WO2019065860A1 - Artificial muscle - Google Patents

Artificial muscle Download PDF

Info

Publication number
WO2019065860A1
WO2019065860A1 PCT/JP2018/035996 JP2018035996W WO2019065860A1 WO 2019065860 A1 WO2019065860 A1 WO 2019065860A1 JP 2018035996 W JP2018035996 W JP 2018035996W WO 2019065860 A1 WO2019065860 A1 WO 2019065860A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial muscle
sleeve
tube
fiber
dtex
Prior art date
Application number
PCT/JP2018/035996
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 寳満
片山 隆
田中 次郎
和之 日笠
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019545614A priority Critical patent/JPWO2019065860A1/en
Publication of WO2019065860A1 publication Critical patent/WO2019065860A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type

Definitions

  • the present invention relates to an artificial muscle which is high in strength and is excellent in cutting resistance and driveability.
  • McKibben type artificial muscle is known as an artificial muscle, in which air is injected into a hollow elastic body to be expanded and the elastic body is contracted in its longitudinal direction (for example, Patent Document 1) .
  • the braided tube is biased even if the contraction operation of the artificial muscle is repeated by using an artificial muscle comprising a hollow elastic tube and a braided tube in which a crossing portion of a filament including welding threads is welded. Without, the artificial muscle which can prevent the burst of the elastic tube is introduced.
  • the artificial muscle is used for an arm portion of a robot or a device for assisting an operation in which a person holds an article etc.
  • the artificial muscle is used, for example, in the case of using a blade or the like or when there are protrusions in the device.
  • the elastic tube and the braided tube are damaged, and there is a problem that the contraction operation can not be expressed.
  • plastic deformation occurs in the fibers constituting the braided tube when a high load is applied to the artificial muscle, and there is a problem that the contraction operation can not be realized.
  • the present invention solves the problems in the prior art and provides an artificial muscle which is high in strength, excellent in cut resistance and drivability, and excellent in durability when used repeatedly. It is.
  • the present inventors are able to obtain high-strength artificial muscle by appropriately arranging high-strength fibers outside the artificial muscle, and an external load is applied.
  • the present invention has been completed by finding that an artificial muscle which is less likely to be damaged and which is excellent in cut resistance and driveability can be obtained.
  • the artificial muscle of the present invention includes the following aspects.
  • An artificial muscle comprising an elastic tube and a sleeve containing high strength fibers, wherein the outside of the elastic tube is covered with the sleeve, and the tube coverage is 70 to 100%, And an artificial muscle having a sleeve filling rate of 1 to 40%.
  • the present invention it is possible not only to obtain a high strength artificial muscle, but also to be hard to be damaged even when an external load is applied, and excellent in cut wound resistance and driveability, and also in durability when used repeatedly. It is possible to obtain an excellent artificial muscle.
  • FIG. 1 is a schematic enlarged plan view for explaining the artificial muscle of the present invention.
  • FIG. 2 is a schematic enlarged plan view of a side surface of a sleeve used in the present invention.
  • FIG. 3 is a schematic enlarged plan view of a cross section of the artificial muscle of the present invention.
  • FIG. 1 is a schematic enlarged plan view for explaining the artificial muscle of the present invention.
  • the artificial muscle of the present invention which expands and contracts by fluid pressure, is mainly composed of an elastic tube 10 and a sleeve 20 disposed on the outer surface of the elastic tube.
  • a compressor or a valve is connected to the end of the artificial muscle via an air supply tube or the like.
  • the elastic tube 10 is made of an elastic body formed in a hollow cylindrical shape. This is configured to expand by air supply from a compressor or the like.
  • the elastic tube 10 is not particularly limited as long as it is a soft rubber that can expand by air supply from an air compressor, and examples thereof include rubber having a hardness of 60 or less. For example, if it is a rubber having a hardness of 60 or less, it is easy to ensure sufficient artificial muscle contraction, and a rubber having a hardness of 55 or less is more preferable. Also, if the elastic tube is too soft, the tube is likely to bite into the mesh of fibers constituting the sleeve, so the hardness of the elastic tube (soft rubber) can be improved from the viewpoint of improving the drivability and durability of the artificial muscle. Is preferably a hardness A10 or more. As a material, rubber having a crosslinking point such as silicone is more preferable from the viewpoint of durability.
  • the dynamic friction coefficient of the elastic tube 10 is preferably 1.0 or less, more preferably 0.8 or less, and still more preferably 0.6 or less.
  • the fibers constituting the sleeve 20 are less likely to be caught on the outer surface of the elastic tube, and biting of the fibers into the elastic tube can be reduced.
  • the sleeve 20 is configured using high-strength fibers, but in this case, the bite of the fibers when the elastic tube is expanded becomes larger as compared with, for example, polyester fibers.
  • the lower limit of the dynamic friction coefficient of the elastic tube 10 is not particularly limited, and is usually 0.1 or more, and may be 0.2 or more, for example.
  • the dynamic friction coefficient can be measured according to the method defined in ASTM D-1894.
  • the sleeve means a tubular braid disposed on the outer surface of the elastic tube, and for example, in FIG. 1, the sleeve 20 allows the fiber 21 to move around the outer wall of the elastic tube 10 so as to be freely movable.
  • the bag is knitted together.
  • a plurality of (for example, three or more) fibers 21 may be used in accordance with the tube diameter of the tube 10. It may be combined in an oblique direction alternately.
  • fibers 21 used for the sleeve 20 of the artificial muscle of the present invention include high-strength fibers from the viewpoint of imparting durability and cut resistance to the artificial muscle.
  • fibers 21 may be polybutylene terephthalate fibers, polyethylene terephthalate fibers, polyamide fibers, polyethylene fibers, polypropylene fibers, polystyrene fibers, polyvinyl chloride fibers, polyvinyl alcohol fibers, in addition to high strength fibers, as long as the effects of the present invention are not impaired.
  • Thermoplastic fibers such as polycarbonate fiber, polylactic acid fiber, polyurethane fiber and acrylic fiber may be contained alone or in combination of two or more.
  • the sleeve When high strength fibers and other fibers other than the above are contained as the fibers constituting the sleeve, for example, high strength and high strength fibers are distributed uniformly from the viewpoint of securing high cut resistance.
  • the sleeve is constructed, for example, by alternately interlacing fibers with other fibers.
  • the elastic muscle tube 10 In the contraction operation, in the contraction operation, the elastic muscle tube 10 is expanded in the radial direction by the air supplied from the compressor or the like, and the movement is limited by the sleeve 20, so that the artificial muscle is shortened in the axial direction. To contract. Further, in the relaxation operation, the valve is released to exhaust, or the elastic tube 10 which is forcibly expanded by inhaling is returned to the original state, and the axial length returns to the original. At this time, in the artificial muscle of the present invention, the intersection portion 22 of the sleeve 20 performs a pantograph operation around the intersection portion 22. Therefore, the sleeve 20 is expanded in the radial direction and axially shortened, and the artificial muscle contracts. Take action.
  • FIG. 2 is a schematic enlarged plan view of a sleeve 20 for explaining an example of the artificial muscle braided tube of the present invention.
  • symbol same as FIG. 1 represents the same thing, and abbreviate
  • the fibers 21 of the sleeve 20 are alternately braided and bag-woven.
  • the high strength fiber means a fiber having a tensile strength of 18 cN / dtex or more
  • the high strength fiber used in the artificial muscle of the present invention can be any of inorganic fiber and organic fiber as long as it exhibits the above strength.
  • Inorganic fibers include carbon fibers
  • organic fibers include liquid crystal polyester fibers, aramid fibers (for example, para-aramid fibers), polyparaphenylene benzobisoxazole (PBO) fibers, and super fibers.
  • High molecular weight polyethylene fibers and the like can be mentioned. These fibers may be used alone or in combination of two or more. Further, among these, the liquid crystal polyester fiber can be more preferably used because plastic deformation hardly occurs, the water absorption is low, and the cut resistance is high.
  • the liquid crystalline polyester fiber used in the artificial muscle of the present invention can be obtained by melt spinning liquid crystalline polyester.
  • the liquid crystalline polyester is, for example, composed of repeating structural units derived from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, etc., and an aromatic diol, an aromatic dicarboxylic acid, an aromatic as long as the effects of the present invention are not impaired.
  • the structural unit derived from hydroxycarboxylic acid is not particularly limited as to its chemical constitution.
  • liquid crystalline polyester may contain the structural unit derived from aromatic diamine, aromatic hydroxyamine, or aromatic aminocarboxylic acid. For example, examples shown in Table 1 can be given as preferable structural units.
  • Y is each independently a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like, an alkyl group (for example, a methyl group, An alkyl group having 1 to 4 carbon atoms such as ethyl, isopropyl, t-butyl, etc., an alkoxy group (eg, methoxy, ethoxy, isopropoxy, n-butoxy etc.), an aryl group (eg, Phenyl group, naphthyl group etc., aralkyl group [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group) etc.], aryloxy group (eg, phenoxy group etc.), aralkyloxy group (eg, benzyloxy group etc.) And the like.
  • a halogen atom for example, a
  • More preferable structural units include the structural units described in Examples (1) to (18) shown in Table 2, Table 3 and Table 4 below.
  • the structural unit in a formula is a structural unit which can show several structures, you may use it as a structural unit which comprises a polymer combining 2 or more types of such structural units.
  • n is an integer of 1 or 2
  • Y1 and Y2 are And each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., an alkyl group (eg, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, etc.) To 4), an alkoxy group (eg, methoxy, ethoxy, isopropoxy, n-butoxy etc.), an aryl group (eg, phenyl, naphthyl etc.), an aralkyl group [benzyl group (phenyl Methyl group), phenethyl group (phenylethyl group etc.), aryloxy group (eg phenoxy group etc
  • examples of Z include a substituent represented by the following formula.
  • the preferred liquid crystal polyester may preferably be a combination having a naphthalene skeleton as a constituent unit. Particularly preferably, it contains both a constituent unit (A) derived from hydroxybenzoic acid and a constituent unit (B) derived from hydroxynaphthoic acid.
  • a constituent unit (A) derived from hydroxybenzoic acid a constituent unit derived from hydroxynaphthoic acid.
  • the ratio of the unit (B) may be preferably in the range of 9/1 to 1/1, more preferably 7/1 to 1/1, and still more preferably 5/1 to 1/1.
  • the total of the structural unit of (A) and the structural unit of (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, and still more preferably 80 mol based on all the structural units. It may be% or more.
  • a liquid crystalline polyester having 4 to 45 mol% of the constituent unit of (B) is preferable.
  • melting point of the liquid crystalline polyester suitably used in the present invention is preferably in the range of 250 to 360.degree. C., more preferably 260 to 320.degree.
  • fusing point here is a main absorption peak temperature observed and measured with a differential scanning calorimeter (for example, DSC; Mettler "TA3000") based on a JIS K7121 test method. Specifically, after taking 10 to 20 mg of a sample in the above DSC apparatus and sealing it in an aluminum pan, flow 100 cc / min of nitrogen as a carrier gas and measure the endothermic peak when the temperature is raised at 20 ° C./min. .
  • a clear peak does not appear in the 1st run in DSC measurement, raise the temperature to 50 ° C higher than expected flow temperature at a heating rate of 50 ° C / min, and at that temperature for 3 minutes After complete melting, it may be cooled to 50 ° C. at a temperature drop rate of ⁇ 80 ° C./min, and then the endothermic peak may be measured at a temperature rise rate of 20 ° C./min.
  • thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluorine resin are added to the above liquid crystal polyester in the range not to impair the effects of the present invention. It is also good.
  • inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, various additives such as antioxidants, ultraviolet light absorbers and light stabilizers may be included.
  • the strength of the high strength fiber used in the artificial muscle of the present invention is preferably 18 cN / dtex or more.
  • the strength is 18 cN / dtex or more, sufficient artificial muscle contractility can be secured and cut resistance can be improved. More preferably, it is 20 cN / dtex or more, and particularly preferably 22 cN / dtex or more.
  • the upper limit is not particularly limited, but is usually 100 cN / dtex or less.
  • strength is calculated by the measuring method as described in the Example mentioned later.
  • the elongation of the high strength fiber used in the artificial muscle of the present invention is preferably 7% or less. It is excellent in suppression of the plastic deformation at the time of applying high load with respect to an artificial muscle as it is 7% or less. More preferably, it is at most 6%, particularly preferably at most 5%.
  • the lower limit is not particularly limited, but is usually 0% or more.
  • elongation is calculated by the measuring method as described in the Example mentioned later.
  • the single fiber fineness of the fibers used in the artificial muscle of the present invention is preferably 0.5 dtex or more and 500 dtex or less.
  • the single fiber fineness is 0.5 dtex or more, it becomes difficult to produce a fiber breakage in the fiber production process.
  • the single fiber fineness is 500 dtex or less, a sleeve having an appropriate thickness can be easily obtained, and high cut resistance can be secured.
  • a high strength fiber is used to form a sleeve, compared to the case of using, for example, a polyester fiber, the fiber is difficult to stretch and bend when the elastic tube expands, and therefore biting into the tube is difficult.
  • the single fiber fineness of the fibers constituting the sleeve is more preferably 0.5 dtex or more, further preferably 1 dtex or more, particularly preferably 1.5 dtex or more, and more preferably 200 dtex or less, still more preferably 15 dtex or less, particularly preferably 10 dtex or less.
  • the fibers constituting the sleeve may be monofilaments or multifilaments, but in the case of multifilaments, the fibers are more likely to be bent as compared to monofilaments having the same total fineness.
  • the effect of suppressing the bite of fibers into the body tube is enhanced, and the durability of the artificial muscle can be further improved.
  • the total fineness of the above-mentioned fiber is preferably 10 dtex or more and 50000 dtex or less. If the total fineness is 10 dtex or more, it becomes difficult to produce fiber breakage in the sleeve production process and the like. When the total fineness is 50000 dtex or less, a sleeve having a suitable thickness is obtained, and a decrease in the covering area of the tube can be suppressed, and high cut resistance can be obtained.
  • the total fineness is more preferably 15 dtex or more, further preferably 25 dtex or more, and more preferably 30,000 dtex or less, more preferably 10,000 dtex or less.
  • the sleeve used in the artificial muscle of the present invention may contain fibers other than high strength fibers, and when the sleeve contains high strength fibers and other fibers other than high strength fibers, the average strength of the fibers used in the sleeve Is preferably 13 cN / dtex or more.
  • the above-mentioned average strength is calculated by the sum of the strength of each fiber used and the ratio of the number of sleeves of that fiber in the total number of sleeves (the number of bobbins set in a stringing machine). If the average strength of the fibers used for the sleeve is 13 cN / dtex or more, sufficient artificial muscle contractility can be secured and cut resistance can be improved.
  • the average strength of the fibers is more preferably 14 cN / dtex or more, and particularly preferably 15 cN / dtex or more.
  • the upper limit is not particularly limited, but is 100 cN / dtex or less.
  • strength is calculated by the measuring method as described in the Example mentioned later.
  • the artificial muscle of the present invention has a tube coverage of 70 to 100%.
  • the tube coverage can be arbitrarily changed by adjusting the total fineness of fibers used for the sleeve, the single fiber fineness, the fiber diameter, the number of strokes of the sleeve, and the formation angle. If the tube coverage is less than 70%, the tube inside the artificial muscle is easily cut with a knife or the like, and the contraction of the tube can not be performed due to damage to the tube.
  • the tube coverage is preferably 75% or more, more preferably 80% or more, further preferably 90% or more, and for example, preferably 80 to 100%, more preferably 90 to 100%.
  • the tube coverage can be calculated by the method described in the examples described later.
  • the artificial muscle of the present invention has a sleeve filling rate of 1 to 40%.
  • the filling rate of the sleeve can be arbitrarily changed by adjusting the total fineness of fibers used for the sleeve, the single fiber fineness, the fiber diameter, the number of strokes of the sleeve, and the formation angle. If it exceeds 40%, the sleeves are too clogged, so the sleeve angle can not be changed and the contraction action can not be expressed as an artificial muscle. If it is less than 1%, the tube inside the artificial muscle is easily cut with a knife or the like, and the contraction of the tube does not occur because the tube is damaged.
  • the sleeve filling factor is preferably 5% or more, more preferably 10% or more, and preferably 35% or less, more preferably 30% or less, for example, preferably 5 to 35%, more preferably 10 It is ⁇ 30%.
  • the sleeve filling rate can be calculated by the method described in the examples described later. When the tube coverage and the sleeve filling ratio are both in the above range, the characteristics of the high-strength fiber can be sufficiently exhibited, and it is possible to obtain an artificial muscle having high cut resistance and excellent drivability. .
  • the strength (cN / dtex) and the elongation (%) of the fibers used were 20 cm in sample length, an initial load of 0.25 cN / dtex, and a tensile speed of 10 cm /, in accordance with JIS L1013.
  • the fineness [dtex] was determined by mass method.
  • Average strength of fiber The average strength of the fibers was calculated by the sum of the strength of each fiber used and the ratio of the number of sleeves of each target fiber in the total number of sleeves (the number of bobbins set in the assembly machine).
  • the sleeve strength [N] is measured in accordance with the JIS L1013 test method, using a sleeve that has been conditioned in advance with a test length of 20 cm, an initial load of 0.25 cN / dtex and a tensile speed of 10 cm / min. The average value was adopted.
  • the dynamic friction coefficient of the elastic tube was measured with the number of tubes wound around the load being 20 according to the method defined in ASTM D-1894.
  • the hardness (hardness A) of the elastic tube was measured according to JIS K6253.
  • Tube coverage is determined from the artificial muscle diameter on the side of the artificial muscle from the artificial muscle diameter with respect to the central axis in the longitudinal direction of the artificial muscle, and the sleeve area by color image analysis with a microscope (Keyence VHX-5000) Were identified, and the coverage was determined by the following equation from the area (S1) of the rectangle described above.
  • Tube coverage [%] sleeve area [mm 2 ] / S1 [mm 2 ] ⁇ 100
  • the area (S1) of the rectangle for calculating a tube coverage was calculated by the method demonstrated below using FIG.
  • FIG. 2 is a schematic enlarged plan view of a side surface of a sleeve used in the present invention.
  • the rectangular area (S1) for calculating the tube coverage was calculated by the vertical and horizontal lengths shown below.
  • the longitudinal length 23 is a length obtained by extending the length of an artificial muscle diameter [mm] ⁇ 0.4 in the width direction of the sleeve from the central axis in the longitudinal direction of the artificial muscle (ie, the artificial muscle diameter Calculated as [mm] ⁇ 0.8).
  • the lateral length 24 was calculated as a length of an artificial muscle diameter [mm] ⁇ 2 in an arbitrary range filled with the sleeve in the longitudinal direction of the sleeve.
  • the area of the rectangle (S1) was determined by the product of the vertical length 23 and the horizontal length 24 described above.
  • the sleeve filling rate [%] is the cross-sectional area (S2) between the outermost layer of the artificial muscle sleeve and the innermost layer (tube outermost layer) by the microscope (Keyence VHX-5000) for the cross section of the artificial muscle
  • the cross-sectional area was specified by color image analysis, and the filling rate was determined by the following equation.
  • Sleeve filling rate [%] sleeve cross sectional area [mm 2 ] / S 2 [mm 2 ] ⁇ 100
  • the cross-sectional area (S2) formed between the outermost layer and the innermost layer of the artificial muscle sleeve was calculated by the method described below with reference to FIG. FIG.
  • FIG. 3 is a schematic enlarged plan view of a cross section of the artificial muscle of the present invention.
  • the outermost layer of the artificial muscle sleeve is obtained by image analysis using a microscope to find the farthest point between the center point 30 of the tube and each fiber (fiber bundle in the case of multifilament) constituting the sleeve,
  • An outer peripheral circle 31 having a radius equal to the average value of the farthest points of 30 and all fibers is determined.
  • the area obtained by subtracting the area of the tube and the tube cavity specified by the color image analysis from the area of the outer circumferential circle 31 was calculated as a cross-sectional area (S2) formed between the outermost layer and the innermost layer of the artificial muscle sleeve.
  • S2 cross-sectional area
  • the artificial muscle strength was determined from the artificial muscle strength and the artificial muscle cross section according to the following equation.
  • the artificial muscle cross-sectional area measured the diameter of the artificial muscle with a caliper, and calculated the area as a perfect circle.
  • Artificial muscle strength (N / mm 2 ) artificial muscle strength (N) / artificial muscle cross section (mm 2 )
  • Example 1 Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °. Made.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Example 2 As a high strength fiber, set 24 bobbins of Bectran HT280 dtex / 50f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, on a KOKUBUNN Limited stringing machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • a silicone tube manufactured by Takechi Co., Ltd.
  • Example 3 Set 24 bobbins of Bectran HT110 dtex / 20f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 degrees.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Example 4 As a high-strength fiber, set 16 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, on a KOKUBUNN Limited stringing machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • a silicone tube manufactured by Takechi Co., Ltd.
  • Example 5 A bobbin of 32 monofilaments of Bectran HT22 dtex / 1f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, is set as a high strength fiber in a Kokbun Limited stringing machine, and the sleeve angle is 19 degrees.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 0.6 mm, an inner diameter of 0.5 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted inside the produced sleeve to produce an artificial muscle.
  • Example 6 As high-strength fibers, set each of 12 bottles, 24 bobbins in total in Kokbun Limited's stringing machine, making the liquid crystalline polyester fiber Bectran HT 220 dtex / 40 f (made by Kuraray Co., Ltd.) and Bectran HT 220 dtex / 1 f mutually different.
  • the sleeve was manufactured in such a manner that the set angle was 19 degrees.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Example 7 As high-strength fibers, Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, and polybutylene terephthalate (PBT) fiber 220 dtex / 1f are mutually made different, 12 bobbins each, 24 bobbins in total The sleeve was set to a braiding machine, and the sleeve was made to have a set angle of 19 degrees.
  • PBT polybutylene terephthalate
  • a silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Comparative example 2 Set 8 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 degrees.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Example 8 As a high strength fiber, 24 bobbins of para-aramid fiber 220 dtex / 40 f were set in a KOKKUN Limited stringing machine, and a sleeve was manufactured so as to have a set angle of 19 degrees.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Example 9 A bobbin of 24 monofilaments of Bectran HT220 dtex / 1f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, is set as a high strength fiber in a Kokbun Limited stringing machine, and the sleeve angle is 19 degrees.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Example 10 Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °.
  • Example 11 Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °.
  • Example 12 Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °. Made.
  • a silicone tube manufactured by Takechi Co., Ltd. having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 2.13 was inserted into the inside of the produced sleeve to produce an artificial muscle.
  • Examples 1 to 12 As shown in Tables 5 and 6, in Examples 1 to 12 according to the present invention, an artificial muscle having high strength and excellent resistance to cutting and driving was obtained. In particular, in Examples 1 to 5 and 7, it was confirmed that while having high resistance to cut wounds, the driveability of the artificial muscle is also excellent, and the durability when repeatedly used is also excellent. On the other hand, in Comparative Examples 1 and 3, since the sleeve filling rate exceeded 40%, it was a result that the contraction action of the artificial muscle can not be expressed. In Comparative Example 2, the number of high-strength fibers in the sleeve was small, and the tube coverage was less than 70%, resulting in inferior cut resistance.
  • Comparative Example 4 since the fibers constituting the sleeve were PBT, the obtained artificial muscle was inferior in artificial muscle strength and cut wound resistance. In Comparative Example 5, since the sleeve filling rate exceeded 40%, it was a result that the contraction action of the artificial muscle can not be expressed.
  • the artificial muscle obtained by the present invention is high in strength and has excellent resistance to cutting and having excellent cutting resistance, and therefore, applications such as power assist equipment, rehabilitation equipment, artificial hand, soft robot hand, construction machine remote control manipulator, etc. Suitable for
  • SYMBOLS 10 elastic body tube 20 sleeve 21 fiber 22 crossing part 23 rectangular vertical length 24 for calculating tube coverage ratio rectangular horizontal length 25 for calculating tube coverage ratio for calculating tube coverage Rectangular area (S1) 30 Center point of tube 31 Outermost circle of sleeve and outer circumferential circle defined 32 Cross-sectional area formed between outermost layer and innermost layer of artificial muscle sleeve (S2)

Abstract

The present invention pertains to an artificial muscle comprising an elastic-body tube and a sleeve containing high-strength fibers, wherein: the outside of the elastic-body tube is covered by the sleeve; the tube coverage rate is 70-100%; and sleeve filling rate is 1-40%.

Description

人工筋Artificial muscle
 本発明は、高強度であり、耐切創性、駆動性に優れた人工筋に関するものである。 The present invention relates to an artificial muscle which is high in strength and is excellent in cutting resistance and driveability.
 近年、人工筋として、中空状の弾性体内に空気を注入して膨張させ、前記弾性体をその長手方向に収縮させる、マッキベン(McKibben)型人工筋が知られている(例えば、特許文献1)。特許文献1では、中空状の弾性チューブと、溶着糸を含む糸状体の交差部分を溶着した編組チューブとを具備する人工筋とすることで、人工筋の収縮動作を繰り返しても編組チューブが偏ることなく、弾性チューブの破裂を防止することができる人工筋が紹介されている。 In recent years, McKibben type artificial muscle is known as an artificial muscle, in which air is injected into a hollow elastic body to be expanded and the elastic body is contracted in its longitudinal direction (for example, Patent Document 1) . In Patent Document 1, the braided tube is biased even if the contraction operation of the artificial muscle is repeated by using an artificial muscle comprising a hollow elastic tube and a braided tube in which a crossing portion of a filament including welding threads is welded. Without, the artificial muscle which can prevent the burst of the elastic tube is introduced.
特開2016-173117号公報JP, 2016-173117, A
 しかしながら、人工筋はロボットのアーム部分や人間が物品等を把持する動作を補助する装置等に使用されるため、例えば刃物等を使用する場面や装置内で突起物がある場合においては、人工筋が切創を負う可能性があり、弾性チューブや編組チューブが損傷することで収縮動作が発現できなくなる課題があった。また、高重量物を持ち上げた場合において、人工筋に高負荷が掛かると編組チューブを構成する繊維に塑性変形が起こり、収縮動作が発現できなくなる課題があった。 However, since artificial muscle is used for an arm portion of a robot or a device for assisting an operation in which a person holds an article etc., the artificial muscle is used, for example, in the case of using a blade or the like or when there are protrusions in the device. However, the elastic tube and the braided tube are damaged, and there is a problem that the contraction operation can not be expressed. In addition, when a heavy load is lifted, plastic deformation occurs in the fibers constituting the braided tube when a high load is applied to the artificial muscle, and there is a problem that the contraction operation can not be realized.
 本発明はこのような従来技術における問題点を解決するものであり、高強度であり、耐切創性、駆動性に優れるとともに、繰り返して使用した場合の耐久性にも優れる人工筋を提供するものである。 The present invention solves the problems in the prior art and provides an artificial muscle which is high in strength, excellent in cut resistance and drivability, and excellent in durability when used repeatedly. It is.
 本発明者等は、上記課題を解決すべく鋭意検討した結果、人工筋の外側に高強力繊維を適切に配置することで、高強度な人工筋を得ることができるだけでなく、外部負荷が掛かった場合でも損傷しにくくなり、耐切創性、駆動性に優れた人工筋が得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors are able to obtain high-strength artificial muscle by appropriately arranging high-strength fibers outside the artificial muscle, and an external load is applied. The present invention has been completed by finding that an artificial muscle which is less likely to be damaged and which is excellent in cut resistance and driveability can be obtained.
 即ち、本発明の人工筋は、以下の態様を包含する。
[1]弾性体チューブと、高強力繊維を含むスリーブとからなる人工筋であって、前記弾性体チューブの外側を前記スリーブで覆うように配され、チューブ被覆率が70~100%であり、且つスリーブ充填率が1~40%である、人工筋。
[2]前記高強力繊維が液晶ポリエステル繊維である、前記[1]に記載の人工筋。
[3]前記高強力繊維の強度が18cN/dtex以上である、前記[1]又は[2]に記載の人工筋。
[4]前記高強力繊維の伸度が7%以下である、前記[1]~[3]のいずれかに記載の人工筋。
[5]前記スリーブに使用する繊維の平均強度が、13cN/dtex以上である、前記[1]~[4]のいずれかに記載の人工筋。
[6]弾性体チューブの動摩擦係数が1.0以下である、前記[1]~[5]のいずれかに記載の人工筋。
[7]スリーブを構成する繊維の単繊維繊度が0.5dtex以上500dtex以下である、前記[1]~[6]のいずれかに記載の人工筋。
That is, the artificial muscle of the present invention includes the following aspects.
[1] An artificial muscle comprising an elastic tube and a sleeve containing high strength fibers, wherein the outside of the elastic tube is covered with the sleeve, and the tube coverage is 70 to 100%, And an artificial muscle having a sleeve filling rate of 1 to 40%.
[2] The artificial muscle according to the above [1], wherein the high strength fiber is a liquid crystal polyester fiber.
[3] The artificial muscle according to the above [1] or [2], wherein the strength of the high strength fiber is 18 cN / dtex or more.
[4] The artificial muscle according to any one of the above [1] to [3], wherein the elongation of the high strength fiber is 7% or less.
[5] The artificial muscle according to any one of the above [1] to [4], wherein an average strength of fibers used for the sleeve is 13 cN / dtex or more.
[6] The artificial muscle according to any one of the above [1] to [5], wherein the dynamic friction coefficient of the elastic tube is 1.0 or less.
[7] The artificial muscle according to any one of the above [1] to [6], wherein the single fiber fineness of the fibers constituting the sleeve is 0.5 dtex or more and 500 dtex or less.
 本発明によれば、高強度な人工筋が得ることができるだけでなく、外部負荷が掛かった場合でも損傷しにくくなり、耐切創性、駆動性に優れるとともに、繰り返して使用した場合の耐久性にも優れる人工筋を得ることが出来る。 According to the present invention, it is possible not only to obtain a high strength artificial muscle, but also to be hard to be damaged even when an external load is applied, and excellent in cut wound resistance and driveability, and also in durability when used repeatedly. It is possible to obtain an excellent artificial muscle.
図1は、本発明の人工筋を説明するための概略拡大平面図である。FIG. 1 is a schematic enlarged plan view for explaining the artificial muscle of the present invention. 図2は、本発明に用いるスリーブ側面の概略拡大平面図である。FIG. 2 is a schematic enlarged plan view of a side surface of a sleeve used in the present invention. 図3は、本発明の人工筋の断面の概略拡大平面図である。FIG. 3 is a schematic enlarged plan view of a cross section of the artificial muscle of the present invention.
 以下、本発明を実施するための形態を図示例と共に説明する。図1は、本発明の人工筋を説明するための概略拡大平面図である。図示のとおり、流体圧により伸縮する本発明の人工筋は、弾性体チューブ10と、弾性体チューブの外表面に配置されるスリーブ20とから主に構成される。人工筋の端部には、送気チューブ等を介してコンプレッサーやバルブが接続される。 Hereinafter, a mode for carrying out the present invention will be described with an example shown in the drawings. FIG. 1 is a schematic enlarged plan view for explaining the artificial muscle of the present invention. As shown, the artificial muscle of the present invention, which expands and contracts by fluid pressure, is mainly composed of an elastic tube 10 and a sleeve 20 disposed on the outer surface of the elastic tube. A compressor or a valve is connected to the end of the artificial muscle via an air supply tube or the like.
 弾性体チューブ10は、中空の筒状に形成される弾性体からなる。これは、コンプレッサー等からの送気により膨張するように構成されている。弾性体チューブ10は、エアーコンプレッサーからの送気により膨張できる程度の軟質ゴムであれば特に限定はなく、例えば硬度A60以下のゴムなどが挙げられる。例えば、硬度A60以下のゴムであれば、十分な人工筋収縮性を確保しやすく、硬度A55以下のゴムがより好ましい。また、弾性体チューブが軟らかすぎるとスリーブを構成する繊維の網目間にチューブが食い込みやすくなるため、人工筋の駆動性や耐久性を向上させ得る観点から、弾性体チューブ(軟質ゴム)の硬さは硬度A10以上であることが好ましい。素材としては、シリコーンなど架橋点を有するゴムが耐久性の面からより好ましい。 The elastic tube 10 is made of an elastic body formed in a hollow cylindrical shape. This is configured to expand by air supply from a compressor or the like. The elastic tube 10 is not particularly limited as long as it is a soft rubber that can expand by air supply from an air compressor, and examples thereof include rubber having a hardness of 60 or less. For example, if it is a rubber having a hardness of 60 or less, it is easy to ensure sufficient artificial muscle contraction, and a rubber having a hardness of 55 or less is more preferable. Also, if the elastic tube is too soft, the tube is likely to bite into the mesh of fibers constituting the sleeve, so the hardness of the elastic tube (soft rubber) can be improved from the viewpoint of improving the drivability and durability of the artificial muscle. Is preferably a hardness A10 or more. As a material, rubber having a crosslinking point such as silicone is more preferable from the viewpoint of durability.
 本発明において、弾性体チューブ10の動摩擦係数は、好ましくは1.0以下であり、より好ましくは0.8以下、さらに好ましくは0.6以下である。弾性体チューブの動摩擦係数が上記上限以下であると、スリーブ20を構成する繊維が弾性体チューブの外表面に引っ掛かりにくくなり、弾性体チューブへの繊維の食い込みを低減することができる。特に、本発明においてスリーブ20は高強力繊維を用いて構成されるが、この場合、例えばポリエステル系繊維などを用いた場合と比較して、弾性体チューブが膨張した際の繊維の食い込みが大きくなり、人工筋の駆動性を低下させるだけでなく、繰り返し使用した場合には弾性体チューブの破裂が生じやすくなるが、弾性体チューブの動摩擦係数を制御することによりチューブへの繊維の食い込みを抑制し、繰り返し使用される人工筋の耐久性を向上させることができる。弾性体チューブ10の動摩擦係数の下限は特に限定されるものではなく、通常0.1以上であり、例えば0.2以上であってよい。
 なお、動摩擦係数は、ASTM D-1894に規定される方法に準じて測定することができる。
In the present invention, the dynamic friction coefficient of the elastic tube 10 is preferably 1.0 or less, more preferably 0.8 or less, and still more preferably 0.6 or less. When the dynamic friction coefficient of the elastic tube is equal to or less than the above upper limit, the fibers constituting the sleeve 20 are less likely to be caught on the outer surface of the elastic tube, and biting of the fibers into the elastic tube can be reduced. In particular, in the present invention, the sleeve 20 is configured using high-strength fibers, but in this case, the bite of the fibers when the elastic tube is expanded becomes larger as compared with, for example, polyester fibers. Not only reduces the drivability of the artificial muscle but also the elastic tube tends to rupture when used repeatedly, but controlling the dynamic friction coefficient of the elastic tube suppresses the biting of fibers into the tube. The durability of artificial muscles that are used repeatedly can be improved. The lower limit of the dynamic friction coefficient of the elastic tube 10 is not particularly limited, and is usually 0.1 or more, and may be 0.2 or more, for example.
The dynamic friction coefficient can be measured according to the method defined in ASTM D-1894.
 本発明においてスリーブとは、弾性体チューブの外表面に配置される筒状の組紐を意味し、例えば、図1においてスリーブ20は、繊維21を弾性体チューブ10の外壁の上に移動自在に縒り合わせて袋編みされている。繊維21を縒り合わせて袋編みする手法については特に限定されるものではなく、例えば一般的な製紐機を用い、チューブ10のチューブ径にあわせ複数本(例えば、3本以上)の繊維21を交互に斜め方向に組み合わせればよい。 In the present invention, the sleeve means a tubular braid disposed on the outer surface of the elastic tube, and for example, in FIG. 1, the sleeve 20 allows the fiber 21 to move around the outer wall of the elastic tube 10 so as to be freely movable. The bag is knitted together. There is no particular limitation on the method of weaving and knitting the fibers 21 together. For example, using a general stringing machine, a plurality of (for example, three or more) fibers 21 may be used in accordance with the tube diameter of the tube 10. It may be combined in an oblique direction alternately.
 本発明の人工筋のスリーブ20に用いる繊維21は、高強力繊維が含まれていることが、人工筋に耐久性及び耐切創性を付与する観点から重要である。繊維21には本発明の効果を損なわない限り、高強力繊維に加えて、ポリブチレンテレフタレート繊維、ポリエチレンテレフタレート繊維、ポリアミド繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリスチレン繊維、ポリ塩化ビニル繊維、ポリビニルアルコール繊維、ポリカーボネート繊維、ポリ乳酸繊維、ポリウレタン繊維、アクリル繊維などの熱可塑性繊維を単独で、又は二種以上を組み合わせて、含んでいてもよい。スリーブを構成する繊維として高強力繊維とそれ以外の他の繊維とを含む場合、高い耐切創性を確保する観点から、高強力繊維と他の繊維とが均等に分布するよう、例えば、高強力繊維と他の繊維とを互い違いに編み込むことなどしてスリーブを構成することが好ましい。 It is important that the fibers 21 used for the sleeve 20 of the artificial muscle of the present invention include high-strength fibers from the viewpoint of imparting durability and cut resistance to the artificial muscle. In addition to high strength fibers, fibers 21 may be polybutylene terephthalate fibers, polyethylene terephthalate fibers, polyamide fibers, polyethylene fibers, polypropylene fibers, polystyrene fibers, polyvinyl chloride fibers, polyvinyl alcohol fibers, in addition to high strength fibers, as long as the effects of the present invention are not impaired. Thermoplastic fibers such as polycarbonate fiber, polylactic acid fiber, polyurethane fiber and acrylic fiber may be contained alone or in combination of two or more. When high strength fibers and other fibers other than the above are contained as the fibers constituting the sleeve, for example, high strength and high strength fibers are distributed uniformly from the viewpoint of securing high cut resistance. Preferably, the sleeve is constructed, for example, by alternately interlacing fibers with other fibers.
 このように構成される人工筋は、収縮動作では、コンプレッサー等からの送気により弾性体チューブ10が径方向に膨張し、スリーブ20により動きが制限されることで、軸方向に短くなる方向に収縮する。また、弛緩動作では、バルブを開放して排気するか、さらに吸気することで強制的に膨張した弾性体チューブ10を元の状態に戻し、軸方向の長さが元に戻る。このとき、本発明の人工筋では、スリーブ20の交差部分22によって、交差部分22を中心にパンタグラフ動作となるので、スリーブ20が径方向に膨張することで軸方向に短くなり、人工筋が収縮動作を起こす。 In the contraction operation, in the contraction operation, the elastic muscle tube 10 is expanded in the radial direction by the air supplied from the compressor or the like, and the movement is limited by the sleeve 20, so that the artificial muscle is shortened in the axial direction. To contract. Further, in the relaxation operation, the valve is released to exhaust, or the elastic tube 10 which is forcibly expanded by inhaling is returned to the original state, and the axial length returns to the original. At this time, in the artificial muscle of the present invention, the intersection portion 22 of the sleeve 20 performs a pantograph operation around the intersection portion 22. Therefore, the sleeve 20 is expanded in the radial direction and axially shortened, and the artificial muscle contracts. Take action.
 以下、より詳細に本発明の人工筋のスリーブ20の構成について説明する。図2は、本発明の人工筋の編組チューブの一例を説明するためのスリーブ20の概略拡大平面図である。図中、図1と同一の符号を付した部分は同一物を表しており、詳説は省略する。図2に示される例では、スリーブ20の繊維21は、交互に縒り合わせて袋編みされている。 Hereinafter, the configuration of the artificial muscle sleeve 20 of the present invention will be described in more detail. FIG. 2 is a schematic enlarged plan view of a sleeve 20 for explaining an example of the artificial muscle braided tube of the present invention. In the figure, the part which attached | subjected the code | symbol same as FIG. 1 represents the same thing, and abbreviate | omits detailed explanation. In the example shown in FIG. 2, the fibers 21 of the sleeve 20 are alternately braided and bag-woven.
 次に、本発明のスリーブ20に用いる繊維21に含まれていることが必要な高強力繊維を説明する。本発明において、高強力繊維とは、引張強度が18cN/dtex以上である繊維を意味し、本発明の人工筋で用いる高強力繊維は、前述した強度を示す限り、無機繊維、有機繊維のいずれであってもよく、無機繊維としては、炭素繊維などが挙げられ、有機繊維としては、液晶ポリエステル繊維、アラミド繊維(例えば、パラ系アラミド繊維)、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、超高分子量ポリエチレン繊維などが挙げられる。これらの繊維は、単独で、又は二種以上を組み合わせて用いてもよい。さらに、これらの中でも液晶ポリエステル繊維は、塑性変形が起こりにくい、吸水性が低い、耐切創性が高いことから、より好適に用いることができる。 Next, high-strength fibers that need to be contained in the fibers 21 used for the sleeve 20 of the present invention will be described. In the present invention, the high strength fiber means a fiber having a tensile strength of 18 cN / dtex or more, and the high strength fiber used in the artificial muscle of the present invention can be any of inorganic fiber and organic fiber as long as it exhibits the above strength. Inorganic fibers include carbon fibers, and organic fibers include liquid crystal polyester fibers, aramid fibers (for example, para-aramid fibers), polyparaphenylene benzobisoxazole (PBO) fibers, and super fibers. High molecular weight polyethylene fibers and the like can be mentioned. These fibers may be used alone or in combination of two or more. Further, among these, the liquid crystal polyester fiber can be more preferably used because plastic deformation hardly occurs, the water absorption is low, and the cut resistance is high.
 本発明の人工筋で用いる液晶ポリエステル繊維は、液晶ポリエステルを溶融紡糸することにより得ることができる。液晶ポリエステルとしては、例えば芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等に由来する反復構成単位からなり、本発明の効果を損なわない限り、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸に由来する構成単位は、その化学的構成については特に限定されるものではない。また、本発明の効果を阻害しない範囲で、液晶ポリエステルは、芳香族ジアミン、芳香族ヒドロキシアミン又は芳香族アミノカルボン酸に由来する構成単位を含んでいてもよい。例えば、好ましい構成単位としては、表1に示す例が挙げられる。 The liquid crystalline polyester fiber used in the artificial muscle of the present invention can be obtained by melt spinning liquid crystalline polyester. The liquid crystalline polyester is, for example, composed of repeating structural units derived from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, etc., and an aromatic diol, an aromatic dicarboxylic acid, an aromatic as long as the effects of the present invention are not impaired. The structural unit derived from hydroxycarboxylic acid is not particularly limited as to its chemical constitution. Moreover, in the range which does not inhibit the effect of this invention, liquid crystalline polyester may contain the structural unit derived from aromatic diamine, aromatic hydroxyamine, or aromatic aminocarboxylic acid. For example, examples shown in Table 1 can be given as preferable structural units.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Yは、1~[置換可能な最大数]の範囲において、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基などの炭素数1から4のアルキル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基など)、アリール基(例えば、フェニル基、ナフチル基など)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)など]、アリールオキシ基(例えば、フェノキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基など)などが挙げられる。 Y is each independently a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like, an alkyl group (for example, a methyl group, An alkyl group having 1 to 4 carbon atoms such as ethyl, isopropyl, t-butyl, etc., an alkoxy group (eg, methoxy, ethoxy, isopropoxy, n-butoxy etc.), an aryl group (eg, Phenyl group, naphthyl group etc., aralkyl group [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group) etc.], aryloxy group (eg, phenoxy group etc.), aralkyloxy group (eg, benzyloxy group etc.) And the like.
 より好ましい構成単位としては、下記表2、表3及び表4に示す例(1)~(18)に記載される構成単位が挙げられる。なお、式中の構成単位が、複数の構造を示しうる構成単位である場合、そのような構成単位を二種以上組み合わせて、ポリマーを構成する構成単位として使用してもよい。 More preferable structural units include the structural units described in Examples (1) to (18) shown in Table 2, Table 3 and Table 4 below. In addition, when the structural unit in a formula is a structural unit which can show several structures, you may use it as a structural unit which comprises a polymer combining 2 or more types of such structural units.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2、表3及び表4の構成単位において、nは1又は2の整数で、それぞれの構成単位n=1、n=2は、単独で又は組み合わせて存在してもよく、Y1及びY2は、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基などの炭素数1から4のアルキル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基など)、アリール基(例えば、フェニル基、ナフチル基など)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)など]、アリールオキシ基(例えば、フェノキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基など)などであってもよい。これらのうち、好ましいYとしては、水素原子、塩素原子、臭素原子、又はメチル基が挙げられる。 In the constitutional units of Tables 2, 3 and 4, n is an integer of 1 or 2, and each constitutional unit n = 1, n = 2 may be present alone or in combination, and Y1 and Y2 are And each independently a hydrogen atom, a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., an alkyl group (eg, a methyl group, an ethyl group, an isopropyl group, a t-butyl group, etc.) To 4), an alkoxy group (eg, methoxy, ethoxy, isopropoxy, n-butoxy etc.), an aryl group (eg, phenyl, naphthyl etc.), an aralkyl group [benzyl group (phenyl Methyl group), phenethyl group (phenylethyl group etc.), aryloxy group (eg phenoxy group etc.), aralkyloxy group (eg benzyloxy) May be a group). Of these, preferred Y, a hydrogen atom, a chlorine atom, a bromine atom, or include methyl group.
 また、Zとしては、下記式で表される置換基が挙げられる。 Further, examples of Z include a substituent represented by the following formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 好ましい液晶ポリエステルは、好ましくは、ナフタレン骨格を構成単位として有する組み合わせであってもよい。特に好ましくは、ヒドロキシ安息香酸由来の構成単位(A)と、ヒドロキシナフトエ酸由来の構成単位(B)の両方を含んでいる。例えば、構成単位(A)としては下記式(A)が挙げられ、構成単位(B)としては下記式(B)が挙げられ、溶融成形性を向上する観点から、構成単位(A)と構成単位(B)の比率は、好ましくは9/1~1/1、より好ましくは7/1~1/1、さらに好ましくは5/1~1/1の範囲であってもよい。 The preferred liquid crystal polyester may preferably be a combination having a naphthalene skeleton as a constituent unit. Particularly preferably, it contains both a constituent unit (A) derived from hydroxybenzoic acid and a constituent unit (B) derived from hydroxynaphthoic acid. For example, as the structural unit (A), the following formula (A) can be mentioned, and as the structural unit (B), the following formula (B) can be mentioned, and from the viewpoint of improving melt formability, The ratio of the unit (B) may be preferably in the range of 9/1 to 1/1, more preferably 7/1 to 1/1, and still more preferably 5/1 to 1/1.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 また、(A)の構成単位と(B)の構成単位の合計は、例えば、全構成単位に対して65モル%以上であってもよく、より好ましくは70モル%以上、さらに好ましくは80モル%以上であってもよい。ポリマー中、特に(B)の構成単位が4~45モル%である液晶ポリエステルが好ましい。 In addition, the total of the structural unit of (A) and the structural unit of (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, and still more preferably 80 mol based on all the structural units. It may be% or more. In the polymer, in particular, a liquid crystalline polyester having 4 to 45 mol% of the constituent unit of (B) is preferable.
 本発明で好適に用いられる液晶ポリエステルの融点は250~360℃の範囲であることが好ましく、より好ましくは260~320℃である。なお、ここでいう融点とは、JIS K7121試験法に準拠し、示差走差熱量計(例えば、DSC;メトラー社製「TA3000」)で測定し、観察される主吸収ピーク温度である。具体的には、前記DSC装置に、サンプルを10~20mgをとりアルミ製パンへ封入した後、キャリヤーガスとして窒素を100cc/分流し、20℃/分で昇温したときの吸熱ピークを測定する。ポリマーの種類によってはDSC測定において1st runで明確なピークが現れない場合は、50℃/分の昇温速度で予想される流れ温度よりも50℃高い温度まで昇温し、その温度で3分間完全に溶融した後、-80℃/分の降温速度で50℃まで冷却し、しかる後に20℃/分の昇温速度で吸熱ピークを測定するとよい。 The melting point of the liquid crystalline polyester suitably used in the present invention is preferably in the range of 250 to 360.degree. C., more preferably 260 to 320.degree. In addition, melting | fusing point here is a main absorption peak temperature observed and measured with a differential scanning calorimeter (for example, DSC; Mettler "TA3000") based on a JIS K7121 test method. Specifically, after taking 10 to 20 mg of a sample in the above DSC apparatus and sealing it in an aluminum pan, flow 100 cc / min of nitrogen as a carrier gas and measure the endothermic peak when the temperature is raised at 20 ° C./min. . Depending on the type of polymer, if a clear peak does not appear in the 1st run in DSC measurement, raise the temperature to 50 ° C higher than expected flow temperature at a heating rate of 50 ° C / min, and at that temperature for 3 minutes After complete melting, it may be cooled to 50 ° C. at a temperature drop rate of −80 ° C./min, and then the endothermic peak may be measured at a temperature rise rate of 20 ° C./min.
 なお、上記液晶ポリエステルには、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。また酸化チタン、カオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいてもよい。 In addition, thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluorine resin are added to the above liquid crystal polyester in the range not to impair the effects of the present invention. It is also good. In addition, inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, various additives such as antioxidants, ultraviolet light absorbers and light stabilizers may be included.
 本発明の人工筋で用いる高強力繊維の強度は、18cN/dtex以上であることが好ましい。強度が18cN/dtex以上であると、十分な人工筋収縮性を確保し得るとともに耐切創性を向上させることができる。より好ましくは20cN/dtex以上であり、特に好ましくは22cN/dtex以上である。上限に関しては特に制限はないが、通常100cN/dtex以下である。なお、強度は後述する実施例に記載の測定方法により算出されるものである。 The strength of the high strength fiber used in the artificial muscle of the present invention is preferably 18 cN / dtex or more. When the strength is 18 cN / dtex or more, sufficient artificial muscle contractility can be secured and cut resistance can be improved. More preferably, it is 20 cN / dtex or more, and particularly preferably 22 cN / dtex or more. The upper limit is not particularly limited, but is usually 100 cN / dtex or less. In addition, strength is calculated by the measuring method as described in the Example mentioned later.
 本発明の人工筋で用いる高強力繊維の伸度は、7%以下であることが好ましい。7%以下であると、人工筋に対して高負荷が掛かった際の塑性変形の抑制に優れる。より好ましくは6%以下であり、特に好ましくは5%以下である。なお、下限に関しては特に制限はないが、通常0%以上である。なお、伸度は後述する実施例に記載の測定方法により算出されるものである。 The elongation of the high strength fiber used in the artificial muscle of the present invention is preferably 7% or less. It is excellent in suppression of the plastic deformation at the time of applying high load with respect to an artificial muscle as it is 7% or less. More preferably, it is at most 6%, particularly preferably at most 5%. The lower limit is not particularly limited, but is usually 0% or more. In addition, elongation is calculated by the measuring method as described in the Example mentioned later.
 本発明の人工筋で用いる繊維の単繊維繊度は、0.5dtex以上、500dtex以下であることが好ましい。単繊維繊度が0.5dtex以上であると、繊維製造工程で繊維の断糸が生じにくくなる。また、単繊維繊度が500dtex以下であると、適度な太さのスリーブを得やすく、高い耐切創性を確保できる。特に、高強力繊維を用いてスリーブを構成する場合、例えばポリエステル系繊維などを用いた場合と比較して、弾性体チューブが膨張した際に繊維が伸びにくく、曲がりにくいため、チューブへの食い込みが大きくなり、人工筋の駆動性を低下させるだけでなく、繰り返し使用した場合には弾性体チューブの破裂が生じやすくなる傾向にある。スリーブを構成する繊維の単繊維繊度を上記範囲の上限値以下にすることにより、高い耐切創性を確保しながら、チューブへの繊維の食い込みを抑制し、繰り返し使用される人工筋の耐久性を向上させやすくなる。本発明において、単繊維繊度は、より好ましくは0.5dtex以上、さらに好ましくは1dtex以上、特に好ましくは1.5dtex以上であり、また、より好ましくは200dtex以下、さらに好ましくは15dtex以下、特に好ましくは10dtex以下である。 The single fiber fineness of the fibers used in the artificial muscle of the present invention is preferably 0.5 dtex or more and 500 dtex or less. When the single fiber fineness is 0.5 dtex or more, it becomes difficult to produce a fiber breakage in the fiber production process. In addition, when the single fiber fineness is 500 dtex or less, a sleeve having an appropriate thickness can be easily obtained, and high cut resistance can be secured. In particular, when a high strength fiber is used to form a sleeve, compared to the case of using, for example, a polyester fiber, the fiber is difficult to stretch and bend when the elastic tube expands, and therefore biting into the tube is difficult. Not only does this increase the size and lower the drivability of the artificial muscle, but it tends to cause the elastic tube to rupture easily when used repeatedly. By setting the single fiber fineness of the fibers constituting the sleeve below the upper limit value of the above range, the bite of the fibers into the tube is suppressed while securing high cut resistance, and the durability of the artificial muscle used repeatedly is improved. It will be easier to improve. In the present invention, the single fiber fineness is more preferably 0.5 dtex or more, further preferably 1 dtex or more, particularly preferably 1.5 dtex or more, and more preferably 200 dtex or less, still more preferably 15 dtex or less, particularly preferably 10 dtex or less.
 本発明において、スリーブを構成する繊維はモノフィラメントであっても、マルチフィラメントであってもよいが、マルチフィラメントである場合には、総繊度が同じモノフィラメントと比較して、繊維が曲がりやすいため、弾性体チューブへの繊維の食い込みの抑制効果が高くなり、人工筋の耐久性をより向上させやすい。 In the present invention, the fibers constituting the sleeve may be monofilaments or multifilaments, but in the case of multifilaments, the fibers are more likely to be bent as compared to monofilaments having the same total fineness. The effect of suppressing the bite of fibers into the body tube is enhanced, and the durability of the artificial muscle can be further improved.
 また、上記繊維の総繊度は、好ましくは10dtex以上、50000dtex以下である。総繊度が10dtex以上であると、スリーブ製造工程などで繊維の断糸が生じにくくなる。総繊度が50000dtex以下であると、適度な太さのスリーブとなり、チューブの被覆面積の低下を抑制し、高い耐切創性を得られる。総繊度は、より好ましくは15dtex以上、さらに好ましくは25dtex以上であり、また、より好ましくは30000dtex以下、さらに好ましくは10000dtex以下である。 The total fineness of the above-mentioned fiber is preferably 10 dtex or more and 50000 dtex or less. If the total fineness is 10 dtex or more, it becomes difficult to produce fiber breakage in the sleeve production process and the like. When the total fineness is 50000 dtex or less, a sleeve having a suitable thickness is obtained, and a decrease in the covering area of the tube can be suppressed, and high cut resistance can be obtained. The total fineness is more preferably 15 dtex or more, further preferably 25 dtex or more, and more preferably 30,000 dtex or less, more preferably 10,000 dtex or less.
 本発明の人工筋で用いるスリーブには高強力繊維以外の繊維が含まれていてもよく、スリーブに高強力繊維と高強力繊維以外の他の繊維を含む場合、スリーブに使用する繊維の平均強度は、13cN/dtex以上であることが好ましい。上記の平均強度は、使用した各繊維の強度に、全スリーブ打数(製紐機にセットするボビン本数)におけるその繊維のスリーブ打数の比を掛けた値の合計により算出されるものである。スリーブに使用する繊維の平均強度が13cN/dtex以上であれば、十分な人工筋収縮性を確保し得るとともに耐切創性を向上させることができる。繊維の平均強度は、より好ましくは14cN/dtex以上であり、特に好ましくは、15cN/dtex以上である。上限に関しては特に制限はないが、100cN/dtex以下である。なお、強度は後述する実施例に記載の測定方法により算出されるものである。 The sleeve used in the artificial muscle of the present invention may contain fibers other than high strength fibers, and when the sleeve contains high strength fibers and other fibers other than high strength fibers, the average strength of the fibers used in the sleeve Is preferably 13 cN / dtex or more. The above-mentioned average strength is calculated by the sum of the strength of each fiber used and the ratio of the number of sleeves of that fiber in the total number of sleeves (the number of bobbins set in a stringing machine). If the average strength of the fibers used for the sleeve is 13 cN / dtex or more, sufficient artificial muscle contractility can be secured and cut resistance can be improved. The average strength of the fibers is more preferably 14 cN / dtex or more, and particularly preferably 15 cN / dtex or more. The upper limit is not particularly limited, but is 100 cN / dtex or less. In addition, strength is calculated by the measuring method as described in the Example mentioned later.
 本発明の人工筋は、チューブ被覆率が70~100%であることが重要である。チューブ被覆率は、スリーブに用いる繊維の総繊度、単繊維繊度、繊維径、スリーブの打数、組角を調整することで、任意に変更することができる。チューブ被覆率が70%未満であると、刃物などで人工筋内部にあるチューブが切創しやすくなり、チューブが損傷することにより収縮動作が発現できなくなる。チューブ被覆率は、好ましくは75%以上、より好ましくは80%以上、さらに好ましくは90%以上であり、例えば、好ましくは80~100%、より好ましくは90~100%である。チューブ被覆率は、後述する実施例に記載の方法により算出することができる。 It is important that the artificial muscle of the present invention has a tube coverage of 70 to 100%. The tube coverage can be arbitrarily changed by adjusting the total fineness of fibers used for the sleeve, the single fiber fineness, the fiber diameter, the number of strokes of the sleeve, and the formation angle. If the tube coverage is less than 70%, the tube inside the artificial muscle is easily cut with a knife or the like, and the contraction of the tube can not be performed due to damage to the tube. The tube coverage is preferably 75% or more, more preferably 80% or more, further preferably 90% or more, and for example, preferably 80 to 100%, more preferably 90 to 100%. The tube coverage can be calculated by the method described in the examples described later.
 また、本発明の人工筋は、スリーブ充填率が1~40%であることが重要である。スリーブ充填率は、スリーブに用いる繊維の総繊度、単繊維繊度、繊維径、スリーブの打数、組角を調整することで、任意に変更することができる。40%を超える場合は、スリーブの目が詰まり過ぎているため、スリーブ角が変化できず、人工筋として収縮動作が発現できなくなる。1%未満であると、刃物などで人工筋内部にあるチューブが切創しやすくなり、チューブが損傷することにより収縮動作が発現しなくなる。スリーブ充填率は、好ましくは5%以上、より好ましくは10%以上であり、また、好ましくは35%以下、より好ましくは30%以下であり、例えば、好ましくは5~35%、より好ましくは10~30%である。スリーブ充填率は、後述する実施例に記載の方法により算出することができる。
 チューブ被覆率とスリーブ充填率がともに上記範囲内であると、高強度繊維の特性を十分に発揮させることができ、高い耐切創性を有するとともに駆動性にも優れた人工筋を得ることができる。
In addition, it is important that the artificial muscle of the present invention has a sleeve filling rate of 1 to 40%. The filling rate of the sleeve can be arbitrarily changed by adjusting the total fineness of fibers used for the sleeve, the single fiber fineness, the fiber diameter, the number of strokes of the sleeve, and the formation angle. If it exceeds 40%, the sleeves are too clogged, so the sleeve angle can not be changed and the contraction action can not be expressed as an artificial muscle. If it is less than 1%, the tube inside the artificial muscle is easily cut with a knife or the like, and the contraction of the tube does not occur because the tube is damaged. The sleeve filling factor is preferably 5% or more, more preferably 10% or more, and preferably 35% or less, more preferably 30% or less, for example, preferably 5 to 35%, more preferably 10 It is ~ 30%. The sleeve filling rate can be calculated by the method described in the examples described later.
When the tube coverage and the sleeve filling ratio are both in the above range, the characteristics of the high-strength fiber can be sufficiently exhibited, and it is possible to obtain an artificial muscle having high cut resistance and excellent drivability. .
 以下、実施例により本発明を詳述するが、本発明はこれら実施例により何等限定されるものではない。なお、実施例中の測定値は以下の方法により測定されたものである。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited at all by these examples. In addition, the measured value in an Example is measured by the following method.
(強度、伸度、繊度)
 用いた繊維の強度〔cN/dtex〕及び伸度〔%〕は、JIS L1013試験法に準拠して、予め調湿されたヤーンを試長20cm、初荷重0.25cN/dtex及び引張速度10cm/分の条件での破断時の強度及び伸度を測定し、n=20の平均値を採用した。また繊度〔dtex〕は質量法により求めた。
(Strength, elongation, fineness)
The strength (cN / dtex) and the elongation (%) of the fibers used were 20 cm in sample length, an initial load of 0.25 cN / dtex, and a tensile speed of 10 cm /, in accordance with JIS L1013. The strength and elongation at break were measured under conditions of minutes, and an average value of n = 20 was adopted. The fineness [dtex] was determined by mass method.
(繊維の平均強度)
 繊維の平均強度は、用いた各繊維の強度に、全スリーブ打数(製組機にセットするボビン本数)における対象とする各繊維のスリーブ打数の比をかけた値の合計により算出した。
(Average strength of fiber)
The average strength of the fibers was calculated by the sum of the strength of each fiber used and the ratio of the number of sleeves of each target fiber in the total number of sleeves (the number of bobbins set in the assembly machine).
(スリーブ強力)
 スリーブ強力〔N〕は、JIS L1013試験法に準拠して、予め調湿されたスリーブを試長20cm、初荷重0.25cN/dtex及び引張速度10cm/分の条件で測定し、n=20の平均値を採用した。
(Sleeve strength)
The sleeve strength [N] is measured in accordance with the JIS L1013 test method, using a sleeve that has been conditioned in advance with a test length of 20 cm, an initial load of 0.25 cN / dtex and a tensile speed of 10 cm / min. The average value was adopted.
(弾性体チューブの動摩擦係数)
 弾性体チューブの動摩擦係数は、ASTM D-1894に規定される方法に準じて、荷重へ巻き付けるチューブの本数を20本として測定した。
(Dynamic friction coefficient of elastic tube)
The dynamic friction coefficient of the elastic tube was measured with the number of tubes wound around the load being 20 according to the method defined in ASTM D-1894.
(弾性体チューブの硬度)
 弾性体チューブの硬度(硬度A)は、JIS K6253に準じて測定した。
(Hardness of elastic tube)
The hardness (hardness A) of the elastic tube was measured according to JIS K6253.
(チューブ被覆率)
 チューブ被覆率〔%〕は人工筋の側面において、人工筋の長さ方向の中心軸を基準とする長方形を人工筋直径から求め、マイクロスコープ(キーエンスVHX-5000)にて色画像分析でスリーブ面積を特定し、上記の長方形の面積(S1)から下記式にて被覆率を求めた。
 チューブ被覆率〔%〕=スリーブ面積〔mm〕/S1〔mm〕×100
 なお、チューブ被覆率を算出するための長方形の面積(S1)は、図2を用いて以下に説明する方法により算出した。
 図2は、本発明に用いるスリーブ側面の概略拡大平面図である。図示のとおり、チューブ被覆率を算出するための長方形の面積(S1)は、次に示す縦と横の長さにより算出した。縦の長さ23は、スリーブの幅方向において、人工筋の長さ方向の中心軸から上下にそれぞれ人工筋直径〔mm〕×0.4の長さを伸ばした長さ(即ち、人工筋直径〔mm〕×0.8)として算出した。横の長さ24は、スリーブの長さ方向において、スリーブで満たされる任意の範囲での人工筋直径〔mm〕×2の長さとして算出した。長方形の面積(S1)は、上記の縦の長さ23と横の長さ24の積によって求めた。
(Tube coverage)
The tube coverage [%] is determined from the artificial muscle diameter on the side of the artificial muscle from the artificial muscle diameter with respect to the central axis in the longitudinal direction of the artificial muscle, and the sleeve area by color image analysis with a microscope (Keyence VHX-5000) Were identified, and the coverage was determined by the following equation from the area (S1) of the rectangle described above.
Tube coverage [%] = sleeve area [mm 2 ] / S1 [mm 2 ] × 100
In addition, the area (S1) of the rectangle for calculating a tube coverage was calculated by the method demonstrated below using FIG.
FIG. 2 is a schematic enlarged plan view of a side surface of a sleeve used in the present invention. As illustrated, the rectangular area (S1) for calculating the tube coverage was calculated by the vertical and horizontal lengths shown below. The longitudinal length 23 is a length obtained by extending the length of an artificial muscle diameter [mm] × 0.4 in the width direction of the sleeve from the central axis in the longitudinal direction of the artificial muscle (ie, the artificial muscle diameter Calculated as [mm] × 0.8). The lateral length 24 was calculated as a length of an artificial muscle diameter [mm] × 2 in an arbitrary range filled with the sleeve in the longitudinal direction of the sleeve. The area of the rectangle (S1) was determined by the product of the vertical length 23 and the horizontal length 24 described above.
(スリーブ充填率)
 スリーブ充填率〔%〕は人工筋の断面をマイクロスコープ(キーエンスVHX-5000)にて、人工筋スリーブの最外層と最内層(チューブ最外層)との間にできる断面積(S2)及びスリーブの断面積を色画像分析で特定し、下記式にて充填率を求めた。
 スリーブ充填率〔%〕=スリーブ断面積〔mm〕/S2〔mm〕×100
 なお、人工筋スリーブの最外層と最内層との間にできる断面積(S2)は、図3を用いて以下に説明する方法により算出した。
 図3は、本発明の人工筋の断面の概略拡大平面図である。図示のとおり、人工筋スリーブの最外層は、マイクロスコープにより、チューブの中心点30とスリーブを構成する各繊維(マルチフィラメントの場合は繊維束)との最遠点を画像解析により求め、中心点30と全ての繊維との最遠点の平均値を半径とする外周円31を求める。外周円31の面積から、色画像分析で特定したチューブ及びチューブ空洞部の面積を差し引いた面積を、人工筋スリーブの最外層と最内層との間にできる断面積(S2)として算出した。
(Sleeve filling rate)
The sleeve filling rate [%] is the cross-sectional area (S2) between the outermost layer of the artificial muscle sleeve and the innermost layer (tube outermost layer) by the microscope (Keyence VHX-5000) for the cross section of the artificial muscle The cross-sectional area was specified by color image analysis, and the filling rate was determined by the following equation.
Sleeve filling rate [%] = sleeve cross sectional area [mm 2 ] / S 2 [mm 2 ] × 100
The cross-sectional area (S2) formed between the outermost layer and the innermost layer of the artificial muscle sleeve was calculated by the method described below with reference to FIG.
FIG. 3 is a schematic enlarged plan view of a cross section of the artificial muscle of the present invention. As shown, the outermost layer of the artificial muscle sleeve is obtained by image analysis using a microscope to find the farthest point between the center point 30 of the tube and each fiber (fiber bundle in the case of multifilament) constituting the sleeve, An outer peripheral circle 31 having a radius equal to the average value of the farthest points of 30 and all fibers is determined. The area obtained by subtracting the area of the tube and the tube cavity specified by the color image analysis from the area of the outer circumferential circle 31 was calculated as a cross-sectional area (S2) formed between the outermost layer and the innermost layer of the artificial muscle sleeve.
(人工筋収縮評価)
 20cm長の人工筋を作製し、チューブの片端の穴を樹脂で目詰めし、もう一端のチューブをレギュレーター及び開閉バルブ付のエアーコンプレッサーに繋いだ。レギュレーターでエア圧を調整したのち、開閉バルブを用いて20%の伸縮を10回繰り返した結果を下記の基準で評価した。
A;10回以上伸縮する。
B;10回未満で伸縮しなくなる。
(Artificial muscle contraction evaluation)
A 20 cm long artificial muscle was prepared, and the hole at one end of the tube was plugged with a resin, and the tube at the other end was connected to a regulator and an air compressor with an on-off valve. After adjusting the air pressure with a regulator, the result of repeating 20% expansion and contraction 10 times using an on-off valve was evaluated based on the following criteria.
A: Stretches 10 times or more.
B: It does not expand and contract in less than 10 times.
(人工筋強度)
 人工筋強力及び人工筋断面積から以下の式にて人工筋強度を求めた。なお、人工筋強力はJIS L1013試験法と同様に、予め調湿された人工筋を試長20cm、初荷重0.25〔cN/dtex〕及び引張速度10cm/分の条件で人工筋強力〔N〕を測定し、n=20の平均値を採用した。また、人工筋断面積は、人工筋の直径をノギスにて測定し、真円として面積を算出した。
 人工筋強度〔N/mm〕=人工筋強力〔N〕/人工筋断面積〔mm
(Artificial muscle strength)
The artificial muscle strength was determined from the artificial muscle strength and the artificial muscle cross section according to the following equation. The artificial muscle strength is the same as the JIS L1013 test method, and the artificial muscle strength is adjusted in advance to a test length of 20 cm, an initial load of 0.25 [cN / dtex] and a tensile speed of 10 cm / min. Were measured, and an average value of n = 20 was adopted. Moreover, the artificial muscle cross-sectional area measured the diameter of the artificial muscle with a caliper, and calculated the area as a perfect circle.
Artificial muscle strength (N / mm 2 ) = artificial muscle strength (N) / artificial muscle cross section (mm 2 )
(切創試験後収縮評価)
 20cm長の人工筋の両端を固定し、市販の剃刀(フェザー社製)にて0.5〔N〕の荷重で垂直に押し当てた後に、先述の人工筋収縮評価と同様の評価を行った。
A;10回以上伸縮。
B;10回未満で伸縮しなくなる。
(Shrink evaluation after cut wound test)
After both ends of a 20 cm long artificial muscle were fixed and pressed vertically with a commercially available razor (manufactured by Feather Co.) with a load of 0.5 [N], the same evaluation as the artificial muscle contraction evaluation described above was performed .
A; stretches 10 times or more.
B: It does not expand and contract in less than 10 times.
(チューブ耐久性評価)
 20cm長の人工筋を作製し、チューブの片端の穴を樹脂で目詰めし、もう一端のチューブをレギュレーター及び開閉バルブ付のエアーコンプレッサーに繋いだ。レギュレーターでエア圧を調整したのち、開閉バルブを用いて20%の伸縮を5,000回繰り返した結果を下記の基準で評価した。
A;チューブの破裂なし。
B;1,000回以上5,000回未満でチューブが破裂。
C;1,000回未満でチューブが破裂。
(Tube durability evaluation)
A 20 cm long artificial muscle was prepared, and the hole at one end of the tube was plugged with a resin, and the tube at the other end was connected to a regulator and an air compressor with an on-off valve. After adjusting the air pressure with the regulator, the result of repeating 20% expansion and contraction 5,000 times using the on-off valve was evaluated based on the following criteria.
A: There is no rupture of the tube.
B: Tube ruptured at 1,000 to 5,000 times.
C: Tube ruptured in less than 1,000 times.
(実施例1)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
Example 1
Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例2)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT280dtex/50f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 2)
As a high strength fiber, set 24 bobbins of Bectran HT280 dtex / 50f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, on a KOKUBUNN Limited stringing machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例3)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT110dtex/20f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 3)
Set 24 bobbins of Bectran HT110 dtex / 20f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例4)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の16本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 4)
As a high-strength fiber, set 16 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, on a KOKUBUNN Limited stringing machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例5)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT22dtex/1f(株式会社クラレ製)のモノフィラメント32本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径0.6mm、内径0.5mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 5)
A bobbin of 32 monofilaments of Bectran HT22 dtex / 1f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, is set as a high strength fiber in a Kokbun Limited stringing machine, and the sleeve angle is 19 degrees. Was produced. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 0.6 mm, an inner diameter of 0.5 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted inside the produced sleeve to produce an artificial muscle.
(実施例6)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)とベクトランHT220dtex/1fを互いちがいに、各12本、合計24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 6)
As high-strength fibers, set each of 12 bottles, 24 bobbins in total in Kokbun Limited's stringing machine, making the liquid crystalline polyester fiber Bectran HT 220 dtex / 40 f (made by Kuraray Co., Ltd.) and Bectran HT 220 dtex / 1 f mutually different. The sleeve was manufactured in such a manner that the set angle was 19 degrees. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例7)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)とポリブチレンテレフタレート(PBT)繊維220dtex/1fを互いちがいに、各12本、合計24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 7)
As high-strength fibers, Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, and polybutylene terephthalate (PBT) fiber 220 dtex / 1f are mutually made different, 12 bobbins each, 24 bobbins in total The sleeve was set to a braiding machine, and the sleeve was made to have a set angle of 19 degrees. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(比較例1)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT440dtex/80f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Comparative example 1)
Set 24 bobbins of Bectran HT440 dtex / 80f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKUBUNN Limited stringing machine and make the sleeve angle 19 °. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(比較例2)
高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の8本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Comparative example 2)
Set 8 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(比較例3)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の32本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Comparative example 3)
As a high-strength fiber, set 32 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, to a KOKU-BUN Limited making machine and make the sleeve angle 19 degrees. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(比較例4)
 ポリブチレンテレフタレート(PBT)繊維220dtex/40fの24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Comparative example 4)
Twenty-four bobbins of polybutylene terephthalate (PBT) fiber 220 dtex / 40 f were set in a KOKKUN Limited stringing machine, and a sleeve was manufactured so as to have a set angle of 19 degrees. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(比較例5)
 ポリブチレンテレフタレート(PBT)繊維220dtex/40fの32本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Comparative example 5)
Thirty-two bobbins of polybutylene terephthalate (PBT) fiber 220 dtex / 40 f were set in a KOKKUN Limited stringing machine, and a sleeve was manufactured so that the formation angle was 19 degrees. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例8)
 高強力繊維として、パラ系アラミド繊維220dtex/40fの24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 8)
As a high strength fiber, 24 bobbins of para-aramid fiber 220 dtex / 40 f were set in a KOKKUN Limited stringing machine, and a sleeve was manufactured so as to have a set angle of 19 degrees. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例9)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/1f(株式会社クラレ製)のモノフィラメント24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数0.44のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 9)
A bobbin of 24 monofilaments of Bectran HT220 dtex / 1f (made by Kuraray Co., Ltd.), which is a liquid crystal polyester fiber, is set as a high strength fiber in a Kokbun Limited stringing machine, and the sleeve angle is 19 degrees. Was produced. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 0.44 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例10)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数2.46のスチレン系エラストマーチューブを挿入し人工筋を作製した。
(Example 10)
Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °. Made. A styrenic elastomer tube having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40 and a dynamic friction coefficient of 2.46 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例11)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度58、動摩擦係数2.00のスチレン系エラストマーチューブを挿入し人工筋を作製した。
(Example 11)
Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °. Made. A styrenic elastomer tube having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 58 and a dynamic friction coefficient of 2.00 was inserted into the inside of the produced sleeve to produce an artificial muscle.
(実施例12)
 高強力繊維として、液晶ポリエステル繊維であるベクトランHT220dtex/40f(株式会社クラレ製)の24本のボビンをコクブンリミテッド製の製紐機にセットし、組角が19度になるようにしてスリーブを作製した。作製したスリーブの内側に外径1.3mm、内径0.9mm、硬度40、動摩擦係数2.13のシリコーンチューブ(株式会社タケチ製)を挿入し人工筋を作製した。
(Example 12)
Set 24 bobbins of Bectran HT220 dtex / 40f (made by Kuraray Co., Ltd.), a liquid crystal polyester fiber, as a high-strength fiber in a KOKU-BUN Limited manufacturing machine and make the sleeve angle 19 °. Made. A silicone tube (manufactured by Takechi Co., Ltd.) having an outer diameter of 1.3 mm, an inner diameter of 0.9 mm, a hardness of 40, and a dynamic friction coefficient of 2.13 was inserted into the inside of the produced sleeve to produce an artificial muscle.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表5および6に示すとおり、本発明に従う実施例1~12では、高強度であり、耐切創性、駆動性に優れた人工筋が得られた。特に実施例1~5および7では、高い耐切創性を有しながら、人工筋の駆動性にも優れ、かつ、繰り返し使用した際の耐久性にも優れることが確認された。一方、比較例1及び3では、スリーブ充填率が40%を超えるため、人工筋の収縮動作が発現できない結果であった。比較例2では、スリーブにおける高強力繊維の構成本数が少なく、チューブ被覆率が70%未満であるため、耐切創性に劣る結果であった。比較例4では、スリーブを構成する繊維がPBTであるため、得られた人工筋は人工筋強度と耐切創性に劣る結果であった。比較例5では、スリーブ充填率が40%を超えているため、人工筋の収縮動作が発現できない結果であった。 As shown in Tables 5 and 6, in Examples 1 to 12 according to the present invention, an artificial muscle having high strength and excellent resistance to cutting and driving was obtained. In particular, in Examples 1 to 5 and 7, it was confirmed that while having high resistance to cut wounds, the driveability of the artificial muscle is also excellent, and the durability when repeatedly used is also excellent. On the other hand, in Comparative Examples 1 and 3, since the sleeve filling rate exceeded 40%, it was a result that the contraction action of the artificial muscle can not be expressed. In Comparative Example 2, the number of high-strength fibers in the sleeve was small, and the tube coverage was less than 70%, resulting in inferior cut resistance. In Comparative Example 4, since the fibers constituting the sleeve were PBT, the obtained artificial muscle was inferior in artificial muscle strength and cut wound resistance. In Comparative Example 5, since the sleeve filling rate exceeded 40%, it was a result that the contraction action of the artificial muscle can not be expressed.
 本発明により得られる人工筋は、高強度であり、優れた耐切創性、駆動性を有しているので、パワーアシスト機器、リハビリテーション機器、義手、ソフトロボットハンド、建設機械遠隔操作マニピュレータなどの用途に適している。 The artificial muscle obtained by the present invention is high in strength and has excellent resistance to cutting and having excellent cutting resistance, and therefore, applications such as power assist equipment, rehabilitation equipment, artificial hand, soft robot hand, construction machine remote control manipulator, etc. Suitable for
10  弾性体チューブ
20  スリーブ
21  繊維
22  交差部分
23  チューブ被覆率を算出するための長方形の縦の長さ
24  チューブ被覆率を算出するための長方形の横の長さ
25  チューブ被覆率を算出するための長方形の面積(S1)
30  チューブの中心点
31  スリーブの最外層と定めた外周円
32  人工筋スリーブの最外層と最内層との間にできる断面積(S2)
DESCRIPTION OF SYMBOLS 10 elastic body tube 20 sleeve 21 fiber 22 crossing part 23 rectangular vertical length 24 for calculating tube coverage ratio rectangular horizontal length 25 for calculating tube coverage ratio for calculating tube coverage Rectangular area (S1)
30 Center point of tube 31 Outermost circle of sleeve and outer circumferential circle defined 32 Cross-sectional area formed between outermost layer and innermost layer of artificial muscle sleeve (S2)

Claims (7)

  1.  弾性体チューブと、高強力繊維を含むスリーブとからなる人工筋であって、前記弾性体チューブの外側を前記スリーブで覆うように配され、チューブ被覆率が70~100%であり、且つスリーブ充填率が1~40%である、人工筋。 An artificial muscle comprising an elastic body tube and a sleeve containing high strength fibers, the outer side of the elastic body tube being covered with the sleeve, the tube coverage being 70 to 100%, and the sleeve being filled An artificial muscle having a rate of 1 to 40%.
  2.  前記高強力繊維が液晶ポリエステル繊維である、請求項1に記載の人工筋。 The artificial muscle according to claim 1, wherein the high strength fiber is a liquid crystal polyester fiber.
  3.  前記高強力繊維の強度が18cN/dtex以上である、請求項1又は2に記載の人工筋。 The artificial muscle according to claim 1 or 2, wherein the strength of the high strength fiber is 18 cN / dtex or more.
  4.  前記高強力繊維の伸度が7%以下である、請求項1~3のいずれかに記載の人工筋。 The artificial muscle according to any one of claims 1 to 3, wherein the elongation of the high strength fiber is 7% or less.
  5.  前記スリーブに使用する繊維の平均強度が、13cN/dtex以上である、請求項1~4のいずれかに記載の人工筋。 The artificial muscle according to any one of claims 1 to 4, wherein an average strength of fibers used for the sleeve is 13 cN / dtex or more.
  6.  弾性体チューブの動摩擦係数が1.0以下である、請求項1~5のいずれかに記載の人工筋。 The artificial muscle according to any one of claims 1 to 5, wherein a dynamic friction coefficient of the elastic tube is 1.0 or less.
  7.  スリーブを構成する繊維の単繊維繊度が0.5dtex以上500dtex以下である、請求項1~6のいずれかに記載の人工筋。 The artificial muscle according to any one of claims 1 to 6, wherein a single fiber fineness of a fiber constituting the sleeve is 0.5 dtex or more and 500 dtex or less.
PCT/JP2018/035996 2017-09-29 2018-09-27 Artificial muscle WO2019065860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019545614A JPWO2019065860A1 (en) 2017-09-29 2018-09-27 Artificial muscle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190879 2017-09-29
JP2017190879 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065860A1 true WO2019065860A1 (en) 2019-04-04

Family

ID=65903440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035996 WO2019065860A1 (en) 2017-09-29 2018-09-27 Artificial muscle

Country Status (2)

Country Link
JP (1) JPWO2019065860A1 (en)
WO (1) WO2019065860A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092228A (en) * 2019-12-06 2021-06-17 株式会社ブリヂストン Fluid pressure actuator and artificial muscle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085856A1 (en) * 2003-03-25 2004-10-07 Hitachi Medical Corporation Hydraulic pressure actuator and continuous manual athletic device using the same
JP2010222717A (en) * 2009-03-19 2010-10-07 Du Pont Toray Co Ltd Method for producing nanofiber
JP2014224569A (en) * 2013-05-16 2014-12-04 国立大学法人 岡山大学 Hydraulic pressure actuator and curvilinear driving device
WO2015146624A1 (en) * 2014-03-28 2015-10-01 東洋紡株式会社 Multifilament and braid
WO2016133102A1 (en) * 2015-02-20 2016-08-25 東洋紡株式会社 Multifilament and braid using same
WO2017138663A1 (en) * 2016-02-14 2017-08-17 学校法人冬木学園 Elastic tube for fluid pressure actuator and actuator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590574B2 (en) * 2016-01-22 2020-03-17 Federal-Mogul Powertrain Llc Abrasion resistant braided textile sleeve and method of construction thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085856A1 (en) * 2003-03-25 2004-10-07 Hitachi Medical Corporation Hydraulic pressure actuator and continuous manual athletic device using the same
JP2010222717A (en) * 2009-03-19 2010-10-07 Du Pont Toray Co Ltd Method for producing nanofiber
JP2014224569A (en) * 2013-05-16 2014-12-04 国立大学法人 岡山大学 Hydraulic pressure actuator and curvilinear driving device
WO2015146624A1 (en) * 2014-03-28 2015-10-01 東洋紡株式会社 Multifilament and braid
WO2016133102A1 (en) * 2015-02-20 2016-08-25 東洋紡株式会社 Multifilament and braid using same
WO2017138663A1 (en) * 2016-02-14 2017-08-17 学校法人冬木学園 Elastic tube for fluid pressure actuator and actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092228A (en) * 2019-12-06 2021-06-17 株式会社ブリヂストン Fluid pressure actuator and artificial muscle
JP7394608B2 (en) 2019-12-06 2023-12-08 株式会社ブリヂストン Fluid pressure actuator and artificial muscle

Also Published As

Publication number Publication date
JPWO2019065860A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
US9802027B2 (en) Semi-compliant medical balloon
CA1106296A (en) Coiled tubing
CA2338662C (en) Woven stent/graft structure
CN108368648B (en) Textured braid for implantable bioprosthesis
JP2004523303A (en) Elastomer balloon support fabric
US20140012304A1 (en) Multilayered balloon
US11338473B2 (en) Filament, structural body, and method for manufacturing same
BR112016019126B1 (en) CENTRAL MATERIAL FOR CUSHION, AND CUSHION
CN101801290A (en) dilating trocar cannula
JP2006513736A (en) Graft with stretch crimp
ITVI20080260A1 (en) FLEXIBLE HOSE FOR MULTILAYER IRRIGATION
US11350812B2 (en) Endoscope shaft having a layered structure, and method for producing same
Khlif et al. Contribution to the improvement of textile vascular prostheses crimping
JPS60156450A (en) Production of artificial conduit
CN110260060A (en) Flexible water pipe
WO2019065860A1 (en) Artificial muscle
JP6489773B2 (en) Elastic monofilament
JP4889680B2 (en) Double tubular fabric
EP0587461A2 (en) Artificial blood vessel
TW201900249A (en) Racket string and production method therefor
CN214305776U (en) Novel telescopic pipe
JP7129434B2 (en) Fibrous tapes and composites containing said tapes
AU2012101666A4 (en) Flexible braided garden hose
JP2011172711A (en) Method of manufacturing fibrous cylindrical body
KR101479855B1 (en) Hose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863461

Country of ref document: EP

Kind code of ref document: A1