WO2019065545A1 - Motor drive control device, motor drive device, and electric vehicle having said motor drive device - Google Patents

Motor drive control device, motor drive device, and electric vehicle having said motor drive device Download PDF

Info

Publication number
WO2019065545A1
WO2019065545A1 PCT/JP2018/035229 JP2018035229W WO2019065545A1 WO 2019065545 A1 WO2019065545 A1 WO 2019065545A1 JP 2018035229 W JP2018035229 W JP 2018035229W WO 2019065545 A1 WO2019065545 A1 WO 2019065545A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor drive
phase
current sensor
motor
Prior art date
Application number
PCT/JP2018/035229
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 神田
明良 西川
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017184595A external-priority patent/JP2019062623A/en
Priority claimed from JP2018026140A external-priority patent/JP2019146304A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019065545A1 publication Critical patent/WO2019065545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present invention relates to a motor drive control device, and relates to a technology capable of reducing the number of parts, cost and weight.
  • the present invention also relates to a motor drive device and an electric vehicle equipped with the motor drive device, and more particularly to a technology for improving control performance while providing redundancy for an abnormality of a current sensor provided in the motor drive device.
  • Patent Document 1 proposes a technique for determining an abnormality when the sum of three-phase current detection values deviates from a predetermined range.
  • the three-phase alternating current motor currently used as a drive source in many electric vehicles can exhibit the performance by sending an optimal current according to a motor angle. Therefore, current feedback control is often performed by detecting the amount of current with a current sensor attached to a three-phase power line.
  • a method is often used in which current sensors are attached to two phases and the remaining one phase is obtained by calculation based on the principle that the current flowing through the three-phase power line of the three-phase AC motor becomes zero when summed.
  • the merits are for size and weight reduction by cost reduction, cost reduction, and simplification of control by reducing the number of parts.
  • Simplification of control means calculating the target value of the current when the calculation based on the actual measurement of the three-phase current does not mean that the total of the three-phase current becomes zero due to the error or noise of the current sensor
  • the model equation of vector control operation is It is the point which can be applied as it is.
  • noise mainly refers to noise that is superimposed on the output of the current sensor due to switching noise when performing current control.
  • the control device when noise is superimposed on the output of the current sensor, for example, the control device undesirably performs current control to induce undesirable torque fluctuation, and this is observed as vibration or noise, so that this effect can be reduced It is a constant issue.
  • Patent Document 1 gives an example in which two sets of three-phase energizing circuits are provided, in which case six current sensors are required.
  • Patent Document 1 exemplifies a motor provided with two energizing circuits (three-phase coils) in one motor, six currents can be used even when two motors provided with a pair of energizing circuits are used.
  • a sensor is required.
  • Using as many as six current sensors is disadvantageous in terms of cost, space and weight.
  • non-contact type current sensors such as Hall type, CT type, Rogowski coil type are often used for reasons of loss and safety. This is disadvantageous in cost, space and weight.
  • An object of the present invention is to provide a motor drive control device capable of reducing the number of parts, cost and space and weight.
  • Patent Document 3 proposes a configuration adopting a process capable of specifying which current sensor is abnormal from current values obtained by attaching current sensors to all three phases. ing.
  • Patent Document 4 the purpose of detecting an abnormality is common, but providing another phase of the current sensor in addition to the two-phase current sensor necessary for control for the abnormality detection is a space and From the viewpoint of being disadvantageous in terms of cost, a method has been proposed in which a current of a specific pattern for detecting an abnormality is supplied to detect an abnormality of the current sensor.
  • Patent Document 3 an abnormal current sensor is identified, and it is emphasized to prevent a decrease in traveling performance with a normal current sensor that remains even in the case of a single phase abnormality.
  • Patent Document 4 is proposed for the purpose of space reduction and cost reduction by eliminating the current sensor for one phase used only at the time of abnormality detection, which is unnecessary at normal times.
  • the number of current sensors installed above the minimum required number is used only for anomaly detection and anomaly substitution, and it is used for anomaly detection and anomaly substitution. There is room to contribute to the improvement of control performance.
  • Another object of the present invention is to provide a motor drive device capable of improving noise resistance performance and improving control performance while achieving redundancy of a control system, and an electric vehicle provided with this motor drive device. It is.
  • a motor drive control device 22 is a system of U-phase, V-phase and W-phase three-phase electrodes in one three-phase motor or a plurality of three-phase motors
  • a motor drive control device for controlling a plurality of motor equipments MS provided across the motor The motor drive control unit 19 is provided with current sensors for detecting the currents flowing through the U-phase, V-phase and W-phase of the respective systems in all phases, and individually controlling the respective systems by the currents detected by these current sensors.
  • One of the current sensors for detecting the current flowing through the U phase, the V phase and the W phase of each system is a common current sensor for detecting the current of each phase in two systems, and this common Is a non-contact current sensor.
  • the motor drive control unit 19 individually controls each system by means of a current sensor that detects the current flowing through each individual phase of each system.
  • one current sensor is a common current sensor that detects the current of one phase in each of two systems
  • the common current sensor is a non-contact current sensor.
  • the remaining phase current sensors are current sensors that are individually detected.
  • the motor installation MS includes two systems of three-phase electrodes
  • separate current sensors are used for any two phases of U-phase, V-phase and W-phase of each system, and the remaining phase of the two systems is used. Pass the non-contact current sensor common to (in phase).
  • the motor drive control unit 19 can individually control each system using an individual current sensor of each system.
  • the current sensor is commonly used in two systems, the sum of the three phases can not simply be obtained, and therefore the sum of the currents is calculated including another system using the commonly used current sensor.
  • the normal abnormality of the current sensor can be determined.
  • the current of one phase in the two systems is passed through a common non-contact current sensor, thereby reducing the number of component current sensors, reducing cost, space and weight.
  • the current detection unit 23 may be provided to calculate the current flowing through the system of In this case, the motor drive control unit 19 can individually control each system finely using the current calculated by the current detection unit 23.
  • the term "to be zero” includes a “range around zero” in which the detection error of the current sensor is taken into consideration. The following "being zero” also includes “a range near zero” in consideration of the detection error of the current sensor. The “near-zero range” is set, for example, from a test or simulation.
  • the common current sensor and the current sensors of the remaining phases are determined to be normal, and When the sum does not become zero, the common current sensor and the remaining phase current sensor may have an abnormality detection unit 24 that determines that one or both of the current sensors are abnormal.
  • the motor drive control unit 19 can control each system individually based on the determination result by the abnormality detection unit 24.
  • the motor drive control unit 19 may control the respective systems individually using only the current detected by the current sensor of the remaining phase. In this case, the control system can be simplified and the processing load can be reduced.
  • the motor drive control unit 19 stops the energizing circuit 16 connected to all the systems for driving the motor 6, and the abnormality is detected.
  • the detection unit 24 may detect the current with each current sensor and determine that the current sensor whose current does not become zero is abnormal. In this case, it is possible to easily determine an abnormal current sensor by temporarily stopping the energizing circuits 16 connected to all the systems.
  • the motor drive control unit 19 stops the conduction circuit 16 connected to one system, and the common current sensor performs one phase
  • the abnormality detection unit 24 determines whether or not the sum of the currents respectively detected by the common current sensor and the current sensors of the remaining phases becomes zero with respect to the system in which the current flows.
  • the current sensor which becomes In this case it is possible to determine the abnormal current sensor without completely stopping the driving of the motor 6 while maintaining the system in which the current flows.
  • the abnormality detection unit 24 detects the current detected by the current sensor of the remaining phase for the stopped system.
  • the current sensor which becomes abnormal may be determined depending on whether it becomes zero or not. Also in this case, it is possible to determine the abnormal current sensor without completely stopping the driving of the motor 6.
  • the motor drive control unit 19 stops the energizing circuit 16 connected to one system, and the abnormality detection unit 24 causes a current to flow.
  • the system when there is a system in which the sum of the currents respectively detected by the common current sensor and the current sensors of the remaining phases is zero, it may be determined that the common current sensor is normal.
  • the rotational speed detection means 26 for detecting the rotational speed of the motor 6 is provided, and the abnormality detection unit 24 calculates a back electromotive voltage according to a condition determined from the rotational speed detected by the rotational speed detection means 26.
  • Abnormality detection may be performed when the back electromotive force does not exceed the power supply voltage.
  • the predetermined condition is a condition arbitrarily determined by design or the like, and is determined by, for example, finding an appropriate condition by either or both of a test and a simulation.
  • the "rotational speed" is a rotational speed per unit time, and is synonymous with "rotational speed". According to this configuration, the abnormality detection of the current sensor can be performed with high accuracy by performing the abnormality detection when the calculated back electromotive force does not exceed the power supply voltage.
  • the motor equipment MS includes two or more motors 6 and the motor drive control unit 19 stops the energizing circuit 16 connected to the system of a part of the motors 6 among the plurality of motors 6, the motor is energized.
  • the command torque of the motor 6 in which the energizing circuit 16 is stopped may be increased with respect to the command torque of the motor 6 in which the circuit 16 is not stopped.
  • a desired motor torque can be maintained by thus increasing the command torque of the stopped motor 6.
  • the motor drive control unit 19 individually detects another phase of the one system. From the sum of individual current sensors that detect the current of another system phase and a common current sensor to the common current sensor of the energizing circuit 16 connected to the one system The current of may be calculated to perform current control. In this case, even if it is determined that the current sensor that detects the current of one phase of any one system is abnormal, the current control can be performed by the remaining current sensors.
  • a motor drive device is a motor drive device 106 for driving a three-phase AC motor 104 serving as a drive source for traveling an electric vehicle, comprising: a current drive circuit 108; A current sensor S for detecting the current flowing to the circuit 104, and a control device 109 for providing a drive signal of the current to the current drive circuit 108 based on the given torque command and the current detected by the current sensor S; As the current sensor S, a pair of current sensors capable of detecting the magnitude and the direction of the current are provided in directions facing each other and in any two phases in three phases, respectively.
  • the control device 109 superimposes the difference between the currents respectively detected by the pair of current sensors for each phase in the two phases including the pair of current sensors, and superimposes them on the output of the pair of current sensors And differential operation means 116 for performing current control using each of the obtained current values.
  • controller 109 provides a current drive signal to current drive circuit 108 based on the torque command and the current detected by current sensor S. For example, when all the current sensors are normal, among the current values received by the differential operation means 116, the output of the current sensor as a pair attached in two phases is adopted.
  • the differential operation means 116 takes, for example, the difference between the two outputs of the current sensors facing each other, applies a gain so as to make the magnification a factor of 1 if necessary, and uses it as the current value used for current control.
  • the differential operation means 116 takes the difference between the currents respectively detected by the pair of current sensors, cancels out the common phase noise superimposed on the output of the pair of current sensors, and obtains the obtained current value Each is used to perform current control. Thereby, an effect similar to that of a so-called operation amplification circuit is expected, and removal of in-phase noise can be expected. Therefore, by preventing undesired current control, undesired torque fluctuation can be suppressed, and improvement in control performance can be expected.
  • the control device 109 has an abnormality detection means 114 which takes in the output of the current sensor as the pair, determines whether the obtained current value satisfies a predetermined conditional expression, and detects an abnormality of the current sensor. It may be The “determining whether the obtained current value satisfies a predetermined conditional expression” is, for example, comparing the sum of the obtained current values with a threshold value.
  • the threshold is a threshold arbitrarily determined by design or the like, and is determined by finding an appropriate threshold by, for example, one or both of a test and a simulation.
  • the absolute values of the obtained current values will match if both of the current sensors that are mounted opposite to each other are normal, but if either one of the current sensors has an abnormality, the result is different It is possible to detect an abnormality in the current sensor on the basis of the occurrence of
  • the abnormality detection unit 114 determines that one of the current sensors of the pair is abnormal. You may diagnose that there is.
  • the threshold is a threshold arbitrarily determined by design or the like, and is determined by finding an appropriate threshold by, for example, one or both of a test and a simulation. In this case, when the outputs of the oppositely attached current sensors are added, if the paired current sensors are both normal, the result of the addition is approximately zero or a constant, and the abnormality of the current sensors is diagnosed be able to.
  • the control device 109 When the abnormality detection means 114 determines that one of the current sensors in the pair is abnormal, the control device 109 causes a current to flow as an abnormal point diagnosis current only in the phase provided with the current sensor.
  • the current drive circuit 108 may be operated, and the abnormal point diagnosis unit 115 may be provided to identify the abnormal current sensor by detecting the abnormal point diagnosis current with the current sensor.
  • the current sensor S includes the pair of current sensors provided in the two phases, and a current sensor detecting a current flowing in the remaining one phase of the three phases,
  • the control device 109 sums the outputs of the current sensors respectively provided for the three phases, one by one from each phase, and when the sum exceeds a threshold without becoming zero, any current It is also possible to have an abnormal point diagnosis means 115 for identifying a current sensor that is abnormal by judging that the sensor is abnormal and changing the combination for obtaining the sum.
  • the threshold is a threshold arbitrarily determined by design or the like, and is determined by finding an appropriate threshold by, for example, one or both of a test and a simulation.
  • the control device 109 When the abnormal point diagnostic means 115 identifies the abnormal current sensor, the control device 109 does not use the output current value of the abnormal current sensor, and uses the output current value of the remaining current sensors. Control may be performed. In this case, even if an abnormality occurs in any of the current sensors, control performance can be improved and redundancy can be secured.
  • the electric vehicle of the present invention is provided with the motor drive device 106 described in any of the above-mentioned in the present invention.
  • the above-described effects can be obtained for the motor drive device 106 of the present invention.
  • the drivability of the electric vehicle can be improved.
  • FIG. 14 is a block diagram of a control system of a motor drive control device according to still another modification of this embodiment. It is a block diagram of the conceptual structure which shows the electric vehicle provided with the motor drive unit based on 2nd Embodiment of this invention by a top view. It is a block diagram which shows schematic structure of the motor drive device.
  • FIG. 1 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle equipped with a motor drive control device according to this embodiment.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 serving as the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 serving as the left and right front wheels are driven wheels.
  • the front wheel 3 is a steered wheel.
  • the left and right wheels 2, 2 serving as drive wheels are driven by independent traveling motors 6, respectively.
  • Each motor 6 constitutes an in-wheel motor drive device IWM described later.
  • Each wheel 2 and 3 is provided with a brake.
  • the wheels 3 which are steered wheels serving as the left and right front wheels are steerable via a steering mechanism (not shown), and are steered by the steering means 15 such as a steering wheel.
  • the left and right in-wheel motor drive devices IWM which are motor equipment respectively have a motor 6, a reduction gear 7 and a bearing 4 for a wheel, and a part or all of these are disposed in the wheel Ru.
  • the rotation of the motor 6 is transmitted to the wheel 2 which is a driving wheel via the reduction gear 7 and the wheel bearing 4.
  • the brake rotor 5 constituting the brake is fixed to the flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2.
  • the motor 6 is a three-phase motor, and is, for example, an embedded magnet synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • the motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
  • FIG. 3 is a block diagram of a control system of the motor drive control device 22.
  • the motor drive control device 22 controls a motor installation MS including a plurality of (two in this example) three-phase motors 6 of a system of U-phase, V-phase, and W-phase three-phase electrodes.
  • the motor drive control device 22 has an ECU 14 that is an electronic control unit that controls the entire vehicle, and an inverter device 13 that controls the left and right motors 6 for traveling in accordance with an instruction from the ECU 14.
  • the ECU 14 is also referred to as a VCU (Vehicle Control Unit).
  • the inverter device 13 has power circuit units 16 and 16 provided for the respective motors 6, and a motor control unit 17 that controls the power circuit units 16.
  • the motor control unit 17 includes motor drive control units 19 and 19 corresponding to the respective motors 6, a current detection unit 23, and an abnormality detection unit 24.
  • the motor control unit 17 has a function of outputting each information such as each detection value and control value regarding the in-wheel motor drive device IWM which the motor control unit 17 has to the ECU 14.
  • the power circuit unit 16 includes an inverter 16a that converts DC power of the battery 18 into three-phase AC power used to drive the motor 6, and a gate drive circuit 16b that drives the inverter 16a.
  • the inverter 16 a is composed of U-phase, V-phase and W-phase semiconductor switching elements 25.
  • the gate drive circuit 16b drives each of the semiconductor switching elements 25 based on the input on / off command.
  • the motor control unit 17 is configured by a computer, a program executed by the computer, and an electronic circuit, and includes motor drive control units 19 and 19 as a control unit that is a basis of the computer. Each motor drive control unit 19 controls each system individually.
  • the ECU 14 generates an acceleration command, a deceleration command, and a steering unit from the signal (acceleration command) of the accelerator opening output from the accelerator operation unit 20 (FIG. 1) and the deceleration command output from the brake operation unit 21 (FIG. 1).
  • An acceleration / deceleration command to be given to the motors 6, 6 of the left and right rear wheels 2, 2 (FIG. 1) is generated as a torque command from the turning command output from the step 15 (FIG. 1), and output to the inverter device 13.
  • Each motor drive control unit 19 converts an acceleration / deceleration command into a current command in accordance with an acceleration / deceleration command according to a torque command or the like (command value) given from the ECU 14 which is a higher order control means.
  • the motor drive control unit 19 obtains the current flowing from the inverter 16a to the motor 6 from the current sensors U1, V1, W, U2, V2, and performs current feedback control to make the detected current follow the command value.
  • the command voltage is calculated by feedback control, and the command voltage is made a pulse width modulation signal to give an on / off command to the gate drive circuit 16b.
  • the current sensor detects the current flowing through each of the U phase, V phase, and W phase of each system.
  • one (in this example, W-phase) current sensors W is commonly used to detect the current of each one phase (in-phase) in the two systems. It is a non-contact current sensor.
  • the current sensor W is also referred to as a current sensor W1 / W2.
  • the remaining two (in this example, U-phase and V-phase) current sensors U1, V1, U2, and V2 are four non-contact current sensors that individually detect one system. A total of five current sensors are provided.
  • non-contact current sensors are applied to the common current sensor W and the individual current sensors U1, V1, W, U2, and V2.
  • a non-contact current sensor for example, a non-contact current sensor such as a Hall sensor, a CT sensor, or a Rogowski coil sensor is applied.
  • individual current sensors may also be used as contact current sensors provided with a shunt resistor or the like. Good.
  • the common current sensor must be a non-contact current sensor in order to collectively detect the currents flowing through the plurality of conductors (phases) to be measured.
  • the current detection unit 23 uses the fact that the sum of three-phase currents is zero from the currents detected by the common (commonized) current sensor W and the individual current sensors U1, V1, U2, and V2, respectively.
  • the current flowing to the system to be controlled is calculated. Specifically, the current flowing to the system to be controlled can be calculated from the following formula.
  • iu1, iv1 in the first motor 61 of the system
  • the detection value of the U-phase, separate current sensor V-phase U1, V1, iu2, iv2: in the second motor 6 2 strains, U-phase, Detection values of the individual V-phase current sensors U2 and V2, iw: detection values of the common current sensor W.
  • the abnormality detection unit 24 detects the common current sensor W and the individual current sensors U1, V1, U1. When it is determined that U2 and V2 are normal and the sum of the currents does not become zero, it is determined that one or both of the common current sensor W and the individual current sensors U1, V1, U2, and V2 are abnormal.
  • each motor drive control unit 19 only detects the current detected by the individual current sensors U1, V1, U2, and V2. It may be used to control each system individually. In this case, the control system can be simplified to reduce the computational processing load.
  • abnormalities in the current sensor for example, an abnormality in which the output is stuck or shorted on the Hi side, an abnormality in which the output is stuck or shorted on the Lo side, an offset abnormality in which the output is not 0A when deenergized,
  • anomaly detection is performed using the fact that the sum of three-phase currents is zero.
  • the common current sensor W when the common current sensor W is used in a plurality of systems, the sum of the three phases can not simply be obtained, so the energizing circuit of another system using the common current sensor W It is necessary to find the sum including it. Also, since you want to determine possible abnormal current sensor, for example, another for and detect the individual sensor output all of the motor 6 1, 6 2 outputs once stopped, using common current sensor W Stop the output of the power supply circuit of the system of and perform abnormality detection. Examples of the abnormality detection in driving of the motor 6 1 or 6 2 illustrates a flow chart in FIGS. 4 to 6.
  • FIG. 4 is a flowchart showing a method of detecting an abnormality in the motor drive control device.
  • 5 and 6 are flowcharts showing a part of the flowchart. The following description will be given with reference to FIG. 3 as appropriate.
  • All motor 6 1, 6 2 starts the process during operation, the abnormality detection unit 24, the sum of five pieces all current sensors U1, V1, W, U2, V2 determines whether 0A ( Step a1). When the sum of current sensors U1, V1, W, U2, V2 is 0 A (step a1: Yes), abnormality detection unit 24 determines that all current sensors U1, V1, W, U2, V2 are normal, and The motor drive control unit 19 controls the motor based on the determination result (step a2), and ends the present process.
  • step a1: No the abnormality detection unit 24 determines that any one of the current sensors is abnormal, and each motor drive control unit 19 , power circuit connected to all the system for driving the second motor 6 and 62 (the current supply circuit) 16 is stopped, stop all motor output (step a3).
  • the abnormality detection unit 24 detects current by each current sensor and determines whether each sensor output is 0 A (step a4).
  • the abnormality detection unit 24 determines that the current sensor does not become 0 A (step a4: No) and the current sensor is abnormal (step a5). Thereafter, the process proceeds to step a2.
  • the control continuation method at the time of abnormality of the current sensor in step a2 will be described later.
  • Step a4 When the sensor outputs of all of the current sensor is determined to be 0A (Step a4: Yes), the motor drive control unit 19, a state in which a current flows only in the first motor 6 1 lineage (step a6), abnormality detection unit 24, the first motor 61 of the system in which current flows, it is determined whether the sum of the current detected respectively by a common current sensors W and individual current sensors U1, V1 becomes 0A ( Step a7).
  • step a7: Yes the motor drive control unit 19, a state in which a current flows only in the second motor 6 2 strains (step a8), the abnormality detecting section 24 , the second motor 6 2 strains which current flows, it is determined whether the sum of the common current sensors W and individual current sensor U2, current detected respectively V2 becomes 0A (step a9). If it is determined that the sum of the currents becomes 0 A (step a9: Yes), the process returns to step a1.
  • Step a9 the abnormality detecting unit 24, U-phase of the second motor 6 2 strains, the current sensor U2 to detect a current of the V-phase, V2 of At least one is determined to be abnormal (step a10). Thereafter, the process proceeds to step a2.
  • step a7 the first motor 61 of the system in which current flows, in the determination of the sum of the current detected respectively by a common current sensors W and individual current sensors U1, V1 does not become 0A (Step a7: No ), the motor drive control unit 19, a state in which a current flows only in the second motor 6 2 strains (step a11).
  • step a11 the abnormality detecting unit 24, the second motor 6 2 strains which current flows, whether the sum of the common current sensors W and individual current sensor U2, current detected respectively V2 becomes 0A It determines (step a12).
  • Step a12: Yes the abnormality detecting unit 24, U-phase of the first motor 61 of the system, the current sensor U1, V1 for detecting the current of the V phase at least One is determined to be abnormal (step a13). Thereafter, the process proceeds to step a2.
  • the abnormality detecting unit 24 can not determine the abnormal current sensor is determined as abnormal any of the current sensors of the motors 6 and 62 ( Step a14). Thereafter, the process proceeds to step a2.
  • Table 1 shows the according to the first embodiment, two of the motor 6 1, 6 2 in five pieces of current sensors U1, V1, W, U2, V2 control continuation method when an abnormal case.
  • the control continuation method is the same for the embodiments of FIGS. 7 to 9 described later. If an abnormal current sensor can not be determined, current control can not be continued.
  • Step b1 the abnormality detection unit 24 determines whether 0A (Ste b1).
  • step b1: Yes the abnormality detection unit 24 determines that all the current sensors are normal, and each motor drive control unit 19 controls the motor based on the determination result ( Step b2), end this processing.
  • Step b1 The sum of the current sensor not equal 0A (Step b1: No), the motor drive control unit 19, a power circuit connected to the system for driving the second motor 6 2 (energization circuit) 16 is stopped, the second Only the motor output of is stopped (step b3).
  • the abnormality detection unit 24 determines whether or not the outputs of the individual current sensors of U2 and V2 of the system which has been deenergized become 0 A (step b4). In the determination of no (step b4: No), the abnormality detection unit 24 determines that the current sensor whose sensor output does not become 0 A among the individual current sensors of U2 and V2 is abnormal (step b5). Thereafter, the process proceeds to step b2.
  • Step b6 when the output of the individual current sensor V2 becomes 0A (Step b4: Yes), the abnormality detecting section 24, the first motor 61 of the system in which a current flows, a common current sensors W and U1, V1 It is determined whether the sum of the currents respectively detected by the individual current sensors in the above becomes 0 A (step b6). In the determination of the sum of the current becomes 0A (Step b6: Yes), the motor drive control unit 19, a state in which a current flows only in the second motor 6 2 strains (step b7), the abnormality detecting section 24 , for the first motor 61 of the system in which current is not flowing, and determines whether the U1, the output of the individual current sensor V1 becomes 0A (step b8).
  • step b8: No the abnormality detection unit 24 determines that the current sensor whose sensor output does not become 0 A among the individual current sensors of U1 and V1 is abnormal (step b9). Thereafter, the process proceeds to step b2.
  • U1 when the output of the individual current sensor V1 becomes 0A (Step b8: Yes), the abnormality detecting unit 24, the second motor 6 2 strains which current flows, a common current sensors W and U2, V2 It is determined whether the sum of the currents respectively detected by the individual current sensors in the above becomes 0 A (step b10).
  • step b10: Yes If it is determined that the sum of the currents becomes 0 A (step b10: Yes), the process returns to step b1. If it is determined that the sum of the currents does not become 0 A (step b10: No), the abnormality detection unit 24 determines that at least one of the current sensors U2 and V2 is abnormal (step b11). Thereafter, the process proceeds to step b2.
  • step b6 the first motor 61 of the system, the determination of the sum of the currents does not become 0A (Step b6: No), the motor drive control unit 19, current only to the second motor 6 2 strains a state in which the flow (step b12), the abnormality detecting section 24, the first motor 61 of the system in which current is not flowing, and determines whether the U1, the output of the individual current sensor V1 is 0A (Step b13).
  • step b13: No the abnormality detection unit 24 determines that the current sensor whose sensor output does not become 0 A among the individual current sensors of U1 and V1 is abnormal (step b14). Thereafter, the process proceeds to step b2.
  • U1 when the output of the individual current sensor V1 becomes 0A (Step b13: Yes), the abnormality detecting unit 24, the second motor 6 2 strains which current flows, a common current sensors W and U2, V2 It is determined whether the sum of the currents respectively detected by the individual current sensors in the above becomes 0 A (step b15).
  • step b15: Yes If it is determined that the sum of the currents becomes 0 A (step b15: Yes), the abnormality detection unit 24 determines that at least one of the current sensors U1 and V1 is abnormal (step b16). Thereafter, the process proceeds to step b2.
  • the abnormality detecting unit 24 can not determine the abnormal current sensor is determined as abnormal any of the current sensors of the motors 6 and 62 ( Step b17). Thereafter, the process proceeds to step b2.
  • the motor 6 1, 6 without completely stopping the second drive it is possible to perform abnormality detection. Therefore, it is possible to prevent the driver from feeling discomfort when detecting an abnormality.
  • three motors 6 and 62, 6 3 seven pieces of current sensors may be used.
  • the second, third The common non-contact current sensor U2 / U3 passes through the same phase (in this example, the U phase) of the motors 6 2 and 6 3 of the two motors, and the individual current sensors U1 , V1, V2, V3, and W3.
  • a non-contact current sensor common to the same phase of the two systems is used, but may not be the same phase.
  • 11 to 13 are flowcharts illustrating a method for detecting abnormality the three motors 6 and 62, 6 3 motor drive control device in the case of using seven pieces of current sensor. Description will be made with reference to FIG. 10 and the like as appropriate.
  • This process is started while all the motors 6 1 , 6 2 and 6 3 are driven, and the abnormality detection unit 24 (FIG. 3) determines whether or not the sum of all seven current sensors is 0 A (step c1). ).
  • step c1 Yes
  • the abnormality detection unit 24 (FIG. 3) determines that all current sensors are normal, and each motor drive control unit 19 (FIG. 3)
  • the motor is controlled on the basis of (step c2), and this processing is ended.
  • step c1 When the sum of the current sensors is not 0 A (step c1: No), the abnormality detection unit 19 (FIG. 3) determines that any current sensor is abnormal, and each motor drive control unit 19 (FIG. 3) the energizing circuit which is connected to all of the system for driving the second and third motor 6 1, 6 2, 6 3 is stopped, stop all motor output (step c3).
  • the abnormality detection unit detects the current with each current sensor and determines whether each sensor output is 0 A (step c4).
  • the abnormality detection unit determines that the current sensor does not become 0 A (step c4: No) and the current sensor is abnormal (step c5). Thereafter, the process proceeds to step c2.
  • the control continuation method at the time of abnormality of the current sensor in step c2 will be described later.
  • the motor drive control unit includes a state in which the first, current flows through the third motor 6 1, 6 3 of the system (step c6) , the abnormality detecting unit determines whether the sum of the current detected respectively common current sensor of the first motor 6 U1 in one lineage, V1 individual current sensor and W1 / W2 becomes 0A ( Step c7).
  • step c7 the abnormality detection unit, a common current sensor of the third motor 6 U3 in 3 strains, W3 individual current sensor and U2 / U3 It is determined whether the sum of each detected current is 0 A (step c8).
  • the motor drive control unit includes a state in which a current flows only in the second motor 6 2 strains (step c9), the abnormality detection unit, a current second for system 6 2 motors, separate current sensor V2, (step of determining whether the sum of the current detected respectively by a common current sensor W1 / W2, U2 / U3 becomes 0A flows c10). If it is determined that the sum of the currents becomes 0 A (step c10: Yes), the process returns to step c1. When it is determined that the sum of the currents does not become 0 A (step c10: No), the abnormality detection unit determines that the individual current sensor of V2 is abnormal (step c11). Thereafter, the process proceeds to step c2.
  • step c8 when the sum of the currents does not become 0A (Step c8: No), motor drive control section, a state in which a current flows only in the second motor 6 2 strains (Step c12), the abnormality detection unit, a second motor 6 2 strains which current flows, a separate current sensor V2, determines whether the sum of the current detected respectively become 0A a common current sensor W1 / W2, U2 / U3 ( Step c13).
  • step c13: Yes If it is determined that the sum of the currents becomes 0 A (step c13: Yes), the abnormality detection unit determines that at least one of the V3 and W3 individual current sensors is abnormal (step c14). Thereafter, the process proceeds to step c2.
  • the abnormality detection unit a second, but in abnormal third current sensor of the motor 6 2, 6 3 is, can not be determined (step c15). Thereafter, the process proceeds to step c2.
  • step c7 when a sum of the currents does not become 0A (step c7: No), the abnormality detection unit, a common current sensor of the third motor 6 U3 in 3 strains, W3 individual current sensor and U2 / U3 At step c16, it is determined whether the sum of the currents respectively detected is 0A.
  • the motor drive control unit includes a state in which a current flows only in the second motor 6 2 strains (Step c17), the abnormality detection unit, the second the system of the motor 6 2, separate current sensor V2, determines whether the sum of the current detected respectively become 0A a common current sensor W1 / W2, U2 / U3 (step c18).
  • step c18: Yes the abnormality detection unit determines that at least one of the individual current sensors U1 and V1 is abnormal (step c19). Thereafter, the process proceeds to step c2.
  • the abnormality detection unit first, although abnormalities second motor 6 1, 6 2 of the current sensor is, it can not be determined (step c 20). Thereafter, the process proceeds to step c2.
  • step c16 when the sum of the currents does not become 0A (Step c16: No), motor drive control section, a state in which a current flows only in the second motor 6 2 strains (Step c21), the abnormality detection unit, a second motor 6 2 strains, the individual current sensor V2, determines whether the sum of the current detected respectively become 0A a common current sensor W1 / W2, U2 / U3 (step c22) .
  • step c22 When the sum of the currents becomes 0 A (step c22: Yes), the abnormality detection unit detects at least one of U1 and V1 individual current sensors and at least one of V3 and W3 individual current sensors. Is determined to be abnormal (step c23). Thereafter, the process proceeds to step c2.
  • Step c22: No When the sum of the currents does not become 0A (Step c22: No), the first, second, third motor 6 1, 6 2, 6 is abnormality in 3 current sensor, can not be determined (Step c24) . Thereafter, the process proceeds to step c2.
  • Table 2 shows the control continuation method at the time of abnormality in the case of three current sensors and seven current sensors according to the first embodiment. If an abnormal current sensor can not be determined, current control can not be continued.
  • a plurality of systems (two systems in this example) of U-phase, V-phase, and W-phase three-phase electrodes may be provided in one three-phase motor 6.
  • the individual current sensors may be, for example, contact current sensors with shunt resistors.
  • the motor drive device may be a two-motor on-board type in which the vehicle body is installed in the motor other than the in-wheel motor type. It is also possible to apply the motor drive control device according to any one of the embodiments to a hybrid vehicle including an internal combustion engine and a vehicle drive motor, an electric power steering device, a train, a robot or the like.
  • FIG. 3 it comprises a rotation speed detecting means 26 for detecting the rotational speed of the motor 6 1, 6 2, the abnormality detecting unit 24 in accordance with conditions determined from the rotational speed detected by the rotational speed detecting means 26
  • a back electromotive voltage may be calculated, and abnormality detection may be performed when the back electromotive voltage does not exceed the power supply voltage.
  • the rotational speed for example, can be determined by, for example differentiating the rotation angle of the motor 6 1, 6 2.
  • the abnormality detection of the current sensor can be performed with high accuracy by performing the abnormality detection when the calculated back electromotive force does not exceed the power supply voltage.
  • FIG. 15 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle provided with a motor drive device according to this embodiment.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 102 serving as the left and right rear wheels of the vehicle body 101 are drive wheels and the wheels 103 serving as the left and right front wheels are driven wheels.
  • the wheel 103 serving as the front wheel is a steered wheel.
  • the electric vehicle of this example is a motor-on-board type in which the left and right wheels 102, 102 are driven by a single three-phase AC motor (simply referred to as a "motor") 104 serving as a drive source for traveling.
  • the motor 104 is, for example, an embedded magnet synchronous motor in which permanent magnets are built in a core portion of a rotor.
  • the motor 104 is a motor in which a radial gap is provided between a stator fixed to the housing and a rotor attached to the rotation output shaft.
  • the wheels 102 are driven by a motor 104 via a reduction gear not shown.
  • Each of the wheels 102 and 103 is provided with a brake.
  • the wheels 103, 103 which are steered wheels on the left and right front wheels, can be steered via a steering mechanism (not shown), and are steered by steering means 105 such as steering wheels.
  • the motor drive device 106 receives a torque command from the upper control device 107 that controls the vehicle and drives the motor 104.
  • the motor drive device 106 drives the current to the current drive circuit 108 based on the current drive circuit 108, the current sensor S for detecting the current flowing to the motor 104, and the torque command given and the current detected by the current sensor S.
  • a controller 109 for providing a signal.
  • the control device 109 and the current drive circuit 108 constitute an inverter device.
  • the current sensor S As the current sensor S, two current sensors that respectively detect current in opposite directions are paired with each other in any direction opposite to each other and in any two phases in three phases (in this example, U phase, And a current sensor for detecting the current flowing through the remaining one phase (in this example, the W phase).
  • the output current value obtained by the current sensor S is input to the control device 109.
  • a clamp-type current sensor is used as the current sensor S attached to each phase.
  • the current sensor described here is a single power supply, which exhibits a predetermined offset voltage at 0 A current, and outputs a signal according to it when positive or negative current flows It shall be.
  • any current sensor other than the clamp type can be adopted as long as it is independent and the direction of the current can be determined and the influence of the abnormality of one current sensor does not affect the other current sensor.
  • the control device 109 is, for example, a control board on which a CPU for calculation and peripheral parts are mounted.
  • each means described later is stored as a program in the memory of the CPU, and each means is implemented based on the processing flow. Further, the control device 109 outputs the current drive circuit drive signal determined after each process to the current drive circuit 108.
  • the output current from the current drive circuit 108 is output to the motor 104 through the three-phase AC transmission line 10.
  • an angle sensor or the like for controlling the motor 104 is often attached, but this is omitted in the description of the present embodiment.
  • the current drive circuit 108 drives a plurality of switching elements 112 for converting the power of the DC power supply 11 into three-phase AC power used for driving the motor 104, and the switching elements 112. And a gate drive circuit Gd.
  • each switching element 112 for example, an insulated gate bipolar transistor (abbreviated as IGBT), a field effect transistor (abbreviated as FET) or the like is applied.
  • the control device 109 has current control means 113 for controlling the current drive circuit 108, abnormality detection means 114, abnormality point diagnosis means 115, and differential operation means 116.
  • known means such as external communication means for communicating with the outside shall be appropriately implemented.
  • the upper control device 107 uses an accelerator opening signal (acceleration command) output from the accelerator operation unit 17 and a deceleration command output from the brake operation unit 118 or an acceleration command.
  • An acceleration / deceleration command to be given to the motor 104 is generated as a torque command from the deceleration command and the turning command output from the steering means 105, and is output to the control device 109.
  • the current control means 113 is generally a part corresponding to vector control, and converts a torque command given from the upper control device 107 into current target values of the respective three phases.
  • the three-phase currents detected by the current sensor S are supplied to the current control means 113.
  • the current sensor S exemplified below is a voltage output type current sensor S, and as shown in FIG. 18, shows an offset value (voltage) C at 0 A, and when current flows in the positive direction of the current sensor, this current sensor The output of the current sensor changes in the direction smaller than the offset value C when the current flows in the negative direction of the current sensor.
  • the abnormality detection means 114 takes in the output of the current sensor as a pair, compares the obtained current value with a threshold, and detects an abnormality of the current sensor.
  • the outputs of the respective current sensors have the same absolute value with respect to the offset value C, and the current directions are opposite to each other. Show. Therefore, if there is no influence of noise or error, the sum of the outputs of the pair of current sensors should offset the detected current value, and the result will be a value twice the offset value.
  • the error and noise of the current sensor cause a difference from this value, but the threshold value S1 of the allowable difference is determined with reference to the guaranteed value of the error of the current sensor and the noise level. If the difference becomes large beyond this threshold, it is predicted that the current sensor is not outputting the correct value for some reason, and the abnormality is diagnosed. That is, when the difference between the current value obtained by adding the outputs of the current sensors to be paired and the threshold value is large, the abnormality detecting unit 114 has an abnormality in one of the current sensors of the pair of current sensors. Diagnose that there is.
  • the threshold value is exceeded momentarily due to spike noise etc.
  • the current value obtained by adding the outputs of the paired current sensors exceeds the threshold value and the difference for a fixed time (for example, 100 ms) is large. If the condition of (1) continues, it may be diagnosed as abnormal.
  • current sensors UU1 and UU2 are attached as two opposing current sensors for the U phase
  • current sensors VV1 and VV2 are attached as two opposing current sensors for the V phase. It is assumed that one current sensor WW1 is attached to the W-phase in the same direction as the current sensors UU1 and VV1.
  • the abnormality detection unit 114 determines whether the following conditional expression is satisfied.
  • values (voltages) obtained from the current sensors UU1, UU2, VV1, and VV2 are shown as UU1, UU2, VV1, and VV2, respectively.
  • the current sensors UU1 and UU2 attached to the U phase are both normal by the diagnosis of the abnormality detection means 114, and any one of the current sensors VV1 and VV2 attached to the V phase is either Is diagnosed as abnormal. Further, it is not determined whether the W-phase current sensor WW1 is abnormal.
  • the abnormality detection means 114 can diagnose whether there is a current sensor that is abnormal in that phase, it is not possible to determine which one of the current sensors that is a pair of that phase is abnormal. Therefore, the abnormal point diagnosing means 115 performs processing for determining this.
  • the abnormal point diagnosis means 115 sums the outputs of the UVW-phase current sensors, as described below, and determines whether the result is substantially zero. In practice, although the error and noise of the current sensor cause a difference from "zero", the threshold value S2 of the allowable difference is determined with reference to the guaranteed value of the error of the current sensor and the noise level. Therefore, the abnormal point diagnosis means 115 determines whether the following conditional expression is satisfied.
  • values (voltages) obtained from the current sensors UU1, UU2, VV1, VV2, and WW1 are shown as UU1, UU2, VV1, VV2, and WW1, respectively.
  • Table 4 is the summary of the above contents.
  • the circle indicates normal, and the x indicates abnormality.
  • a variable to be 0 may be prepared, and the abnormality detection unit 115 may cause the abnormality detection unit 114 to update the value.
  • the same operation is performed in the V phase or the W phase depending on the configuration.
  • the differential operation means 116 takes the difference between the currents respectively detected by the current sensors serving as the pair for the two phases (in this example, the U phase and the V phase in this example) including the pair of current sensors, and forms the pair.
  • the common mode noise superimposed on the output of the current sensor is canceled and removed, and current control is performed using the obtained current values.
  • In the ideal state without noise there is no difference in using the output of one current sensor without taking the difference between the currents respectively detected by the paired current sensors.
  • in-phase noise is superimposed on the output of each of the oppositely mounted current sensors, the difference between the results obtained from the two paired current sensors is the same effect as the operation amplification circuit. Is expected, and removal of common mode noise can be expected.
  • in-phase noise as shown in FIG. 19 is superimposed on UU1 and UU2 which are the outputs of the current sensor UU1 and the current sensor UU2 attached to the U phase.
  • UU1-UU2 obtained by taking the difference between the two signals is also shown in FIG.
  • spiked in-phase noise observed in UU1 and UU2 can not be seen in UU1-UU2.
  • the cause of this common-mode noise is, for example, switching noise when performing current control.
  • the noise may also be superimposed on the output of the current sensor, or switching noise may be directly superimposed on the output signal of the current sensor.
  • the current control means 113 implements current control represented by vector control.
  • the current control unit 113 performs current control based on the U-phase and V-phase currents which are the outputs of the differential operation unit 116.
  • the current control means 113 further increases the current target value if the detected current is smaller than the calculated current target value, and further decreases the current target value if the detected current is larger than the calculated current target value.
  • Feedback control of the motor current The current control unit 113 calculates a command voltage by feedback control, converts the command voltage into a pulse width modulation signal, and gives an on / off command to the gate drive circuit Gd. The current is changed by changing the pulse width in the PWM operation.
  • FIG. 20 is a flow chart showing the execution order of each means in this control device.
  • the controller 109 reads the current values output by all the current sensors (step S1).
  • the read current value is delivered to the abnormality detection means 114 (step S2).
  • the abnormality detection unit 114 determines whether or not an abnormality occurs in any of the current sensors and outputs an abnormal signal based on the received current value, and outputs a result (step S3).
  • step S3 When all the current sensors are normal and there is no abnormality (step S3: no), the current value read by the control device 109 is passed to the differential operation means 116 as it is. Assuming that all current sensors are normal, among the current values received by the differential operation means 116, the outputs of two pairs of current sensors attached to two phases (in this example, U phase and V phase) are adopted. . The differential operation means 116 takes the difference between the two outputs of the current sensors mounted opposite to each other, and if necessary, applies a gain so that the result is 1 ⁇ magnification, and the current value used for current control (Step S4).
  • the current value used for current control obtained by the operation of the differential operation means 116 is passed to the current control means 113.
  • the current control means 113 performs calculations based on the three-phase current values (or the measured values of the two-phase current values and the one-phase current values determined therefrom) to calculate the current target values of the three phases. (Step S5).
  • the current drive circuit 108 is PWM-controlled, and the current control means 113 calculates and outputs the duty ratio of PWM.
  • the control device 109 outputs a current drive circuit drive signal to the current drive circuit 108 based on the PWM duty ratio determined by the current control unit 113 (step S6).
  • the current drive circuit drive signal is generally a pulse signal of PWM. Thereafter, the process ends.
  • step S3 If the abnormality detection unit 114 diagnoses that the current sensor is abnormal (step S3: yes), the process proceeds to step S7. For example, it is assumed that the difference between the outputs of the pair of opposing current sensors is larger than the threshold value, and the abnormality detection unit 114 diagnoses that the difference is abnormal. When it is diagnosed that the current sensor is abnormal, it is known which of the three phases the current sensor is abnormal. However, it is unclear which of the pair of current sensors attached facing each other is abnormal.
  • the abnormal point diagnosis means 115 determines which of the current sensors in the phase is abnormal (step S7).
  • the abnormal point diagnostic means 115 updates the abnormal information indicating which current sensor is abnormal (in other words, information indicating which output of the current sensor can not be adopted), which is found as a result, and the updated The abnormality information is delivered to the differential operation means 116 (step S8). Thereafter, the process proceeds to step S4.
  • current control for driving is performed without using the current value obtained by the current sensor diagnosed as abnormal. Thereby, even if an abnormality occurs in any of the current sensors, control performance can be improved and redundancy can be secured.
  • the above is one cycle of the control flow related to the current control, and is processed once per calculation cycle.
  • In-phase noise may be superimposed on the output of each of the oppositely mounted current sensors.
  • the cause of the in-phase noise is, for example, switching noise when performing current control. Therefore, the differential operation means 116 takes the difference between the currents respectively detected by the pair of current sensors, cancels out the common phase noise superimposed on the output of the pair of current sensors, and obtains the obtained current value Each is used to perform current control. Thereby, an effect similar to that of a so-called operation amplification circuit is expected, and removal of in-phase noise can be expected. Therefore, it is possible to prevent the undesirable current limitation caused by the common mode noise and to improve the control performance. In addition, since the current value obtained by the current sensor diagnosed as abnormal is not used and current control for driving is performed, control performance can be improved even if an abnormality occurs in any of the current sensors, Redundancy can be ensured.
  • the diagnosis of the abnormality point diagnosis means 115 is performed for the phase to which only one current sensor is attached (the W phase current sensor WW1 in the example of Table 3). Among the above, it is determined that the condition is not abnormal if Equation 3 or Equation 4 holds. However, if processing is performed according to the procedure shown in FIG.
  • the abnormality detection unit 114 checks in advance whether there is an abnormality in the current sensor WW1 in advance by checking whether the following conditions are satisfied. Good.
  • the current sensor WW1 can always be monitored for any abnormality. If it is first diagnosed that only the current sensor WW1 is abnormal based on the diagnosis result of whether the WW1 obtained from the current sensor WW1 is normal or abnormal, the current control is stopped without implementing the abnormal point diagnosis means 115. If it is determined that the current sensor WW1 is normal until just before any one of the U-phase and V-phase current sensors is abnormal, the result of the current sensor WW1 is You can take measures to trust.
  • a current sensor As shown in FIG. 21, as a current sensor, two pairs of current sensors that respectively detect current in opposite directions of the current are directed to face each other and any two phases in three phases ( In this example, U-phase and V-phase may be respectively provided, and the current sensor may not be attached to the other one phase (W-phase in this example).
  • the abnormality detection means 114 determines whether the following conditional expressions are satisfied.
  • values (voltages) obtained from the current sensors UU1, UU2, VV1, and VV2 are shown as UU1, UU2, VV1, and VV2, respectively.
  • the paired current sensors attached to the U phase are both normal, and one of the paired current sensors attached to the V phase is abnormal Have been diagnosed.
  • the abnormality detection means 114 (FIG. 17) can diagnose whether there is a current sensor that is abnormal in that phase, it is possible to determine which one of the current sensors that is the pair of the phase is abnormal. Can not. Therefore, the abnormal point diagnosis means 115 (FIG. 17) performs a process to determine this.
  • the abnormal point diagnosing means 115 is a current driving circuit 108 so that a current flows as an abnormal point diagnostic current only in the phase (in this example, the U phase and the V phase in this example) to which the current sensor is attached. Is operated, and the abnormal point diagnostic current is detected by the current sensor to identify the abnormal current sensor.
  • the high side of the U phase switching element 112 (FIG. 17) and the low side of the V phase switching element 112 (FIG. 17) W phase switching element 112 (FIG. 17) is realized by turning off both. At this time, since the sum of the three-phase alternating current is zero and the W-phase current is zero, the following relationship is established.
  • Table 6 is the summary of the above contents.
  • the circle indicates normal, and the x indicates abnormality.
  • the other configuration is the same as that of the second embodiment, and the same function and effect as the second embodiment can be obtained. Further, according to the configuration of FIG. 21, cost reduction can be achieved by reducing the number of current sensors compared to the second embodiment.
  • the electric vehicle provided with the motor drive device is not limited to the above-described one motor on board type.
  • a two-motor on board in which two motors 104, 104 and a reduction gear corresponding to each motor 104 are provided on a vehicle body 101 and the left and right wheels 103, 103 are driven by these motors 104, 104.
  • the motor drive 106, 106 may be provided in a type of electric vehicle.
  • the in-wheel motor type electric vehicle in which the left and right wheels 102, 102 are respectively driven by the motor 104 constituting the in-wheel motor drive device IWM is provided with the motor drive devices 106, 106 It is also good.
  • the left and right wheels driven by the motor 104 may be either of the front and rear wheels 3 and 2. Also, four-wheel drive may be used.

Abstract

Provided is a motor drive control device capable of reducing the number of components, costs, and space and weight. This motor drive control device (22) is a motor drive control device for controlling motor equipment (MS) in which a plurality of systems of electrodes of the phases of a U-phase, a V-phase and a W-phase are provided in a plurality of three-phase motors (61), (62). This motor drive control device has: current sensors for detecting the currents flowing in the phases of the U-phase, V-phase, and W-phase of each system; and a motor drive control unit (19) which separately controls each system on the basis of the currents detected by the current sensors. At least one current sensor among the current sensors for detecting the currents of the three phases of each system is a contactless current sensor for commonly detecting the current of one phase in each of two systems, and the remaining phase current sensors are current sensors for performing detection separately.

Description

モータ駆動制御装置、モータ駆動装置およびこのモータ駆動装置を備えた電気自動車Motor drive control device, motor drive device, and electric vehicle equipped with the motor drive device 関連出願Related application
 本出願は、2017年9月26日出願の特願2017-184595の優先権、および2018年2月16日出願の特願2018-026140の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims priority of Japanese Patent Application No. 2017-184595 filed on September 26, 2017, and Japanese Patent Application No. 2018-026140 filed on February 16, 2018, the entire contents of which are incorporated herein by reference. It is quoted as making a part of the present application.
 この発明は、モータ駆動制御装置に関し、部品点数を低減し、コスト低減および重量の低減を図ることができる技術に関する。また、この発明は、モータ駆動装置およびこのモータ駆動装置を備えた電気自動車に関し、モータ駆動装置内部に備えられた電流センサの異常に備えるべく冗長化しつつ、制御性能を向上させる技術に関する。 The present invention relates to a motor drive control device, and relates to a technology capable of reducing the number of parts, cost and weight. The present invention also relates to a motor drive device and an electric vehicle equipped with the motor drive device, and more particularly to a technology for improving control performance while providing redundancy for an abnormality of a current sensor provided in the motor drive device.
 三相モータを電流フィードバック制御する場合、電流センサ等を用いて三相の電流の検出を行い、その検出電流を指令電流に近付けるように制御を行う。三相全ての電流を検出しなくても、三相のうちの二相を検出し、三相の和が零であることを利用して制御することも可能である。 When current feedback control is performed on a three-phase motor, detection of three-phase current is performed using a current sensor or the like, and control is performed so that the detected current approaches the command current. It is also possible to detect two of the three phases and control using the fact that the sum of the three phases is zero, without detecting all three phase currents.
 また、電流センサの異常検出をするために、通常二相の電流検出で足りているところをあえて三相全ての電流検出を行い、三相の和が零か否かで異常を検出することもある。従来、三相の電流検出値の和が所定範囲から外れる場合に異常と判定する技術が提案されている(特許文献1)。 In addition, in order to detect an abnormality in the current sensor, it is possible to detect the current of all three phases by taking care of a part where the current detection of two phases is usually sufficient, and to detect an abnormality depending on whether the sum of three phases is zero or not. is there. Conventionally, there has been proposed a technique for determining an abnormality when the sum of three-phase current detection values deviates from a predetermined range (Patent Document 1).
 また、現在、多くの電気自動車で駆動源として用いられている三相交流モータは、モータ角度に応じて最適な電流を流すことでその性能を発揮できる。そのため、三相の動力線に取り付けた電流センサにより電流量を検出し、電流フィードバック制御を行うことが多い。 Moreover, the three-phase alternating current motor currently used as a drive source in many electric vehicles can exhibit the performance by sending an optimal current according to a motor angle. Therefore, current feedback control is often performed by detecting the amount of current with a current sensor attached to a three-phase power line.
 三相交流モータの三相の動力線に流れる電流は、合計すると零になるという原理に基づいて、二相に電流センサを取り付け、残り一相は計算によって求めるという手法が用いられることが多い。そのメリットは、部品点数の削減による小型軽量化とコスト低減と、制御の簡易化のためである。制御の簡易化とは、三相電流の実測に基づいて計算を行った場合、電流センサの誤差またはノイズによって、必ずしも三相の電流の合計が零になるとは限らず、電流の目標値を求めるためのベクトル制御演算のモデル式を、誤差が含まれることを前提に扱う必要があるが、二相の電流値より残り一相の電流値を求める方法であれば、ベクトル制御演算のモデル式をそのまま適応できる点である。ここでノイズとは、電流制御を行う際のスイッチングノイズに起因して電流センサの出力にノイズが重畳するものを主に指している。このように電流センサの出力にノイズが重畳すると、例えば、制御装置が不所望に電流制御を行って、望ましくないトルク変動を誘発し、振動や騒音として観測されるため、この影響を減らすことは恒常的な課題となっている。 A method is often used in which current sensors are attached to two phases and the remaining one phase is obtained by calculation based on the principle that the current flowing through the three-phase power line of the three-phase AC motor becomes zero when summed. The merits are for size and weight reduction by cost reduction, cost reduction, and simplification of control by reducing the number of parts. Simplification of control means calculating the target value of the current when the calculation based on the actual measurement of the three-phase current does not mean that the total of the three-phase current becomes zero due to the error or noise of the current sensor Although it is necessary to handle the model equation of vector control operation for the purpose of including an error, if it is a method of obtaining the current value of the remaining one phase from the current value of two phases, the model equation of vector control operation is It is the point which can be applied as it is. Here, noise mainly refers to noise that is superimposed on the output of the current sensor due to switching noise when performing current control. As described above, when noise is superimposed on the output of the current sensor, for example, the control device undesirably performs current control to induce undesirable torque fluctuation, and this is observed as vibration or noise, so that this effect can be reduced It is a constant issue.
特開2015-173554号公報JP, 2015-173554, A 特開平6-253585号公報Japanese Patent Application Laid-Open No. 6-253585 特開2014-72973号公報JP, 2014-72973, A 特開2006-352949号公報JP 2006-352949 A
 特許文献1では、三相の通電回路を二組備えた例を挙げており、その場合六個の電流センサが必要である。この特許文献1では、一つのモータに二つの通電回路(三相コイル)を備えたものを例に挙げているが、一組の通電回路を備えたモータを二つ使う場合でも六個の電流センサが必要である。六個もの電流センサを使うのは、コスト、スペース、重量の観点から不利である。特に、大電流を扱う場合には、損失および安全性等の理由から、ホール式、CT式、ロゴスキーコイル方式等の非接触タイプの電流センサを用いることが多い。このため、コスト、スペースおよび重量において不利である。 Patent Document 1 gives an example in which two sets of three-phase energizing circuits are provided, in which case six current sensors are required. Although Patent Document 1 exemplifies a motor provided with two energizing circuits (three-phase coils) in one motor, six currents can be used even when two motors provided with a pair of energizing circuits are used. A sensor is required. Using as many as six current sensors is disadvantageous in terms of cost, space and weight. In particular, when handling large currents, non-contact type current sensors such as Hall type, CT type, Rogowski coil type are often used for reasons of loss and safety. This is disadvantageous in cost, space and weight.
 この発明の目的は、部品点数を低減し、コスト低減、スペースおよび重量の低減を図ることができるモータ駆動制御装置を提供することである。 An object of the present invention is to provide a motor drive control device capable of reducing the number of parts, cost and space and weight.
 また、二相にのみ電流センサを取り付けて制御した場合のデメリットとして、どちらか片方の電流センサに異常が発生すると、出力される異常な電流値を基に電流制御を行って、異常な大電流を流してモータまたはモータ駆動装置を過熱させる、または車両に意図しないトルクを発生させたりする可能性があり、自動車の安全性能の向上、および異常発生時にも性能を維持するという観点から、異常の診断方法または改善策が提案されてきた。 In addition, as a demerit when attaching and controlling the current sensor in only two phases, if an abnormality occurs in either one of the current sensors, current control is performed based on the abnormal current value to be output, and the abnormal large current Can cause the motor or motor drive to overheat, or cause the vehicle to generate an unintended torque, which improves the safety performance of the vehicle and maintains the performance even when an abnormality occurs. Diagnostic methods or remedies have been proposed.
 特許文献2では、先の三相の電流量の合計が零になるという原理を用い、三相全てに電流センサを取り付けて電流を検出して、得られた電流量の合計が零にならないとき(零からの差が規定値を超えるとき)に、いずれかの電流センサが異常であることを検出する構成を提案している。この方法では、電流センサの異常状態の発生を検出できても、どの電流センサが異常であるか検出できない。 In patent document 2, when the current sensor is attached to all three phases and current is detected using the principle that the total of the previous three-phase current amounts becomes zero, the sum of the obtained current amounts does not become zero. There is proposed a configuration for detecting that any current sensor is abnormal (when the difference from zero exceeds a specified value). In this method, although the occurrence of an abnormal state of the current sensor can be detected, it can not be detected which current sensor is abnormal.
 この点に着目し、特許文献3では、三相全てに電流センサを取り付け、得られた電流値から、どの電流センサが異常であるかを特定することが可能な処理を採用した構成を提案している。特許文献4では、異常を検出するという目的は共通しているが、異常検出のために制御に必要な二相分の電流センサに加えて、もう一相の電流センサを備えることは、スペースおよびコストの面から不利であるとの観点から、異常を検出するための特定のパターンの電流を流して電流センサの異常を検出する手法が提案されている。 Focusing on this point, Patent Document 3 proposes a configuration adopting a process capable of specifying which current sensor is abnormal from current values obtained by attaching current sensors to all three phases. ing. In Patent Document 4, the purpose of detecting an abnormality is common, but providing another phase of the current sensor in addition to the two-phase current sensor necessary for control for the abnormality detection is a space and From the viewpoint of being disadvantageous in terms of cost, a method has been proposed in which a current of a specific pattern for detecting an abnormality is supplied to detect an abnormality of the current sensor.
 いずれにおいても、電流センサの異常検出の重要性の認識は一致している。特許文献3においては、異常な電流センサを特定し、一相異常時にも残る正常な電流センサで走行性能の低下を防ぐことを重視している。特許文献4では、通常時は不要で、異常検出時のみに使用する一相分の電流センサを削減することで、スペース削減とコスト低減を目的として提案されている。 In any case, the recognition of the importance of the abnormality detection of the current sensor is consistent. In Patent Document 3, an abnormal current sensor is identified, and it is emphasized to prevent a decrease in traveling performance with a normal current sensor that remains even in the case of a single phase abnormality. Patent Document 4 is proposed for the purpose of space reduction and cost reduction by eliminating the current sensor for one phase used only at the time of abnormality detection, which is unnecessary at normal times.
 いずれにおいても、電流センサにつき、必要最低限の個数を超えて設置したものは、異常検出用および異常時の機能代替用としてのみ利用されており、異常検出および異常時の機能代替以外の用途にも用いて制御性能の向上に寄与させる余地があった。 In any case, the number of current sensors installed above the minimum required number is used only for anomaly detection and anomaly substitution, and it is used for anomaly detection and anomaly substitution. There is room to contribute to the improvement of control performance.
 この発明の他の目的は、制御系の冗長化を図ると共に、耐ノイズ性能を高め、制御性能の向上に活用することができるモータ駆動装置およびこのモータ駆動装置を備えた電気自動車を提供することである。 Another object of the present invention is to provide a motor drive device capable of improving noise resistance performance and improving control performance while achieving redundancy of a control system, and an electric vehicle provided with this motor drive device. It is.
 以下、本発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, the present invention will be described with reference to the reference numerals of the embodiments for the sake of convenience to facilitate understanding.
 この発明の第1の構成に係るモータ駆動制御装置22は、U相,V相,W相の三相の電極の系統を、一つの三相のモータ内に、または複数の三相のモータに渡って、複数備えるモータ設備MSを制御するモータ駆動制御装置であって、
 前記各系統の前記U相,V相,W相を流れる電流を検出する電流センサをすべての相に備え、これら電流センサが検出する電流によって前記各系統を個別に制御するモータ駆動制御部19を有し、
 前記各系統の前記U相,V相,W相を流れる電流を検出する電流センサのうち1つを、二つの系統の中の各一相の電流を検出する共通化した電流センサとし、この共通化した電流センサが非接触式電流センサである。
A motor drive control device 22 according to a first configuration of the present invention is a system of U-phase, V-phase and W-phase three-phase electrodes in one three-phase motor or a plurality of three-phase motors A motor drive control device for controlling a plurality of motor equipments MS provided across the motor,
The motor drive control unit 19 is provided with current sensors for detecting the currents flowing through the U-phase, V-phase and W-phase of the respective systems in all phases, and individually controlling the respective systems by the currents detected by these current sensors. Have
One of the current sensors for detecting the current flowing through the U phase, the V phase and the W phase of each system is a common current sensor for detecting the current of each phase in two systems, and this common Is a non-contact current sensor.
 この構成によると、モータ駆動制御部19は、各系統の各個別の相を流れる電流を検出する電流センサにより、各系統を個別に制御する。これら電流センサのうち、一つの電流センサは、二つの系統の中の各一相の電流を検出する共通化した電流センサであり、この共通化した電流センサが非接触式電流センサである。例えば、残りの相の電流センサは、個別に検出する電流センサである。モータ設備MSが、三相の電極の系統を二系統備える場合、各系統のU相,V相,W相のいずれか二つの相に個別の電流センサを使い、二つの系統のうち残った相(同相)に共通化した非接触式電流センサを通す。 According to this configuration, the motor drive control unit 19 individually controls each system by means of a current sensor that detects the current flowing through each individual phase of each system. Among the current sensors, one current sensor is a common current sensor that detects the current of one phase in each of two systems, and the common current sensor is a non-contact current sensor. For example, the remaining phase current sensors are current sensors that are individually detected. When the motor installation MS includes two systems of three-phase electrodes, separate current sensors are used for any two phases of U-phase, V-phase and W-phase of each system, and the remaining phase of the two systems is used. Pass the non-contact current sensor common to (in phase).
 例えば、各電流センサの正常時には、モータ駆動制御部19は、各系統の個別の電流センサを用いて各系統を個別に制御し得る。電流センサが二つの系統で共通に使用されている場合は、単純に三相の和が出せないので、共通で使用している電流センサを使っている別の系統も含めて電流の総和を求めることで、電流センサの正常異常を判定し得る。前記のように、二つの系統の中の各一相の電流を共通の非接触式の電流センサを通すため、部品点数である電流センサの数を低減し、コスト低減、スペースおよび重量の低減を図ることができる。 For example, when each current sensor is normal, the motor drive control unit 19 can individually control each system using an individual current sensor of each system. When the current sensor is commonly used in two systems, the sum of the three phases can not simply be obtained, and therefore the sum of the currents is calculated including another system using the commonly used current sensor. Thus, the normal abnormality of the current sensor can be determined. As described above, the current of one phase in the two systems is passed through a common non-contact current sensor, thereby reducing the number of component current sensors, reducing cost, space and weight. Can be
 前記共通化した電流センサと残りの相の電流センサでそれぞれ検出した電流から、三相の電流の和が零であることを利用して、前記共通化した電流センサで検出した電流における、制御対象の系統に流れる電流を算出する電流検出部23を備えてもよい。この場合、モータ駆動制御部19は、電流検出部23で算出された電流を用いて各系統を個別に木目細かく制御することができる。前記「零である」とは、電流センサの検出誤差を考慮した「零付近の範囲」を含む。以下の「零である」も、電流センサの検出誤差を考慮した「零付近の範囲」を含む。この「零付近の範囲」は、例えば、試験またはシミュレーション等から設定される。 A control target in the current detected by the common current sensor using the fact that the sum of three-phase currents is zero from the currents respectively detected by the common current sensor and the current sensors of the remaining phases The current detection unit 23 may be provided to calculate the current flowing through the system of In this case, the motor drive control unit 19 can individually control each system finely using the current calculated by the current detection unit 23. The term "to be zero" includes a "range around zero" in which the detection error of the current sensor is taken into consideration. The following "being zero" also includes "a range near zero" in consideration of the detection error of the current sensor. The “near-zero range” is set, for example, from a test or simulation.
 前記共通化した電流センサおよび前記残りの相の電流センサでそれぞれ検出した電流の総和が零になるとき、前記共通化した電流センサおよび前記残りの相の電流センサが正常と判定し、前記電流の総和が零にならないとき、前記共通化した電流センサおよび前記残りの相の電流センサのいずれか一方または両方が異常と判定する異常検出部24を有するものであってもよい。この場合、モータ駆動制御部19は、異常検出部24による判定結果を基に各系統を個別に制御し得る。 When the sum of the currents respectively detected by the common current sensor and the current sensors of the remaining phases becomes zero, the common current sensor and the current sensors of the remaining phases are determined to be normal, and When the sum does not become zero, the common current sensor and the remaining phase current sensor may have an abnormality detection unit 24 that determines that one or both of the current sensors are abnormal. In this case, the motor drive control unit 19 can control each system individually based on the determination result by the abnormality detection unit 24.
 前記モータ駆動制御部19は、前記残りの相の電流センサで検出した電流のみ用いて前記各系統を個別に制御してもよい。この場合、制御系を簡素化し演算処理負荷の低減を図れる。 The motor drive control unit 19 may control the respective systems individually using only the current detected by the current sensor of the remaining phase. In this case, the control system can be simplified and the processing load can be reduced.
 いずれかの電流センサが前記異常検出部24により異常と判定されるとき、前記モータ駆動制御部19は前記モータ6を駆動するための全ての系統に接続された通電回路16を停止させ、前記異常検出部24は、各電流センサで電流を検出して電流が零にならない電流センサを異常と判定してもよい。この場合、全ての系統に接続された通電回路16を一時的に停止させることで、異常な電流センサを簡易に判定することができる。 When any of the current sensors is determined to be abnormal by the abnormality detection unit 24, the motor drive control unit 19 stops the energizing circuit 16 connected to all the systems for driving the motor 6, and the abnormality is detected. The detection unit 24 may detect the current with each current sensor and determine that the current sensor whose current does not become zero is abnormal. In this case, it is possible to easily determine an abnormal current sensor by temporarily stopping the energizing circuits 16 connected to all the systems.
 いずれかの電流センサが前記異常検出部24により異常と判定されるとき、前記モータ駆動制御部19は一つの系統に接続された通電回路16を停止させ、前記共通化した電流センサに一相分の電流のみ流れる状態として、前記異常検出部24は、電流が流れる系統について、前記共通化した電流センサおよび前記残りの相の電流センサでそれぞれ検出した電流の和が零になるか否かで異常となる電流センサを判定してもよい。この場合、電流が流れる系統を維持した状態で、換言すれば、モータ6の駆動を完全に止めることなく、異常となる電流センサを判定することができる。 When any one of the current sensors is determined to be abnormal by the abnormality detection unit 24, the motor drive control unit 19 stops the conduction circuit 16 connected to one system, and the common current sensor performs one phase The abnormality detection unit 24 determines whether or not the sum of the currents respectively detected by the common current sensor and the current sensors of the remaining phases becomes zero with respect to the system in which the current flows. The current sensor which becomes In this case, it is possible to determine the abnormal current sensor without completely stopping the driving of the motor 6 while maintaining the system in which the current flows.
 前記モータ駆動制御部19が一つの系統に接続された通電回路16を停止させたとき、前記異常検出部24は、停止させた前記系統について、前記残りの相の電流センサでそれぞれ検出した電流が零になるか否かで異常となる電流センサを判定してもよい。この場合にも、モータ6の駆動を完全に止めることなく、異常となる電流センサを判定することができる。 When the motor drive control unit 19 stops the energizing circuit 16 connected to one system, the abnormality detection unit 24 detects the current detected by the current sensor of the remaining phase for the stopped system. The current sensor which becomes abnormal may be determined depending on whether it becomes zero or not. Also in this case, it is possible to determine the abnormal current sensor without completely stopping the driving of the motor 6.
 いずれかの電流センサが前記異常検出部24により異常と判定されるとき、前記モータ駆動制御部19は一つの系統に接続された通電回路16を停止させ、前記異常検出部24は、電流が流れる系統について、前記共通化した電流センサおよび前記残りの相の電流センサでそれぞれ検出した電流の和が零になる系統があるとき、前記共通化した電流センサが正常であると判定してもよい。 When one of the current sensors is determined to be abnormal by the abnormality detection unit 24, the motor drive control unit 19 stops the energizing circuit 16 connected to one system, and the abnormality detection unit 24 causes a current to flow. With regard to the system, when there is a system in which the sum of the currents respectively detected by the common current sensor and the current sensors of the remaining phases is zero, it may be determined that the common current sensor is normal.
 前記モータ6の回転数を検出する回転数検出手段26を備え、前記異常検出部24は、前記回転数検出手段26で検出された回転数から定められた条件に従って逆起電圧を算出し、この逆起電圧が電源電圧を上回ってないときに異常検出を行ってもよい。前記定められた条件は、設計等によって任意に定める条件であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な条件を求めて定められる。前記「回転数」は、単位時間当たりの回転数であり、「回転速度」と同義である。この構成によると、算出された逆起電圧が電源電圧を上回ってないときに異常検出を行うことで、電流センサの異常検出を精度よく行うことができる。逆起電圧が電源電圧を上回っている場合は、通電回路16を停止させても前記モータ6で発生した電力により前記モータ6から通電回路16経由でバッテリ18へ電流が流れてしまい、通電回路16を停止させた系統の電流が0にならないためである。 The rotational speed detection means 26 for detecting the rotational speed of the motor 6 is provided, and the abnormality detection unit 24 calculates a back electromotive voltage according to a condition determined from the rotational speed detected by the rotational speed detection means 26. Abnormality detection may be performed when the back electromotive force does not exceed the power supply voltage. The predetermined condition is a condition arbitrarily determined by design or the like, and is determined by, for example, finding an appropriate condition by either or both of a test and a simulation. The "rotational speed" is a rotational speed per unit time, and is synonymous with "rotational speed". According to this configuration, the abnormality detection of the current sensor can be performed with high accuracy by performing the abnormality detection when the calculated back electromotive force does not exceed the power supply voltage. When the back electromotive force exceeds the power supply voltage, even if the energizing circuit 16 is stopped, the electric power generated by the motor 6 causes a current to flow from the motor 6 to the battery 18 via the energizing circuit 16. The current of the system that has stopped is not zero.
 前記モータ設備MSが二つ以上のモータ6を備え、前記モータ駆動制御部19は、複数あるモータ6のうちの一部のモータ6の系統に接続された通電回路16を停止させたとき、通電回路16を停止していないモータ6の指令トルクに対し、通電回路16を停止させたモータ6の指令トルク分を増やすようにしてもよい。このように、停止させたモータ6の指令トルク分を増やすことで、所望のモータトルクを維持することができる。 When the motor equipment MS includes two or more motors 6 and the motor drive control unit 19 stops the energizing circuit 16 connected to the system of a part of the motors 6 among the plurality of motors 6, the motor is energized. The command torque of the motor 6 in which the energizing circuit 16 is stopped may be increased with respect to the command torque of the motor 6 in which the circuit 16 is not stopped. A desired motor torque can be maintained by thus increasing the command torque of the stopped motor 6.
 いずれか一つの系統の一つの相の電流を検出する電流センサが前記異常検出部24により異常と判定されるとき、前記モータ駆動制御部19は、前記一つの系統の他の相を検出する個別の電流センサ、または、別の系統の相の電流を検出する個別の電流センサおよび共通化した電流センサの和から、前記一つの系統に接続された通電回路16の共通化した電流センサに流れる相の電流を算出し、電流制御を行ってもよい。この場合、いずれか一つの系統の一つの相の電流を検出する電流センサが異常と判定されても、残りの電流センサにより電流制御を行うことができる。 When a current sensor that detects a current of one phase of any one system is determined to be abnormal by the abnormality detection unit 24, the motor drive control unit 19 individually detects another phase of the one system. From the sum of individual current sensors that detect the current of another system phase and a common current sensor to the common current sensor of the energizing circuit 16 connected to the one system The current of may be calculated to perform current control. In this case, even if it is determined that the current sensor that detects the current of one phase of any one system is abnormal, the current control can be performed by the remaining current sensors.
 この発明の第2の構成に係るモータ駆動装置は、電気自動車の走行用駆動源となる三相交流モータ104を駆動するモータ駆動装置106であって、電流駆動回路108と、前記三相交流モータ104に流れる電流を検出する電流センサSと、与えられるトルク指令および前記電流センサSで検出された電流に基づいて前記電流駆動回路108に電流の駆動信号を与える制御装置109と、を備え、
 前記電流センサSとして、電流の大きさと向きを検出可能な二個で対となる電流センサを、互いに対向する向きに、且つ、三相におけるいずれか二相にそれぞれ備え、
 前記制御装置109は、前記対の電流センサを備える前記二相における各相につき、前記対となる電流センサでそれぞれ検出された電流の差分をとって、前記対となる電流センサの出力に重畳された同相ノイズを相殺し、得られた電流値をそれぞれ用いて電流制御を行う差動演算手段116を有する。
A motor drive device according to a second configuration of the present invention is a motor drive device 106 for driving a three-phase AC motor 104 serving as a drive source for traveling an electric vehicle, comprising: a current drive circuit 108; A current sensor S for detecting the current flowing to the circuit 104, and a control device 109 for providing a drive signal of the current to the current drive circuit 108 based on the given torque command and the current detected by the current sensor S;
As the current sensor S, a pair of current sensors capable of detecting the magnitude and the direction of the current are provided in directions facing each other and in any two phases in three phases, respectively.
The control device 109 superimposes the difference between the currents respectively detected by the pair of current sensors for each phase in the two phases including the pair of current sensors, and superimposes them on the output of the pair of current sensors And differential operation means 116 for performing current control using each of the obtained current values.
 この構成によると、制御装置109は、トルク指令および電流センサSで検出された電流に基づいて電流駆動回路108に電流の駆動信号を与える。例えば、全ての電流センサが正常である場合、差動演算手段116が受け取った電流値のうち、二相に取り付けられた対となる電流センサの出力を採用する。差動演算手段116は、例えば、互いに対向する電流センサの二つの出力の差分をとり、必要に応じて倍率が一倍となるようにゲインを掛けて、電流制御に使用する電流値とする。 According to this configuration, controller 109 provides a current drive signal to current drive circuit 108 based on the torque command and the current detected by current sensor S. For example, when all the current sensors are normal, among the current values received by the differential operation means 116, the output of the current sensor as a pair attached in two phases is adopted. The differential operation means 116 takes, for example, the difference between the two outputs of the current sensors facing each other, applies a gain so as to make the magnification a factor of 1 if necessary, and uses it as the current value used for current control.
 ところでノイズの無い理想状態であれば、対となる電流センサの出力の差分をとっても、差分をとらずに一つの電流センサの出力を使用しても差異はない。しかし、対向して取り付けられた電流センサのそれぞれの出力に同相ノイズが重畳されている場合がある。この同相ノイズの原因は、例えば電流制御を行う際のスイッチングノイズである。そこで、差動演算手段116は、対となる電流センサでそれぞれ検出された電流の差分をとって、前記対となる電流センサの出力に重畳された同相ノイズを相殺し、得られた電流値をそれぞれ用いて電流制御を行う。これにより、いわゆる作動増幅回路と同様の効果が期待され、同相ノイズの除去が望める。したがって、不所望な電流制御を防止することで、望ましくないトルク変動を抑制することができ、制御性能の向上が望める。 By the way, if it is an ideal state without noise, even if the difference of the output of a pair of current sensors is taken, there is no difference even if the output of one current sensor is used without taking the difference. However, in-phase noise may be superimposed on the output of each of the oppositely mounted current sensors. The cause of the in-phase noise is, for example, switching noise when performing current control. Therefore, the differential operation means 116 takes the difference between the currents respectively detected by the pair of current sensors, cancels out the common phase noise superimposed on the output of the pair of current sensors, and obtains the obtained current value Each is used to perform current control. Thereby, an effect similar to that of a so-called operation amplification circuit is expected, and removal of in-phase noise can be expected. Therefore, by preventing undesired current control, undesired torque fluctuation can be suppressed, and improvement in control performance can be expected.
 前記制御装置109は、前記対となる電流センサの出力を取り込み、得られた電流値が予め定めた条件式を満たすかを判定し、前記電流センサの異常を検出する異常検出手段114を有するものであってもよい。前記「得られた電流値が予め定めた条件式を満たすかを判定」とは、例えば、得られた電流値の和を閾値と比較すること等である。前記閾値は、設計等によって任意に定める閾値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な閾値を求めて定められる。この場合、対向して取り付けられた対となる電流センサが共に正常であれば、得られる電流値の絶対値は一致するが、いずれか一方の電流センサに異常があった場合には結果に差異が生じることを根拠に電流センサの異常を検出し得る。 The control device 109 has an abnormality detection means 114 which takes in the output of the current sensor as the pair, determines whether the obtained current value satisfies a predetermined conditional expression, and detects an abnormality of the current sensor. It may be The “determining whether the obtained current value satisfies a predetermined conditional expression” is, for example, comparing the sum of the obtained current values with a threshold value. The threshold is a threshold arbitrarily determined by design or the like, and is determined by finding an appropriate threshold by, for example, one or both of a test and a simulation. In this case, the absolute values of the obtained current values will match if both of the current sensors that are mounted opposite to each other are normal, but if either one of the current sensors has an abnormality, the result is different It is possible to detect an abnormality in the current sensor on the basis of the occurrence of
 前記異常検出手段114は、前記対となる電流センサの出力を加算して得られた電流値と閾値の差異が生じているとき、前記対となる電流センサのいずれか一方の電流センサが異常であると診断してもよい。前記閾値は、設計等によって任意に定める閾値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な閾値を求めて定められる。この場合、対向して取り付けられた電流センサの出力を加算したとき、対となる電流センサが共に正常であれば加算した結果は略零もしくは定数となることを根拠に電流センサの異常を診断することができる。 When the difference between the current value obtained by adding the outputs of the pair of current sensors and the threshold value arises, the abnormality detection unit 114 determines that one of the current sensors of the pair is abnormal. You may diagnose that there is. The threshold is a threshold arbitrarily determined by design or the like, and is determined by finding an appropriate threshold by, for example, one or both of a test and a simulation. In this case, when the outputs of the oppositely attached current sensors are added, if the paired current sensors are both normal, the result of the addition is approximately zero or a constant, and the abnormality of the current sensors is diagnosed be able to.
 前記制御装置109は、前記異常検出手段114により前記対となる電流センサのいずれか一方の電流センサが異常と診断されたとき、電流センサを備えた相にのみ異常個所診断電流として電流を流すように、前記電流駆動回路108を動作させ、前記異常個所診断電流を前記電流センサで検出することで、異常である電流センサを特定する異常個所診断手段115を有するものであってもよい。このように異常である電流センサを特定することで、制御装置109は、異常と診断されていない残りの電流センサを用いて電流制御を行うことが可能となる。したがって、制御性能の向上を図ることができる。 When the abnormality detection means 114 determines that one of the current sensors in the pair is abnormal, the control device 109 causes a current to flow as an abnormal point diagnosis current only in the phase provided with the current sensor. In addition, the current drive circuit 108 may be operated, and the abnormal point diagnosis unit 115 may be provided to identify the abnormal current sensor by detecting the abnormal point diagnosis current with the current sensor. By specifying the current sensor that is abnormal as described above, the control device 109 can perform current control using the remaining current sensors that are not diagnosed as abnormal. Therefore, control performance can be improved.
 前記電流センサSは、前記二相に備えた前記対の電流センサと、前記三相の残りの一相に流れる電流を検出する電流センサとを有し、
 前記制御装置109は、前記三相にそれぞれ備えた前記電流センサの出力を、各相から一つずつの出力の和を取って、和が零とならずに閾値を超えるとき、いずれかの電流センサに異常が生じていると判断し、前記和を取る組み合わせを変えることで、異常である電流センサを特定する異常個所診断手段115を有するものであってもよい。
 前記閾値は、設計等によって任意に定める閾値であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な閾値を求めて定められる。このように異常である電流センサを特定することで、制御装置109は、異常と診断されていない残りの電流センサを用いて電流制御を行うことが可能となる。したがって、制御性能の向上を図ることができる。
The current sensor S includes the pair of current sensors provided in the two phases, and a current sensor detecting a current flowing in the remaining one phase of the three phases,
The control device 109 sums the outputs of the current sensors respectively provided for the three phases, one by one from each phase, and when the sum exceeds a threshold without becoming zero, any current It is also possible to have an abnormal point diagnosis means 115 for identifying a current sensor that is abnormal by judging that the sensor is abnormal and changing the combination for obtaining the sum.
The threshold is a threshold arbitrarily determined by design or the like, and is determined by finding an appropriate threshold by, for example, one or both of a test and a simulation. By specifying the current sensor that is abnormal as described above, the control device 109 can perform current control using the remaining current sensors that are not diagnosed as abnormal. Therefore, control performance can be improved.
 前記制御装置109は、前記異常個所診断手段115により異常である電流センサが特定されたとき、前記異常である電流センサの出力電流値は使用せず残りの電流センサの出力電流値を用いて電流制御を行ってもよい。この場合、いずれかの電流センサに異常が発生しても制御性能の向上を図れ、冗長性を確保することができる。 When the abnormal point diagnostic means 115 identifies the abnormal current sensor, the control device 109 does not use the output current value of the abnormal current sensor, and uses the output current value of the remaining current sensors. Control may be performed. In this case, even if an abnormality occurs in any of the current sensors, control performance can be improved and redundancy can be secured.
 この発明の電気自動車は、この発明における前述のいずれかに記載のモータ駆動装置106を備えたものである。この場合、この発明のモータ駆動装置106につき前述した各効果が得られる。また電気自動車のドライバビリティの向上を図れる。 The electric vehicle of the present invention is provided with the motor drive device 106 described in any of the above-mentioned in the present invention. In this case, the above-described effects can be obtained for the motor drive device 106 of the present invention. In addition, the drivability of the electric vehicle can be improved.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the invention. In particular, any combination of two or more of the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
この発明の第1の実施形態に係るモータ駆動制御装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the conceptual structure which shows the electric vehicle carrying the motor drive control apparatus which concerns on 1st Embodiment of this invention by a top view. 同電気自動車におけるインホイールモータ駆動装置の断面図である。It is sectional drawing of the in-wheel motor drive device in the electric vehicle. 同モータ駆動制御装置の制御系のブロック図である。It is a block diagram of a control system of the motor drive control device. 同モータ駆動制御装置の異常検出方法を示すフローチャートである。It is a flowchart which shows the abnormality detection method of the motor drive control apparatus. 同フローチャートの一部を示すフローチャートである。It is a flow chart which shows a part of the flow chart. 同フローチャートの一部を示すフローチャートである。It is a flow chart which shows a part of the flow chart. この実施形態の変形形態に係るモータ駆動制御装置の異常検出方法を示すフローチャートである。It is a flowchart which shows the abnormality detection method of the motor drive control apparatus which concerns on the modification of this embodiment. 同フローチャートの一部を示すフローチャートである。It is a flow chart which shows a part of the flow chart. 同フローチャートの一部を示すフローチャートである。It is a flow chart which shows a part of the flow chart. この実施形態の他の変形形態に係るモータ駆動制御装置の電流センサの配置例を示すブロック図である。It is a block diagram which shows the example of arrangement | positioning of the current sensor of the motor drive control apparatus which concerns on the other modification of this embodiment. 同モータ駆動制御装置の異常検出方法を示すフローチャートである。It is a flowchart which shows the abnormality detection method of the motor drive control apparatus. 同フローチャートの一部を示すフローチャートである。It is a flow chart which shows a part of the flow chart. 同フローチャートの一部を示すフローチャートである。It is a flow chart which shows a part of the flow chart. この実施形態のさらに他の変形形態に係るモータ駆動制御装置の制御系のブロック図である。FIG. 14 is a block diagram of a control system of a motor drive control device according to still another modification of this embodiment. この発明の第2の実施形態に係るモータ駆動装置を備えた電気自動車を平面図で示す概念構成のブロック図である。It is a block diagram of the conceptual structure which shows the electric vehicle provided with the motor drive unit based on 2nd Embodiment of this invention by a top view. 同モータ駆動装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the motor drive device. 同モータ駆動装置の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the motor drive device. 同モータ駆動装置の対向する二つの電流センサの出力を示す図である。It is a figure which shows the output of two opposing current sensors of the motor drive device. 同制御装置の差動演算による同相ノイズの除去を説明する図である。It is a figure explaining the removal of the in-phase noise by the differential calculation of the control apparatus. 同制御装置内の各手段の実行順序を示すフローチャートである。It is a flowchart which shows the execution order of each means in the control apparatus. 第2の実施形態の変形形態に係るモータ駆動装置の制御装置の構成を示すブロック図である。It is a block diagram showing composition of a control device of a motor drive concerning a modification of a 2nd embodiment. 第2の実施形態の他の変形形態に係るモータ駆動装置を備えた電気自動車を平面図で示す概念構成のブロック図である。It is a block diagram of a conceptual composition which shows an electric vehicle provided with a motor drive concerning a modification of a 2nd embodiment by a top view. 第2の実施形態の他の変形形態に係るモータ駆動装置を備えた電気自動車を平面図で示す概念構成のブロック図である。It is a block diagram of a conceptual composition which shows an electric vehicle provided with a motor drive concerning a modification of a 2nd embodiment by a top view.
 この発明の第1の実施形態を図1ないし図6と共に説明する。 A first embodiment of the present invention will be described in conjunction with FIGS.
 <この電気自動車の概念構成について>
 図1は、この実施形態に係るモータ駆動制御装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6により駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,3には、ブレーキが設けられている。また左右の前輪となる操舵輪である車輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段15により操舵される。
<About the conceptual composition of this electric car>
FIG. 1 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle equipped with a motor drive control device according to this embodiment. This electric vehicle is a four-wheeled vehicle in which the wheels 2 serving as the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 serving as the left and right front wheels are driven wheels. The front wheel 3 is a steered wheel. The left and right wheels 2, 2 serving as drive wheels are driven by independent traveling motors 6, respectively. Each motor 6 constitutes an in-wheel motor drive device IWM described later. Each wheel 2 and 3 is provided with a brake. Further, the wheels 3 which are steered wheels serving as the left and right front wheels are steerable via a steering mechanism (not shown), and are steered by the steering means 15 such as a steering wheel.
 <インホイールモータ駆動装置IWMの概略構成について>
 図2に示すように、モータ設備である左右のインホイールモータ駆動装置IWMは、それぞれ、モータ6、減速機7および車輪用軸受4を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪である車輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、同ブレーキロータ5は、車輪2と一体に回転する。モータ6は、三相のモータであり、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジング8に固定したステータ6bと、回転出力軸9に取り付けたロータ6aとの間にラジアルギャップを設けたモータである。
<About schematic configuration of in-wheel motor drive device IWM>
As shown in FIG. 2, the left and right in-wheel motor drive devices IWM which are motor equipment respectively have a motor 6, a reduction gear 7 and a bearing 4 for a wheel, and a part or all of these are disposed in the wheel Ru. The rotation of the motor 6 is transmitted to the wheel 2 which is a driving wheel via the reduction gear 7 and the wheel bearing 4. The brake rotor 5 constituting the brake is fixed to the flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2. The motor 6 is a three-phase motor, and is, for example, an embedded magnet synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a. The motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
 <制御系について>
 図3は、このモータ駆動制御装置22の制御系のブロック図である。モータ駆動制御装置22は、U相,V相,W相の三相の電極の系統を、複数(この例では二つ)の三相のモータ6に渡って複数備えるモータ設備MSを制御する。このモータ駆動制御装置22は、自動車全般の制御を行う電気制御ユニット(Electronic Control Unit)であるECU14と、このECU14の指令に従って走行用の左右のモータ6の制御を行うインバータ装置13とを有する。ECU14は、電気自動車の場合、VCU(車両制御ユニット;Vehicle Control Unit)とも称される。
<About control system>
FIG. 3 is a block diagram of a control system of the motor drive control device 22. As shown in FIG. The motor drive control device 22 controls a motor installation MS including a plurality of (two in this example) three-phase motors 6 of a system of U-phase, V-phase, and W-phase three-phase electrodes. The motor drive control device 22 has an ECU 14 that is an electronic control unit that controls the entire vehicle, and an inverter device 13 that controls the left and right motors 6 for traveling in accordance with an instruction from the ECU 14. In the case of an electric vehicle, the ECU 14 is also referred to as a VCU (Vehicle Control Unit).
 インバータ装置13は、各モータ6に対してそれぞれ設けられたパワー回路部16,16と、これらパワー回路部16を制御するモータコントロール部17とを有する。モータコントロール部17は、各モータ6に対応するモータ駆動制御部19,19と、電流検出部23と、異常検出部24とを有する。モータコントロール部17は、このモータコントロール部17が持つインホイールモータ駆動装置IWMに関する各検出値および制御値等の各情報をECU14に出力する機能を有する。 The inverter device 13 has power circuit units 16 and 16 provided for the respective motors 6, and a motor control unit 17 that controls the power circuit units 16. The motor control unit 17 includes motor drive control units 19 and 19 corresponding to the respective motors 6, a current detection unit 23, and an abnormality detection unit 24. The motor control unit 17 has a function of outputting each information such as each detection value and control value regarding the in-wheel motor drive device IWM which the motor control unit 17 has to the ECU 14.
 パワー回路部16は、バッテリ18の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ16aと、このインバータ16aを駆動するゲートドライブ回路16bとを有する。インバータ16aは、U相,V相,W相の半導体スイッチング素子25で構成される。ゲートドライブ回路16bは、入力されたオンオフ指令を基に前記各半導体スイッチング素子25を駆動する。 The power circuit unit 16 includes an inverter 16a that converts DC power of the battery 18 into three-phase AC power used to drive the motor 6, and a gate drive circuit 16b that drives the inverter 16a. The inverter 16 a is composed of U-phase, V-phase and W-phase semiconductor switching elements 25. The gate drive circuit 16b drives each of the semiconductor switching elements 25 based on the input on / off command.
 モータコントロール部17は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ駆動制御部19,19を有している。各モータ駆動制御部19は、各系統を個別に制御する。ECU14は、アクセル操作部20(図1)の出力するアクセル開度の信号(加速指令)と、ブレーキ操作部21(図1)の出力する減速指令とから、あるいは加速指令と減速指令と操舵手段15(図1)の出力する旋回指令とから、左右の後輪2,2(図1)のモータ6,6に与える加速・減速指令をトルク指令として生成し、インバータ装置13へ出力する。 The motor control unit 17 is configured by a computer, a program executed by the computer, and an electronic circuit, and includes motor drive control units 19 and 19 as a control unit that is a basis of the computer. Each motor drive control unit 19 controls each system individually. The ECU 14 generates an acceleration command, a deceleration command, and a steering unit from the signal (acceleration command) of the accelerator opening output from the accelerator operation unit 20 (FIG. 1) and the deceleration command output from the brake operation unit 21 (FIG. 1). An acceleration / deceleration command to be given to the motors 6, 6 of the left and right rear wheels 2, 2 (FIG. 1) is generated as a torque command from the turning command output from the step 15 (FIG. 1), and output to the inverter device 13.
 各モータ駆動制御部19は、上位制御手段であるECU14から与えられるトルク指令等(指令値)による加速・減速指令に従い、加速・減速指令を電流指令に変換する。モータ駆動制御部19は、インバータ16aからモータ6に流す電流を電流センサU1,V1,W,U2,V2から得て、指令値に対し検出される電流を追従させる電流フィードバック制御を行う。フィードバック制御により指令電圧を算出し、指令電圧をパルス幅変調信号にして、ゲートドライブ回路16bにオンオフ指令を与える。 Each motor drive control unit 19 converts an acceleration / deceleration command into a current command in accordance with an acceleration / deceleration command according to a torque command or the like (command value) given from the ECU 14 which is a higher order control means. The motor drive control unit 19 obtains the current flowing from the inverter 16a to the motor 6 from the current sensors U1, V1, W, U2, V2, and performs current feedback control to make the detected current follow the command value. The command voltage is calculated by feedback control, and the command voltage is made a pulse width modulation signal to give an on / off command to the gate drive circuit 16b.
 <電流センサについて>
 電流センサは、各系統のU相,V相,W相の各個別の相を流れる電流を検出する。各系統の三相の電流を検出する電流センサのうち、一つ(この例ではW相)の電流センサWは、二つの系統の中の各一相(同相)の電流を検出する共通化した非接触式の電流センサである。なお、電流センサWは、電流センサW1/W2とも表記する。残りの二つ(この例では、U相,V相)の電流センサU1,V1,U2,V2は、一つの系統毎に個別に検出する四個の非接触式の電流センサである。合計五個の電流センサが設けられている。
<About current sensor>
The current sensor detects the current flowing through each of the U phase, V phase, and W phase of each system. Of the current sensors for detecting the three-phase currents of each system, one (in this example, W-phase) current sensors W is commonly used to detect the current of each one phase (in-phase) in the two systems. It is a non-contact current sensor. The current sensor W is also referred to as a current sensor W1 / W2. The remaining two (in this example, U-phase and V-phase) current sensors U1, V1, U2, and V2 are four non-contact current sensors that individually detect one system. A total of five current sensors are provided.
 車両駆動用のモータ設備MSには大電流が印加されるため、電流センサは、損失および安全性等の理由から、非接触式の電流センサが適用される場合が多い。この実施形態では、共通の電流センサW、個別の電流センサU1,V1,W,U2,V2共に非接触式の電流センサが適用されている。非接触式の電流センサとして、例えば、ホール式、CT式、ロゴスキーコイル方式等の非接触タイプの電流センサが適用される。モータ設備において、例えば、大電流が印加されず、損失を許容できかつ安全性を担保し得る条件を充足する場合には、個別の電流センサをシャント抵抗等を備えた接触式の電流センサとしてもよい。但し、共通化した電流センサは、測定すべき複数の導体(相)に流れる電流を一括して検出するため、非接触式の電流センサとしなければならない。 Since a large current is applied to the motor equipment MS for driving the vehicle, the current sensor is often a non-contact current sensor for reasons such as loss and safety. In this embodiment, non-contact current sensors are applied to the common current sensor W and the individual current sensors U1, V1, W, U2, and V2. As a non-contact current sensor, for example, a non-contact current sensor such as a Hall sensor, a CT sensor, or a Rogowski coil sensor is applied. In a motor installation, for example, when a large current is not applied, and a condition in which losses can be tolerated and safety can be satisfied, individual current sensors may also be used as contact current sensors provided with a shunt resistor or the like. Good. However, the common current sensor must be a non-contact current sensor in order to collectively detect the currents flowing through the plurality of conductors (phases) to be measured.
 電流検出部23は、共通の(共通化した)電流センサWと個別の電流センサU1,V1,U2,V2でそれぞれ検出した電流から、三相の電流の和が零であることを利用して、複数の系統に共通の電流センサWで検出した電流における、制御対象の系統に流れる電流を算出する。具体的には、以下の計算式から制御対象の系統に流れる電流を算出し得る。
 iu1+iv1+iw+iu2+iv2=0(全モータ駆動中)
 iu1+iv1+iw=0(第2のモータ6のみ停止)
 iu2+iv2+iw=0(第1のモータ6のみ停止)
 但し、iu1,iv1:第1のモータ6の系統における、U相,V相の個別の電流センサU1,V1の検出値、iu2,iv2:第2のモータ6の系統における、U相,V相の個別の電流センサU2,V2の検出値、iw:共通の電流センサWの検出値。
The current detection unit 23 uses the fact that the sum of three-phase currents is zero from the currents detected by the common (commonized) current sensor W and the individual current sensors U1, V1, U2, and V2, respectively. In the current detected by the current sensor W common to a plurality of systems, the current flowing to the system to be controlled is calculated. Specifically, the current flowing to the system to be controlled can be calculated from the following formula.
iu1 + iv1 + iw + iu2 + iv2 = 0 (while all motors are driven)
iu1 + iv1 + iw = 0 (the second motor 6 2 only stop)
iu2 + iv2 + iw = 0 (first motor 6 1 only stop)
However, iu1, iv1: in the first motor 61 of the system, the detection value of the U-phase, separate current sensor V-phase U1, V1, iu2, iv2: in the second motor 6 2 strains, U-phase, Detection values of the individual V-phase current sensors U2 and V2, iw: detection values of the common current sensor W.
 異常検出部24は、共通の電流センサWおよび個別の電流センサU1,V1,U2,V2でそれぞれ検出した電流の総和が零になるとき、共通の電流センサWおよび個別の電流センサU1,V1,U2,V2が正常と判定し、前記電流の総和が零にならないとき、共通の電流センサWおよび個別の電流センサU1,V1,U2,V2のいずれか一方または両方が異常と判定する。各モータ駆動制御部19は、全ての電流センサU1,V1,W,U2,V2が異常検出部24により正常と判定されるとき、個別の電流センサU1,V1,U2,V2で検出した電流のみ用いて各系統を個別に制御してもよい。この場合、制御系を簡素化して演算処理負荷の低減を図れる。 When the sum of currents respectively detected by the common current sensor W and the individual current sensors U1, V1, U2, V2 becomes zero, the abnormality detection unit 24 detects the common current sensor W and the individual current sensors U1, V1, U1. When it is determined that U2 and V2 are normal and the sum of the currents does not become zero, it is determined that one or both of the common current sensor W and the individual current sensors U1, V1, U2, and V2 are abnormal. When each of the current sensors U1, V1, W, U2, and V2 is determined to be normal by the abnormality detection unit 24, each motor drive control unit 19 only detects the current detected by the individual current sensors U1, V1, U2, and V2. It may be used to control each system individually. In this case, the control system can be simplified to reduce the computational processing load.
 ところで電流センサの異常は、例えば、Hi側に出力が固着またはショートする異常、またはLo側に出力が固着またはショートする異常、非通電時に出力が0Aでないオフセット異常等があるが、これらの異常検出方法の場合、電流センサの出力のゲインのずれ、中途半端な出力のずれ等が発生すると異常検出できない場合がある。そこで、これらの異常検出方法に加え、三相の電流の和が零であることを利用した異常検出を実施する。 By the way, there are abnormalities in the current sensor, for example, an abnormality in which the output is stuck or shorted on the Hi side, an abnormality in which the output is stuck or shorted on the Lo side, an offset abnormality in which the output is not 0A when deenergized, In the case of the method, if a shift in the gain of the output of the current sensor, a shift in the halfway output, or the like occurs, the abnormality may not be detected in some cases. Therefore, in addition to these anomaly detection methods, anomaly detection is performed using the fact that the sum of three-phase currents is zero.
 この実施形態のように、複数の系統に共通の電流センサWが使われている場合は、単純に三相の和が出せないので、共通の電流センサWを使っている別の系統の通電回路も含めての和を求める必要がある。また、できるだけ異常な電流センサの判定をしたいため、例えば、全てのモータ6,6の出力を一度停止して個々のセンサ出力を検出したり、共通の電流センサWを使用している別の系統の通電回路の出力を停止して異常検出を行う。モータ6または6の駆動中の異常検出の例として、図4~図6にフローチャートを示す。 As in this embodiment, when the common current sensor W is used in a plurality of systems, the sum of the three phases can not simply be obtained, so the energizing circuit of another system using the common current sensor W It is necessary to find the sum including it. Also, since you want to determine possible abnormal current sensor, for example, another for and detect the individual sensor output all of the motor 6 1, 6 2 outputs once stopped, using common current sensor W Stop the output of the power supply circuit of the system of and perform abnormality detection. Examples of the abnormality detection in driving of the motor 6 1 or 6 2 illustrates a flow chart in FIGS. 4 to 6.
 <フローチャート>
 図4は、このモータ駆動制御装置の異常検出方法を示すフローチャートである。図5、図6は、同フローチャートの一部を示すフローチャートである。以下図3も適宜参照しつつ説明する。全てのモータ6,6が駆動中に本処理を開始し、異常検出部24は、五個全ての電流センサU1,V1,W,U2,V2の和が0Aか否かを判定する(ステップa1)。電流センサU1,V1,W,U2,V2の総和が0Aのとき(ステップa1:Yes)、異常検出部24は、全ての電流センサU1,V1,W,U2,V2を正常と判定し、各モータ駆動制御部19は、この判定結果を基にモータを制御し(ステップa2)、本処理を終了する。
<Flow chart>
FIG. 4 is a flowchart showing a method of detecting an abnormality in the motor drive control device. 5 and 6 are flowcharts showing a part of the flowchart. The following description will be given with reference to FIG. 3 as appropriate. All motor 6 1, 6 2 starts the process during operation, the abnormality detection unit 24, the sum of five pieces all current sensors U1, V1, W, U2, V2 determines whether 0A ( Step a1). When the sum of current sensors U1, V1, W, U2, V2 is 0 A (step a1: Yes), abnormality detection unit 24 determines that all current sensors U1, V1, W, U2, V2 are normal, and The motor drive control unit 19 controls the motor based on the determination result (step a2), and ends the present process.
 電流センサU1,V1,W,U2,V2の総和が0Aでないとき(ステップa1:No)、異常検出部24はいずれかの電流センサが異常と判定し、各モータ駆動制御部19は、第1,第2のモータ6,6を駆動するための全ての系統に接続されたパワー回路部(通電回路)16を停止させ、全てのモータ出力を停止する(ステップa3)。次に、異常検出部24は、各電流センサで電流を検出して各センサ出力が0Aか否かを判定する(ステップa4)。異常検出部24は、センサ出力が0Aにならない(ステップa4:No)電流センサを異常と判定する(ステップa5)。その後ステップa2に移行する。ステップa2における、電流センサの異常時の制御継続方法は後述する。 When the sum of the current sensors U1, V1, W, U2, and V2 is not 0 A (step a1: No), the abnormality detection unit 24 determines that any one of the current sensors is abnormal, and each motor drive control unit 19 , power circuit connected to all the system for driving the second motor 6 and 62 (the current supply circuit) 16 is stopped, stop all motor output (step a3). Next, the abnormality detection unit 24 detects current by each current sensor and determines whether each sensor output is 0 A (step a4). The abnormality detection unit 24 determines that the current sensor does not become 0 A (step a4: No) and the current sensor is abnormal (step a5). Thereafter, the process proceeds to step a2. The control continuation method at the time of abnormality of the current sensor in step a2 will be described later.
 全ての電流センサのセンサ出力が0Aであると判定されたとき(ステップa4:Yes)、モータ駆動制御部19は、第1のモータ6の系統にのみ電流が流れる状態とし(ステップa6)、異常検出部24は、電流が流れる第1のモータ6の系統について、共通の電流センサWおよび個別の電流センサU1,V1でそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップa7)。 When the sensor outputs of all of the current sensor is determined to be 0A (Step a4: Yes), the motor drive control unit 19, a state in which a current flows only in the first motor 6 1 lineage (step a6), abnormality detection unit 24, the first motor 61 of the system in which current flows, it is determined whether the sum of the current detected respectively by a common current sensors W and individual current sensors U1, V1 becomes 0A ( Step a7).
 前記電流の和が0Aになるとの判定で(ステップa7:Yes)、モータ駆動制御部19は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップa8)、異常検出部24は、電流が流れる第2のモータ6の系統について、共通の電流センサWおよび個別の電流センサU2,V2でそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップa9)。前記電流の和が0Aになるとの判定で(ステップa9:Yes)、ステップa1に戻る。前記電流の和が0Aにならないとの判定で(ステップa9:No)、異常検出部24は、第2のモータ6の系統のU相,V相の電流を検出する電流センサU2,V2の少なくとも一つが異常と判定する(ステップa10)。その後ステップa2に移行する。 In the determination of the sum of the current becomes 0A (step a7: Yes), the motor drive control unit 19, a state in which a current flows only in the second motor 6 2 strains (step a8), the abnormality detecting section 24 , the second motor 6 2 strains which current flows, it is determined whether the sum of the common current sensors W and individual current sensor U2, current detected respectively V2 becomes 0A (step a9). If it is determined that the sum of the currents becomes 0 A (step a9: Yes), the process returns to step a1. In the determination of the sum of the currents does not become 0A (Step a9: No), the abnormality detecting unit 24, U-phase of the second motor 6 2 strains, the current sensor U2 to detect a current of the V-phase, V2 of At least one is determined to be abnormal (step a10). Thereafter, the process proceeds to step a2.
 ステップa7において、電流が流れる第1のモータ6の系統について、共通の電流センサWおよび個別の電流センサU1,V1でそれぞれ検出した電流の和が0Aにならないとの判定で(ステップa7:No)、モータ駆動制御部19は、第2のモータ6の系統にのみ電流が流れる状態とする(ステップa11)。次に、異常検出部24は、電流が流れる第2のモータ6の系統について、共通の電流センサWおよび個別の電流センサU2,V2でそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップa12)。 In step a7, the first motor 61 of the system in which current flows, in the determination of the sum of the current detected respectively by a common current sensors W and individual current sensors U1, V1 does not become 0A (Step a7: No ), the motor drive control unit 19, a state in which a current flows only in the second motor 6 2 strains (step a11). Next, the abnormality detecting unit 24, the second motor 6 2 strains which current flows, whether the sum of the common current sensors W and individual current sensor U2, current detected respectively V2 becomes 0A It determines (step a12).
 前記電流の和が0Aになるとの判定で(ステップa12:Yes)、異常検出部24は、第1のモータ6の系統のU相,V相の電流を検出する電流センサU1,V1の少なくとも一つが異常と判定する(ステップa13)。その後ステップa2に移行する。前記電流の和が0Aにならないとき(ステップa12:No)、異常検出部24は、各モータ6,6のいずれかの電流センサを異常と判定するが異常な電流センサの判定はできない(ステップa14)。その後ステップa2に移行する。 In the determination of the sum of the current becomes 0A (Step a12: Yes), the abnormality detecting unit 24, U-phase of the first motor 61 of the system, the current sensor U1, V1 for detecting the current of the V phase at least One is determined to be abnormal (step a13). Thereafter, the process proceeds to step a2. When the sum of the currents does not become 0A (Step a12: No), the abnormality detecting unit 24 can not determine the abnormal current sensor is determined as abnormal any of the current sensors of the motors 6 and 62 ( Step a14). Thereafter, the process proceeds to step a2.
 以上説明したフローチャートでは、全てのモータ出力を停止して異常検出する方法、および検出したいモータとは別のモータ出力を停止して異常検出する方法を記載しているが、検出する順番は逆でも問題ないし、異常箇所が判定できればいずれか一方でもよい。またこの方法とは別に、Hi側異常検出、Lo側異常検出などで判定できる異常は判定すべきである。 Although the flowchart described above describes a method of stopping all motor outputs to detect abnormality and a method of stopping motor outputs other than the motor to be detected to detect abnormalities, the order of detection may be reversed. If there is no problem or an abnormal part can be determined, either one may be used. Further, separately from this method, an abnormality that can be determined by Hi side abnormality detection, Lo side abnormality detection or the like should be determined.
 表1に、この第1の実施形態に係る、二個のモータ6,6で五個の電流センサU1,V1,W,U2,V2の場合の異常時の制御継続方法を示す。この制御継続方法は、後述する図7~図9の実施形態についても同様である。なお異常な電流センサの判定ができない場合、電流制御を継続することができない。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the according to the first embodiment, two of the motor 6 1, 6 2 in five pieces of current sensors U1, V1, W, U2, V2 control continuation method when an abnormal case. The control continuation method is the same for the embodiments of FIGS. 7 to 9 described later. If an abnormal current sensor can not be determined, current control can not be continued.
Figure JPOXMLDOC01-appb-T000001
 <作用効果について>
 以上説明したモータ駆動制御装置22によれば、電流センサが二つの系統の互いに同じ相に共通に使用されている場合は、単純に三相の和が出せないので、共通で使用している電流センサを使っている別の系統も含めて電流の総和を求めることで、電流センサの正常異常を判定し得る。前記のように、二つの系統の中の各一相の電流を共通で検出する非接触式の電流センサを通すため、部品点数である電流センサの数を低減し、コスト低減、スペースおよび重量の低減を図ることができる。
<About effect>
According to the motor drive control device 22 described above, when the current sensor is commonly used in the same phase of the two systems, the sum of three phases can not simply be output, so the commonly used current is used. It is possible to determine the normal abnormality of the current sensor by calculating the sum of the current including another system using the sensor. As described above, since the non-contact current sensor that commonly detects the current of each phase in the two systems passes, the number of current sensors, which is the number of parts, is reduced, cost, space and weight are reduced. The reduction can be achieved.
 <この実施形態の変形形態について>
 以下の説明においては、先行して説明された事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、各形態同士を部分的に組合せることも可能である。
<Variations of this embodiment>
In the following description, parts corresponding to the items described above are denoted by the same reference numerals, and redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect are exhibited from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the combinations of each embodiment may be partially combined unless any problem arises in the combination.
 図7~図9は、前述の実施形態と同様に、第1,第2のモータ6,6で五個の電流センサU1,V1,W,U2,V2の場合に、なるべくモータ出力を止めないように異常検出した場合のフローチャートである。図3も適宜参照しつつ説明する。全てのモータ6,6が駆動中に本処理を開始し、異常検出部24は、五個全ての電流センサU1,V1,W,U2,V2の和が0Aか否かを判定する(ステップb1)。電流センサの総和が0Aのとき(ステップb1:Yes)、異常検出部24は、全ての電流センサを正常と判定し、各モータ駆動制御部19は、この判定結果を基にモータを制御し(ステップb2)、本処理を終了する。 7 to 9 are similar to the embodiment described above, first, when the second motor 6 and 62 after five pieces of current sensors U1, V1, W, U2, V2, as much as possible motor output It is a flowchart at the time of detecting abnormality so that it might not stop. FIG. 3 will also be described with appropriate reference. All motor 6 1, 6 2 starts the process during operation, the abnormality detection unit 24, the sum of five pieces all current sensors U1, V1, W, U2, V2 determines whether 0A ( Step b1). When the total sum of the current sensors is 0 A (step b1: Yes), the abnormality detection unit 24 determines that all the current sensors are normal, and each motor drive control unit 19 controls the motor based on the determination result ( Step b2), end this processing.
 電流センサの総和が0Aでないとき(ステップb1:No)、モータ駆動制御部19は、第2のモータ6を駆動する系統に接続されたパワー回路部(通電回路)16を停止させ、第2のモータ出力のみ停止する(ステップb3)。次に、異常検出部24は、通電停止させた系統のU2,V2の個別の電流センサの出力が0Aになるか否かを判定する(ステップb4)。否との判定で(ステップb4:No)、異常検出部24は、U2,V2の個別の電流センサのうち、センサ出力が0Aにならない電流センサを異常と判定する(ステップb5)。その後ステップb2に移行する。 The sum of the current sensor not equal 0A (Step b1: No), the motor drive control unit 19, a power circuit connected to the system for driving the second motor 6 2 (energization circuit) 16 is stopped, the second Only the motor output of is stopped (step b3). Next, the abnormality detection unit 24 determines whether or not the outputs of the individual current sensors of U2 and V2 of the system which has been deenergized become 0 A (step b4). In the determination of no (step b4: No), the abnormality detection unit 24 determines that the current sensor whose sensor output does not become 0 A among the individual current sensors of U2 and V2 is abnormal (step b5). Thereafter, the process proceeds to step b2.
 U2,V2の個別の電流センサの出力が0Aになるとき(ステップb4:Yes)、異常検出部24は、電流が流れる第1のモータ6の系統について、共通の電流センサWおよびU1,V1の個別の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップb6)。前記電流の和が0Aになるとの判定で(ステップb6:Yes)、モータ駆動制御部19は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップb7)、異常検出部24は、電流が流れていない第1のモータ6の系統について、U1,V1の個別の電流センサの出力が0Aになるか否かを判定する(ステップb8)。 U2, when the output of the individual current sensor V2 becomes 0A (Step b4: Yes), the abnormality detecting section 24, the first motor 61 of the system in which a current flows, a common current sensors W and U1, V1 It is determined whether the sum of the currents respectively detected by the individual current sensors in the above becomes 0 A (step b6). In the determination of the sum of the current becomes 0A (Step b6: Yes), the motor drive control unit 19, a state in which a current flows only in the second motor 6 2 strains (step b7), the abnormality detecting section 24 , for the first motor 61 of the system in which current is not flowing, and determines whether the U1, the output of the individual current sensor V1 becomes 0A (step b8).
 否との判定で(ステップb8:No)、異常検出部24は、U1,V1の個別の電流センサのうち、センサ出力が0Aにならない電流センサを異常と判定する(ステップb9)。その後ステップb2に移行する。U1,V1の個別の電流センサの出力が0Aになるとき(ステップb8:Yes)、異常検出部24は、電流が流れる第2のモータ6の系統について、共通の電流センサWおよびU2,V2の個別の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップb10)。 In the determination of no (step b8: No), the abnormality detection unit 24 determines that the current sensor whose sensor output does not become 0 A among the individual current sensors of U1 and V1 is abnormal (step b9). Thereafter, the process proceeds to step b2. U1, when the output of the individual current sensor V1 becomes 0A (Step b8: Yes), the abnormality detecting unit 24, the second motor 6 2 strains which current flows, a common current sensors W and U2, V2 It is determined whether the sum of the currents respectively detected by the individual current sensors in the above becomes 0 A (step b10).
 前記電流の和が0Aになるとの判定で(ステップb10:Yes)、ステップb1に戻る。前記電流の和が0Aにならないとの判定で(ステップb10:No)、異常検出部24は、電流センサU2,V2の少なくとも一つが異常と判定する(ステップb11)。その後ステップb2に移行する。 If it is determined that the sum of the currents becomes 0 A (step b10: Yes), the process returns to step b1. If it is determined that the sum of the currents does not become 0 A (step b10: No), the abnormality detection unit 24 determines that at least one of the current sensors U2 and V2 is abnormal (step b11). Thereafter, the process proceeds to step b2.
 ステップb6において、第1のモータ6の系統について、電流の和が0Aにならないとの判定で(ステップb6:No)、モータ駆動制御部19は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップb12)、異常検出部24は、電流が流れていない第1のモータ6の系統について、U1,V1の個別の電流センサの出力が0Aになるか否かを判定する(ステップb13)。 In step b6, the first motor 61 of the system, the determination of the sum of the currents does not become 0A (Step b6: No), the motor drive control unit 19, current only to the second motor 6 2 strains a state in which the flow (step b12), the abnormality detecting section 24, the first motor 61 of the system in which current is not flowing, and determines whether the U1, the output of the individual current sensor V1 is 0A (Step b13).
 否との判定で(ステップb13:No)、異常検出部24は、U1,V1の個別の電流センサのうち、センサ出力が0Aにならない電流センサを異常と判定する(ステップb14)。その後ステップb2に移行する。U1,V1の個別の電流センサの出力が0Aになるとき(ステップb13:Yes)、異常検出部24は、電流が流れる第2のモータ6の系統について、共通の電流センサWおよびU2,V2の個別の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップb15)。 In the determination of no (step b13: No), the abnormality detection unit 24 determines that the current sensor whose sensor output does not become 0 A among the individual current sensors of U1 and V1 is abnormal (step b14). Thereafter, the process proceeds to step b2. U1, when the output of the individual current sensor V1 becomes 0A (Step b13: Yes), the abnormality detecting unit 24, the second motor 6 2 strains which current flows, a common current sensors W and U2, V2 It is determined whether the sum of the currents respectively detected by the individual current sensors in the above becomes 0 A (step b15).
 前記電流の和が0Aになるとの判定で(ステップb15:Yes)、異常検出部24は、電流センサU1,V1の少なくとも一つが異常と判定する(ステップb16)。その後ステップb2に移行する。前記電流の和が0Aにならないとき(ステップb15:No)、異常検出部24は、各モータ6,6のいずれかの電流センサを異常と判定するが異常な電流センサの判定はできない(ステップb17)。その後ステップb2に移行する。 If it is determined that the sum of the currents becomes 0 A (step b15: Yes), the abnormality detection unit 24 determines that at least one of the current sensors U1 and V1 is abnormal (step b16). Thereafter, the process proceeds to step b2. When the sum of the currents does not become 0A (Step b15: No), the abnormality detecting unit 24 can not determine the abnormal current sensor is determined as abnormal any of the current sensors of the motors 6 and 62 ( Step b17). Thereafter, the process proceeds to step b2.
 この図7~図9のフローチャートによれば、モータ6,6の駆動を完全に止めることなく、異常検出を行うことができる。したがって、異常検出時に、運転者が違和感を感じることを回避することが可能となる。 According to the flowchart of FIGS. 7-9, the motor 6 1, 6 without completely stopping the second drive, it is possible to perform abnormality detection. Therefore, it is possible to prevent the driver from feeling discomfort when detecting an abnormality.
 図4~図6または図7~図9のフローチャートにおいて、モータ6,6を片側ずつ停止して異常検出する際に、駆動トルクが減らないように、駆動を続けるモータのトルクをその分多くしてもよい。つまり、モータ駆動制御部19は、一つのモータの系統に接続されたパワー回路部16を停止させたとき、パワー回路部16を停止していないモータの指令トルクに対し、パワー回路部16を停止させたモータの指令トルク分を増やすようにしてもよい。このように、停止させたモータの指令トルク分を増やすことで、所望のモータトルクを維持することができる。 In the flowchart of FIGS. 4-6 or 7-9, when the abnormality detection to stop the motor 6 1, 6 2 each side, so that the drive torque is not reduced, that amount of torque of the motor to continue driving It may be many. That is, when the motor drive control unit 19 stops the power circuit unit 16 connected to the system of one motor, the motor drive control unit 19 stops the power circuit unit 16 with respect to the command torque of the motor not stopping the power circuit unit 16. You may make it increase the command torque of the made motor. As described above, by increasing the command torque of the stopped motor, a desired motor torque can be maintained.
 図10に示すように、三個のモータ6,6,6で電流センサを七個(うち、二個は共通の電流センサ)使用してもよい。この場合、第1,第2のモータ6,6の二つの系統の互いに同じ相(この例ではW相)に共通の非接触式の電流センサW1/W2を通し、第2,第3のモータ6,6二つの系統の互いに同じ相(この例ではU相)に共通の非接触式の電流センサU2/U3を通し、残りの各系統の相には、個別の電流センサU1,V1,V2,V3,W3を通している。この例では、二つの系統の互いに同じ相に共通の非接触式の電流センサを使用しているが、同じ相でなくてもよい。 As shown in FIG. 10, three motors 6 and 62, 6 3 seven pieces of current sensors (of which, a common current sensor two is) may be used. In this case, first, mutually the same phase of the second motor 6 and 62 of the two systems through the current sensor W1 / W2 of a common non-contact type in (W phase in this example), the second, third The common non-contact current sensor U2 / U3 passes through the same phase (in this example, the U phase) of the motors 6 2 and 6 3 of the two motors, and the individual current sensors U1 , V1, V2, V3, and W3. In this example, a non-contact current sensor common to the same phase of the two systems is used, but may not be the same phase.
 図11~図13は、この三個のモータ6,6,6で電流センサを七個使用した場合のモータ駆動制御装置の異常検出方法を示すフローチャートである。図10等も適宜参照しつつ説明する。全てのモータ6,6,6が駆動中に本処理を開始し、異常検出部24(図3)は、七個全ての電流センサの和が0Aか否かを判定する(ステップc1)。電流センサの総和が0Aのとき(ステップc1:Yes)、異常検出部24(図3)は、全ての電流センサを正常と判定し、各モータ駆動制御部19(図3)は、この判定結果を基にモータを制御し(ステップc2)、本処理を終了する。 11 to 13 are flowcharts illustrating a method for detecting abnormality the three motors 6 and 62, 6 3 motor drive control device in the case of using seven pieces of current sensor. Description will be made with reference to FIG. 10 and the like as appropriate. This process is started while all the motors 6 1 , 6 2 and 6 3 are driven, and the abnormality detection unit 24 (FIG. 3) determines whether or not the sum of all seven current sensors is 0 A (step c1). ). When the sum of the current sensors is 0 A (step c1: Yes), the abnormality detection unit 24 (FIG. 3) determines that all current sensors are normal, and each motor drive control unit 19 (FIG. 3) The motor is controlled on the basis of (step c2), and this processing is ended.
 電流センサの総和が0Aでないとき(ステップc1:No)、異常検出部19(図3)はいずれかの電流センサが異常と判定し、各モータ駆動制御部19(図3)は、第1,第2および第3のモータ6,6,6を駆動するための全ての系統に接続された通電回路を停止させ、全てのモータ出力を停止する(ステップc3)。次に、異常検出部は、各電流センサで電流を検出して各センサ出力が0Aか否かを判定する(ステップc4)。異常検出部は、センサ出力が0Aにならない(ステップc4:No)電流センサを異常と判定する(ステップc5)。その後ステップc2に移行する。ステップc2における、電流センサの異常時の制御継続方法は後述する。 When the sum of the current sensors is not 0 A (step c1: No), the abnormality detection unit 19 (FIG. 3) determines that any current sensor is abnormal, and each motor drive control unit 19 (FIG. 3) the energizing circuit which is connected to all of the system for driving the second and third motor 6 1, 6 2, 6 3 is stopped, stop all motor output (step c3). Next, the abnormality detection unit detects the current with each current sensor and determines whether each sensor output is 0 A (step c4). The abnormality detection unit determines that the current sensor does not become 0 A (step c4: No) and the current sensor is abnormal (step c5). Thereafter, the process proceeds to step c2. The control continuation method at the time of abnormality of the current sensor in step c2 will be described later.
 全ての電流センサのセンサ出力が0Aであるとき、(ステップc4:Yes)、モータ駆動制御部は、第1,第3のモータ6,6の系統に電流が流れる状態とし(ステップc6)、異常検出部は、第1のモータ6の系統におけるU1,V1の個別の電流センサとW1/W2の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc7)。 When the sensor outputs of all of the current sensor is 0A, (Step c4: Yes), the motor drive control unit includes a state in which the first, current flows through the third motor 6 1, 6 3 of the system (step c6) , the abnormality detecting unit determines whether the sum of the current detected respectively common current sensor of the first motor 6 U1 in one lineage, V1 individual current sensor and W1 / W2 becomes 0A ( Step c7).
 前記電流の和が0Aになるとの判定で(ステップc7:Yes)、異常検出部は、第3のモータ6の系統におけるU3,W3の個別の電流センサとU2/U3の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc8)。 In the determination of the sum of the current becomes 0A (step c7: Yes), the abnormality detection unit, a common current sensor of the third motor 6 U3 in 3 strains, W3 individual current sensor and U2 / U3 It is determined whether the sum of each detected current is 0 A (step c8).
 前記電流の和が0Aになるとの判定で(ステップc8:Yes)、モータ駆動制御部は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップc9)、異常検出部は、電流が流れる第2のモータの系統6について、V2の個別の電流センサ、W1/W2、U2/U3の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc10)。前記電流の和が0Aになるとの判定で(ステップc10:Yes)、ステップc1に戻る。前記電流の和が0Aにならないとの判定で(ステップc10:No)、異常検出部は、V2の個別の電流センサが異常と判定する(ステップc11)。その後ステップc2に移行する。 In the determination of the sum of the current becomes 0A (Step c8: Yes), the motor drive control unit includes a state in which a current flows only in the second motor 6 2 strains (step c9), the abnormality detection unit, a current second for system 6 2 motors, separate current sensor V2, (step of determining whether the sum of the current detected respectively by a common current sensor W1 / W2, U2 / U3 becomes 0A flows c10). If it is determined that the sum of the currents becomes 0 A (step c10: Yes), the process returns to step c1. When it is determined that the sum of the currents does not become 0 A (step c10: No), the abnormality detection unit determines that the individual current sensor of V2 is abnormal (step c11). Thereafter, the process proceeds to step c2.
 ステップc8において、電流の和が0Aにならないとき(ステップc8:No)、モータ駆動制御部は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップc12)、異常検出部は、電流が流れる第2のモータ6の系統について、V2の個別の電流センサ、W1/W2、U2/U3の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc13)。 In step c8, when the sum of the currents does not become 0A (Step c8: No), motor drive control section, a state in which a current flows only in the second motor 6 2 strains (Step c12), the abnormality detection unit, a second motor 6 2 strains which current flows, a separate current sensor V2, determines whether the sum of the current detected respectively become 0A a common current sensor W1 / W2, U2 / U3 ( Step c13).
 前記電流の和が0Aになるとの判定で(ステップc13:Yes)、異常検出部は、V3,W3の個別の電流センサの少なくともいずれか一方が異常と判定する(ステップc14)。その後ステップc2に移行する。前記電流の和が0Aにならないとき(ステップc13:No)、異常検出部は、第2,第3のモータ6,6の電流センサで異常はあるが、判定はできない(ステップc15)。その後ステップc2に移行する。 If it is determined that the sum of the currents becomes 0 A (step c13: Yes), the abnormality detection unit determines that at least one of the V3 and W3 individual current sensors is abnormal (step c14). Thereafter, the process proceeds to step c2. When the sum of the currents does not become 0A (Step c13: No), the abnormality detection unit, a second, but in abnormal third current sensor of the motor 6 2, 6 3 is, can not be determined (step c15). Thereafter, the process proceeds to step c2.
 ステップc7において、電流の和が0Aにならないとき(ステップc7:No)、異常検出部は、第3のモータ6の系統におけるU3,W3の個別の電流センサとU2/U3の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc16)。前記電流の和が0Aになるとき(ステップc16:Yes)、モータ駆動制御部は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップc17)、異常検出部は、第2のモータ6の系統について、V2の個別の電流センサ、W1/W2、U2/U3の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc18)。 In step c7, when a sum of the currents does not become 0A (step c7: No), the abnormality detection unit, a common current sensor of the third motor 6 U3 in 3 strains, W3 individual current sensor and U2 / U3 At step c16, it is determined whether the sum of the currents respectively detected is 0A. When the sum of the current becomes 0A (Step c16: Yes), the motor drive control unit includes a state in which a current flows only in the second motor 6 2 strains (Step c17), the abnormality detection unit, the second the system of the motor 6 2, separate current sensor V2, determines whether the sum of the current detected respectively become 0A a common current sensor W1 / W2, U2 / U3 (step c18).
 前記電流の和が0Aになるとき(ステップc18:Yes)、異常検出部は、U1,V1の個別の電流センサの少なくともいずれか一方が異常と判定する(ステップc19)。その後ステップc2に移行する。前記電流の和が0Aにならないとき(ステップc18:No)、異常検出部は、第1,第2のモータ6,6の電流センサで異常はあるが、判定はできない(ステップc20)。その後ステップc2に移行する。 When the sum of the currents becomes 0 A (step c18: Yes), the abnormality detection unit determines that at least one of the individual current sensors U1 and V1 is abnormal (step c19). Thereafter, the process proceeds to step c2. When the sum of the currents does not become 0A (Step c18: No), the abnormality detection unit, first, although abnormalities second motor 6 1, 6 2 of the current sensor is, it can not be determined (step c 20). Thereafter, the process proceeds to step c2.
 ステップc16において、電流の和が0Aにならないとき(ステップc16:No)、モータ駆動制御部は、第2のモータ6の系統にのみ電流が流れる状態とし(ステップc21)、異常検出部は、第2のモータ6の系統について、V2の個別の電流センサ、W1/W2、U2/U3の共通の電流センサでそれぞれ検出した電流の和が0Aになるか否かを判定する(ステップc22)。 In step c16, when the sum of the currents does not become 0A (Step c16: No), motor drive control section, a state in which a current flows only in the second motor 6 2 strains (Step c21), the abnormality detection unit, a second motor 6 2 strains, the individual current sensor V2, determines whether the sum of the current detected respectively become 0A a common current sensor W1 / W2, U2 / U3 (step c22) .
 前記電流の和が0Aになるとき(ステップc22:Yes)、異常検出部は、U1,V1の個別の電流センサの少なくともいずれか一つと、V3,W3の個別の電流センサの少なくともいずれか一つを異常と判定する(ステップc23)。その後ステップc2に移行する。前記電流の和が0Aにならないとき(ステップc22:No)、第1,第2,第3のモータ6,6,6の電流センサで異常はあるが、判定はできない(ステップc24)。その後ステップc2に移行する。 When the sum of the currents becomes 0 A (step c22: Yes), the abnormality detection unit detects at least one of U1 and V1 individual current sensors and at least one of V3 and W3 individual current sensors. Is determined to be abnormal (step c23). Thereafter, the process proceeds to step c2. When the sum of the currents does not become 0A (Step c22: No), the first, second, third motor 6 1, 6 2, 6 is abnormality in 3 current sensor, can not be determined (Step c24) . Thereafter, the process proceeds to step c2.
 表2に、この第1の実施形態に係る、三個のモータで七個の電流センサの場合の異常時の制御継続方法を示す。なお異常な電流センサの判定ができない場合、電流制御を継続することができない。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the control continuation method at the time of abnormality in the case of three current sensors and seven current sensors according to the first embodiment. If an abnormal current sensor can not be determined, current control can not be continued.
Figure JPOXMLDOC01-appb-T000002
 図14に示すように、一つの三相のモータ6内に、U相,V相,W相の三相の電極の系統を複数系統(この例では二系統)備えてもよい。個別の電流センサは、例えば、シャント抵抗を備えた接触式の電流センサであってもよい。モータ駆動装置は、インホイールモータ形式以外に車体をモータに設置した2モータオンボード形式としてもよい。いずれかの実施形態のモータ駆動制御装置を、内燃機関と車両駆動用モータとを備えたハイブリッド車、電動パワーステアリング装置、電車、ロボット等に適用することも可能である。 As shown in FIG. 14, a plurality of systems (two systems in this example) of U-phase, V-phase, and W-phase three-phase electrodes may be provided in one three-phase motor 6. The individual current sensors may be, for example, contact current sensors with shunt resistors. The motor drive device may be a two-motor on-board type in which the vehicle body is installed in the motor other than the in-wheel motor type. It is also possible to apply the motor drive control device according to any one of the embodiments to a hybrid vehicle including an internal combustion engine and a vehicle drive motor, an electric power steering device, a train, a robot or the like.
 図3に示すように、モータ6,6の回転数を検出する回転数検出手段26を備え、異常検出部24は、回転数検出手段26で検出された回転数から定められた条件に従って逆起電圧を算出し、この逆起電圧が電源電圧を上回ってないときに異常検出を行ってもよい。前記回転数は、例えば、モータ6,6の回転角度を微分する等して求めることができる。この構成によると、算出された逆起電圧が電源電圧を上回ってないときに異常検出を行うことで、電流センサの異常検出を精度よく行うことができる。 As shown in FIG. 3, it comprises a rotation speed detecting means 26 for detecting the rotational speed of the motor 6 1, 6 2, the abnormality detecting unit 24 in accordance with conditions determined from the rotational speed detected by the rotational speed detecting means 26 A back electromotive voltage may be calculated, and abnormality detection may be performed when the back electromotive voltage does not exceed the power supply voltage. The rotational speed, for example, can be determined by, for example differentiating the rotation angle of the motor 6 1, 6 2. According to this configuration, the abnormality detection of the current sensor can be performed with high accuracy by performing the abnormality detection when the calculated back electromotive force does not exceed the power supply voltage.
 この発明の第2の実施形態に係るモータ駆動装置を図15ないし図20と共に説明する。
 <この電気自動車の概念構成について>
 図15は、この実施形態に係るモータ駆動装置を備えた電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体101の左右の後輪となる車輪102が駆動輪とされ、左右の前輪となる車輪103が従動輪とされた四輪の自動車である。前輪となる車輪103は操舵輪とされている。
A motor drive apparatus according to a second embodiment of the present invention will be described with reference to FIGS.
<About the conceptual composition of this electric car>
FIG. 15 is a block diagram of a conceptual configuration showing a plan view of an electric vehicle provided with a motor drive device according to this embodiment. This electric vehicle is a four-wheeled vehicle in which the wheels 102 serving as the left and right rear wheels of the vehicle body 101 are drive wheels and the wheels 103 serving as the left and right front wheels are driven wheels. The wheel 103 serving as the front wheel is a steered wheel.
 この例の電気自動車は、左右の車輪102,102が走行用駆動源となる一台の三相交流モータ(単に、「モータ」と称す)104により駆動される一モータオンボードタイプである。モータ104は、例えば、ロータのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ104は、ハウジングに固定したステータと、回転出力軸に取り付けたロータとの間にラジアルギャップを設けたモータである。モータ104に図示外の減速機を介して車輪102,102が駆動される。各車輪102,103には、ブレーキが設けられている。また左右の前輪となる操舵輪である車輪103,103は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段105により操舵される。 The electric vehicle of this example is a motor-on-board type in which the left and right wheels 102, 102 are driven by a single three-phase AC motor (simply referred to as a "motor") 104 serving as a drive source for traveling. The motor 104 is, for example, an embedded magnet synchronous motor in which permanent magnets are built in a core portion of a rotor. The motor 104 is a motor in which a radial gap is provided between a stator fixed to the housing and a rotor attached to the rotation output shaft. The wheels 102 are driven by a motor 104 via a reduction gear not shown. Each of the wheels 102 and 103 is provided with a brake. The wheels 103, 103, which are steered wheels on the left and right front wheels, can be steered via a steering mechanism (not shown), and are steered by steering means 105 such as steering wheels.
 <モータ駆動装置の概略構成>
 図16に示すように、モータ駆動装置106は、例えば、車両を統括する上位の制御装置107からトルク指令を受け取ってモータ104を駆動する。このモータ駆動装置106は、電流駆動回路108と、モータ104に流れる電流を検出する電流センサSと、与えられるトルク指令および電流センサSで検出された電流に基づいて電流駆動回路108に電流の駆動信号を与える制御装置109とを備える。制御装置109と電流駆動回路108とでインバータ装置が構成される。
<Schematic Configuration of Motor Drive Device>
As shown in FIG. 16, for example, the motor drive device 106 receives a torque command from the upper control device 107 that controls the vehicle and drives the motor 104. The motor drive device 106 drives the current to the current drive circuit 108 based on the current drive circuit 108, the current sensor S for detecting the current flowing to the motor 104, and the torque command given and the current detected by the current sensor S. And a controller 109 for providing a signal. The control device 109 and the current drive circuit 108 constitute an inverter device.
 <使用する電流センサSについて>
 電流センサSとして、向きが相反する方向の電流をそれぞれ検出するセンサの二個で対となる電流センサを、互いに対向する向きに、且つ、三相におけるいずれか二相(この例ではU相,V相)にそれぞれ備え、さらに残りの一相(この例ではW相)に流れる電流を検出する一つの電流センサを備える。電流センサSにより得られた出力電流値は、制御装置109に入力される。
<About the current sensor S to be used>
As the current sensor S, two current sensors that respectively detect current in opposite directions are paired with each other in any direction opposite to each other and in any two phases in three phases (in this example, U phase, And a current sensor for detecting the current flowing through the remaining one phase (in this example, the W phase). The output current value obtained by the current sensor S is input to the control device 109.
 各相に取り付けた電流センサSとして、例えば、クランプ式の電流センサが用いられる。クランプ式の電流センサの形式は問わないが、ここで説明する電流センサは片電源で、電流0A時に予め定められたオフセット電圧を示し、正負電流が流れた際には、それに従った信号を出力するものとする。なお、クランプ式以外の電流センサでも、それぞれが独立していて、電流の方向が判別でき、片方の電流センサの異常の影響が残る片方の電流センサに影響を与えない形式であれば採用できる。 For example, a clamp-type current sensor is used as the current sensor S attached to each phase. There is no limitation on the type of clamp-type current sensor, but the current sensor described here is a single power supply, which exhibits a predetermined offset voltage at 0 A current, and outputs a signal according to it when positive or negative current flows It shall be. Note that any current sensor other than the clamp type can be adopted as long as it is independent and the direction of the current can be determined and the influence of the abnormality of one current sensor does not affect the other current sensor.
 制御装置109は、例えば、演算のためのCPUと周辺部品が実装された制御基板である。制御装置109には、後述する各手段がプログラムとしてCPUのメモリ内に格納されており、処理フローに基づき前記各手段が実施される。また、制御装置109は、各処理後に決定した電流駆動回路駆動信号を電流駆動回路108へ出力する。この電流駆動回路108からの出力電流は三相交流の伝送線10を通じてモータ104に出力される。なお、実際の構成においては、モータ104を制御するための角度センサ等が取り付けられている場合が多いが、本実施形態の説明においては省略する。 The control device 109 is, for example, a control board on which a CPU for calculation and peripheral parts are mounted. In the control device 109, each means described later is stored as a program in the memory of the CPU, and each means is implemented based on the processing flow. Further, the control device 109 outputs the current drive circuit drive signal determined after each process to the current drive circuit 108. The output current from the current drive circuit 108 is output to the motor 104 through the three-phase AC transmission line 10. In the actual configuration, an angle sensor or the like for controlling the motor 104 is often attached, but this is omitted in the description of the present embodiment.
 図16および図17に示すように、電流駆動回路108は、直流電源11の電力をモータ104の駆動に用いる三相の交流電力に変換する複数のスイッチング素子112と、これらスイッチング素子112を駆動するゲートドライブ回路Gdとを有する。各スイッチング素子112として、例えば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、略称:IGBT)、または電界効果トランジスタ(Field effect transistor、略称:FET)等が適用される。 As shown in FIGS. 16 and 17, the current drive circuit 108 drives a plurality of switching elements 112 for converting the power of the DC power supply 11 into three-phase AC power used for driving the motor 104, and the switching elements 112. And a gate drive circuit Gd. As each switching element 112, for example, an insulated gate bipolar transistor (abbreviated as IGBT), a field effect transistor (abbreviated as FET) or the like is applied.
 <このモータ駆動装置106の制御装置109の構成>
 制御装置109は、電流駆動回路108を制御する電流制御手段113と、異常検出手段114と、異常個所診断手段115と、差動演算手段116とを有する。その他、外部と通信するための外部通信手段等の公知の手段は適宜実装されているものとする。
<Configuration of Control Device 109 of Motor Drive Device 106>
The control device 109 has current control means 113 for controlling the current drive circuit 108, abnormality detection means 114, abnormality point diagnosis means 115, and differential operation means 116. In addition, known means such as external communication means for communicating with the outside shall be appropriately implemented.
 図15および図17に示すように、上位の制御装置107は、アクセル操作部17の出力するアクセル開度の信号(加速指令)と、ブレーキ操作部118の出力する減速指令とから、あるいは加速指令と減速指令と操舵手段105の出力する旋回指令とから、モータ104に与える加速・減速指令をトルク指令として生成し、制御装置109へ出力する。電流制御手段113は、一般的にはベクトル制御にあたる部分であり、上位の制御装置107から与えられるトルク指令を三相それぞれの電流目標値に変換する。電流センサSで検出される三相の電流は電流制御手段113に与えられる。 As shown in FIG. 15 and FIG. 17, the upper control device 107 uses an accelerator opening signal (acceleration command) output from the accelerator operation unit 17 and a deceleration command output from the brake operation unit 118 or an acceleration command. An acceleration / deceleration command to be given to the motor 104 is generated as a torque command from the deceleration command and the turning command output from the steering means 105, and is output to the control device 109. The current control means 113 is generally a part corresponding to vector control, and converts a torque command given from the upper control device 107 into current target values of the respective three phases. The three-phase currents detected by the current sensor S are supplied to the current control means 113.
 <各手段内の詳細な処理手順>
 以下で例示する電流センサSは、電圧出力タイプの電流センサSとし、図18に示すように、0A時にあるオフセット値(電圧)Cを示し、電流センサの正方向に電流が流れるとこの電流センサの出力がオフセット値Cより大きい方向に変化し、電流センサの負方向に電流が流れるとこの電流センサの出力がオフセット値Cより小さい方向に変化するものとする。
<Detailed processing procedure in each means>
The current sensor S exemplified below is a voltage output type current sensor S, and as shown in FIG. 18, shows an offset value (voltage) C at 0 A, and when current flows in the positive direction of the current sensor, this current sensor The output of the current sensor changes in the direction smaller than the offset value C when the current flows in the negative direction of the current sensor.
 <異常検出手段の具体的動作>
 図17および図18に示すように、異常検出手段114は、対となる電流センサの出力を取り込み、得られた電流値を閾値と比較し、前記電流センサの異常を検出する。ある相に対向して取り付けられた一対の電流センサに、ある電流を流した場合、それぞれの電流センサの出力は、オフセット値Cに対し、絶対値は同じで、電流の向きは相反する方向を示す。よって、ノイズまたは誤差の影響がないとすると、一対の電流センサの出力の和としては、検出された電流値が相殺されて、結果はオフセット値の二倍の数値となるはずである。
<Specific operation of abnormality detection means>
As shown in FIG. 17 and FIG. 18, the abnormality detection means 114 takes in the output of the current sensor as a pair, compares the obtained current value with a threshold, and detects an abnormality of the current sensor. When a certain current is applied to a pair of current sensors attached facing a certain phase, the outputs of the respective current sensors have the same absolute value with respect to the offset value C, and the current directions are opposite to each other. Show. Therefore, if there is no influence of noise or error, the sum of the outputs of the pair of current sensors should offset the detected current value, and the result will be a value twice the offset value.
 実際には、電流センサの誤差およびノイズによって、この数値から差が生じるが、電流センサの誤差の保証値およびノイズレベルを参考にして許容できる差の閾値S1を定めておく。この閾値を超えて差異が大きくなった場合には、電流センサが何らかの理由により正しい値を出力していないと予想されるため異常と診断する。すなわち異常検出手段114は、対となる電流センサの出力を加算して得られた電流値と閾値の差異が大きく生じているとき、前記対となる電流センサのいずれか一方の電流センサが異常であると診断する。なお、スパイクノイズ等により瞬間的にこの閾値を超える可能性があるため、対となる電流センサの出力を加算して得られた電流値が閾値を超えて一定時間(例えば、100ms間)差異大の状態が続いたら異常と診断する等してもよい。 In practice, the error and noise of the current sensor cause a difference from this value, but the threshold value S1 of the allowable difference is determined with reference to the guaranteed value of the error of the current sensor and the noise level. If the difference becomes large beyond this threshold, it is predicted that the current sensor is not outputting the correct value for some reason, and the abnormality is diagnosed. That is, when the difference between the current value obtained by adding the outputs of the current sensors to be paired and the threshold value is large, the abnormality detecting unit 114 has an abnormality in one of the current sensors of the pair of current sensors. Diagnose that there is. Note that since there is a possibility that the threshold value is exceeded momentarily due to spike noise etc., the current value obtained by adding the outputs of the paired current sensors exceeds the threshold value and the difference for a fixed time (for example, 100 ms) is large. If the condition of (1) continues, it may be diagnosed as abnormal.
 ここでは、U相につき、対向する二つの電流センサとして電流センサUU1,UU2が取り付けられ、V相につき、対向する二つの電流センサとして電流センサVV1,VV2が取り付けられている。W相には、電流センサUU1,VV1と同じ向きに一つの電流センサWW1が取り付けられているものとする。この場合に、異常検出手段114は、以下の条件式を満たすかどうかの判定を行う。以下、電流センサUU1,UU2,VV1,VV2から得られる値(電圧)は、それぞれUU1,UU2,VV1,VV2として以下に示す。 Here, current sensors UU1 and UU2 are attached as two opposing current sensors for the U phase, and current sensors VV1 and VV2 are attached as two opposing current sensors for the V phase. It is assumed that one current sensor WW1 is attached to the W-phase in the same direction as the current sensors UU1 and VV1. In this case, the abnormality detection unit 114 determines whether the following conditional expression is satisfied. Hereinafter, values (voltages) obtained from the current sensors UU1, UU2, VV1, and VV2 are shown as UU1, UU2, VV1, and VV2, respectively.
 |UU1+UU2-2C|<S1   …(式1)
 |VV1+VV2-2C|<S1   …(式2)
 このとき、各式の判定結果が、式1:真、式2:偽であったとする。よってU相の電流センサUU1,UU2の出力の差異は許容できる範囲であり異常は認められない。また式2の左辺の演算結果が異常と判定する閾値であるS1を超えており、V相の電流センサVV1,VV2の出力は、得られた結果の絶対値が大きく異なっているか、予め定められたオフセット値Cを大きく逸脱していることが予想され、異常と診断される。オフセット値の逸脱は、電流センサに供給されるべき電源から電力が供給されない状態となったとき、出力がゼロとなる等が考えられる。
| UU1 + UU2-2C | <S1 (Equation 1)
| VV1 + VV2-2C | <S1 (Equation 2)
At this time, it is assumed that the judgment result of each expression is Expression 1: True, Expression 2: False. Therefore, the difference between the outputs of the U-phase current sensors UU1 and UU2 is within an allowable range, and no abnormality is recognized. Further, the calculation result on the left side of Expression 2 exceeds S1 which is a threshold for determining abnormality, and the outputs of the V-phase current sensors VV1 and VV2 are predetermined whether the absolute values of the obtained results are largely different It is predicted that the value greatly deviates from the offset value C, and the abnormality is diagnosed. The deviation of the offset value may be, for example, an output of zero when power is not supplied from the power supply to be supplied to the current sensor.
 以上の処理を行うことで、一相につき一対ずつ対向して取り付けられた電流センサについて、その相の電流センサのうちいずれかが異常となっているか否かを診断可能である。結果を表3に示す。表3において丸印は正常、×印は異常を表す。
Figure JPOXMLDOC01-appb-T000003
By performing the above-described process, it is possible to diagnose whether or not any one of the current sensors in the phase is abnormal with respect to the current sensors attached to each other so as to face each other in pairs. The results are shown in Table 3. In Table 3, the circle indicates normal, and the x indicates abnormality.
Figure JPOXMLDOC01-appb-T000003
 <異常個所診断手段115の具体的動作>
 ここまでで、異常検出手段114の診断によって、U相に取り付けられた対となる電流センサUU1,UU2は共に正常で、V相に取り付けられた対となる電流センサVV1,VV2のうち、どちらかが異常であると診断されている。またW相の電流センサWW1は異常か否か未判定である。異常検出手段114では、その相で異常である電流センサがあるかどうかは診断できても、その相の対となる電流センサのうち、どちらの電流センサが異常であるかは判別できない。そこで、異常個所診断手段115では、これを判別するための処理を行う。
<Specific Operation of Abnormal Point Diagnostic Means 115>
Up to this point, the current sensors UU1 and UU2 attached to the U phase are both normal by the diagnosis of the abnormality detection means 114, and any one of the current sensors VV1 and VV2 attached to the V phase is either Is diagnosed as abnormal. Further, it is not determined whether the W-phase current sensor WW1 is abnormal. Although the abnormality detection means 114 can diagnose whether there is a current sensor that is abnormal in that phase, it is not possible to determine which one of the current sensors that is a pair of that phase is abnormal. Therefore, the abnormal point diagnosing means 115 performs processing for determining this.
 異常個所診断手段115は、以下に示すように、UVW相の電流センサの出力の和を取り、結果が略零になるかどうかを判定する。実際には、電流センサの誤差およびノイズによって「零」から差が生じるが、電流センサの誤差の保証値およびノイズレベルを参考にして許容できる差の閾値S2を定めておく。よって、異常個所診断手段115は、以下の条件式を満たすかどうかの判定を行う。以下、電流センサUU1,UU2,VV1,VV2,WW1から得られる値(電圧)は、それぞれUU1,UU2,VV1,VV2,WW1として以下に示す。 The abnormal point diagnosis means 115 sums the outputs of the UVW-phase current sensors, as described below, and determines whether the result is substantially zero. In practice, although the error and noise of the current sensor cause a difference from "zero", the threshold value S2 of the allowable difference is determined with reference to the guaranteed value of the error of the current sensor and the noise level. Therefore, the abnormal point diagnosis means 115 determines whether the following conditional expression is satisfied. Hereinafter, values (voltages) obtained from the current sensors UU1, UU2, VV1, VV2, and WW1 are shown as UU1, UU2, VV1, VV2, and WW1, respectively.
 |UU1+VV1+WW1-3C|<S2     …(式3)
 |UU2+VV2+(-1)×WW1-C|<S2 …(式4)
 ここで、式4でWW1を-1倍しているのは、電流センサUU2と電流センサVV2に対して電流センサWW1は電流方向について逆向きに取り付けられているためであり、WW1を-1倍することで、電流センサUU2および電流センサVV2の電流方向と電流センサWW1の電流方向とを一致させている。また、-1×WW1を加算していることからオフセット値も相殺されており、式4となる。
| UU1 + VV1 + WW1-3C | <S2 (Equation 3)
| UU2 + VV2 + (-1) × WW1-C | <S2 (Equation 4)
Here, WW1 is multiplied by -1 in Equation 4 because the current sensor WW1 is attached in the reverse direction with respect to the current direction with respect to the current sensor UU2 and the current sensor VV2, and WW1 is multiplied by -1. By doing this, the current directions of the current sensor UU2 and the current sensor VV2 are made to coincide with the current direction of the current sensor WW1. Further, the offset value is also offset because -1 × WW1 is added, and Equation 4 is obtained.
 以上の条件式において、式3:真、式4:偽とすると、式4の左辺の演算結果は異常と判定する閾値S2を超えており、電流センサUU2,VV2,WW1のいずれかが異常であると診断できる。先の異常検出手段114の演算の式2より、V相のいずれかの電流センサが異常であると診断されているため、異常な電流センサは電流センサVV2であると判別できる。以上の処理と異常検出手段114の処理結果を組み合わせることで、どの電流センサが異常であるかを特定することができる。異常診断を行った結果を、各電流センサの状態を格納する変数に記録して、以降の演算で使用するかどうかの判断基準とする。 In the above conditional expression, assuming that Expression 3: True, Expression 4: False, the calculation result on the left side of Expression 4 exceeds the threshold value S2 for judging abnormality, and any one of the current sensors UU2, VV2 and WW1 is abnormal. You can diagnose that there is. Since the current sensor of any of the V-phases is diagnosed as abnormal according to Equation 2 of the calculation of the abnormality detection unit 114 described above, the abnormal current sensor can be determined as the current sensor VV2. By combining the above processing with the processing result of the abnormality detection unit 114, it is possible to specify which current sensor is abnormal. The result of the abnormality diagnosis is recorded in a variable that stores the state of each current sensor, and is used as a determination standard of whether or not to use in the subsequent calculation.
 以上の内容をまとめると、表4となる。表4において丸印は正常、×印は異常を表す。
Figure JPOXMLDOC01-appb-T000004
Table 4 is the summary of the above contents. In Table 4, the circle indicates normal, and the x indicates abnormality.
Figure JPOXMLDOC01-appb-T000004
 <差動演算手段116の具体的動作>
 <<電流センサ正常時の動作>>
 先に、電流センサに異常がない場合の動作を示す。
 電流センサUU1と電流センサUU2により得られた値(電圧)は、オフセット値Cを含んだ値である。ここで、それぞれのセンサ出力と、U相に流れる電流IUとは以下の関係となる。
 (UU1-UU2)/2=IU
 V相についても同様の処理を行うことで、V相に流れる電流IVを求めることができる。以上より、差動演算手段116の処理の後段にある電流制御で、制御に必要な電流値を求めることができる。
<Specific Operation of Differential Operation Means 116>
<< Operation at normal current sensor >>
First, the operation when there is no abnormality in the current sensor is shown.
The value (voltage) obtained by the current sensor UU1 and the current sensor UU2 is a value including the offset value C. Here, the respective sensor outputs and the current IU flowing in the U phase have the following relationship.
(UU1-UU2) / 2 = IU
The current IV flowing through the V phase can be determined by performing the same process for the V phase. From the above, it is possible to obtain the current value necessary for control by the current control at the subsequent stage of the processing of the differential operation means 116.
 <<電流センサ異常時の動作>>
 次に、電流センサに異常がある場合の動作を示す。異常個所診断手段115から受け渡された、どの電流センサが異常であるかという情報から、例えば、一つでも電流センサに異常が発生している場合は、差動演算を行わないとしてもよい。
<< Operation at the time of current sensor abnormality >>
Next, the operation when there is an abnormality in the current sensor is shown. Based on the information received from the abnormal point diagnosis means 115 indicating which current sensor is abnormal, for example, when an abnormality occurs in any one current sensor, the differential operation may not be performed.
 具体的には、電流センサUU1に異常が発生していない(有効)時にはENU1=1、同様に電流センサUU2が有効時にはENU2=1、電流センサUU1,UU2の異常時にはそれぞれENU1=0、ENU2=0とする変数を用意し、異常個所診断手段115から異常検出手段114に値を更新させてもよい。また、得られたENU1とENU2と、それぞれの電流センサの出力UU1,UU2と共に、以下のように演算してもよい。
 IU=(UU1×ENU1-UU2×ENU2)/(ENU1+ENU2)
 ただし、ENU1=ENU2=0の場合は演算を行わず、モータ104の駆動を停止する。
 同様にV相、もしくは構成によってはW相においても同様の演算を行う。
Specifically, ENU1 = 1 when no abnormality occurs in current sensor UU1 (valid), similarly ENU2 = 1 when current sensor UU2 is valid, and ENU1 = 0 when ENA1 and UU2 are abnormal, respectively. A variable to be 0 may be prepared, and the abnormality detection unit 115 may cause the abnormality detection unit 114 to update the value. In addition, together with the obtained ENU1 and ENU2 and the outputs UU1 and UU2 of the respective current sensors, calculation may be performed as follows.
IU = (UU1 × ENU1-UU2 × ENU2) / (ENU1 + ENU2)
However, when ENU1 = ENU2 = 0, the operation is not performed and the driving of the motor 104 is stopped.
Similarly, the same operation is performed in the V phase or the W phase depending on the configuration.
 <差動演算による同相ノイズの除去について>
 この差動演算手段116は、対の電流センサを備える二相(この例ではU相,V相)につき、前記対となる電流センサでそれぞれ検出された電流の差分をとって、前記対となる電流センサの出力に重畳された同相ノイズを相殺して除去し、得られた電流値をそれぞれ用いて電流制御を行う。ノイズの無い理想状態であれば、対となる電流センサでそれぞれ検出された電流の差分をとっても、差分をとらずに一つの電流センサの出力を使用しても差異はない。しかし、対向して取り付けられた電流センサのそれぞれの出力に同相ノイズが重畳されている場合は、対となる二つの電流センサから得られた結果の差分をとることで作動増幅回路と同様の効果が期待され、同相ノイズの除去が望める。
<Removal of common mode noise by differential operation>
The differential operation means 116 takes the difference between the currents respectively detected by the current sensors serving as the pair for the two phases (in this example, the U phase and the V phase in this example) including the pair of current sensors, and forms the pair. The common mode noise superimposed on the output of the current sensor is canceled and removed, and current control is performed using the obtained current values. In the ideal state without noise, there is no difference in using the output of one current sensor without taking the difference between the currents respectively detected by the paired current sensors. However, when in-phase noise is superimposed on the output of each of the oppositely mounted current sensors, the difference between the results obtained from the two paired current sensors is the same effect as the operation amplification circuit. Is expected, and removal of common mode noise can be expected.
 ここで、U相に取り付けられた電流センサUU1と電流センサUU2の出力である、UU1とUU2に、図19で示したような同相ノイズが重畳しているとする。ここで、二つの信号の差分をとったUU1-UU2も併せて図19に示す。同図19に示す通り、UU1とUU2に観測されたスパイク状の同相ノイズはUU1-UU2では見られない。以上のように差動演算手段116において差動演算を行うことで同相ノイズの除去が可能である。この同相ノイズの原因は、例えば、電流制御を行う際のスイッチングノイズである。生じたノイズが電流センサの電源に重畳されることで、電流センサの出力にもノイズが重畳される、またはスイッチングノイズが直接に電流センサの出力信号に重畳される場合がある。 Here, it is assumed that in-phase noise as shown in FIG. 19 is superimposed on UU1 and UU2 which are the outputs of the current sensor UU1 and the current sensor UU2 attached to the U phase. Here, UU1-UU2 obtained by taking the difference between the two signals is also shown in FIG. As shown in FIG. 19, spiked in-phase noise observed in UU1 and UU2 can not be seen in UU1-UU2. By performing differential operation in the differential operation means 116 as described above, it is possible to remove in-phase noise. The cause of this common-mode noise is, for example, switching noise when performing current control. When the generated noise is superimposed on the power supply of the current sensor, the noise may also be superimposed on the output of the current sensor, or switching noise may be directly superimposed on the output signal of the current sensor.
 <電流制御手段113の具体的動作>
 図16および図17に示すように、電流制御手段113では、ベクトル制御に代表される電流制御を実施している。この例では、電流制御手段113は、差動演算手段116の出力であるU相とV相の電流を基に電流制御を行う。電流制御手段113は、演算された電流目標値より検出された電流が小さければさらに電流目標値を大きくし、演算された電流目標値より検出された電流が大きければさらに電流目標値を小さくすることによって、モータ電流をフィードバック制御する。電流制御手段113は、フィードバック制御により指令電圧を算出し、この指令電圧をパルス幅変調信号にして、ゲートドライブ回路Gdにオンオフ指令を与える。電流を変える場合は、PWM動作でパルス幅を変更することにより実現される。
<Specific Operation of Current Control Means 113>
As shown in FIGS. 16 and 17, the current control means 113 implements current control represented by vector control. In this example, the current control unit 113 performs current control based on the U-phase and V-phase currents which are the outputs of the differential operation unit 116. The current control means 113 further increases the current target value if the detected current is smaller than the calculated current target value, and further decreases the current target value if the detected current is larger than the calculated current target value. Feedback control of the motor current. The current control unit 113 calculates a command voltage by feedback control, converts the command voltage into a pulse width modulation signal, and gives an on / off command to the gate drive circuit Gd. The current is changed by changing the pulse width in the PWM operation.
 <制御装置内の各手段の実行順序について>
 図20は、この制御装置内の各手段の実行順序を示すフローチャートである。以後、図16および図17も適宜参照しつつ説明する。本処理開始後、制御装置109は、全ての電流センサが出力した電流値を読み込む(ステップS1)。読み込んだ電流値は異常検出手段114に受け渡される(ステップS2)。異常検出手段114は、前述のように、受け取った電流値から、いずれかの電流センサに異常が発生して異常な信号を出力しているか否かの判定を行って、結果を出力する(ステップS3)。
<About the execution order of each means in the control device>
FIG. 20 is a flow chart showing the execution order of each means in this control device. Hereinafter, description will be made with reference to FIGS. 16 and 17 as appropriate. After the start of this process, the controller 109 reads the current values output by all the current sensors (step S1). The read current value is delivered to the abnormality detection means 114 (step S2). As described above, the abnormality detection unit 114 determines whether or not an abnormality occurs in any of the current sensors and outputs an abnormal signal based on the received current value, and outputs a result (step S3).
 全ての電流センサが正常であり、異常が無いとき(ステップS3:no)、制御装置109に読み込まれた電流値は、そのまま差動演算手段116に受け渡される。全ての電流センサが正常であるとすると、差動演算手段116が受け取った電流値のうち、二相(この例ではU相,V相)に取り付けられた二対の電流センサの出力を採用する。差動演算手段116は、対向して取り付けられた電流センサの二つの出力の差分をとり、必要に応じて結果が倍率1倍となるようにゲインを掛けて、電流制御に使用する電流値とする(ステップS4)。 When all the current sensors are normal and there is no abnormality (step S3: no), the current value read by the control device 109 is passed to the differential operation means 116 as it is. Assuming that all current sensors are normal, among the current values received by the differential operation means 116, the outputs of two pairs of current sensors attached to two phases (in this example, U phase and V phase) are adopted. . The differential operation means 116 takes the difference between the two outputs of the current sensors mounted opposite to each other, and if necessary, applies a gain so that the result is 1 × magnification, and the current value used for current control (Step S4).
 差動演算手段116の演算により得られた電流制御に使用する電流値は、電流制御手段113に受け渡される。電流制御手段113は、三相の電流値(もしくは二相の電流値の測定値と、そこから求められた一相の電流値)を基に演算を行い、三相それぞれの電流目標値を算出する(ステップS5)。一般には、電流駆動回路108はPWM制御されており、電流制御手段113はPWMのデューティー比を演算により求めて出力する。 The current value used for current control obtained by the operation of the differential operation means 116 is passed to the current control means 113. The current control means 113 performs calculations based on the three-phase current values (or the measured values of the two-phase current values and the one-phase current values determined therefrom) to calculate the current target values of the three phases. (Step S5). Generally, the current drive circuit 108 is PWM-controlled, and the current control means 113 calculates and outputs the duty ratio of PWM.
 制御装置109は、電流制御手段113が定めたPWMのデューティー比を基に、電流駆動回路駆動信号を電流駆動回路108へ出力する(ステップS6)。前記電流駆動回路駆動信号は一般にはPWMのパルス信号である。その後本処理を終了する。 The control device 109 outputs a current drive circuit drive signal to the current drive circuit 108 based on the PWM duty ratio determined by the current control unit 113 (step S6). The current drive circuit drive signal is generally a pulse signal of PWM. Thereafter, the process ends.
 電流センサに異常があると異常検出手段114が診断した場合(ステップS3:yes)、ステップS7に移行する。例えば、一対の対向する電流センサの出力の間の差異が閾値より大きく、異常であると異常検出手段114により診断されたとする。電流センサの異常と診断されたとき、三相のうちいずれの相の電流センサが異常であるかは判明している。しかし、対向して取り付けられた一対の電流センサのうち、どちらの電流センサが異常であるかは不明である。 If the abnormality detection unit 114 diagnoses that the current sensor is abnormal (step S3: yes), the process proceeds to step S7. For example, it is assumed that the difference between the outputs of the pair of opposing current sensors is larger than the threshold value, and the abnormality detection unit 114 diagnoses that the difference is abnormal. When it is diagnosed that the current sensor is abnormal, it is known which of the three phases the current sensor is abnormal. However, it is unclear which of the pair of current sensors attached facing each other is abnormal.
 そこで、異常検出手段114により異常である電流センサのある相が判明した状態で、異常個所診断手段115は、その相のうちどちらの電流センサが異常であるかを判定する(ステップS7)。異常個所診断手段115は、この結果判明した、いずれの電流センサが異常であるかを示す異常情報(換言すれば、どの電流センサの出力が採用できないかを表す情報)を更新し、この更新した異常情報を差動演算手段116へ受け渡す(ステップS8)。その後ステップS4に移行する。以降の処理では、異常と診断された電流センサにより得られた電流値は使用しないようにして、駆動のための電流制御を行う。これにより、いずれかの電流センサに異常が発生しても制御性能の向上を図れ、冗長性を確保し得る。以上が電流制御に関わる制御フローの一周期であり、計算周期あたり一回処理される。 Therefore, in a state in which a phase of the current sensor which is abnormal is identified by the abnormality detection means 114, the abnormal point diagnosis means 115 determines which of the current sensors in the phase is abnormal (step S7). The abnormal point diagnostic means 115 updates the abnormal information indicating which current sensor is abnormal (in other words, information indicating which output of the current sensor can not be adopted), which is found as a result, and the updated The abnormality information is delivered to the differential operation means 116 (step S8). Thereafter, the process proceeds to step S4. In the subsequent processing, current control for driving is performed without using the current value obtained by the current sensor diagnosed as abnormal. Thereby, even if an abnormality occurs in any of the current sensors, control performance can be improved and redundancy can be secured. The above is one cycle of the control flow related to the current control, and is processed once per calculation cycle.
 <作用効果について>
 対向して取り付けられた電流センサのそれぞれの出力に同相ノイズが重畳されている場合がある。この同相ノイズの原因は、例えば電流制御を行う際のスイッチングノイズである。そこで、差動演算手段116は、対となる電流センサでそれぞれ検出された電流の差分をとって、前記対となる電流センサの出力に重畳された同相ノイズを相殺し、得られた電流値をそれぞれ用いて電流制御を行う。これにより、いわゆる作動増幅回路と同様の効果が期待され、同相ノイズの除去が望める。したがって、同相ノイズに起因する不所望な電流制限を行うことが防止でき、制御性能の向上を図ることができる。また異常と診断された電流センサにより得られた電流値は使用しないようにして、駆動のための電流制御を行うため、いずれかの電流センサに異常が発生しても制御性能の向上を図れ、冗長性を確保し得る。
<About effect>
In-phase noise may be superimposed on the output of each of the oppositely mounted current sensors. The cause of the in-phase noise is, for example, switching noise when performing current control. Therefore, the differential operation means 116 takes the difference between the currents respectively detected by the pair of current sensors, cancels out the common phase noise superimposed on the output of the pair of current sensors, and obtains the obtained current value Each is used to perform current control. Thereby, an effect similar to that of a so-called operation amplification circuit is expected, and removal of in-phase noise can be expected. Therefore, it is possible to prevent the undesirable current limitation caused by the common mode noise and to improve the control performance. In addition, since the current value obtained by the current sensor diagnosed as abnormal is not used and current control for driving is performed, control performance can be improved even if an abnormality occurs in any of the current sensors, Redundancy can be ensured.
 <第2の実施形態の変形形態について>
 以下の説明においては、先行して説明された事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、各形態同士を部分的に組合せることも可能である。
Regarding Modification of Second Embodiment>
In the following description, parts corresponding to the items described above are denoted by the same reference numerals, and redundant description will be omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in the preceding embodiment unless otherwise stated. The same function and effect are exhibited from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the combinations of each embodiment may be partially combined unless any problem arises in the combination.
 <W相の異常を都度調査する手順を追加した例>
 先に示した異常検出手段114と異常個所診断手段115の処理では、電流センサを一つだけ取り付けた相(表3の例ではW相の電流センサWW1)については、異常個所診断手段115の診断のうち、式3か式4が成り立つことで、異常ではないことが判定される。しかし、図20に示した手順通りに処理を行うと、電流センサWW1が異常であることを検出できず、仮に電流センサWW1が異常な状態で電流センサVV2に異常が発生した場合に、異常個所診断手段115による診断を実施する際に必要な電流センサWW1の出力が正常ではなく、異常個所診断手段115を正常に完了できない。
<Example of adding a procedure to investigate W phase abnormalities each time>
In the processing of the abnormality detection means 114 and the abnormality point diagnosis means 115 described above, the diagnosis of the abnormality point diagnosis means 115 is performed for the phase to which only one current sensor is attached (the W phase current sensor WW1 in the example of Table 3). Among the above, it is determined that the condition is not abnormal if Equation 3 or Equation 4 holds. However, if processing is performed according to the procedure shown in FIG. 20, it is not possible to detect that the current sensor WW1 is abnormal, and if an abnormality occurs in the current sensor VV2 while the current sensor WW1 is abnormal, the abnormal point The output of the current sensor WW1 necessary for carrying out the diagnosis by the diagnosis means 115 is not normal, and the abnormal point diagnosis means 115 can not be completed normally.
 そこで、異常検出手段114は、対となった電流センサの全てが正常であると診断後に、以下の条件を満たすかどうか都度調査することで、電流センサWW1に異常がないか予め調査してもよい。
 |UU1+VV1+WW1-3C|<S2  …(式5)
 この結果、電流センサWW1に異常がないか常に監視することができる。電流センサWW1から得られたWW1が正常か異常かという診断結果により、最初に電流センサWW1だけが異常であると診断されれば、異常個所診断手段115を実施せずに、電流制御を停止して車両を停止させるという対処がとれ、U相かV相の電流センサのうちいずれか一つが異常である際に電流センサWW1は直前まで正常であったと診断されれば、電流センサWW1の結果を信頼するという対処がとれる。
Therefore, after diagnosing that all the paired current sensors are normal, the abnormality detection unit 114 checks in advance whether there is an abnormality in the current sensor WW1 in advance by checking whether the following conditions are satisfied. Good.
| UU1 + VV1 + WW1-3C | <S2 (Equation 5)
As a result, the current sensor WW1 can always be monitored for any abnormality. If it is first diagnosed that only the current sensor WW1 is abnormal based on the diagnosis result of whether the WW1 obtained from the current sensor WW1 is normal or abnormal, the current control is stopped without implementing the abnormal point diagnosis means 115. If it is determined that the current sensor WW1 is normal until just before any one of the U-phase and V-phase current sensors is abnormal, the result of the current sensor WW1 is You can take measures to trust.
 <電流センサのオフセットを変数にする例>
 ここまで、電流センサのオフセットとして定数Cを使用してきたが、使用する電流センサによってはオフセットに機差または温度により変化する、その差が制御性能の悪化の原因となるため、制御中でのオフセットの実測値を随時更新する方法が考えられる。そこで、先の異常検出手段114および異常個所診断手段115で用いるオフセットは、定数ではなく、実測によって更新される数値を用いてもよい。
<Example of using current sensor offset as variable>
So far, constant C has been used as the offset of the current sensor, but depending on the current sensor used, the offset may change due to the machine difference or temperature, and this difference causes the deterioration of control performance. It is conceivable to update the actual measured value of. Therefore, the offsets used in the abnormality detection means 114 and the abnormality point diagnosis means 115 described above may not be constants but may be numerical values updated by measurement.
 <例示した以外の構成>
 ここまで、二相に二個ずつ、一相に一つの計五個の電流センサを使用する構成を示した。しかし、三相それぞれの相に、対となる二つずつの計六個の電流センサを使用し、全ての相について異常検出手段114により異常がないかを診断し、異常と診断されて異常個所診断手段115により異常個所が特定された際も、例えば一個の電流センサの異常の場合は、残る五個の電流センサで、ここまでで示した手順に従って演算を行って、より冗長度を高めてもよい。なお、二相に二つずつだけ電流センサを取り付け残りの一相に電流センサを取り付けない場合は、異常個所診断手段115にて提案する三相の和が零になる関係を用いた異常個所の判定方法を用いることができない。
<Configurations other than those illustrated>
Up to this point, a configuration using a total of five current sensors, two in two phases and one in one phase has been shown. However, a total of six current sensors forming a pair are used for each of the three phases, and all phases are diagnosed by the abnormality detection means 114 for any abnormality, and the abnormality is diagnosed and the abnormality is detected. Even when an abnormality is identified by the diagnosis unit 115, for example, in the case of an abnormality in one current sensor, the remaining five current sensors perform calculations according to the procedure described above to further increase redundancy. It is also good. If only two current sensors are attached to the two phases and no current sensor is attached to the remaining one phase, the abnormal point using the relation that the sum of the three phases proposed in the abnormal point diagnosis means 115 is zero is used. The determination method can not be used.
 図21に示すように、電流センサとして、電流の向きが相反する方向に電流をそれぞれ検出する二個の対となる電流センサを、互いに対向する向きに、且つ、三相におけるいずれか二相(この例ではU相,V相)にそれぞれ備え、残りの一相(この例ではW相)に電流センサを取り付けない構成にしてもよい。 As shown in FIG. 21, as a current sensor, two pairs of current sensors that respectively detect current in opposite directions of the current are directed to face each other and any two phases in three phases ( In this example, U-phase and V-phase may be respectively provided, and the current sensor may not be attached to the other one phase (W-phase in this example).
 ここでは、U相につき、対向する二つの電流センサとして電流センサUU1,UU2が取り付けられ、V相につき、対向する二つの電流センサとして電流センサVV1,VV2が取り付けられているものとする。この場合に、異常検出手段114(図17)は、以下の条件式を満たすかどうかの判定を行う。以下、電流センサUU1,UU2,VV1,VV2から得られる値(電圧)は、それぞれUU1,UU2,VV1,VV2として以下に示す。 Here, it is assumed that current sensors UU1 and UU2 are attached as two opposing current sensors for the U-phase, and current sensors VV1 and VV2 are attached as two opposing current sensors for the V-phase. In this case, the abnormality detection means 114 (FIG. 17) determines whether the following conditional expressions are satisfied. Hereinafter, values (voltages) obtained from the current sensors UU1, UU2, VV1, and VV2 are shown as UU1, UU2, VV1, and VV2, respectively.
 |UU1+UU2-2C|<S1   …(式6)
 |VV1+VV2-2C|<S1   …(式7)
 このとき、各式の判定結果が、式6:真、式7:偽であったとする。よってU相の電流センサの出力の差異は許容できる範囲であり異常は認められない。また式7の左辺の演算結果が異常と判定する閾値であるS1を超えており、V相の電流センサの出力は、得られた結果の絶対値が大きく異なっているか、予め定められたオフセット値Cを大きく逸脱していることが予想され、異常と診断される。オフセット値の逸脱は、電流センサに供給されるべき電源から電力が供給されない状態となったとき、出力がゼロとなる等が考えられる。
| UU1 + UU2-2C | <S1 (Equation 6)
| VV1 + VV2-2C | <S1 (Equation 7)
At this time, it is assumed that the determination result of each expression is Expression 6: True, Expression 7: False. Therefore, the difference in the output of the U-phase current sensor is within an acceptable range, and no abnormality is recognized. In addition, the calculation result on the left side of Equation 7 exceeds S1 which is a threshold for determining abnormality, and the output of the V-phase current sensor has a significantly different absolute value of the obtained result or a predetermined offset value A large deviation from C is expected, and it is diagnosed as abnormal. The deviation of the offset value may be, for example, an output of zero when power is not supplied from the power supply to be supplied to the current sensor.
 以上の処理を行うことで、一相につき一対ずつ対向して取り付けられた電流センサについて、その相の電流センサのうちいずれかが異常となっているか否かを診断可能である。結果を表5に示す。表5において丸印は正常、×印は異常を表す。
Figure JPOXMLDOC01-appb-T000005
By performing the above-described process, it is possible to diagnose whether or not any one of the current sensors in the phase is abnormal with respect to the current sensors attached to each other so as to face each other in pairs. The results are shown in Table 5. In Table 5, the circle indicates normal, and the x indicates abnormality.
Figure JPOXMLDOC01-appb-T000005
 <異常個所診断手段の具体的動作>
 ここまでで、異常検出手段114(図17)の診断によって、U相に取り付けられた対となる電流センサは共に正常で、V相に取り付けられた対となる電流センサのうち、どちらかが異常であると診断されている。
 異常検出手段114(図17)では、その相で異常である電流センサがあるかどうかは診断できても、その相の対となる電流センサのうち、どちらの電流センサが異常であるかは判別できない。そこで、異常個所診断手段115(図17)では、これを判別するための処理を行う。
<Concrete operation of the abnormal point diagnostic means>
At this point, according to the diagnosis of the abnormality detection means 114 (FIG. 17), the paired current sensors attached to the U phase are both normal, and one of the paired current sensors attached to the V phase is abnormal Have been diagnosed.
Although the abnormality detection means 114 (FIG. 17) can diagnose whether there is a current sensor that is abnormal in that phase, it is possible to determine which one of the current sensors that is the pair of the phase is abnormal. Can not. Therefore, the abnormal point diagnosis means 115 (FIG. 17) performs a process to determine this.
 異常個所診断手段115(図17)は、以下に示すように、電流センサを取り付けた相(この例ではU相とV相)にのみ異常個所診断電流として電流が流れるように、電流駆動回路108を動作させ、前記異常個所診断電流を電流センサで検出することで、異常である電流センサを特定する。
 U相とV相にのみ電流を流すには、U相のスイッチング素子112(図17)のハイ側と、V相のスイッチング素子112(図17)のロー側、W相のスイッチング素子112(図17)は共にオフとすることで実現する。このとき、三相交流電流の和は零になり、W相の電流が零であることから、以下の関係となる。
The abnormal point diagnosing means 115 (FIG. 17) is a current driving circuit 108 so that a current flows as an abnormal point diagnostic current only in the phase (in this example, the U phase and the V phase in this example) to which the current sensor is attached. Is operated, and the abnormal point diagnostic current is detected by the current sensor to identify the abnormal current sensor.
To flow current only to the U and V phases, the high side of the U phase switching element 112 (FIG. 17) and the low side of the V phase switching element 112 (FIG. 17), W phase switching element 112 (FIG. 17) is realized by turning off both. At this time, since the sum of the three-phase alternating current is zero and the W-phase current is zero, the following relationship is established.
 (U相電流)+(V相電流)+(W相電流)=0 …(式8)
 ここでW相電流=0より、
 (U相電流)=-(V相電流)         …(式9)
 よって、理想的にはUU1-VV1=0、UU2-VV2=0であるが、実際には、電流センサの誤差またはノイズによって「零」から差が生じるため、電流センサの誤差の保証値およびノイズレベルを参考にして許容できる差の閾値S2を定めておく。よって、異常個所診断手段115(図17)は、以下の条件式を満たすかどうかの判定を行う。
 |UU1-VV1|<S2     …(式10)
 |UU2-VV2|<S2     …(式11)
(U-phase current) + (V-phase current) + (W-phase current) = 0 ... (Equation 8)
Here, from W-phase current = 0,
(U-phase current) =-(V-phase current) ... (Equation 9)
Therefore, although ideally UU1-VV1 = 0 and UU2-VV2 = 0, in reality, the error or noise of the current sensor causes a difference from “zero”, so the error value of the current sensor and the noise The threshold value S2 of the allowable difference is determined with reference to the level. Therefore, the abnormal point diagnosis means 115 (FIG. 17) determines whether the following conditional expression is satisfied.
| UU1-VV1 | <S2 (Equation 10)
| UU2-VV2 | <S2 (Equation 11)
 以上の条件式において、式10:真、式11:偽とすると、電流センサUU2もしくは電流センサVV2が異常であることがわかる。ここで、異常検出手段114(図17)よりV相の電流センサに異常があることがわかっているので、電流センサVV2が異常と判別できる。以上の処理と異常検出手段114(図17)の処理結果を組み合わせることで、どの電流センサが異常であるかを特定することができる。異常診断を行った結果を、各電流センサの状態を格納する変数に記録して、以降の演算で使用するかどうかの判断基準とする。 In the above conditional expressions, when Expression 10: True, Expression 11: False, it is understood that the current sensor UU2 or the current sensor VV2 is abnormal. Here, since it is known from the abnormality detection means 114 (FIG. 17) that there is an abnormality in the V-phase current sensor, it is possible to determine that the current sensor VV2 is abnormal. By combining the above processing with the processing result of the abnormality detection means 114 (FIG. 17), it is possible to specify which current sensor is abnormal. The result of the abnormality diagnosis is recorded in a variable that stores the state of each current sensor, and is used as a determination standard of whether or not to use in the subsequent calculation.
 以上の内容をまとめると、表6となる。表6において丸印は正常、×印は異常を表す。
Figure JPOXMLDOC01-appb-T000006
 その他第2の実施形態と同様の構成を有し、第2の実施形態と同様の作用効果を奏する。また図21の構成によれば、第2の実施形態よりも電流センサの個数を低減することでコスト低減を図れる。
Table 6 is the summary of the above contents. In Table 6, the circle indicates normal, and the x indicates abnormality.
Figure JPOXMLDOC01-appb-T000006
The other configuration is the same as that of the second embodiment, and the same function and effect as the second embodiment can be obtained. Further, according to the configuration of FIG. 21, cost reduction can be achieved by reducing the number of current sensors compared to the second embodiment.
 いずれかの実施形態に係るモータ駆動装置を備えた電気自動車としては、前述の一モータオンボードタイプに限定されるものではない。例えば、図22Aに示すように、車体101に二台のモータ104,104および各モータ104に対応する減速機を設け、これらモータ104,104により左右の車輪103,103を駆動する二モータオンボードタイプの電気自動車に、モータ駆動装置106,106を備えてもよい。図22Bに示すように、左右の各車輪102,102が、それぞれインホイールモータ駆動装置IWMを構成するモータ104により駆動されるインホイールモータタイプの電気自動車に、モータ駆動装置106,106を備えてもよい。図22A、図22Bにおいて、モータ104で駆動する左右の車輪は前後輪3,2のいずれであってもよい。また、4輪駆動としてもよい。 The electric vehicle provided with the motor drive device according to any one of the embodiments is not limited to the above-described one motor on board type. For example, as shown in FIG. 22A, a two-motor on board in which two motors 104, 104 and a reduction gear corresponding to each motor 104 are provided on a vehicle body 101 and the left and right wheels 103, 103 are driven by these motors 104, 104. The motor drive 106, 106 may be provided in a type of electric vehicle. As shown in FIG. 22B, the in-wheel motor type electric vehicle in which the left and right wheels 102, 102 are respectively driven by the motor 104 constituting the in-wheel motor drive device IWM is provided with the motor drive devices 106, 106 It is also good. In FIGS. 22A and 22B, the left and right wheels driven by the motor 104 may be either of the front and rear wheels 3 and 2. Also, four-wheel drive may be used.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, although the preferred embodiments have been described with reference to the drawings, various additions, modifications, and deletions can be made without departing from the spirit of the present invention. Therefore, such is also included in the scope of the present invention.
6…モータ
16…パワー回路部(通電回路)
22…モータ駆動制御装置
23…電流検出部
24…異常検出部
26…回転数検出手段
U1,V1,W,U2,V2…電流センサ
104…三相交流モータ
106…モータ駆動装置
108…電流駆動回路
109…制御装置
114…異常検出手段
115…異常個所診断手段
116…差動演算手段
S…電流センサ
6 ... Motor 16 ... Power circuit section (electric circuit)
22 ... motor drive control device 23 ... current detection unit 24 ... abnormality detection unit 26 ... rotational speed detection means U1, V1, W, U2, V2 ... current sensor 104 ... three-phase AC motor 106 ... motor drive device 108 ... current drive circuit 109: Control device 114: Abnormality detection means 115: Abnormality point diagnosis means 116: Differential operation means S: Current sensor

Claims (18)

  1.  U相,V相,W相の三相の電極の系統を、一つの三相のモータ内に、または複数の三相のモータに渡って、複数備えるモータ設備を制御するモータ駆動制御装置であって、
     前記各系統の前記U相,V相,W相を流れる電流を検出する電流センサをすべての相に備え、これら電流センサが検出する電流によって前記各系統を個別に制御するモータ駆動制御部を有し、
     前記各系統の前記U相,V相,W相を流れる電流を検出する電流センサのうち1つを、二つの系統の中の各一相の電流を検出する共通化した電流センサとし、この共通化した電流センサが非接触式電流センサであるモータ駆動制御装置。
    A motor drive control device for controlling a plurality of motor facilities including a plurality of U-phase, V-phase and W-phase three-phase electrode systems in one three-phase motor or across a plurality of three-phase motors ,
    Current sensors for detecting the current flowing through the U phase, V phase and W phase of each system are provided in all phases, and there is a motor drive control unit for individually controlling each system by the current detected by these current sensors. And
    One of the current sensors for detecting the current flowing through the U phase, the V phase and the W phase of each system is a common current sensor for detecting the current of each phase in two systems, and this common Motor drive control device in which the integrated current sensor is a non-contact current sensor.
  2.  請求項1に記載のモータ駆動制御装置において、前記共通化した電流センサと残りの相の電流センサでそれぞれ検出した電流から、三相の電流の和が零であることを利用して、前記共通化した電流センサで検出した電流における、制御対象の系統に流れる電流を算出する電流検出部を備えたモータ駆動制御装置。 The motor drive control device according to claim 1, wherein the current detected by the common current sensor and the current sensors of the remaining phases respectively makes use of the fact that the sum of three-phase currents is zero. A motor drive control device comprising a current detection unit for calculating a current flowing through a control target system among currents detected by the integrated current sensor.
  3.  請求項1または請求項2に記載のモータ駆動制御装置において、前記共通化した電流センサおよび前記残りの相の電流センサでそれぞれ検出した電流の総和が零になるとき、前記共通化した電流センサおよび前記残りの相の電流センサが正常と判定し、前記電流の総和が零にならないとき、前記共通化した電流センサおよび前記残りの相の電流センサのいずれか一方または両方が異常と判定する異常検出部を有するモータ駆動制御装置。 The motor drive control device according to claim 1 or 2, wherein when the sum of currents respectively detected by the common current sensor and the current sensors of the remaining phases becomes zero, the common current sensor and the common current sensor Abnormality detection in which the current sensor in the common phase and the current sensor in the remaining phase are determined as abnormal when the current sensors in the remaining phases are determined to be normal and the sum of the currents does not become zero. Motor drive control device having a control unit.
  4.  請求項1ないし請求項3のいずれか1項に記載のモータ駆動制御装置において、前記モータ駆動制御部は、前記残りの相の電流センサで検出した電流のみ用いて前記各系統を個別に制御するモータ駆動制御装置。 The motor drive control device according to any one of claims 1 to 3, wherein the motor drive control unit individually controls the respective systems using only the current detected by the current sensor of the remaining phase. Motor drive control device.
  5.  請求項3または請求項4に記載のモータ駆動制御装置において、いずれかの電流センサが前記異常検出部により異常と判定されるとき、前記モータ駆動制御部は前記モータを駆動するための全ての系統に接続された通電回路を停止させ、前記異常検出部は、各電流センサで電流を検出して電流が零にならない電流センサを異常と判定するモータ駆動制御装置。 The motor drive control device according to claim 3 or 4, wherein when any one of the current sensors is determined to be abnormal by the abnormality detection unit, the motor drive control unit is all systems for driving the motor. A motor drive control device for stopping a current-carrying circuit connected to the motor drive control device, wherein the abnormality detection unit detects current with each current sensor and determines that the current sensor whose current does not become zero is abnormal.
  6.  請求項3ないし請求項5のいずれか1項に記載のモータ駆動制御装置において、いずれかの電流センサが前記異常検出部により異常と判定されるとき、前記モータ駆動制御部は一つの系統に接続された通電回路を停止させ、前記共通化した電流センサに一相分の電流のみ流れる状態として、前記異常検出部は、電流が流れる系統について、前記共通化した電流センサおよび前記残りの相の電流センサでそれぞれ検出した電流の和が零になるか否かで異常となる電流センサを判定するモータ駆動制御装置。 The motor drive control device according to any one of claims 3 to 5, wherein when any one of the current sensors is determined to be abnormal by the abnormality detection unit, the motor drive control unit is connected to one system. And the abnormality detection unit is configured to stop the current passing through the common current sensor and the current of the remaining phase for the system through which the current flows. A motor drive control device that determines a current sensor that becomes abnormal depending on whether or not the sum of currents respectively detected by the sensor becomes zero.
  7.  請求項6に記載のモータ駆動制御装置において、前記モータ駆動制御部が一つの系統に接続された通電回路を停止させたとき、前記異常検出部は、停止させた前記系統について、前記残りの相の電流センサでそれぞれ検出した電流が零になるか否かで異常となる電流センサを判定するモータ駆動制御装置。 The motor drive control device according to claim 6, wherein when the motor drive control unit stops the energizing circuit connected to one system, the abnormality detection unit is configured to determine the remaining phases of the stopped system. The motor drive control device determines the current sensor which becomes abnormal depending on whether or not the current detected by each of the current sensors becomes zero.
  8.  請求項6または請求項7に記載のモータ駆動制御装置において、いずれかの電流センサが前記異常検出部により異常と判定されるとき、前記モータ駆動制御部は一つの系統に接続された通電回路を停止させ、前記異常検出部は、電流が流れる系統について、前記共通化した電流センサおよび前記残りの相の電流センサでそれぞれ検出した電流の和が零になる系統があるとき、前記共通化した電流センサが正常であると判定するモータ駆動制御装置。 The motor drive control device according to claim 6 or 7, wherein when any one of the current sensors is determined to be abnormal by the abnormality detection unit, the motor drive control unit is configured to have an energizing circuit connected to one system. When there is a system in which the sum of the currents respectively detected by the common current sensor and the current sensors of the remaining phases becomes zero, the abnormality detection unit stops the system in which current flows. Motor drive control unit that determines that the sensor is normal.
  9.  請求項3ないし請求項8のいずれか1項に記載のモータ駆動制御装置において、前記モータの回転数を検出する回転数検出手段を備え、前記異常検出部は、前記回転数検出手段で検出された回転数から定められた条件に従って逆起電圧を算出し、この逆起電圧が電源電圧を上回ってないときに異常検出を行うモータ駆動制御装置。 The motor drive control device according to any one of claims 3 to 8, further comprising: a rotation number detection unit that detects the rotation number of the motor, wherein the abnormality detection unit is detected by the rotation number detection unit. A motor drive control device that calculates a back electromotive force according to a condition determined from the number of revolutions, and performs abnormality detection when the back electromotive voltage does not exceed the power supply voltage.
  10.  請求項6ないし請求項8のいずれか1項に記載のモータ駆動制御装置において、前記モータ設備が二つ以上のモータを備え、前記モータ駆動制御部は、複数あるモータのうちの一部のモータの系統に接続された通電回路を停止させたとき、通電回路を停止していないモータの指令トルクに対し、通電回路を停止させたモータの指令トルク分を増やすモータ駆動制御装置。 The motor drive control device according to any one of claims 6 to 8, wherein the motor equipment includes two or more motors, and the motor drive control unit is a part of a plurality of motors. And a motor drive control device for increasing the command torque of the motor having the energizing circuit stopped with respect to the command torque of the motor not having the energizing circuit stopped when the energizing circuit connected to the system is stopped.
  11.  請求項3ないし請求項10のいずれか1項に記載のモータ駆動制御装置において、いずれか一つの系統の一つの相の電流を検出する電流センサが前記異常検出部により異常と判定されるとき、前記モータ駆動制御部は、前記一つの系統の他の相を検出する個別の電流センサ、または、別の系統の相の電流を検出する個別の電流センサおよび共通化した電流センサの和から、前記一つの系統に接続された通電回路の共通化した電流センサに流れる相の電流を算出し、電流制御を行うモータ駆動制御装置。 The motor drive control device according to any one of claims 3 to 10, wherein the abnormality detection unit determines that the current sensor that detects the current of one phase of any one system is abnormal. The motor drive control unit may use the sum of an individual current sensor that detects another phase of the one system, or an individual current sensor that detects the current of another system phase and a common current sensor. A motor drive control device that performs current control by calculating the current of the phase flowing to the common current sensor of the energizing circuit connected to one system.
  12.  電気自動車の走行用駆動源となる三相交流モータを駆動するモータ駆動装置であって、電流駆動回路と、前記三相交流モータに流れる電流を検出する電流センサと、与えられるトルク指令および前記電流センサで検出された電流に基づいて前記電流駆動回路に電流の駆動信号を与える制御装置と、を備え、
     前記電流センサとして、電流の大きさと向きを検出可能な二個で対となる電流センサを、互いに対向する向きに、且つ、三相におけるいずれか二相にそれぞれ備え、
     前記制御装置は、前記対の電流センサを備える前記二相における各相につき、前記対となる電流センサでそれぞれ検出された電流の差分をとって、前記対となる電流センサの出力に重畳された同相ノイズを相殺し、得られた電流値をそれぞれ用いて電流制御を行う差動演算手段を有するモータ駆動装置。
    A motor drive device for driving a three-phase AC motor as a drive source for traveling an electric vehicle, comprising: a current drive circuit, a current sensor detecting a current flowing through the three-phase AC motor, a torque command given and the current A control device for providing a drive signal of the current to the current drive circuit based on the current detected by the sensor;
    As the current sensor, two pairs of current sensors capable of detecting the magnitude and the direction of the current are provided in directions facing each other and in any two phases in three phases, respectively.
    The control device obtains the difference between currents respectively detected by the pair of current sensors for each phase in the two phases including the pair of current sensors, and superimposes them on the output of the pair of current sensors A motor drive device comprising: differential operation means for performing current control by canceling out common mode noise and using obtained current values.
  13.  請求項12に記載のモータ駆動装置において、前記制御装置は、前記対となる電流センサの出力を取り込み、得られた電流値が予め定めた条件式を満たすかを判定し、前記電流センサの異常を検出する異常検出手段を有するモータ駆動装置。 The motor drive device according to claim 12, wherein the control device takes in the output of the current sensor as the pair, determines whether the obtained current value satisfies a predetermined conditional expression, and the abnormality of the current sensor Motor drive device having an abnormality detection means for detecting
  14.  請求項13に記載のモータ駆動装置において、前記異常検出手段は、前記対となる電流センサの出力を加算して得られた電流値と閾値の差異が生じているとき、前記対となる電流センサのいずれか一方の電流センサが異常であると診断するモータ駆動装置。 14. The motor drive device according to claim 13, wherein the abnormality detection unit detects the current sensor as a pair when there is a difference between the current value obtained by adding the outputs of the pair of current sensors and a threshold value. A motor drive device that diagnoses that one of the current sensors is abnormal.
  15.  請求項14に記載のモータ駆動装置において、前記制御装置は、前記異常検出手段により前記対となる電流センサのいずれか一方の電流センサが異常と診断されたとき、電流センサを備えた相にのみ異常個所診断電流として電流を流すように、前記電流駆動回路を動作させ、前記異常個所診断電流を前記電流センサで検出することで、異常である電流センサを特定する異常個所診断手段を有するモータ駆動装置。 The motor drive device according to claim 14, wherein the control device is configured to detect only a phase provided with a current sensor when one of the current sensors of the current sensors to be paired is judged to be abnormal by the abnormality detection means. A motor drive having abnormal point diagnosis means for specifying a current sensor which is abnormal by operating the current drive circuit so that current flows as an abnormal point diagnosis current and detecting the abnormal point diagnosis current by the current sensor. apparatus.
  16.  請求項12ないし請求項14のいずれか1項に記載のモータ駆動装置において、前記電流センサは、前記二相に備えた前記対の電流センサと、前記三相の残りの一相に流れる電流を検出する電流センサとを有し、
     前記制御装置は、前記三相にそれぞれ備えた前記電流センサの出力を、各相から一つずつの出力の和を取って、和が零とならずに閾値を超えるとき、いずれかの電流センサに異常が生じていると判断し、前記和を取る組み合わせを変えることで、異常である電流センサを特定する異常個所診断手段を有するモータ駆動装置。
    The motor drive device according to any one of claims 12 to 14, wherein the current sensor includes the current sensor of the pair in the two phases, and the current flowing in the remaining one phase of the three phases. And a current sensor to detect
    The control device sums the outputs of the respective current sensors respectively provided in the three phases from the respective phases, and when the sum exceeds a threshold without becoming zero, either current sensor A motor drive apparatus having abnormal point diagnosis means for identifying a current sensor that is abnormal by judging that an abnormality has occurred and changing a combination for obtaining the sum.
  17.  請求項15または請求項16のモータ駆動装置において、前記制御装置は、前記異常個所診断手段により異常である電流センサが特定されたとき、前記異常である電流センサの出力電流値は使用せず残りの電流センサの出力電流値を用いて電流制御を行うモータ駆動装置。 The motor drive device according to claim 15 or 16, wherein when the abnormal point diagnostic means identifies a current sensor that is abnormal, the control device does not use the output current value of the abnormal current sensor and remains. The motor drive device which performs current control using the output current value of the current sensor.
  18.  請求項12ないし請求項17のいずれか1項に記載のモータ駆動装置を備えた電気自動車。 An electric vehicle provided with the motor drive device according to any one of claims 12 to 17.
PCT/JP2018/035229 2017-09-26 2018-09-21 Motor drive control device, motor drive device, and electric vehicle having said motor drive device WO2019065545A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-184595 2017-09-26
JP2017184595A JP2019062623A (en) 2017-09-26 2017-09-26 Motor driving control device
JP2018026140A JP2019146304A (en) 2018-02-16 2018-02-16 Motor drive device and electric vehicle with the motor drive device
JP2018-026140 2018-02-16

Publications (1)

Publication Number Publication Date
WO2019065545A1 true WO2019065545A1 (en) 2019-04-04

Family

ID=65903415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035229 WO2019065545A1 (en) 2017-09-26 2018-09-21 Motor drive control device, motor drive device, and electric vehicle having said motor drive device

Country Status (1)

Country Link
WO (1) WO2019065545A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032678A1 (en) * 2021-09-02 2023-03-09 株式会社デンソー Control apparatus for dynamo-electric machine, and program
TWI802375B (en) * 2021-10-15 2023-05-11 台達電子工業股份有限公司 Error elimination system for current sensor and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072973A (en) * 2012-09-28 2014-04-21 Denso Corp Control device of alternating current motor
JP2017022907A (en) * 2015-07-13 2017-01-26 株式会社デンソー Current sensor abnormality diagnosis device
JP2017135872A (en) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 Motor control device
JP2017169247A (en) * 2016-03-14 2017-09-21 Ntn株式会社 Drive control device for wheel independent drive type vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072973A (en) * 2012-09-28 2014-04-21 Denso Corp Control device of alternating current motor
JP2017022907A (en) * 2015-07-13 2017-01-26 株式会社デンソー Current sensor abnormality diagnosis device
JP2017135872A (en) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 Motor control device
JP2017169247A (en) * 2016-03-14 2017-09-21 Ntn株式会社 Drive control device for wheel independent drive type vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032678A1 (en) * 2021-09-02 2023-03-09 株式会社デンソー Control apparatus for dynamo-electric machine, and program
TWI802375B (en) * 2021-10-15 2023-05-11 台達電子工業股份有限公司 Error elimination system for current sensor and method thereof

Similar Documents

Publication Publication Date Title
US10266198B2 (en) Motor control device
JP6211443B2 (en) Electric motor control device
JP5760830B2 (en) Control device for three-phase rotating machine
JP4772116B2 (en) Electric motor control device
US10097129B2 (en) Drive controller and drive control method for electric motor
JP6040963B2 (en) Rotating machine control device
JP5556845B2 (en) Control device for three-phase rotating machine
JP5653386B2 (en) Motor control device and electric power steering device using the same
CN106794861B (en) Motor control device and control method
US9647599B2 (en) Electronic apparatus
JP6220696B2 (en) Electric motor drive control device
CN110417314B (en) Motor control device and electric power steering device
US11081995B2 (en) Motor control device
US20210075301A1 (en) Electric power steering apparatus
US11088645B2 (en) Control device of multi-phase rotating machine
US11205988B2 (en) Motor control device
WO2019065545A1 (en) Motor drive control device, motor drive device, and electric vehicle having said motor drive device
WO2020032084A1 (en) Motor drive device, electric oil pump, and method for detecting failure of motor drive device
CN112415379A (en) Method for diagnosing motor fault
JP2019062623A (en) Motor driving control device
JP7331778B2 (en) motor controller
WO2019131609A1 (en) Inverter abnormality diagnosis device, inverter device, and electric vehicle including inverter device mounted thereon
JP2019146304A (en) Motor drive device and electric vehicle with the motor drive device
JP2019068642A (en) Control device for multi-phase rotary machine
JP7466778B2 (en) MOTOR CONTROL DEVICE, ELECTRIC POWER STEERING DEVICE, AND MOTOR CONTROL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861396

Country of ref document: EP

Kind code of ref document: A1