WO2019065680A1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
WO2019065680A1
WO2019065680A1 PCT/JP2018/035572 JP2018035572W WO2019065680A1 WO 2019065680 A1 WO2019065680 A1 WO 2019065680A1 JP 2018035572 W JP2018035572 W JP 2018035572W WO 2019065680 A1 WO2019065680 A1 WO 2019065680A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
water content
air
light
drying
Prior art date
Application number
PCT/JP2018/035572
Other languages
French (fr)
Japanese (ja)
Inventor
弘貴 松浪
誠 上羽
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880062254.2A priority Critical patent/CN111133143B/en
Priority to JP2019545534A priority patent/JPWO2019065680A1/en
Publication of WO2019065680A1 publication Critical patent/WO2019065680A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/02Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in buildings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/06Type or material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/02Characteristics of laundry or load
    • D06F2103/08Humidity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/30Blowers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity

Definitions

  • the present invention relates to an air blower mainly used to dry laundry in a bathroom or to dry laundry in a room of a general household.
  • an air blower has already been devised which determines the dry state of a material to be dried such as clothing by various methods.
  • a material to be dried such as clothing by various methods.
  • clothes to be dried is in a dry state
  • a preset temperature when indoor air reaches a preset temperature, when it reaches a predetermined relative humidity selected by the user, before and after intermittent operation
  • the relative humidity change amount is detected and the amount of change reaches a predetermined change amount or less.
  • the relative humidity change amount is detected during intermittent operation and after the operation and the amount reaches a predetermined change amount or less, it is also determined that the clothes to be dried are dry.
  • the air blower of patent document 3 detects the infrared rays discharge
  • the blower determines that the material to be dried is dry if the temperature of the material to be dried is higher than the room temperature for a certain period of time, for example, 30 minutes or more, and ends the air blowing operation.
  • the air blower of patent document 4 is equipped with the flap and infrared sensor which adjust the wind direction of the left-right direction.
  • the blower determines which of the three detection ranges of the front right, front center and front left of the blower is present from the temperature distribution by the infrared sensor. Then, the movable range of the flap is controlled so that the air is concentrated and blown to the determined detection range.
  • intermittent operation is repeated even after determining the dry condition of the object to be dried, such as clothing, and it is conceivable to provide a plurality of dry condition determination criteria according to the environment, but due to various environmental changes such as weather or climate There is a problem that the dry state can not be determined.
  • the object to be dried is determined by detecting the temperature distribution in the room. Therefore, if the temperature unevenness of the surrounding environment such as the cold window of the winter and the vicinity of the air outlet where the heater becomes high temperature or the temperature unevenness of the object to be dried by the high temperature wind blown from the air blower occurs I can not judge. Therefore, there is a problem that the determination accuracy of drying is poor, such as blowing air to the non-dried matter and the undried matter to be in a dry state, resulting in undried matter.
  • the present invention has been made in view of the above-described points, and flexibly copes with environmental changes such as climate and weather, and can accurately determine drying without being affected by the ambient temperature and the blowing of the blower.
  • An object of the present invention is to provide a blower capable of enhancing the drying efficiency by reducing the excessive operation after drying of the material to be dried.
  • a blower includes a main body, a blower, a dehumidifying part, a water content detector, and a controller.
  • the main body is provided with an inlet and an outlet.
  • the blower blows air from the suction port to the blowout port.
  • the dehumidifying part dehumidifies the air sucked from the suction port.
  • the water content detection unit detects the water content of the object.
  • the control unit controls air flow from the air outlet.
  • the moisture content detection unit includes a light emitting unit and a light receiving unit. The light emitting unit emits detection light including a wavelength that is absorbed by water toward the object and reference light that includes a wavelength that is less easily absorbed by water than the detection light.
  • the light receiving unit receives the detection light and the reference light reflected by the object.
  • the control unit includes a water content calculation unit that calculates the water content by comparing the intensities of the detection light and the reference light received by the light reception unit, and the control unit sends air based on the water content by the water content calculation unit. Control.
  • the blower according to the present invention irradiates light toward an object in a target range, and calculates the amount of water contained in the object by comparing the intensities of the detection light and the reference light reflected by the object. . Thereby, the water content of the object in the target range is accurately identified. Therefore, the drying state of the object can be accurately determined, and the object can be optimally dried.
  • FIG. 1 is a perspective view showing a schematic configuration of a dehumidifier according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view showing a schematic configuration of the dehumidifier.
  • FIG. 3 is a schematic view showing the configuration of a light emitting unit and a light receiving unit of the same dehumidifier and an object.
  • FIG. 4 is a block diagram showing a control configuration of the dehumidifier.
  • FIG. 5 is a diagram showing an absorption spectrum of water and water vapor.
  • FIG. 6 is a schematic view showing a detection range of the dehumidifier.
  • FIG. 7 is a schematic view showing scanning directions of a light emitting unit and a light receiving unit of the dehumidifier.
  • FIG. 1 is a perspective view showing a schematic configuration of a dehumidifier according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view showing a schematic configuration of the dehumidifier.
  • FIG. 8 is a flowchart of water content calculation of the same dehumidifier.
  • FIG. 9 is a view showing a table of water content distribution of the dehumidifier.
  • FIG. 10 is a block diagram showing a drying judgment unit of the dehumidifier.
  • FIG. 11 is a perspective view showing a schematic configuration of a fan according to the first embodiment.
  • FIG. 12 is a perspective view showing a schematic configuration of the bathroom dryer according to the first embodiment.
  • FIG. 13 is a block diagram showing the drying judgment unit of the dehumidifier according to the second embodiment.
  • FIG. 14 is a side view showing a schematic configuration of the dehumidifier according to the third embodiment.
  • FIG. 15 is a block diagram showing a control configuration of the dehumidifier according to the third embodiment.
  • FIG. 16 is a block diagram showing the operation of the air flow control unit of the dehumidifier according to the third embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • Embodiment 1 (Dehumidifier)
  • the dehumidifier 1 will be described as an example of a blower.
  • FIG. 1 is a perspective view showing a schematic configuration of the dehumidifier 1.
  • FIG. 2 is a side view showing a schematic configuration of the dehumidifier 1. As shown in FIG.
  • the dehumidifier 1 includes a main body 2, a blower 3, a dehumidifier 4, a water content detector 9, and a controller 5.
  • the main body 2 is provided with a suction port 10 for sucking air outside the main body 2 into the main body 2, and a blowout port 11 for blowing air sucked from the suction port 10 to the outside of the main body 2.
  • the suction port 10 is provided below the main body 2, and the blowout port 11 is provided above the main body 2.
  • the blower outlet 11 and the suction inlet 10 are provided so that it may concern on the same side.
  • the blower unit 3 guides indoor air from the suction port 10 to the blowout port 11.
  • the indoor air sucked into the main body 2 from the suction port 10 is dehumidified by the dehumidifying unit 4 described later.
  • the dehumidified room air is blown from the blowout port 11 to a target object in the target range as the dehumidified air.
  • the dehumidifying unit 4 dehumidifies the air sucked from the suction port 10.
  • the dehumidifying part 4 is only required to be capable of dehumidifying room air, and is, for example, desiccant dehumidifying using a dehumidifying material such as silica gel or a heat pump of vapor compression type.
  • the indoor air may be dedusted as well as dehumidified.
  • the water content detection unit 9 has a light emitting unit 7 and a light receiving unit 8, and detects the water content of the object 100.
  • the light emitting unit 7 emits light toward the object 100.
  • the light receiving unit 8 receives the light reflected by the object 100.
  • the control unit 5 controls the air blowing from the air outlet 11.
  • the control unit 5 includes a light source control unit 51 (see FIG. 4) and a moisture content calculation unit 56 (see FIG. 4).
  • the light source control unit 51 controls the light emitted from the light emitting unit 7.
  • the water content calculation unit 56 detects the light received by the light receiving unit 8 and calculates the water content.
  • the control unit 5 is composed of at least one microcontroller, and is a non-volatile memory in which an overall operation program of the dehumidifier 1 is stored, and a volatile memory which is a temporary storage area for executing the program. , An input / output port, and a processor for executing a program.
  • control unit 5 determines the dry state of the object based on the water content calculated by the water content calculation unit 56, and controls at least one of the blower unit 3 and the dehumidifying unit 4.
  • the water content calculation unit 56 calculates the water content of the object 100 by comparing the intensities of two lights of different wavelengths received by the light receiving unit 8. Details will be described later.
  • the control unit 5 performs appropriate drying judgment and drying control in accordance with the water content of the object 100.
  • FIG. 3 is a schematic view showing the configuration of the light emitting unit 7 and the light receiving unit 8 and the object 100 according to the first embodiment.
  • FIG. 4 is a block diagram showing a control configuration of the dehumidifier 1 according to the first embodiment.
  • the light emitting unit 7 irradiates light toward the target 100 existing at a space.
  • the light emitted from the light emitting unit 7 is reflected by the object 100.
  • the reflected light RA 1 which is the reflected light is detected by the light receiving unit 8.
  • the water content calculation unit 56 shown in FIG. 4 calculates the water content included in the object 100.
  • the amount of water contained in the object 100 refers to the water accumulated on the object 100 and the water having permeated to the surface portion of the object 100.
  • the light emitting unit 7 includes a detection light including a first wavelength band which is a light of a wavelength absorbed by water, and a reference light including a second wavelength band which is a light of a wavelength whose absorption by water is smaller than the first wavelength band.
  • the light emitting unit 7 includes a light projecting lens 21 and a light source 22.
  • the light projection lens 21 is a condensing lens that condenses the light emitted from the light source 22 on the object 100.
  • the light projection lens 21 is a resin-made convex lens, it is not restricted to this.
  • the light source 22 is a light emitting diode (LED) light source that includes a first wavelength band forming detection light and a second wavelength band forming reference light, and emits continuous light having a peak wavelength on the second wavelength band side.
  • the light source 22 is an LED light source made of a compound semiconductor.
  • FIG. 5 is a diagram showing an absorption spectrum of water and water vapor. As shown in FIG. 5, the moisture has absorption peaks at wavelengths of about 1450 nm and about 1940 nm. Water vapor has an absorption peak at a wavelength slightly lower than the absorption peak of water, specifically at a wavelength of about 1350 nm to about 1400 nm and about 1800 nm to about 1900 nm.
  • a wavelength band where the light absorbance of water is high is selected as the first wavelength band that forms detection light
  • a wavelength band where the absorbance of water is smaller than the first wavelength band is selected as the second wavelength band that makes reference light. select.
  • the average wavelength of the second wavelength band is made longer than the average wavelength of the first wavelength band.
  • the central wavelength defined by the central value of the wavelength which is the half value of the maximum transmittance of the optical band pass filter for example, the central wavelength of the first wavelength band is 1450 nm, and the central wavelength of the second wavelength band is 1700 nm Do. Since the light source 22 emits light continuously including the first wavelength band and the second wavelength band, the object 100 receives the detection light including the first wavelength band that is largely absorbed by water, and the absorption by water. Reference light including a second wavelength band smaller than the first wavelength band is emitted.
  • the light receiving unit 8 receives the reflected light RA ⁇ b> 1 emitted from the light emitting unit 7 and reflected by the object 100. That is, the light receiving unit 8 receives the detection light and the reference light which are emitted from the light emitting unit 7 and reflected by the object 100.
  • the light receiving unit 8 includes a light receiving lens 71, a half mirror 34, a first light receiving element 73, a second light receiving element 43, a first band pass filter 72, and a second band pass filter 42.
  • the reflected light RA1 is condensed by the light receiving lens 71, and is divided by the half mirror 34 into light passing through the first optical path LR01 and light passing through the second optical path LR02.
  • the light receiving lens 71 is a condensing lens for condensing the reflected light RA ⁇ b> 1 reflected by the object 100 on the first light receiving element 73 and the second light receiving element 43.
  • the light receiving lens 71 is fixed to the light receiving unit 8 such that the focal point is located on the light receiving surface of the first light receiving element 73, for example.
  • the light receiving lens 71 is, for example, a resin-made convex lens, but is not limited to this.
  • the half mirror 34 is disposed, for example, between the light receiving lens 71 and the first light receiving element 73, transmits half of the light collected by the light receiving lens 71, and reflects the remaining light.
  • a first band pass filter 72 and a first light receiving element 73 are provided at the end of the first optical path LR01 which is an optical path of light transmitted through the half mirror 34.
  • the first band pass filter 72 is a band pass filter that extracts light of a first wavelength band, which is detection light, from the reflected light RA1. Specifically, the first band pass filter 72 is disposed between the half mirror 34 and the first light receiving element 73, and the reflected light RA1 transmitted through the half mirror 34 and incident on the first light receiving element 73. Provided on the light path of The first band pass filter 72 transmits light in the first wavelength band and reflects or absorbs light in other wavelength bands.
  • the first light receiving element 73 is a light receiving element that receives the light of the first wavelength band that is reflected by the object 100, passes through the half mirror 34, and passes through the first band pass filter 72, and converts it into a first electrical signal. is there.
  • the first light receiving element 73 photoelectrically converts the received light of the first wavelength band to generate a first electric signal according to the amount of light received (that is, the intensity).
  • the generated first electrical signal is output to the control unit 5.
  • the first light receiving element 73 is, for example, a photodiode, but is not limited thereto.
  • the first light receiving element 73 may be a phototransistor or an image sensor.
  • the second band pass filter 42 is a band pass filter that extracts light of a second wavelength band, which is reference light, from the light reflected by the half mirror 34. Specifically, the second band pass filter 42 is disposed between the half mirror 34 and the second light receiving element 43, and the light of the light reflected by the half mirror 34 and incident on the second light receiving element 43 It is provided on the street. Then, the second band pass filter 42 transmits the light of the second wavelength band, and reflects or absorbs the light of the other wavelength bands.
  • the second light receiving element 43 is a light receiving element that receives the light of the second wavelength band reflected by the object 100 and transmitted through the second band pass filter 42 and converts the light into a second electric signal.
  • the second light receiving element 43 photoelectrically converts the received light of the second wavelength band to generate a second electric signal according to the amount (that is, the intensity) of the received light.
  • the generated second electrical signal is output to the control unit 5.
  • the second light receiving element 43 is a light receiving element having the same shape as the first light receiving element 73. That is, when the first light receiving element 73 is a photodiode, the second light receiving element 43 is also a photodiode.
  • the control unit 5 includes a light source control unit 51, a first amplification unit 52, a second amplification unit 53, a first signal processing unit 54, a second signal processing unit 55, a water content calculation unit 56, and a drying judgment.
  • a unit 57 is provided.
  • the control unit 5 may be housed in the main body 2 or may be attached to the outer side surface of the main body 2. Alternatively, the control unit 5 is divided into a plurality, has a communication function such as wireless communication, and receives the first electric signal from the first light receiving element 73 and the second electric signal from the second light receiving element 43. It is also good.
  • the light source control unit 51 controls lighting of the light source 22 of the light emitting unit 7.
  • the light source control unit 51 is configured of a drive circuit and a microcontroller.
  • the light source control unit 51 includes a non-volatile memory storing a control program of the light source 22, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. Have.
  • the light source control unit 51 controls the light source 22 so that lighting and extinguishing of the light source 22 are repeated in a predetermined light emitting cycle.
  • the light source control unit 51 outputs a pulse signal of a predetermined frequency (for example, 1 kHz) to the light source 22 to turn on and off the light source 22 at a predetermined light emission cycle.
  • a predetermined frequency for example, 1 kHz
  • the first amplification unit 52 amplifies the first electric signal output from the first light receiving element 73 and outputs the amplified first electric signal to the first signal processing unit 54.
  • the first amplification unit 52 is an operational amplifier that amplifies the first electrical signal.
  • the first signal processing unit 54 is configured by a microcontroller.
  • the first signal processing unit 54 executes a program, a nonvolatile memory storing a processing program for the first electric signal, a volatile memory which is a temporary storage area for executing the program, an input / output port, and the like Processor etc.
  • the first signal processing unit 54 performs passband limitation on the first electric signal and corrects the phase delay due to the passband limitation, and then performs multiplication processing with the light emission cycle of the light source 22.
  • the process for the first electrical signal is a so-called lock-in amplifier process. This suppresses noise based on disturbance light generated in the first electrical signal.
  • the second amplification unit 53 amplifies the second electric signal output from the second light receiving element 43 and outputs the amplified second electric signal to the second signal processing unit 55.
  • the second amplification unit 53 is an operational amplifier that amplifies the second electrical signal.
  • the second signal processing unit 55 is configured by a microcontroller.
  • the second signal processing unit 55 executes a non-volatile memory storing a processing program for the second electric signal, a volatile memory which is a temporary storage area for executing the program, an input / output port, and the program Processor etc.
  • the second signal processing unit 55 performs passband limitation on the second electric signal and corrects the phase delay due to the passband limitation, and then performs multiplication processing with the light emission cycle of the light source 22.
  • the process for the second electrical signal is a so-called lock-in amplifier process. This suppresses noise based on disturbance light generated in the second electrical signal.
  • the water content calculation unit 56 detects the water contained in the object 100 based on the first electric signal output from the first light receiving element 73 and the second electric signal output from the second light receiving element 43. Specifically, the water content calculation unit 56 detects the water content included in the object 100 based on the ratio (signal ratio) of the voltage level of the first electrical signal to the voltage level of the second electrical signal. In the present embodiment, the moisture content calculation unit 56 determines the target object based on the first electrical signal processed by the first signal processing unit 54 and the second electrical signal processed by the second signal processing unit 55. The amount of water contained in 100 is detected. The water content calculation unit 56 outputs the detected water content to the drying determination unit 57. The specific water content detection process will be described later.
  • the water content calculation unit 56 is, for example, a microcontroller.
  • the water content calculation unit 56 has a nonvolatile memory storing a signal processing program, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. .
  • the drying determining unit 57 determines the drying of the object 100 based on the water content calculated by the water content calculating unit 56.
  • the detection process of the water content by the water content calculation unit 56 will be described.
  • the water content calculation unit 56 detects the water content included in the object 100 by comparing the light energy Pd of the detection light included in the reflected light RA1 with the light energy Pr of the reference light. Do.
  • the light energy Pd of the detection light corresponds to the intensity of the first electric signal output from the first light receiving element 73
  • the light energy Pr of the reference light is a second electric signal output from the second light receiving element 43.
  • the light energy Pd is represented by the following (formula 1).
  • Pd Pd0 ⁇ Gd ⁇ Rd ⁇ Td ⁇ Aad ⁇ Ivd
  • Pd0 is the light energy of the light of the first wavelength band forming the detection light among the light emitted by the light source 22.
  • Gd is the coupling efficiency (concentration factor) of the light of the first wavelength band to the first light receiving element 73.
  • Gd is a ratio of a part of the light emitted from the light source 22 to a part of the component diffused and reflected by the object (the object 100) (ie, the detection light included in the reflected light) Equivalent to.
  • Rd is the reflectance of the detection light by the object 100.
  • Td is the transmittance of the detection light by the first band pass filter 72.
  • Ivd is the light receiving sensitivity to the detection light included in the reflected light RA1 in the first light receiving element 73.
  • Aad is an absorptivity of the detection light by the component (water) contained in the object 100, and is expressed by the following (Formula 2).
  • ⁇ a a predetermined absorption coefficient, and specifically, the absorption coefficient of the detection light by the component (water).
  • Ca is a volume concentration of a component (water) contained in the object 100.
  • D is a contribution thickness that is twice the thickness of the component that contributes to the absorption of the detection light.
  • Ca is contained in the component of the object 100 when light is incident on the object 100 and reflected and emitted from the object 100. It corresponds to the concentration. Further, D corresponds to an optical path length until reflection and emission from the object 100.
  • Ca is the concentration of water contained in the liquid phase covering the object 100.
  • D is a contribution thickness converted as an average thickness of the liquid phase covering the object 100.
  • ⁇ a ⁇ Ca ⁇ D corresponds to the amount of component (the amount of water) contained in the object 100. From the above, it can be seen that the light energy Pd corresponding to the intensity of the first electrical signal changes in accordance with the amount of water contained in the object 100. In addition, since the absorbance of moisture is extremely small compared to moisture, it can be ignored.
  • the light energy Pr of the reference light incident on the second light receiving element 43 is expressed by the following (Expression 3).
  • the reference light can be considered not to be substantially absorbed by the components contained in the object 100, so that it is equivalent to the absorptance by water Aad as understood in comparison with (Equation 1) Term is not included in (Expression 3).
  • Pr0 is light energy of light of the second wavelength band forming the reference light among the light emitted by the light source 22.
  • Gr is a coupling efficiency (condensing ratio) to the second light receiving element 43 of the reference light emitted from the light source 22.
  • Gr corresponds to the proportion of the part of the reference light that is to be a part of the component that is diffusely reflected by the object 100 (that is, the reference light included in the reflected light).
  • Rr is the reflectance of the reference light by the object.
  • Tr is the transmittance of the reference light by the second band pass filter 42.
  • Ivr is the light receiving sensitivity to the reflected light of the second light receiving element 43.
  • the coupling efficiency Gd of the detection light and the coupling efficiency Gr of the reference light are It becomes almost equal. Further, since the detection light and the reference light have relatively close peak wavelengths, the reflectance Rd of the detection light and the reflectance Rr of the reference light are substantially equal.
  • Z (Pd0 / Pr0) ⁇ (Td / Tr) ⁇ (Ivd / Ivr)
  • the light energy Pd0 and Pr0 are each predetermined as an initial output of the light source 22.
  • the transmittance Td and the transmittance Tr are predetermined by the transmission characteristics of the first band pass filter 72 and the second band pass filter 42, respectively.
  • the light receiving sensitivity Ivd and the light receiving sensitivity Ivr are predetermined by the light receiving characteristics of the first light receiving element 73 and the second light receiving element 43, respectively. Therefore, Z shown in (Expression 5) can be regarded as a constant.
  • the water content calculation unit 56 calculates the light energy Pd of the detection light based on the first electrical signal, and calculates the light energy Pr of the reference light based on the second electrical signal. Specifically, the signal level (voltage level) of the first electrical signal corresponds to the light energy Pd, and the signal level (voltage level) of the second electrical signal corresponds to the light energy Pr.
  • the water content calculation unit 56 can calculate the absorptance Aad of the water contained in the target based on (Expression 4). Thus, the water content calculation unit 56 can calculate the water content based on (Expression 2).
  • the control unit 5 may be provided with a correction unit that corrects the first electric signal and the second electric signal so as to cancel the absorption by the water vapor.
  • FIG. 6 is a plan view schematically showing the detection range of the dehumidifier according to the first embodiment. It is preferable that the detection range A be set equal to or wider than the range in which the air dehumidified by the dehumidifier 1 is blown. The detection range A is equal to or wider than the light receiving range of the light receiving unit 8. As shown in FIG. 6, the unit area R is an area where light detection is individually performed by the light receiving unit 8. The unit area R may have the same size as the detection range A, or may have a size smaller than the detection range A. For example, the unit area R has a size obtained by dividing the detection range A into six in the vertical direction and into six in the horizontal direction.
  • FIG. 7 is a schematic view showing scanning directions of the light emitting unit and the light receiving unit of the dehumidifier according to the first embodiment.
  • a method of irradiating light while scanning the irradiation area of the light emitting unit 7 and scanning the light receiving area of the light receiving unit 8 simultaneously and receiving the reflected light RA1 of each area is good.
  • a scanning method for example, there is a method of rotatably arranging a pedestal on which the light emitting unit 7 and the light receiving unit 8 are fixed to two orthogonal axes using two stepping motors (not shown).
  • One stepping motor is disposed at an angle at which the irradiation area can be scanned in the main scanning direction of FIG. 7, and the other stepping motor is disposed at an angle at which the irradiation area can be scanned in the sub-scanning direction of FIG.
  • FIG. 6 and FIG. 7 the case where six places are detected at equal intervals per row and six places are detected at equal intervals per column is illustrated.
  • FIG. 8 is a diagram showing a flowchart of water content calculation according to the first embodiment.
  • the designated position of each area (the irradiation area and the light receiving area) is set to Sn6 (Step 1).
  • the stepping motor is driven to move the pedestal in parallel with the main scanning direction of FIG.
  • Step 7 it is determined whether the irradiation area and the light receiving area are located at the center of the unit area R.
  • the determination as to whether or not the unit region R is located at the center is calculated, for example, from the number of drive steps of the stepping motor. If the irradiation area and the light reception area are not located at the center of the unit area R, the process returns to Step 2 to continue driving the stepping motor.
  • the irradiation area and the light reception area are located at the center of the unit area R, the light reception intensity is acquired, the ratio of the intensities, that is, the water content is calculated and stored in the table T.
  • Step 3 it is determined whether or not the unit area R currently positioned is Sn6 which is a designated position. If the unit area R currently positioned is not Sn6, the process returns to Step 2 to continue driving the stepping motor. Here, if the unit region R currently positioned is Sn6, the driving of the stepping motor is stopped (Step 4). Thereafter, 1 is added to n to move the irradiation area and the light receiving area toward Sn6 in parallel to the sub-scanning direction of FIG.
  • the designated position is set to Sn1 (Step 5). Then, the irradiation area and the light reception area are moved in the direction opposite to Step 2 in parallel with the main scanning direction of FIG. 7 and the stepping motor is driven to be positioned at the designated position Sn1 (Step 6). At the same time, it is determined whether the irradiation area and the light receiving area are located at the center of the unit area R. The determination as to whether or not the unit region R is located at the center is calculated, for example, from the number of drive steps of the stepping motor. If the irradiation area and the light reception area are not located at the center of the unit area R, the process returns to Step 6 to continue driving the stepping motor. When the irradiation area and the light reception area are located at the center of the unit area R, the light reception intensity is acquired, the ratio of the intensities, that is, the water content is calculated and stored in the table T.
  • Step 7 it is determined whether or not the unit area R currently located is Sn1 which is a designated position (Step 7). If the unit area R currently positioned is not Sn1, the process returns to Step 6 to continue driving the stepping motor. Here, if the unit area R currently positioned is Sn1, the driving of the stepping motor is stopped (Step 8).
  • n is not 6 here, 1 is added to n and the irradiation area and the light receiving area are moved parallel to the sub-scanning direction of FIG. 7 toward the designated position Sn1 (Step 9). Thereafter, the process returns to Step 1 to repeat the operation. If n is 6, the detection operation is ended.
  • FIG. 9 is a view showing a table of water content distribution of the dehumidifier according to the first embodiment.
  • the calculation result of the water content for each unit area R is temporarily recorded in a table T as shown in FIG. 9 and the drying is judged based on the information of the table T.
  • the information in the table T may be determined individually for each unit region R, or may be averaged to be processed into one or a small number of pieces of information.
  • FIG. 10 is a block diagram showing the drying judgment unit of the dehumidifier according to the first embodiment.
  • the drying determination unit 57 of the dehumidifier 1 determines the drying of the object 100 based on the table T of the water content input from the water content calculation unit 56.
  • the drying determining unit 57 has a water content comparing unit 62 that periodically compares the water content of the object 100 input from the water content calculating unit 56 with the water content threshold 61.
  • the water content comparison unit 62 compares the information in the table T with the water content threshold value 61 to determine whether the object 100 is dry.
  • the drying determination unit 57 may determine the drying for each unit region R by comparing the information for each unit region R of the table T with the moisture content threshold value 61.
  • the drying determination unit 57 may average the information in the table T, process it into one or a small number of pieces of information, and compare it with the moisture amount threshold 61. For example, when the information of the unit region R is smaller than the water content threshold 61, the unit region R is determined to be dry.
  • the dehumidifier 1 includes the main body 2, the air blowing unit 3, the dehumidifying unit 4, the water content detection unit 9, and the control unit 5.
  • the main body 2 is provided with an inlet and an outlet.
  • the blower 3 blows air from the suction port 10 to the blowout port 11.
  • the dehumidifying unit 4 dehumidifies the air sucked from the suction port 10.
  • the water content detection unit 9 detects the water content of the object 100.
  • the control unit 5 controls the air blowing from the air outlet 11.
  • the moisture content detection unit 9 includes a light emitting unit 7 and a light receiving unit 8.
  • the light emitting unit 7 includes a detection light including a first wavelength band that is a light including a wavelength absorbed by water, and a reference light including a second wavelength band that is a light including a wavelength that is less absorbed by water than the detection light. Light is emitted toward the object 100.
  • the light receiving unit 8 receives the detection light and the reference light reflected by the object 100.
  • the control unit 5 includes a water content calculation unit that calculates the water content by comparing the intensity of the detection light received by the light receiving unit 8 with the intensity of the reference light. And control part 5 controls ventilation based on a moisture content.
  • control part 5 may be equipped with the drying judgment part which judges drying of the target object 100 based on a moisture content. According to this configuration, it is possible to reduce and eliminate the excess drying operation and the insufficient drying of the material to be dried, and to make a highly accurate drying judgment.
  • the drying judgment unit 57 further includes a water content comparison unit 62 that compares the water content calculated by the water content calculation unit 56 with the water content threshold value 61 held inside.
  • the water content comparison unit 62 determines that the water content data T is dry when the data T of the water content is smaller than the water content threshold value 61 held therein.
  • the drying determination of the object 100 can be accurately performed regardless of the surrounding environment, the material of the object 100, and the type of clothing.
  • FIG. 11 is a perspective view showing a schematic configuration of the fan according to the first embodiment.
  • FIG. 11 discloses a fan 81 provided with an axial fan 84 in which a plurality of blades 82 are fixed to the rotation shaft of a motor 83.
  • the blades 82 attached to the axial fan 84 are covered by the front guard 86 and the rear guard 87, and the air can be blown by the rotation of the motor 83.
  • the axial flow fan 84 is fixed to one end of the main body shaft 85, and the other end of the main body shaft 85 is fixed to the base 88.
  • the axial fan 84 is installed with a structure that is movable in the left and right and up and down directions with respect to the main body shaft 85.
  • the fan 81 includes a moisture amount detection unit 9 for detecting the moisture amount of the object 100 on the base 88.
  • the water content detection unit 9 accurately detects the water content of the clothes, and controls the wind direction, the air volume, the air blowing time, and the like of the fan 81. can do. For example, when it is determined that the amount of moisture in the dried clothes is high, control is performed to increase the air flow.
  • control the wind direction of the axial fan 84 so as to be able to intensively blow air to clothes that are particularly dry, among clothes that are dried.
  • the drying state can be accurately determined, and the operation of the fan 81 can be controlled.
  • FIG. 12 is a perspective view showing a schematic configuration of the bathroom dryer according to the first embodiment.
  • FIG. 12 shows a bathroom dryer 91 used for drying clothes and drying in the bathroom.
  • the bathroom drier 91 includes a main body case 92, a heating unit 95, and a blower 93.
  • the main body case 92 constitutes an exterior of the bathroom dryer 91.
  • the main body case 92 is provided with a suction port 10 for taking in the air of the bathroom into the bath dryer 91 and a blowout port 11 for blowing out the air sucked from the suction port 10.
  • the heating unit 95 is provided in the air flow path connecting the suction port 10 and the blowout port 11, and heats the air sucked from the suction port 10.
  • the blower 93 is provided in the blower path, and circulates the air from the suction port 10 to the blowout port 11.
  • the bathroom dryer 91 further includes a wind direction control unit 96, a ventilation unit 97, and an operation control unit 98.
  • the wind direction control unit 96 changes the wind direction of the wind blown from the air outlet.
  • the ventilation unit 97 ventilates the bathroom.
  • the operation control unit 98 controls the heating amount, the air blowing amount, the wind direction, and the like of the bathroom dryer 91.
  • the bathroom drier 91 has a drying mode for controlling the amount of heat, the amount of air, the direction of air, etc., for the purpose of drying the clothes or the bathroom.
  • the bathroom drier 91 includes a water content detection unit 9 that detects the water content of the object 100 to be dried. As shown in FIG. 12, when the bathroom dryer 91 blows and dries the clothes dried in the bathroom, the moisture amount detection unit 9 accurately detects the moisture amount of the clothes, and Can control the operation. For example, when it is determined that the amount of moisture in the dried clothes is high, the bathroom dryer 91 performs control to increase the air flow. In addition, it is also possible to control the wind direction control unit 96 of the bathroom dryer 91 so as to be able to intensively blow air to clothes that are particularly dry, among clothes that are dried.
  • the moisture content detection part 9 detects the moisture content of the especially wet location of the bottom part 101 grade
  • the bathroom drier 91 can blow air with a necessary amount of heating, a blowing amount, and a blowing time to the bottom portion 101 of the bath according to the detected water amount.
  • the drying state can be accurately determined to control the operation of the bathroom dryer 91.
  • the control unit 5 can control the operation of the blowing unit 3 and the dehumidifying unit 4 and can control the blowing amount of the blowing unit 3 and the dehumidifying amount of the dehumidifying unit 4 based on the comparison result of the drying judgment unit 57. .
  • any one or more of the air blowing amount or the dehumidifying amount of the dehumidifier 1 can be controlled. Drying operation can be prevented. Specifically, the air blowing of the air blowing unit 3 may be stopped when the drying judgment unit 57 judges that the air is dry. Thereby, overdrying of the object 100 can be prevented, and optimal drying can be performed.
  • the air blowing may be stopped after reducing the air blowing amount of the air blowing unit 3 and blowing the air for a certain period of time. This can prevent moisture absorption due to ambient moisture after the object is dried, and can reliably dry the object 100.
  • the drying judgment unit 57 judges that the drying is performed, the dehumidification of the dehumidifying unit 4 may be stopped. This is performed when the ambient humidity is adequate. Thereby, overdrying and excessive driving of the object 100 can be eliminated, and a comfortable humidity environment can be provided.
  • the dehumidifying unit 4 may be de-humidified after reducing the dehumidifying amount of the dehumidifying unit 4 and blowing air for a predetermined time. This is performed when the ambient humidity is higher than the proper humidity. As a result, it is possible to prevent moisture absorption due to the ambient moisture after the object 100 is dried, and the object 100 can be reliably dried.
  • the first embodiment exemplifies the case where the drying determination is performed based on the table T of the water content detection result.
  • the dehumidifier 110 which concerns on Embodiment 2 compares the time change rate of a water content, and a threshold value, and performs dryness determination of a target object.
  • FIG. 13 is a block diagram showing the drying judgment unit of the dehumidifier according to the second embodiment.
  • the drying determination unit 157 further includes a moisture content change rate threshold 163, a moisture content change rate calculation unit 164, and a moisture content change rate comparison unit 165, as shown in FIG.
  • the water content change rate calculation unit 164 stores the water content data calculated by the water content calculation unit 56 a plurality of times, and calculates the time change rate T ′.
  • the water content change rate comparing unit 165 compares the time change rate T ′ of the water content calculated by the water content change rate calculating unit 164 with the water content change rate threshold value 163.
  • the water content change rate comparing unit 165 determines that the object 100 is dry when the time change rate T ′ of the water content is smaller than the water content change rate threshold 163 held therein.
  • the temporal change rate T ′ of the water content may be calculated for each unit region R, or may be averaged to be processed into one or a small number of pieces of information.
  • the moisture content is different between a material with high moisture retention made of materials such as cotton and hair and a material with high quick-drying properties such as polyester.
  • the degree of dryness can be determined from the rate of change of the water content, and optimum drying judgment can be made.
  • the drying determining unit 157 first determines that the water is in the temporary drying state, and then the water content change rate comparing unit 165 When the time change rate T ′ of the water content is smaller than the water content change threshold 163, the final dry state may be determined.
  • the object 100 containing a large amount of water, such as a thick material has a small rate of change in dryness at the initial stage of drying, and there is a concern that the object 100 is determined to be dry although it contains a large amount of water.
  • the thick object 100 containing a large amount of water such as a thick material can also be prevented from being erroneously judged to be dry by using the water content comparison unit 62, so drying with high accuracy is possible. You can make a decision.
  • FIG. 14 is a configuration diagram showing a schematic configuration of the dehumidifier according to the third embodiment.
  • FIG. 15 is a block diagram showing a control configuration of the dehumidifier according to the third embodiment.
  • the dehumidifier 210 according to the third embodiment further includes a louver 6, as shown in FIG. Further, the control unit 5 includes a blowing control unit 257 instead of the drying determination unit 57.
  • the louver 6 can change at least one air blowing condition such as the air blowing range or direction of the dehumidified air or the air removed from the air blowing from the air outlet 11.
  • the blower control unit 257 is provided in the control unit 5 and controls the blower 3, the dehumidifying unit 4, and the louver 6.
  • FIG. 16 is a block diagram showing the operation of the air flow control unit of the dehumidifier according to the third embodiment.
  • the air flow control unit 257 of the dehumidifier 210 selects one of the air flow unit 3 and the louver 6 based on the water content table T shown in FIG. 9 at each detection position input from the water content calculation unit 56. Control at least one condition. Specifically, air is blown at an angle of the louver 6 toward a place where the ratio of the intensity of the measurement light to the reference light is small in T11 to T66, that is, the amount of water is large.
  • the blower control unit 257 may control the dehumidifying unit 4 based on the table T of the water content.
  • the air flow control unit 257 includes a ratio threshold comparison unit 262 and a change rate threshold comparison unit 264.
  • the ratio threshold comparator 262 compares the ratio threshold 261 held therein with the ratio of the intensity input from the water content calculator 56, that is, the table T of the water content.
  • the air flow control unit 257 reduces the air flow from the air blowing unit 3 or stops. Control the
  • the change rate threshold comparison unit 264 compares the change rate threshold 263 stored therein with the ratio of the strengths input from the water content calculation unit 56, that is, the time change rate T ′ of the water content. Thereby, it is difficult to dry the unit region R in which the temporal change rate of the intensity ratio is smaller than the change rate threshold 263 held internally, that is, the temporal change rate T ′ of the water content is smaller than the predetermined threshold. It can be judged. As a result, air blowing control is performed such as increasing the air blowing amount of the air blowing unit 3 or directing the angle of the louver 6 to a unit area where the time change rate T 'of water content is small.
  • the angle of the louver 6 is controlled according to the ratio of the intensity of the detection light to the reference light reflected from the object 100, that is, the amount of water. Optimal blowing according to the water content distribution of the object is performed.
  • the ratio of strength that is, the amount of water
  • the air can be intensively delivered to the unit region R that requires drying. Drying can be performed.
  • the angle of the louver 6 is controlled with respect to a unit area having a small intensity ratio in the object, that is, a large amount of water, and the dehumidified air is concentrated and blown to the unit area.
  • evaporation of water is promoted in the unit area having a large amount of water.
  • the air flow to a unit area having a large strength ratio, that is, a small amount of water in the object 100 is reduced, the unit area has a small amount of water, and drying is performed without promoting evaporation of water by air blowing. Go forward.
  • efficient drying can be performed according to the distribution of water content.
  • control unit 5 can control the air blowing amount of the air blowing unit 3 based on the ratio of the strengths, that is, the distribution of the water content.
  • efficient drying can be performed by optimally controlling the amount of air dehumidified in accordance with the water content of the object.
  • the air flow control unit 257 includes a ratio threshold value comparing unit 262 that compares the intensity ratio with a predetermined ratio threshold value 261, and can control the air flow rate of the air blowing unit 3 based on the comparison result.
  • the case where judgment of ventilation control was performed based on the table T of a moisture content detection result was illustrated.
  • the water content may be detected a plurality of times, and the air flow control may be determined based on the time change rate T '.
  • the unit area with a small time change rate T ′ has a large amount of water, it may contain a large amount of water inside, or it may be difficult for dry air to reach, and it takes time to dry.
  • the angle of the louver 6 in the direction in which the time change rate T ′ is small the drying time of the difficult-to-dry region can be shortened, and the drying efficiency can be improved.
  • the air flow control unit 257 can change the air flow rate of the air blowing unit 3 in addition to the louver 6.
  • the air flow control unit 257 includes a change rate threshold comparison unit 264 that compares the temporal change rate of the intensity ratio with a predetermined change rate threshold 263, and can control the air flow rate of the air blow unit 3 based on the comparison result.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.
  • the present invention can be realized by arbitrarily combining the components and functions in each embodiment within the scope obtained by applying various modifications conceived by those skilled in the art to each embodiment and the scope of the present invention.
  • the embodiments of the present invention are also included in the present invention.
  • the infrared reflected light intensity detection according to the present invention can enhance the measurement accuracy of the drying progress of the material to be dried, it is useful for the determination of the material to be dried and the operation control of the blower. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Compressor (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is a ventilation device (1), comprising a main body (2), a ventilation part (3), a dehumidifier part (4), a degree of moisture sensing part (9), and a control part (5). An intake port (10) and an exhaust port (11) are disposed on the main body. The ventilation part vents air from the intake port to the exhaust port. The dehumidifier part senses the degree of moisture of a subject of interest. The control part controls the venting from the exhaust port. The degree of moisture sensing part comprises a light emission part (7) and a photoreceptor part (8). The light emission part emits, toward the subject of interest, a sensing light including a wavelength absorbed by water, and a reference light including a wavelength less prone to be absorbed by water than the wavelength of the sensing light. The photoreceptor part receives the sensing light and the reference light, which have been reflected by the subject of interest. The control part comprises a degree of moisture computation part for comparing the intensities of the sensing light and the reference light received by the photoreceptor part and computing the degree of moisture. The control part controls the ventilation on the basis of the degree of moisture computed by the degree of moisture computation unit.

Description

送風装置Air blower
 本発明は、主に一般家庭における浴室内の乾燥もしくは室内に干した洗濯物の乾燥に使用される送風装置に関するものである。 The present invention relates to an air blower mainly used to dry laundry in a bathroom or to dry laundry in a room of a general household.
 近年、生活スタイルの変化に伴い、時間を問わずに洗濯物を室内にて乾かしたいという要望が多くなっている。そこで、送風装置を用いることで、室内の居住、非居住部分を洗濯物の乾燥の場所として利用することが普及している。 In recent years, with changes in lifestyles, there has been an increasing demand for drying laundry indoors at any time. Therefore, it has become widespread to use the indoor and non-residential portions as a place for drying laundry by using a blower.
 特許文献1、2に記載があるように、既に種々の方法によって、衣類等被乾燥物の乾燥状態を判断する送風装置が考案されている。衣類等被乾燥物が乾燥状態になったと判断される場合として、例えば、室内空気が予め設定された温度に至った場合、使用者が選択した所定の相対湿度に至った場合、間欠運転前後の相対湿度変化量を検知し所定の変化量以下に至った場合などがある。さらに、間欠運転中と運転後の相対湿度変化量を検知し所定の変化量以下に至った場合なども衣類等被乾燥物の乾燥状態と判断されている。 As described in Patent Documents 1 and 2, an air blower has already been devised which determines the dry state of a material to be dried such as clothing by various methods. As a case where it is determined that clothes to be dried is in a dry state, for example, when indoor air reaches a preset temperature, when it reaches a predetermined relative humidity selected by the user, before and after intermittent operation There are cases where the relative humidity change amount is detected and the amount of change reaches a predetermined change amount or less. Furthermore, when the relative humidity change amount is detected during intermittent operation and after the operation and the amount reaches a predetermined change amount or less, it is also determined that the clothes to be dried are dry.
 また、特許文献3に記載の送風装置は、衣類等被乾燥物から放出される赤外線を検出し、被乾燥物の赤外線の絶対量から衣類等被乾燥物の温度状態を検出する。送風装置は、被乾燥物の温度が室内温度より高い状態が一定期間、例えば30分以上続けば、被乾燥物が乾燥したと判断し、送風運転を終了するようにしている。 Moreover, the air blower of patent document 3 detects the infrared rays discharge | released from clothes and a to-be-dried thing, and detects the temperature state of a to-be-dried thing, such as clothes, from the absolute amount of the infrared rays of a to-be-dried. The blower determines that the material to be dried is dry if the temperature of the material to be dried is higher than the room temperature for a certain period of time, for example, 30 minutes or more, and ends the air blowing operation.
 また、特許文献4に記載の送風装置は、左右方向の風向を調整するフラップと赤外線センサを備えている。送風装置は、送風装置の前方右側、前方中央、前方左側の3つの検出範囲のどこに被乾燥物があるのかを赤外線センサによる温度分布から判定する。そして、判定された検出範囲に集中して送風するようにフラップの可動範囲が制御される。 Moreover, the air blower of patent document 4 is equipped with the flap and infrared sensor which adjust the wind direction of the left-right direction. The blower determines which of the three detection ranges of the front right, front center and front left of the blower is present from the temperature distribution by the infrared sensor. Then, the movable range of the flap is controlled so that the air is concentrated and blown to the determined detection range.
特開平10-99597号公報Japanese Patent Application Laid-Open No. 10-99597 特開平4-240495号公報JP-A-4-240495 特開2007-240100号公報JP 2007-240100 A 特開2010-112604号公報JP, 2010-112604, A
 ところで、気候、天候などの環境の変化、また、乾燥を行う空間の大きさ、乾燥を行う部屋の材質などが衣類等被乾燥物の乾燥状態の判断に大きな影響を及ぼす。そのため、従来の送風装置における自動乾燥制御方法では、予め設定された相対湿度の所定値、あるいは絶対湿度の変位量によって対象物の乾燥状態を判断する場合、正確に乾燥状態を検知できないという課題がある。 By the way, changes in the environment such as climate and weather, the size of the space to be dried, and the material of the room to be dried greatly influence the determination of the drying state of the object to be dried such as clothing. Therefore, in the automatic drying control method in the conventional air blower, when the drying state of the object is determined by the predetermined value of the relative humidity or the displacement amount of the absolute humidity set in advance, the drying state can not be accurately detected. is there.
 また、衣類等被乾燥物の乾燥状態を判断した後も間欠運転を繰返し、乾燥状態の判定基準を環境に応じて複数設ける構成が考えられるが、天候、気候などの様々な環境変化により正確に乾燥状態を判断することができないという課題がある。 In addition, intermittent operation is repeated even after determining the dry condition of the object to be dried, such as clothing, and it is conceivable to provide a plurality of dry condition determination criteria according to the environment, but due to various environmental changes such as weather or climate There is a problem that the dry state can not be determined.
 また、赤外線センサを用いた方式は、被乾燥物の判断を室内の温度分布を検出することで行っている。そのため、冬場の冷えた窓や暖房器具の高温となる送風口付近などの周囲環境の温度ムラ、又は送風装置から送風される高温の風による被乾燥物の温度ムラが生じると正確に乾燥状態の判断ができない。よって、被乾燥物以外への送風や未乾燥物を乾燥状態と判断し、乾き残りが生じるなど、乾燥の判定精度が悪いという課題がある。 In the method using an infrared sensor, the object to be dried is determined by detecting the temperature distribution in the room. Therefore, if the temperature unevenness of the surrounding environment such as the cold window of the winter and the vicinity of the air outlet where the heater becomes high temperature or the temperature unevenness of the object to be dried by the high temperature wind blown from the air blower occurs I can not judge. Therefore, there is a problem that the determination accuracy of drying is poor, such as blowing air to the non-dried matter and the undried matter to be in a dry state, resulting in undried matter.
 本発明は、上記のような点に鑑みてなされたもので、気候、天候等の環境変化に柔軟に対応し、周囲温度や送風装置の送風の影響を受けず正確に乾燥の判断ができ、被乾燥物の乾燥後における過剰運転を低減することで乾燥効率を高めることが可能な送風装置を提供することを目的とする。 The present invention has been made in view of the above-described points, and flexibly copes with environmental changes such as climate and weather, and can accurately determine drying without being affected by the ambient temperature and the blowing of the blower. An object of the present invention is to provide a blower capable of enhancing the drying efficiency by reducing the excessive operation after drying of the material to be dried.
 本発明の一態様に係る送風装置は、本体と、送風部と、除湿部と、水分量検知部と、制御部とを備える。本体には、吸込口と吹出口が設けられている。送風部は、吸込口から吹出口へ空気を送風する。除湿部は、吸込口から吸込まれた空気を除湿する。水分量検知部は、対象物の水分量を検知する。制御部は、吹出口からの送風を制御する。水分量検知部は、発光部と受光部とを備える。発光部は、対象物へ向けて水に吸収される波長を含む検知光と検知光より水に吸収されにくい波長を含む参照光を発光する。受光部は、対象物で反射された検知光と参照光を受光する。前記制御部は、受光部が受光した検知光と参照光の強度を比較して水分量を算出する水分量算出部と、を備え、制御部は、水分量算出部による水分量に基づいて送風を制御する。 A blower according to one aspect of the present invention includes a main body, a blower, a dehumidifying part, a water content detector, and a controller. The main body is provided with an inlet and an outlet. The blower blows air from the suction port to the blowout port. The dehumidifying part dehumidifies the air sucked from the suction port. The water content detection unit detects the water content of the object. The control unit controls air flow from the air outlet. The moisture content detection unit includes a light emitting unit and a light receiving unit. The light emitting unit emits detection light including a wavelength that is absorbed by water toward the object and reference light that includes a wavelength that is less easily absorbed by water than the detection light. The light receiving unit receives the detection light and the reference light reflected by the object. The control unit includes a water content calculation unit that calculates the water content by comparing the intensities of the detection light and the reference light received by the light reception unit, and the control unit sends air based on the water content by the water content calculation unit. Control.
 本発明の送風装置は、対象範囲にある対象物に向けて光を照射し、対象物によって反射された検知光と参照光の強度を比較することで、対象物に含まれる水分量を算出する。これにより、対象範囲にある対象物の水分含有量が正確に特定される。したがって、対象物の乾燥状態を正確に判断し、対象物を最適に乾燥させることができる。 The blower according to the present invention irradiates light toward an object in a target range, and calculates the amount of water contained in the object by comparing the intensities of the detection light and the reference light reflected by the object. . Thereby, the water content of the object in the target range is accurately identified. Therefore, the drying state of the object can be accurately determined, and the object can be optimally dried.
図1は、本発明の実施の形態1に係る除湿機の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a dehumidifier according to Embodiment 1 of the present invention. 図2は、同除湿機の概略構成を示す側面構成図である。FIG. 2 is a side view showing a schematic configuration of the dehumidifier. 図3は、同除湿機の発光部と受光部の構成と対象物とを示す模式図である。FIG. 3 is a schematic view showing the configuration of a light emitting unit and a light receiving unit of the same dehumidifier and an object. 図4は、同除湿機の制御構成を示すブロック図である。FIG. 4 is a block diagram showing a control configuration of the dehumidifier. 図5は、水分と水蒸気との吸光スペクトルを示す図である。FIG. 5 is a diagram showing an absorption spectrum of water and water vapor. 図6は、同除湿機の検出範囲を示す模式図である。FIG. 6 is a schematic view showing a detection range of the dehumidifier. 図7は、同除湿機の発光部と受光部の走査方向を示す模式図である。FIG. 7 is a schematic view showing scanning directions of a light emitting unit and a light receiving unit of the dehumidifier. 図8は、同除湿機の水分量算出のフローチャートである。FIG. 8 is a flowchart of water content calculation of the same dehumidifier. 図9は、同除湿機の水分量分布のテーブルを示す図である。FIG. 9 is a view showing a table of water content distribution of the dehumidifier. 図10は、同除湿機の乾燥判断部を示すブロック図である。FIG. 10 is a block diagram showing a drying judgment unit of the dehumidifier. 図11は、実施の形態1に係る扇風機概略構成を示す斜視図である。FIG. 11 is a perspective view showing a schematic configuration of a fan according to the first embodiment. 図12は、実施の形態1に係る浴室乾燥機の概略構成を示す斜視図である。FIG. 12 is a perspective view showing a schematic configuration of the bathroom dryer according to the first embodiment. 図13は、実施の形態2に係る除湿機の乾燥判断部を示すブロック図である。FIG. 13 is a block diagram showing the drying judgment unit of the dehumidifier according to the second embodiment. 図14は、実施の形態3に係る除湿機の概略構成を示す側面構成図である。FIG. 14 is a side view showing a schematic configuration of the dehumidifier according to the third embodiment. 図15は、実施の形態3に係る除湿機の制御構成を示すブロック図である。FIG. 15 is a block diagram showing a control configuration of the dehumidifier according to the third embodiment. 図16は、実施の形態3に係る除湿機の送風制御部の動作を示すブロック図である。FIG. 16 is a block diagram showing the operation of the air flow control unit of the dehumidifier according to the third embodiment.
 以下では、本発明の実施の形態に係る送風装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, a blower according to an embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferable specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangements of components, connection configurations and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 (実施の形態1)
 (除湿機)
 送風装置の例として除湿機1について説明する。図1は除湿機1の概略構成を示す斜視図である。図2は除湿機1の概略構成を示す側面構成図である。
Embodiment 1
(Dehumidifier)
The dehumidifier 1 will be described as an example of a blower. FIG. 1 is a perspective view showing a schematic configuration of the dehumidifier 1. FIG. 2 is a side view showing a schematic configuration of the dehumidifier 1. As shown in FIG.
 除湿機1は、本体2と、送風部3と、除湿部4と、水分量検知部9と、制御部5と、を備えている。 The dehumidifier 1 includes a main body 2, a blower 3, a dehumidifier 4, a water content detector 9, and a controller 5.
 本体2には、本体2の外部の空気を本体2内に吸込むための吸込口10と、吸込口10から吸込んだ空気を本体2の外部へ吹出すための吹出口11が設けられている。図2に示すように、吸込口10は本体2の下方に設けられており、吹出口11は本体2の上方に設けられている。なお、吹出口11と吸込口10は同一の側面に係るように設けられている。 The main body 2 is provided with a suction port 10 for sucking air outside the main body 2 into the main body 2, and a blowout port 11 for blowing air sucked from the suction port 10 to the outside of the main body 2. As shown in FIG. 2, the suction port 10 is provided below the main body 2, and the blowout port 11 is provided above the main body 2. In addition, the blower outlet 11 and the suction inlet 10 are provided so that it may concern on the same side.
 送風部3は、室内空気を吸込口10から吹出口11へ導く。吸込口10から本体2内へ吸込まれた室内空気は、後述する除湿部4にて除湿される。除湿された室内空気は、吹出口11より対象範囲にある対象物に除湿空気として送風される。 The blower unit 3 guides indoor air from the suction port 10 to the blowout port 11. The indoor air sucked into the main body 2 from the suction port 10 is dehumidified by the dehumidifying unit 4 described later. The dehumidified room air is blown from the blowout port 11 to a target object in the target range as the dehumidified air.
 除湿部4は、吸込口10から吸込まれた空気を除湿する。除湿部4は、室内空気を除湿できればよく、例えば、シリカゲルなどの除湿材を用いたデシカント除湿や蒸気圧縮式のヒートポンプなどである。なお、室内空気は除湿のみでなく、除塵されてもよい。 The dehumidifying unit 4 dehumidifies the air sucked from the suction port 10. The dehumidifying part 4 is only required to be capable of dehumidifying room air, and is, for example, desiccant dehumidifying using a dehumidifying material such as silica gel or a heat pump of vapor compression type. The indoor air may be dedusted as well as dehumidified.
 水分量検知部9は、発光部7と受光部8とを有し、対象物100の水分量を検知する。発光部7は、対象物100に向かって発光する。受光部8は、対象物100で反射された光を受光する。 The water content detection unit 9 has a light emitting unit 7 and a light receiving unit 8, and detects the water content of the object 100. The light emitting unit 7 emits light toward the object 100. The light receiving unit 8 receives the light reflected by the object 100.
 制御部5は、吹出口11からの送風を制御する。制御部5は、光源制御部51(図4参照)と、水分量算出部56(図4参照)と、を備える。光源制御部51は、発光部7より照射される光を制御する。水分量算出部56は、受光部8によって受光された光を検知し、水分量を算出する。また、制御部5は、少なくとも1つのマイクロコントローラで構成され、除湿機1の統括的な動作プログラムが格納された不揮発性メモリと、プログラムを実行するための一時的な記憶領域である揮発性メモリと、入出力ポートと、プログラムを実行するプロセッサなどを有する。 The control unit 5 controls the air blowing from the air outlet 11. The control unit 5 includes a light source control unit 51 (see FIG. 4) and a moisture content calculation unit 56 (see FIG. 4). The light source control unit 51 controls the light emitted from the light emitting unit 7. The water content calculation unit 56 detects the light received by the light receiving unit 8 and calculates the water content. In addition, the control unit 5 is composed of at least one microcontroller, and is a non-volatile memory in which an overall operation program of the dehumidifier 1 is stored, and a volatile memory which is a temporary storage area for executing the program. , An input / output port, and a processor for executing a program.
 具体的には、制御部5は、水分量算出部56によって算出された水分量に基づいて対象物の乾燥状態を判断し、送風部3と除湿部4のうち少なくとも1つを制御する。なお、水分量算出部56は、受光部8で受光される波長の異なる2つの光の強度を比較することによって、対象物100の水分量を算出する。詳細については後述する。これにより、制御部5は、対象物100の水分量に応じて、適切な乾燥判断と乾燥制御を行う。 Specifically, the control unit 5 determines the dry state of the object based on the water content calculated by the water content calculation unit 56, and controls at least one of the blower unit 3 and the dehumidifying unit 4. The water content calculation unit 56 calculates the water content of the object 100 by comparing the intensities of two lights of different wavelengths received by the light receiving unit 8. Details will be described later. Thus, the control unit 5 performs appropriate drying judgment and drying control in accordance with the water content of the object 100.
 次に実施の形態1に係る発光部7と受光部8と制御部5の構成の概要について説明する。 Next, an outline of the configuration of the light emitting unit 7, the light receiving unit 8, and the control unit 5 according to the first embodiment will be described.
 図3は、実施の形態1に係る発光部7と受光部8の構成と対象物100とを示す模式図である。図4は、実施の形態1に係る除湿機1の制御構成を示すブロック図である。 FIG. 3 is a schematic view showing the configuration of the light emitting unit 7 and the light receiving unit 8 and the object 100 according to the first embodiment. FIG. 4 is a block diagram showing a control configuration of the dehumidifier 1 according to the first embodiment.
 本実施の形態では、図3に示すように、発光部7は、空間を隔てて存在する対象物100に向けて光を照射する。発光部7から照射された光は、対象物100で反射される。反射された光である反射光RA1は、受光部8で検出される。そして、受光部8で検出された反射光RA1に基づいて、図4に示す水分量算出部56で対象物100に含まれる水分量が算出される。対象物100に含まれる水分量とは、対象物100上に溜まった水分と、対象物100の表面部分に浸透した水分のことである。 In the present embodiment, as shown in FIG. 3, the light emitting unit 7 irradiates light toward the target 100 existing at a space. The light emitted from the light emitting unit 7 is reflected by the object 100. The reflected light RA 1 which is the reflected light is detected by the light receiving unit 8. Then, based on the reflected light RA1 detected by the light receiving unit 8, the water content calculation unit 56 shown in FIG. 4 calculates the water content included in the object 100. The amount of water contained in the object 100 refers to the water accumulated on the object 100 and the water having permeated to the surface portion of the object 100.
 以下では、各構成要素について詳細に説明する。 Each component will be described in detail below.
 (発光部)
 発光部7は、水に吸収される波長の光である第一波長帯を含む検知光と、第一波長帯よりも水による吸収が小さい波長の光である第二波長帯を含む参照光とを対象物100に向けて発する。具体的には、発光部7は、投光レンズ21と、光源22とを備えている。
(Light emitting unit)
The light emitting unit 7 includes a detection light including a first wavelength band which is a light of a wavelength absorbed by water, and a reference light including a second wavelength band which is a light of a wavelength whose absorption by water is smaller than the first wavelength band. Toward the object 100. Specifically, the light emitting unit 7 includes a light projecting lens 21 and a light source 22.
 投光レンズ21は、光源22が発した光を、対象物100に対して集光する集光レンズである。投光レンズ21は、樹脂製の凸レンズであるが、これに限らない。 The light projection lens 21 is a condensing lens that condenses the light emitted from the light source 22 on the object 100. Although the light projection lens 21 is a resin-made convex lens, it is not restricted to this.
 光源22は、検知光をなす第一波長帯と参照光をなす第二波長帯とを含み、ピーク波長が第二波長帯側にある連続した光を発するLED(Light Emitting Diode)光源である。具体的には、光源22は、化合物半導体からなるLED光源である。 The light source 22 is a light emitting diode (LED) light source that includes a first wavelength band forming detection light and a second wavelength band forming reference light, and emits continuous light having a peak wavelength on the second wavelength band side. Specifically, the light source 22 is an LED light source made of a compound semiconductor.
 図5は、水分と水蒸気との吸光スペクトルを示す図である。図5に示すように、水分は、約1450nm及び約1940nmの波長に吸収ピークを有する。水蒸気は、水分の吸収ピークよりやや低い波長、具体的には約1350nm~1400nm及び約1800nm~1900nmの波長に吸収ピークを有する。 FIG. 5 is a diagram showing an absorption spectrum of water and water vapor. As shown in FIG. 5, the moisture has absorption peaks at wavelengths of about 1450 nm and about 1940 nm. Water vapor has an absorption peak at a wavelength slightly lower than the absorption peak of water, specifically at a wavelength of about 1350 nm to about 1400 nm and about 1800 nm to about 1900 nm.
 このため、検知光をなす第一波長帯としては、水の吸光度が高い波長帯を選択し、参照光をなす第二波長帯としては、第一波長帯よりも水の吸光度が小さい波長帯を選択する。 For this reason, a wavelength band where the light absorbance of water is high is selected as the first wavelength band that forms detection light, and a wavelength band where the absorbance of water is smaller than the first wavelength band is selected as the second wavelength band that makes reference light. select.
 そして、一例としては、第二波長帯の平均波長は、第一波長帯の平均波長よりも長くする。また、光学的なバンドパスフィルタの最大透過率の半値である波長の中心値で定義される中心波長に関して、例えば第一波長帯の中心波長は1450nmとし、第二波長帯の中心波長は1700nmとする。光源22は、第一波長帯と第二波長帯とを連続して含む光を照射するので、対象物100には、水による吸収が大きな第一波長帯を含む検知光と、水による吸収が第一波長帯よりも小さい第二波長帯を含む参照光が照射される。 And as an example, the average wavelength of the second wavelength band is made longer than the average wavelength of the first wavelength band. Further, with respect to the central wavelength defined by the central value of the wavelength which is the half value of the maximum transmittance of the optical band pass filter, for example, the central wavelength of the first wavelength band is 1450 nm, and the central wavelength of the second wavelength band is 1700 nm Do. Since the light source 22 emits light continuously including the first wavelength band and the second wavelength band, the object 100 receives the detection light including the first wavelength band that is largely absorbed by water, and the absorption by water. Reference light including a second wavelength band smaller than the first wavelength band is emitted.
 (受光部)
 図3に示すように受光部8は、発光部7から照射され対象物100で反射された反射光RA1を受光する。つまり、受光部8は、発光部7から照射され、対象物100で反射された検知光と参照光を受光する。
(Light receiving section)
As shown in FIG. 3, the light receiving unit 8 receives the reflected light RA <b> 1 emitted from the light emitting unit 7 and reflected by the object 100. That is, the light receiving unit 8 receives the detection light and the reference light which are emitted from the light emitting unit 7 and reflected by the object 100.
 受光部8は、受光レンズ71と、ハーフミラー34と、第一受光素子73と、第二受光素子43と、第一バンドパスフィルタ72と、第二バンドパスフィルタ42とを有する。反射光RA1は、受光レンズ71によって集光され、ハーフミラー34によって第一光路LR01を通る光と第二光路LR02を通る光に分割される。 The light receiving unit 8 includes a light receiving lens 71, a half mirror 34, a first light receiving element 73, a second light receiving element 43, a first band pass filter 72, and a second band pass filter 42. The reflected light RA1 is condensed by the light receiving lens 71, and is divided by the half mirror 34 into light passing through the first optical path LR01 and light passing through the second optical path LR02.
 受光レンズ71は、対象物100によって反射された反射光RA1を第一受光素子73および第二受光素子43に集光するための集光レンズである。受光レンズ71は、例えば、焦点が第一受光素子73の受光面に位置するように受光部8に固定されている。受光レンズ71は、例えば、樹脂製の凸レンズであるが、これに限らない。 The light receiving lens 71 is a condensing lens for condensing the reflected light RA <b> 1 reflected by the object 100 on the first light receiving element 73 and the second light receiving element 43. The light receiving lens 71 is fixed to the light receiving unit 8 such that the focal point is located on the light receiving surface of the first light receiving element 73, for example. The light receiving lens 71 is, for example, a resin-made convex lens, but is not limited to this.
 ハーフミラー34は、例えば、受光レンズ71と第一受光素子73の間に配置され、受光レンズ71によって集光された光のうち半分を透過し、残りを反射する。ハーフミラー34を透過した光の光路である第一光路LR01の先には、第一バンドパスフィルタ72と、第一受光素子73とが設けられている。 The half mirror 34 is disposed, for example, between the light receiving lens 71 and the first light receiving element 73, transmits half of the light collected by the light receiving lens 71, and reflects the remaining light. A first band pass filter 72 and a first light receiving element 73 are provided at the end of the first optical path LR01 which is an optical path of light transmitted through the half mirror 34.
 第一バンドパスフィルタ72は、反射光RA1から検知光である第一波長帯の光を抽出するバンドパスフィルタである。具体的には、第一バンドパスフィルタ72は、ハーフミラー34と、第一受光素子73との間に配置されており、ハーフミラー34を透過して第一受光素子73に入射する反射光RA1の光路上に設けられている。第一バンドパスフィルタ72は、第一波長帯の光を透過するとともに、それ以外の波長帯の光を反射または吸収する。 The first band pass filter 72 is a band pass filter that extracts light of a first wavelength band, which is detection light, from the reflected light RA1. Specifically, the first band pass filter 72 is disposed between the half mirror 34 and the first light receiving element 73, and the reflected light RA1 transmitted through the half mirror 34 and incident on the first light receiving element 73. Provided on the light path of The first band pass filter 72 transmits light in the first wavelength band and reflects or absorbs light in other wavelength bands.
 第一受光素子73は、対象物100によって反射され、ハーフミラー34を透過し、第一バンドパスフィルタ72を透過した第一波長帯の光を受光し、第一電気信号に変換する受光素子である。第一受光素子73は、受光した第一波長帯の光を光電変換することで、当該光の受光量(すなわち、強度)に応じた第一電気信号を生成する。生成された第一電気信号は、制御部5に出力される。第一受光素子73は、例えば、フォトダイオードであるが、これに限定されない。例えば、第一受光素子73は、フォトトランジスタ、又は、イメージセンサでもよい。 The first light receiving element 73 is a light receiving element that receives the light of the first wavelength band that is reflected by the object 100, passes through the half mirror 34, and passes through the first band pass filter 72, and converts it into a first electrical signal. is there. The first light receiving element 73 photoelectrically converts the received light of the first wavelength band to generate a first electric signal according to the amount of light received (that is, the intensity). The generated first electrical signal is output to the control unit 5. The first light receiving element 73 is, for example, a photodiode, but is not limited thereto. For example, the first light receiving element 73 may be a phototransistor or an image sensor.
 第二バンドパスフィルタ42は、ハーフミラー34で反射された光から参照光である第二波長帯の光を抽出するバンドパスフィルタである。具体的には、第二バンドパスフィルタ42は、ハーフミラー34と、第二受光素子43との間に配置されており、ハーフミラー34を反射して第二受光素子43に入射する光の光路上に設けられている。そして、第二バンドパスフィルタ42は、第二波長帯の光を透過し、かつ、それ以外の波長帯の光を反射または吸収する。 The second band pass filter 42 is a band pass filter that extracts light of a second wavelength band, which is reference light, from the light reflected by the half mirror 34. Specifically, the second band pass filter 42 is disposed between the half mirror 34 and the second light receiving element 43, and the light of the light reflected by the half mirror 34 and incident on the second light receiving element 43 It is provided on the street. Then, the second band pass filter 42 transmits the light of the second wavelength band, and reflects or absorbs the light of the other wavelength bands.
 第二受光素子43は、対象物100によって反射され、第二バンドパスフィルタ42を透過した第二波長帯の光を受光し、第二電気信号に変換する受光素子である。第二受光素子43は、受光した第二波長帯の光を光電変換することで、当該光の受光量(すなわち、強度)に応じた第二電気信号を生成する。生成された第二電気信号は、制御部5に出力される。第二受光素子43は、第一受光素子73と同形の受光素子である。つまり、第一受光素子73がフォトダイオードである場合には、第二受光素子43もフォトダイオードである。 The second light receiving element 43 is a light receiving element that receives the light of the second wavelength band reflected by the object 100 and transmitted through the second band pass filter 42 and converts the light into a second electric signal. The second light receiving element 43 photoelectrically converts the received light of the second wavelength band to generate a second electric signal according to the amount (that is, the intensity) of the received light. The generated second electrical signal is output to the control unit 5. The second light receiving element 43 is a light receiving element having the same shape as the first light receiving element 73. That is, when the first light receiving element 73 is a photodiode, the second light receiving element 43 is also a photodiode.
 (制御部)
 制御部5は、光源制御部51と、第一増幅部52と、第二増幅部53と、第一信号処理部54と、第二信号処理部55と、水分量算出部56と、乾燥判断部57を備える。
(Control unit)
The control unit 5 includes a light source control unit 51, a first amplification unit 52, a second amplification unit 53, a first signal processing unit 54, a second signal processing unit 55, a water content calculation unit 56, and a drying judgment. A unit 57 is provided.
 制御部5は、本体2に収容されていてもよく、又は、本体2の外側面に取り付けられていてもよい。あるいは、制御部5は、複数に分かれており、無線通信などの通信機能を有し、第一受光素子73からの第一電気信号及び第二受光素子43からの第二電気信号を受信してもよい。 The control unit 5 may be housed in the main body 2 or may be attached to the outer side surface of the main body 2. Alternatively, the control unit 5 is divided into a plurality, has a communication function such as wireless communication, and receives the first electric signal from the first light receiving element 73 and the second electric signal from the second light receiving element 43. It is also good.
 光源制御部51は、発光部7の光源22の点灯を制御する。光源制御部51は、駆動回路及びマイクロコントローラで構成される。光源制御部51は、光源22の制御プログラムが格納された不揮発性メモリと、プログラムを実行するための一時的な記憶領域である揮発性メモリと、入出力ポートと、プログラムを実行するプロセッサなどを有する。光源制御部51は、光源22の点灯及び消灯が所定の発光周期で繰り返されるように、光源22を制御する。具体的には、光源制御部51は、所定の周波数(例えば、1kHz)のパルス信号を光源22に出力することで、光源22を所定の発光周期で点灯及び消灯させる。 The light source control unit 51 controls lighting of the light source 22 of the light emitting unit 7. The light source control unit 51 is configured of a drive circuit and a microcontroller. The light source control unit 51 includes a non-volatile memory storing a control program of the light source 22, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. Have. The light source control unit 51 controls the light source 22 so that lighting and extinguishing of the light source 22 are repeated in a predetermined light emitting cycle. Specifically, the light source control unit 51 outputs a pulse signal of a predetermined frequency (for example, 1 kHz) to the light source 22 to turn on and off the light source 22 at a predetermined light emission cycle.
 第一増幅部52は、第一受光素子73が出力した第一電気信号を増幅して第一信号処理部54に出力する。具体的には、第一増幅部52は、第一電気信号を増幅するオペアンプである。 The first amplification unit 52 amplifies the first electric signal output from the first light receiving element 73 and outputs the amplified first electric signal to the first signal processing unit 54. Specifically, the first amplification unit 52 is an operational amplifier that amplifies the first electrical signal.
 第一信号処理部54は、マイクロコントローラで構成される。第一信号処理部54は、第一電気信号に対する処理プログラムが格納された不揮発性メモリと、プログラムを実行するための一時的な記憶領域である揮発性メモリと、入出力ポートと、プログラムを実行するプロセッサなどを有する。第一信号処理部54は、第一電気信号に対して、通過帯域制限を行うとともに当該通過帯域制限による位相遅延を補正してから、光源22の発光周期との乗算処理を施す。この第一電気信号に対する処理は、いわゆるロックインアンプ処理である。これにより、第一電気信号に発生する外乱光に基づくノイズを抑制する。 The first signal processing unit 54 is configured by a microcontroller. The first signal processing unit 54 executes a program, a nonvolatile memory storing a processing program for the first electric signal, a volatile memory which is a temporary storage area for executing the program, an input / output port, and the like Processor etc. The first signal processing unit 54 performs passband limitation on the first electric signal and corrects the phase delay due to the passband limitation, and then performs multiplication processing with the light emission cycle of the light source 22. The process for the first electrical signal is a so-called lock-in amplifier process. This suppresses noise based on disturbance light generated in the first electrical signal.
 第二増幅部53は、第二受光素子43が出力した第二電気信号を増幅して第二信号処理部55に出力する。具体的には、第二増幅部53は、第二電気信号を増幅するオペアンプである。 The second amplification unit 53 amplifies the second electric signal output from the second light receiving element 43 and outputs the amplified second electric signal to the second signal processing unit 55. Specifically, the second amplification unit 53 is an operational amplifier that amplifies the second electrical signal.
 第二信号処理部55は、マイクロコントローラで構成される。第二信号処理部55は、第二電気信号に対する処理プログラムが格納された不揮発性メモリと、プログラムを実行するための一時的な記憶領域である揮発性メモリと、入出力ポートと、プログラムを実行するプロセッサなどを有する。第二信号処理部55は、第二電気信号に対して、通過帯域制限を行うとともに当該通過帯域制限による位相遅延を補正してから、光源22の発光周期との乗算処理を施す。この第二電気信号に対する処理は、いわゆるロックインアンプ処理である。これにより、第二電気信号に発生する外乱光に基づくノイズを抑制する。 The second signal processing unit 55 is configured by a microcontroller. The second signal processing unit 55 executes a non-volatile memory storing a processing program for the second electric signal, a volatile memory which is a temporary storage area for executing the program, an input / output port, and the program Processor etc. The second signal processing unit 55 performs passband limitation on the second electric signal and corrects the phase delay due to the passband limitation, and then performs multiplication processing with the light emission cycle of the light source 22. The process for the second electrical signal is a so-called lock-in amplifier process. This suppresses noise based on disturbance light generated in the second electrical signal.
 水分量算出部56は、第一受光素子73から出力された第一電気信号と、第二受光素子43から出力された第二電気信号とに基づいて、対象物100が含む水分を検出する。具体的には、水分量算出部56は、第一電気信号の電圧レベルと第二電気信号の電圧レベルとの比(信号比)に基づいて、対象物100が含む水分量を検出する。本実施の形態では、水分量算出部56は、第一信号処理部54によって処理された第一電気信号と、第二信号処理部55によって処理された第二電気信号とに基づいて、対象物100が含む水分量を検出する。水分量算出部56は、検出した水分量を乾燥判断部57に出力する。具体的な水分量の検出処理については後で説明する。 The water content calculation unit 56 detects the water contained in the object 100 based on the first electric signal output from the first light receiving element 73 and the second electric signal output from the second light receiving element 43. Specifically, the water content calculation unit 56 detects the water content included in the object 100 based on the ratio (signal ratio) of the voltage level of the first electrical signal to the voltage level of the second electrical signal. In the present embodiment, the moisture content calculation unit 56 determines the target object based on the first electrical signal processed by the first signal processing unit 54 and the second electrical signal processed by the second signal processing unit 55. The amount of water contained in 100 is detected. The water content calculation unit 56 outputs the detected water content to the drying determination unit 57. The specific water content detection process will be described later.
 水分量算出部56は、例えば、マイクロコントローラである。水分量算出部56は、信号処理プログラムが格納された不揮発性メモリと、プログラムを実行するための一時的な記憶領域である揮発性メモリと、入出力ポートと、プログラムを実行するプロセッサなどを有する。 The water content calculation unit 56 is, for example, a microcontroller. The water content calculation unit 56 has a nonvolatile memory storing a signal processing program, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. .
 乾燥判断部57は、水分量算出部56で算出された水分量に基づいて対象物100の乾燥を判断する。 The drying determining unit 57 determines the drying of the object 100 based on the water content calculated by the water content calculating unit 56.
 具体的な乾燥判断については、後で説明する。 The specific drying judgment will be described later.
 (水分量の検出処理)
 水分量算出部56による水分量の検出処理について説明する。本実施の形態では、水分量算出部56は、反射光RA1に含まれる検知光の光エネルギーPdと、参照光の光エネルギーPrとを比較することで、対象物100に含まれる水分量を検出する。なお、検知光の光エネルギーPdは、第一受光素子73から出力される第一電気信号の強度に対応し、参照光の光エネルギーPrは、第二受光素子43から出力される第二電気信号の強度に対応する。
(Water content detection process)
The detection process of the water content by the water content calculation unit 56 will be described. In the present embodiment, the water content calculation unit 56 detects the water content included in the object 100 by comparing the light energy Pd of the detection light included in the reflected light RA1 with the light energy Pr of the reference light. Do. The light energy Pd of the detection light corresponds to the intensity of the first electric signal output from the first light receiving element 73, and the light energy Pr of the reference light is a second electric signal output from the second light receiving element 43. Corresponds to the strength of
 光エネルギーPdは、次の(式1)で表される。 The light energy Pd is represented by the following (formula 1).
 (式1)Pd=Pd0×Gd×Rd×Td×Aad×Ivd
 ここで、Pd0は、光源22が発した光のうち、検知光をなす第一波長帯の光の光エネルギーである。Gdは、第一波長帯の光の第一受光素子73に対する結合効率(集光率)である。具体的には、Gdは、光源22が発した光のうち、対象物(対象物100)で拡散反射される成分の一部(すなわち、反射光に含まれる検知光)になる部分の割合に相当する。
(Formula 1) Pd = Pd0 × Gd × Rd × Td × Aad × Ivd
Here, Pd0 is the light energy of the light of the first wavelength band forming the detection light among the light emitted by the light source 22. Gd is the coupling efficiency (concentration factor) of the light of the first wavelength band to the first light receiving element 73. Specifically, Gd is a ratio of a part of the light emitted from the light source 22 to a part of the component diffused and reflected by the object (the object 100) (ie, the detection light included in the reflected light) Equivalent to.
 Rdは、対象物100による検知光の反射率である。Tdは、第一バンドパスフィルタ72による検知光の透過率である。Ivdは、第一受光素子73における反射光RA1に含まれる検知光に対する受光感度である。 Rd is the reflectance of the detection light by the object 100. Td is the transmittance of the detection light by the first band pass filter 72. Ivd is the light receiving sensitivity to the detection light included in the reflected light RA1 in the first light receiving element 73.
 Aadは、対象物100に含まれる成分(水分)による検知光の吸収率であり、次の(式2)で表される。 Aad is an absorptivity of the detection light by the component (water) contained in the object 100, and is expressed by the following (Formula 2).
 (式2) Aad=10-αa×Ca×D
 ここで、αaは、予め定められた吸光係数であり、具体的には、成分(水分)による検知光の吸光係数である。Caは、対象物100に含まれる成分(水分)の体積濃度である。Dは、検知光の吸収に寄与する成分の厚みの2倍である寄与厚みである。
(Formula 2) Aad = 10- αa × Ca × D
Here, αa is a predetermined absorption coefficient, and specifically, the absorption coefficient of the detection light by the component (water). Ca is a volume concentration of a component (water) contained in the object 100. D is a contribution thickness that is twice the thickness of the component that contributes to the absorption of the detection light.
 より具体的には、水分が均質に分散した対象物100では、光が対象物100に入射し、反射して対象物100から出射する場合において、Caは、対象物100の成分に含まれる体積濃度に相当する。また、Dは、反射して対象物100から出射するまでの光路長に相当する。例えば、Caは、対象物100を覆っている液相に含まれる水分の濃度である。また、Dは、対象物100を覆っている液相の平均的な厚みとして換算される寄与厚みである。 More specifically, in the case of the object 100 in which the water is uniformly dispersed, Ca is contained in the component of the object 100 when light is incident on the object 100 and reflected and emitted from the object 100. It corresponds to the concentration. Further, D corresponds to an optical path length until reflection and emission from the object 100. For example, Ca is the concentration of water contained in the liquid phase covering the object 100. Moreover, D is a contribution thickness converted as an average thickness of the liquid phase covering the object 100.
 したがって、αa×Ca×Dは、対象物100に含まれる成分量(水分量)に相当する。以上のことから、対象物100に含まれる水分量に応じて、第一電気信号の強度に相当する光エネルギーPdが変化することが分かる。なお、水分と比べて湿気の吸光度は極端に小さいので、無視することができる。 Therefore, αa × Ca × D corresponds to the amount of component (the amount of water) contained in the object 100. From the above, it can be seen that the light energy Pd corresponding to the intensity of the first electrical signal changes in accordance with the amount of water contained in the object 100. In addition, since the absorbance of moisture is extremely small compared to moisture, it can be ignored.
 同様に、第二受光素子43に入射する参照光の光エネルギーPrは、次の(式3)で表される。 Similarly, the light energy Pr of the reference light incident on the second light receiving element 43 is expressed by the following (Expression 3).
 (式3) Pr=Pr0×Gr×Rr×Tr×Ivr
 本実施の形態では、参照光は、対象物100に含まれる成分によって実質的には吸収されないとみなすことができるので、(式1)と比較して分かるように、水分による吸収率Aadに相当する項は(式3)には含まれていない。
(Expression 3) Pr = Pr0 × Gr × Rr × Tr × Ivr
In the present embodiment, the reference light can be considered not to be substantially absorbed by the components contained in the object 100, so that it is equivalent to the absorptance by water Aad as understood in comparison with (Equation 1) Term is not included in (Expression 3).
 (式3)において、Pr0は、光源22が発した光のうち、参照光をなす第二波長帯の光の光エネルギーである。Grは、光源22が発した参照光の第二受光素子43に対する結合効率(集光率)である。具体的には、Grは、参照光のうち、対象物100で拡散反射される成分の一部(すなわち、反射光に含まれる参照光)になる部分の割合に相当する。Rrは、対象物による参照光の反射率である。Trは、第二バンドパスフィルタ42による参照光の透過率である。Ivrは、第二受光素子43の反射光に対する受光感度である。 In Equation (3), Pr0 is light energy of light of the second wavelength band forming the reference light among the light emitted by the light source 22. Gr is a coupling efficiency (condensing ratio) to the second light receiving element 43 of the reference light emitted from the light source 22. Specifically, Gr corresponds to the proportion of the part of the reference light that is to be a part of the component that is diffusely reflected by the object 100 (that is, the reference light included in the reflected light). Rr is the reflectance of the reference light by the object. Tr is the transmittance of the reference light by the second band pass filter 42. Ivr is the light receiving sensitivity to the reflected light of the second light receiving element 43.
 本実施の形態では、光源22から照射される光、つまり、検知光と参照光とは、同軸かつ同スポットサイズで照射されるため、検知光の結合効率Gdと参照光の結合効率Grとは略等しくなる。また、検知光と参照光とはピーク波長が比較的近いので、検知光の反射率Rdと参照光の反射率Rrとが略等しくなる。 In the present embodiment, since the light emitted from the light source 22, that is, the detection light and the reference light are coaxially irradiated with the same spot size, the coupling efficiency Gd of the detection light and the coupling efficiency Gr of the reference light are It becomes almost equal. Further, since the detection light and the reference light have relatively close peak wavelengths, the reflectance Rd of the detection light and the reflectance Rr of the reference light are substantially equal.
 したがって、(式1)と(式3)との比(信号比)を取ることにより、次の(式4)が導き出される。 Therefore, the following (Expression 4) is derived by taking the ratio (signal ratio) between (Expression 1) and (Expression 3).
 (式4) Pd/Pr=Z×Aad
 ここで、Zは、定数項であり、(式5)で示される。
(Equation 4) Pd / Pr = Z × Aad
Here, Z is a constant term and is represented by (Equation 5).
 (式5) Z=(Pd0/Pr0)×(Td/Tr)×(Ivd/Ivr)
 光エネルギーPd0及びPr0はそれぞれ、光源22の初期出力として予め定められている。また、透過率Td及び透過率Trはそれぞれ、第一バンドパスフィルタ72及び第二バンドパスフィルタ42の透過特性により予め定められている。受光感度Ivd及び受光感度Ivrはそれぞれ、第一受光素子73及び第二受光素子43の受光特性により予め定められている。したがって、(式5)で示されるZは、定数とみなすことができる。
(Eq. 5) Z = (Pd0 / Pr0) × (Td / Tr) × (Ivd / Ivr)
The light energy Pd0 and Pr0 are each predetermined as an initial output of the light source 22. Further, the transmittance Td and the transmittance Tr are predetermined by the transmission characteristics of the first band pass filter 72 and the second band pass filter 42, respectively. The light receiving sensitivity Ivd and the light receiving sensitivity Ivr are predetermined by the light receiving characteristics of the first light receiving element 73 and the second light receiving element 43, respectively. Therefore, Z shown in (Expression 5) can be regarded as a constant.
 水分量算出部56は、第一電気信号に基づいて検知光の光エネルギーPdを算出し、第二電気信号に基づいて参照光の光エネルギーPrを算出する。具体的には、第一電気信号の信号レベル(電圧レベル)が光エネルギーPdに相当し、第二電気信号の信号レベル(電圧レベル)が光エネルギーPrに相当する。 The water content calculation unit 56 calculates the light energy Pd of the detection light based on the first electrical signal, and calculates the light energy Pr of the reference light based on the second electrical signal. Specifically, the signal level (voltage level) of the first electrical signal corresponds to the light energy Pd, and the signal level (voltage level) of the second electrical signal corresponds to the light energy Pr.
 したがって、水分量算出部56は、(式4)に基づいて、対象物に含まれる水分の吸収率Aadを算出することができる。これにより、水分量算出部56は、(式2)に基づいて水分量を算出することができる。 Therefore, the water content calculation unit 56 can calculate the absorptance Aad of the water contained in the target based on (Expression 4). Thus, the water content calculation unit 56 can calculate the water content based on (Expression 2).
 なお、空間には湿気(水蒸気)も存在しているが、水蒸気によって検知光及び参照光が吸収される場合も想定される。この水蒸気による吸収分をキャンセルするように第一電気信号及び第二電気信号を補正する補正部を制御部5に設けてもよい。 Although moisture (water vapor) is also present in the space, it is also assumed that the detection light and the reference light are absorbed by the water vapor. The control unit 5 may be provided with a correction unit that corrects the first electric signal and the second electric signal so as to cancel the absorption by the water vapor.
 (水分量の検出範囲)
 図6は、実施の形態1に係る除湿機の検出範囲を模式的に示す平面図である。検出範囲Aは、除湿機1によって除湿された風が送風される範囲と同等または広く設定されていることが好ましい。また、検出範囲Aは、受光部8の受光範囲と同等または広い範囲である。図6に示すように、単位領域Rは、受光部8によって個別に光の検出が行われる領域である。単位領域Rは検出範囲Aと同等サイズでも良いし、検出範囲Aよりも小さいサイズでも良い。例えば、単位領域Rは検出範囲Aを縦方向に6分割し、横方向に6分割したサイズである。単位領域RのS11~S66ごとに検出を行う方法として、例えば、第一受光素子73と第二受光素子43にイメージセンサを採用しても良い。図7は、実施の形態1に係る除湿機の発光部と受光部の走査方向を示す模式図である。また、他の方法として図7のように発光部7の照射領域を走査させながら光を照射すると同時に受光部8の受光領域も走査させて、各領域の反射光RA1を受光する方法を採用しても良い。走査方法としては、例えば発光部7と受光部8を固定した台座を2つのステッピングモータ(図示せず)を用いて直交する2軸に回転可能に配置する方法がある。一方のステッピングモータは、図7の主走査方向に照射領域を走査できる角度に配置し、もう一方のステッピングモータは、図7の副走査方向に照射領域を走査できる角度に配置する。図6および図7では、一行あたり等間隔で6箇所検出し、一列あたり等間隔で6箇所検出する場合を例示している。
(Detection range of water content)
FIG. 6 is a plan view schematically showing the detection range of the dehumidifier according to the first embodiment. It is preferable that the detection range A be set equal to or wider than the range in which the air dehumidified by the dehumidifier 1 is blown. The detection range A is equal to or wider than the light receiving range of the light receiving unit 8. As shown in FIG. 6, the unit area R is an area where light detection is individually performed by the light receiving unit 8. The unit area R may have the same size as the detection range A, or may have a size smaller than the detection range A. For example, the unit area R has a size obtained by dividing the detection range A into six in the vertical direction and into six in the horizontal direction. As a method of detecting each of S11 to S66 of the unit region R, for example, an image sensor may be adopted as the first light receiving element 73 and the second light receiving element 43. FIG. 7 is a schematic view showing scanning directions of the light emitting unit and the light receiving unit of the dehumidifier according to the first embodiment. As another method, as shown in FIG. 7, a method of irradiating light while scanning the irradiation area of the light emitting unit 7 and scanning the light receiving area of the light receiving unit 8 simultaneously and receiving the reflected light RA1 of each area It is good. As a scanning method, for example, there is a method of rotatably arranging a pedestal on which the light emitting unit 7 and the light receiving unit 8 are fixed to two orthogonal axes using two stepping motors (not shown). One stepping motor is disposed at an angle at which the irradiation area can be scanned in the main scanning direction of FIG. 7, and the other stepping motor is disposed at an angle at which the irradiation area can be scanned in the sub-scanning direction of FIG. In FIG. 6 and FIG. 7, the case where six places are detected at equal intervals per row and six places are detected at equal intervals per column is illustrated.
 次に、この場合の走査方法について図8のフローチャートを用いて説明する。図8は、実施の形態1に係る水分量算出のフローチャートを示す図である。ここで、単位領域Rのn行、6列における位置を、Sn6と定義する(n=1~6)。つまり、S11は、単位領域Rの1行、1列における位置のことである。先ず、発光部7の照射領域と受光部8の受光領域とを図7のS11に移動する(n=1)。次に各領域(照射領域と受光領域)の指定位置をSn6に設定する(Step1)。ステッピングモータを駆動し、台座を図7の主走査方向と平行に移動させ、照射領域と受光領域をSn6に位置させる(Step2)。これと同時に照射領域と受光領域が単位領域Rの中心に位置するかどうかを判定する。単位領域Rの中心に位置しているかどうかの判定は、例えばステッピングモータの駆動ステップ数から算出する。照射領域と受光領域が単位領域Rの中心に位置していない場合、Step2に戻りステッピングモータの駆動を続ける。照射領域と受光領域が単位領域Rの中心に位置していた場合、受光強度を取得し、強度の比すなわち水分量を算出しテーブルTに格納する。その後現在位置する単位領域Rが指定位置であるSn6かどうかの判定を行う(Step3)。現在位置する単位領域RがSn6で無ければ、Step2に戻りステッピングモータの駆動を続ける。ここで、現在位置する単位領域RがSn6であればステッピングモータの駆動を停止させる(Step4)。その後、nに1を足して、図7の副走査方向と平行にSn6に向かって照射領域と受光領域を動かす。 Next, a scanning method in this case will be described using the flowchart of FIG. FIG. 8 is a diagram showing a flowchart of water content calculation according to the first embodiment. Here, positions in n rows and 6 columns of the unit region R are defined as Sn 6 (n = 1 to 6). That is, S11 is a position in one row and one column of the unit region R. First, the irradiation area of the light emitting unit 7 and the light receiving area of the light receiving unit 8 are moved to S11 of FIG. 7 (n = 1). Next, the designated position of each area (the irradiation area and the light receiving area) is set to Sn6 (Step 1). The stepping motor is driven to move the pedestal in parallel with the main scanning direction of FIG. 7, and the irradiation area and the light receiving area are positioned at Sn6 (Step 2). At the same time, it is determined whether the irradiation area and the light receiving area are located at the center of the unit area R. The determination as to whether or not the unit region R is located at the center is calculated, for example, from the number of drive steps of the stepping motor. If the irradiation area and the light reception area are not located at the center of the unit area R, the process returns to Step 2 to continue driving the stepping motor. When the irradiation area and the light reception area are located at the center of the unit area R, the light reception intensity is acquired, the ratio of the intensities, that is, the water content is calculated and stored in the table T. Thereafter, it is determined whether or not the unit area R currently positioned is Sn6 which is a designated position (Step 3). If the unit area R currently positioned is not Sn6, the process returns to Step 2 to continue driving the stepping motor. Here, if the unit region R currently positioned is Sn6, the driving of the stepping motor is stopped (Step 4). Thereafter, 1 is added to n to move the irradiation area and the light receiving area toward Sn6 in parallel to the sub-scanning direction of FIG.
 次に指定位置をSn1に設定する(Step5)。そして、照射領域と受光領域を、図7の主走査方向と平行にStep2とは逆方向に移動させ、指定位置であるSn1に位置するようにステッピングモータを駆動させる(Step6)。同時に照射領域と受光領域が単位領域Rの中心に位置するかどうかを判定する。単位領域Rの中心に位置しているかどうかの判定は、例えばステッピングモータの駆動ステップ数から算出する。照射領域と受光領域が単位領域Rの中心に位置していない場合、Step6に戻りステッピングモータの駆動を続ける。照射領域と受光領域が単位領域Rの中心に位置していた場合、受光強度を取得し、強度の比すなわち水分量を算出しテーブルTに格納する。 Next, the designated position is set to Sn1 (Step 5). Then, the irradiation area and the light reception area are moved in the direction opposite to Step 2 in parallel with the main scanning direction of FIG. 7 and the stepping motor is driven to be positioned at the designated position Sn1 (Step 6). At the same time, it is determined whether the irradiation area and the light receiving area are located at the center of the unit area R. The determination as to whether or not the unit region R is located at the center is calculated, for example, from the number of drive steps of the stepping motor. If the irradiation area and the light reception area are not located at the center of the unit area R, the process returns to Step 6 to continue driving the stepping motor. When the irradiation area and the light reception area are located at the center of the unit area R, the light reception intensity is acquired, the ratio of the intensities, that is, the water content is calculated and stored in the table T.
 次に、現在位置する単位領域Rが指定位置であるSn1かどうかの判定を行う(Step7)。現在位置する単位領域RがSn1で無ければ、Step6に戻りステッピングモータの駆動を続ける。ここで、現在位置する単位領域RがSn1であればステッピングモータの駆動を停止させる(Step8)。 Next, it is determined whether or not the unit area R currently located is Sn1 which is a designated position (Step 7). If the unit area R currently positioned is not Sn1, the process returns to Step 6 to continue driving the stepping motor. Here, if the unit area R currently positioned is Sn1, the driving of the stepping motor is stopped (Step 8).
 ここでnが6で無ければ、nに1を足して指定位置Sn1に向かって図7の副走査方向と平行に照射領域と受光領域を動かす(Step9)。以後Step1に戻り、動作を繰り返す。nが6であれば、検出動作を終了する。 If n is not 6 here, 1 is added to n and the irradiation area and the light receiving area are moved parallel to the sub-scanning direction of FIG. 7 toward the designated position Sn1 (Step 9). Thereafter, the process returns to Step 1 to repeat the operation. If n is 6, the detection operation is ended.
 図9は、実施の形態1に係る除湿機の水分量分布のテーブルを示す図である。検出動作が終了した時、単位領域Rごとの水分量の算出結果を図9のようなテーブルTに一時的に記録し、テーブルTの情報に基づいて乾燥の判断を行う。テーブルTの情報は、単位領域Rごとに個別に判断しても良いし、平均化して1つまたは少数の情報に加工しても良い。 FIG. 9 is a view showing a table of water content distribution of the dehumidifier according to the first embodiment. When the detection operation is completed, the calculation result of the water content for each unit area R is temporarily recorded in a table T as shown in FIG. 9 and the drying is judged based on the information of the table T. The information in the table T may be determined individually for each unit region R, or may be averaged to be processed into one or a small number of pieces of information.
 (乾燥判断)
 次いで、乾燥判断部57の動作について図10のブロック図を用いて説明する。図10は、実施の形態1に係る除湿機の乾燥判断部を示すブロック図である。
(Drying judgment)
Next, the operation of the drying judgment unit 57 will be described using the block diagram of FIG. FIG. 10 is a block diagram showing the drying judgment unit of the dehumidifier according to the first embodiment.
 衣類乾燥時においては、除湿機1の乾燥判断部57は、水分量算出部56から入力された水分量のテーブルTに基づいて、対象物100の乾燥を判断する。乾燥の判断の方法として、例えば、乾燥判断部57は、定期的に水分量算出部56から入力される対象物100の水分量と水分量閾値61とを比較する水分量比較部62を有する。水分量比較部62は、テーブルTの情報と水分量閾値61とを比較して、対象物100の乾燥を判断する。なお、乾燥判断部57は、テーブルTの単位領域Rごとの情報と水分量閾値61を比較して、単位領域Rごとに乾燥を判断してもよい。また、乾燥判断部57は、テーブルTの情報を平均化して1つまたは少数の情報に加工して水分量閾値61と比較してもよい。例えば、単位領域Rの情報が水分量閾値61よりも小さい場合、単位領域Rは乾燥していると判断される。 At the time of clothes drying, the drying determination unit 57 of the dehumidifier 1 determines the drying of the object 100 based on the table T of the water content input from the water content calculation unit 56. As a method of determining the drying, for example, the drying determining unit 57 has a water content comparing unit 62 that periodically compares the water content of the object 100 input from the water content calculating unit 56 with the water content threshold 61. The water content comparison unit 62 compares the information in the table T with the water content threshold value 61 to determine whether the object 100 is dry. The drying determination unit 57 may determine the drying for each unit region R by comparing the information for each unit region R of the table T with the moisture content threshold value 61. In addition, the drying determination unit 57 may average the information in the table T, process it into one or a small number of pieces of information, and compare it with the moisture amount threshold 61. For example, when the information of the unit region R is smaller than the water content threshold 61, the unit region R is determined to be dry.
 以上のように、本実施の形態に係る除湿機1は、本体2と、送風部3と、除湿部4と、水分量検知部9と、制御部5と、を備えている。本体2には、吸込口と吹出口が設けられている。送風部3は、吸込口10から吹出口11へ空気を送風する。除湿部4は、吸込口10から吸込まれた空気を除湿する。水分量検知部9は、対象物100の水分量を検知する。制御部5は、吹出口11からの送風を制御する。水分量検知部9は、発光部7と受光部8とを備える。発光部7は、水に吸収される波長を含む光である第一波長帯を含む検知光と、検知光よりも水に吸収されにくい波長を含む光である第二波長帯を含む参照光を対象物100に向けて発光する。受光部8は、対象物100によって反射された検知光と参照光を受光する。制御部5は、受光部8が受光した検知光の強度と参照光の強度を比較して水分量を算出する水分量算出部を備える。そして、制御部5は、水分量に基づいて、送風を制御する。 As described above, the dehumidifier 1 according to the present embodiment includes the main body 2, the air blowing unit 3, the dehumidifying unit 4, the water content detection unit 9, and the control unit 5. The main body 2 is provided with an inlet and an outlet. The blower 3 blows air from the suction port 10 to the blowout port 11. The dehumidifying unit 4 dehumidifies the air sucked from the suction port 10. The water content detection unit 9 detects the water content of the object 100. The control unit 5 controls the air blowing from the air outlet 11. The moisture content detection unit 9 includes a light emitting unit 7 and a light receiving unit 8. The light emitting unit 7 includes a detection light including a first wavelength band that is a light including a wavelength absorbed by water, and a reference light including a second wavelength band that is a light including a wavelength that is less absorbed by water than the detection light. Light is emitted toward the object 100. The light receiving unit 8 receives the detection light and the reference light reflected by the object 100. The control unit 5 includes a water content calculation unit that calculates the water content by comparing the intensity of the detection light received by the light receiving unit 8 with the intensity of the reference light. And control part 5 controls ventilation based on a moisture content.
 この構成によれば、気候、天候等の環境変化や、冬場の冷えた窓や暖房器具の高温の送風口付近など周囲環境の温度ムラ、また、除湿機1から送風される高温の風による被乾燥物の温度ムラに影響されず、対象物100の水分量が検出される。正確に被乾燥物の水分量が判断されるため、より正確に制御部5は送風を制御できる。 According to this configuration, environmental changes such as climate and weather, temperature unevenness of the surrounding environment such as in the vicinity of a cold window of the winter and a high temperature air outlet of a heating device, and a high temperature wind blown from the dehumidifier 1 The moisture content of the object 100 is detected without being affected by the temperature unevenness of the dried product. Since the water content of the material to be dried is accurately determined, the control unit 5 can control the air flow more accurately.
 また、制御部5は、水分量に基づいて対象物100の乾燥を判断する乾燥判断部を備えていてよい。この構成によれば、余分な乾燥運転や被乾燥物の乾燥不足を低減し無くし、高精度な乾燥判断をすることができる。 Moreover, the control part 5 may be equipped with the drying judgment part which judges drying of the target object 100 based on a moisture content. According to this configuration, it is possible to reduce and eliminate the excess drying operation and the insufficient drying of the material to be dried, and to make a highly accurate drying judgment.
 また、乾燥判断部57は水分量算出部56が算出した水分量と、内部に保持する水分量閾値61とを比較する水分量比較部62を備えている。水分量比較部62は、水分量のデータTが内部に保持している水分量閾値61よりも小さい場合、乾燥したと判断する。 The drying judgment unit 57 further includes a water content comparison unit 62 that compares the water content calculated by the water content calculation unit 56 with the water content threshold value 61 held inside. The water content comparison unit 62 determines that the water content data T is dry when the data T of the water content is smaller than the water content threshold value 61 held therein.
 この構成によれば、周囲環境や対象物100の素材や衣類の種類によらず、対象物100の乾燥判断を正確に行うことができる。 According to this configuration, the drying determination of the object 100 can be accurately performed regardless of the surrounding environment, the material of the object 100, and the type of clothing.
 (扇風機)
 図11は、実施の形態1に係る扇風機の概略構成を示す斜視図である。図11には、複数の羽根82がモータ83の回動軸に固定された軸流ファン84を備えた扇風機81が開示されている。軸流ファン84に取り付けられた羽根82は、フロントガード86とリアガード87とによって覆われており、モータ83が回転することで送風を可能としている。軸流ファン84は、本体軸85の一端に固定され、本体軸85の他端が基台88に固定されている。軸流ファン84は、本体軸85に対して、左右及び上下方向に可動する構造で設置されている。
(Fan)
FIG. 11 is a perspective view showing a schematic configuration of the fan according to the first embodiment. FIG. 11 discloses a fan 81 provided with an axial fan 84 in which a plurality of blades 82 are fixed to the rotation shaft of a motor 83. The blades 82 attached to the axial fan 84 are covered by the front guard 86 and the rear guard 87, and the air can be blown by the rotation of the motor 83. The axial flow fan 84 is fixed to one end of the main body shaft 85, and the other end of the main body shaft 85 is fixed to the base 88. The axial fan 84 is installed with a structure that is movable in the left and right and up and down directions with respect to the main body shaft 85.
 図11に示すように、扇風機81は基台88に、対象物100の水分量を検知する水分量検知部9を備えている。室内に干された対象物100に対して、扇風機81が送風し乾燥を行う場合、水分量検知部9が正確に衣類の水分量を検知し、扇風機81の風向、風量、送風時間等を制御することができる。例えば、干された衣類の水分量が多いと判断される場合、送風量を増加させる制御を行う。また、干された衣類の中でも、特に水分量が多い衣類に対して、集中的に送風できるよう軸流ファン84の風向を制御することも可能である。 As shown in FIG. 11, the fan 81 includes a moisture amount detection unit 9 for detecting the moisture amount of the object 100 on the base 88. When the fan 81 blows and dries the object 100 dried in the room, the water content detection unit 9 accurately detects the water content of the clothes, and controls the wind direction, the air volume, the air blowing time, and the like of the fan 81. can do. For example, when it is determined that the amount of moisture in the dried clothes is high, control is performed to increase the air flow. In addition, it is also possible to control the wind direction of the axial fan 84 so as to be able to intensively blow air to clothes that are particularly dry, among clothes that are dried.
 以上のように、扇風機81を衣類等の乾燥に用いる場合、正確に乾燥状態を判断し、扇風機81の運転を制御することができる。 As described above, when the fan 81 is used to dry clothes or the like, the drying state can be accurately determined, and the operation of the fan 81 can be controlled.
 (浴室乾燥機)
 図12は、実施の形態1に係る浴室乾燥機の概略構成を示す斜視図である。図12には、浴室内における衣類乾燥および浴室乾燥に使用される浴室乾燥機91が示されている。図12に示すように、浴室乾燥機91は、本体ケース92と、加熱部95と、送風部93とを備えている。本体ケース92は、浴室乾燥機91の外装を構成する。また、本体ケース92には、浴室の空気を浴室乾燥機91内に取り入れる吸込口10と、吸込口10より吸い込んだ空気を吹き出す吹出口11とが設けられている。加熱部95は、吸込口10と吹出口11とを結ぶ送風経路に設けられており、吸込口10より吸い込んだ空気を加熱する。また、送風部93は、送風経路に設けられ、吸込口10から吹出口11へと空気を循環させる。
(Bathroom Dryer)
FIG. 12 is a perspective view showing a schematic configuration of the bathroom dryer according to the first embodiment. FIG. 12 shows a bathroom dryer 91 used for drying clothes and drying in the bathroom. As shown in FIG. 12, the bathroom drier 91 includes a main body case 92, a heating unit 95, and a blower 93. The main body case 92 constitutes an exterior of the bathroom dryer 91. Further, the main body case 92 is provided with a suction port 10 for taking in the air of the bathroom into the bath dryer 91 and a blowout port 11 for blowing out the air sucked from the suction port 10. The heating unit 95 is provided in the air flow path connecting the suction port 10 and the blowout port 11, and heats the air sucked from the suction port 10. In addition, the blower 93 is provided in the blower path, and circulates the air from the suction port 10 to the blowout port 11.
 浴室乾燥機91は、さらに風向制御部96と、換気部97と、運転制御部98とを備えている。風向制御部96は、吹出口から送風される風の風向を変化させる。換気部97は、浴室を換気する。運転制御部98は、浴室乾燥機91の加熱量、送風量、風向等を制御する。浴室乾燥機91は、衣類または浴室を乾燥させることを目的として加熱量、送風量、風向等を制御する乾燥モードを設けている。 The bathroom dryer 91 further includes a wind direction control unit 96, a ventilation unit 97, and an operation control unit 98. The wind direction control unit 96 changes the wind direction of the wind blown from the air outlet. The ventilation unit 97 ventilates the bathroom. The operation control unit 98 controls the heating amount, the air blowing amount, the wind direction, and the like of the bathroom dryer 91. The bathroom drier 91 has a drying mode for controlling the amount of heat, the amount of air, the direction of air, etc., for the purpose of drying the clothes or the bathroom.
 衣類乾燥および浴室乾燥等の乾燥モードにおいて、乾燥させる対象物100の材質、位置、大きさ等が異なるため、浴室乾燥機91は、適切に乾燥状態を検知し、運転を制御する必要がある。そこで、浴室乾燥機91は、乾燥させる対象物100の水分量を検知する水分量検知部9を備えている。図12に示すように浴室内に干された衣類に対して、浴室乾燥機91が送風し乾燥を行う場合、水分量検知部9が正確に衣類の水分量を検知し、浴室乾燥機91の運転を制御することができる。例えば、干された衣類の水分量が多いと判断される場合、浴室乾燥機91は、送風量を増加させる制御を行う。また、干された衣類の中でも、特に水分量が多い衣類に対して、集中的に送風できるよう浴室乾燥機91の風向制御部96を制御することも可能である。 In the drying mode such as clothes drying and bathroom drying, since the material, position, size, and the like of the object 100 to be dried are different, the bathroom dryer 91 needs to appropriately detect the drying state and control the operation. Therefore, the bathroom drier 91 includes a water content detection unit 9 that detects the water content of the object 100 to be dried. As shown in FIG. 12, when the bathroom dryer 91 blows and dries the clothes dried in the bathroom, the moisture amount detection unit 9 accurately detects the moisture amount of the clothes, and Can control the operation. For example, when it is determined that the amount of moisture in the dried clothes is high, the bathroom dryer 91 performs control to increase the air flow. In addition, it is also possible to control the wind direction control unit 96 of the bathroom dryer 91 so as to be able to intensively blow air to clothes that are particularly dry, among clothes that are dried.
 また、浴室乾燥機91を浴室の乾燥に用いる場合において、水分量検知部9は、浴槽の底部101等の特に湿った箇所の水分量を検知する。浴室乾燥機91は、検知された水分量に応じて、浴槽の底部101に対して必要な加熱量、送風量、送風時間で送風を行うことができる。 Moreover, when using the bathroom dryer 91 for drying of a bathroom, the moisture content detection part 9 detects the moisture content of the especially wet location of the bottom part 101 grade | etc., Of a bathtub. The bathroom drier 91 can blow air with a necessary amount of heating, a blowing amount, and a blowing time to the bottom portion 101 of the bath according to the detected water amount.
 以上のように、浴室乾燥機91を衣類および浴室の乾燥に用いる場合、正確に乾燥状態を判断し、浴室乾燥機91の運転を制御することができる。 As described above, when the bathroom dryer 91 is used to dry the clothes and the bathroom, the drying state can be accurately determined to control the operation of the bathroom dryer 91.
 [効果など]
 制御部5は、送風部3と除湿部4の運転を制御することができ、乾燥判断部57の比較結果に基づいて送風部3の送風量と除湿部4の除湿量を制御することができる。
[Effect, etc.]
The control unit 5 can control the operation of the blowing unit 3 and the dehumidifying unit 4 and can control the blowing amount of the blowing unit 3 and the dehumidifying amount of the dehumidifying unit 4 based on the comparison result of the drying judgment unit 57. .
 この構成によれば、対象物100の乾燥を正確に判断した後に、除湿機1の送風量または、除湿量のいずれか1つ以上を制御することができるので、乾燥した対象物100への余分な乾燥運転を防止することができる。具体的には、乾燥判断部57が乾燥と判断した際に、送風部3の送風を停止させてもよい。これにより、対象物100の過乾燥を防ぐことができ、最適な乾燥をすることができる。 According to this configuration, after the drying of the object 100 is accurately determined, any one or more of the air blowing amount or the dehumidifying amount of the dehumidifier 1 can be controlled. Drying operation can be prevented. Specifically, the air blowing of the air blowing unit 3 may be stopped when the drying judgment unit 57 judges that the air is dry. Thereby, overdrying of the object 100 can be prevented, and optimal drying can be performed.
 また、乾燥判断部57が乾燥と判断した際に、送風部3の送風量を減らして一定時間送風させた後に送風を停止させてもよい。これにより、対象物が乾燥した後の周囲の湿気による吸湿を防ぐことができ、対象物100を確実に乾燥させることができる。 In addition, when the drying judgment unit 57 judges that the air is dry, the air blowing may be stopped after reducing the air blowing amount of the air blowing unit 3 and blowing the air for a certain period of time. This can prevent moisture absorption due to ambient moisture after the object is dried, and can reliably dry the object 100.
 さらに、乾燥判断部57が乾燥と判断した際に、除湿部4の除湿を停止させてもよい。これは、周囲の湿度が適正湿度の際に実行される。これにより、対象物100の過乾燥と余分な運転をなくすことができ、快適な湿度環境を提供することができる。 Furthermore, when the drying judgment unit 57 judges that the drying is performed, the dehumidification of the dehumidifying unit 4 may be stopped. This is performed when the ambient humidity is adequate. Thereby, overdrying and excessive driving of the object 100 can be eliminated, and a comfortable humidity environment can be provided.
 また、乾燥判断部57が乾燥と判断した際に、除湿部4の除湿量を減らして一定時間送風させた後に除湿を停止させてもよい。これは、周囲の湿度が適正湿度よりも高い際に実行される。これにより、対象物100が乾燥した後の周囲の湿気による吸湿を防ぐことができ、対象物100を確実に乾燥することができる。 In addition, when the drying judgment unit 57 judges that the drying is to be performed, the dehumidifying unit 4 may be de-humidified after reducing the dehumidifying amount of the dehumidifying unit 4 and blowing air for a predetermined time. This is performed when the ambient humidity is higher than the proper humidity. As a result, it is possible to prevent moisture absorption due to the ambient moisture after the object 100 is dried, and the object 100 can be reliably dried.
 (実施の形態2)
 実施の形態1では、水分量検出結果のテーブルTに基づいて乾燥判断を行う場合を例示している。
Second Embodiment
The first embodiment exemplifies the case where the drying determination is performed based on the table T of the water content detection result.
 実施の形態2に係る除湿機110は、水分量の時間変化率と閾値とを比較し、対象物の乾燥判断を行う。 The dehumidifier 110 which concerns on Embodiment 2 compares the time change rate of a water content, and a threshold value, and performs dryness determination of a target object.
 図13は、実施の形態2に係る除湿機の乾燥判断部を示すブロック図である。乾燥判断部157は、図13に示すように、さらに水分量変化率閾値163と、水分量変化率算出部164と、水分量変化率比較部165とを有する。水分量変化率算出部164は、水分量算出部56が算出した水分量データを複数回保存しその時間変化率T’を算出する。水分量変化率比較部165は、水分量変化率算出部164で算出された水分量の時間変化率T’と水分量変化率閾値163とを比較する。水分量変化率比較部165は、水分量の時間変化率T’が内部に保持している水分量変化率閾値163よりも小さい場合、対象物100が乾燥したと判断する。なお、水分量の時間変化率T’は、単位領域Rごとに算出されてもよいし、平均化して1つまたは少数の情報に加工されても良い。 FIG. 13 is a block diagram showing the drying judgment unit of the dehumidifier according to the second embodiment. The drying determination unit 157 further includes a moisture content change rate threshold 163, a moisture content change rate calculation unit 164, and a moisture content change rate comparison unit 165, as shown in FIG. The water content change rate calculation unit 164 stores the water content data calculated by the water content calculation unit 56 a plurality of times, and calculates the time change rate T ′. The water content change rate comparing unit 165 compares the time change rate T ′ of the water content calculated by the water content change rate calculating unit 164 with the water content change rate threshold value 163. The water content change rate comparing unit 165 determines that the object 100 is dry when the time change rate T ′ of the water content is smaller than the water content change rate threshold 163 held therein. The temporal change rate T ′ of the water content may be calculated for each unit region R, or may be averaged to be processed into one or a small number of pieces of information.
 一般的に、綿や毛などの素材でできた保湿性の高い素材と、ポリエステルなどの速乾性の高い素材とでは、最適な水分量が異なる。本実施の形態に係る除湿機110では、水分量の変化率から乾燥度合いを判断することができ、最適な乾燥判断を行うことができる。 Generally, the moisture content is different between a material with high moisture retention made of materials such as cotton and hair and a material with high quick-drying properties such as polyester. In the dehumidifier 110 according to the present embodiment, the degree of dryness can be determined from the rate of change of the water content, and optimum drying judgment can be made.
 なお、乾燥判断部157は、先ず、水分量比較部62によって水分量のテーブルTが水分量閾値61よりも小さくなったときに、仮乾燥状態と判断し、その後、水分量変化率比較部165によって、水分量の時間変化率T’が水分量変化率閾値163よりも小さくなったときに、最終乾燥状態と判断しても良い。 When the table T of the water content is smaller than the water content threshold 61 by the water content comparing unit 62, the drying determining unit 157 first determines that the water is in the temporary drying state, and then the water content change rate comparing unit 165 When the time change rate T ′ of the water content is smaller than the water content change threshold 163, the final dry state may be determined.
 厚手の素材などの水分量を多く含んだ対象物100は、乾燥初期の乾燥度変化率が小さく、水分量を多く含んでいるにもかかわらず乾燥と判定してしまうことが懸念される。この構成によれば、厚手の素材などの水分量を多く含んだ厚手の対象物100も、水分量比較部62を用いることで、乾燥判断の誤判定を防ぐことができるので、高精度に乾燥判断を行うことができる。 The object 100 containing a large amount of water, such as a thick material, has a small rate of change in dryness at the initial stage of drying, and there is a concern that the object 100 is determined to be dry although it contains a large amount of water. According to this configuration, the thick object 100 containing a large amount of water such as a thick material can also be prevented from being erroneously judged to be dry by using the water content comparison unit 62, so drying with high accuracy is possible. You can make a decision.
 (実施の形態3)
 次に実施の形態3に係る除湿機210について説明する。図14は、実施の形態3に係る除湿機の概略構成を示す構成図である。図15は、実施の形態3に係る除湿機の制御構成を示すブロック図である。
Third Embodiment
Next, the dehumidifier 210 according to the third embodiment will be described. FIG. 14 is a configuration diagram showing a schematic configuration of the dehumidifier according to the third embodiment. FIG. 15 is a block diagram showing a control configuration of the dehumidifier according to the third embodiment.
 実施の形態3に係る除湿機210は、図14に示すように、ルーバー6をさらに備える。また、制御部5は、乾燥判断部57に代えて送風制御部257を備える。 The dehumidifier 210 according to the third embodiment further includes a louver 6, as shown in FIG. Further, the control unit 5 includes a blowing control unit 257 instead of the drying determination unit 57.
 ルーバー6は、吹出口11から送風される除湿や除塵した空気の送風範囲や向きなど少なくとも1つの送風条件を変更することができる。 The louver 6 can change at least one air blowing condition such as the air blowing range or direction of the dehumidified air or the air removed from the air blowing from the air outlet 11.
 送風制御部257は、制御部5に設けられ、送風部3と除湿部4とルーバー6を制御する。 The blower control unit 257 is provided in the control unit 5 and controls the blower 3, the dehumidifying unit 4, and the louver 6.
 [送風制御部]
 次いで、送風制御部257の動作について図16を用いて説明する。図16は、実施の形態3に係る除湿機の送風制御部の動作を示すブロック図である。
[Blower control unit]
Next, the operation of the air flow control unit 257 will be described with reference to FIG. FIG. 16 is a block diagram showing the operation of the air flow control unit of the dehumidifier according to the third embodiment.
 衣類乾燥時においては、除湿機210の送風制御部257は、水分量算出部56から入力された各検出位置の図9に示す水分量のテーブルTに基づいて、送風部3とルーバー6のうち少なくとも1つの条件を制御する。具体的には、T11~T66の中で参照光に対する測定光の強度の比が小さい、すなわち水分量が多い場所に対して、ルーバー6の角度を向けて送風を行う。なお、送風制御部257は、水分量のテーブルTに基づいて、除湿部4を制御してもよい。 During clothes drying, the air flow control unit 257 of the dehumidifier 210 selects one of the air flow unit 3 and the louver 6 based on the water content table T shown in FIG. 9 at each detection position input from the water content calculation unit 56. Control at least one condition. Specifically, air is blown at an angle of the louver 6 toward a place where the ratio of the intensity of the measurement light to the reference light is small in T11 to T66, that is, the amount of water is large. The blower control unit 257 may control the dehumidifying unit 4 based on the table T of the water content.
 送風制御部257は、図16に示すように、比閾値比較部262と変化率閾値比較部264とを備えている。 As shown in FIG. 16, the air flow control unit 257 includes a ratio threshold comparison unit 262 and a change rate threshold comparison unit 264.
 比閾値比較部262は、内部に保持されている比閾値261と、水分量算出部56から入力された強度の比、すなわち水分量のテーブルTとを比較する。送風制御部257は、強度の比が内部に保持している比閾値261よりも大きくなると、すなわち水分量が所定の閾値よりも小さくなると、送風部3からの送風量を減らす、または停止するなどの制御を行う。 The ratio threshold comparator 262 compares the ratio threshold 261 held therein with the ratio of the intensity input from the water content calculator 56, that is, the table T of the water content. When the intensity ratio becomes larger than the ratio threshold 261 held inside, that is, the water content becomes smaller than a predetermined threshold, the air flow control unit 257 reduces the air flow from the air blowing unit 3 or stops. Control the
 また、変化率閾値比較部264は、内部に保存されている変化率閾値263と、水分量算出部56から入力された強度の比すなわち水分量の時間変化率T’とを比較する。これにより、強度の比の時間変化率が内部に保持されている変化率閾値263よりも小さい、すなわち水分量の時間変化率T’が所定の閾値よりも小さい単位領域Rは、乾燥しにくいと判断することができる。これにより、送風部3の送風量を増やすまたはルーバー6の角度を水分量の時間変化率T’が小さい単位領域へ向けるなどの送風制御を行う。 In addition, the change rate threshold comparison unit 264 compares the change rate threshold 263 stored therein with the ratio of the strengths input from the water content calculation unit 56, that is, the time change rate T ′ of the water content. Thereby, it is difficult to dry the unit region R in which the temporal change rate of the intensity ratio is smaller than the change rate threshold 263 held internally, that is, the temporal change rate T ′ of the water content is smaller than the predetermined threshold. It can be judged. As a result, air blowing control is performed such as increasing the air blowing amount of the air blowing unit 3 or directing the angle of the louver 6 to a unit area where the time change rate T 'of water content is small.
 [効果など]
 以上のように、本実施の形態に係る除湿機210によれば、対象物100から反射された参照光に対する検知光の強度の比すなわち水分量に応じてルーバー6の角度を制御することで、対象物の水分量分布に応じた最適な送風を行う。
[Effect, etc.]
As described above, according to the dehumidifier 210 according to the present embodiment, the angle of the louver 6 is controlled according to the ratio of the intensity of the detection light to the reference light reflected from the object 100, that is, the amount of water. Optimal blowing according to the water content distribution of the object is performed.
 この構成によれば、対象物の温度ムラによらず、強度の比すなわち水分量を正確に検知し、乾燥が必要な単位領域Rに対して集中的に送風を行うことができるため、効率的な乾燥を行うことができる。 According to this configuration, the ratio of strength, that is, the amount of water, can be accurately detected regardless of the temperature unevenness of the object, and the air can be intensively delivered to the unit region R that requires drying. Drying can be performed.
 具体的には、対象物の中で強度の比が小さい、すなわち水分量の多い単位領域に対してルーバー6の角度を制御し、除湿された空気を単位領域に集中して送風する。これにより水分量の多い単位領域は水分の蒸発が促進される。対象物100のなかで強度の比が大きい、すなわち水分量の少ない単位領域への送風量が減ることとなるが、この単位領域は水分量が少ないため送風による水分の蒸発促進をさせずとも乾燥が進む。このように水分量の分布に応じた効率的な乾燥を行うことができる。 Specifically, the angle of the louver 6 is controlled with respect to a unit area having a small intensity ratio in the object, that is, a large amount of water, and the dehumidified air is concentrated and blown to the unit area. Thus, evaporation of water is promoted in the unit area having a large amount of water. Although the air flow to a unit area having a large strength ratio, that is, a small amount of water in the object 100 is reduced, the unit area has a small amount of water, and drying is performed without promoting evaporation of water by air blowing. Go forward. Thus, efficient drying can be performed according to the distribution of water content.
 また、制御部5は強度の比すなわち水分量の分布に基づいて送風部3の送風量を制御することができる。 Further, the control unit 5 can control the air blowing amount of the air blowing unit 3 based on the ratio of the strengths, that is, the distribution of the water content.
 この構成によれば、対象物の水分量に応じて除湿された空気の量を最適制御することで、効率的な乾燥を行うことができる。 According to this configuration, efficient drying can be performed by optimally controlling the amount of air dehumidified in accordance with the water content of the object.
 また、送風制御部257は強度の比を所定の比閾値261と比較する比閾値比較部262を備えており、その比較結果に基づいて送風部3の送風量を制御することができる。 In addition, the air flow control unit 257 includes a ratio threshold value comparing unit 262 that compares the intensity ratio with a predetermined ratio threshold value 261, and can control the air flow rate of the air blowing unit 3 based on the comparison result.
 この構成によれば、対象物の乾燥を正確に判断することができるので、乾燥した対象物への余分な送風を防止することができる。 According to this configuration, it is possible to accurately determine the drying of the object, so it is possible to prevent excessive air flow to the dried object.
 上記実施の形態では、水分量検出結果のテーブルTに基づいて送風制御の判断を行う場合を例示した。しかし、水分量の検出を複数回行い、その時間変化率T’に基づいて送風制御の判断を行っても良い。 In the said embodiment, the case where judgment of ventilation control was performed based on the table T of a moisture content detection result was illustrated. However, the water content may be detected a plurality of times, and the air flow control may be determined based on the time change rate T '.
 この構成によれば、例えば、強度比が小さい、すなわち水分量が多い単位領域において、強度比の時間変化が大きい、すなわち水分量の時間変化が大きい単位領域は短時間で乾燥が終了すると判断することができるため、それに基づいてルーバー6の角度を制御することで、効率的な乾燥をすることができる。 According to this configuration, for example, in a unit area where the intensity ratio is small, that is, the amount of water is large, it is determined that drying is completed in a short time. Therefore, by controlling the angle of the louver 6 based thereon, efficient drying can be achieved.
 また、時間変化率T’の小さい単位領域は、水分量が多い場合、水分を内部に多く含んでいる、または乾燥の送風が届きにくいなどの状況が考えられ乾燥に時間がかかる。ルーバー6の角度を時間変化率T’の小さい方向へ向けて集中的に乾燥させることで乾燥しにくい領域の乾燥時間を短縮させることができ、乾燥効率を向上させることができる。 In addition, when the unit area with a small time change rate T ′ has a large amount of water, it may contain a large amount of water inside, or it may be difficult for dry air to reach, and it takes time to dry. By intensively drying the angle of the louver 6 in the direction in which the time change rate T ′ is small, the drying time of the difficult-to-dry region can be shortened, and the drying efficiency can be improved.
 送風制御部257は、ルーバー6の他に送風部3の送風量を変更することができる。 The air flow control unit 257 can change the air flow rate of the air blowing unit 3 in addition to the louver 6.
 この構成によれば、対象物100が乾燥しにくいすなわち強度比の時間変化が小さい場合は強力な送風をすることで乾燥速度を向上させることができ、効率的な乾燥をすることができる。 According to this configuration, when the object 100 is difficult to dry, that is, when the temporal change in the intensity ratio is small, strong drying can be performed to improve the drying rate, and efficient drying can be performed.
 また、送風制御部257は強度比の時間変化率を所定の変化率閾値263と比較する変化率閾値比較部264を備えており、その比較結果に基づいて送風部3の送風量を制御できる。 Further, the air flow control unit 257 includes a change rate threshold comparison unit 264 that compares the temporal change rate of the intensity ratio with a predetermined change rate threshold 263, and can control the air flow rate of the air blow unit 3 based on the comparison result.
 この構成によれば、強度比の変化率が所定の変化率閾値よりも大きい場合、対象物への送風量が少なくても自然に乾燥すると考えられるため、送風部3の送風量を減らすことで余分なエネルギーを抑え効率的な乾燥をさせることができる。 According to this configuration, when the rate of change of the intensity ratio is larger than the predetermined rate of change threshold, it is considered that the air is dried naturally even if the air flow to the object is small. It can save excess energy and make it dry efficiently.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
 その他、各実施の形態に対して当業者が想到する各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining the components and functions in each embodiment within the scope obtained by applying various modifications conceived by those skilled in the art to each embodiment and the scope of the present invention. The embodiments of the present invention are also included in the present invention.
 以上のように、本発明にかかる赤外線の反射光強度検出は、被乾燥物の乾燥進行度合いの測定精度を高めることができるため、被乾燥物の乾燥判断と送風装置の運転制御に有用である。 As described above, since the infrared reflected light intensity detection according to the present invention can enhance the measurement accuracy of the drying progress of the material to be dried, it is useful for the determination of the material to be dried and the operation control of the blower. .
 1、110、210  除湿機
 2  本体
 3  送風部
 4  除湿部
 5  制御部
 6  ルーバー
 7  発光部
 8  受光部
 9  水分量検知部
 10  吸込口
 11  吹出口
 21  投光レンズ
 22  光源
 34  ハーフミラー
 42  第二バンドパスフィルタ
 43  第二受光素子
 51  光源制御部
 52  第一増幅部
 53  第二増幅部
 54  第一信号処理部
 55  第二信号処理部
 56  水分量算出部
 57、157  乾燥判断部
 61  水分量閾値
 62  水分量比較部
 163  水分量変化率閾値
 164  水分量変化率算出部
 165  水分量変化率比較部
 71  受光レンズ
 72  第一バンドパスフィルタ
 73  第一受光素子
 81  扇風機
 82  羽根
 83  モータ
 84  軸流ファン
 85  本体軸
 86  フロントガード
 87  リアガード
 88  基台
 91  浴室乾燥機
 92  本体ケース
 93  送風部
 95  加熱部
 96  風向制御部
 97  換気部
 98  運転制御部
 100  対象物
DESCRIPTION OF SYMBOLS 1, 110, 210 Dehumidifier 2 main body 3 ventilation part 4 dehumidification part 5 control part 6 louver 7 light emission part 8 light reception part 9 water content detection part 10 suction port 11 blowout port 21 projection lens 22 light source 34 half mirror 42 second band Pass filter 43 Second light receiving element 51 Light source control unit 52 First amplification unit 53 Second amplification unit 54 First signal processing unit 55 Second signal processing unit 56 Water content calculation unit 57, 157 Drying judgment unit 61 Water content threshold 62 Water Amount comparison part 163 Water content change rate threshold 164 Water content change rate calculation part 165 Water content change rate comparison part 71 Light receiving lens 72 First band pass filter 73 First light receiving element 81 Fan 82 Blade 83 Motor 84 Axial fan 85 Main shaft 86 front guard 87 rear guard 88 base 91 bathroom dryer 92 main case 93 blower 95 heated portion 96 air direction control unit 97 the ventilation unit 98 operation control unit 100 object

Claims (20)

  1. 吸込口と吹出口が設けられた本体と、
    前記吸込口から前記吹出口へ空気を送風する送風部と、
    前記吸込口から吸込まれた前記空気を除湿する除湿部と、
    対象物の水分量を検知する水分量検知部と、
    前記吹出口からの送風を制御する制御部と、を備え、
    前記水分量検知部は、
     対象物へ向けて水に吸収される波長を含む検知光と前記検知光より水に吸収されにくい波長を含む参照光を発光する発光部と、
     前記対象物で反射された検知光と参照光を受光する受光部とを備え
     前記制御部は、前記受光部が受光した前記検知光の強度と前記参照光の強度を比較して水分量を算出する水分量算出部と、を備え、
    前記制御部は、前記水分量に基づいて前記送風を制御することを特徴とする送風装置。
    A main body provided with an inlet and an outlet;
    A blower for blowing air from the suction port to the blowout port;
    A dehumidifying part dehumidifying the air sucked from the suction port;
    A moisture content detection unit that detects the moisture content of the object;
    A control unit that controls the air flow from the air outlet;
    The water content detection unit
    A detection light including a wavelength that is absorbed by water toward the object, and a light emitting unit that emits a reference light that includes a wavelength that is less easily absorbed by water than the detection light;
    The control unit includes a light receiving unit that receives the detection light reflected by the object and the reference light, and the control unit calculates the amount of water by comparing the intensity of the detection light received by the light receiving unit with the intensity of the reference light. A water content calculation unit to
    The said control part controls the said ventilation based on the said moisture content, The air blower characterized by the above-mentioned.
  2. 前記送風部は、複数の羽根をモータによって回転させて送風する軸流ファンであることを特徴とする請求項1に記載の送風装置。 The blower according to claim 1, wherein the blower is an axial fan that rotates a plurality of blades by a motor to blow the blades.
  3. 前記吸込口から前記吹出口への通風経路に配置された加熱部をさらに備え、
    前記送風部は、前記通風経路に配置され、前記吸込口から前記吹出口へ送風することを特徴とする請求項1に記載の送風装置。
    The heating apparatus further comprises a heating unit disposed in a ventilation path from the suction port to the blowout port,
    The blower according to claim 1, wherein the blower is disposed in the ventilating path and ventilates from the suction port to the blowout port.
  4. 前記制御部は、前記水分量に基づいて前記対象物の乾燥を判断する乾燥判断部を備える請求項1に記載の送風装置。 The air blower according to claim 1, wherein the control unit comprises a drying judgment unit which judges the drying of the object based on the water content.
  5. 前記乾燥判断部は、前記水分量と所定の水分量閾値とを比較する水分量比較部を有し、前記水分量が前記所定の水分量閾値よりも少ない場合に乾燥と判断する請求項4に記載の送風装置。 The said drying judgment part has a water content comparison part which compares the said water content and a predetermined water content threshold value, and judges that it is dry, when the said water content is smaller than the said predetermined water content threshold value. Blowing device as described.
  6. 前記乾燥判断部は、前記水分量の変化率を算出する水分量変化率算出部と、前記変化率と所定の変化率閾値とを比較する水分量変化率比較部とを有し、前記水分量の変化率が前記所定の変化率閾値よりも小さい場合に乾燥と判断する請求項4に記載の送風装置。 The drying determination unit includes a water content change rate calculation unit that calculates a change rate of the water content, and a water content change rate comparison unit that compares the change rate with a predetermined change rate threshold, and the water content The air blower according to claim 4, wherein the air blower is determined to be dry when the rate of change of is smaller than the predetermined rate of change threshold.
  7. 前記乾燥判断部は、前記水分量と所定の水分量閾値とを比較する水分量比較部と、前記水分量の変化率を算出する水分量変化率算出部と、前記変化率と所定の変化率閾値とを比較する水分量変化率比較部とを有し前記水分量が前記所定の水分量閾値よりも少なく、前記水分量の変化率が前記所定の変化率閾値よりも小さい場合に乾燥と判断する請求項4に記載の送風装置。 The drying judgment unit is a water content comparison unit that compares the water content with a predetermined water content threshold value, a water content change ratio calculation unit that calculates the change ratio of the water content, and the change ratio and a predetermined change ratio It is judged as dry when the water content is smaller than the predetermined water content threshold and the water content change ratio is smaller than the predetermined content change threshold, and the water content change ratio comparing unit compares the threshold with the threshold. The blower according to claim 4.
  8. 前記乾燥判断部は、前記対象物の乾燥を判断した時に、前記送風部又は前記除湿部のいずれか1つ以上の運転を制御する請求項4から請求項7のいずれか一つに記載の送風装置。 The air blowing according to any one of claims 4 to 7, wherein the drying judging unit controls the operation of any one or more of the air blowing unit or the dehumidifying unit when judging the drying of the object. apparatus.
  9. 前記乾燥判断部は、前記対象物の乾燥を判断した時に、送風を停止する請求項4から請求項7のいずれか一つに記載の送風装置。 The air blowing apparatus according to any one of claims 4 to 7, wherein the drying judging unit stops the air blowing when judging the drying of the object.
  10. 前記乾燥判断部は、前記対象物の乾燥を判断した時に、送風量を減少させて一定期間動作させた後に送風を停止する請求項4から請求項7のいずれか一つに記載の送風装置。 The air blowing apparatus according to any one of claims 4 to 7, wherein when the drying judgment unit judges the drying of the object, the air blowing amount is reduced to operate for a certain period of time and then the air blowing is stopped.
  11. 前記乾燥判断部は、前記対象物の乾燥を判断した時に、前記除湿部を停止する請求項4から請求項7のいずれか一つに記載の送風装置。 The air blowing apparatus according to any one of claims 4 to 7, wherein the drying determining unit stops the dehumidifying unit when determining the drying of the object.
  12. 前記乾燥判断部は、前記対象物の乾燥を判断した時に、除湿量を減らして一定期間動作させた後に前記除湿部を停止する請求項4から請求項7のいずれか一つに記載の送風装置。 The air blower according to any one of claims 4 to 7, wherein the drying judgment unit reduces the amount of dehumidification and operates for a certain period of time when judging that the object is dried, and then stopping the dehumidifying unit. .
  13. 前記吹出口から吹き出される前記空気の角度を変更させるルーバーをさらに備え、
    前記制御部は、
     前記水分量算出部で算出された水分量に基づいて、前記吹出口からの送風を制御する送風制御部を備え、
    前記発光部は、
     前記吹出口から送風される送風領域を複数の単位領域に分割して前記単位領域毎に前記検知光と前記参照光を発光し、
    前記水分量算出部は、
     前記複数の単位領域毎に前記水分量を算出し、
    前記送風制御部は、
     前記複数の単位領域ごとに算出された水分量に基づいて前記ルーバーの角度を変更する請求項1に記載の送風装置。
    The louver further comprises a louver for changing the angle of the air blown out from the air outlet,
    The control unit
    The air flow control unit is configured to control air flow from the air outlet based on the water content calculated by the water content calculation unit.
    The light emitting unit is
    The air flow area blown from the air outlet is divided into a plurality of unit areas, and the detection light and the reference light are emitted for each of the unit areas,
    The water content calculation unit
    Calculating the water content for each of the plurality of unit areas;
    The air flow control unit
    The air blower according to claim 1, wherein the angle of the louver is changed based on the amount of water calculated for each of the plurality of unit areas.
  14. 前記送風制御部は、
     前記複数の単位領域のうち前記水分量が多い単位領域に向けて送風するように前記ルーバーの角度を変更する請求項13に記載の送風装置。
    The air flow control unit
    The air blower according to claim 13, wherein an angle of the louver is changed so as to blow air toward a unit area having a large amount of water among the plurality of unit areas.
  15. 前記送風制御部は、
     前記複数の単位領域毎に算出された水分量に基づいて前記送風部による送風量を変更する請求項13または14に記載の送風装置。
    The air flow control unit
    The air blower according to claim 13 or 14, wherein the air blowing amount by the air blowing unit is changed based on the water content calculated for each of the plurality of unit areas.
  16. 前記送風制御部は、
     前記水分量と所定の閾値とを比較する比閾値比較部を有し、
     前記比閾値比較部の比較結果に基づいて前記送風部による送風量を変更する請求項13に記載の送風装置。
    The air flow control unit
    It has a ratio threshold comparison unit that compares the water content with a predetermined threshold,
    The air blower according to claim 13, wherein the air blowing amount of the air blowing unit is changed based on the comparison result of the ratio threshold value comparing unit.
  17. 前記水分量算出部は、
     前記複数の単位領域毎に前記水分量の変化率を算出し、
    前記送風制御部は、
     前記変化率に基づいて前記ルーバーの角度を変更する請求項13に記載の送風装置。
    The water content calculation unit
    Calculating a change rate of the water content for each of the plurality of unit areas;
    The air flow control unit
    The air blower according to claim 13, wherein an angle of the louver is changed based on the change rate.
  18. 前記送風制御部は、
     前記複数の単位領域のうち前記変化率が小さい単位領域に向けて送風するように前記ルーバーの角度を変更する請求項17に記載の送風装置。
    The air flow control unit
    The air blower according to claim 17, wherein an angle of the louver is changed so as to blow air toward a unit area having a small change rate among the plurality of unit areas.
  19. 前記送風制御部は、
     前記複数の単位領域毎に前記変化率に基づいて前記送風部による送風量を変更する請求項17または18に記載の送風装置。
    The air flow control unit
    The air blower according to claim 17, wherein the air blowing amount by the air blowing unit is changed based on the change rate for each of the plurality of unit areas.
  20. 前記送風制御部は、
     前記変化率と所定の閾値とを比較する変化率閾値比較部を備え、
     前記変化率閾値比較部の比較結果に基づいて前記送風部による送風量を変更する請求項17に記載の送風装置。
    The air flow control unit
    A change rate threshold comparison unit that compares the change rate with a predetermined threshold;
    The air blower according to claim 17, wherein the air blowing amount of the air blowing unit is changed based on the comparison result of the change rate threshold value comparing unit.
PCT/JP2018/035572 2017-09-28 2018-09-26 Ventilation device WO2019065680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880062254.2A CN111133143B (en) 2017-09-28 2018-09-26 Air supply device
JP2019545534A JPWO2019065680A1 (en) 2017-09-28 2018-09-26 Blower

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-187816 2017-09-28
JP2017187816 2017-09-28
JP2018014403 2018-01-31
JP2018-014403 2018-01-31
JP2018136317 2018-07-20
JP2018-136317 2018-07-20

Publications (1)

Publication Number Publication Date
WO2019065680A1 true WO2019065680A1 (en) 2019-04-04

Family

ID=65901017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035572 WO2019065680A1 (en) 2017-09-28 2018-09-26 Ventilation device

Country Status (4)

Country Link
JP (1) JPWO2019065680A1 (en)
CN (1) CN111133143B (en)
TW (1) TWI782087B (en)
WO (1) WO2019065680A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049324A (en) * 2019-09-17 2021-04-01 パナソニックIpマネジメント株式会社 Blower
JP2021109147A (en) * 2020-01-10 2021-08-02 三菱電機株式会社 Dehumidifier
CN113584836A (en) * 2020-04-30 2021-11-02 云米互联科技(广东)有限公司 Fan blowing method, fan and computer readable storage medium
CN113584851A (en) * 2020-04-30 2021-11-02 云米互联科技(广东)有限公司 Fan operation method, fan and computer readable storage medium
JP7432811B2 (en) 2019-12-19 2024-02-19 パナソニックIpマネジメント株式会社 Air blower

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718498A (en) * 2021-09-29 2021-11-30 广东好太太科技集团股份有限公司 External air dryer for clothes airing machine and clothes airing machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253395A (en) * 1996-03-18 1997-09-30 Shinwa Hightech Kk Drying, ventilating and heating device for bathroom or similar room
JP2000254398A (en) * 1999-03-10 2000-09-19 Sanden Corp Bathroom air conditioner
JP2000271396A (en) * 1999-03-26 2000-10-03 Noritz Corp Drying detector and bathroom drying device
JP2002102597A (en) * 2000-10-03 2002-04-09 Toto Ltd Bathroom clothes drier
JP2010112604A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Dehumidifier
JP2016129596A (en) * 2015-01-14 2016-07-21 大阪瓦斯株式会社 Bathroom dryer and drying method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886325B (en) * 2009-05-12 2013-10-30 海尔集团公司 Drying device and clothes-drying method
US8966780B2 (en) * 2010-08-16 2015-03-03 Hui-Li Lin Tumble dryer
JP6269850B2 (en) * 2014-10-03 2018-01-31 三菱電機株式会社 Dehumidifier
JP2016202781A (en) * 2015-04-28 2016-12-08 パナソニックIpマネジメント株式会社 Clothing dryer
JP2017161424A (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Optical component sensor
CN106854827B (en) * 2016-08-29 2020-11-03 青岛海尔滚筒洗衣机有限公司 Clothes dryer trunk judging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253395A (en) * 1996-03-18 1997-09-30 Shinwa Hightech Kk Drying, ventilating and heating device for bathroom or similar room
JP2000254398A (en) * 1999-03-10 2000-09-19 Sanden Corp Bathroom air conditioner
JP2000271396A (en) * 1999-03-26 2000-10-03 Noritz Corp Drying detector and bathroom drying device
JP2002102597A (en) * 2000-10-03 2002-04-09 Toto Ltd Bathroom clothes drier
JP2010112604A (en) * 2008-11-05 2010-05-20 Mitsubishi Electric Corp Dehumidifier
JP2016129596A (en) * 2015-01-14 2016-07-21 大阪瓦斯株式会社 Bathroom dryer and drying method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049324A (en) * 2019-09-17 2021-04-01 パナソニックIpマネジメント株式会社 Blower
JP7511123B2 (en) 2019-09-17 2024-07-05 パナソニックIpマネジメント株式会社 Blower
JP7432811B2 (en) 2019-12-19 2024-02-19 パナソニックIpマネジメント株式会社 Air blower
JP2021109147A (en) * 2020-01-10 2021-08-02 三菱電機株式会社 Dehumidifier
JP7226347B2 (en) 2020-01-10 2023-02-21 三菱電機株式会社 dehumidifier
CN113584836A (en) * 2020-04-30 2021-11-02 云米互联科技(广东)有限公司 Fan blowing method, fan and computer readable storage medium
CN113584851A (en) * 2020-04-30 2021-11-02 云米互联科技(广东)有限公司 Fan operation method, fan and computer readable storage medium
CN113584851B (en) * 2020-04-30 2023-12-12 云米互联科技(广东)有限公司 Fan operation method, fan and computer readable storage medium
CN113584836B (en) * 2020-04-30 2023-12-12 云米互联科技(广东)有限公司 Fan blowing method, fan and computer readable storage medium

Also Published As

Publication number Publication date
TWI782087B (en) 2022-11-01
JPWO2019065680A1 (en) 2020-12-03
TW201920893A (en) 2019-06-01
CN111133143B (en) 2022-06-24
CN111133143A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2019065680A1 (en) Ventilation device
JP6735478B2 (en) Water content sensor and clothes dryer
JP5984666B2 (en) Dehumidifier
JP6386945B2 (en) Air conditioner
JP6696514B2 (en) Dehumidifier
JP7432811B2 (en) Air blower
JP7511123B2 (en) Blower
WO2018008234A1 (en) Dehumidifier
JP6816737B2 (en) Dehumidifier
JP7217403B2 (en) dehumidifier
WO2021060175A1 (en) Blower
JP7554964B2 (en) Blower
JP2004093008A5 (en)
JP6702497B2 (en) Dehumidifier
JP2020044521A (en) Dehumidifier
JP5610797B2 (en) Dehumidifier
JP6696619B2 (en) Dehumidifier
JP7226347B2 (en) dehumidifier
JP2020137593A (en) Blower
JP2002102597A (en) Bathroom clothes drier
JP2020118432A5 (en)
JP2018008201A (en) Dehumidifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863198

Country of ref document: EP

Kind code of ref document: A1