4 linkage, have.
  • the liquid component containing xylan includes xylan (xylan). Glucuronoxylan, arabinoxylan, glucomannan, xyloglucan, and the like may be included.
  • the liquid component containing xylan as the above-described components is not limited, and various components may be separated depending on the components of the biomass to be injected.
  • the saccharides are not limited to the above-described compounds and can be variously produced depending on the kind of the second generation biomass. Therefore, it is divided into 2, 3, 4, 5, and 6-carbon sugars according to the number of carbon atoms.
  • xylulose and 6-carbon sugars can be glucose, glucose, fructose, fructose, galactose and mannose.
  • Examples of the disaccharide to which two monosaccharides are combined may include lactose, lactose, lactose, glucose, maltose, maltose, sugar, sucrose, trehalose, melibiose and cellobiose.
  • small sugars that are sugar-bonded sugars having 2 to 10 molecules include raffinose, melezitose and maltoriose as three saccharides, starchose and schrodose as four saccharides, And oligosaccharides may be galactooligosaccharides, isomaltooligosaccharides, and fructooligosaccharides.
  • polysaccharides examples include pentosan, which is a simple polysaccharide with pentoses attached thereto, and may include xylan and araban.
  • Hexoxanes condensed with 6-valent sugars include starch, starch, polymers of glucose such as amylose, dextrin, glycogen, cellulose, fructan, galactan galactan, mannan, and the like.
  • Composite polysaccharides may include agar, alginic acid, carrageenan, chitin, hemicellulose, pectin, and the like.
  • the acid participating in the reaction are sulfuric acid (H 2 SO 4), hydrochloric acid (HCl), nitric acid (HNO 3), phosphoric acid (H 3 PO 4), and acetic acid (C 2 H 4 O 3) , acetic acid (CH 3 COOH), oxalic acid (C 2 H 2 O 4 ), and the like.
  • the acid is not limited to the acid described above, and any acid which decomposes hemicellulose and cellulose may be used.
  • Examples of the base involved in the reaction include sodium hydroxide, calcium hydroxide, urea, and the like.
  • the base is not limited to the base described, and any base that promotes the reaction characteristics can be used.
  • Examples of the ionic liquid participating in the reaction include imidazolium compounds such as 1-ethyl acrylate-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, Butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium chloride, 1-butyl- Butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium 1-ethyl-3-methylimidazolium acetate, 1-benzyl-3-methylimidazoliumchloride, 1,3-dimethylimidazoliummethylsulfate, sulfate, 1-butyl-3-methylimidazolium chloride, 1- Ethylimidazolium bromide ([EMIM] Br), ethylmethylimidazolium
  • the amount of one or more of the enzyme, acid, alkali, and ionic liquid introduced into the fouling-inducing component removing unit may not be injected depending on the reaction conditions.
  • a compound such as furfural may be generated while the solid phase component participates in the high-temperature high-pressure reaction through the hydrothermal processing unit.
  • the fuels from which the fouling-inducing component is removed can be used in a fluidized bed, grate, undifferentiated boiler, gasifier and the like.
  • FIG. 5 is a graph showing changes in the composition of raw materials before and after the fouling-inducing component separation unit in the fuel production system for a boiler in which the fouling-inducing component is removed according to the present invention.
  • the cor stover of FIG. 5 was dried at 45 for storage and crushing of domestic corn borrowed samples.
  • the AHC (200) -1step sample was prepared by 200 hydrothermal reaction of corn stover, water and acetic acid at a ratio of 1: 5.8: 0.6.
  • moisture and ash contents mostly Na, K, Ca, etc.
  • Elemental analysis showed an increase in carbon, hydrogen, oxygen, nitrogen and sulfur content.
  • the calorific value is characterized by an increase of about 1,200 kcal / kg (based on the lower calorific value) compared to the raw sample.
  • FIG. 6 shows a state change of a raw material component according to an embodiment of the fuel production system for a boiler from which a fouling-inducing component is removed according to the present invention.
  • the pretreatment unit is a step of removing ash components such as Si, Al and Ti contained in the biomass.
  • the ratio of biomass: water: NaOH is 1: 7.92: 0.08 and the reaction conditions are 60 and 30 min to be.
  • This 1step can be operated in conjunction or separately according to 2 step process.
  • Step 2 is a step of removing fouling-inducing components such as Na, K, Ca and Cl contained in biomass, wherein the ratio of biomass: water: acetic acid is 1: 7.2: 0.8, 60 min.
  • This 2 step is the main process and may further include a 1step unit.
  • FIG. 7 shows the ash removal rate and the ash composition according to the treatment conditions of the fouling-induced component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • ash is reduced by about 62% under the condition of 160-180.
  • the reduced ash content is dominated by NaO, MgO, P 2 O 5 , K 2 O, CaO, MnO and Fe 2 O 3 .
  • FIG. 8 is a graph showing changes in XMG content and lower calorific value according to processing conditions of the fouling-inducing component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • FIG. 9 is a graph showing the relationship between the amount of ash and XMG in the fouling inducing component separation unit and the amount of XMG in the fouling inducing component separation unit according to the present invention, This shows the change in calorific value.
  • ash and XMG removal rate and low calorific value increase rate are most suitable for utilization as fuel at 200 and 60 min.
  • the pretreatment unit is a process for removing ash components such as Si, Al, and Ti contained in biomass.
  • the ratio of large scale water: water: NaOH is 1: 7.92: 0.08, and reaction conditions are 60 and 30 min.
  • FIG. 10 shows the ash removal rate and ash composition according to the treatment conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • the ash removal was hardly effected under the condition of 40, and the ash was reduced by about 54% under the conditions of 60 and 30 min.
  • the reduced ash content is dominated by Al 2 O 3 , SiO 2 , and TiO 2 .
  • FIG. 11 is a graph showing changes in lignin content and lower calorific value according to processing conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
  • FIG. 12 is a graph showing changes in ash content, lignin content and lower calorific value according to the temperature and the treatment time of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling- will be.
  • the ash reduction rate, lignin and low calorific value loss rate are most suitable for utilization as fuel at 60 and 30 min.
  • FIG. 13 shows NOx, ash removal rate, and heating value increase rate according to the present invention, which is a comparison between solid fuels after being treated with 160 to 200, and it is considered that fuel NOx, ash reduction rate, and heating value increase rate are the most suitable conditions at a temperature of 200 have.
  • the combustible component through the specification of the present invention means a substance containing carbon such as hemicellulose based polymer material and organic compound extracted from biomass, and the mineral component means a substance which causes corrosion, abrasion and fouling of combustion furnace And represent sodium, potassium and chlorine components representatively.
  • the method for separating the combustible component from the biomass hot water extract liquid comprises the steps of S-1 for crushing biomass, S-2 for supplying hot water to crushed biomass, S-3 step of separating the solid material into a solid phase material, S-4 step of adding a coal powder to the liquid phase material, S-4 step of supplying the coal and liquid phase material mixture to the first separation means, Step 5, step S-6 of supplying the filtrate from which the coal is removed to the second separating means, obtaining the first concentrate and the first permeate by the second separating means, recovering the first concentrate, And the S-7 step of supplying the permeated liquid to the third separation means, and the S-8 step of obtaining the second concentrated liquid and the second permeated liquid by the third separation means and recovering the second concentrated liquid.
  • the crushing means is not particularly limited as long as it can crush the tissues of the biomass to reduce the size and crush the tissues.
  • Preferred examples thereof include a jaw crusher, a gyratory crusher, a roll crusher ), An edge runner, a hammer crusher, a ball mill, a jet mill, and a disk crusher.
  • the biomass is not particularly limited as long as it contains a soluble component usable as a fuel source, but woody, herbaceous and algae can be preferably used.
  • Wood chips, wood chips, logs, tree branches, wood crumbs, leaves, wood boards, sawdust, lignin, xylan, lignocellulose, palm kernel, palm kernel shell, palm fiber, empty fruit bunches (EFB) , Fresh fruit bunches (FFB), palm leaves and the like, and herbaceous plants include cornstalks, rice straw, crockery, sugarcane, grain (rice, millet, coffee etc.) husks, candy leaves, bagasse, Bio such as chalk, molasses, flax, hemp, sheep, cotton stalks, tobacco stalks, corn starch, potatoes, cassava, wheat, barley, lime mill and other starch processing residues, avocados, jatropha and their processed residues Mass may be used but is not limited thereto.
  • the algae may be green algae, cyanobacteria, diatoms, red algae, Chlorella, Spirulina, Dunaliella, Porphyridium, Phaeodactylum and the like.
  • hot water is supplied to the pulverized biomass.
  • the biomass contains lignin, cellulose, hemicellulose, and various minerals that cause burning problems.
  • various kinds of biomass Mineral components are separated into soluble or insoluble state in hot water.
  • the temperature of the hot water is not particularly limited, but may be preferably from 100 ° C to 500 ° C, more preferably from 120 ° C to 300 ° C, Lt; 0 > C to 220 < 0 > C.
  • the temperature of the hot water is less than 100 ° C, the minerals are not well separated and the reaction time becomes too long. On the contrary, when the temperature exceeds 500 ° C, It is preferable to supply hot water.
  • the reaction time of the hot water and the biomass is not particularly limited, but is preferably 30 minutes to 2 hours.
  • Step S-3 which separates the biomass supplied with hot water into a liquid phase material and a solid phase material
  • a known separation method capable of separating the liquid phase material and the solid phase material can be used.
  • Mesh networks smaller than the particle size of the mass may be used, but are not limited thereto.
  • Step S-4 to add coal to the liquid phase material
  • the liquid substance containing hot water contains a large amount of carbon components which are useful as heat sources such as hemicellulose based pentose as well as mineral components separated from biomass.
  • a step of adding a powder to the liquid phase material is carried out in order to separate carbon components such as pentose from the liquid phase material, which causes a problem in combustion and a useful heating source.
  • the pulverized coal is preferably 10 ⁇ to 10 ⁇ , more preferably 70 ⁇ to 5 ⁇ .
  • the particle diameter of the coal powder is less than 10 ⁇ , it is not easy to separate the powder from the liquid material.
  • the particle diameter exceeds 10 mm, the specific surface area of the coal powder is small, Is preferably in the above range.
  • the mixing ratio of the pulverized liquid material to the pulverized liquid material is preferably 1: 1 to 1:10. It is very difficult to separate the powder from the slurry when the powder is added in an excessively large amount. On the contrary, when the powder is added in an excessively small amount, the adsorption amount can be greatly reduced. Therefore, .
  • the surface or pores of the pulverized coal are mainly adsorbed by a pentacarbon-containing combustible material containing carbon, but since they contain substantially no mineral components, they can be used directly as a heating source such as a boiler.
  • the first separation means for separating the pulverized material from the liquid phase material is filtrated through a filter net using the sieve separation effect.
  • a filter net having a pore size which does not pass through the pulverizer but can pass through the liquid phase material can be used in consideration of the particle size of the added pulverized coal. For example, if the particle diameter of the pulverized coal is 10 ⁇ m or more, it is preferable to use a filter net having a size of less than 10 ⁇ m. If the coal is 70 ⁇ m or more, a filter net having a size of less than 70 ⁇ m can be used.
  • the pulverized coal when the pulverized coal is separated from the pulverized liquid material, separation by its own weight. More specifically, the liquid material and pulverized coal can be separated by the own gravity of the water. It is also possible to separate the powder by injecting a mixture of the powder and the powdery material into a closed container provided with the filter net, and then applying pressure to discharge the liquid material out of the closed container. In addition, it is also possible to separate the pulverized coal by injecting a mixture of pulverized material and liquid material into an open container provided with the filter net, and then sucking and discharging only the liquid material.
  • Step S-6 for supplying the filtrate from which the pulverized coal has been removed to the second separation means
  • the flammable material may still be present in the pulverized filtrate.
  • the second separating means is preferably an ultrafiltration membrane or a microfiltration membrane which transmits a mineral component but does not permeate a combustible substance. As described above, it is very easy to recover the combustible material by the second separating means because a large amount of pentane-containing combustible fraction contained in the liquid phase material and having a relatively large molecular weight is recovered by the pulverization.
  • the pentane-like combustible component can not permeate the filtration membrane, while the mineral component permeates the first filtrate containing the combustible component and the first permeate containing the mineral component It is possible to separate.
  • the first concentrate contains substantially no mineral components, it can be used as a heating source.
  • a low-molecular combustible component which is not recovered by the second separating means together with the mineral component may remain in the first permeated liquid.
  • the third separating means can be used for the purpose of completely recovering the remaining low-molecular-weight combustible components as described above.
  • the third separation means is a nanofiltration membrane or a reverse osmosis membrane.
  • the remaining combustible components can not pass through the filtration membrane, whereas the mineral component permeates, so that the second concentrate containing the combustible component and the second permeate containing the mineral component are separated It is possible.
  • the second concentrate can be used as a heating source because it contains substantially no mineral components, while the second permeate contains only minerals, and thus can be used for toilet, washing, and the like.
  • a method for separating a combustible component according to the fourth embodiment of the present invention comprises the steps of S-1 for crushing biomass as crushing means, S-2 for supplying hot water to the crushed biomass, Step S-3 of separating the biomass into a liquid phase material and a solid phase material, step S-4 'of centrifuging the liquid phase material, and step S-5' of recovering the concentrated slurry and obtaining a supernatant liquid.
  • the fourth embodiment differs from the third embodiment in that a combustible component is recovered by centrifuging the liquid phase material.
  • steps S-1 to S-3 are the same as those of the first embodiment, but the liquid phase material is centrifuged (step S-4 ') to separate the concentrated slurry corresponding to the combustible component and the supernatant containing the mineral component (Step S-5 ').
  • the composite fuel production system using the ash free biomass of the present invention it is possible to effectively and easily extract the glucose component and the like from the herbaceous or woody biomass through the high temperature and high pressure reaction condition without using any chemical such as acid or alkali.
  • the raw material for producing bioethanol can be selectively secured.
  • ash-free fuel can be applied to a power generation fuel, thereby effectively reducing fouling of clinker and alkali corrosion that may occur during operation of the combustion system.
  • biomass component is impregnated and carbonized after impregnation with low grade coal, it is not necessary to separate biomass undiluted apparatus, which is an important factor that only biomass of less than 3.5 wt% There is an effect that it is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a demineralized biomass, a multi-fuel producing system using the same and a preparation method therefor and, more specifically, to: a demineralized biomass, which is capable of fundamentally eliminating a problem such as clinker fouling, caused by inorganic materials, by extracting and separating an inorganic component comprising metal ions from herbaceous or lignocellulosic biomass through methods including acid treatment, alkali treatment, hot water treatment and membrane filtration of a cellulose- and hemicellulose-derived solid component and a liquid component comprising ash and lignin, and can be applied to a fuel production process such as coal upgrading, ash-free molded fuel, ash-free torrefacted fuel and bioethanol, and the like by selectively supplying the separated cellulose- and hemicellulose-derived solid component, the liquid component comprising lignin, and/or water to various fuel production systems; a multi-fuel producing system using the same; and a preparation method therefor.

Description

탈무기질 바이오매스, 이를 이용한 복합 연료 생산 시스템 및 그 제조방법.Deionized biomass, complex fuel production system using the same, and production method thereof.
본 발명은 탈무기질 바이오매스, 이를 이용한 복합 연료 생산 시스템 및 그 제조방법에 관한 것으로, 보다 상세하게는 초본계 또는 목질계 바이오매스로부터 셀룰로오스 및 헤미셀룰로오스에 기인하는 고상성분과 회분 및 리그닌을 포함하는 액상성분을 산처리, 알칼리, 열수처리, 막여과를 포함하는 방법을 이용하여 금속이온을 포함하는 무기물 성분 추출 분리함으로써 무기물에 기인하는 클링커 파울링 등의 문제점을 근원적으로 배제할 수 있는 분리된 셀룰로오스 및 헤미셀룰로오스에 기인하는 고상성분, 리그닌을 포함하는 액상성분 및/또는 용수를 선택적으로 다양한 연료 생산 시스템에 공급하여 석탄 고품위화, 애쉬프리 성형연료, 애쉬프리 반탄화연료, 바이오에탄올 등의 연료 생산 공정 등에 적용할 수 있는 탈무기질 바이오매스, 이를 이용한 복합 연료 생산 시스템 및 그 제조방법에 관한 것이다.The present invention relates to a denitrifying biomass, a complex fuel production system using the same and a method for producing the same, and more particularly, to a method for producing a denitrifying biomass, which comprises solid phase components originating from cellulose and hemicellulose from an herbaceous or woody biomass, Separating and separating inorganic components including metal ions by using a method including acid treatment, alkali treatment, hydrothermal treatment and membrane filtration, thereby separating the separated cellulose, which is capable of fundamentally eliminating problems such as clinker fouling caused by an inorganic substance A liquid phase component containing hemicellulose, a liquid component containing lignin and / or water is selectively supplied to various fuel production systems to produce a high-quality coal, an ashfree-formed fuel, an ashfree carbonized fuel and a bioethanol Applicable de-mineral biomass, use it To a composite fuel production system and a manufacturing method thereof.
또한, 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에 관한 것으로, 보다 상세하게는 초본계, 목질계, 조류(Algae) 바이오매스로부터 보일러 운전시 파울링, 슬래깅, 고온부식, 크링커 생성 등 반응기 벽면, 열교환기 등 전열면에 악영향을 발생하는 융착 및 고온부식 유발성분을 물리, 화학적 방법을 통하여 제거하고 제거 후 고상성분은 반탄화 고형연료로 보일러 혼소에 적용하여 바이오매스 혼소율을 높일 수 있는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에 관한 것이다.More particularly, the present invention relates to a system for producing a semi-carbonized fuel for a boiler for improving a biomass mixing ratio, and more particularly, to a system for producing a semi-carbonized fuel for a boiler from an herbaceous system, woody system, algae biomass, Etc., which are adversely affecting the surface of the reactor wall, heat exchanger, etc., are removed by physical and chemical methods, and then the solid phase component is applied to the boiler suck as a semi-carbonized solid fuel to remove the biomass solubility And more particularly, to a semi-carbonized fuel production system for a boiler for improving the biomass mixing ratio.
또한, 파울링 유발성분을 제거한 보일러용 연료 생산 시스템에 관한 것으로, 보다 상세하게는 초본계, 목질계, 조류(Algae) 바이오매스로부터 보일러 운전시 파울링, 슬래깅, 고온부식, 크링커 생성 등 반응기 벽면, 열교환기 등 전열면에 악영향을 발생하는 파울링 유발성분을 물리, 화학적 방법을 통하여 제거하고 제거 후 고상성분은 고형연료로 전소 또는 혼소에 활용되며, 파울링 유발성분을 포함하는 액상성분은 산처리, 알칼리, 열수처리, 막여과, 이온교환, 응집, 흡착, 원심분리를 포함하는 방법을 이용하여 수처리하는 방법을 적용한 파울링 유발성분을 제거한 보일러용 연료 생산 시스템에 관한 것이다.More particularly, the present invention relates to a fuel production system for a boiler in which fouling-inducing components are removed. More particularly, the present invention relates to a fuel production system for a boiler in which a fouling- The fouling inducing components that cause adverse effects on the heat transfer surface such as the wall surface and the heat exchanger are removed by physical and chemical methods, and the solid phase component is used as a solid fuel for burning or burning, and the liquid component containing the fouling inducing component The present invention relates to a fuel production system for a boiler in which a fouling inducing component is removed by applying a water treatment method using a method including an acid treatment, an alkali treatment, a hydrothermal treatment, a membrane filtration, an ion exchange, flocculation, adsorption and centrifugation.
또한, 바이오매스로부터 가연성 성분을 분리하는 방법에 관한 것으로, 보다 상세하게는 바이오매스를 열수 처리하여 수득한 액체상 물질에 분탄을 첨가하여 가연성 물질을 분리 회수하는 방법에 관한 것이다.More particularly, the present invention relates to a method for separating and recovering a combustible material by adding a powder to a liquid material obtained by hydrothermally treating the biomass.
이산화탄소 발생량이 가장 많은 요인이며 지구 온난화 문제에 경쟁력이 취약한 에너지원이 화석연료에 기반한 에너지원이다. 따라서 현재 에너지원으로서 세계적으로 이슈화 되고 있는 것 중에 신재생 에너지의 이용 및 보급을 들 수 있으며, 이는 기존의 석유, 석탄 등 화석연료에 비하여 이산화탄소의 배출이 저감되어 지구온난화 및 기후변화에 대응할 수 있는 에너지원이기 때문이다. The energy source that generates the largest amount of carbon dioxide and which is not competitive with global warming is an energy source based on fossil fuel. As a result, the use of renewable energy is one of the issues that are currently being addressed globally as an energy source. This means that the emission of carbon dioxide is reduced compared to conventional fossil fuels such as petroleum and coal, Because it is an energy source.
국내에서는 화석연료의 고갈과 더불어 국제조약인 기후변화협약 대응에 따른 온실가스 감축이 대두되면서 일정규모(500MW) 이상의 발전설비(신재생에너지 설비는 제외)를 보유한 발전사업자(공급의무자)에게 총 발전량의 일정비율 이상을 신·재생에너지를 이용하여 공급토록 의무화한 신재생 에너지공급의무화제도(Renewable Portfolio Standard; RPS)가 도입되었으며 이런 의무공급량 미이행분에 대해서는 공급인증서 평균거래가격의 150%이내에서 불이행사유, 불이행 횟수 등을 고려하여 과징금을 부과할 수 있도록 법제화 하였다. In Korea, with the depletion of fossil fuels and the reduction of greenhouse gas (GHG) emissions in response to the international treaty, the United Nations Framework Convention on Climate Change, the number of generators (Renewable Portfolio Standard (RPS)), which mandates that renewable energy should be supplied at a rate of more than a certain percentage of the supply certificate, The penalties were imposed so that penalties could be imposed in consideration of the number of reasons and defaults.
이에 따라 신재생에너지를 공급하여 인정받기 위하여 발전사업자가 신·재생에너지 설비를 이용하여 전기를 생산·공급하였음을 증명하는 인증서로 공급의무자는 의무공급량을 신·재생에너지 공급인증서를 구매하여 충당할 수 있는 것으로 공급인증서 발급대상 설비에서 공급된 MWh기준의 신·재생에너지 전력량에 대해 가중치를 곱하여 부여하는 신재셍에너지 공급인증서(REC, Renewable Energy Certificate)를 실시하고 있고 신재생에너지 원별 가중치는 환경, 기술개발 및 산업활성화에 미치는 영향, 발전원가, 부존잠재량, 온실가스 배출거감에 미치는 효과 등을 고려하여 정부가 재정하고 3년마다 재검토하고 있다. As a result, it is a certificate certifying that the power generation company has produced and supplied electricity using new and renewable energy facilities in order to receive the new and renewable energy. The supply obligator purchases the new and renewable energy supply certificate (REC) Renewable Energy Certificate (REC) that multiplies the new and renewable energy amount of MWh supplied from the equipment subject to the supply certificate by the weight, It is reviewed by the government every three years, considering the impact on technological development and industrial revitalization, cost of development, potential capacity, and effect on greenhouse gas emissions.
이에 따라 대규모 석탄화력 발전사에서는 이러한 신재생에너지 공급의무 비중을 달성하기 위하여 석탄의 이산화탄소 발생을 감축시키는 발전 플랜트 연계 및 개선방안으로 석탄 가스화 복합발전(Integrated Gasification Combined Cycle; IGCC), 초초임계압(Ultra Supercritical, USC)기술, CO2 포집 및 저장기술 등의 청정 석탄 기술(Clean Coal Technology, CCT), 및 바이오매스(bio-mass) 혼소 등을 시도하고 있으나 근본적인 문제해결에는 개선 극복해야 할 부분이 다수 존재하고 있는 실정이다.Therefore, in order to achieve the share of renewable energy supply in large-scale coal-fired power generation companies, IGCC (Integrated Gasification Combined Cycle) and Ultra (Clean Coal Technology, CCT) and biomass fouling (CO2 capture and storage technology), but there are many areas that need to be overcome to solve fundamental problems. .
특히, 바이오매스 혼소의 경우에는 석탄에 비하여 상대적으로 낮은 발열량의 바이오매스를 연소함에 따라 발전효율이 저하된다는 문제점을 안고 있다.Particularly, in the case of biomass coexistence, there is a problem that the power generation efficiency is lowered by burning biomass having a relatively low calorific value as compared with coal.
또한, 혼소를 위해 투입되는 바이오매스와 석탄의 연소특성이 상이하여 석탄을 대상원료로 설계된 기존 발전 설비내에서 다단연소가 발생하여 설비 운전에 문제점을 발생시킨다. In addition, since combustion characteristics of biomass and coal injected for confluence are different, multi-stage combustion occurs in existing power plant designed for coal as a raw material, causing problems in facility operation.
또한, 바이오매스내에 포함된 금속성분을 포함하는 무기질 성분에 의한 클링커 파울링이 발생하는 문제점도 안고 있다. 이러한 문제점을 해결하기 위하여 선행 연구에서는 석탕에 오일계 바이오매스를 혼합시킨 연료를 적용하는 기술이 개발되었으나, 이러한 기술 또한, 단순히 석탄과 오일계 바이오매스를 혼합시킨 연료의 경우, 석탄의 표면이 오일로 코팅되거나 기공 안으로 오일이 함침 된다. 하지만 오일 자체의 낮은 표면장력과 오일계 바이오매스와 석탄 표면의 결합력이 부족하여, 석탄과 바이오매스는 각각 기존의 연소 특성을 유지하므로 결과적으로는 다른 연소 특징을 보이게 된다. 따라서 이를 발전소에 적용하면 버너 앞부분에서 오일의 저온 연소 패턴으로 인하여 산소가 우선적으로 과잉 소모하게 되고, 결국 석탄의 연소를 저해하여 미연 탄소(unburned carbon)의 양이 증가하게 되며 발전 효율을 감소시키게 된다.Also, there is a problem that clinker fouling occurs due to an inorganic component including a metal component contained in the biomass. In order to solve these problems, in the previous research, a technique of applying a fuel mixed with oil-based biomass to a stone was developed. However, in the case of a fuel simply mixed with coal and oil-based biomass, Or the oil is impregnated into the pores. However, due to the low surface tension of the oil itself and the lack of bonding between the oil-based biomass and the coal surface, coal and biomass retain their existing combustion characteristics, resulting in different combustion characteristics. Therefore, when this is applied to a power plant, oxygen is preferentially consumed excessively due to the low-temperature combustion pattern of the oil in the front part of the burner, which eventually inhibits the combustion of coal, thereby increasing the amount of unburned carbon and decreasing power generation efficiency .
또한, 바이오매스 내의 회분의 대표적인 응집현상은 미분탄 연소로에서 각각 연소로의 복사면 및 대류전달면에서 주로 발생되는 슬래깅(slagging)과 클링커 파울링(fouling), 유동층 연소로에서의 회분 응집(agglomeration) 등이다. The typical aggregation phenomena of ash in the biomass are the slagging and clinker fouling, which is mainly generated in the surface of the combustion furnace and the convection transfer surface in the pulverized coal combustion furnace, and the ash aggregation in the fluidized bed combustion furnace agglomeration).
발전플랜트의 과열기튜브 고온염소부식, 절탄기튜브 회막힘현상에 의한 유속변화에 따른 마모, 유동층 연소기의 유동사에 의한 튜브 마모, 슈트블로워의 기계적 마모가 예상되며, 연료성분내의 무기성분인 칼륨과 염소성분이 연소과정에 화학결합을 통해 KCl을 생성하면, KCl의 용융온도가 776℃로 KCl은 점성이 강한 물질로 부착이 잘되며 염소반응등에 의한 부식을 가속화 시킨다고 알려져 있다.It is expected that wear of the superheater tube of power plant due to high temperature chlorine erosion, change of flow rate due to condenser tube clogging, tube wear by fluidized bed of fluidized bed combustor, mechanical wear of chute blower, When the chlorine component forms KCl through the chemical bond during the combustion process, the KCl melting temperature is 776 ° C. KCl is a viscous material and is well known to accelerate corrosion by chlorine reaction and the like.
연소로에서 이러한 현상이 발생되면 공정의 효율을 감소시키는 주요 원인이 되고 있을 뿐만 아니라, 궁극적으로 이와 같은 현상이 심화되면 조업을 중단해야 하고, 이로 인해서 막대한 경제적 손실을 초래하게 된다. 회분의 응집현상은 일반적으로 회분 조성, 온도, 입도, 가스분위기, 조업조건 등에 의해서 영향을 받게 되며, 특히 고온에서 회분의 일부가 용융이 되면 이와 같은 현상이 가속화된다.Such a phenomenon in the furnace not only becomes a major cause of the decrease in the efficiency of the process, but ultimately, if such a phenomenon becomes severe, the operation must be stopped, thereby causing a great economic loss. The coagulation phenomena of ash is generally influenced by ash composition, temperature, particle size, gas atmosphere, operating conditions, etc. Especially, when a part of ash is melted at high temperature, such phenomenon accelerates.
게다가, NOx에 의한 초미세먼지 생성과정을 보면, Furthermore, when looking at the ultrafine dust generation process by NOx,
● NO2 + O3 →→ NO3(질산염) + O2 ● NO 2 + O 3 →→ NO 3 (nitrate) + O 2
● NO3 + NO2 →→ N2O5(오산화이질소)● NO 3 + NO 2 →→ N 2 O 5 (dinitrogen monoxide)
● N2O5 + H2O →→ 2HNO3(질산)N 2 O 5 + H 2 O → 2HNO 3 (nitric acid)
● HNO3 + NH3(암모니아) →→ NH4NO3(질산암모늄)● HNO 3 + NH 3 (ammonia) → NH 4 NO 3 (ammonium nitrate)
위와 같은 반응식을 통하여 질소산화물이 생성되게 되고, 이는 곧 2차 미세먼지(초미세먼지)의 원인균으로 작용하게 된다. 연료의 연소 시 발생되는 NOx에는 thermal NOx 와 Feul NOx가 존재하게 되는데, Fuel NOx에 의한 전체 배출되는 NOx의 배출 지배치는 60~70%에 달한다. Through the above reaction formula, nitrogen oxides are generated, which is the cause of the secondary fine dust (ultrafine dust). There are thermal NOx and FeuL NOx in the NOx generated when the fuel is burned, and the emission control value of the total exhausted NOx by Fuel NOx reaches 60 ~ 70%.
한편 상기와 같은 문제점들에 대응하기 위한 다수의 공지된 문헌들을 살펴보면 아래와 같다.Meanwhile, a number of known documents for addressing the above problems are as follows.
한국공개특허 제2012-0077991호에서는 리그노셀룰로오스계 바이오매스로부터 에탄올 발효용 기질 생산을 위한 전처리 장치가 개시되어 있다.Korean Patent Laid-Open Publication No. 2012-0077991 discloses a pretreatment apparatus for producing a substrate for ethanol fermentation from lignocellulosic biomass.
한국등록특허 제10-1171922호에서는 탄수화물-함유 재료를 제조 및 처리하여 그들의 구조를 변화시키는 방법, 및 구조적으로 변화된 재료를 제공하는 시스템을 개시하고 있다.Korean Patent No. 10-1171922 discloses a method for manufacturing and treating carbohydrate-containing materials to change their structure and a system for providing structurally modified materials.
일본공개특허 제2011-205933호에서는 바이오매스(biomass)로부터 효소를 이용해 당화액을 제조하는 방법을 개시하고 있다.Japanese Laid-Open Patent Publication No. 2011-205933 discloses a method for producing a saccharified liquid from an enzyme from biomass.
한국특허공보 제10-1195416호에서는 저급탄에 존재하는 친수성 표면을 바이오매스 유래 물질의 탄소성분으로 코팅하여 개질 함으로써 건조 후에도 수분의 재흡착이 억제된 고발열량의 하이브리드 석탄을 제조하는 방법을 개시하고 있다.Korean Patent Publication No. 10-1195416 discloses a method for producing a hybrid of high calorific value, in which the hydrophilic surface present in the lower carbon is coated with the carbon component of the biomass-derived material to modify it to thereby prevent re-adsorption of moisture even after drying have.
일본등록특허 제2688509호에서는 밀기울을 수세해 수용성 물질을 제거한 후, 0.1~0.4 규정의 알칼리 수용액으로 처리해 헤미셀룰로오스로부터 주로 이루어지는 구분을 알칼리수용액 중에 용출시켜 한계 밖과 막 및 이온교환 수지를 이용해 순으로 정제하는 것을 특징으로 하는 헤미셀룰로오스의 추출··정제법을 개시하고 있다.In Japanese Patent No. 2688509, the bran is washed with water to remove the water-soluble substance, and then treated with an aqueous alkali solution of 0.1 to 0.4. The fraction mainly composed of hemicellulose is eluted into the aqueous alkali solution. And a method for extracting and purifying hemicellulose.
한국등록특허 제10-0476239호에서는 왕겨로부터 수용성 및 불용성 헤미셀룰로오스를 제조하는데 있어서 (1) 왕겨에서 단백질 제거 및 왕겨를 세척하는 공정; (2) 왕겨를 0.5 내지 1M 농도의 수산화나트륨 용액으로 추출하고 여과하는 공정; (3) (2)단계에서 얻은 알칼리 추출용액에 인산을 가해 용액의 pH를 낮추어서 헤미셀룰로오스를 침전으로 회수하는 공정; (4) (3)단계에서 얻어진 침전에 대해 인산 또는 옥살산으로 추가 세척한 다음 oxalate-potassium permanganate처리를 통해 탈색하는 공정; (5) 상기단계에서 얻어진 탈색된 헤미셀룰로오스 분획으로부터 용액의 pH조절을 통해 수용성 및 불용성 헤미셀룰로오스의 선별적인 분리가 가능하되 수용성 헤미셀룰로오스를 회수하는데 있어서 인산을 가해 침전으로 회수하거나 또는 칼슘을 가해 불용성으로 전환한 다음 회수하는 공정; (6) 이와 같은 일련의 연속공정을 통해 얻은 수용성 및 불용성 헤미셀룰로오스를 자연건조 또는 분무건조하여 분말을 얻은 후, 밀링(milling)하고 적절한 크기의 체망을 통과하여 미세분말을 얻는 공정으로 이루어진 왕겨로부터의 수용성 및 불용성 헤미셀룰로오스의 제조방법 을 개시하고 있다.Korean Patent No. 10-0476239 discloses a process for preparing water soluble and insoluble hemicellulose from rice hulls, comprising the steps of (1) removing protein from rice hulls and washing rice hulls; (2) extracting the rice hulls with a sodium hydroxide solution having a concentration of 0.5 to 1 M and filtering the same; (3) adding phosphoric acid to the alkali extraction solution obtained in step (2) to lower the pH of the solution to recover hemicellulose by precipitation; (4) a step in which the precipitate obtained in step (3) is further washed with phosphoric acid or oxalic acid and then decolorized by treatment with oxalate-potassium permanganate; (5) Separation of water-soluble and insoluble hemicelluloses is possible through pH control of the solution from the decolorized hemicellulose fraction obtained in the above step. In the recovery of water-soluble hemicellulose, phosphoric acid is recovered by precipitation or added with calcium to be insoluble The next recovering step; (6) A process for producing fine powder from a rice husk comprising a step of obtaining a powder by natural drying or spray drying the water-soluble and insoluble hemicellulose obtained through a series of such continuous processes, and then milling and passing the fine- Discloses a process for preparing water-soluble and insoluble hemicellulose.
한국공개특허 특2002-0017572호에서는 폐수처리오니를 혼합 탈수하는 단계, 파쇄단계, 재생오니 제조단계 기술을 개시하고 있다.Korean Patent Laid-Open Publication No. 2002-0017572 discloses a method of mixing and dewatering a waste water treatment sludge, a crushing step, and a manufacturing step of a regenerated sludge.
한국특허공보 제10-0413384호에서는 (i) 옥수수껍질로부터 전분 및 단백질을 제거하는 공정; (ii) 전분 및 단백질이 제거된 옥수수껍질을 알칼리 용액으로 추출하고 여과포로 여과하는 공정; (iii) (ii) 단계에서 얻은 알칼리 추출액에 셀룰라제 및 셀로비아제를 처리하여 반응시키는 공정; (iv) (iii) 단계에서 얻은 효소 반응액에 흡착제를 처리하고 막여과를 통하여 여과액을 얻는 공정; (v) 상기 여과액을 정제하는 공정으로 이루어지는 수용성 식이섬유의 제조 방법을 개시하고 있다.Korean Patent Publication No. 10-0413384 discloses a process for removing (i) starch and protein from a corn husk; (ii) a step of extracting the corn husk from which the starch and protein have been removed with an alkaline solution and filtering with a filter cloth; (iii) treating the alkali extract obtained in step (ii) with cellulase and cellobiase to react; (iv) a step of treating the enzyme reaction solution obtained in step (iii) with an adsorbent to obtain a filtrate through membrane filtration; and (v) purifying the filtrate. The present invention also provides a method for producing a water-soluble dietary fiber.
한국특허공보 제10-1457470호에서는 a) 헤미셀룰로오스를 바이오매스로부터 추출하는 단계; b) 헤미셀룰로오스 추출액으로부터 헤미셀룰로오스를 침전 및 분리하는 단계; 및 c) 상기 분리된 헤미셀룰로오스를 제지공정에 투입하는 단계;로 구성되는 건조 지력이 개선된 종이 제조 방법에 있어서, 상기 a) 추출 단계는 70 ~ 180분간 135 ~ 160 에서 NaOH를 전건 바이오매스 대비 12 ~ 25% 첨가하는 고온 알칼리 추출 처리시 추출액비 1:8 ~ 1:16으로 수행하며, 상기 b) 단계에서는 헤미셀룰로오스 추출액에 아세톤을 혼합하여 헤미셀룰로오스를 침전, 분리하며, 상기 c) 단계는 분리된 헤미셀룰로오스의 종이 내 정착을 위하여 디시안디아마이드를 단량체로 하는 분자량 30만 ~ 70만, 양이온성 전하밀도 3 ~ 7 meq/g의 폴리디시안디아미드 전해질을 정착제로 사용하는 것을 특징으로 하는 건조 지력이 개선된 종이 제조 방법이 개시되어 있다.Korean Patent Publication No. 10-1457470 discloses a process for extracting hemicellulose from a biomass; b) precipitating and separating hemicellulose from the hemicellulose extract; And c) introducing the separated hemicellulose into a papermaking process, wherein the a) extracting step comprises the steps of: adding NaOH to the bran biomass at 135-160 for 70-180 minutes; To 25% of the total weight of the extract, the extraction ratio is 1: 8 to 1:16. In the step b), acetone is mixed with the hemicellulose extract to precipitate and separate hemicellulose. In the step c), the separated hemicellulose Characterized in that a polydicyanediamide electrolyte having a molecular weight of 300,000 to 700,000 and a cationic charge density of 3 to 7 meq / g using dicyandiamide as a fixing agent is used as a fixing agent for fixing in paper. A paper manufacturing method is disclosed.
일본공개특허 특개평11-240902호에서는 수용성 헤미셀룰로오스를 포함한 원재료로부터 수용성 헤미셀룰로오스를 수성 매체로 추출하는 온도가 80이상, 140이하에서, pH값이 2 내지 7인 조건에서 추출한 후, 그 추출액을 1.5배이상 농축해, 그 다음에 불용성 물질을 제거하는 것을 특징으로 하는, 수용성 헤미셀룰로오스의 제조법이 개시되어 있다.Japanese Patent Application Laid-Open No. 11-240902 discloses a method of extracting water from a raw material containing water-soluble hemicellulose at a temperature of 80 or more and 140 or less at a pH of 2 to 7 for extracting water-soluble hemicellulose into an aqueous medium, , And then removing the insoluble matter. The method of producing water-soluble hemicellulose according to claim 1,
Evstigneyev, E., et al., Tappi J., 1992. Vol. 75, no. 5, pp. 177-182에서는 펄핑공정에서 알칼리 성분에 의한 탈리그닌(Delignification) 속도에 영향을 미치는 영향에 대하여 증해공정 중 탈리그닌화가 진행되면 용해되거나 잔존하는 리그닌 성분내의 β-alkyl aryl 결합이 감소하고, Phenolic hydroxyl 그룹이 증가하며 증해공정이 완료되면 용해된 리그닌 내에 Biphenyl 구조의 양이 증가한다고 하였고 이러한 탈리그닌화 속도에 NaOH 및 Anthraquinone의 긍정적인 영향을 미치는 것을 보고하였다. Evstigneyev, E., et al., Tappi J., 1992. Vol. 75, no. 5, pp. In 177-182, the influence of alkaline components on the delignification rate in the pulping process is solved by the progress of delignification during the steaming process and the β-alkyl aryl bonds in the remaining lignin component decreases, and the phenolic hydroxyl And the amount of biphenyl structure in dissolved lignin increases when the digestion process is completed. It is reported that the rate of delignification is positively influenced by NaOH and anthraquinone.
Evstigneyev, E., Russian Journal of Applied Chemistry. 2011, Vol. 84, no. 6, pp. 1040-1045에서는 가문비나무 및 소나무의 증해공정으로부터 기인한 흑액의 NaOH 수용액에서의 용해도를 리그닌의 분자량, 온도, 고액비 및 이온강도 조건에서 연구하였고 리그닌 내의 Phenolic hydroxyl양을 측정하는 방법 및 알칼리 수용액상에서의 리그닌 용해도를 계산하는 식을 제안하였다. Evstigneyev, E., Russian Journal of Applied Chemistry. 2011, Vol. 84, no. 6, pp. In 1040-1045, the solubility of the black liquor in the aqueous solution of NaOH due to the digestion process of spruce and pine was studied under the conditions of molecular weight, temperature, liquid ratio and ionic strength of lignin, and the method of measuring the amount of phenolic hydroxyl in lignin, The solubility of lignin in the solution was calculated.
그러나 지금까지 알려진 종래기술들에서는 바이오매스로부터 리그닌을 제거하고 글루코스(glucose)가 주성분인 셀룰로오스와 자일로스(xylose)가 주성분인 헤미셀룰로오스를 추출하기 위해 물리 화학적인 처리를 적용하였으나 산 또는 알칼리와 같은 약품을 사용할 경우에는 약품비가 증가할 뿐만 아니라 사용된 약품을 회수하는 공정이 수반되어야 하므로 공정이 복잡하다는 문제점이 있으며 분리된 성분을 목적하는 원료에 적용하기 위해서는 순도가 높고 부반응물을 최대한 제거하여야 하는 조건이 수반되는 경우가 많았다. 또한 바이오매스는 그 원료의 종류에 따라 셀룰로오스, 헤미셀룰로오스 및 리그닌 등의 함유량 및 상기 분자구조, 작용기, 회분 함유량 등 다양한 성상이 존재하므로 바이오에탄올 공정을 위한 당화 시 다양한 분해효소 및 분해조건이 만족되어야 한다. 이는 결과적으로 원하는 물질의 추출 및 분리조건이 신뢰성을 갖지 못하게 하는 원인으로 작용한다.However, in the prior arts known to date, lignin is removed from biomass and physicochemical treatment is applied to extract hemicellulose, which is a main component of cellulose and xylose, which glucose is a main component, but a drug such as acid or alkali There is a problem in that the process is complicated because it involves a process of recovering used chemicals as well as an increase in the cost of the medicament. In order to apply the separated ingredients to a desired raw material, In many cases. In addition, various contents such as cellulosic, hemicellulose, lignin and the like, as well as the molecular structure, functional group and ash content are present depending on the kind of the raw material of the biomass, and various decomposition enzymes and decomposition conditions must be satisfied during saccharification for the bioethanol process . As a result, the extraction and separation conditions of the desired substance are not reliable.
따라서 신재생 에너지의 이용 및 보급을 촉진하고, 바이오매스 연료의 공급 안정성을 확보하기 위해서는, 회분에 기인하는 공정 문제를 근원적으로 배제하기 위한 바이오매스내의 무기질 성분을 제거하여 애쉬프리 바이오매스 유래 물질을 효과적으로 추출 및 분리하고 이를 활용한 애쉬프리 복합 연료 생산 시스템에 관한 기술개발이 절실히 요구되고 있다.Therefore, in order to promote the utilization and diffusion of new and renewable energy and secure the supply stability of biomass fuel, it is necessary to remove the inorganic components in the biomass to eliminate the process problems caused by ash, It is urgently required to develop a technology for an ash-free composite fuel production system that effectively extracts and separates and utilizes the same.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 발명으로, 초본계 또는 목질계 바이오매스로부터 셀룰로오스 및 헤미셀룰로오스에 기인하는 고상성분과 회분 및 리그닌을 포함하는 액상성분을 열수처리, 막여과를 포함하는 방법을 이용하여 추출 분리하고 분리된 셀룰로오스 및 헤미셀룰로오스에 기인하는 고상성분, 리그닌을 포함하는 액상성분, 금속이온 성분 및/또는 용수를 선택적으로 다양한 연료 생산 시스템에 공급하여 바이오에탄올 등의 바이오연료 생산 공정, 석탄 고품위화 공정 및/또는 연소용 바이오매스 생산 공정 등에 적용할 수 있는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been conceived in order to solve the above-mentioned problems, and it is an object of the present invention to provide a process for producing a biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable biodegradable, Method, a solid phase component derived from the separated cellulose and hemicellulose, a liquid component including lignin, a metal ion component and / or water are selectively supplied to various fuel production systems to produce biofuel such as bioethanol , A coal high-grade process, and / or a biomass production process for combustion, and the like, and to provide a composite fuel production system using ash-free biomass.
또한, 초본계, 목질계, 조류(Algae) 바이오매스로부터 보일러 운전시 파울링, 슬래깅, 고온부식, 크링커 생성 등 반응기 벽면, 열교환기 등 전열면에 악영향을 발생하는 융착 및 고온부식 유발성분을 물리, 화학적 방법을 통하여 제거하고 제거 후 고상성분은 반탄화 고형연료로 보일러 혼소에 적용하여 바이오매스 혼소율을 높일 수 있는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템을 제공하는 데 있다.In addition, fusing and high temperature corrosion inducing components, which cause adverse effects on heat transfer surfaces such as reactor walls, heat exchangers, etc., such as fouling, slagging, high temperature corrosion and clinker generation, from boiler operation, are generated from herbaceous, woody, and Algae biomass The present invention provides a system for producing a semi-carbonized fuel for a boiler for enhancing the biomass mixing ratio by which the solid phase component is removed by physical and chemical methods and then the solid phase component is applied to the boiler submerged by the semi-carbonized solid fuel .
또한, 제거 후 고상성분은 고형연료로 전소 또는 혼소에 활용되며, 파울링 유발성분을 포함하는 액상성분은 산처리, 알칼리, 열수처리, 막여과, 이온교환, 응집, 흡착, 원심분리를 포함하는 방법을 이용하여 수처리하는 방법을 적용한 파울링 유발성분을 제거한 보일러용 연료 생산 시스템을 제공하는 데 있다.Further, the solid phase component after the removal is used as a solid fuel for burning or firing, and the liquid component containing the fouling inducing component includes acid treatment, alkali, hydrothermal treatment, membrane filtration, ion exchange, flocculation, adsorption, The present invention is to provide a fuel production system for a boiler in which a fouling inducing component is removed by applying a water treatment method using a method.
또한, 화학적 처리방법을 사용하지 않고도 바이오매스로부터 가연성 성분을 분리 추출할 수 있는 방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for separating and extracting a combustible component from a biomass without using a chemical treatment method.
또한 본 발명에서는 흡착과 체분리라는 간단한 방법을 적용함으로써 분리 추출공정의 단순화와 이에 따른 소요 비용을 절감할 수 있는 바이오매스로부터 가연성 성분을 분리 추출할 수 있는 방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for separating and extracting a combustible component from a biomass that can simplify a separation and extraction process and reduce the cost by applying a simple method of adsorption and sieve separation.
이를 위하여 본 발명에서는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템에 있어서, 상기 바이오매스를 소정 온도와 압력의 온수를 포함하는 제1처리수로 처리하는 제1처리유닛(100); 및 상기 제1처리유닛에서 처리된 상기 바이오매스를 소정 온도와 압력의 열수를 포함하는 제2처리수로 액상성분 및 고상성분을 생성하는 제2처리유닛(200); 을 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템을 포함할 수 있다.To this end, the present invention provides a composite fuel production system using ash pre-biomass, comprising: a first processing unit (100) for treating the biomass with first treated water containing hot water at a predetermined temperature and pressure; And a second processing unit (200) for generating a liquid component and a solid-phase component from the biomass processed in the first processing unit with a second process water containing hot water at a predetermined temperature and pressure; And a composite fuel production system using ash-free biomass.
또한, 상기 제2처리유닛에서 처리된 액상성분을 소정의 pH가 되도록 선택적으로 pH조정제를 첨가하는 제3처리유닛(300);을 추가로 포함할 수 있다.The apparatus may further include a third processing unit (300) for selectively adding a pH adjusting agent so that the liquid component processed in the second processing unit has a predetermined pH.
*또한, 상기 제3처리유닛에서 처리된 액상성분을 소정의 고액분리장치를 이용하여 상기 처리된 액상성분 중 존재하는 애쉬 프리 농축분을 분리하는 제4처리유닛(400);을 추가로 포함할 수 있다.The fourth processing unit (400) further separates the liquid component processed in the third processing unit from the ash-free concentrated component present in the liquid component by using a predetermined solid-liquid separating device .
또한, 상기 제2처리유닛에서 처리된 고상성분을 소정 온도와 압력의 온수로 처리하는 제5처리유닛(500);을 추가로 포함할 수 있다.The fifth processing unit 500 may further include a fifth processing unit 500 for processing the solid-phase components processed in the second processing unit with hot water at a predetermined temperature and pressure.
또한, 상기 제2처리유닛 또는 제5처리유닛에서 처리된 고상성분을 고온 및 고압의 열수로 처리하여 셀룰로오스를 포함하는 고상섬유분과 헤미셀룰로오스를 포함하는 액상섬유분을 생성하는 열수처리유닛(600); 을 추가로 포함할 수 있다.Further, a hydrothermal treatment unit (600) for treating the solid phase component treated in the second treatment unit or the fifth treatment unit with hot water at a high temperature and a high pressure to produce a liquid fiber component containing hemicellulose and a solid fiber component including cellulose; May be further included.
또한, 상기 열수처리유닛 일단의 저압영역에서 공기접촉없이 배출되는 스팀을 포집하는 과정에서 상기 고상섬유분을 배출 분리하는 제1배출부(610);를 포함할 수 있다.The first discharge unit 610 discharges and separates the solid fiber component in the process of collecting steam discharged from the low-pressure region of the hydrothermal treatment unit without air contact.
또한, 상기 열수처리유닛 타단의 저압영역에서 공기접촉없이 배출되는 스팀을 포집하는 과정에서 상기 섬유액상분을 배출 분리하는 제2배출부(620);를 포함할 수 있다.The second discharge unit 620 discharges and separates the fiber liquid fraction in the process of collecting steam discharged from the other end of the hydrothermal treatment unit without air contact in a low pressure region.
또한, 상기 제1배출부에서 배출된 셀룰로오스를 포함하는 고상섬유분을 바이오에탄올 생산을 위한 효소 당화반응 시키는 효소당화유닛(700);을 추가로 포함할 수 있다.In addition, an enzyme saccharification unit (700) for performing an enzymatic saccharification reaction for the production of bioethanol may be further included in the solid fiber component including cellulose discharged from the first discharge unit.
*또한, 상기 열수처리유닛에서 처리된 헤미셀룰로오스를 포함하는 섬유액상분 중 소정양의 아세트산을 추출하여 상기 제5처리유닛 및/또는 상기 열수처리유닛으로 재순환시키는 추출유닛(800);을 추가로 포함할 수 있다.Further, the present invention further includes an extraction unit 800 for extracting acetic acid in a predetermined amount from the fiber liquid fraction containing hemicellulose treated in the hydrothermal treatment unit and recirculating the acetic acid to the fifth treatment unit and / or the hydrothermal treatment unit can do.
또한, 상기 추출유닛에서 처리된 섬유액상분을 이용하여 소정 농도의 스프레잉 용액을 생성하는 스프레잉 생성유닛(900);을 추가로 포함할 수 있다.The spraying unit may further include a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit.
또한, 상기 스프레잉 생성 유닛을 통해 생성된 스프레이 용액을 이용하여 조분쇄 된 석탄 중 평균입도가 4 mm 이상인 석탄을 함침 또는 코팅시키는 석탄 전처리 유닛(1000); 을 추가로 포함할 수 있다.Further, a coal pretreatment unit 1000 for impregnating or coating coal having an average particle size of 4 mm or more among coarsely pulverized coals using the spray solution generated through the spraying generating unit; May be further included.
또한, 상기 스프레잉 생성 유닛을 통해 생성된 스프레이 용액을 이용하여 조분쇄 된 석탄 중 평균입도가 4 mm 미만인 석탄을 회전시키면서 상기 석탄에 스프레이 용액을 분사하여 석탄이 함침 또는 코팅되면서 과립화(granulation)를 통하여 크기를 증가시키는 석탄 과립화 유닛(1100); 을 추가로 포함할 수 있다.The spray solution is sprayed onto the coal while rotating coal having an average particle size of less than 4 mm among the coarsely pulverized coals using the spray solution generated through the spraying generating unit to granulate the coal while impregnating or coating the coal. A coal granulation unit 1100 for increasing the size of the coal; May be further included.
또한, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분을 소수성 바인더로 상기 제5처리유닛에서 처리된 고상성분을 바인딩하여 애쉬프리 성형연료를 제조하기 위한 성형연료유닛(1200); 을 추가로 포함할 수 있다.A forming fuel unit (1200) for producing an ashfree forming fuel by binding the solid phase component processed in the fifth processing unit with an ash-free concentrated component separated in the fourth processing unit; May be further included.
또한, 상기 제1처리유닛, 상기 제2처리유닛, 상기 제4처리유닛 및 상기 제5처리유닛 중 어느 하나 또는 2이상의 유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가될 수 있다.It is also preferable that any one or two of the cleaning unit and the moisture removal unit for cleaning are provided at the rear end of any one of the first processing unit, the second processing unit, the fourth processing unit and the fifth processing unit, A unit can be added.
또한, 상기 열수처리유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가될 수 있다.Further, either one or two units of the cleaning unit and the moisture removal unit for cleaning may be added to the rear end of the hydrothermal processing unit.
또한, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분을 소수성 바인더로 상기 제5처리유닛에서 처리된 고상성분을 열처리하여 애쉬프리 반탄화연료를 제조하기 위한 반탄화유닛(1300); 을 추가로 포함할 수 있다. Also, a semi-carbonization unit 1300 for producing an ash-free semi-carbonized fuel by heat-treating the solid-phase component processed in the fifth processing unit with the hydrophobic binder from the ash-free concentrated fraction separated from the fourth processing unit; May be further included.
또한, 상기 필터유닛을 통해 상기 액상성분에서 분리된 소듐을 포함하는 분리액은 상기 제1소킹유닛 및/또는 상기 증해유닛으로 재순환시키는 재순환유닛을 추가로 포함할 수 있다.Further, the separation liquid containing sodium separated from the liquid component via the filter unit may further include a recycle unit recirculating the first soaking unit and / or the steam unit.
또한, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분 및/또는 상기 제5처리유닛에서 처리된 고상성분을 선택적으로 연소 또는 가스화 연료, 점착제, 파티클 보드 및 합판의 제조에서 페놀 포름알데히드 레진 증량제, 몰딩 화합물의 제조에서, 우레탄 및 에폭시 레진, 항산화제, 서방성 제제, 유량 조절제, 시멘트/콘크리트 혼합, 석고 보드 제조, 석유 굴착, 일반 분산, 태닝 가죽, 도로 복개, 바닐린 제조, 디메틸 설파이드 및 디메틸 술폭사이드 제조, 폴리올레핀 혼합물에 페놀 레진이 내포된 페놀 치환, 방향족 (페놀) 단량체, 추가적인 다양한 단량체, 탄소 섬유, 용액에서 금속 제거, 젤 형성의 기초, 폴리우레탄 공중합체, 및 그 조합들로서 사용될 수 있다.Further, the ash-free condensed fraction separated from the fourth treatment unit and / or the solid-phase component treated in the fifth treatment unit may be selectively used as a phenol formaldehyde resin extender, a phenol formaldehyde resin extender, In the production of molding compounds, the use of urethane and epoxy resins, antioxidants, sustained release formulations, flow control agents, cement / concrete blends, gypsum board manufacturing, oil excavation, general dispersion, tanning leather, road coverings, vanillin manufacture, (Phenol) monomers, additional diverse monomers, carbon fibers, metal removal from solution, basis of gel formation, polyurethane copolymers, and combinations thereof, in the preparation of polyesters, side-products, phenol resins in polyolefin blends.
*또한, 상기 제4처리유닛을 통해 상기 액상성분에서 분리된 무기물을 포함하는 분리액은 상기 제1처리유닛 및/또는 상기 제2처리유닛으로 재순환시키는 재순환유닛(1400)을 추가로 포함될 수 있다.Further, the separation liquid containing the inorganic matter separated from the liquid component through the fourth processing unit may further include a recycle unit 1400 that recirculates the first and second processing units to the first processing unit and / or the second processing unit .
또한, 상기 효소당화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 바이오에탄올 일 수 있다.In addition, the bio-ethanol produced by the complex fuel production system using the ash-free biomass, which further comprises the enzyme saccharification unit, may be used.
또한, 상기 석탄전처리유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 석탄일 수 있다.Further, the coal may be manufactured by a composite fuel production system using ash-free biomass, further comprising the coal pretreatment unit.
또한, 상기 석탄과립화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 석탄일 수 있다.The coal produced by the composite fuel production system using ash-free biomass, which further comprises the coal granulating unit, may be used.
또한, 상기 성형연료유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 애쉬프리 성형연료일 수 있다.Also, it may be an ash-free forming fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-mentioned shaped fuel unit.
또한, 상기 반탄화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 애쉬프리 반탄화연료일 수 있다.Also, it may be an ash-free semi-carbonized fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-described semi-carbonization unit.
또한, 상기 제1처리유닛에서 전처리되어 바이오매스내 금속을 포함하는 무기질 성분이 용출된 무기질포함 액상분을 제3처리유닛 또는 제4처리유닛으로 공급할 수 있다.In addition, the inorganic-liquid-phase liquid component pretreated in the first treatment unit and eluted from the inorganic component containing the metal in the biomass may be supplied to the third treatment unit or the fourth treatment unit.
또한, 본 발명에서는 바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(101); 상기 원료를 저장하는 호퍼(201); 상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211); 상기 원료공급피더로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301); 상기 성분분리유닛에서 융착 및 고온부식 유발성분이 분리된 연료를 펠릿화하는 펠릿화유닛(401); 및 상기 펠릿화유닛에서 펠릿화된 연료를 탄화처리하는 반탄화유닛 (501)을 포함하는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템을 포함할 수 있다.In the present invention, a grinding unit 101 for forming a biomass into a raw material of a predetermined size; A hopper 201 for storing the raw material; A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock; A component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion; A pelletizing unit (401) for pelletizing the separated fuel in the component separating unit; And a semi-carbonization unit (501) for carbonizing the pelletized fuel in the pelletizing unit. The semi-carbonized fuel production system for a boiler for improving the biomass mixture rate may be included.
또한, 바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(101); 상기 원료를 저장하는 호퍼(201); 상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211); 상기 원료공급피더로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301); 상기 성분분리유닛에서 공급된 상기 융착 및 고온부식 유발성분이 제거된 연료를 탄화처리하는 반탄화유닛(501) 및 상기 반탄화유닛에서 반탄화된 연료를 펠릿화하는 펠릿화유닛(401); 을 포함하는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템을 포함할 수 있다.A grinding unit 101 for forming the biomass into a raw material of a predetermined size; A hopper 201 for storing the raw material; A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock; A component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion; A semi-carbonization unit (501) for carbonizing the fuel from which the fusion and high-temperature corrosion-inducing components supplied from the component separation unit have been removed, and a pelletizing unit (401) for pelletizing the semi-carbonized fuel in the semi-carbonization unit; Carbonized fuel production system for a boiler for improving the biomass mixing ratio.
또한, 상기 성분분리유닛에서 배출되는 액상성분에 상기 융착 및 고온부식 유발성분이 포함할 수 있다.In addition, the liquid component discharged from the component separation unit may include the fusion-bonding and high-temperature corrosion-inducing component.
또한, 상기 성분분리유닛에서 배출되는 고상성분은 상기 융착 및 고온부식 유발성분이 분리된 가연성 성분을 포함될 수 있다.In addition, the solid phase component discharged from the component separation unit may include a combustible component in which the fusion-bonding and high-temperature corrosion-inducing component are separated.
또한, 상기 성분분리유닛에서 배출되는 액상성분의 pH는 6이하일 수 있다.The pH of the liquid component discharged from the component separation unit may be 6 or less.
또한, 상기 액상성분 중 유기화합물을 분리된 액상성분은 상기 성분분리유닛으로 재순환될 수 있다.Further, the liquid component separated from the organic compound in the liquid component may be recycled to the component separation unit.
또한, 상기 반탄화유닛에서 배출되는 기상성분에는 산성가스를 포함하는 유기화합물을 포함할 수 있다.In addition, the gaseous component discharged from the semi-carbonization unit may include an organic compound including an acid gas.
또한, 상기 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에서 상기 반탄화된 연료는 화석연료를 사용하는 보일러에서 50중량부 이하로 혼소될 수 있다.In addition, in the semi-carbonized fuel production system for a boiler for improving the biomass mixing ratio, the semi-carbonized fuel may be mixed up to 50 parts by weight or less in a boiler using fossil fuel.
또한, 바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(101); 상기 원료를 저장하는 호퍼(201); 상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211); 상기 원료공급피더에서 공급된 연료를 탄화처리하는 반탄화유닛(501); 상기 반탄화유닛에서 반탄화된 연료를 펠릿화하는 펠릿화유닛(401); 및 상기 펠릿화유닛으로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301); 을 포함하는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템일 수 있다.A grinding unit 101 for forming the biomass into a raw material of a predetermined size; A hopper 201 for storing the raw material; A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock; A carbonization unit (501) for carbonizing the fuel supplied from the raw material feeder; A pelletizing unit (401) for pelletizing the semi-carbonized fuel in the semi-carbonizing unit; And a component separation unit (301) for treating the raw material supplied from the pelletizing unit with hot water at a predetermined temperature so as to maximally separate the fusion-welding and hot corrosion-inducing components from the raw material supplied from the pelletizing unit. Carbonized fuel production system for a boiler to improve the biomass mixing ratio.
또한, 바이오매스를 분쇄유닛(101)에서 소정 크기의 원료로 형성하는 제1단계; 상기 원료를 호퍼(201)에 저장하는 제2단계; 상기 호퍼에 저장된 상기 원료를 원료공급피더(211)로 후단에 정량 공급하는 제3단계; 상기 원료공급피더로부터 공급된 원료를 성분분리유닛(301)에서 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 제4단계; 상기 성분분리유닛에서 융착 및 고온부식 유발성분이 분리된 연료를 펠릿화유닛(401)에서 펠릿화하는 제5단계; 및 상기 펠릿화유닛에서 펠릿화된 연료를 반탄화유닛(501)에서 탄화처리하는 제6단계;를 포함하는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 방법일 수 있다.A first step of forming the biomass into a raw material having a predetermined size in the crushing unit 101; A second step of storing the raw material in the hopper 201; A third step of feeding the raw material stored in the hopper to a downstream end of the raw material feeder 211 in a fixed amount; A fourth step of treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximally separate the fusion-induced and high-temperature corrosion-inducing components after combustion in the component separation unit 301; A fifth step of pelletizing the fuel in which the fusing and hot corrosion-inducing components are separated in the component separating unit, in the pelletizing unit (401); And a sixth step of carbonizing the pelletized fuel in the pelletizing unit in a semi-carbonizing unit 501. The semi-carbonized fuel for boiler may be a method for producing a boiler for improving the biomass mixing ratio.
또한, 본 발명에서는 피드스탁을 소정 크기의 원료로 형성하는 분쇄유닛(102); 상기 원료를 저장하는 호퍼(202); 상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료 공급피더 (212); 상기 원료 공급피더로부터 공급된 원료의 파울링 유발성분 이 최대로 분리되도록 소정 온도의 열수로 처리하여 파울링 유발성분분리유닛(302);을 포함하는 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템을 포함할 수 있다.The present invention also includes a grinding unit 102 for forming a feedstock of a predetermined size; A hopper 202 for storing the raw material; A raw material feeder 212 for feeding the raw material stored in the hopper to a downstream end in a fixed amount; And a fouling-inducing component separation unit (302) for treating the fouling-inducing component of the raw material supplied from the raw material feeder with hot water at a predetermined temperature so as to maximally separate the fouling- And a fuel production system in which the ring inducing component is removed.
또한, 상기 파울링 유발성분분리유닛에서 배출되는 액상성분에 상기 파울링 유발성분을 포함할 수 있다.The fouling inducing component may include the fouling inducing component in the liquid component discharged from the fouling inducing component separating unit.
또한, 상기 파울링 유발성분분리유닛에서 배출되는 고상 성분은 상기 파울링 유발 성분이 분리된 가연성 성분을 포함할 수 있다.The solid phase component discharged from the fouling inducing component separating unit may include a combustible component in which the fouling inducing component is separated.
또한, 상기 액상 성분의 pH는 6이하 일 수 있다.In addition, the pH of the liquid component may be 6 or less.
또한, 상기 액상 성분 중 유기화합물을 분리한 pH가 낮은 수용액은 상기 파울링 유발성분분리유닛으로 재순환 시킬 수 있다.Further, an aqueous solution having a low pH, from which the organic compound is separated from the liquid component, may be recycled to the fouling-induced component separation unit.
또한, 상기 원료는 상기 파울링 유발성분분리유닛으로 공급되기 전에 알칼리용액으로 전처리 되는 전처리유닛에 공급할 수 있다.Further, the raw material may be supplied to a pretreatment unit that is pretreated with an alkali solution before being supplied to the fouling-inducing component separation unit.
또한, 상기 전처리유닛에서 생성된 전처리 고상성분은 상기 파울링 유발성분분리유닛으로 공급되고, 전처리 액상 성분은 분리 배출할 수 있다.Also, the pretreatment solid-phase component generated in the pretreatment unit is supplied to the fouling-inducing component separation unit, and the pretreatment liquid-phase component can be separated and discharged.
또한, 상기 고상 성분을 적용하여 성형 연료를 제조하기 위한 성형연료유닛; 을 추가로 포함할 수 있다.Further, a molded fuel unit for producing a molded fuel by applying the solid phase component; May be further included.
또한, 상기 액상 성분의 유기화합물 분리를 위해 멤브레인필터 유닛을 추가로 포함할 수 있다.In addition, a membrane filter unit may be further included for separating the liquid component from the organic compound.
또한, 상기 파울링 유발성분분리유닛 또는 전처리유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가로 포함할 수 있다.The fouling-inducing component separating unit or the pretreatment unit may further include one or two of a cleaning unit and a moisture removal unit at the rear end thereof.
상기 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템에서 생산된 연료을 포함할 수 있다.And a fuel produced in a fuel production system from which the fouling-inducing component for biomass burning and / or confluence in the boiler is removed.
피드스탁을 분쇄유닛(102)을 이용하여 소정 크기의 원료로 형성하는 제1단계; 호퍼(202)에 상기 원료를 저장하는 제2단계; 상기 호퍼에 저장된 상기 원료를 원료공급피더 (212)로 후단에 정량 공급하는 제3단계; 및 상기 원료공급피더로부터 공급된 원료의 파울링 유발성분이 최대로 분리되도록 파울링 유발성분분리유닛(302)에서 소정 온도의 열수로 처리하는 제4단계;를 포함하는 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 방법일 수 있다.A first step of forming a feedstock from a raw material having a predetermined size by using the crushing unit 102; A second step of storing the raw material in the hopper 202; A third step of feeding the raw material stored in the hopper to a downstream end of the raw material feeder 212 in a fixed amount; And a fourth step of treating the fouling-inducing component separation unit (302) with hot water at a predetermined temperature so that the fouling-inducing component of the raw material supplied from the raw-material feeder is separated at maximum, Or a fouling-inducing component for confluence.
또한, 본 발명의 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법은, 분쇄수단으로 바이오매스를 분쇄하는 S-1 단계, 상기 분쇄한 바이오매스에 열수를 공급하는 S-2 단계, 열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단계, 상기 액체상 물질에 분탄을 첨가하는 S-4 단계 및 분탄과 액체상 물질 혼합물을 제1 분리수단으로 공급하여 분탄은 회수하고 분탄이 제거된 여액을 수득하는 S-5 단계를 포함하는 것을 특징으로 한다.The method for separating the combustible component from the biomass hot water extract of the present invention comprises the steps of S-1 for crushing biomass by crushing means, S-2 for supplying hot water to the crushed biomass, S-3 step of separating the biomass into a liquid phase material and a solid phase material, S-4 step of adding a pulverizer to the liquid phase material, and a mixture of the pulverized and liquid phase material to a first separation means to recover the pulverized coal, And step S-5 of obtaining a filtrate.
또한 본 발명에 따른 방법에서, 상기 S-5 단계 이후에, 분탄이 제거된 여액을 제2 분리수단으로 공급하는 S-6 단계 및 상기 제2 분리수단에 의해 제1 농축액과 제1 투과액을 수득하고, 상기 제1 농축액은 회수하고, 상기 제1 투과액은 제3 분리수단으로 공급하는 S-7 단계를 더 포함하는 것이 바람직하고, 상기 S-7 단계 이후에, 상기 제3 분리수단에 의해 제2 농축액과 제2 투과액을 수득하고, 상기 제2 농축액을 회수하는 S-8 단계를 포함하는 것이 더욱 바람직하다.Further, in the method according to the present invention, after the step S-5, the filtrate from which the pulverization has been removed is supplied to the second separation means, and the second separation means separates the first concentrate and the first permeate liquid Preferably, the method further comprises S-7 step of recovering the first concentrated liquid and supplying the first permeated liquid to the third separation means, and after step S-7, To obtain a second concentrated liquid and a second permeated liquid, and recovering the second concentrated liquid.
또한 본 발명의 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법에서는. 상기 S-5 단계 이후에, 분탄이 제거된 여액을 제3 분리수단으로 공급하는 S-7 단계 및 상기 제3 분리수단에 의해 제2 농축액과 제2 투과액을 수득하고, 상기 제2 농축액을 회수하는 S-8 단계를 수행할 수도 있다.In the method for separating the combustible component from the biomass hot water extract of the present invention, After step S-5, the filtrate from which the flour has been removed is fed to the third separating means, and the second concentrate and the second permeate are obtained by the third separating means, and the second concentrate is fed It is also possible to carry out the step S-8 to recover.
여기서, 상기 분탄은 입경이 10 ㎛ ~ 10 ㎜ 인 것이 바람직하고, 입경이 70 ㎛ ~ 5 ㎜ 인 것이 더욱 바람직하다.Here, the pulverized coal preferably has a particle diameter of 10 탆 to 10 탆, and more preferably a particle diameter of 70 탆 to 5 탆.
또한 상기 제2 분리수단은 한외여과막 또는 정밀여과막일 수 있으며, 상기 제3 분리수단은 나노여과막 또는 역삼투막일 수 있다.The second separation means may be an ultrafiltration membrane or a microfiltration membrane, and the third separation means may be a nanofiltration membrane or a reverse osmosis membrane.
또한 본 발명에 의한 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법은, 분쇄수단으로 바이오매스를 분쇄하는 S-1 단계, 상기 분쇄한 바이오매스에 열수를 공급하는 S-2 단계, 열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단계, 상기 액체상 물질을 원심분리하는 S-4′ 단계 및 농축슬러리는 회수하고 상등액을 수득하는 S-5′ 단계를 포함할 수 있다.The method for separating the combustible component from the biomass hot water extraction solution according to the present invention comprises the steps of S-1 for crushing biomass by crushing means, S-2 for supplying hot water to the crushed biomass, An S-3 step of separating the biomass into a liquid phase material and a solid phase material, an S-4 'step of centrifuging the liquid phase material, and an S-5' step of recovering the concentrated slurry and obtaining a supernatant.
본 발명의 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템에 따르면, 산이나 알칼리 등 별도의 화학약품을 사용하지 않고도 고온 고압 반응조건을 통하여 초본계 또는 목질계 바이오매스로부터 글루코스 성분 등을 효과적이면서 쉽게 추출 분리할 수 있어 바이오에탄올 생산을 위한 원료를 선택적으로 확보할 수 있다. According to the composite fuel production system using the ash free biomass of the present invention, it is possible to effectively and easily extract the glucose component and the like from the herbaceous or woody biomass through the high temperature and high pressure reaction condition without using any chemical such as acid or alkali. The raw material for producing bioethanol can be selectively secured.
또한, 바이오매스에 포함된 금속 등의 무기질성분을 효과적으로 분리하므로써 발전연료에 적용시 애쉬 프리 연료를 적용하므로써 연소시스템 운전중 발생할 수 있는 클링커 파울링 및 알칼리 부식 문제를 효과적으로 저감할 수 있다.In addition, by effectively separating inorganic components such as metals contained in the biomass, ash-free fuel can be applied to a power generation fuel, thereby effectively reducing fouling of clinker and alkali corrosion that may occur during operation of the combustion system.
또한, 얻어진 글루코스를 포함하는 액상 성분 및/또는 리그닌을 포함하는 고상 성분을 저등급 석탄에 함침, 건조 및 탄화시킴으로써 수분이 재흡착 되는 것을 방지할 수 있고 이는 고발열량을 갖는 석탄의 공급을 가능하게 함으로써 저등급 석탄의 고품위화가 가능하다는 효과가 있다.Further, it is possible to prevent re-adsorption of water by impregnating, drying and carbonizing the low-grade coal with the liquid component containing the obtained glucose and / or the solid component including lignin, thereby enabling the supply of coal having a high calorific value It is possible to obtain a high-grade coal with a low grade.
또한, 바이오매스 성분이 저등급 석탄에 함침 후 탄화되어 결합되므로 기존 발전소에 통상 3.5wt%이하의 바이오매스만을 투입 혼소 하는 중요한 원인인 별도의 바이오매스 미분화장치를 구비하지 않고 기존 석탄 미분화설비를 이용하여도 되는 효과가 있다. In addition, since the biomass component is impregnated and carbonized after impregnation with low grade coal, it is not necessary to separate biomass undiluted apparatus, which is an important factor that only biomass of less than 3.5 wt% There is an effect that it is possible.
또한, 애쉬프리 바이오매스의 셀룰로오스, 헤미셀룰로오스, 리그닌을 이용하여 성형연료 및 반탄화연료를 생산하므로 유동층 및 미분화 연소로 및 가스화로에 연소 및 가스화 후 바이오매스에 기인하는 회분으로부터 예상되는 클링커 파울링 및 고온부식의 문제를 근원적으로 배제할 수 있는 효과가 있다.In addition, since the ash-free biomass produces molded fuel and semi-carbonized fuel using cellulose, hemicellulose and lignin, clinker fouling expected from ash due to biomass after combustion and gasification in fluidized bed and undifferentiated combustion furnaces and gasification furnaces, There is an effect that the problem of high temperature corrosion can be fundamentally eliminated.
또한, 필터링 공정을 적용하여 바이오매스의 액상성분 중의 애쉬 프리 리그닌을 효과적으로 분리함으로써 펄프 생산을 위한 연료 확보 및 처리수를 재활용할 수 있는 효과가 있다.In addition, by filtering the ash-free lignin in the liquid component of the biomass by applying the filtering process, it is possible to secure the fuel for pulp production and recycle the treated water.
또한, 연료성분내의 질소 성분을 제거함으로써 연소 중 발생하는 Fuel NOx 저감에 따른 초미세먼지를 제거하는 효과가 있다.Further, by removing the nitrogen component in the fuel component, it is possible to remove the ultrafine dust due to the reduction of the fuel NOx generated during the combustion.
또한, 연료성분내 황 성분을 제거함으로써 연소 중 발생하는 SOx 저감을 유발하는 효과가 있다. Further, by removing the sulfur component in the fuel component, there is an effect of reducing SOx generated during combustion.
또한, 본 발명에 따른 방법에 의하면, 버려지는 바이오매스로부터 가연성 성분을 쉽게 분리하고 회수할 수 있어 온실가스 감축에 크게 기여할 수 있다는 장점이 있다.According to the method of the present invention, the combustible component can be easily separated and recovered from the discarded biomass, thereby contributing greatly to the reduction of greenhouse gas.
또한 본 발명에 따른 방법에 의하면, 바이오매스와의 열수 반응액에 분탄을 첨가함으로써 가연성 성분을 선택적으로 분리 회수할 수 있기 때문에, 가연성 성분의 분리 회수비용을 크게 절감할 수 있다는 효과가 있다.According to the method of the present invention, since the combustible component can be selectively separated and recovered by adding the pulverized coal to the hydrothermal reaction liquid with the biomass, the cost of separating and recovering the combustible component can be greatly reduced.
또한 본 발명에 따른 분탄 주입은 열수 반응액에 포함된 가연성 성분의 농도를 크게 낮출 수 있어, 분리막의 운전성능을 향상시키고 이는 열수 반응액에 포함된 가연성 성분의 회수 비율을 크게 높일 수 있다는 장점이 있다.In addition, the coal injection according to the present invention can greatly reduce the concentration of the combustible component contained in the hydrothermal reaction solution, thereby improving the operation performance of the separation membrane, and it is possible to greatly increase the recovery ratio of the combustible component contained in the hydrothermal reaction solution have.
도 1은 본 발명에 따른 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템을 나타낸 흐름도이다.1 is a flowchart showing a composite fuel production system using ash-free biomass according to the present invention.
도 2는 본 발명에 따른 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템을 나타낸 흐름도이다.2 is a flowchart illustrating a system for producing a semi-carbonized fuel for a boiler for improving a biomass mixing ratio according to the present invention.
도 3은 본 발명에 따른 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에서 융착 및 고온부식 유발성분분리유닛 전 후의 원료의 성분 변화를 나타낸 것이다.FIG. 3 is a graph showing changes in the composition of raw materials before and after the fusion and high-temperature corrosion-inducing component separation unit in the semi-carbonized fuel production system for boilers for improving the biomass mixing ratio according to the present invention.
도 4는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템을 나타낸 흐름도이다.4 is a flowchart illustrating a fuel production system for a boiler in which a fouling inducing component is removed according to the present invention.
도 5는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템에서 파울링 유발성분분리유닛 전 후의 원료의 성분 변화를 나타낸 것이다.FIG. 5 is a graph showing changes in the composition of raw materials before and after the fouling-inducing component separation unit in the fuel production system for a boiler in which the fouling-inducing component is removed according to the present invention.
도 6은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 원료 성분의 상태변화를 나타낸 것이다.FIG. 6 shows a state change of a raw material component according to an embodiment of the fuel production system for a boiler from which a fouling-inducing component is removed according to the present invention.
도 7은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리유닛의 처리조건에 따른 온도에 따른 회분 제거율 및 회분조성을 나타낸 것이다.FIG. 7 shows the ash removal rate and the ash composition according to the treatment conditions of the fouling-induced component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
도 8은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리유닛의 처리조건에 따른 XMG 함량 및 저위발열량 변화를 나타낸 것이다.8 is a graph showing changes in XMG content and lower calorific value according to processing conditions of the fouling-inducing component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
도 9는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리 유닛의 온도 및 처리시간에 따른 파울링 유발성분 제거에 따른 회분 및 XMG 함량 및 저위발열량 변화를 나타낸 것이다.9 is a graph showing the relationship between the amount of ash and XMG in the fouling inducing component separation unit and the amount of XMG in the fouling inducing component separation unit according to the present invention, This shows the change in calorific value.
도 10은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 전처리유닛의 처리조건에 따른 온도에 따른 회분 제거율 및 회분조성을 나타낸 것이다.10 shows the ash removal rate and ash composition according to the treatment conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
도 11은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 전처리유닛의 처리조건에 따른 리그닌 함량 및 저위발열량 변화를 나타낸 것이다.11 is a graph showing changes in lignin content and lower calorific value according to processing conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed.
도 12는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 전처리유닛의 온도 및 처리시간에 따른 파울링 유발성분 제거에 따른 회분 및 리그닌 함량 및 저위발열량 변화를 나타낸 것이다.12 is a graph showing changes in ash content, lignin content and lower calorific value according to the temperature and the treatment time of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling- will be.
도 13은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리유닛의 온도조건에 따른 Fuel NOx 저감량, 발열량 증가율 및 회분제거율을 나타낸 것이다.13 is a graph showing fuel NOx reduction amount, heating value increase rate and ash removal rate according to a temperature condition of a fouling-inducing component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling inducing component according to the present invention is removed.
도 14는 바이오매스로부터 가연성 성분을 분리하는 과정을 도시한 개략도이다.14 is a schematic view showing a process of separating the combustible component from the biomass.
도 15는 본 발명의 제3 실시예에 따른 가연성 성분을 분리하는 방법을 나타낸 흐름도이다.15 is a flowchart showing a method of separating a combustible component according to a third embodiment of the present invention.
도 16은 본 발명의 제4 실시예에 따른 가연성 성분을 분리하는 방법의 흐름도이다.16 is a flowchart of a method for separating combustible components according to a fourth embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예는 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention. Therefore, the embodiments described herein are merely the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention, so that there are various equivalents and modifications that can be substituted at the time of the present application It should be understood.
또한 본 발명에서 사용되는 석탄은 이탄, 갈탄, 아역청탄, 역청탄 또는 무연탄 등 이 기술분야에서 인식되는 저등급 석탄 중에서 선택된 어느 하나 이상의 것을 의미한다.Further, the coal used in the present invention means at least one selected from among low grade coal recognized in the art such as peat, lignite, bituminous coal, bituminous coal or anthracite coal.
이하 첨부된 도면을 참조하여 본 발명에 따른 애쉬프로 바이오매스를 이용한 복합 연료 생산 시스템을 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a composite fuel production system using ashprobiomass according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템을 나타낸 흐름도이다.1 is a flowchart showing a composite fuel production system using ash-free biomass according to the present invention.
애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템에 있어서, 상기 바이오매스를 소정 온도와 압력의 온수를 포함하는 제1처리수로 처리하는 제1처리유닛(100); 및 상기 제1처리유닛에서 처리된 상기 바이오매스를 소정 온도와 압력의 열수를 포함하는 제2처리수로 액상성분 및 고상성분을 생성하는 제2처리유닛(200); 을 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템 을 포함할 수 있다.A combined fuel production system using ashless biomass, comprising: a first processing unit (100) for treating the biomass with first treated water containing hot water at a predetermined temperature and pressure; And a second processing unit (200) for generating a liquid component and a solid-phase component from the biomass processed in the first processing unit with a second process water containing hot water at a predetermined temperature and pressure; And a composite fuel production system using ash-free biomass.
상기 제1처리유닛에 공급되는 바이오매스를 물리적 처리하는 것으로부터 출발한다. 바이오매스의 물리적 처리방법은 파쇄, 전단, 절단 등 바이오매스의 크기를 줄이는 동시에 표면적을 넓히는 목적을 달성할 수 있다면 그 방법에 제한이 되지 않는다.Lt; RTI ID = 0.0 > biomass < / RTI > supplied to the first processing unit. The physical treatment of biomass is not limited as long as it can achieve the purpose of reducing the size of the biomass, such as crushing, shearing, cutting, and increasing the surface area.
여기서 바이오매스의 물리적 처리방법을 수행하는 장치로는 밀, 믹서, 스크류 형태 익스트루더, 회전 나이프 커터가 될 수 있으며 이에 한정되는 것은 아니다.The device for performing the physical treatment of the biomass may be a mill, a mixer, a screw extruder, a rotary knife cutter, but is not limited thereto.
한편, 바이오매스 원료로는 목질계와 초본계를 사용할 수 있다. 목질계로는 나무 블럭, 우드칩, 통나무, 나무 가지, 나무 부스러기, 낙엽, 목판, 톱밥, 리그닌, 자일렌, 리그노셀룰로오스, 야자나무, PKS(palm kernel shell), 야자섬유질, EFB(empty fruit bunches), FFB(fresh fruit bunches), 야자잎, 야자제분찌꺼기 등을 이용할 수 있다. 초본계로는 옥수수대, 볏짚, 수수대, 사탕수수대, 곡물(쌀, 수수, 커피 등) 허스크, 사탕무잎, 바가스, 기장, 아티초크, 당밀, 아마, 대마, 양마, 면줄기, 담배줄기, 전분질계인 옥수수, 감자, 카사바, 밀, 보리, 라이밀, 기타 전분계 가공 잔재물, 과실류인 아보카도, 자트로파 및 이들의 가공 잔재물 등의 바이오매스가 사용될 수 있다.On the other hand, as biomass raw materials, woody plants and herbaceous plants can be used. Woody lines include wood blocks, wood chips, logs, tree branches, wood crumbs, deciduous woods, sawdust, lignin, xylenes, lignocellulosic, palm trees, palm kernel shells, palm kernel fiber, empty fruit bunches ), Fresh fruit bunches (FFB), palm leaves, coconut crumbs, and the like. Herbal products include corn stover, straw straw, canteen, sugar cane, grain (rice, millet, coffee, etc.) husks, candy leaves, bagasse, millet, artichoke, molasses, flax, hemp, Biomass such as starchy maize, potato, cassava, wheat, barley, lime, other starch-based remnants, fruit-bearing avocados, jatropha and their processing residues can be used.
상기와 같이 적절한 크기로 분쇄된 바이오매스는 제1처리유닛으로 이송된다.The biomass thus pulverized into an appropriate size is transferred to the first processing unit.
또한, 상기 바이오매스는 리그노셀룰로오스 기반의 초본, 목질계 바이오매스를 의미하며 상기 바이오매스에 속하는 물질이라면 제한을 두지 않는다. 또한 제1세대 또는 3세대 바이오매스도 적용가능함은 자명하다. 리그노셀룰로오스의 주요 성분인 셀룰로오스는 글루코오스(glucose)가 β-1,4 결합으로 연결된 안정된 구조의 다당류이다. 또 다른 주요 성분인 5탄당인 자일로스(xylose)의 중합체로 구성되고 그 외에도 5탄당인 아라비노스(arabinose), 6탄당인 만노스(mannose), 갈락토스(galactose), 글루코스, 람노스(rhamnose) 등의 중합체로 구성된다. In addition, the biomass refers to lignocellulose-based herbaceous and woody biomass, and the material belonging to the biomass is not limited. It is also apparent that first- or third-generation biomass is also applicable. Cellulose, which is a major component of lignocellulose, is a stable polysaccharide in which glucose is linked by β-1,4 bonds. Another major component is a polymer of xylose, which is a pentane. In addition, it is composed of a polymer such as 5-valent arabinose, 6-valent mannose, galactose, glucose, rhamnose, etc. Of a polymer.
글루칸(glucan)은 포도당으로 구성되는 다당의 총칭으로 D-글루코오스 끼리의 결합양식에 따라 다양한 종류가 있으며, 부제탄소원자의 배치에 의해 크게 α-글루칸과 β-글루칸으로 나누어진다. α-글루칸에는 아밀로스(α-1,4결합), 아밀로펙틴(α-1,4와 α-1,6결합), 글리코겐(α-1,4와 α-1,6결합), 세균의 덱스트란(-1,6결합) 등이 포함된다. β-글루칸의 대표적인 것으로는 셀룰로오스(β-1,4결합), 갈조류의 라미나란(β-1,3결합), 지의류의 리케난(β-1,3과 β-1,4 결합) 등이 있다.Glucan is a generic term for polysaccharides composed of glucose. There are various types of polysaccharides depending on the binding style of D-glucose. They are largely divided into α-glucan and β-glucan by the arrangement of the adduct carbon atoms. The α-glucan includes amylose (α-1,4 bond), amylopectin (α-1,4 and α-1,6 bonds), glycogen (α-1,4 and α-1,6 bonds), bacterial dextran (-1,6 bond) and the like. Typical examples of? -glucan include cellulose (? -1,4-linked), brown alga laminaran (? -1,3-linked), lichenous lichenan (? -1,3 and? -1,4-linked) have.
자일렌이 포함된 액상 성분에는 자일렌(xylan). 글루쿠로노자일렌(glucuronoxylan), 아라비노자일렌(arabinoxylan), 글루코만난(glucomannan), 자일로글루칸(xyloglucan)등이 포함될 수 있다. 상기 기재된 성분으로 자일렌이 포함된 액상 성분은 제한되는 것은 아니며, 투입되는 바이오매스의 성분에 따라 다양한 성분들이 분리될 수 있다.Xylene (xylan) is the liquid component containing xylene. Glucuronoxylan, arabinoxylan, glucomannan, xyloglucan, and the like may be included. The liquid component containing xylene as the above-described components is not limited, and various components may be separated depending on the components of the biomass to be injected.
당류는 상기 기재된 화합물에 한정되는 것이 아니며, 2세대 바이오매스의 종류에 따라 다양하게 생성이 가능하다. 따라서, 탄소수에 따라 2탄당, 3탄당, 4탄당, 5탄당, 6탄당으로 분류되며, 2탄당으로 글리코알데히드(Glycoaldehyde), 3탄당으로 글리세라알데히드(Glyceraldehyde), 디하드로시아세톤(Dihydroxyacetone), 4탄당으로 에리드로우즈(erythrose), 에리드루로우즈(erythrulose), 5탄당으로 리보우즈(ribose), 아라비노우즈(arabinose), 자일로스(xylose), 리부로우즈(ribulose), 자이루로우즈(xylulose), 6탄당으로 포도당, 글리코우즈(glucose), 과당, 프락토우즈(fructose), 갈락토우즈(galactose), 만노우즈(mannose)가 있을 수 있다. The saccharides are not limited to the above-described compounds and can be variously produced depending on the kind of the second generation biomass. Therefore, it is divided into 2, 3, 4, 5, and 6-carbon sugars according to the number of carbon atoms. Glycoaldehyde, Glyceraldehyde, Dihydroxyacetone, , Erythrose, erythrulose, pentose, ribose, arabinose, xylose, ribulose, and Zylurozu as quaternary sugars. xylulose and 6-carbon sugars can be glucose, glucose, fructose, fructose, galactose and mannose.
단당류 2개가 결합한 것 이당류로는 젖당, 유당, 락토우즈, 엿당, 맥아당, 말토우즈, 설탕, 슈크로즈, 트레할로우즈(trehalose), 멜리보우즈(melibiose), 셀로비오즈가 있을 수 있다.Examples of the disaccharide to which two monosaccharides are combined may include lactose, lactose, lactose, glucose, maltose, maltose, sugar, sucrose, trehalose, melibiose and cellobiose.
2~10분자의 당이 결합된 당인 소당류로는 3당류로 라피노우즈, 멜레지토우즈(melezitose), 말토리오즈(maltoriose)가, 4당류로는 스타치오즈, 스트로도우즈(schrodose)가 있으며 올리고당으로 갈락토올리고당, 이소말토올리고당, 프락토올리고당이 있을 수 있다. Examples of the small sugars that are sugar-bonded sugars having 2 to 10 molecules include raffinose, melezitose and maltoriose as three saccharides, starchose and schrodose as four saccharides, And oligosaccharides may be galactooligosaccharides, isomaltooligosaccharides, and fructooligosaccharides.
다당류로는 단순다당류로 5탄당들이 결합된 펜토산(pentosan)으로 자이란(xylan), 아라반(araban) 등이 있을 수 있다.Examples of the polysaccharides include pentosan, which is a simple polysaccharide with pentoses attached thereto, and may include xylan and araban.
6탄당들이 축합된 헥소산(hesoxan)으로는 전분, 녹말(starch), 글루코오스의 중합체로 아밀로우즈, 호정(dextrin), 글리코겐(glycogen), 섬유소(cellulose), 프록탄(fructan), 갈락탄(galactan), 만난(mannan) 등이 있을 수 있다.Hexoxanes condensed with 6-valent sugars include starch, starch, polymers of glucose such as amylose, dextrin, glycogen, cellulose, fructan, galactan galactan, mannan, and the like.
복합다당류로는 한천(agar), 알긴산(alginic acid), 가라지난(carrageenan), 키틴(chitin), 헤미셀룰로오스(hemicellulose), 펙틴(pectin) 등이 있을 수 있다. Composite polysaccharides may include agar, alginic acid, carrageenan, chitin, hemicellulose, pectin, and the like.
상기 제1처리유닛의 온도조건은 80℃ 내지 140℃일 수 있다. 바람직하게는 90℃ 내지 130℃일 수 있다. 더욱 바람직하게는 100℃ 내지 120℃일 수 있다. 상기 제1소킹유닛의 압력조건은 1 내지 1.5bar일 수 있다.The temperature condition of the first processing unit may be 80 캜 to 140 캜. Preferably 90 < 0 > C to 130 < 0 > C. And more preferably 100 ° C to 120 ° C. The pressure condition of the first soaking unit may be between 1 and 1.5 bar.
상기 온도 및 압력 조건보다 낮거나 높다면 바이오매스내 공기 배출 및 액포화를 위한 목적, 온도상승을 위한 에너지확보 목적, 후속단계에서 생성된 유기산을 바이오매스에 함침시키기 위한 목적, 액상분 내에 건조분을 증가시키기 위한 목적에 효과적이지 않다. If it is lower or higher than the above temperature and pressure conditions, the purpose of air discharge and liquefaction in the biomass, the purpose of securing energy for raising the temperature, the purpose of impregnating the biomass with the organic acid generated in the subsequent step, For the purpose of increasing < / RTI >
상기 제1처리수는 소정온도와 압력의 온수일 수 있으며, 추가로 알칼리성 액체를 포함할 수 있다. 알칼리 성분으로는 NaOH, KOH, 암모니아, 석회, 과산화수소 등 일 수 있으며, 수용성이며 수용액의 pH를 높일 수 있다면 제한되지 않는다. The first treated water may be hot water at a predetermined temperature and pressure, and may further include an alkaline liquid. The alkali component may be NaOH, KOH, ammonia, lime, hydrogen peroxide, etc., and is not limited as long as it is water-soluble and can raise the pH of the aqueous solution.
또한, 추가로 약산성 액체를 포함할 수 있다. 약산성 성분으로는 아세트산, 개미산 등 일 수 있으며, 수용성이며 수용액의 pH를 낮출 수 있다면 제한되지 않는다. 추가로 이산화탄소를 공급할 수 있다.It may further comprise a slightly acidic liquid. The weakly acidic component may be acetic acid, formic acid, and the like, and is not limited as long as it is water-soluble and can lower the pH of the aqueous solution. Additional carbon dioxide can be supplied.
또한, 추가로 강산성 액체를 포함할 수 있다. 산성 성분으로는 황산, 질산, 염산 등 일 수 있으며, 수용성이며 수용액의 pH를 낮출 수 있다면 제한되지 않는다.It may further comprise a strongly acidic liquid. The acidic component may be sulfuric acid, nitric acid, hydrochloric acid, and the like, and is not limited as long as it is water-soluble and can lower the pH of the aqueous solution.
또한, 상기 제2처리유닛의 온도조건은 100℃ 내지 300℃일 수 있다. 바람직하게는 120℃ 내지 250℃일 수 있다. 더욱 바람직하게는 150℃ 내지 170℃일 수 있다. 상기 제2처리유닛의 압력조건은 1 내지 20bar일 수 있다. 바람직하게는 1.5 내지 7bar일 수 있다. 더욱 바람직하게는 2 내지 2.5bar일 수 있다. 상기 제2처리유닛의 pH조건은 8 내지 14일 수 있다. 바람직하게는 11 내지 13.5일 수 있다. 더욱 바람직하게는 12 내지 13일 수 있다. In addition, the temperature condition of the second processing unit may be 100 캜 to 300 캜. Preferably from 120 [deg.] C to 250 [deg.] C. And more preferably 150 ° C to 170 ° C. The pressure condition of the second processing unit may be between 1 and 20 bar. Preferably 1.5 to 7 bar. More preferably from 2 to 2.5 bar. The pH condition of the second processing unit may be 8 to 14 hours. Preferably 11 to 13.5. More preferably from 12 to 13 carbon atoms.
상기 온도, 압력 및 pH 조건보다 낮거나 높다면 바이오매스내 리그닌 성분의 용출의 목적, 바이오매스내 공기 배출 및 액포화를 위한 목적, 온도상승을 위한 에너지확보 목적, 후속단계에서 생성된 유기산을 바이오매스에 함침시키기 위한 목적, 액상분 내에 건조분을 증가시키기 위한 목적에 효과적이지 않다. If the temperature, pressure and pH conditions are lower or higher than the above-mentioned conditions, the purpose of elution of the lignin component in the biomass, the purpose of discharging air in the biomass and the liquid saturation, the purpose of securing energy for raising the temperature, It is not effective for the purpose of impregnating the mass, and for the purpose of increasing the dry matter in the liquid phase.
상기 제2처리유닛의 제2처리수에는 소정온도와 압력의 온수에 추가로 알칼리성 액체를 포함한다. 알칼리 성분으로는 NaOH, KOH, 암모니아, 석회, 과산화수소 등 일 수 있으며, 수용성이며 수용액의 pH를 높일 수 있다면 제한되지 않는다. And the second treated water of the second processing unit further contains an alkaline liquid in addition to hot water at a predetermined temperature and pressure. The alkali component may be NaOH, KOH, ammonia, lime, hydrogen peroxide, etc., and is not limited as long as it is water-soluble and can raise the pH of the aqueous solution.
또한, 상기 제3처리유닛은 상기 제2처리유닛에서 리그닌을 포함하는 액상성분을 제4처리유닛에서 선택적으로 필터링 하기 위하여 pH를 낮추기 위해서 pH조정제를 첨가한다. pH조정제는 pH를 낮출 수 있다면 제한되지 않는다. 황산, 염산, 질산, 인산 등을 첨가할 수 있으며, 황화수소, 아황산가스, CO2 등을 첨가할 수 도 있다. 추가적으로 물을 첨가할 수 도 있다. 상기 pH조정제를 통한 목적하는 pH는 7~12일 수 있다. 바람직하게는 8 내지 11일 수 있다. 더욱 바람직하게는 9 내지 10일 수 있다. 상기 pH보다 높으면 상기 액상성분의 필터링 과정에서 분리막의 손상을 일으킬 수 있다.Further, the third processing unit adds a pH adjusting agent to lower the pH in order to selectively filter the liquid component containing lignin in the fourth processing unit in the second processing unit. The pH adjusting agent is not limited if the pH can be lowered. Sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. may be added, and hydrogen sulfide, sulfur dioxide, CO 2 and the like may be added. Additional water may be added. The desired pH through the pH adjusting agent may be from 7 to 12. Preferably from 8 to 11. More preferably from 9 to 10 carbon atoms. If the pH is higher than the above-mentioned pH, the separation membrane may be damaged during the filtering of the liquid component.
또한, 상기 제4처리유닛은 액상성분의 리그닌을 포함하는 구성분을 선택적으로 분리할 수 있으면 특별히 제한되지 않는다. 일반필터, 정밀여과막(Micro Filter), 한외여과막(Ultra-Filter), 나노여과막(Nano Filter), 역삼투막(Reverse Osmosis)중 어느 하나 또는 2 이상을 선택적으로 사용할 수 있다. 병렬 또는 직렬로 연계할 수 도 있다. 또한 전처리를 위한 스크린, 마이크로미터 수준의 입자제거 필터 등을 전처리 필터로 적용할 수 있다.Further, the fourth treatment unit is not particularly limited as long as it is capable of selectively separating components containing lignin of the liquid component. It is possible to selectively use one or more of a general filter, a micro filter, an ultrafiltration filter, a nanofiltration membrane, and a reverse osmosis membrane. They can be connected in parallel or in series. In addition, a screen for pretreatment and a micrometer-level particle removal filter can be applied as a pre-treatment filter.
상기 제1처리유닛에서 전처리되어 바이오매스내 금속을 포함하는 무기질 성분이 용출된 무기질포함 액상분을 제3처리유닛 또는 제4처리유닛으로 공급할 수 있다. 이러한 공정 방안은 애쉬 프리 성분을 바이오매스 내에서 용출하는 방안이 최적화 되는 공정 조건에서 다양하게 조합 가능하다는 것을 의미한다. And the inorganic-liquid-containing liquid fraction pretreated in the first treatment unit and eluted from the inorganic component containing the metal in the biomass may be supplied to the third treatment unit or the fourth treatment unit. This process means that the process of eluting the ashfree component in the biomass can be variously combined in process conditions that are optimized.
이러한 공정 적용은 처리되는 바이오매스의 성상, 전처리 입자크기, 공정 온도, 압력, 처리수 조성, 공급되는 산성, 알칼리성, 이온성 화합물, 촉매 등에 따라서 다양하게 예측되기 때문이다.This is because application of such a process is variously predicted depending on properties of the biomass to be treated, pre-treatment particle size, process temperature, pressure, composition of treated water, acidity to be supplied, alkaline, ionic compound, catalyst and the like.
정밀여과막 및 한외여과막 적용시 분리막에는 시트형태의 평막 (Plat Type), 실형태로 중앙인 빈 중공사막 (Hollow-fiber Type) 및 관형태의 관상막 (Tubular Type)으로 분류할 수 있다.When the microfiltration membrane and the ultrafiltration membrane are applied, the membrane can be classified into a sheet type plate type, a hollow hollow type hollow fiber type, and a tubular type tubular type.
또한 이러한 막을 케이스에 넣은 케이싱수납형막과 막을 물속에 직접 침적시킨 침적형막이 있다. 통수방식에는 처리대상물질을 막의 외부에서 공급하는 외압식과 내부에서 공급하는 내압식이 있다. 여과방식에는 공급수 전량을 여과하는 방식으로서 모래여과와 같이 정기적으로 막면상에 집적한 오염물질을 배출하면서 여과를 계속하는 전량여과방식 (Dead-end Flow), 막면에 대하여 평형으로 물의 흐름을 만들어 현탁물질이나 콜로이드물질이 막면에 퇴적하는 것을 억제하여 여과하는 십자류여과 (Cross-flow), 외압식인 조침적방식은 막모듈을 침적조에 침적시켜 여과하는 방식으로서 장치가 간단하여 막모듈의 교환도 용이한 이점이 있지만 반면 고압조건하에서의 운전이 불가능한 경우에는 높은 투과수량 (Flux)의 운전으로는 한계가 있다.There is also a housing containment film in which the film is placed in the case and a deposition film in which the film is directly immersed in water. In the water flow method, there are an external pressure type which supplies the substance to be treated from the outside of the membrane and a pressure type which supplies the substance from the inside. The filtration method is a method of filtrating the total amount of feed water, such as sand filtration, a dead-end flow method in which the filtration is continued while discharging the contaminants accumulated on the membrane surface regularly, Cross-flow filtration, which suppresses the accumulation of suspended matter or colloidal material on the membrane surface, is a filtration method in which the membrane module is immersed in a dipping bath, While there is an advantage in that it is easy to operate, when the operation under high pressure conditions is impossible, there is a limit to the operation of high flux (flux).
상기 필터유닛에서는 전처리설비로서 협잡물 제거를 위한 스크린이나 스트레이너 설비, 1μm 내지 1001μm 의 일반필터, 여과성능 향상을 위한 응집제, 고화제, 고분자흡수제, 주입설비, 모래여과설비, 유기물의 부착방지 및 철, 망간의 산화를 위한 염소제 주입설비 등을 설치할 수 있다.In the filter unit, as a pretreatment unit, a screen or strainer facility for removing contaminants, a general filter of 1 to 1001 m, a coagulant for improving filtration performance, a solidifying agent, a polymeric absorbent, an injection facility, a sand filtration facility, And chlorine injection equipment for oxidation of manganese.
막여과설비는 원수조, 펌프, 막모듈, 세정유닛 등을 선택적으로 설치할 수 있다. The membrane filtration facility can be selectively provided with a raw water tank, a pump, a membrane module, and a cleaning unit.
배수처리설비는 목적하는 구성분을 분리 후 방류하거나 회수율의 향상을 위하여 세정배수에 대해서 다시 막여과를 실시하거나 혹은 농축조를 설치하여 중력침강 등을 실시하여 상등수를 원수에 반송할 수도 있다. The wastewater treatment facility may perform filtration for the washing wastewater again to recover the desired components or to improve the recovery rate, or to install the concentration tank and perform gravity sedimentation to return the supernatant to the raw water.
나노여과막을 적용시 분리막에는 모듈의 배열을 다단으로 하는 크리스마스트리방식이 사용되며 농축수는 말단에서 계외로 배출하는 크리스마스트리 방식, 농축수를 공급수라인에 되돌리는 방식으로서 농축수의 일부를 계외로 배출하는 펌프순환방식을 적용할 수 있다. 이러한 나노여과막은 칼슘, 마그네슘 등의 미네랄 성분도 분리 가능하다. When the nanofiltration membrane is applied, a Christmas tree method is used in which the module is arranged in a multi-stage in the separation membrane. The concentrated tree is a Christmas tree method in which the concentrated water is discharged from the end to the system, and the concentrated water is returned to the supply water line. The pump circulation system for discharging the refrigerant to the outside can be applied. Such nanofiltration membranes are also capable of separating minerals such as calcium and magnesium.
역삼투막을 적용시 분리막에는 막모듈은 구조에 따라 와권형 (Spiral Type), 중공사형 (Hollow-Fiber Type), 관상형(Tubular Type) 및 평막형 (Plat and Frame Type) 등으로 나눌 수 있다. When the reverse osmosis membrane is applied, the membrane module may be divided into a spiral type, a hollow-fiber type, a tubular type, and a flat and frame type depending on the structure.
통상적으로 바이오매스에서 유래되는 물질의 분자량은 글루코스 180, 자일로스 150.13, 만토스 180.2, 갈락토스 180, 아라비노스 150.13, 리그닌 800~10000, 푸푸랄(Furfural) 96.09, 레부리닉산(Levulinic acid) 116, 포름산 46.03, 아세트산 60, Na2O3Si 122.06, NaOH 40, SiO2 60으로 알려져 있어 상기 분자량에 따라 선택적 분리를 위해 분리막을 적용할 수 있다. Typically, the molecular weight of a material derived from biomass is selected from the group consisting of glucose 180, xylose 150.13, mannose 180.2, galactose 180, arabinose 150.13, lignin 800-10000, furfural 96.09, levulinic acid 116, It is known as formic acid 46.03, acetic acid 60, Na 2 O 3 Si 122.06, NaOH 40, and SiO 2 60, so that a separation membrane can be applied for selective separation according to the molecular weight.
무기성분의 몰당원자량(g/mol)은 Na 23, K 40, Mg 24.3, Mn 54.9, Ca 40, Ti 47.86, Cl 35.45, Si 28, Al 27로 알려져 있어 원자량에 따라 선택적 분리를 위해 분리막을 적용할 수 있다. Since the atomic weight (g / mol) of inorganic components is known as Na 23, K 40, Mg 24.3, Mn 54.9, Ca 40, Ti 47.86, Cl 35.45, Si 28 and Al 27, can do.
또한, 상기 제2처리유닛에서 처리된 고상성분을 소정 온도와 압력의 온수로 처리하는 제5처리유닛(500);을 추가로 포함할 수 있다.The fifth processing unit 500 may further include a fifth processing unit 500 for processing the solid-phase components processed in the second processing unit with hot water at a predetermined temperature and pressure.
상기 제5처리유닛의 온도조건은 80℃ 내지 140℃일 수 있다. 바람직하게는 90℃ 내지 130℃일 수 있다. 더욱 바람직하게는 100℃ 내지 120℃일 수 있다. 상기 제1소킹유닛의 압력조건은 1 내지 1.5bar일 수 있다.The temperature condition of the fifth processing unit may be 80 캜 to 140 캜. Preferably 90 < 0 > C to 130 < 0 > C. And more preferably 100 ° C to 120 ° C. The pressure condition of the first soaking unit may be between 1 and 1.5 bar.
상기 온도 및 압력 조건보다 낮거나 높다면 고상성분 내의 공기 배출 및 액포화를 위한 목적, 온도상승을 위한 에너지확보 목적, 후속단계에서 생성된 유기산을 바이오매스에 함침시키기 위한 목적, 액상분 내에 건조분을 증가시키기 위한 목적에 효과적이지 않다. If the temperature and pressure are lower or higher than the above-mentioned conditions, the purpose of the air discharge and liquid saturation in the solid phase component, the energy securing purpose for the temperature rise, the purpose of impregnating the biomass with the organic acid generated in the subsequent step, For the purpose of increasing < / RTI >
상기 처리수는 소정온도와 압력의 온수일 수 있으며, 추가로 약산 액체를 포함할 수 있다. 약산 성분으로는 아세트산, 개미산 등 일 수 있으며, 수용성이며 수용액의 pH를 낮출 수 있다면 제한되지 않는다. The treated water may be hot water at a predetermined temperature and pressure, and may further include a weak acid liquid. The weak acid component may be acetic acid, formic acid, etc., and is not limited as long as it is water-soluble and can lower the pH of the aqueous solution.
또한, 상기 제2처리유닛 또는 제5처리유닛에서 처리된 고상성분을 고온 및 고압의 열수로 처리 하여 셀룰로오스를 포함하는 고상섬유분과 헤미셀룰로오스를 포함하는 액상섬유분을 생성하는 열수처리유닛(600); 을 추가로 포함할 수 있다.Further, a hydrothermal treatment unit (600) for treating the solid phase component treated in the second treatment unit or the fifth treatment unit with hot water at a high temperature and a high pressure to produce a liquid fiber component containing hemicellulose and a solid fiber component including cellulose; May be further included.
열수처리유닛은 소정의 온도, 압력 및 반응시간이 유지되도록 운전된다. 열수처리유닛에 공급된 고상성분은 높은 압력과 온도로 인해 조직이 파괴되며 헤미셀룰로오스가 포함된 액상, 셀룰로오스와 리그닌이 함유된 고상으로 분리된다.The hydrothermal processing unit is operated so that a predetermined temperature, pressure, and reaction time are maintained. The solid phase components supplied to the hydrothermal treatment unit are broken up into a solid phase containing hemicellulose, a liquid phase containing cellulose and lignin, and a high pressure and temperature, resulting in breakage of the structure.
열수처리유닛로부터 분리된 성분 중 헤미셀룰로오스가 포함된 액상은 당화공정을 통하여 최종적으로 자일로스가 수득된다. 한편 수득되는 당분은 헤미셀룰로오스로부터 얻어질 수 있는 것이면 특별히 제한하지 않지만, 바람직하게는 아라비노스(Arabinose), 자일로스(Xylose)일 수 있다.Among the components separated from the hydrothermal processing unit, the liquid phase containing hemicellulose is finally subjected to glycosylation to obtain xylose. On the other hand, the obtained sugar is not particularly limited as long as it can be obtained from hemicellulose, but it may be preferably Arabinose or Xylose.
여기서, 열수처리유닛은 공급된 고상성분 입자를 파괴하여 헤미셀룰로오스가 포함된 액상과 셀룰로오스 등이 포함된 고상으로 분리될 수 있도록 160~250 , 9∼~30 bar 및 1~5 시간 반응이 유지하도록 운전된다. 바람직하게는 180~220 , 15∼~25 bar 및 2~4 시간 반응일 수 있다. 더욱 바람직하게는 190~210 ℃, 18∼~22 bar 및 1~3 시간 반응일 수 있다. 반응 상기 온도범위, 압력범위 또는 반응시간을 벗어나는 경우에는 최종적으로 얻어지는 글루코스의 회수율이 낮아지거나 반응시간이 지나치게 길어지거나 또는 운전비용이 증가하는 문제점이 발생할 수 있으므로 상기 반응조건하에 운전하는 것이 바람직하다. Here, the hydrothermal treatment unit is operated so that the reaction is maintained at 160 to 250, 9 to 30 bar, and 1 to 5 hours so that the supplied solid phase component particles are broken and separated into a liquid phase containing hemicellulose and a solid phase containing cellulose and the like do. Preferably 180 to 220, 15 to 25 bar, and 2 to 4 hours. More preferably 190 to 210 ° C, 18 to 22 bar and 1 to 3 hours. Reaction If the temperature is out of the above-mentioned range, the pressure range or the reaction time, it may be preferable to operate under the reaction conditions since the recovery rate of the finally obtained glucose may be lowered, the reaction time may become excessively long, or the operation cost may increase.
한편 바이오매스로부터 글루코스와 자일로스를 분리 추출하기 위해 일반적으로 알려진 종래 기술은, 먼저 원료를 적절한 크기로 파쇄, 분쇄하는 물리적 전처리 공정, 산이나 알칼리 등의 약품을 사용한 화학적 전처리 공정, 효소를 이용한 당화공정 등을 통하여 자일로스와 글루코스를 분리 추출하여 왔다. 그러나 본 발명에서는 물리적 전처리 공정을 실시한 후 산이나 알칼리 등의 약품을 전혀 사용하지 않으면서도 최적화된 조건에서의 고온 고압 반응을 실시함으로써 글루코스를 효과적으로 추출 분리할 수 있을 뿐만 아니라 글루코스의 회수율을 높일 수 있는 장점이 있고, 이러한 구성과 효과는 본 발명의 주요 특징부라 할 수 있다.On the other hand, conventional known techniques for separating and extracting glucose and xylose from biomass include a physical pretreatment process for crushing and crushing raw materials to a proper size, a chemical pretreatment process using chemicals such as acids and alkalis, And xylose and glucose have been separated and extracted through processes. However, in the present invention, by conducting a high-temperature high-pressure reaction under optimized conditions without using chemicals such as acids or alkalis after the physical pretreatment process, glucose can be effectively extracted and separated, and the recovery rate of glucose can be increased And these configurations and effects can be said to be the main features of the present invention.
부가적으로 설명하면, 셀룰로오스와 헤미셀룰로오스는 산에 용해되는 반면 리그닌은 알칼리에 용해되는 특성을 가지므로 산 또는 알칼리를 용매로 고온에서 전처리 하는 방법이 주로 사용되고 있다. 그러나 자일로스가 주성분인 헤미셀룰로오스는 열에 약한 특성이 있어 고온에서 장시간 처리할 경우 헤미셀룰로오스의 일부가 발효 저해 물질로 변하게 되어 자일로스의 손실뿐만 아니라 발효 저해 문제도 발생하게 되는데 반해, 본 발명에서는 화학적 약품을 사용하지 않으므로 상기와 같은 자일로스의 손실이나 발효 저하 문제를 사전에 방지할 수 있다.In addition, since cellulose and hemicellulose are soluble in acid, lignin is soluble in alkali, and therefore, acid or alkali is pre-treated at a high temperature with a solvent. However, hemicellulose, which is a major component of xylose, has a weak heat characteristic, and when a long time treatment is performed at a high temperature, a part of hemicellulose is changed into a fermentation inhibiting substance to cause not only xylose loss but also fermentation inhibition problem. It is possible to prevent the loss of the xylose and the fermentation degradation problem in advance.
상기 반응에 참여하는 산으로는 황산(H2SO4), 염산(HCl), 질산(HNO3), 인산(H3PO4), 과초산(C2H4O3), 옥살산(C2H2O4) 등이 있을 수 있다. 상기 산은 기재된 산으로 한정되는 것이 아니며 헤미셀룰로오스와 셀룰로오스의 분해하는 산이라면 어느 것이든 사 상기 반응에 참여하는 염기로는 sodium hydroxide, calcium hydroxide, 우레아 등이 있을 수 있다. 상기 염기는 기재된 염기로 한정되는 것이 아니며 반응특성을 증진시키는 염기라면 어느 것이든 사용 가능하다. The acid participating in the reaction are sulfuric acid (H 2 SO 4), hydrochloric acid (HCl), nitric acid (HNO 3), phosphoric acid (H 3 PO 4), and acetic acid (C 2 H 4 O 3) , oxalic acid (C 2 H 2 O 4 ), and the like. The acid is not limited to the acid described above, and any acid which decomposes hemicellulose and cellulose may be used. Examples of the base involved in the reaction include sodium hydroxide, calcium hydroxide, urea, and the like. The base is not limited to the base described, and any base that promotes the reaction characteristics can be used.
상기 반응에 참여하는 이온성 액체로는 이미다졸리움계 화합물로 1-에틸아크릴레이트-3-메틸이미다졸리움 클로라이드 (1-ethylacrylate-3- methylimidazolium chloride), 1-부틸-3-메틸이미다졸리움 클로라이드 (1-buthyl- 3-methylimidazolium chloride), 1-부틸-3-메틸이미다졸리움 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸리움 헥사플루오로포스페이트(1-butyl-3-methylimidazolium hexafluoro phosphate), 1-부틸-3-메틸이미다졸리움 트리플루오로메탄술포네이트(1-butyl-3-methylimidazolium trifluoromethanesulfonate), 1-에틸-3-메틸이미다졸리움 아세테이트(1-ethyl-3-methylimidazolium acetate), 1-벤질-3-메틸이미다졸리움 클로라이드(1-benzyl-3-methylimidazoliumchloride), 1,3-디메틸이미다졸리움메틸 술페이트(1,3-dimethylimidazoliummethyl sulfate), 1-부틸-3-메틸이미다졸리움 클로라이드, 1-에틸-3-메틸이미다졸리움 아세테이트 등이 있을 수 있으며, 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl), 에틸메틸이미다졸리엄 브로민([EMIM]Br), 에틸메틸이미다졸리엄 요오드([EMIM]I), 1-에틸-3-메틸 이미다졸리움, 1-에틸 이미다졸리움 니트레이트, 1-에틸 이미다졸리움 브로마이드, 1-에틸-3-메틸 이미다졸리움 클로라이드, 1-에틸-이미다졸리움 클로라이드, 1,2,3-트리메틸 이미다졸리움 메틸 설페이트, 1-메틸 이미다졸리움 클로라이드, 1-부틸-3-메틸 이미다졸리움, 1-부틸-3-메틸 이미다졸리움 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸리움 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸리움 하이드로겐설페이트, 1-부틸-3-메틸 이미다졸리움 하이드로겐설페이트, 메틸이미다졸리움 클로라이드, 1-에틸-3-메틸 이미다졸리움 아세테이트, 1-부틸-3-메틸 이미다졸리움 아세테이트, Tris-2(하이드록시 에틸) 메틸암모늄 메틸설페이트, 1-에틸-3-메틸 이미다졸리움 에틸설페이트, 1-에틸-3-메틸 이미다졸리움 메탄설포네이트, 메틸-트리-n-부틸암모늄 메틸설페이트, 1-부틸-3-메틸 이미다졸리움 클로라이드, 1-에틸-3-메틸 이미다졸리움 클로라이드, 1-에틸-3-메틸 이미다졸리움 티오시아네이트, 1-부틸-3-메틸 이미다졸리움 티오시아네이트, 1-뷰틸-3-메틸이미다졸륨클로라이드, 1-뷰틸-3-메틸이미다졸륨나이트레이트, 1-뷰틸-3-메틸이미다졸륨아세테이트, 1-뷰틸-3-메틸이미다졸륨테트라플로로보레이트, 1-에틸-3-메틸이미다졸륨클로라이드, 1-에틸-3-메틸이미다졸륨나이트레이트, 1-에틸-3-메틸이미다졸륨아세테이트, 1-에틸-3-메틸이미다졸륨테트라플로로보레이트, 1-알리-3-메틸이미다졸륨클로라이드, 1-알리-3-메틸이미다졸륨나이트레이트, 1-알리-3-메틸이미다졸륨아세테이트, 1-알리-3-메틸이미다졸륨테트라플로로보레이트가 있을 수 있다. 상기 이온성 액체는 기재된 이온성 액체로 한정되는 것이 아니며, 반응특성을 증진시키는 것이라면 어느 것이든 사용 가능하다.Examples of the ionic liquid participating in the reaction include imidazolium compounds such as 1-ethyl acrylate-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, Butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium chloride, 1-butyl- Butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium 1-ethyl-3-methylimidazolium acetate, 1-benzyl-3-methylimidazoliumchloride, 1,3-dimethylimidazoliummethylsulfate, sulfate, 1-butyl-3-methylimidazolium chloride, 1- Ethylimidazolium bromide ([EMIM] Br), ethylmethylimidazolium acetate, and the like, and ethylmethylimidazolium chloride ([EMIM] Cl) Ethyl imidazolium bromide, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl imidazolium bromide, 1-ethyl imidazolium iodide, Ethyl-imidazolium chloride, 1,2,3-trimethyl imidazolium methyl sulfate, 1-methyl imidazolium chloride, 1-butyl-3-methyl imidazolium, Ethyl-3-methyl imidazolium hydrogensulfate, 1-butyl-3-methyl imidazolium hydrogensulfate, methylimidazole 1-ethyl-3-methyl imidazolium acetate, 1-butyl-3- Ethyl-3-methyl imidazolium methanesulfonate, methyl-tri- methyl-imidazolium acetate, tris-2- butyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium thiocyanate, 1-butyl- Methylimidazolium nitrate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride, Methylimidazolium nitrate, 1-ethyl-3-methylimidazolium acetate, 1- (2-methylimidazolium) acetate, 1- Ethyl-3-methylimidazolium tetrafluoroborate, 1-allyl-3-methylimidazolium chloride, 1-allyl-3-methyl Imidazolium nitrate, 1-methyl-3-Ali are imidazolium acetate, 1-methyl-3-Ali may be a borate as imidazolium tetra flow. The ionic liquid is not limited to the ionic liquid described above, and any ionic liquid can be used as long as it improves the reaction characteristics.
상기 반응 유닛에 투입되는 효소, 산, 알칼리, 이온성 액체 중 어느 하나 또는 2 이상이 투입되는 양은 반응조건에 따라 투입되지 않을 수도 있다.The amount of one or more of the enzyme, acid, alkali, and ionic liquid introduced into the reaction unit may not be supplied depending on the reaction conditions.
또한, 상기 열수처리유닛을 통해 상기 고상성분이 고온고압 반응에 참여하면서 푸르푸랄(furfural)등의 화합물이 생성될 수 있다.In addition, a compound such as furfural may be generated while the solid phase component participates in the high-temperature high-pressure reaction through the hydrothermal processing unit.
또한, 상기 열수처리유닛 일단의 저압영역에서 공기접촉없이 배출되는 스팀을 포집하는 과정에서 상기 고상섬유분을 배출 분리하는 제1배출부(610);를 포함할 수 있다.The first discharge unit 610 discharges and separates the solid fiber component in the process of collecting steam discharged from the low-pressure region of the hydrothermal treatment unit without air contact.
또한, 상기 열수처리유닛 타단의 저압영역에서 공기접촉없이 배출되는 스팀을 포집하는 과정에서 상기 섬유액상분을 배출 분리하는 제2배출부(620);를 포함할 수 있다.The second discharge unit 620 discharges and separates the fiber liquid fraction in the process of collecting steam discharged from the other end of the hydrothermal treatment unit without air contact in a low pressure region.
또한, 상기 열수처리유닛에서 처리된 셀룰로오스를 포함하는 고상섬유분을 바이오에탄올 생산을 위한 효소 당화반응 시키는 효소당화유닛(700);을 추가로 포함할 수 있다.In addition, an enzyme saccharification unit 700 for performing an enzymatic saccharification reaction for the production of bioethanol may be further included in the solid fiber component including the cellulose treated in the hydrothermal treatment unit.
또한, 상기 효소당화유닛에 효소, 산, 알칼리, 이온성 액체 중 어느 하나 또는 2 이상이 투입되는 것을 특징으로 한다.In addition, the enzyme saccharification unit is characterized in that any one or two or more of enzyme, acid, alkali, and ionic liquid is added.
상기 반응에 참여하는 효소로 헤미셀룰로오스의 분해에 관여하는 효소로는 Endo-1,4-β-D-xylanases, exo-1,4-β-D-xylosidases, endo-1,4-β-D-mannanases, β-mannosidases, acetyl xylan esterases, α-glucuronidases, α-L-arabinofuranosidases, α-galactosidases, ferulic acid esterase 등이 있으며, 셀룰로오스의 분해에 관여하는 효소로는 endo-glucanase (EG), cellobiogydrase(CBH), β-glucosidase(BGL) 등이 있을 수 있다. 상기 효소는 기재된 효소로 한정되는 것이 아니며 헤미셀룰로오스와 셀룰로오스의 분해하는 효소라면 어느 것이든 사용 가능하다.Examples of enzymes involved in the degradation of hemicellulose include enzymes such as Endo-1,4-β-D-xylanases, exo-1,4-β-D-xylosidases, endo-1,4- L-arabinofuranosidases, α-galactosidases, and ferulic acid esterases. Endo-glucanase (EG), cellobiogydrase (CBH), and β-mannosidase ), β-glucosidase (BGL), and the like. The enzyme is not limited to the enzymes described, and any enzymes capable of decomposing hemicellulose and cellulose may be used.
또한, 상기 열수처리유닛에서 처리된 헤미셀룰로오스를 포함하는 섬유액상분 중 소정양의 아세트산을 추출하여 상기 제5처리유닛 및/또는 상기 열수처리유닛으로 재순환시키는 추출유닛(800);을 추가로 포함할 수 있다.Further, it further includes an extraction unit (800) for extracting acetic acid in a predetermined amount from the fiber liquid fraction containing hemicellulose treated in the hydrothermal treatment unit and recycling the acetic acid to the fifth treatment unit and / or the hydrothermal treatment unit .
또한, 상기 추출유닛에서 처리된 섬유액상분을 이용하여 소정 농도의 스프레잉 용액을 생성하는 스프레잉 생성유닛(900);을 추가로 포함할 수 있다.The spraying unit may further include a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit.
상기 스프레잉 용액의 농도는 열수처리유닛에서 분리된 셀룰로오스에 기인한 글루칸을 포함하는 고상 성분, 셀룰로오스에 기인한 글루칸이 함유된 액상 성분, 상기 효소당화유닛을 통해 생성된 글루코스를 포함하는 액상 성분 중 어느 하나 또는 2 이상 액상 성분 및 상기 제4처리유닛에서 분리된 리그닌을 포함하는 고상분에 일정량의 수분을 포함하는 것이다.Wherein the concentration of the spraying solution is selected from the group consisting of a solid phase component containing glucan due to cellulose separated from the hydrothermal treatment unit, a liquid component containing glucan due to cellulose, and a liquid component containing glucose generated through the enzyme saccharification unit A certain amount of moisture is contained in the solid phase containing one or two or more liquid phase components and lignin separated in the fourth treatment unit.
상기 농도는 전체 스프레잉 용액 대비 투입되는 액상 성분의 용액 비로서 나타내며, 0 초과 내지 1 미만일 수 있다. 바람직하게는 0.3 이상 내지 0.95 이하 일수 있으며, 더욱 바람직하게는 0.5 이상 내지 0.9 이하일 수 있다. The concentration is expressed as a solution ratio of the liquid component to be added to the total spraying solution, and may be more than 0 and less than 1. Preferably from 0.3 or more to 0.95 or less, and more preferably from 0.5 or more to 0.9 or less.
상기 용액비 보다 낮으면 수분의 양이 많아 공정비가 많이 드는 단점이 있고, 상기 용액비 보다 높으면 스프레잉을 위한 점도조건 등에 어려움이 있다.If the solution ratio is lower than the above-mentioned range, there is a disadvantage in that the amount of water is large and thus the process ratio is large, and when it is higher than the solution ratio, viscosity conditions for spraying and the like are difficult.
또한, 상기 스프레잉 생성 유닛을 통해 생성된 스프레이 용액을 이용하여 조분쇄 된 석탄 중 평균입도가 4 mm 이상인 석탄을 함침 또는 코팅시키는 석탄 전처리 유닛(1000); 을 추가로 포함할 수 있다.Further, a coal pretreatment unit 1000 for impregnating or coating coal having an average particle size of 4 mm or more among coarsely pulverized coals using the spray solution generated through the spraying generating unit; May be further included.
또한, 상기 스프레잉 생성 유닛을 통해 생성된 스프레이 용액을 이용하여 조분쇄 된 석탄 중 평균입도가 4 mm 미만인 석탄을 회전시키면서 상기 석탄에 스프레이 용액을 분사하여 석탄이 함침 또는 코팅되면서 과립화(granulation)를 통하여 크기를 증가시키는 석탄 과립화 유닛(1100); 을 추가로 포함할 수 있다.The spray solution is sprayed onto the coal while rotating coal having an average particle size of less than 4 mm among the coarsely pulverized coals using the spray solution generated through the spraying generating unit to granulate the coal while impregnating or coating the coal. A coal granulation unit 1100 for increasing the size of the coal; May be further included.
상기 석탄 과립화 유닛을 통해 제조되는 연료는 펠렛형태의 연료를 생산할 수도 있음은 자명하다.It is apparent that the fuel produced through the coal granulation unit may produce fuel in the form of pellets.
또한, 상기 석탄 전처리 유닛 또는 상기 석탄 과립화 유닛은 평균입도 조건에 맞는 석탄의 유입 유무에 따라 독립적으로 또는 동시에 운영되는 것을 특징으로 한다.The coal pretreatment unit or the coal granulation unit may be operated independently or simultaneously depending on whether or not the coal satisfies the average grain size condition.
또한, 상기 첨가유닛으로는 상기 제2처리유닛을 통해 생성된 고상성분을 활용한 펄프생산을 위한 표백유닛에서 생성되는 폐액이 추가로 공급될 수 있다.Further, as the addition unit, a waste liquid generated in the bleaching unit for pulp production utilizing the solid-phase component generated through the second processing unit may be additionally supplied.
또한, 상기 제1처리유닛, 상기 제2처리유닛, 상기 제4처리유닛, 상기 제5처리유닛 및 상기 열수처리유닛 중 어느 하나 또는 2이상의 유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 및 중 어느 하나 또는 2개 유닛이 추가될 수 있다.Further, a cleaning unit and a moisture removal unit for cleaning are provided at the rear end of any one or two or more of the first processing unit, the second processing unit, the fourth processing unit, the fifth processing unit and the hydrothermal processing unit, Any one or two units may be added.
상기 세척유닛은 세정펌프, 공기압, 역압, 에어스트리핑, 원수세정, 기계진동 중 어느 하나 또는 2이상을 적용할 수 있다. The cleaning unit may be any one or more of a cleaning pump, air pressure, back pressure, air stripping, raw water cleaning, and mechanical vibration.
상기 제4처리유닛에서 분리된 애쉬 프리 농축분을 소수성 바인더로 상기 제5처리유닛에서 처리된 고상성분을 바인딩하여 애쉬프리 성형연료를 제조하기 위한 성형연료유닛(1200); 을 추가로 포함할 수 있다.A forming fuel unit (1200) for producing an ashless molding fuel by binding the solid phase component processed in the fifth processing unit with an ash-free condensed fraction separated from the fourth processing unit with a hydrophobic binder; May be further included.
*분리된 애쉬 프리 농축분에는 다량의 리그닌이 포함될 수 있으며, 리그닌을 소수성 특징을 갖니다. 따라서 분리된 애쉬프리 농축분을 바인더로 상기 제5처리유닛에서 처리된 셀룰로오스 및/또는 헤미셀룰로오스를 다량 포함하는 고상성분을 이용하여 성형연료를 제조할 수 있다. * Separated ash-free concentrates can contain large quantities of lignin and are characterized by hydrophobicity of lignin. Thus, the molded fuel can be produced using a solid phase component containing a large amount of cellulose and / or hemicellulose treated in the fifth treatment unit with a binder as a separated ash-free concentrated fraction.
이러한 성형연료는 유동층, 화격자, 미분화 보일러 및 가스화기 등에 사용할 수 있으며, 연소 및 가스화 과정 중 연료중 금속원소를 포함하는 무기질 성분에 기인하는 클링커 파울링 등의 막힘현상 및 알칼리계 금속에 기인하는 부식현상을 근원적을 배제할 수 있다. Such molded fuel can be used in a fluidized bed, grate, undifferentiated boiler, gasifier, and the like. The clogging phenomenon of clinker fouling caused by an inorganic component including a metal element in fuel during combustion and gasification and corrosion caused by alkali metal The origin of the phenomenon can be ruled out.
상기 제4처리유닛에서 분리된 애쉬 프리 농축분 및/또는 상기 제5처리유닛에서 처리된 고상성분을 선택적으로 연소 또는 가스화 연료, 점착제, 파티클 보드 및 합판의 제조에서 페놀 포름알데히드 레진 증량제, 몰딩 화합물의 제조에서, 우레탄 및 에폭시 레진, 항산화제, 서방성 제제, 유량 조절제, 시멘트/콘크리트 혼합, 석고 보드 제조, 석유 굴착, 일반 분산, 태닝 가죽, 도로 복개, 바닐린 제조, 디메틸 설파이드 및 디메틸 술폭사이드 제조, 폴리올레핀 혼합물에 페놀 레진이 내포된 페놀 치환, 방향족 (페놀) 단량체, 추가적인 다양한 단량체, 탄소 섬유, 용액에서 금속 제거, 젤 형성의 기초, 폴리우레탄 공중합체, 및 그 조합들로서 사용될 수 있다.Wherein the ash-free condensed fraction separated from the fourth treatment unit and / or the solid-phase component treated in the fifth treatment unit are selectively used as a phenol formaldehyde resin extender, a molding compound Cement / concrete mix, gypsum board manufacturing, oil excavation, general dispersing, tanning leather, road coverings, vanillin manufacture, dimethyl sulfide and dimethyl sulfoxide manufacture in the manufacture of urethane and epoxy resins, antioxidants, release agents, flow control agents, , Phenol substitution with phenol resin in a polyolefin mixture, aromatic (phenol) monomers, additional various monomers, carbon fibers, metal removal from solution, basis of gel formation, polyurethane copolymer, and combinations thereof.
또한, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분을 소수성 바인더로 상기 제5처리유닛에서 처리된 고상성분을 열처리하여 애쉬프리 반탄화연료를 제조하기 위한 반탄화유닛(1300); 을 추가로 포함될 수 있다.Also, a semi-carbonization unit 1300 for producing an ash-free semi-carbonized fuel by heat-treating the solid-phase component processed in the fifth processing unit with the hydrophobic binder from the ash-free concentrated fraction separated from the fourth processing unit; May be further included.
여기서, 본 발명의 탄화공정에서는 공지된 탄화기를 사용할 수 있으므로 특별히 제한하지 않고, 탄화를 위한 가열온도는 180 내지 220 의 온도로 가열하는 것이 바람직하다. 더욱 바람직하게는 190 내지 210 의 온도에서 탄화를 수행할 수 있다. 이러한 탄화공정을 통해 애쉬프리 반탄화연료 파우더 표면이나 미세기공 내부로 수분이 다시 흡착되는 것을 방지할 수 있어 애쉬프리 바이오매스 연료의 수송 및 보관을 용이하게 할 수 있고, 또한 수분이 적게 포함되어 있으므로 소수성의 발열량이 높은 애쉬프리 바이오매스 반탄화연료를 얻을 수 있다.Here, in the carbonization process of the present invention, a known carbonyl group can be used, so that the heating temperature for carbonization is preferably 180 to 220, not particularly limited. More preferably, the carbonization can be carried out at a temperature of 190 to 210 ° C. By this carbonization process, moisture can be prevented from being adsorbed again to the surface of the ashfree semi-carbonized fuel powder or into the micropores, and it is possible to facilitate the transportation and storage of the ashfree biomass fuel, An ash-free biomass semi-carbonized fuel having a high calorific value can be obtained.
또한, 상기 제4처리유닛을 통해 상기 액상성분에서 분리된 무기물을 포함하는 분리액은 상기 제1처리유닛 및/또는 상기 제2처리유닛으로 재순환시키는 재순환유닛(1400)을 추가로 포함할 수 있다.Further, the separation liquid containing the inorganic matter separated from the liquid component through the fourth processing unit may further include a recycle unit 1400 that recirculates to the first processing unit and / or the second processing unit .
또한, 상기 효소당화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 바이오에탄올 일 수 있다.In addition, the bio-ethanol produced by the complex fuel production system using the ash-free biomass, which further comprises the enzyme saccharification unit, may be used.
또한, 상기 석탄전처리유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 석탄일 수 있다.Further, the coal may be manufactured by a composite fuel production system using ash-free biomass, further comprising the coal pretreatment unit.
또한, 상기 석탄과립화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 석탄일 수 있다.The coal produced by the composite fuel production system using ash-free biomass, which further comprises the coal granulating unit, may be used.
또한, 상기 성형연료유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 애쉬프리 성형연료일 수 있다.Also, it may be an ash-free forming fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-mentioned shaped fuel unit.
또한, 상기 반탄화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 애쉬프리 반탄화연료일 수 있다.Also, it may be an ash-free semi-carbonized fuel produced by a composite fuel production system using ash-free biomass, which further includes the above-described semi-carbonization unit.
도 2는 본 발명에 따른 융착 및 고온부식 유발성분을 제거한 보일러용 연료 생산 시스템을 나타낸 흐름도이다.FIG. 2 is a flowchart showing a fuel production system for a boiler in which fusing and hot corrosion-inducing components are removed according to the present invention.
바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(100); 상기 원료를 저장하는 호퍼(201); 상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211); 상기 원료공급피더로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301); 상기 성분분리유닛에서 융착 및 고온부식 유발성분이 분리된 연료를 펠릿화하는 펠릿화유닛(401); 및 상기 펠릿화유닛에서 펠릿화된 연료를 탄화처리하는 반탄화유닛(501)을 포함하는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템일 수 있다.A crushing unit (100) for forming the biomass into a raw material of a predetermined size; A hopper 201 for storing the raw material; A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock; A component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion; A pelletizing unit (401) for pelletizing the separated fuel in the component separating unit; And a semi-carbonization unit (501) for carbonizing the pelletized fuel in the pelletizing unit. The semi-carbonized fuel production system for the boiler for improving the biomass mixing ratio may be used.
상기 바이오매스는 억새, 옥수수대, 우드펠릿 등 일 수 있다.The biomass may be a herb, cornstalks, wood pellets, or the like.
상기 바이오매스는 2세대, 3세대 바이오매스, 가연성 고형폐기물 중 어느 하나 이상 일 수 있다.The biomass may be at least one of second generation, third generation biomass, and combustible solid waste.
상기 가연성 고형폐기물에는 폐지류, 농업폐기물, 폐목재류, 식물성잔재물, 초본류 폐기물 등이 있을 수 있다. The combustible solid waste may include waste paper, agricultural waste, scrap wood, vegetable residue, herbaceous waste, and the like.
2, 3등급 폐목재(2등급 : 가공·처리·사용과정에서 접착제, 페인트, 기름, 콘크리트 등 의 물질이 사용되었거나 이에 오염된 폐목재(할로겐족유기화합물이나 방부제로 처리·오염된 폐목재는 예외), 3등급 : 가공처리사용과정에서 할로겐족유기화합물이나 방부제가 사용되었거나 이에 오염된 폐목재와 「자원의 절약과 재활용촉진에 관한 법률」시행규칙 제20조의3 제2항의 고형연료제품의 품질등급기준에 적합하지 않는 폐목재 칩 및 위의 1~2등급에 해당되지 않는 기타 폐목재)를 추가로 포함할 수 있다. (환경부고시 제2012-117호) Class 2 and 3 Waste wood (Class 2: Waste wood that has been contaminated with or contaminated with adhesives, paints, oils, and concrete during processing, processing, or use (except for halogenated organic compounds and waste wood treated and contaminated with preservatives) ), Class 3: Waste wood that has been or is contaminated with halogenated organic compounds or preservatives during the processing process and quality grade of solid fuel products as defined in Article 20-3, Paragraph 2 of the Enforcement Rule of the Law Concerning the Promotion of Reduction and Recycling of Resources Waste wood chips that do not meet the criteria, and other waste wood that does not fall in classes 1 to 2 above). (Ministry of Environment Notification No. 2012-117)
상기 소정 크기는 500mm이하 일 수 있다. The predetermined size may be 500 mm or less.
바람직하게는 10μμm 내지 300mm이하 일 수 있다.Preferably from 10 mu m to 300 mm or less.
더욱 바람직하게는 20mm 내지 50mm이하 일 수 있다. More preferably 20 mm to 50 mm or less.
상기 입자 사이즈를 벗어날 경우, 분쇄비용이 과다하게 소요되거나, 융착 및 고온부식 유발성분의 제거 효율이 낮아질 수 있다.If the particle size is out of the above range, the pulverization cost may be excessively high, or the efficiency of the fusion and removal of the high temperature corrosion-inducing component may be lowered.
상기 분쇄유닛은 파쇄(crushing) 및/또는 분쇄(grinding)를 수행할 수 있다. 상기 분쇄유닛은 압축, 충격, 마찰, 전단, 굽힘 중 어느 하나 이상의 물리 특성을 이용할 수 있으며 절단 등 바이오매스의 크기를 줄이는 동시에 표면적을 넓히는 목적을 달성할 수 있다면 그 방법에 제한이 되지 않는다.The crushing unit may perform crushing and / or grinding. The crushing unit can use any of physical characteristics such as compression, impact, friction, shearing and bending, and the method is not limited as long as it can achieve the purpose of reducing the size of the biomass such as cutting and enlarging the surface area.
상기 분쇄유닛은 죠크러셔(Jaw crusher), 자이레토리크러셔(Gyratory crusher), 롤크러셔(Roll crusher), 에지러너(Edge runner), 햄머크러셔(Hammer crusher), 볼밀(Ball mill), 제트밀(Jet mill), 디스크크러셔(Disk crusher) 중 어느 하나 일 수 있다. The crushing unit may be a jaw crusher, a gyratory crusher, a roll crusher, an edge runner, a hammer crusher, a ball mill, a jet mill mill, and a disk crusher.
상기 원료공급피더는 후단에 정량적으로 상기 원료를 공급할 수 있는 장치라면 특별히 제한되지 않는다. 바람직하게는 스크류피더, 락호퍼가 있다.The raw material supply feeder is not particularly limited as long as it can supply the raw material quantitatively to the downstream end. Preferably, there are a screw feeder and a lock hopper.
상기 융착 및 고온부식 유발성분이란 연소반응에 사용되는 바이오매스에 포함된 무기물 성분 중 반응 후단의 반응기 벽면, 열교환기, 후단 배가스 처리 설비의 표면에 물리, 화학적으로 부착되어 파울링, 슬래깅, 부식, 크링커 생성등을 유발하는 융착 및 고온부식 유발성분을 의미한다.The fusion and high-temperature corrosion-inducing components are physically and chemically adhered to the surface of the reactor wall, the heat exchanger, and the downstream-end flue-gas treating facility of the downstream reaction stage among the inorganic components contained in the biomass used in the combustion reaction to generate fouling, slagging, , Cracking, and the like.
상기 융착 및 고온부식 유발성분은 알칼리, 알칼리토 금속, 할로겐족 원소일 수 있다.The fusing and hot corrosion-inducing component may be an alkali, alkaline earth metal, or a halogen group element.
바람직하게는 나트륨, 칼륨, 염소일 수 있다. Preferably, it may be sodium, potassium or chlorine.
상기 소정 온도의 열수처리를 위한 주입수의 온도는 0 내지 100일 수 있다. 바람직하게는 40 내지 80일 수 있다. 상기 공급원료가 상기 융착 및 고온부식 유발성분분리 유닛내에 체류하는 시간은 10분 내지 2시간일 수 있다.The temperature of the injection water for the hot water treatment at the predetermined temperature may be 0 to 100. And preferably from 40 to 80. [ The time for the feedstock to stay in the fusing and hot corrosion-inducing component separation unit may be 10 minutes to 2 hours.
상기 온도 및 시간조건을 벗어나면 제거성분의 효율이 낮아지거나 공정 비용이 많이 소요된다. Beyond the above temperature and time conditions, the efficiency of the removed component is low or the process cost is high.
상기 단위공급원료 당 투입되는 열수양은 바이오매스의 종류에 따라 달라지며, BTW(Biomass to Water, kg/kg)으로 정의될 수 있다. 바람직하게는 0.02 내지 0.5일 수 있으며, 더욱 바람직하게는 0.11 내지 0.18일 수 있다(억새 기준, 우드펠릿, 옥수수대 1/6).The amount of heat input per unit feedstock varies depending on the type of biomass, and may be defined as BTW (Biomass to Water, kg / kg). Preferably 0.02 to 0.5, and more preferably 0.11 to 0.18 (based on weight, wood pellet, corn vs. 1/6).
상기 BTW비를 벗어나게 되면 유발성분의 분리 효율이 낮아지게 된다.If the BTW ratio is exceeded, the separation efficiency of the induced component becomes low.
상기 혼소 조건은 기존 화석연료 대비 1wt% 내지 50wt%일 수 있다. 바람직하게는 3wt% 내지 40wt%일 수 있으며, 더욱 바람직하게는 5wt% 내지 30wt%일 수 있다.The blending condition may be 1 wt% to 50 wt% of the conventional fossil fuel. , Preferably from 3 wt% to 40 wt%, and more preferably from 5 wt% to 30 wt%.
상기 융착 및 고온부식 유발성분분리유닛에서 배출되는 액상성분에 상기 융착 및 고온부식 유발성분이 포함될 수 있다. The fusion component and the hot corrosion-inducing component may be included in the liquid component discharged from the fusion-bonding and high-temperature corrosion-inducing component separation unit.
상기 액상성분은 소량의 유기화합물 및 융착 및 고온부식 유발성분을 포함하는 수용액일 수 있다. 상기 유기화합물은 탄소, 수소, 질소, 산소, 황 성분을 주요 구성성분으로 할 수 있다. 바람직하게는 상기 액상성분은 헤미셀룰로오스, 유기산, 푸르푸랄, 5-hydroxymethylfufural (5-HMF) 및 무기물을 포함할 수 있다.The liquid component may be an aqueous solution containing a small amount of organic compounds and fusion and hot corrosion-inducing components. The organic compound may include carbon, hydrogen, nitrogen, oxygen, and sulfur. Preferably, the liquid component may comprise hemicellulose, organic acid, furfural, 5-hydroxymethylfufural (5-HMF) and inorganic.
상기 융착 및 고온부식 유발성분 분리유닛에서 배출되는 고상성분은 상기 융착 및 고온부식 유발성분이 분리된 가연성 성분을 포함될 수 있다.The solid phase component discharged from the fusing and high temperature corrosion-inducing component separating unit may include a combustible component in which the fusion-bonding and high-temperature corrosion-inducing component are separated.
상기 가연성 성분은 유기화합물일 수 있다. 상기 가연성 성분은 탄소, 수소, 질소, 산소, 황 성분을 주요 구성성분으로 할 수 있다.The combustible component may be an organic compound. The combustible component may include carbon, hydrogen, nitrogen, oxygen, and sulfur.
상기 액상성분의 pH는 6이하일 수 있다. The pH of the liquid component may be 6 or less.
더욱 바람직하게는 pH는 2.5에서 4이하일 수 있다.More preferably, the pH may be 2.5 to 4 or less.
상기 액상성분의 pH는 상기 원료내의 유기산에 의해 pH가 낮아지는 것에 기술적 특징이 있다. 상기 유기산으로는 acetic acid, formic acid, propanoic acid, 4-hydroxy-butanoic acid, 2-butenoic acid 등이 있다. The pH of the liquid component has a technical feature that the pH is lowered by the organic acid in the raw material. Examples of the organic acid include acetic acid, formic acid, propanoic acid, 4-hydroxybutanoic acid, and 2-butenoic acid.
추가적으로 융착 및 고온부식 유발성분 분리유닛의 반응성 향상을 위해 산액인 acetic acid(C2H4O2), formic acid(HCOOH), propanoic acid(CH3CH2COOH), 4-hydroxy-butanoic acid, 2-butenoic acid, 황산(H2SO4), 염산(HCl), 질산(HNO3), 인산(H3PO4), 과초산(C2H4O3), 초산(CH3COOH), 옥살산(C2H2O4) 중 어느 하나 이상을 추가로 투입할 수 있다. In addition, acetic acid (C 2 H 4 O 2 ), formic acid (HCOOH), propanoic acid (CH 3 CH 2 COOH), 4-hydroxybutanoic acid, It is possible to add at least one of 2-butenoic acid, sulfuric acid (H2SO4), hydrochloric acid (HCl), nitric acid (HNO3), phosphoric acid (H3PO4), peracetic acid (C2H4O3), acetic acid (CH3COOH), oxalic acid (C2H2O4) have.
상기 산액의 첨가량은 전체 투입 열수량 대비 10wt% 이내 일 수 있다.The added amount of the acid solution may be 10 wt% or less with respect to the total amount of applied heat.
상기 산액의 첨가에 의한 pH는 바람직하게는 4이하 일 수 있다.The pH by adding the acid solution may preferably be 4 or less.
더욱 바람직하게는 pH는 2.5에서 4이하일 수 있다.More preferably, the pH may be 2.5 to 4 or less.
상기 액상성분 중 유기화합물을 분리한 pH가 낮은 수용액은 상기 융착 및 고온부식 유발성분분리유닛(401);으로 재순환 시키는 것을 포함할 수 있다. The aqueous solution having a low pH, from which the organic compound in the liquid component is separated, may be recycled to the fusion and hot corrosion-inducing component separation unit (401).
상기 액상성분 중 유기화합물을 제거하기 위해 원심분리, 응집, 흡착, 여과막, 이온교환수지 중 어느 하나 이상을 적용할 수 있다.In order to remove the organic compound from the liquid component, at least one of centrifugal separation, flocculation, adsorption, filtration membrane and ion exchange resin may be applied.
상기 반탄화유닛은 회전통과 상기 융착 및 고온부식 유발성분이 제거된 연료 저장장치 및 이송장치, 그리고 원료 취합부를 구비할 수 있다. The semi-carbonizing unit may include a fuel storage device, a transfer device, and a raw material collecting part in which the fusing and hot corrosion-inducing components are removed through rotation.
상기 회전통 내부에는 내부 회전튜브를 포함할 수 있다. 상기 내부 회전튜브의 외경 대 상기 회전통 내경의 비는 0.9 이하일 수 있다. 바람직하게는 상기 내부 회전튜브 외경 대 상기 회전통 내경의 비는 0.6이하일 수 있다. 상기 직경비의 범위내에서만 탄화효율이 효과적일 수 있다.The inside of the rotator may include an inner rotating tube. The ratio of the outer diameter of the inner rotating tube to the inner diameter of the rotating tube may be 0.9 or less. Preferably, the ratio of the outer diameter of the inner rotating tube to the inner diameter of the rotating body may be 0.6 or less. The carbonization efficiency may be effective only within the above-described range of the diameter ratio.
상기 내부 회전튜브의 회전방형은 상기 회전통의 회전방향과 역방향일 수 있다. 상기 내부 회전튜브는 내부에 요철이 형성되거나 스크류 형태를 갖을 수 있다. 상기 원료 취합부는 압력 및/또는 온도센서를 포함할 수 있다.The rotation of the inner rotary tube may be opposite to the rotation direction of the rotary shaft. The inner rotating tube may have a concavoconvex shape or a screw shape. The raw material collecting part may include a pressure and / or temperature sensor.
상기 원료 취합부는 가스배출 밸브를 포함할 수 있다.The raw material collecting portion may include a gas discharge valve.
상기 원료 취합부는 로드셀을 포함할 수 있다.The raw material collecting unit may include a load cell.
상기 원료 취합부는 가스농도센서가 포함할 수 있다.The raw material collecting part may include a gas concentration sensor.
상기 반탄화유닛의 내부 회전튜브의 반탄화 온도는 150 내지 250일 수 있다. 바람직하게는 180 내지 230일 수 있으며, 더욱 바람직하게는 190 내지 210일 수 있다. 상기 반탄화온도 범위를 벗어나면 상기 원료가 완전탄화되거나 부피, 발열량, 분쇄성 특성이 떨어질 수 있다.The semi-carbonization temperature of the inner rotating tube of the semi-carbonization unit may be from 150 to 250. Preferably from 180 to 230, and more preferably from 190 to 210. [ Outside the semi-carbonization temperature range, the raw material may be completely carbonized or its volume, calorific value, and crushability may be deteriorated.
상기 반탄화유닛의 반탄화 조건은 불활성 가스상에서 수행될 수 있다.The semi-carbonization condition of the semi-carbonization unit may be performed on an inert gas.
상기 액상성분의 유기화합물 분리를 위해 재순환유닛을 추가로 포함할 수 있다.And may further comprise a recycle unit for separating the liquid component of the organic compound.
상기 재순환유닛은 마이크로필터, 울트라필터, 나노필터, 역삼투막 중 어느 하나 또는 2이상일 수 있다. 또한, 상기 재순환유닛유닛의 전단 또는 후단에 pH, 농도조절을 위한 물, 산성용액, 염기성용액을 주입할 수 있다. 또한, 상기 재순환유닛 전단 또는 후단에 수분증발, 원심분리, 석출, 침전, 응집, 흡착 중 어느 하나 이상의 방법을 이용하여 액상성분내 고체성분을 분리할 수 있다. 상기 액상성분내 헤미셀룰로오스는 정제분리하여 식이섬유 대용으로 사용할 수 있다.The recycling unit may be any one or more of a microfilter, an ultrafilter, a nanofilter, and a reverse osmosis membrane. In addition, water, an acidic solution, and a basic solution can be injected to the front end or the rear end of the recirculation unit for adjusting pH and concentration. Further, the solid component in the liquid phase component can be separated at the front end or the rear end of the recirculation unit by using at least one of water evaporation, centrifugal separation, precipitation, precipitation, agglomeration, and adsorption. Hemicellulose in the liquid component can be separated and used as dietary fiber.
상기 융착 및 고온부식 유발성분 분리유닛 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가될 수 있다.Any one or two units of the cleaning unit and the moisture removal unit for cleaning may be added to the downstream of the fusion and high-temperature corrosion-inducing component separation unit.
상기 반탄화유닛에서 배출되는 기상성분에는 산성가스를 포함하는 유기화합물을 포함할 수 있다.The gas phase component discharged from the semi-carbonization unit may include an organic compound including an acid gas.
상기 유기화합물은 상기 보일러용 반탄화 연료 생산 시스템의 열원으로 이용될 수 있다. 상기 유기화합물은 헤미셀룰로오스, 산성가스, 푸르푸랄, 열분해 가연성 가스등을 포함할 수 있다. 상기 유기화합물은 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에서 열원으로 사용될 수 있다.The organic compound may be used as a heat source for the semi-carbonized fuel production system for the boiler. The organic compound may include hemicellulose, acid gas, furfural, pyrolysis flammable gas, and the like. The organic compound may be used as a heat source in a semi-carbonized fuel production system for boilers for improving the biomass mixing ratio.
상기 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에서 상기 반탄화된 연료는 화석연료를 사용하는 보일러에서 50중량부 이하로 혼소될 수 있는 것을 특징으로 하는 반탄화 연료일 수 있다.In the semi-carbonized fuel production system for a boiler for improving the biomass mixing ratio, the semi-carbonized fuel may be mixed with less than 50 parts by weight in a boiler using fossil fuel.
상기 반탄화된 연료는 화석연료를 사용하는 보일러에서 상기 반탄화 연료 wt% 대 혼소연료 wt% 혼소비는 0.01 내지 0.5일 수 있다.The semi-carbonized fuel may be in the range of 0.01 to 0.5 in the boiler using fossil fuel.
바람직하게는 0.05 내지 0.4일 수 있다. 더욱 바람직하게는 0.3일 수 있다. 상기 혼소비를 벗어나면, 상기 혼소연료상에 존재하는 부식성 유발 물질 및 저융점 물질에 기인하는 파울링, 크링커, 배관부식 등의 문제가 발생할 수 있다.Preferably 0.05 to 0.4. More preferably 0.3. If the above horn consumption is exceeded, problems such as fouling, clinker, piping erosion and the like may be caused due to corrosive and low melting point substances present on the coarse fuel.
바이오매스를 분쇄유닛(100)에서 소정 크기의 원료로 형성하는 제1단계; 상기 원료를 호퍼(200)에 저장하는 제2단계; 상기 호퍼에 저장된 상기 원료를 원료공급피더(210)로 후단에 정량 공급하는 제3단계; 상기 원료공급피더로부터 공급된 원료를 성분분리유닛(300)에서 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 제4단계; 상기 성분분리유닛에서 융착 및 고온부식 유발성분이 분리된 연료를 펠릿화유닛(400)에서 펠릿화하는 제5단계; 및 상기 펠릿화유닛에서 펠릿화된 연료를 반탄화유닛(500)에서 탄화처리하는 제6단계;를 포함하는 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 방법일 수 있다.A first step of forming the biomass into a raw material of a predetermined size in the crushing unit (100); A second step of storing the raw material in the hopper 200; A third step of supplying the raw material stored in the hopper to a downstream end of the raw material feeder 210 in a fixed amount; A fourth step of treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximally separate the fusion-induced and high-temperature corrosion-inducing components after combustion in the component separation unit 300; A fifth step of pelletizing the fuel in which the fusing and hot corrosion-inducing components are separated in the component separating unit, in the pelletizing unit (400); And a sixth step of carbonizing the pelletized fuel in the pelletizing unit in the semi-carbonization unit 500. The method may further include a step of producing a semi-carbonized fuel for boiler for improving the biomass mixing ratio.
도 4는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템을 나타낸 흐름도이다.4 is a flowchart illustrating a fuel production system for a boiler in which a fouling inducing component is removed according to the present invention.
피드스탁을 소정 크기의 원료로 형성하는 분쇄유닛(102); 상기 원료를 저장하는 호퍼(202); 상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(212); 상기 원료공급피더로부터 공급된 원료의 파울링 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하여 파울링 유발성분분리유닛(302);을 포함하는 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템일 수 있다.A crushing unit (102) for forming feedstock into a raw material of a predetermined size; A hopper 202 for storing the raw material; A raw material feeder 212 for feeding the raw material stored in the hopper to a downstream end in a fixed amount; And a fouling-inducing component separation unit (302) for treating the fouling-inducing component of the raw material supplied from the raw material feeder with hot water at a predetermined temperature so as to maximally separate the fouling- And may be a fuel production system in which the ring inducing component is removed.
상기 피드스탁은 화석연료, 바이오매스, 가연성 고형폐기물 중 어느 하나 또는 2 이상일 수 있다.The feedstock may be any one or more of fossil fuel, biomass, and combustible solid waste.
바람직하게는 억새, 옥수수대, 우드펠릿 일 수 있다.Preferably, it may be a mustard, a corn stand, or a wood pellet.
상기 피드스탁은 2세대 및/또는 3세대 바이오매스 일 수 있다.The feedstock may be second generation and / or third generation biomass.
가연성 고형폐기물에는 폐지류, 농업폐기물, 폐목재류, 식물성잔재물, 초본류 폐기물 등이 있을 수 있다. Flammable solid wastes may include waste paper, agricultural waste, scrap wood, vegetable residues, and herbaceous waste.
2, 3등급 폐목재(2등급 : 가공··처리··사용과정에서 접착제, 페인트, 기름, 콘크리트 등 의 물질이 사용되었거나 이에 오염된 폐목재(할로겐족유기화합물이나 방부제로 처리··오염된 폐목재는 예외), 3등급 : 가공처리사용과정에서 할로겐족유기화합물이나 방부제가 사용되었거나 이에 오염된 폐목재와 「자원의 절약과 재활용촉진에 관한 법률」시행규칙 제20조의3 제2항의 고형연료제품의 품질등급기준에 적합하지 않는 폐목재 칩 및 위의 1~2등급에 해당되지 않는 기타 폐목재)를 추가로 포함할 수 있다. (환경부고시 제2012-117호)2 and 3 grade waste wood (grade 2: processing · · treatment · waste wood which has been contaminated with or contaminated with adhesive, paint, oil, concrete etc. during its use (treated with halogenated organic compounds or preservatives · contaminated waste Grade 3: waste wood that has been or is contaminated with halogenated organic compounds or preservatives during processing, and solid fuel products as defined in Article 20-3 (2) of the Enforcement Rule of the "Act on the Promotion of the Reduction and Recycling of Resources" And other waste wood that does not fall within Classes 1-2 of the above). (Ministry of Environment Notification No. 2012-117)
상기 소정 크기는 500mm이하 일 수 있다. The predetermined size may be 500 mm or less.
바람직하게는 10μμm 내지 300mm이하 일 수 있다.Preferably from 10 mu m to 300 mm or less.
더욱 바람직하게는 20mm 내지 50mm이하 일 수 있다. More preferably 20 mm to 50 mm or less.
상기 입자 사이즈를 벗어날 경우, 분쇄비용이 과다하게 소요되거나, 파울링 유발성분의 제거 효율이 낮아질 수 있다.If the particle size is out of the range, the pulverization cost may be excessive or the removal efficiency of the fouling-inducing component may be lowered.
상기 분쇄유닛은 파쇄(crushing) 및/또는 분쇄(grinding)를 수행할 수 있다. 상기 분쇄유닛은 압축, 충격, 마찰, 전단, 굽힘 중 어느 하나 이상의 물리 특성을 이용할 수 있으며 절단 등 바이오매스의 크기를 줄이는 동시에 표면적을 넓히는 목적을 달성할 수 있다면 그 방법에 제한이 되지 않는다.The crushing unit may perform crushing and / or grinding. The crushing unit can use any of physical characteristics such as compression, impact, friction, shearing and bending, and the method is not limited as long as it can achieve the purpose of reducing the size of the biomass such as cutting and enlarging the surface area.
상기 분쇄유닛은 죠크러셔(Jaw crusher), 자이레토리크러셔(Gyratory crusher), 롤크러셔(Roll crusher), 에지러너(Edge runner), 햄머크러셔(Hammer crusher), 볼밀(Ball mill), 제트밀(Jet mill), 디스크크러셔(Disk crusher) 중 어느 하나 일 수 있다. The crushing unit may be a jaw crusher, a gyratory crusher, a roll crusher, an edge runner, a hammer crusher, a ball mill, a jet mill mill, and a disk crusher.
상기 원료공급피더는 후단에 정량적으로 상기 원료를 공급할 수 있는 장치라면 특별히 제한되지 않는다. 바람직하게는 스크류피더, 락호퍼가 있다.The raw material supply feeder is not particularly limited as long as it can supply the raw material quantitatively to the downstream end. Preferably, there are a screw feeder and a lock hopper.
상기 파울링 유발성분이란 연소반응에 사용되는 피드스탁에 포함된 무기물 성분 중 반응 후단의 반응기 벽면, 열교환기, 후단 배가스 처리 설비의 표면에 물리, 화학적으로 부착되어 파울링, 슬래깅, 부식, 크링커 생성등을 유발하는 파울링 유발성분을 의미한다.The fouling-inducing component physically and chemically attaches to the surface of the reactor wall, the heat exchanger, and the downstream-end flue-gas treating facility in the downstream of the reaction among the inorganic components contained in the feedstock used for the combustion reaction to form fouling, slagging, And the like.
상기 파울링 유발성분은 알칼리, 알칼리토 금속, 할로겐족 원소일 수 있다.The fouling-inducing component may be an alkali, an alkaline earth metal, or a halogen group element.
바람직하게는 나트륨, 칼륨, 염소일 수 있다. Preferably, it may be sodium, potassium or chlorine.
상기 소정 온도의 열수처리를 위한 주입수의 온도는 100 내지 500일 수 있다. 바람직하게는 120 내지 300일 수 있으며 더욱 바람직하게는 180 내지 220일 수 있다. 상기 공급원료가 상기 파울링 유발성분 분리유닛내에 체류하는 시간은 10분 내지 2시간일 수 있다.The temperature of the injection water for the hydrothermal treatment at the predetermined temperature may be 100 to 500. Preferably from 120 to 300, and more preferably from 180 to 220. [ The time for the feedstock to stay in the fouling-inducing component separation unit may be 10 minutes to 2 hours.
상기 공급원료가 상기 파울링 유발성분 분리유닛내에 체류하는 시간은 30분일 수 있다.The time for the feedstock to stay in the fouling-inducing component separation unit may be 30 minutes.
상기 온도 및 시간조건을 벗어나면 제거성분의 효율이 낮아지거나 공정 비용이 많이 소요된다. 상기 효과는 도 10에서 확인할 수 있다. Beyond the above temperature and time conditions, the efficiency of the removed component is low or the process cost is high. The above effect can be confirmed in FIG.
상기 단위공급원료 당 투입되는 열수양은 바이오매스의 종류에 따라 달라지며, BTW(Biomass to Water, kg/kg)으로 정의될 수 있다. 바람직하게는 0.02 내지 0.5일 수 있으며, 더욱 바람직하게는 0.11 내지 0.18일 수 있다(억새 기준, 우드펠릿, 옥수수대 1kg/6kg). The amount of heat input per unit feedstock varies depending on the type of biomass, and may be defined as BTW (Biomass to Water, kg / kg). Preferably from 0.02 to 0.5, and more preferably from 0.11 to 0.18 (based on weight, wood pellets, 1 kg / 6 kg of corn).
상기 BTW비를 벗어나게 되면 유발성분의 분리 효율이 낮아지게 된다.If the BTW ratio is exceeded, the separation efficiency of the induced component becomes low.
추가적으로 공급되는 열수는 스팀이 공급될 수도 있다. Additional hot water may be supplied with steam.
상기 혼소 조건은 기존 화석연료 대비 1wt% 내지 50wt%일 수 있다. 바람직하게는 3wt% 내지 40wt%일 수 있으며, 더욱 바람직하게는 5wt% 내지 30wt%일 수 있다.The blending condition may be 1 wt% to 50 wt% of the conventional fossil fuel. , Preferably from 3 wt% to 40 wt%, and more preferably from 5 wt% to 30 wt%.
상기 파울링 유발성분 분리유닛에서 배출되는 액상성분에 상기 파울링 유발성분이 포함될 수 있다. The fouling inducing component may be included in the liquid component discharged from the fouling inducing component separating unit.
상기 액상성분은 소량의 유기화합물 및 파울링 유발성분을 포함하는 수용액일 수 있다. 상기 유기화합물은 탄소, 수소, 질소, 산소, 황 성분을 주요 구성성분으로 할 수 있다. 바람직하게는 상기 액상성분은 헤미셀룰로오스, 유기산, 푸르푸랄, 5-hydroxymethylfufural (5-HMF) 및 무기물을 포함할 수 있다.The liquid component may be an aqueous solution containing a small amount of an organic compound and a fouling-inducing component. The organic compound may include carbon, hydrogen, nitrogen, oxygen, and sulfur. Preferably, the liquid component may comprise hemicellulose, organic acid, furfural, 5-hydroxymethylfufural (5-HMF) and inorganic.
상기 파울링 유발성분분리유닛에서 배출되는 고상성분은 상기 파울링 유발성분이분리된 가연성 성분을 포함될 수 있다.The solid phase component discharged from the fouling inducing component separating unit may include a combustible component in which the fouling inducing component is separated.
상기 가연성 성분은 유기화합물일 수 있다. 상기 가연성 성분은 탄소, 수소, 질소, 산소, 황 성분을 주요 구성성분으로 할 수 있다. 상기 가연성 성분은 상기 단위 질량당 원료의 탄소, 수소, 질소, 산소, 황에서 탄소 분율은 증가하고, 수소, 질소, 산소, 황 성분은 감소하는 것에 특징이 있다.The combustible component may be an organic compound. The combustible component may include carbon, hydrogen, nitrogen, oxygen, and sulfur. The combustible component is characterized in that the carbon fraction of carbon, hydrogen, nitrogen, oxygen and sulfur of the raw material per unit mass is increased and the hydrogen, nitrogen, oxygen and sulfur components are decreased.
상기 액상성분의 pH는 6이하일 수 있다. The pH of the liquid component may be 6 or less.
더욱 바람직하게는 pH는 2.5에서 5이하일 수 있다. More preferably, the pH can be 2.5 to 5 or less.
상기 액상성분의 pH는 대략 4일 수 있다.The pH of the liquid component may be approximately 4.
상기 액상성분의 pH는 상기 원료내의 유기산에 의해 pH가 낮아지는 것에 기술적 특징이 있다. 상기 유기산으로는 acetic acid, formic acid, propanoic acid, 4-hydroxy-butanoic acid, 2-butenoic acid 등이 있다. The pH of the liquid component has a technical feature that the pH is lowered by the organic acid in the raw material. Examples of the organic acid include acetic acid, formic acid, propanoic acid, 4-hydroxybutanoic acid, and 2-butenoic acid.
추가적으로 파울링 유발성분 분리유닛의 반응성 향상을 위해 산액인 acetic acid(C2H4O2), formic acid(HCOOH), propanoic acid(CH3CH2COOH), 4-hydroxy-butanoic acid, 2-butenoic acid, 황산(H2SO4), 염산(HCl), 질산(HNO3), 인산(H3PO4), 과초산(C2H4O3), 초산(CH3COOH), 옥살산(C2H2O4) 중 어느 하나 이상을 추가로 투입할 수 있다. In order to improve the reactivity of the fouling-inducing component separation unit, acetic acid (C 2 H 4 O 2 ), formic acid (HCOOH), propanoic acid (CH 3 CH 2 COOH), 4-hydroxybutanoic acid, 2- at least one of butenoic acid, sulfuric acid (H2SO4), hydrochloric acid (HCl), nitric acid (HNO3), phosphoric acid (H3PO4), peracetic acid (C2H4O3), acetic acid (CH3COOH) and oxalic acid (C2H2O4).
상기 산액의 첨가량은 전체 투입 열수량 대비 10wt% 이내 일 수 있다.The added amount of the acid solution may be 10 wt% or less with respect to the total amount of applied heat.
상기 산액의 첨가에 의한 pH는 바람직하게는 4이하 일 수 있다.The pH by adding the acid solution may preferably be 4 or less.
더욱 바람직하게는 pH는 2.5에서 4이하일 수 있다.More preferably, the pH may be 2.5 to 4 or less.
상기 액상성분 중 유기화합물을 분리한 pH가 낮은 수용액은 상기 파울링 유발성분 분리유닛(402);으로 재순환 시키는 것을 포함할 수 있다. The aqueous solution having a low pH, from which the organic compound in the liquid component is separated, may be recycled to the fouling-inducing component separation unit (402).
상기 액상성분 중 유기화합물을 제거하기 위해 원심분리, 응집, 흡착, 여과막, 이온교환수지 중 어느 하나 이상을 적용할 수 있다.In order to remove the organic compound from the liquid component, at least one of centrifugal separation, flocculation, adsorption, filtration membrane and ion exchange resin may be applied.
상기 원료는 상기 파울링 유발성분 분리유닛으로 공급되기 전에 알칼리용액으로 처리되는 전처리유닛에 공급될 수 있다. The raw material may be supplied to a pretreatment unit which is treated with an alkali solution before being supplied to the fouling-inducing component separation unit.
상기 전처리유닛에서 생성된 전처리 고상성분은 상기 파울링 유발성분분리유닛으로 공급되고, 전처리 액상성분은 분리 배출될 수 있다. The pretreatment solid phase component generated in the pretreatment unit is supplied to the fouling inducing component separation unit, and the pretreatment liquid phase component can be separated and discharged.
상기 전처리 고상성분은 유기화합물일 수 있다. 상기 가연성 성분은 탄소, 수소, 질소, 산소, 황 성분을 주요 구성성분으로 할 수 있다. 상기 가연성 성분은 상기 단위 질량당 원료의 탄소, 수소, 질소, 산소, 황에서 탄소 분율은 증가하고, 수소, 질소, 산소, 황 성분은 감소하는 것에 특징이 있다.The pre-treatment solid phase component may be an organic compound. The combustible component may include carbon, hydrogen, nitrogen, oxygen, and sulfur. The combustible component is characterized in that the carbon fraction of carbon, hydrogen, nitrogen, oxygen and sulfur of the raw material per unit mass is increased and the hydrogen, nitrogen, oxygen and sulfur components are decreased.
상기 전처리 액상성분은 소량의 유기화합물 및 무기물을 포함하는 수용액일 수 있다. 상기 유기화합물은 탄소, 수소, 질소, 산소, 황 성분을 주요 구성성분으로 할 수 있다. 바람직하게는 상기 유기화합물은 리그닌일 수 있다. 바람직하게는 상기 무기물은 Al, Si, P, Ca, Ti, Mn, Fe 중 어느 하나 이상을 포함할 수 있다.The pretreatment liquid phase component may be an aqueous solution containing a small amount of an organic compound and an inorganic substance. The organic compound may include carbon, hydrogen, nitrogen, oxygen, and sulfur. Preferably, the organic compound may be lignin. Preferably, the inorganic material may include at least one of Al, Si, P, Ca, Ti, Mn, and Fe.
상기 고상성분을 적용하여 성형연료를 제조하기 위한 성형연료유닛;을 추가로 포함할 수 있다.And a molded fuel unit for producing the molded fuel by applying the solid phase component.
상기 액상성분의 유기화합물 분리를 위해 멤브레인필터 유닛을 추가로 포함할 수 있다.And may further include a membrane filter unit for separating the liquid component of the organic compound.
상기 멤브레인필터유닛은 마이크로필터, 울트라필터, 나노필터, 역삼투막 중 어느 하나 또는 2이상일 수 있다. 또한, 상기 멤브레인필터유닛의 전단 또는 후단에 pH, 농도조절을 위한 물, 산성용액, 염기성용액을 주입할 수 있다. 또한, 상기 멤브레인필터유닛 전단 또는 후단에 수분증발, 원심분리, 석출, 침전, 응집, 흡착 중 어느 하나 이상의 방법을 이용하여 액상성분내 고체성분을 분리할 수 있다. 상기 액상성분내 헤미셀룰로오스는 정제분리하여 식이섬유 대용으로 사용할 수 있다.The membrane filter unit may be any one or more of a micro filter, an ultrafilter, a nanofilter, and a reverse osmosis membrane. In addition, water, an acidic solution, and a basic solution can be injected to the front or rear end of the membrane filter unit for pH and concentration control. In addition, the solid component in the liquid component can be separated by using one or more methods such as evaporation, centrifugation, precipitation, precipitation, coagulation, and adsorption at the front end or the rear end of the membrane filter unit. Hemicellulose in the liquid component can be separated and used as dietary fiber.
상기 파울링 유발성분분리유닛 또는 전처리유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가될 수 있다.Any one or two units of the cleaning unit and the water removal unit for cleaning may be added to the rear end of the fouling-inducing component separation unit or the pretreatment unit.
상기 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템에서 생산된 연료일 수 있다.And the fuel produced in the fuel production system from which the fouling inducing component for biomass burning and / or confluence in the boiler is removed.
피드스탁을 분쇄유닛(102)을 이용하여 소정 크기의 원료로 형성하는 제1단계; 호퍼(202)에 상기 원료를 저장하는 제2단계; 상기 호퍼에 저장된 상기 원료를 원료공급피더 (212)로 후단에 정량 공급하는 제3단계; 및 상기 원료공급피더로부터 공급된 원료의 파울링 유발성분이 최대로 분리되도록 파울링 유발성분분리유닛(302)에서 소정 온도의 열수로 처리하는 제4단계;를 포함하는 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 방법일 수 있다.A first step of forming a feedstock from a raw material having a predetermined size by using the crushing unit 102; A second step of storing the raw material in the hopper 202; A third step of feeding the raw material stored in the hopper to a downstream end of the raw material feeder 212 in a fixed amount; And a fourth step of treating the fouling-inducing component separation unit (302) with hot water at a predetermined temperature so that the fouling-inducing component of the raw material supplied from the raw-material feeder is separated at maximum, Or a fouling-inducing component for confluence.
또한, 상기 바이오매스는 리그노셀룰로오스 기반의 초본, 목질계 바이오매스를 의미하며 상기 바이오매스에 속하는 물질이라면 제한을 두지 않는다. 또한 제1세대 또는 3세대 바이오매스도 적용 가능함은 자명하다. 리그노셀룰로오스의 주요 성분인 셀룰로오스는 글루코오스(glucose)가 ββ-1,4 결합으로 연결된 안정된 구조의 다당류이다. 또 다른 주요 성분인 5탄당인 자일로스(xylose)의 중합체로 구성되고 그 외에도 5탄당인 아라비노스(arabinose), 6탄당인 만노스(mannose), 갈락토스(galactose), 글루코스, 람노스(rhamnose) 등의 중합체로 구성된다. In addition, the biomass refers to lignocellulose-based herbaceous and woody biomass, and the material belonging to the biomass is not limited. It is also apparent that first- or third-generation biomass is also applicable. Cellulose, which is a major component of lignocellulose, is a stable polysaccharide in which glucose is linked by ββ-1,4 bonds. Another major component is a polymer of xylose, which is a pentane. In addition, it is composed of a polymer such as 5-valent arabinose, 6-valent mannose, galactose, glucose, rhamnose, etc. Of a polymer.
글루칸(glucan)은 포도당으로 구성되는 다당의 총칭으로 D-글루코오스 끼리의 결합양식에 따라 다양한 종류가 있으며, 부제탄소원자의 배치에 의해 크게 αα-글루칸과 ββ-글루칸으로 나누어진다. αα-글루칸에는 아밀로스(αα-1,4결합), 아밀로펙틴(αα-1,4와 αα-1,6결합), 글리코겐(αα-1,4와 αα-1,6결합), 세균의 덱스트란(αα-1,6결합) 등이 포함된다. ββ-글루칸의 대표적인 것으로는 셀룰로오스(ββ-1,4결합), 갈조류의 라미나란(ββ-1,3결합), 지의류의 리케난(ββ-1,3과 ββ-1,4 결합) 등이 있다.Glucan is a generic term for polysaccharides composed of glucose. There are various kinds of polysaccharides depending on the binding style of D-glucose. They are largely divided into α α -glucan and β β-glucan by the arrangement of the adduct carbon atoms. The α α-glucan includes amylose (α α-1,4 bonds), amylopectin (α α-1,4 and α α-1,6 bonds), glycogen (α α-1,4 and α α-1,6 bonds), bacterial dextran (alpha alpha-1,6 linkages) and the like. Representative examples of? beta -glucan include cellulose (beta beta-1,4 linkage), brown alga laminarane beta beta-1,3 linkage, lichen lignan beta beta 1,3 beta beta beta 1,4 linkage, have.
자일란이 포함된 액상 성분에는 자일란(xylan). 글루쿠로노자일란(glucuronoxylan), 아라비노자일란(arabinoxylan), 글루코만난(glucomannan), 자일로글루칸(xyloglucan)등이 포함될 수 있다. 상기 기재된 성분으로 자일란이 포함된 액상 성분은 제한되는 것은 아니며, 투입되는 바이오매스의 성분에 따라 다양한 성분들이 분리될 수 있다.The liquid component containing xylan includes xylan (xylan). Glucuronoxylan, arabinoxylan, glucomannan, xyloglucan, and the like may be included. The liquid component containing xylan as the above-described components is not limited, and various components may be separated depending on the components of the biomass to be injected.
당류는 상기 기재된 화합물에 한정되는 것이 아니며, 2세대 바이오매스의 종류에 따라 다양하게 생성이 가능하다. 따라서, 탄소수에 따라 2탄당, 3탄당, 4탄당, 5탄당, 6탄당으로 분류되며, 2탄당으로 글리코알데히드(Glycoaldehyde), 3탄당으로 글리세라알데히드(Glyceraldehyde), 디하드로시아세톤(Dihydroxyacetone), 4탄당으로 에리드로우즈(erythrose), 에리드루로우즈(erythrulose), 5탄당으로 리보우즈(ribose), 아라비노우즈(arabinose), 자일로스(xylose), 리부로우즈(ribulose), 자이루로우즈(xylulose), 6탄당으로 포도당, 글리코우즈(glucose), 과당, 프락토우즈(fructose), 갈락토우즈(galactose), 만노우즈(mannose)가 있을 수 있다. The saccharides are not limited to the above-described compounds and can be variously produced depending on the kind of the second generation biomass. Therefore, it is divided into 2, 3, 4, 5, and 6-carbon sugars according to the number of carbon atoms. Glycoaldehyde, Glyceraldehyde, Dihydroxyacetone, , Erythrose, erythrulose, pentose, ribose, arabinose, xylose, ribulose, and Zylurozu as quaternary sugars. xylulose and 6-carbon sugars can be glucose, glucose, fructose, fructose, galactose and mannose.
단당류 2개가 결합한 것 이당류로는 젖당, 유당, 락토우즈, 엿당, 맥아당, 말토우즈, 설탕, 슈크로즈, 트레할로우즈(trehalose), 멜리보우즈(melibiose), 셀로비오즈가 있을 수 있다.Examples of the disaccharide to which two monosaccharides are combined may include lactose, lactose, lactose, glucose, maltose, maltose, sugar, sucrose, trehalose, melibiose and cellobiose.
2~10분자의 당이 결합된 당인 소당류로는 3당류로 라피노우즈, 멜레지토우즈(melezitose), 말토리오즈(maltoriose)가, 4당류로는 스타치오즈, 스트로도우즈(schrodose)가 있으며 올리고당으로 갈락토올리고당, 이소말토올리고당, 프락토올리고당이 있을 수 있다. Examples of the small sugars that are sugar-bonded sugars having 2 to 10 molecules include raffinose, melezitose and maltoriose as three saccharides, starchose and schrodose as four saccharides, And oligosaccharides may be galactooligosaccharides, isomaltooligosaccharides, and fructooligosaccharides.
다당류로는 단순다당류로 5탄당들이 결합된 펜토산(pentosan)으로 자이란(xylan), 아라반(araban) 등이 있을 수 있다.Examples of the polysaccharides include pentosan, which is a simple polysaccharide with pentoses attached thereto, and may include xylan and araban.
6탄당들이 축합된 헥소산(hesoxan)으로는 전분, 녹말(starch), 글루코오스의 중합체로 아밀로우즈, 호정(dextrin), 글리코겐(glycogen), 섬유소(cellulose), 프록탄(fructan), 갈락탄(galactan), 만난(mannan) 등이 있을 수 있다.Hexoxanes condensed with 6-valent sugars include starch, starch, polymers of glucose such as amylose, dextrin, glycogen, cellulose, fructan, galactan galactan, mannan, and the like.
복합다당류로는 한천(agar), 알긴산(alginic acid), 가라지난(carrageenan), 키틴(chitin), 헤미셀룰로오스(hemicellulose), 펙틴(pectin) 등이 있을 수 있다. Composite polysaccharides may include agar, alginic acid, carrageenan, chitin, hemicellulose, pectin, and the like.
상기 반응에 참여하는 산으로는 황산(H2SO4), 염산(HCl), 질산(HNO3), 인산(H3PO4), 과초산(C2H4O3), 초산(CH3COOH), 옥살산(C2H2O4) 등이 있을 수 있다. 상기 산은 기재된 산으로 한정되는 것이 아니며 헤미셀룰로오스와 셀룰로오스의 분해하는 산이라면 어느 것이든 사 상기 반응에 참여하는 염기로는 sodium hydroxide, calcium hydroxide, 우레아 등이 있을 수 있다. 상기 염기는 기재된 염기로 한정되는 것이 아니며 반응특성을 증진시키는 염기라면 어느 것이든 사용 가능하다. The acid participating in the reaction are sulfuric acid (H 2 SO 4), hydrochloric acid (HCl), nitric acid (HNO 3), phosphoric acid (H 3 PO 4), and acetic acid (C 2 H 4 O 3) , acetic acid (CH 3 COOH), oxalic acid (C 2 H 2 O 4 ), and the like. The acid is not limited to the acid described above, and any acid which decomposes hemicellulose and cellulose may be used. Examples of the base involved in the reaction include sodium hydroxide, calcium hydroxide, urea, and the like. The base is not limited to the base described, and any base that promotes the reaction characteristics can be used.
상기 반응에 참여하는 이온성 액체로는 이미다졸리움계 화합물로 1-에틸아크릴레이트-3-메틸이미다졸리움 클로라이드 (1-ethylacrylate-3- methylimidazolium chloride), 1-부틸-3-메틸이미다졸리움 클로라이드 (1-buthyl- 3-methylimidazolium chloride), 1-부틸-3-메틸이미다졸리움 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸리움 헥사플루오로포스페이트(1-butyl-3-methylimidazolium hexafluoro phosphate), 1-부틸-3-메틸이미다졸리움 트리플루오로메탄술포네이트(1-butyl-3-methylimidazolium trifluoromethanesulfonate), 1-에틸-3-메틸이미다졸리움 아세테이트(1-ethyl-3-methylimidazolium acetate), 1-벤질-3-메틸이미다졸리움 클로라이드(1-benzyl-3-methylimidazoliumchloride), 1,3-디메틸이미다졸리움메틸 술페이트(1,3-dimethylimidazoliummethyl sulfate), 1-부틸-3-메틸이미다졸리움 클로라이드, 1-에틸-3-메틸이미다졸리움 아세테이트 등이 있을 수 있으며, 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl), 에틸메틸이미다졸리엄 브로민([EMIM]Br), 에틸메틸이미다졸리엄 요오드([EMIM]I), 1-에틸-3-메틸 이미다졸리움, 1-에틸 이미다졸리움 니트레이트, 1-에틸 이미다졸리움 브로마이드, 1-에틸-3-메틸 이미다졸리움 클로라이드, 1-에틸-이미다졸리움 클로라이드, 1,2,3-트리메틸 이미다졸리움 메틸 설페이트, 1-메틸 이미다졸리움 클로라이드, 1-부틸-3-메틸 이미다졸리움, 1-부틸-3-메틸 이미다졸리움 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸리움 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸리움 하이드로겐설페이트, 1-부틸-3-메틸 이미다졸리움 하이드로겐설페이트, 메틸이미다졸리움 클로라이드, 1-에틸-3-메틸 이미다졸리움 아세테이트, 1-부틸-3-메틸 이미다졸리움 아세테이트, Tris-2(하이드록시 에틸) 메틸암모늄 메틸설페이트, 1-에틸-3-메틸 이미다졸리움 에틸설페이트, 1-에틸-3-메틸 이미다졸리움 메탄설포네이트, 메틸-트리-n-부틸암모늄 메틸설페이트, 1-부틸-3-메틸 이미다졸리움 클로라이드, 1-에틸-3-메틸 이미다졸리움 클로라이드, 1-에틸-3-메틸 이미다졸리움 티오시아네이트, 1-부틸-3-메틸 이미다졸리움 티오시아네이트, 1-뷰틸-3-메틸이미다졸륨클로라이드, 1-뷰틸-3-메틸이미다졸륨나이트레이트, 1-뷰틸-3-메틸이미다졸륨아세테이트, 1-뷰틸-3-메틸이미다졸륨테트라플로로보레이트, 1-에틸-3-메틸이미다졸륨클로라이드, 1-에틸-3-메틸이미다졸륨나이트레이트, 1-에틸-3-메틸이미다졸륨아세테이트, 1-에틸-3-메틸이미다졸륨테트라플로로보레이트, 1-알리-3-메틸이미다졸륨클로라이드, 1-알리-3-메틸이미다졸륨나이트레이트, 1-알리-3-메틸이미다졸륨아세테이트, 1-알리-3-메틸이미다졸륨테트라플로로보레이트가 있을 수 있다. 상기 이온성 액체는 기재된 이온성 액체로 한정되는 것이 아니며, 반응특성을 증진시키는 것이라면 어느 것이든 사용 가능하다.Examples of the ionic liquid participating in the reaction include imidazolium compounds such as 1-ethyl acrylate-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, Butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium chloride, 1-butyl- Butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-ethyl-3-methylimidazolium 1-ethyl-3-methylimidazolium acetate, 1-benzyl-3-methylimidazoliumchloride, 1,3-dimethylimidazoliummethylsulfate, sulfate, 1-butyl-3-methylimidazolium chloride, 1- Ethylimidazolium bromide ([EMIM] Br), ethylmethylimidazolium acetate, and the like, and ethylmethylimidazolium chloride ([EMIM] Cl) Ethyl imidazolium bromide, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl imidazolium bromide, 1-ethyl imidazolium iodide, Ethyl-imidazolium chloride, 1,2,3-trimethyl imidazolium methyl sulfate, 1-methyl imidazolium chloride, 1-butyl-3-methyl imidazolium, Ethyl-3-methyl imidazolium hydrogensulfate, 1-butyl-3-methyl imidazolium hydrogensulfate, methylimidazole 1-ethyl-3-methyl imidazolium acetate, 1-butyl-3- Ethyl-3-methyl imidazolium methanesulfonate, methyl-tri- methyl-imidazolium acetate, tris-2- butyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium thiocyanate, 1-butyl- Methylimidazolium nitrate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride, Methylimidazolium nitrate, 1-ethyl-3-methylimidazolium acetate, 1- (2-methylimidazolium) acetate, 1- Ethyl-3-methylimidazolium tetrafluoroborate, 1-allyl-3-methylimidazolium chloride, 1-allyl-3-methyl Imidazolium nitrate, 1-methyl-3-Ali are imidazolium acetate, 1-methyl-3-Ali may be a borate as imidazolium tetra flow. The ionic liquid is not limited to the ionic liquid described above, and any ionic liquid can be used as long as it improves the reaction characteristics.
상기 파울링유발 성분제거유닛에 투입되는 효소, 산, 알칼리, 이온성 액체 중 어느 하나 또는 2 이상이 투입되는 양은 반응조건에 따라 투입되지 않을 수도 있다.The amount of one or more of the enzyme, acid, alkali, and ionic liquid introduced into the fouling-inducing component removing unit may not be injected depending on the reaction conditions.
또한, 상기 열수처리유닛을 통해 상기 고상성분이 고온고압 반응에 참여하면서 푸르푸랄(furfural)등의 화합물이 생성될 수 있다.In addition, a compound such as furfural may be generated while the solid phase component participates in the high-temperature high-pressure reaction through the hydrothermal processing unit.
이러한 파울링 유발성분이 제거된 연료는 유동층, 화격자, 미분화 보일러 및 가스화기 등에 사용할 수 있으며, 연소 및 가스화 과정 중 연료중 금속원소를 포함하는 무기질 성분에 기인하는 클링커 파울링 등의 막힘현상 및 알칼리계 금속에 기인하는 부식현상을 근원적을 배제할 수 있다. The fuels from which the fouling-inducing component is removed can be used in a fluidized bed, grate, undifferentiated boiler, gasifier and the like. The clogging phenomenon of clinker fouling due to inorganic components including metal elements in fuel during combustion and gasification, It is possible to eliminate the root cause of the corrosion phenomenon caused by the metal.
도 5는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템에서 파울링 유발성분 분리유닛 전 후의 원료의 성분 변화를 나타낸 것이다.FIG. 5 is a graph showing changes in the composition of raw materials before and after the fouling-inducing component separation unit in the fuel production system for a boiler in which the fouling-inducing component is removed according to the present invention.
도 5의 Corn stover는 국내산 옥수수대로 시료의 보관 및 분쇄를 위하여 45로 건조한 시료이다. AHC(200)-1step 시료는 corn stover와 물, 초산의 비율을 1:5.8:0.6로 200 열수반응을 통하여 제조된 시료이다. 공업분석 결과 원시료 대비 수분과 회분(대부분 Na, K, Ca 등)이 감소하였으며, 휘발분, 고정탄소가 증가하였다. 원소분석은 탄소가 증가하였으며, 수소, 산소, 질소, 황성분은 감소하였다. 발열량은 원시료 대비 약 1,200kcal/kg (저위발열량 기준) 증가하는 특징을 가지고 있다.The cor stover of FIG. 5 was dried at 45 for storage and crushing of domestic corn borrowed samples. The AHC (200) -1step sample was prepared by 200 hydrothermal reaction of corn stover, water and acetic acid at a ratio of 1: 5.8: 0.6. As a result of industrial analysis, moisture and ash contents (mostly Na, K, Ca, etc.) Were decreased and volatile matter and fixed carbon increased. Elemental analysis showed an increase in carbon, hydrogen, oxygen, nitrogen and sulfur content. The calorific value is characterized by an increase of about 1,200 kcal / kg (based on the lower calorific value) compared to the raw sample.
도 6은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 원료 성분의 상태변화를 나타낸 것이다.FIG. 6 shows a state change of a raw material component according to an embodiment of the fuel production system for a boiler from which a fouling-inducing component is removed according to the present invention.
본 일 실시예 1step은 전처리유닛으로 바이오매스에 포함된 Si, Al, Ti 등의 회분성분을 제거하는 공정으로 바이오매스:물:NaOH의 비율은 1:7.92:0.08이고, 반응조건은 60, 30min 이다. 본 1step은 2step 공정에 따라 연계 혹은 개별적으로 운영이 가능하다.In the first embodiment, the pretreatment unit is a step of removing ash components such as Si, Al and Ti contained in the biomass. The ratio of biomass: water: NaOH is 1: 7.92: 0.08 and the reaction conditions are 60 and 30 min to be. This 1step can be operated in conjunction or separately according to 2 step process.
본 일 실시예 2step는 바이오매스에 포함된 Na, K, Ca, Cl 등의 파울링 유발성분을 제거하는 공정으로 바이오매스:물:초산의 비율을 1:7.2:0.8이며, 반응조건은 200, 60min 이다. 본 2step가 메인공정이며, 1step 유닛을 추가로 포함할 수도 있다.Example 2 Step 2 is a step of removing fouling-inducing components such as Na, K, Ca and Cl contained in biomass, wherein the ratio of biomass: water: acetic acid is 1: 7.2: 0.8, 60 min. This 2 step is the main process and may further include a 1step unit.
(실시예 1) (Example 1)
바이오매스에 포함된 Na, K, Ca, Cl 등의 파울링 유발성분을 제거하는 공정으로 거대억새:물:초산의 비율을 1:7.2:0.8이며, 반응조건은 200, 60min 이다.It is a process to remove the fouling inducing components such as Na, K, Ca and Cl contained in the biomass. The ratio of water to acetic acid is 1: 7.2: 0.8 and the reaction conditions are 200 and 60 min.
도 7은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리유닛의 처리조건에 따른 온도에 따른 회분 제거율 및 회분조성을 나타낸 것이다. 이 결과로 살펴보면, 160-180의 조건에서 회분이 약 62% 감소한 것을 볼 수 있다. 감소된 회분의 성분을 보면 NaO, MgO, P2O5, K2O, CaO, MnO, Fe2O3 가 주를 이룬다. FIG. 7 shows the ash removal rate and the ash composition according to the treatment conditions of the fouling-induced component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed. As a result, it can be seen that ash is reduced by about 62% under the condition of 160-180. The reduced ash content is dominated by NaO, MgO, P 2 O 5 , K 2 O, CaO, MnO and Fe 2 O 3 .
도 8은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리유닛의 처리조건에 따른 XMG 함량 및 저위발열량 변화를 나타낸 것이다. 이 결과로 살펴보면, 160에서 200로 온도가 증가함에 따라 고상연료에 포함된 XMG 함량이 감소하는 것을 볼 수 있으며, 200에서는 XMG 함량이 0%인 것을 확인할 수 있다. 발열량 수치는 여타 다른 업그레이드연료의 조건과 마찬가지로 온도가 상승함에 따라 증가함을 알 수 있다.8 is a graph showing changes in XMG content and lower calorific value according to processing conditions of the fouling-inducing component separation unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed. As a result, it can be seen that as the temperature increases from 160 to 200, the amount of XMG contained in the solid fuel decreases, while the amount of XMG in the case of 200 is 0%. It can be seen that the calorific value increases as the temperature rises, just like the conditions of other upgraded fuels.
도 9는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 파울링 유발성분분리유닛의 온도 및 처리시간에 따른 파울링 유발성분 제거에 따른 회분 및 XMG 함량 및 저위발열량 변화를 나타낸 것이다. 이 결과로 살펴보면, 200, 60min의 조건에서 회분 및 XMG 제거율, 저위발열량 증가율이 연료로서 활용하기에 가장 적절하다고 볼 수 있다. 9 is a graph showing the relationship between the amount of ash and XMG in the fouling inducing component separation unit and the amount of XMG in the fouling inducing component separation unit according to the present invention, This shows the change in calorific value. As a result, ash and XMG removal rate and low calorific value increase rate are most suitable for utilization as fuel at 200 and 60 min.
(실시예 2)(Example 2)
전처리유닛으로 바이오매스에 포함된 Si, Al, Ti 등의 회분성분을 제거하는 공정으로 거대억새:물:NaOH의 비율은 1:7.92:0.08이고, 반응조건은 60, 30min 이다. The pretreatment unit is a process for removing ash components such as Si, Al, and Ti contained in biomass. The ratio of large scale water: water: NaOH is 1: 7.92: 0.08, and reaction conditions are 60 and 30 min.
도 10은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 전처리유닛의 처리조건에 따른 온도에 따른 회분 제거율 및 회분조성을 나타낸 것이다. 이 결과로 살펴보면, 40의 조건에서는 회분 제거가 거의 되지 않았으며, 60, 30min의 조건에서 회분이 약 54% 감소한 것을 볼 수 있다. 감소된 회분의 성분을 보면 Al2O3, SiO2, TiO2 가 주를 이룬다. 10 shows the ash removal rate and ash composition according to the treatment conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed. As a result, it was found that the ash removal was hardly effected under the condition of 40, and the ash was reduced by about 54% under the conditions of 60 and 30 min. The reduced ash content is dominated by Al 2 O 3 , SiO 2 , and TiO 2 .
도 11은 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 전처리유닛의 처리조건에 따른 리그닌 함량 및 저위발열량 변화를 나타낸 것이다. 이 결과로 살펴보면, 40에서 60로 온도가 증가함에 따라 고상연료에 포함된 리그닌 함량이 감소하는 것을 볼 수 있으며, 발열량 수치는 온도가 상승함에 따라 리그닌의 손실에 의해 감소함을 알 수 있다.11 is a graph showing changes in lignin content and lower calorific value according to processing conditions of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling-inducing component according to the present invention is removed. As a result, it can be seen that as the temperature increases from 40 to 60, the content of lignin contained in the solid fuel decreases, and the value of calorific value decreases by the loss of lignin as the temperature rises.
도 12는 본 발명에 따른 파울링 유발성분을 제거한 보일러용 연료 생산 시스템의 일 실시예에 따른 전처리유닛의 온도 및 처리시간에 따른 파울링 유발성분 제거에 따른 회분 및 리그닌 함량 및 저위발열량 변화를 나타낸 것이다. 이 결과로 살펴보면, 60, 30min의 조건에서 회분 저감율, 리그닌 및 저위발열량 손실율이 연료로서 활용하기에 가장 적절하다고 볼 수 있다.12 is a graph showing changes in ash content, lignin content and lower calorific value according to the temperature and the treatment time of the pretreatment unit according to an embodiment of the fuel production system for a boiler in which the fouling- will be. As a result, the ash reduction rate, lignin and low calorific value loss rate are most suitable for utilization as fuel at 60 and 30 min.
도 13은 본 발명에 따른 NOx, 회분 제거율, 발열량 증가율을 나타낸 것으로 160 ~ 200로 처리한 이후의 고형연료를 비교한 것으로 200의 온도에서 fuel NOx 및 회분 감소율, 발열량 증가율이 가장 적합한 조건이라고 볼 수 있다.FIG. 13 shows NOx, ash removal rate, and heating value increase rate according to the present invention, which is a comparison between solid fuels after being treated with 160 to 200, and it is considered that fuel NOx, ash reduction rate, and heating value increase rate are the most suitable conditions at a temperature of 200 have.
도 14 및 15를 참조하면서, 본 발명의 제3 실시예인 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법에 관하여 구체적으로 설명하기로 한다.14 and 15, a method for separating a combustible component from a biomass hot-water extract liquid according to a third embodiment of the present invention will be described in detail.
본 발명의 명세서를 통한 가연성 성분이란 바이오매스로부터 추출된 헤미셀룰로오스계 고분자물질 및 유기화합물 등 탄소를 포함하는 물질을 의미하고, 미네랄성분이란 연소로의 부식, 마모 및 파울링(fouling)을 유발하는 물질들로서, 대표적으로 나트륨, 칼륨 및 염소 성분을 의미한다.The combustible component through the specification of the present invention means a substance containing carbon such as hemicellulose based polymer material and organic compound extracted from biomass, and the mineral component means a substance which causes corrosion, abrasion and fouling of combustion furnace And represent sodium, potassium and chlorine components representatively.
본 발명에 의한 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법은, 바이오매스를 분쇄하는 S-1 단계, 분쇄한 바이오매스에 열수를 공급하는 S-2 단계, 열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단계, 액체상 물질에 분탄을 첨가하는 S-4 단계, 분탄과 액체상 물질 혼합물을 제1 분리수단으로 공급하여 분탄은 회수하고 분탄이 제거된 여액을 수득하는 S-5 단계, 분탄이 제거된 여액을 제2 분리수단으로 공급하는 S-6 단계, 제2 분리수단에 의해 제1 농축액과 제1 투과액을 수득하고, 상기 제1 농축액은 회수하고, 상기 제1 투과액은 제3 분리수단으로 공급하는 S-7 단계, 제3 분리수단에 의해 제2 농축액과 제2 투과액을 수득하고, 상기 제2 농축액을 회수하는 S-8 단계를 포함한다.The method for separating the combustible component from the biomass hot water extract liquid according to the present invention comprises the steps of S-1 for crushing biomass, S-2 for supplying hot water to crushed biomass, S-3 step of separating the solid material into a solid phase material, S-4 step of adding a coal powder to the liquid phase material, S-4 step of supplying the coal and liquid phase material mixture to the first separation means, Step 5, step S-6 of supplying the filtrate from which the coal is removed to the second separating means, obtaining the first concentrate and the first permeate by the second separating means, recovering the first concentrate, And the S-7 step of supplying the permeated liquid to the third separation means, and the S-8 step of obtaining the second concentrated liquid and the second permeated liquid by the third separation means and recovering the second concentrated liquid.
이하 각 단계의 구성에 관하여 구체적으로 설명하기로 한다.Hereinafter, the configuration of each step will be described in detail.
분쇄수단으로 바이오매스를 분쇄하는 S-1 단계S-1 step of pulverizing the biomass by crushing means
바이오매스로부터 나트륨, 칼륨 및 염소 등 각종 미네랄성분을 용이하게 분리할 수 있도록 바이오매스의 조직들을 분쇄하는 단계이다. It is a step of crushing the biomass tissues so that various minerals such as sodium, potassium and chlorine can be easily separated from the biomass.
상기 분쇄수단은 바이오매스의 조직들을 분쇄하여 크기를 줄이는 동시에 조직들을 파쇄할 수 있다면 특별히 제한하지 않으며, 바람직한 일 예로는 죠크러셔(Jaw crusher), 자이레토리크러셔(Gyratory crusher), 롤크러셔(Roll crusher), 에지러너(Edge runner), 햄머크러셔(Hammer crusher), 볼밀(Ball mill), 제트밀(Jet mill), 디스크크러셔(Disk crusher) 중 어느 하나의 분쇄수단을 사용하여 분쇄할 수 있다.The crushing means is not particularly limited as long as it can crush the tissues of the biomass to reduce the size and crush the tissues. Preferred examples thereof include a jaw crusher, a gyratory crusher, a roll crusher ), An edge runner, a hammer crusher, a ball mill, a jet mill, and a disk crusher.
여기서, 바이오매스는 연료원으로서 사용할 수 있는 가용성 성분이 포함된 것이라면 특별히 제한하지 않지만, 바람직하게는 목질계, 초본계 및 조류(algae)를 사용할 수 있다.Here, the biomass is not particularly limited as long as it contains a soluble component usable as a fuel source, but woody, herbaceous and algae can be preferably used.
목질계로서는 나무 블럭, 우드칩, 통나무, 나무 가지, 나무 부스러기, 낙엽, 목판, 톱밥, 리그닌, 자일란, 리그노셀룰로오스, 야자나무, PKS(palm kernel shell), 야자섬유질, EFB(empty fruit bunches), FFB(fresh fruit bunches), 야자잎 등을 들 수 있으며, 초본계로는 옥수수대, 볏짚, 수수대, 사탕수수대, 곡물(쌀, 수수, 커피 등) 허스크, 사탕무잎, 바가스, 기장, 아티초크, 당밀, 아마, 대마, 양마, 면줄기, 담배줄기, 전분질계인 옥수수, 감자, 카사바, 밀, 보리, 라이밀, 기타 전분계 가공 잔재물, 과실류인 아보카도, 자트로파 및 이들의 가공 잔재물 등의 바이오 매스가 사용될 수 있으나 이에 제한하지 않는다.Wood chips, wood chips, logs, tree branches, wood crumbs, leaves, wood boards, sawdust, lignin, xylan, lignocellulose, palm kernel, palm kernel shell, palm fiber, empty fruit bunches (EFB) , Fresh fruit bunches (FFB), palm leaves and the like, and herbaceous plants include cornstalks, rice straw, crockery, sugarcane, grain (rice, millet, coffee etc.) husks, candy leaves, bagasse, Bio such as chalk, molasses, flax, hemp, sheep, cotton stalks, tobacco stalks, corn starch, potatoes, cassava, wheat, barley, lime mill and other starch processing residues, avocados, jatropha and their processed residues Mass may be used but is not limited thereto.
또한 조류(algae)로는 녹조류(Green algae), 남조류(Cyanobacteria), 규조류(Diatom), 홍조류, Chlorella, Spirulina, Dunaliella, Porphyridium, Phaeodactylum 등이 사용될 수 있다.The algae may be green algae, cyanobacteria, diatoms, red algae, Chlorella, Spirulina, Dunaliella, Porphyridium, Phaeodactylum and the like.
분쇄한 바이오매스에 열수를 공급하는 S-2 단계Step S-2 for supplying hot water to the crushed biomass
바이오매스로부터 나트륨, 칼륨 및 염소 등 각종 미네랄성분을 분리하기 위하여 분쇄된 바이오매스에 열수를 공급하는 단계이다.In order to separate various minerals such as sodium, potassium and chlorine from the biomass, hot water is supplied to the pulverized biomass.
바이오매스는 가연성 성분인 리그닌, 셀룰로오스, 헤미셀룰로오스 및 연소시 문제점을 유발하는 각종 미네랄성분들이 함유되어 있으며, 분쇄한 바이오매스에 소정의 온도를 갖는 열수를 공급하여 반응시키면, 상기 바이오매스에 포함된 각종 미네랄성분들이 열수에 용해성 또는 불용해성 상태로 분리된다. The biomass contains lignin, cellulose, hemicellulose, and various minerals that cause burning problems. When hot water having a predetermined temperature is supplied to the crushed biomass to be reacted, various kinds of biomass Mineral components are separated into soluble or insoluble state in hot water.
바이오매스로부터 상기 미네랄성분들을 추출 분리할 수 있다면 열수의 온도는 특별히 제한하지 않지만, 바람직하게는 100℃℃ 내지 500℃℃ 일 수 있고, 보다 바람직하게는 120℃℃ 내지 300℃℃, 가장 바람직하게는 180℃℃ 내지 220℃℃일 수 있다. If the minerals can be extracted and separated from the biomass, the temperature of the hot water is not particularly limited, but may be preferably from 100 ° C to 500 ° C, more preferably from 120 ° C to 300 ° C, Lt; 0 > C to 220 < 0 > C.
상기 열수의 온도가 100℃℃ 미만이면 상기 미네랄성분들이 잘 분리되지 않을 뿐만 아니라 반응시간이 너무 길어지고, 반대로 500℃℃를 초과하면 열수 가열에 필요 이상의 열량을 공급하게 되어 비경제적이기 때문에 상기 범위의 열수를 공급하는 것이 바람직하다. If the temperature of the hot water is less than 100 ° C, the minerals are not well separated and the reaction time becomes too long. On the contrary, when the temperature exceeds 500 ° C, It is preferable to supply hot water.
아울러 열수와 바이오매스의 반응시간은 특별히 제한하지 않지만, 바람직하게는 30분 내지 2시간일 수 있다.The reaction time of the hot water and the biomass is not particularly limited, but is preferably 30 minutes to 2 hours.
또한 상기 열수를 공급하는 단계에서는 고압으로 유지되는 반응기에서 수행하는 것이 더욱 바람직하다.And more preferably in a reactor maintained at a high pressure in the step of supplying the hot water.
열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단 Step S-3, which separates the biomass supplied with hot water into a liquid phase material and a solid phase material
열수를 공급하여 반응시키게 되면 바이오매스에 함유되어 있던 각종 미네랄성분들이 분리된다. 즉, 각종 미네랄성분들은 용해성 상태로 열수에 존재하지만, 미네랄성분들이 분리된 바이오매스는 여전히 고체상으로 남아 있으므로, 미네랄성분이 함유된 열수와 미네랄성분이 분리된 바이오매스를 분리하는 단계를 수행함으로써, 고체상 물질인 바이오매스는 가열원으로 바로 사용이 가능하다.When the hot water is supplied and reacted, various minerals contained in the biomass are separated. That is, various minerals are present in hot water in a soluble state, but since the biomass from which the mineral components are separated still remains as a solid phase, by separating the biomass from the hot water containing the mineral component and the mineral component, Biomass, a solid material, can be used directly as a heating source.
상기 열수를 포함하는 액체상 물질과 미네랄성분의 함량이 크게 낮아진 바이오매스를 포함하는 고체상 물질을 상호 분리하는 방법은 액체상 물질과 고체상 물질을 분리할 수 있는 공지의 분리방법을 사용할 수 있고, 일예로 바이오매스의 입자 크기보다 작은 메쉬망을 사용할 수 있지만 이에 제한하지 않는다.As a method of separating the solid phase material containing the hydrothermal fluid and the biomass having a greatly reduced content of the mineral component from each other, a known separation method capable of separating the liquid phase material and the solid phase material can be used. For example, Mesh networks smaller than the particle size of the mass may be used, but are not limited thereto.
액체상 물질에 분탄을 첨가하는 S-4 단계Step S-4 to add coal to the liquid phase material
한편, 열수를 포함하는 액체상 물질에는 바이오매스로부터 분리된 미네랄성분 뿐만 아니라 헤미셀룰로오스 계 5탄당 등 가열원으로 유용한 탄소성분들이 다량 포함되어 있다.On the other hand, the liquid substance containing hot water contains a large amount of carbon components which are useful as heat sources such as hemicellulose based pentose as well as mineral components separated from biomass.
본 발명에서는 상기 액체상물질로부터 연소시 문제점을 유발시키는 미네랄 성분과 유용한 가열원에 해당되는 5탄당 등 탄소성분들을 분리하기 위하여 액체상 물질에 분탄을 첨가하는 단계를 수행한다. In the present invention, a step of adding a powder to the liquid phase material is carried out in order to separate carbon components such as pentose from the liquid phase material, which causes a problem in combustion and a useful heating source.
5탄당 등 탄소성분들은 부착력이 높아 분탄의 표면이나 기공에 쉽게 흡착하지만, 이온상태로 존재하는 미네랄성분들은 분탄에 잘 흡착하지 않아, 액체상 물질로부터 5탄당 등 탄소성분들을 분리하는 것이 가능하다.It is possible to separate the carbon components such as pentane from the liquid phase material because the carbon components such as pentose are easily adsorbed on the surface or pores of the coal because of high adhesion.
여기서, 분탄은 10 ㎛ ~ 10 ㎜ 인 것이 바람직하고, 70 ㎛ ~ 5 ㎜ 인 것이 더욱 바람직하다.Here, the pulverized coal is preferably 10 탆 to 10 탆, more preferably 70 탆 to 5 탆.
분탄의 입경이 10 ㎛ 미만이면, 액체상 물질로부터 분탄을 분리하는 것이 용이하지 않고, 반대로 10 ㎜를 초과하면 분탄의 비표면적이 작아 5탄당 등 탄소성분의 흡착량이 크게 줄어들 수 있기 때문에, 분탄의 입경은 상기 범위인 것이 바람직하다.If the particle diameter of the coal powder is less than 10 탆, it is not easy to separate the powder from the liquid material. On the other hand, if the particle diameter exceeds 10 mm, the specific surface area of the coal powder is small, Is preferably in the above range.
또한 상기 분탄과 액체상 물질의 혼합비는 분탄 : 액체상 물질을 1 : 1 중량부 내지 1 : 10 중량부 인 것이 바람직하다. 분탄을 과량으로 첨가하게 되면 점도가 매우 높은 슬러리 상태가 되어 분탄을 분리하는 것이 매우 곤란하고, 반대로 분탄을 너무 소량으로 첨가하게 되면 흡착량이 크게 줄어들 수 있기 때문에, 분탄과 액체상 물질의 혼합비는 상기 범위인 것이 바람직하다.The mixing ratio of the pulverized liquid material to the pulverized liquid material is preferably 1: 1 to 1:10. It is very difficult to separate the powder from the slurry when the powder is added in an excessively large amount. On the contrary, when the powder is added in an excessively small amount, the adsorption amount can be greatly reduced. Therefore, .
한편, 액체상 물질에 분탄을 첨가한 후에는 가연성 성분의 흡착속도가 증가될 수 있도록 공지의 교반수단을 사용하여 분탄과 액체상 물질을 교반시키는 것이 바람직하다.On the other hand, it is preferable to stir the powder and the liquid material using known agitation means so that the adsorption rate of the combustible component can be increased after the powder is added to the liquid phase material.
분탄과 액체상 물질 혼합물을 제1 분리수단으로 공급하여 분탄은 회수하고 분탄이 제거된 여액을 수득하는 S-5 단계S-5 step of supplying the mixture of pulverized and liquid material to the first separation means to recover the pulverized coal and obtaining a pulverized filtrate
분탄과 액체상 물질의 혼합물로부터 분탄을 분리 회수하는 단계이다. 분탄의 표면이나 기공에는 탄소를 포함하는 5탄당 중심의 가연성 물질이 다량 흡착되어 있지만 미네랄성분을 실질적으로 함유하지 않기 때문에, 보일러 등의 가열원으로 바로 사용이 가능하다. And separating and recovering the coal from the mixture of the coal and the liquid phase material. The surface or pores of the pulverized coal are mainly adsorbed by a pentacarbon-containing combustible material containing carbon, but since they contain substantially no mineral components, they can be used directly as a heating source such as a boiler.
여기서 분탄과 액체상 물질을 분리하는 제1 분리수단은 체분리효과를 이용한 여과망으로 여과하는 것이 바람직하다. 즉, 첨가한 분탄의 입경을 고려하여 분탄은 통과하지 않지만 액체상 물질은 통과할 수 있는 기공 크기를 갖는 여과망을 사용할 수 있다. 일예로 첨가한 분탄의 입경이 10 ㎛이상인 경우라면 10 ㎛ 미만의 크기를 갖는 여과망을 사용하는 것이 바람직하고, 만약 분탄이 70 ㎛이상인 경우라면 70 ㎛ 미만의 크기를 갖는 여과망을 사용할 수 있다.Here, it is preferable that the first separation means for separating the pulverized material from the liquid phase material is filtrated through a filter net using the sieve separation effect. In other words, a filter net having a pore size which does not pass through the pulverizer but can pass through the liquid phase material can be used in consideration of the particle size of the added pulverized coal. For example, if the particle diameter of the pulverized coal is 10 μm or more, it is preferable to use a filter net having a size of less than 10 μm. If the coal is 70 μm or more, a filter net having a size of less than 70 μm can be used.
한편, 여과망을 이용하여 분탄과 액체상 물질을 분리하는 경우, 자중에 의한 분리 좀 더 구체적으로 설명하면 물이 가지는 자체 중력으로 액체상 물질과 분탄을 분리할 수 있다. 또한 분탄과 액체상 물질의 혼합물을 상기 여과망이 구비된 밀폐된 용기에 주입한 후 압력을 가하여 액체상 물질을 밀폐된 용기 외부로 배출시킴으로써 분탄을 분리하는 것도 가능하다. 이 외에도 상기 여과망이 구비된 개방된 용기에 분탄과 액체상 물질의 혼합물을 주입한 후 액체상 물질만을 흡입배출함으로써 분탄을 분리하는 것도 가능하다. On the other hand, when the pulverized coal is separated from the pulverized liquid material, separation by its own weight. More specifically, the liquid material and pulverized coal can be separated by the own gravity of the water. It is also possible to separate the powder by injecting a mixture of the powder and the powdery material into a closed container provided with the filter net, and then applying pressure to discharge the liquid material out of the closed container. In addition, it is also possible to separate the pulverized coal by injecting a mixture of pulverized material and liquid material into an open container provided with the filter net, and then sucking and discharging only the liquid material.
종래에는 액체상 물질 혼합물로부터 미네랄 성분을 분리하기 위하여 분리막 여과공정 중심으로 연구되어 왔으나, 액체상 물질에는 분자량이 비교적 큰 다량의 5탄당 가연성분을 포함하고 있어 투과성능이 크게 저하되거나 부가적인 다수의 공정이 필요하였다. 이에 반해 본 발명에서는 분탄을 첨가함으로써 5탄당 가연성분을 쉽게 회수하고 나아가 분리막 연계 공정시 분리막의 투과성능을 향상시킬 수 있다는 장점이 있다.Conventionally, a separation membrane filtration process has been studied to separate minerals from a mixture of liquid materials. However, since the liquid phase material contains a large amount of a pentane-containing combustible component having a relatively large molecular weight, . On the other hand, in the present invention, it is advantageous to easily recover flammable components per pentane by addition of the pulverized coal and to improve the permeation performance of the separator in the separator coupling process.
분탄이 제거된 여액을 제2 분리수단으로 공급하는 S-6 단계Step S-6 for supplying the filtrate from which the pulverized coal has been removed to the second separation means
분탄을 첨가함으로써 바이오매스와 반응한 액체상 물질로부터 가연성 물질인 탄소성분들을 소정량 회수하는 것이 가능하지만, 분탄이 제거된 여액에는 상기 가연성 물질이 여전히 존재할 수 있다. Although it is possible to recover a certain amount of combustible carbon components from the liquid phase material reacted with the biomass by addition of coal, the flammable material may still be present in the pulverized filtrate.
따라서 제2 분리수단을 이용하여 분탄이 제거된 여액에 잔존하는 가연성 물질을 회수하는 것이 바람직하다. Therefore, it is preferable to recover the combustible material remaining in the filtrate from which the coal is removed by using the second separation means.
여기서, 상기 제2 분리수단은 미네랄성분은 투과하지만 가연성 물질은 투과하지 않는 한외여과막 또는 정밀여과막인 것이 바람직하다. 전술한 바와 같이 액체상 물질에 포함되어 있던 분자량이 비교적 큰 다량의 5탄당 가연성분이 분탄에 의해 회수되었기 때문에, 제2 분리수단에 의하여 가연성 물질을 회수하는 것이 매우 용이하다.Here, the second separating means is preferably an ultrafiltration membrane or a microfiltration membrane which transmits a mineral component but does not permeate a combustible substance. As described above, it is very easy to recover the combustible material by the second separating means because a large amount of pentane-containing combustible fraction contained in the liquid phase material and having a relatively large molecular weight is recovered by the pulverization.
제2 분리수단에 의해 제1 농축액과 제1 투과액을 수득하고, 제1 농축액은 회수하고, 상기 제1 투과액은 제3 분리수단으로 공급하는 S-7 단계S-7 step of obtaining a first concentrated liquid and a first permeated liquid by the second separation means, recovering the first concentrated liquid, and supplying the first permeated liquid to the third separation means
분탄이 제거된 여액을 제2 분리수단으로 공급하면, 5탄당 등 가연성분은 여과막을 투과하지 못하는 반면, 미네랄성분은 투과하기 때문에 가연성분을 포함한 제1 농축액과 미네랄성분을 포함한 제1 투과액으로 분리하는 것이 가능하다.When the filtrate from which the coal is removed is supplied to the second separation means, the pentane-like combustible component can not permeate the filtration membrane, while the mineral component permeates the first filtrate containing the combustible component and the first permeate containing the mineral component It is possible to separate.
제1 농축액은 실질적으로 미네랄성분을 함유하지 않기 때문에 가열원으로 사용이 가능하다. 반면 제1 투과액에는 미네랄성분과 함께 제2 분리수단에 의해서도 회수되지 않는 저분자 가연성분이 잔존할 수 있다.Since the first concentrate contains substantially no mineral components, it can be used as a heating source. On the other hand, a low-molecular combustible component which is not recovered by the second separating means together with the mineral component may remain in the first permeated liquid.
제3 분리수단은 상기와 같은 잔존하는 저분자 가연성분을 완벽하게 회수할 목적으로 사용할 수 있다. 여기서 상기 제3 분리수단은 나노여과막 또는 역삼투막인 것이 바람직하다.  The third separating means can be used for the purpose of completely recovering the remaining low-molecular-weight combustible components as described above. Preferably, the third separation means is a nanofiltration membrane or a reverse osmosis membrane.
액체상 물질에 포함되어 있던 분자량이 비교적 큰 다량의 5탄당 가연성분이 분탄과 제2 분리수단에 의해 회수되었기 때문에, 제3 분리수단에 의하여 잔존하는 가연성 물질을 회수하는 것이 매우 용이하다.It is very easy to recover the combustible material remaining by the third separating means because a large amount of the pentane peroxide contained in the liquid phase material has a relatively large molecular weight and is recovered by the second separating means.
제3 분리수단에 의해 제2 농축액과 제2 투과액을 수득하고, 제2 농축액을 회수하는 S-8 단계Step S-8 for obtaining the second concentrated liquid and the second permeated liquid by the third separation means and recovering the second concentrated liquid
제1 투과액을 제3 분리수단으로 공급하면, 잔존하는 가연성분은 여과막을 투과하지 못하는 반면, 미네랄성분은 투과하기 때문에 가연성분을 포함한 제2 농축액과 미네랄성분을 포함한 제2 투과액으로 분리하는 것이 가능하다.When the first permeated liquid is supplied to the third separating means, the remaining combustible components can not pass through the filtration membrane, whereas the mineral component permeates, so that the second concentrate containing the combustible component and the second permeate containing the mineral component are separated It is possible.
제2 농축액은 실질적으로 미네랄성분을 함유하지 않기 때문에 가열원으로 사용이 가능하고, 반면 제2 투과액은 주로 미네랄성분만을 포함하기 때문에 화장실이나 세척용 등으로 사용이 가능하다.The second concentrate can be used as a heating source because it contains substantially no mineral components, while the second permeate contains only minerals, and thus can be used for toilet, washing, and the like.
이하에서는 첨부된 도 16을 참조하면서, 본 발명의 제4 실시예인 바이오매스 열수추출액으로부터 금속이온성분을 실질적으로 함유하지 않는 가연성 성분을 분리하는 방법에 관하여 구체적으로 설명하기로 한다.Hereinafter, with reference to FIG. 16, a method for separating a combustible component that does not substantially contain a metal ion component from a biomass hot water extraction solution according to a fourth embodiment of the present invention will be described in detail.
제4 실시예에 해당되는 본 발명에 의한 가연성 성분을 분리하는 방법은 분쇄수단으로 바이오매스를 분쇄하는 S-1 단계, 상기 분쇄한 바이오매스에 열수를 공급하는 S-2 단계, 열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단계, 상기 액체상 물질을 원심분리하는 S-4′ 단계 및 농축슬러리는 회수하고 상등액을 수득하는 S-5′ 단계를 포함한다.A method for separating a combustible component according to the fourth embodiment of the present invention comprises the steps of S-1 for crushing biomass as crushing means, S-2 for supplying hot water to the crushed biomass, Step S-3 of separating the biomass into a liquid phase material and a solid phase material, step S-4 'of centrifuging the liquid phase material, and step S-5' of recovering the concentrated slurry and obtaining a supernatant liquid.
제3 실시예와는 달리 제4 실시예에서는 액체상 물질을 원심분리함으로써 가연성 성분을 회수한다는 점이 상이하다.Unlike the third embodiment, the fourth embodiment differs from the third embodiment in that a combustible component is recovered by centrifuging the liquid phase material.
즉, S-1 단계 내지 S-3 단계는 제1 실시예와 동일하지만, 액체상 물질을 원심분리(S-4′ 단계)하여 가연성 성분에 해당되는 농축슬러리와 미네랄성분이 함유된 상등액으로 구분하여 회수(S-5′ 단계)한다는 점이 상이하다.That is, steps S-1 to S-3 are the same as those of the first embodiment, but the liquid phase material is centrifuged (step S-4 ') to separate the concentrated slurry corresponding to the combustible component and the supernatant containing the mineral component (Step S-5 ').
물론, 상기 S-5′ 단계에서 수득한 상등액에 가연성 성분이 잔존하고 있는 경우에는 실시예 3의 S-6 내지 S-8 단계를 선택적으로 수행할 수 있음은 자명하다.Of course, when the combustible component remains in the supernatant obtained in the step S-5 ', it is obvious that the steps S-6 to S-8 of the example 3 can be selectively performed.
이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific descriptions are only for the preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
100: 제1처리유닛100: first processing unit
200: 제2처리유닛200: second processing unit
300: 제3처리유닛300: third processing unit
400: 제4처리유닛400: fourth processing unit
500: 제5처리유닛500: fifth processing unit
600: 열수처리유닛600: hydrothermal treatment unit
610: 제1배출부610:
620: 제2배출부620:
700: 효소당화유닛700: Enzyme saccharification unit
800: 추출유닛800: Extraction unit
900: 스프레잉 생성유닛900: Spraying generating unit
1000: 석탄 전처리유닛1000: coal pretreatment unit
1100: 석탄 과립화유닛1100: coal granulation unit
1200: 성형연료유닛1200: forming fuel unit
1300: 반탄화유닛1300: Semi-carbonization unit
1400: 재순환유닛1400: recirculation unit
101: 분쇄유닛101: Crushing unit
201: 호퍼201: Hopper
211: 원료공급피더211: feed feeder
301: 융착 및 고온부식 유발성분분리유닛301: fusion welding and high temperature corrosion inducing component separation unit
*401: 펠릿화유닛* 401: Pelletizing unit
501: 반탄화유닛501: Half Carbonization Unit
102: 분쇄유닛102: Crushing unit
202: 호퍼202: Hopper
212: 원료공급피더212: feed feeder
302: 파울링 유발성분분리유닛302: Fouling inducing component separation unit
402: 멤브레인필터유닛402: Membrane filter unit
본 발명의 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템에 따르면, 산이나 알칼리 등 별도의 화학약품을 사용하지 않고도 고온 고압 반응조건을 통하여 초본계 또는 목질계 바이오매스로부터 글루코스 성분 등을 효과적이면서 쉽게 추출 분리할 수 있어 바이오에탄올 생산을 위한 원료를 선택적으로 확보할 수 있다. According to the composite fuel production system using the ash free biomass of the present invention, it is possible to effectively and easily extract the glucose component and the like from the herbaceous or woody biomass through the high temperature and high pressure reaction condition without using any chemical such as acid or alkali. The raw material for producing bioethanol can be selectively secured.
또한, 바이오매스에 포함된 금속 등의 무기질성분을 효과적으로 분리하므로써 발전연료에 적용시 애쉬 프리 연료를 적용하므로써 연소시스템 운전중 발생할 수 있는 클링커 파울링 및 알칼리 부식 문제를 효과적으로 저감할 수 있다.In addition, by effectively separating inorganic components such as metals contained in the biomass, ash-free fuel can be applied to a power generation fuel, thereby effectively reducing fouling of clinker and alkali corrosion that may occur during operation of the combustion system.
또한, 얻어진 글루코스를 포함하는 액상 성분 및/또는 리그닌을 포함하는 고상 성분을 저등급 석탄에 함침, 건조 및 탄화시킴으로써 수분이 재흡착 되는 것을 방지할 수 있고 이는 고발열량을 갖는 석탄의 공급을 가능하게 함으로써 저등급 석탄의 고품위화가 가능하다는 효과가 있다.Further, it is possible to prevent re-adsorption of water by impregnating, drying and carbonizing the low-grade coal with the liquid component containing the obtained glucose and / or the solid component including lignin, thereby enabling the supply of coal having a high calorific value It is possible to obtain a high-grade coal with a low grade.
또한, 바이오매스 성분이 저등급 석탄에 함침 후 탄화되어 결합되므로 기존 발전소에 통상 3.5wt%이하의 바이오매스만을 투입 혼소 하는 중요한 원인인 별도의 바이오매스 미분화장치를 구비하지 않고 기존 석탄 미분화설비를 이용하여도 되는 효과가 있다. In addition, since the biomass component is impregnated and carbonized after impregnation with low grade coal, it is not necessary to separate biomass undiluted apparatus, which is an important factor that only biomass of less than 3.5 wt% There is an effect that it is possible.
*또한, 애쉬프리 바이오매스의 셀룰로오스, 헤미셀룰로오스, 리그닌을 이용하여 성형연료 및 반탄화연료를 생산하므로 유동층 및 미분화 연소로 및 가스화로에 연소 및 가스화 후 바이오매스에 기인하는 회분으로부터 예상되는 클링커 파울링 및 고온부식의 문제를 근원적으로 배제할 수 있는 효과가 있다.* In addition, clinker fouling expected from ash due to biomass after combustion and gasification in fluidized bed and undifferentiated combustion furnaces and gasification furnaces, using ash-free biomass cellulose, hemicellulose and lignin to produce molded fuel and semi- And the problem of high temperature corrosion can be basically eliminated.
또한, 필터링 공정을 적용하여 바이오매스의 액상성분 중의 애쉬 프리 리그닌을 효과적으로 분리함으로써 펄프 생산을 위한 연료 확보 및 처리수를 재활용할 수 있는 효과가 있다.In addition, by filtering the ash-free lignin in the liquid component of the biomass by applying the filtering process, it is possible to secure the fuel for pulp production and recycle the treated water.

Claims (55)

  1. 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템에 있어서, In a composite fuel production system using ashfree biomass,
    상기 바이오매스를 소정 온도와 압력의 온수를 포함하는 제1처리수로 처리하는 제1처리유닛(100); 및A first processing unit (100) for processing the biomass with first treated water containing hot water at a predetermined temperature and pressure; And
    상기 제1처리유닛에서 처리된 상기 바이오매스를 소정 온도와 압력의 열수를 포함하는 제2처리수로 액상성분 및 고상성분을 생성하는 제2처리유닛(200); A second processing unit (200) for generating liquid and solid components from the biomass treated in the first treatment unit by second treatment water containing hot water of a predetermined temperature and pressure;
    을 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템. Wherein the ash-free biomass is used to produce a composite fuel.
  2. 제1항에 있어서, 상기 제2처리유닛에서 처리된 액상성분을 소정의 pH가 되도록 선택적으로 pH조정제를 첨가하는 제3처리유닛(300);The apparatus according to claim 1, further comprising: a third processing unit (300) for selectively adding a pH adjusting agent so that the liquid component processed in the second processing unit has a predetermined pH;
    을 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템. Wherein the ash-free biomass is used to produce a composite fuel.
  3. 제2항에 있어서, 상기 제3처리유닛에서 처리된 액상성분을 소정의 고액분리장치를 이용하여 상기 처리된 액상성분 중 존재하는 애쉬 프리 농축분을 분리하는 제4처리유닛(400); The apparatus according to claim 2, further comprising: a fourth processing unit (400) for separating the liquid component processed in the third processing unit from the ash-free concentrated component present in the processed liquid component using a predetermined solid-liquid separating device;
    을 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템. Wherein the ash-free biomass is used to produce a composite fuel.
  4. 제1항에 있어서, 상기 제2처리유닛에서 처리된 고상성분을 소정 온도와 압력의 온수로 처리하는 제5처리유닛(500);을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템. The method according to claim 1, further comprising a fifth processing unit (500) for processing the solid-phase components processed in the second processing unit with hot water of a predetermined temperature and pressure Fuel production system.
  5. 제1항 또는 제4항에 있어서, 상기 제2처리유닛 또는 제5처리유닛에서 처리된 고상성분을 고온 및 고압의 열수로 처리하여 셀룰로오스를 포함하는 고상섬유분과 헤미셀룰로오스를 포함하는 액상섬유분을 생성하는 열수처리유닛(600); 을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The method according to any one of claims 1 to 5, wherein the solid-phase component treated in the second treatment unit or the fifth treatment unit is treated with hot water and high-pressure hot water to produce a liquid fiber component comprising a solid fiber component including cellulose and hemicellulose A hydrothermal processing unit (600); Wherein the ash-free biomass is used for producing a composite fuel using the ash-free biomass.
  6. 제5항에 있어서, 상기 열수처리유닛 일단의 저압영역에서 공기접촉없이 배출되는 스팀을 포집하는 과정에서 상기 고상섬유분을 배출 분리하는 제1배출부(610);를 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.[Claim 6] The method according to claim 5, further comprising a first discharging part (610) for discharging and separating the solid fiber component in a process of collecting steam discharged from the low pressure area of the hydrothermal treatment unit without air contact, Combined fuel production system using prebiomass.
  7. 제5항에 있어서, 상기 열수처리유닛 타단의 저압영역에서 공기접촉없이 배출되는 스팀을 포집하는 과정에서 상기 섬유액상분을 배출 분리하는 제2배출부(620);를 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.[Claim 6] The method according to claim 5, further comprising: a second discharge unit (620) for discharging and separating the fiber liquid fraction in a process of collecting steam discharged from the other end of the hydrothermal treatment unit Combined fuel production system using prebiomass.
  8. 제6항에 있어서, 상기 제1배출부에서 배출된 셀룰로오스를 포함하는 고상섬유분을 바이오에탄올 생산을 위한 효소 당화반응 시키는 효소당화유닛(700);을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템. [7] The method according to claim 6, further comprising an enzyme saccharification unit (700) for performing an enzymatic saccharification reaction for the production of bioethanol, the solid fiber fraction containing cellulose discharged from the first discharge unit Composite fuel production system using mass.
  9. 제7항에 있어서, 상기 열수처리유닛에서 처리된 헤미셀룰로오스를 포함하는 섬유액상분 중 소정양의 아세트산을 추출하여 상기 제5처리유닛 및/또는 상기 열수처리유닛으로 재순환시키는 추출유닛(800);을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.8. An extraction unit (800) for extracting acetic acid in a predetermined amount from a fiber liquid fraction containing hemicellulose treated in the hydrothermal treatment unit and recycling it to the fifth treatment unit and / or the hydrothermal treatment unit Wherein the ash-free biomass is used to produce a composite fuel using the ash-free biomass.
  10. 제9항에 있어서, 상기 추출유닛에서 처리된 섬유액상분을 이용하여 소정 농도의 스프레잉 용액을 생성하는 스프레잉 생성유닛(900);을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The method as set forth in claim 9, further comprising a spraying generating unit (900) for generating a spraying solution at a predetermined concentration using the fiber liquid fraction treated in the extracting unit Composite fuel production system.
  11. 제10항에 있어서, 상기 스프레잉 생성 유닛을 통해 생성된 스프레이 용액을 이용하여 조분쇄 된 석탄 중 평균입도가 4 mm 이상인 석탄을 함침 또는 코팅시키는 석탄 전처리 유닛(1000); 을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The coal pretreatment unit (1000) according to claim 10, wherein the coal pretreatment unit (1000) for impregnating or coating coal having an average particle size of 4 mm or more among coarsely crushed coal using the spray solution produced through the spraying generation unit; Wherein the ash-free biomass is used for producing a composite fuel using the ash-free biomass.
  12. 제10항에 있어서, 상기 스프레잉 생성 유닛을 통해 생성된 스프레이 용액을 이용하여 조분쇄 된 석탄 중 평균입도가 4 mm 미만인 석탄을 회전시키면서 상기 석탄에 스프레이 용액을 분사하여 석탄이 함침 또는 코팅되면서 과립화(granulation)를 통하여 크기를 증가시키는 석탄 과립화 유닛(1100); 을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.11. The method according to claim 10, wherein the spray solution is sprayed onto the coal while rotating the coal having an average particle size of less than 4 mm among the coarsely pulverized coals using the spray solution generated through the spraying generating unit so that the coal is impregnated or coated, A coal granulation unit 1100 that increases its size through granulation; Wherein the ash-free biomass is used for producing a composite fuel using the ash-free biomass.
  13. 제3항 및 제4항에 있어서, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분을 소수성 바인더로 상기 제5처리유닛에서 처리된 고상성분을 바인딩하여 애쉬프리 성형연료를 제조하기 위한 성형연료유닛(1200); 을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The method as claimed in claim 3 or 4, wherein the ash-free concentrated fraction separated from the fourth treatment unit is bound to a solid-phase component processed in the fifth treatment unit with a hydrophobic binder, (1200); Wherein the ash-free biomass is used for producing a composite fuel using the ash-free biomass.
  14. 제1항, 제2항, 제4항 중 어느 한 항에 있어서, 상기 제1처리유닛, 상기 제2처리유닛, 상기 제4처리유닛 및 상기 제5처리유닛 중 어느 하나 또는 2이상의 유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가되는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The image forming apparatus according to any one of claims 1, 2, and 4, wherein one of the first processing unit, the second processing unit, the fourth processing unit, and the fifth processing unit, Wherein a cleaning unit and a moisture removal unit for washing are added to one or two units of the ash-free biomass.
  15. 제5항에 있어서, 상기 열수처리유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가되는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The composite fuel producing system using ash pre-biomass according to claim 5, wherein one or two units of a washing unit and a moisture removing unit for washing are added to the rear end of the hydrothermal treatment unit.
  16. 제3항 및 제4항에 있어서, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분을 소수성 바인더로 상기 제5처리유닛에서 처리된 고상성분을 열처리하여 애쉬프리 반탄화연료를 제조하기 위한 반탄화유닛(1300); 을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The method according to any one of claims 3 and 4, wherein the ash-free concentrated fraction separated from the fourth treatment unit is subjected to heat treatment of the solid phase component treated in the fifth treatment unit with a hydrophobic binder, Unit 1300; Wherein the ash-free biomass is used for producing a composite fuel using the ash-free biomass.
  17. 제3항 및 제4항에 있어서, 상기 제4처리유닛에서 분리된 애쉬 프리 농축분 및/또는 상기 제5처리유닛에서 처리된 고상성분을 선택적으로 연소 또는 가스화 연료, 점착제, 파티클 보드 및 합판의 제조에서 페놀 포름알데히드 레진 증량제, 몰딩 화합물의 제조에서, 우레탄 및 에폭시 레진, 항산화제, 서방성 제제, 유량 조절제, 시멘트/콘크리트 혼합, 석고 보드 제조, 석유 굴착, 일반 분산, 태닝 가죽, 도로 복개, 바닐린 제조, 디메틸 설파이드 및 디메틸 술폭사이드 제조, 폴리올레핀 혼합물에 페놀 레진이 내포된 페놀 치환, 방향족 (페놀) 단량체, 추가적인 다양한 단량체, 탄소 섬유, 용액에서 금속 제거, 젤 형성의 기초, 폴리우레탄 공중합체, 및 그 조합들로서 사용될 수 있는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The method according to claim 3 or 4, wherein the ash-free concentrated component separated in the fourth treatment unit and / or the solid-phase component treated in the fifth treatment unit are selectively added to the combustion or gasification fuel, the adhesive, the particle board and the plywood In the manufacture of phenol formaldehyde resin thickeners and molding compounds, the use of urethane and epoxy resins, antioxidants, release agents, flow control agents, cement / concrete blends, gypsum board manufacturing, oil drilling, (Phenol) monomers, an additional variety of monomers, carbon fibers, metal removal from solution, gel formation bases, polyurethane copolymers, polyvinyl chloride, polyvinylpyrrolidone, polyvinylpyrrolidone, And combinations thereof. ≪ RTI ID = 0.0 > 8. < / RTI >
  18. 제3항에 있어서, 상기 제4처리유닛을 통해 상기 액상성분에서 분리된 무기물을 포함하는 분리액은 상기 제1처리유닛 및/또는 상기 제2처리유닛으로 재순환시키는 재순환유닛(1400)을 추가로 포함하는 것을 특징으로 하는 바이오매스를 이용한 복합 연료 생산 시스템.4. The apparatus of claim 3, further comprising a recirculation unit (1400) recirculating the first liquid to the first processing unit and / or the second processing unit, wherein the liquid separator comprises an inorganic material separated from the liquid component via the fourth processing unit Wherein the biomass-containing complex fuel production system comprises:
  19. 제8항의 상기 효소당화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 바이오에탄올. The bioethanol produced by the system for producing a complex fuel using ash-free biomass, which further comprises the enzyme saccharification unit of claim 8.
  20. 제11항의 상기 석탄전처리유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 석탄. The coal produced by the composite fuel production system using ash-free biomass, further comprising the coal pretreatment unit of claim 11.
  21. 제12항의 상기 석탄과립화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 석탄. A coal produced by a composite fuel production system using ashfree biomass, further comprising the coal granulation unit of claim 12.
  22. 제13항의 상기 성형연료유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 애쉬프리 성형연료. An ash-free shaped fuel produced by a composite fuel production system using ash-free biomass, further comprising the shaped fuel unit of claim 13.
  23. 제16항의 상기 반탄화유닛을 추가로 포함하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템으로 제조된 애쉬프리 반탄화연료.An ash-free semi-carbonized fuel produced by a composite fuel production system using ash-free biomass, further comprising the semi-carbonization unit of claim 16.
  24. 제2항 및 제3항에 있어서, 상기 제1처리유닛에서 전처리되어 바이오매스내 금속을 포함하는 무기질 성분이 용출된 무기질포함 액상분을 제3처리유닛 또는 제4처리유닛으로 공급하는 것을 특징으로 하는 애쉬프리 바이오매스를 이용한 복합 연료 생산 시스템.The method according to any one of claims 2 and 3, wherein the inorganic substance-containing liquid fraction pretreated in the first treatment unit and eluted from the inorganic component containing metal in the biomass is supplied to the third treatment unit or the fourth treatment unit Combined fuel production system using ashfree biomass.
  25. 바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(101);A crushing unit 101 for forming the biomass into a raw material of a predetermined size;
    상기 원료를 저장하는 호퍼(201);A hopper 201 for storing the raw material;
    상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211);A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock;
    상기 원료공급피더로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301); A component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion;
    상기 성분분리유닛에서 융착 및 고온부식 유발성분이 분리된 연료를 펠릿화하는 펠릿화유닛(401); 및A pelletizing unit (401) for pelletizing the separated fuel in the component separating unit; And
    상기 펠릿화유닛에서 펠릿화된 연료를 탄화처리하는 반탄화유닛(501)을 포함하는 And a semi-carbonization unit (501) for carbonizing the pelletized fuel in the pelletizing unit
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  26. 바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(101);A crushing unit 101 for forming the biomass into a raw material of a predetermined size;
    상기 원료를 저장하는 호퍼(201);A hopper 201 for storing the raw material;
    상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211);A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock;
    상기 원료공급피더로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301);A component separation unit (301) for treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximize the fusion-welding and high-temperature corrosion-inducing components after combustion;
    상기 성분분리유닛에서 공급된 상기 융착 및 고온부식 유발성분이 제거된 연료를 탄화처리하는 반탄화유닛(501) 및A semi-carbonization unit 501 for carbonizing the fuel from which the fusion and hot corrosion-inducing components supplied from the component separation unit are removed,
    상기 반탄화유닛에서 반탄화된 연료를 펠릿화하는 펠릿화유닛(401); 을 포함하는 A pelletizing unit (401) for pelletizing the semi-carbonized fuel in the semi-carbonizing unit; Containing
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  27. 제25항 또는 제26항에 있어서, 27. The method of claim 25 or 26,
    상기 성분분리유닛에서 배출되는 액상성분에 상기 융착 및 고온부식 유발성분이 포함되는 것을 특징으로 하는 Wherein the liquid phase component discharged from the component separation unit includes the fusion welding and high temperature corrosion inducing component
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  28. 제25항 또는 제26항에 있어서, 27. The method of claim 25 or 26,
    상기 성분분리유닛에서 배출되는 고상성분은 상기 융착 및 고온부식 유발성분이 분리된 가연성 성분을 포함되는 것을 특징으로 하는Wherein the solid phase component discharged from the component separating unit comprises a combustible component in which the fusion-bonding and high-temperature corrosion-inducing component are separated
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  29. 제25항 및 제26항에 있어서, 27. The method according to claim 25 or 26,
    상기 성분분리유닛에서 배출되는 액상성분의 pH는 6이하 인 것을 특징으로 하는 Wherein the pH of the liquid component discharged from the component separation unit is 6 or less
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템. A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  30. 제29항에 있어서, 30. The method of claim 29,
    상기 액상성분 중 유기화합물을 분리된 액상성분은 상기 성분분리유닛으로 재순환 시키는 것을 특징으로 하는 Characterized in that an organic compound in the liquid component is separated and recycled to the component separation unit
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  31. 제25항 또는 제26항에 있어서, 27. The method of claim 25 or 26,
    상기 반탄화유닛에서 배출되는 기상성분에는 산성가스를 포함하는 유기화합물을포함하는 것을 특징으로 The gas phase component discharged from the semi-carbonization unit includes an organic compound including an acid gas
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  32. 제25항 또는 제26항에 있어서, 27. The method of claim 25 or 26,
    상기 바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템에서 상기 반탄화된 연료는 화석연료를 사용하는 보일러에서 50중량부 이하로 혼소될 수 있는 것을 특징으로 반탄화 연료.Characterized in that the semi-carbonized fuel in a boiler semi-carbonized fuel production system for improving the biomass mixing ratio can be mixed up to 50 parts by weight or less in a boiler using fossil fuel.
  33. 바이오매스를 소정 크기의 원료로 형성하는 분쇄유닛(101);A crushing unit 101 for forming the biomass into a raw material of a predetermined size;
    상기 원료를 저장하는 호퍼(201);A hopper 201 for storing the raw material;
    상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(211);A feedstock supply feeder 211 for feeding the feedstock stored in the hopper to a downstream end of the feedstock;
    상기 원료공급피더에서 공급된 연료를 탄화처리하는 반탄화유닛(501);A carbonization unit (501) for carbonizing the fuel supplied from the raw material feeder;
    상기 반탄화유닛에서 반탄화된 연료를 펠릿화하는 펠릿화유닛(401); 및 A pelletizing unit (401) for pelletizing the semi-carbonized fuel in the semi-carbonizing unit; And
    상기 펠릿화유닛으로부터 공급된 원료의 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 성분분리유닛(301);A component separation unit (301) for treating the raw material supplied from the pelletizing unit with hot water at a predetermined temperature so as to maximally separate the fusion-welding and high-temperature corrosion-inducing components from the raw material supplied from the pelletizing unit;
    을 포함하는 Containing
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 시스템.A system for the production of semi - carbonized fuel for boilers for improving the biomass mixing rate.
  34. 바이오매스를 분쇄유닛(101)에서 소정 크기의 원료로 형성하는 제1단계;A first step of forming the biomass into a raw material of a predetermined size in the crushing unit 101;
    상기 원료를 호퍼(201)에 저장하는 제2단계;A second step of storing the raw material in the hopper 201;
    상기 호퍼에 저장된 상기 원료를 원료공급피더(211)로 후단에 정량 공급하는 제3단계;A third step of feeding the raw material stored in the hopper to a downstream end of the raw material feeder 211 in a fixed amount;
    상기 원료공급피더로부터 공급된 원료를 성분분리유닛(301)에서 연소 후 융착 및 고온부식 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하는 제4단계; A fourth step of treating the raw material supplied from the raw material supply feeder with hot water at a predetermined temperature so as to maximally separate the fusion-induced and high-temperature corrosion-inducing components after combustion in the component separation unit 301;
    상기 성분분리유닛에서 융착 및 고온부식 유발성분이 분리된 연료를 펠릿화유닛(401)에서 펠릿화하는 제5단계; 및A fifth step of pelletizing the fuel in which the fusing and hot corrosion-inducing components are separated in the component separating unit, in the pelletizing unit (401); And
    상기 펠릿화유닛에서 펠릿화된 연료를 반탄화유닛(501)에서 탄화처리하는 제6단계;를 포함하는 And a sixth step of carbonizing the pelletized fuel in the pelletizing unit in the semi-carbonizing unit (501)
    바이오매스 혼소율 향상을 위한 보일러용 반탄화 연료 생산 방법.Production method of semi - carbonized fuel for boiler for improving biomass mixing ratio.
  35. 피드스탁을 소정 크기의 원료로 형성하는 분쇄유닛(102);A crushing unit (102) for forming feedstock into a raw material of a predetermined size;
    상기 원료를 저장하는 호퍼(202);A hopper 202 for storing the raw material;
    상기 호퍼에 저장된 상기 원료를 후단에 정량 공급하는 원료공급피더(212);A raw material feeder 212 for feeding the raw material stored in the hopper to a downstream end in a fixed amount;
    상기 원료공급피더로부터 공급된 원료의 파울링 유발성분이 최대로 분리되도록 소정 온도의 열수로 처리하여 파울링 유발성분분리유닛(302);을 포함하는 And a fouling-inducing component separation unit (302) by treating the fouling-inducing component of the raw material supplied from the raw material feeder with hot water of a predetermined temperature so as to maximally separate the fouling-
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  36. 제35항에 있어서, 36. The method of claim 35,
    상기 파울링 유발성분분리유닛에서 배출되는 액상성분에 상기 파울링 유발성분이 포함되는 것을 특징으로 하는 And the fouling inducing component is contained in the liquid component discharged from the fouling inducing component separating unit
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  37. 제35항에 있어서, 36. The method of claim 35,
    상기 파울링 유발성분분리유닛에서 배출되는 고상성분은 상기 파울링 유발성분이 분리된 가연성 성분을 포함되는 것을 특징으로 하는And the solid phase component discharged from the fouling-causing component separation unit includes a combustible component in which the fouling-inducing component is separated
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  38. 제36항에 있어서, 37. The method of claim 36,
    상기 액상성분의 pH는 6이하 인 것을 특징으로 하는 Wherein the pH of the liquid component is 6 or less
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템. A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  39. 제38항에 있어서, 39. The method of claim 38,
    상기 액상성분 중 유기화합물을 분리한 pH가 낮은 수용액은 상기 파울링 유발성분분리유닛으로 재순환 시키는 것을 특징으로 하는 Characterized in that an aqueous solution having a low pH, from which the organic compound is separated from the liquid component, is recycled to the fouling-induced component separation unit
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  40. 제35항에 있어서, 36. The method of claim 35,
    상기 원료는 상기 파울링 유발성분분리유닛으로 공급되기 전에 알칼리용액으로 처리되는 전처리유닛(402)에 공급되는 것을 특징으로 하는Characterized in that the raw material is supplied to a pretreatment unit (402) which is treated with an alkali solution before being fed to the fouling-inducing component separation unit
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  41. 제38항에 있어서, 39. The method of claim 38,
    상기 전처리유닛에서 생성된 전처리 고상성분은 상기 파울링 유발성분분리유닛으로 공급되고,Wherein the pretreatment solid-phase component generated in the pretreatment unit is supplied to the fouling-inducing component separation unit,
    전처리 액상성분은 분리 배출되는 것을 특징으로 하는The pretreatment liquid phase component is separated and discharged.
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  42. 제37항에 있어서, 39. The method of claim 37,
    상기 고상성분을 적용하여 성형연료를 제조하기 위한 성형연료유닛;을 추가로 포함하는 것을 특징으로 하는And a molded fuel unit for producing the molded fuel by applying the solid phase component
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  43. 제39항에 있어서, 40. The method of claim 39,
    상기 액상성분의 유기화합물 분리를 위해 멤브레인필터 유닛(402)을 추가로 포함하는 것을 특징으로 하는 Characterized by further comprising a membrane filter unit (402) for separating the organic component of the liquid component
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  44. 제35항 또는 제39항에 있어서, 상기 파울링 유발성분분리유닛 또는 전처리유닛의 후단에 세척을 위한 세척유닛 및 수분제거유닛 중 어느 하나 또는 2개 유닛이 추가되는 것을 특징으로 하는The washing machine according to claim 35 or 39, wherein one or two units of the washing unit and the water removing unit for washing are added to the rear end of the fouling-inducing component separating unit or the pretreatment unit
    보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템.A fuel production system that removes fouling-inducing components for biomass burning and / or combustion in a boiler.
  45. 제35항 내지 제44항 중 어느 한 항에 있어서, 상기 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 시스템에서 생산된 연료. 45. The fuel according to any one of claims 35 to 44, wherein the fuel produced in the fuel production system has been removed from the boiler for fossil fuels for biomass burning and / or fogging.
  46. 피드스탁을 분쇄유닛(102)을 이용하여 소정 크기의 원료로 형성하는 제1단계; A first step of forming a feedstock from a raw material having a predetermined size by using the crushing unit 102;
    호퍼(200)에 상기 원료를 저장하는 제2단계; A second step of storing the raw material in the hopper 200;
    상기 호퍼에 저장된 상기 원료를 원료공급피더 (212)로 후단에 정량 공급하는 제3단계; 및A third step of feeding the raw material stored in the hopper to a downstream end of the raw material feeder 212 in a fixed amount; And
    상기 원료공급피더로부터 공급된 원료의 파울링 유발성분이 최대로 분리되도록 파울링 유발성분분리유닛(302)에서 소정 온도의 열수로 처리하는 제4단계;를 포함하는 보일러내 바이오매스 전소 및/또는 혼소를 위한 파울링 유발성분을 제거한 연료 생산 방법.And a fourth step of treating the fouling-inducing component separation unit (302) with hot water at a predetermined temperature so that the fouling-inducing component of the raw material supplied from the raw material feeder is separated to the maximum, and / or a biomass burner A method for producing fuel by removing the fouling inducing component for coma.
  47. 분쇄수단으로 바이오매스를 분쇄하는 S-1 단계;S-1 step of pulverizing the biomass as a crushing means;
    상기 분쇄한 바이오매스에 열수를 공급하는 S-2 단계;S-2 step of supplying hot water to the crushed biomass;
    열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단계; S-3 step of separating the biomass supplied with hot water into a liquid phase material and a solid phase material;
    상기 액체상 물질에 분탄을 첨가하는 S-4 단계; 및 Adding S-4 to the liquid phase material; And
    분탄과 액체상 물질 혼합물을 제1 분리수단으로 공급하여 분탄은 회수하고 분탄이 제거된 여액을 수득하는 S-5 단계를 포함하는 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. A method for separating a combustible component from a biomass hot-water extraction liquid, the method comprising: supplying a mixture of coal and a liquid-phase material to a first separation means to recover the coal and obtain a filtrate from which the coal is removed.
  48. 제47항에 있어서,49. The method of claim 47,
    상기 S-5 단계 이후에,After the step S-5,
    분탄이 제거된 여액을 제2 분리수단으로 공급하는 S-6 단계; 및S-6 step of supplying the filtrate from which the pulverized coal is removed to the second separation means; And
    상기 제2 분리수단에 의해 제1 농축액과 제1 투과액을 수득하고, 상기 제1 농축액은 회수하고, 상기 제1 투과액은 제3 분리수단으로 공급하는 S-7 단계를 포함하는 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. And S-7 step of obtaining the first concentrated liquid and the first permeated liquid by the second separation means, recovering the first concentrated liquid, and supplying the first permeated liquid to the third separation means And separating the combustible component from the biomass hot water extract.
  49. 제48항에 있어서,49. The method of claim 48,
    상기 S-7 단계 이후에, After the step S-7,
    상기 제3 분리수단에 의해 제2 농축액과 제2 투과액을 수득하고, 상기 제2 농축액을 회수하는 S-8 단계를 포함하는 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. And S-8 step of obtaining a second concentrated liquid and a second permeated liquid by the third separation means and recovering the second concentrated liquid.
  50. 제47항에 있어서,49. The method of claim 47,
    상기 S-5 단계 이후에,After the step S-5,
    분탄이 제거된 여액을 제3 분리수단으로 공급하는 S-7 단계; 및S-7 step of supplying the filtrate from which the pulverized coal is removed to the third separation means; And
    상기 제3 분리수단에 의해 제2 농축액과 제2 투과액을 수득하고, 상기 제2 농축액을 회수하는 S-8 단계를 포함하는 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. And S-8 step of obtaining a second concentrated liquid and a second permeated liquid by the third separation means and recovering the second concentrated liquid.
  51. 제47항 내지 제50항 중 어느 한 항에 있어서,50. The method according to any one of claims 47 to 50,
    상기 분탄은 입경이 10 ㎛ ~ 10 ㎜ 인 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법.Wherein the pulverized coal has a particle diameter of 10 탆 to 10 탆.
  52. 제51항에 있어서,52. The method of claim 51,
    상기 분탄은 입경이 70 ㎛ ~ 5 ㎜ 인 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. Wherein the pulverized coal has a particle size of 70 탆 to 5 탆.
  53. 제48항 또는 제49항에 있어서,50. The method of claim 48 or 49,
    상기 제2 분리수단은 한외여과막 또는 정밀여과막인 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. Wherein the second separation means is an ultrafiltration membrane or a microfiltration membrane.
  54. 제48항 내지 제50항 중 어느 한 항에 있어서,51. The method according to any one of claims 48 to 50,
    상기 제3 분리수단은 나노여과막 또는 역삼투막인 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. Wherein the third separation means is a nanofiltration membrane or a reverse osmosis membrane.
  55. 분쇄수단으로 바이오매스를 분쇄하는 S-1 단계;S-1 step of pulverizing the biomass as a crushing means;
    상기 분쇄한 바이오매스에 열수를 공급하는 S-2 단계;S-2 step of supplying hot water to the crushed biomass;
    열수를 공급한 바이오매스를 액체상 물질과 고체상 물질로 분리하는 S-3 단계; S-3 step of separating the biomass supplied with hot water into a liquid phase material and a solid phase material;
    상기 액체상 물질을 원심분리하는 S-4′ 단계; 및S-4 'for centrifuging the liquid material; And
    농축슬러리는 회수하고 상등액을 수득하는 S-5′ 단계를 포함하는 것을 특징으로 하는 바이오매스 열수추출액으로부터 가연성 성분을 분리하는 방법. Wherein the concentrated slurry is recovered and comprises a step S-5 'to obtain a supernatant.
PCT/KR2017/010648 2017-09-26 2017-09-26 Demineralized biomass, multi-fuel producing system using same and preparation method therefor WO2019066096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/010648 WO2019066096A1 (en) 2017-09-26 2017-09-26 Demineralized biomass, multi-fuel producing system using same and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/010648 WO2019066096A1 (en) 2017-09-26 2017-09-26 Demineralized biomass, multi-fuel producing system using same and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2019066096A1 true WO2019066096A1 (en) 2019-04-04

Family

ID=65903644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010648 WO2019066096A1 (en) 2017-09-26 2017-09-26 Demineralized biomass, multi-fuel producing system using same and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2019066096A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012851A (en) * 2021-11-15 2022-02-08 中冶生态环保集团有限公司 Pretreatment plant powder, pretreatment method for plant straw and pretreatment system for plant straw
CN115335494A (en) * 2020-04-27 2022-11-11 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101170614B1 (en) * 2012-02-07 2012-08-02 신득일 Method for producing torrefied bio-coal for co-firing with coal in coal-based power plant
KR101464917B1 (en) * 2014-05-13 2014-11-26 한국에너지기술연구원 Hydrophobic coal-biomass granule type mixed fuel, apparatus and manufacturing method thereof
KR20150006696A (en) * 2013-07-09 2015-01-19 한국화학연구원 Method for preparing bioethanol from lignocellulosic biomass
US9085494B2 (en) * 2012-03-19 2015-07-21 Api Intellectual Property Holdings, Llc Processes for producing low-ash biomass for combustion or pellets
KR20170083323A (en) * 2016-01-08 2017-07-18 고등기술연구원연구조합 Semi-carbonized manufacturing equipment
KR20170114465A (en) * 2016-04-05 2017-10-16 한국에너지기술연구원 De-mineralized Biomass, Manufacturing Method and System of Multi-fuel Production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101170614B1 (en) * 2012-02-07 2012-08-02 신득일 Method for producing torrefied bio-coal for co-firing with coal in coal-based power plant
US9085494B2 (en) * 2012-03-19 2015-07-21 Api Intellectual Property Holdings, Llc Processes for producing low-ash biomass for combustion or pellets
KR20150006696A (en) * 2013-07-09 2015-01-19 한국화학연구원 Method for preparing bioethanol from lignocellulosic biomass
KR101464917B1 (en) * 2014-05-13 2014-11-26 한국에너지기술연구원 Hydrophobic coal-biomass granule type mixed fuel, apparatus and manufacturing method thereof
KR20170083323A (en) * 2016-01-08 2017-07-18 고등기술연구원연구조합 Semi-carbonized manufacturing equipment
KR20170114465A (en) * 2016-04-05 2017-10-16 한국에너지기술연구원 De-mineralized Biomass, Manufacturing Method and System of Multi-fuel Production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115335494A (en) * 2020-04-27 2022-11-11 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel
CN115335494B (en) * 2020-04-27 2024-04-12 东北发电工业株式会社 Solid fuel production system, solid fuel production method, and solid fuel
CN114012851A (en) * 2021-11-15 2022-02-08 中冶生态环保集团有限公司 Pretreatment plant powder, pretreatment method for plant straw and pretreatment system for plant straw
CN114012851B (en) * 2021-11-15 2024-04-26 中冶生态环保集团有限公司 Pretreatment plant powder, plant straw pretreatment method and plant straw pretreatment system

Similar Documents

Publication Publication Date Title
AU2007264440B2 (en) Method for production of polysaccharide and/or monosaccharide by hydrolysis of other polysaccharide
EP2254913B1 (en) Method for lignocellulose pretreatment using a super-cellulose-solvent and highly volatile solvents
JP6148981B2 (en) Lignin recovery method
KR101945186B1 (en) De-mineralized Biomass, Manufacturing Method and System of Multi-fuel Production thereof
KR101879862B1 (en) De-Ash in Biomass at Low-Temperature, Manufacturing Method and System of Fuel Production thereof
KR102028442B1 (en) Improvement on Co-firing of Biomass with Coal Biomass Blending ratio, Manufacturing Method and System of Boiler-Torrefaction Fuel Production thereof
WO2019066096A1 (en) Demineralized biomass, multi-fuel producing system using same and preparation method therefor
KR20180023074A (en) De-sticky material in feedstock, Manufacturing Method and System of Boiler-Fuel Production thereof
US20130017589A1 (en) Fractionation of lignocellulosic biomass for cellulosic ethanol and chemical production
EP3684891A1 (en) Method and system for production of fuel pellets or briquettes
JP2016113385A (en) Production method of lignin composition
Bharathiraja et al. Insights on lignocellulosic pretreatments for biofuel production-SEM and reduction of lignin analysis
KR102054845B1 (en) De-Ash in Biomass at Low-Temperature, Manufacturing Method and System of Fuel Production Connected with Dehydration and Washing
US20180258450A1 (en) Fractionation of lignocellulosic biomass for cellulosic ethanol and chemical production
WO2019194336A1 (en) Dewatering/washing process-associated system for production of fuel having ash producing component removed from biomass in low temperature condition
US10407827B2 (en) Device and method for treating the black liquor resulting from pulping by hydrothermal liquefaction
WO2021025226A1 (en) Mechano-catalytic apparatus and method each being applicable at room temperature and removing ash-producing ingredients in biomass
You et al. Optimization of enzymatic hydrolysis on sugarcane bagasse pretreated with soda-green liquor and methanol
Varavadekar et al. A multi step process for fractionation of lignocellulosic biomass
KR20200126356A (en) De-Ash in Biomass at Low-Temperature, Manufacturing Method and System of Fuel Production Connected with Energy Storage System
CARDINALE et al. Steam-Expolsion Treatment of Poplar Wood at the Pilot Plant Level
FI20215778A1 (en) Method for utilizing biomasses
Benter et al. Low ash fuel and chemicals from the Convertech process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927281

Country of ref document: EP

Kind code of ref document: A1