WO2019065418A1 - Sampling device - Google Patents

Sampling device Download PDF

Info

Publication number
WO2019065418A1
WO2019065418A1 PCT/JP2018/034663 JP2018034663W WO2019065418A1 WO 2019065418 A1 WO2019065418 A1 WO 2019065418A1 JP 2018034663 W JP2018034663 W JP 2018034663W WO 2019065418 A1 WO2019065418 A1 WO 2019065418A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
gas
sampling device
liquid film
cyclone body
Prior art date
Application number
PCT/JP2018/034663
Other languages
French (fr)
Japanese (ja)
Inventor
明威 田村
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2019065418A1 publication Critical patent/WO2019065418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples

Definitions

  • the present disclosure relates to a sampling device that collects particles in a gas using a liquid film.
  • the present disclosure has been made in consideration of such points, and it is an object of the present disclosure to provide a sampling device capable of reliably collecting particles in inhaled gas and in which mist is not released. .
  • the present disclosure relates to a sampling apparatus for collecting particles in a gas with a liquid, comprising: an upper end, a lower end, and a side wall extending between the upper end and the lower end, the rotational symmetric body having a central axis A container forming a space therein, an opening provided in the container, having an opening opening in the container, and an intake hole for taking in gas containing particles, and an exhaust pipe provided in the container And wherein the air inlet is inclined toward an orthogonal plane orthogonal to the central axis of the container and extends into the space.
  • the gas containing particles enters the space of the container from the air inlet, and the spiral flow of gas and liquid is generated in the space of the container. It is a sampling device which forms and forms a liquid film in the side wall inner surface.
  • the present disclosure is a sampling device in which the entire opening of the intake hole opens to a region other than the liquid film, and the gas sucked by the intake hole is ejected to the liquid film.
  • the present disclosure is a sampling device in which an exhaust mechanism is connected to the exhaust pipe.
  • the present disclosure is a sampling device, wherein the air inlet is provided at the upper end of the container.
  • the present disclosure is a sampling device, wherein the liquid film is formed to extend upward from the lower end of the container.
  • the present disclosure is a sampling device, wherein the container is provided with a plurality of intake holes.
  • the present disclosure is a sampling device in which the air intake hole is provided at the upper end of the container, and an opening thereof opens in the space of the container.
  • the present disclosure is a sampling device, wherein the intake hole is provided at the upper end of the container and has a projecting nozzle that protrudes from the surface of the upper end, and the opening is formed at the tip of the projecting nozzle. is there.
  • the liquid can be used to reliably collect particles in the inspiratory gas, and the release of mist can be prevented in advance.
  • FIG. 1A is a side view showing a cyclone body of a sampling device according to a first embodiment.
  • FIG. 1B is a bottom view of the lid taken along line A-A 'of FIG. 1A.
  • FIG. 1C is a view showing a cyclone body, which is a cross-sectional view taken along line B-B 'of FIG. 1B.
  • FIG. 2A is a side view showing a cyclone body of a sampling device according to a second embodiment.
  • FIG. 2B is a bottom view of the lid taken along line A-A 'of FIG. 2A.
  • FIG. 2C is a view showing a cyclone body, which is a cross-sectional view taken along line B-B 'of FIG. 2B.
  • FIG. 3A is a side view showing a cyclone body of a sampling device according to a third embodiment.
  • FIG. 3B is a bottom view of the lid taken along line A-A 'of FIG. 3A.
  • FIG. 3C is a view showing a cyclone body, which is a cross-sectional view taken along line B-B 'of FIG. 3B.
  • FIG. 4 is a perspective view showing a cyclone body.
  • 5 (a) and 5 (b) are schematic diagrams showing the operation of the sampling device according to the present disclosure.
  • FIG. 6A is a side view showing a cyclone body of a sampling device according to a fourth embodiment.
  • FIG. 6B is a perspective view showing the cyclone body of the sampling device according to the fourth embodiment as viewed from the lower end side.
  • the sampling device 10 also includes a cyclone body 21.
  • the cyclone body 21 is a rotationally symmetric body having a central axis (also referred to as an axis) 21A that is a symmetry axis.
  • the terms “upper”, “upper end”, “lower” and “lower end” refer to the cyclone main body 21 of the sampling device 10 according to the present disclosure when the central axis 21A extends in the longitudinal direction. Means “upper”, “upper end”, “lower”, “lower end” (see FIGS. 1A to 1C).
  • Such a sampling device 10 collects particles to be detected in a gas to be inspected in a liquid and samples the particles, and has a portable structure.
  • the sampling device 10 has a cyclone body (also referred to as a container) 21 and a gas introduction unit 22 for introducing a gas into the inside of the cyclone body 21.
  • a cyclone body also referred to as a container
  • a gas introduction unit 22 for introducing a gas into the inside of the cyclone body 21.
  • the cyclone body 21 has a frusto-conical inner surface (hereinafter referred to as a wall surface), and is directed such that the end on the small diameter side is located below the end on the large diameter side.
  • the gas introducing portion 22 and the air intake hole 33 are provided to extend in the tangential direction of the wall surface of the cyclone body 21 in the upper portion of the cyclone body 21.
  • the tangential direction of the wall surface means that the wall surface of the cyclone body 21 is perpendicular to the axis at a portion where gas introduced as will be described later when viewed from above the axis abuts (collides on) the wall surface of the cyclone body 21.
  • the wall surface of the cyclone body 21 is cut at a position between the upper end and the lower end of the cyclone body in the horizontal direction perpendicular to the axis of the cyclone body 21, the tangential direction of the contact circle 50 and the gas
  • the gas introduction portion 22 and the intake hole 33 are arranged such that the direction of the central axis in the longitudinal direction of the intake hole 33 connected to the introduction portion 22 matches.
  • the center of the opening of each intake hole 33 that is, the central axis in the longitudinal direction of each intake hole 33 and the lid with the opening
  • the point cloud intersecting with the lower surface of 32 is arranged concentrically with the contact circle 50 (assumed on the lower surface of the lid above the axis).
  • the axes in the longitudinal direction of the intake holes 33 are 360 degrees when viewed from above the axes. They are arranged concentrically at an angle divided by the number of 22 pairs (combinations).
  • the inclination of the intake hole 33 with respect to the horizontal direction is determined by the distance L1 which is the difference between the contact position of the gas (the height position on the axis, and hence the height of the contact position and the lower surface of the lid with the opening).
  • the tangent circle 50 is determined, and when viewed from above the axis, the distance L2 between the center of the opening of each intake hole 33 and the contact point at the time of drawing the tangent to the abutment circle 50 is determined.
  • the tilt angle is determined from the tangent of the ratio.
  • the inside of the cyclone body 21 is sucked and exhausted to reduce the pressure, and a suction and exhaust is caused to introduce gas so as to swirl in the circumferential direction from the gas introducing portion 22 by differential pressure.
  • a tube 24 is provided.
  • the suction exhaust pipe 24 is coaxially inserted into the upper portion of the cyclone body 21. Further, an exhaust mechanism 41 including a suction and exhaust pump is connected to the suction and exhaust pipe (also referred to as an exhaust pipe) 24.
  • the exhaust mechanism 41 When the exhaust mechanism 41 is operated, the inside of the cyclone body 21 is sucked and exhausted via the suction and exhaust pipe 24 to be decompressed, and the pressure outside the cyclone body 21 is reduced by the pressure difference between the inside and the outside of the cyclone body 21
  • the gas is introduced into the inside of the cyclone body 21 from the gas inlet 22.
  • the gas introduced into the inside of the cyclone body 21 is guided along the wall surface of the cyclone body 21 to form a gas flow that descends while swirling in the circumferential direction, that is, spirally swirls.
  • the particles to be detected in the gas have a relatively large specific gravity, they are separated on the wall surface side of the cyclone body 21 by centrifugal force.
  • the gas component having a relatively low specific gravity reverses the flow in the lower part of the cyclone body 21 by the frusto-conical shape of the wall surface of the cyclone body 21 and forms an upward flow on the central axis side of the cyclone body 21 , And is discharged to the outside through the suction exhaust pipe 24.
  • the inside of the cyclone body 21 is previously filled with the liquid, and the liquid is pushed outward by the air flow that swirls in the circumferential direction, and a liquid film is formed along the wall surface (inner surface) of the cyclone body 21 Mold 40
  • a water level detection unit 25 may be provided on the wall surface of the cyclone body 21 to detect the water level of the film-like liquid.
  • the water level detection unit 25 includes a pair of electrodes exposed inside the cyclone body 21 and a measurement unit that measures the conductivity between the electrodes.
  • the pair of electrodes When the liquid level of the liquid is higher than the height position of the pair of electrodes, the pair of electrodes is energized through the liquid, and the conductivity becomes relatively high.
  • the water level of the liquid is lower than the height position of the pair of electrodes, the pair of electrodes are insulated and the conductivity becomes relatively low.
  • the measurement result in the case where the liquid level of the liquid is higher than the height position of the pair of electrodes and the measurement result in the case where it is low are obtained in advance by experiment, and a value between the two measurement results is determined as a threshold.
  • the measurement result of the measurement unit is higher than the threshold, it is determined that the water level of the liquid is higher than the height position of the pair of electrodes, and when the measurement result of the measurement unit is lower than the threshold, the water level of the liquid is higher than the pair of electrodes It is judged that it is lower than the height position.
  • sampling device 10 will be further described with reference to FIGS. 1A-1C and FIG.
  • FIG. 1A is a side view showing the cyclone body 21 of the sampling device 10
  • FIG. 1B is a bottom view of the lid viewed from the line AA 'in FIG. 1A
  • FIG. 1C is a diagram showing the cyclone body 21. It is a BB 'line sectional view of 1B.
  • FIG. 4 is a perspective view showing the cyclone body 21. As shown in FIG.
  • the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
  • the cyclone body (container) 21 of the sampling device 10 includes a container body 31 forming a frusto-conical space 35 therein and a container body 31. And a lid 32 covering the upper opening.
  • the cyclone body 21 having the container body 31 and the lid 32 is a rotationally symmetric body having a central axis 21A, and the axis 21A extends in the longitudinal direction.
  • the cyclone main body 21 is not limited to the above structure having the container main body 31 and the lid 32 covering the upper opening of the container main body 31.
  • the container main body 31 and the lid 32 are completely formed by a 3D printer or the like. It may have an integrally formed structure.
  • the lid 32 of the cyclone body 21 constitutes the upper end of the cyclone body 21, and the frusto-conical side wall 31 b of the container body 31 constitutes the side wall 31 b of the cyclone body 21. Further, the lower end portion 31 a of the container body 31 constitutes the lower end portion 31 a of the cyclone body 21. Also in this case, the supply unit for supplying water in advance can be formed.
  • the container body 31 and the lid 32 of the cyclone body 21 can be separated from each other, and it is preferable to remove the lid 32 from the container body 31 and discharge the liquid in the container body 31 outward as described later.
  • the liquid in the container main body 31 can be discharged outward from the discharge hole by providing the discharge hole in the lid 32. it can.
  • the gas introducing portion 22 is connected to the lid portion 32 constituting the upper end portion of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the lid portion 32 is connected to the gas introducing portion 22.
  • the gas introducing portion 22 is connected all around the lid 32 along the tangential direction of the wall surface of the cyclone body 21, and each gas introducing portion 22 extends over the entire periphery of the lid 32. It is provided 90 degrees apart. For this reason, in the inside of the lid portion 32, four intake holes 33 are provided at intervals of 90 °, corresponding to the four gas introducing portions 22, respectively.
  • the tangential direction of the wall surface means the tangential direction of the circle formed in the horizontal direction which is perpendicular to the axis at the portion where the introduced gas abuts (collides) the wall surface of the cyclone body 21.
  • the gases introduced from these four lines abut (collide) on the wall surface of the cyclone main body 21 at the same height, and hence viewed from above the axis Preferably, it is along the tangent of the same circle.
  • the gas introducing portion 22 connected to the four intake holes 33 has a diameter larger than the diameter of the intake holes 33 and has a shape which is tapered toward the connection end 33 b of the intake holes 33.
  • the four gas introducing portions 22 may be separated and independent from each other, or may be in communication with each other.
  • an exhaust pipe 24 is attached at a central position of the lid 32.
  • the exhaust pipe 24 extends upward from the space 35 of the container body 31 through the lid 32.
  • the exhaust pipe 24 is connected to an exhaust mechanism 41 including an exhaust pump installed outside as described above.
  • Each intake hole 33 extends in the lid 32 downward at an inclination angle ⁇ of 5 ° to 15 ° with respect to the orthogonal plane 21B orthogonal to the axis 21A of the cyclone body 21.
  • Each intake hole 33 has an opening 33 a that opens into the space 35 of the container body 31.
  • the opening 33 a does not project downward from the lower surface 32 a of the lid 32, and opens in the same plane as the lower surface 32 a.
  • the lower surface 32a extends parallel to the orthogonal plane 21B.
  • the container body 31 of the cyclone body 21 is pre-filled with liquid, and when gas is introduced into the cyclone body 21, a spiral flow of gas and liquid is formed in the cyclone body 21.
  • the liquid film 40 is formed on the inner surface of the cyclone body 21.
  • the liquid film 40 is formed to extend from the lower end to the upper end of the container body 31, that is, across the side wall 31 b of the container body 31 directly under the lid 32 from the lower end 31 a of the container body 31.
  • the lower surface 32 a of the portion 32 is not reached.
  • the inner surface of the cyclone body 21 is preferably subjected to a hydrophilic treatment so that the liquid film 40 can be formed easily and reliably on the inner surface of the cyclone body 21.
  • the opening 33 a of the intake hole 33 provided in the lid 32 is a lower surface 32 a of the lid 32 and is open at a position separated from the side wall of the container body 31. For this reason, the liquid film 40 on the inner surface of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is not rolled up by the suctioned gas and mist is not generated.
  • the intake holes 33 extend downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 contacts the liquid film 40 formed on the inner surface of the opposing container body 31. It will be in contact with you. As a result, particles contained in the intake gas can be reliably attached to the liquid film 40, and the particles can be reliably collected by the liquid film 40.
  • the intake gas ejected from the intake hole 33 can not contact the liquid film 40 in the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles are in the container body 31. It is also conceivable that it is rolled up and discharged from the exhaust pipe 24.
  • the intake gas jetted from the suction holes 33 into the cyclone body 21 is jetted along the tangential direction of the wall surface of the cyclone body 21 in the portion where the gas abuts on the liquid film.
  • a circumferentially rotating gas flow is formed.
  • the particles in the intake gas are directed to the side wall 31 b of the container body 31 by centrifugal force.
  • particles in the intake gas ejected from the intake holes 33 can be collected after being reliably brought into contact with the liquid film 40 and adhering to the liquid film 40.
  • the lid 32 is removed from the container body 31, and the container body 31 is filled with a liquid (for example, water). Thereafter, the lid 32 is attached to the container body 31.
  • a liquid for example, water
  • an exhaust mechanism 41 is connected to the exhaust pipe 24 of the sampling device 10, and a gas (for example, the atmosphere) is taken into the gas introduction unit 22 by the operation of the exhaust mechanism 41 to introduce the gas. It is introduced into the inside of the cyclone body 21 from the part 22.
  • a gas for example, the atmosphere
  • the gas introduced into the inside of the cyclone main body 21 from the gas introduction part 22 is guided along the wall surface of the cyclone main body 21 to turn in the circumferential direction to form a spiral air flow inside the cyclone main body 21. .
  • the liquid inside the cyclone body 21 forms a spiral flow with the gas, and is forced radially outward to form a liquid film 40 along the wall surface of the cyclone body 21.
  • the particles to be detected contained in the gas are separated on the wall surface side of the cyclone body 21 by centrifugal force and collected in the liquid film 40 formed in a film shape.
  • the intake gas introduced from the gas introduction part 22 passes through the intake hole 33 provided in the lid 32 and from the opening 33a of the intake hole 33 into the space 35 of the container main body 31. It is spouted.
  • the liquid in which the particles to be detected are collected on the wall surface of the cyclone body 21 gradually flows downward by gravity and is stored in the lower end portion 31 a of the container body 31.
  • the exhaust mechanism 41 is stopped, and as shown in FIG. 5A, the lid 32 is removed from the container main body 31, and the liquid containing particles stored in the container main body 31 is a sample container. It is poured into the tube 45.
  • particles in the atmosphere can be reliably collected and sampled.
  • FIGS. 2A to 2C a sampling device 10 according to a second embodiment will be described.
  • FIGS. 2A to 2C the same parts as those of the first embodiment shown in FIGS. 1A to 1C and FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • FIG. 2A is a side view showing the cyclone body 21 of the sampling device 10
  • FIG. 2B is a bottom view of the lid viewed from the line AA 'in FIG. 2A
  • FIG. It is a BB 'line sectional view of 2B.
  • the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
  • the cyclone body (container) 21 of the sampling device 10 has a container body 31 forming a frusto-conical space 35 therein and an upper opening of the container body 31. And a cover 32.
  • the gas introducing portion 22 is connected to the lid portion 32 of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the lid portion 32 is connected to the gas introducing portion 22.
  • eight gas inlets 22 are connected all around the lid 32 along the tangential direction of the wall surface of the cyclone body 21, and each gas inlet 22 extends over the entire periphery of the lid 32. It is spaced 45 degrees apart. Therefore, eight intake holes 33 are provided at 45 ° intervals in the inside of the lid 32 corresponding to the eight gas introduction parts 22.
  • an exhaust pipe 24 is attached to the lid 32.
  • the exhaust pipe 24 penetrates the lid 32 from the space 35 of the container main body 31 and extends upward.
  • a water level detection unit 25 is provided at the upper part of the container body 31.
  • Each intake hole 33 extends in the lid 32 downward at an inclination angle ⁇ of 45 ° to 60 ° with respect to the orthogonal plane 21 B orthogonal to the axis 21 A of the cyclone body 21.
  • Each intake hole 33 has an opening 33 a that opens into the space 35 of the container body 31. The opening 33 a does not project downward from the lower surface 32 a of the lid 32 and opens at the same position as the lower surface 32 a.
  • a gas is introduced into the cyclone body 21 from the gas introduction unit 22, and a spiral flow is formed in the cyclone body 21 to form a liquid film 40.
  • the liquid film 40 is formed to extend from the lower end to the upper end of the container body 31, that is, across the side wall 31 b of the container body 31 directly under the lid 32 from the lower end 31 a of the container body 31.
  • the lower surface 32 a of the portion 32 is not reached.
  • the opening 33 a of the intake hole 33 provided in the lid 32 is a lower surface 32 a of the lid 32 and is open at a position separated from the inner surface of the container main body 31.
  • the liquid film 40 on the inner surface of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is not rolled up by the suctioned gas and water mist is not generated. .
  • the intake holes 33 extend downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 contacts the liquid film 40 formed on the inner surface of the opposing container body 31. It will be in contact with you. Therefore, particles contained in the intake gas can be reliably attached to the liquid film 40, and the liquid film 40 can reliably collect the particles.
  • the intake gas ejected from the intake hole 33 can not contact the liquid film 40 in the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles are in the container body 31. It is also conceivable that it is rolled up and discharged from the exhaust pipe 24.
  • the angle ⁇ of the intake holes 33 can be increased to increase the number of the intake holes 33, and the amount of gas that can be processed at one time can be increased.
  • the collision position of the air flow to the wall surface is downward.
  • FIGS. 3A to 3C the same parts as those in the first embodiment shown in FIGS. 1A to 1C and FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • FIG. 3A is a side view showing the cyclone body 21 of the sampling device 10
  • FIG. 3B is a bottom view of the lid viewed from the line AA 'in FIG. 3A
  • FIG. 3C is a diagram showing the cyclone body 21. It is a BB 'sectional view taken on the line 3B.
  • the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
  • the cyclone body (container) 21 of the sampling device 10 has a container body 31 forming a frusto-conical space 35 therein and an upper opening of the container body 31. And a cover 32.
  • the gas introducing portion 22 is connected to the lid portion 32 of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the lid portion 32 is connected to the gas introducing portion 22.
  • one gas inlet 22 is connected to the lid 32.
  • a plurality of gas inlets 22, intake holes 33 and projecting nozzles 36 may be provided.
  • an exhaust pipe 24 is attached to the lid 32.
  • the exhaust pipe 24 penetrates the lid 32 from the space 35 of the container main body 31 and extends upward.
  • a water level detection unit 25 is provided at the upper part of the container body 31.
  • the intake holes 33 extend in the lid 32 downward at an inclination angle ⁇ of 45 ° to 60 ° with respect to the orthogonal plane 21 B orthogonal to the axis 21 A of the cyclone body 21.
  • the intake hole 23 has a projecting nozzle 36 projecting from the lower surface 32a of the lid 32 to the space 35 of the container main body 31, and the lower end of the projecting nozzle 36 is opened to form an opening 33a.
  • the opening 33 a is located at the lower end of the projecting nozzle 36 projecting downward from the lower surface 32 a of the lid 32.
  • a gas is introduced into the cyclone body 21 from the gas introduction portion 22 on the inner surface of the cyclone body 21, and a spiral flow is formed in the cyclone body 21 to form a liquid film 40.
  • the liquid film 40 is formed so as to extend from the lower end to the upper end of the container body 31, that is, from the lower end of the container body 31 to the lower surface 32 a of the lid 32.
  • the opening 33a of the intake hole 33 provided in the lid 32 is located at the lower end of the projecting nozzle 36 projecting from the lower surface 32a of the lid 32 and opens at a position spaced from the inner surface of the container body 31 doing. For this reason, the liquid film 40 on the inner surface of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is not rolled up by the suctioned gas and mist is not generated.
  • the intake holes 33 extend downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 contacts the liquid film 40 formed on the inner surface of the opposing container body 31. It will be in contact with you. Therefore, particles contained in the intake gas can be reliably attached to the liquid film 40, and the liquid film 40 can reliably collect the particles.
  • the intake gas ejected from the intake hole 33 can not contact the liquid film 40 in the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles are in the container body 31. It is also conceivable that it is rolled up and discharged from the exhaust pipe 24.
  • FIGS. 6A and 6B the same parts as those of the first embodiment shown in FIGS. 1A to 1C and FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • FIG. 6A is a side view showing the cyclone body 21 of the sampling device 10
  • FIG. 6B is a perspective view seen from the lower end side thereof.
  • the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
  • the cyclone main body (container) 21 of the sampling device 10 has a container main body 31 formed of a rotationally symmetric body that forms a cylindrical space 35 inside and has a central axis 21A. ing.
  • the container body 31 is sealed as a whole, and has a lower end 31a, an upper end 31c, and a side wall 31b extending between the lower end 31a and the upper end 31c.
  • the gas introducing portion 22 is connected to the upper end portion 31 c of the container body 31 of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the upper end portion 31 c is connected to the gas introducing portion 22.
  • four gas introducing portions 22 are connected all around the upper end portion 31c along the tangential direction of the wall surface of the cyclone body 21, and each gas introducing portion 22 extends over the entire periphery of the upper end portion 31c. It is provided 90 degrees apart. For this reason, in the upper end portion 31c, four intake holes 33 are provided at intervals of 90 °, corresponding to the four gas introduction portions 22, respectively.
  • an exhaust pipe 24 is attached to a central position of the upper end portion 31c, and the exhaust pipe 24 extends upward from the space 35 of the container body 31 through the upper end portion 31c. Further, a water level detection unit 25 is provided at the upper part of the container body 31.
  • Each intake hole 33 extends in the lid 32 downward at an inclination angle ⁇ of 5 ° to 15 ° with respect to the orthogonal plane 21B orthogonal to the axis 21A of the cyclone body 21.
  • Each intake hole 23 has an opening 33 a that opens to the space 35 of the container body 31. The opening 33a does not project downward from the lower surface 31c1 of the upper end portion 31c, and opens in the same plane as the lower surface 31c1.
  • a gas is introduced into the cyclone body 21 from the gas introduction unit 22, and a spiral flow is formed in the cyclone body 21, whereby a liquid film 40 is formed.
  • the liquid film 40 is formed to extend from the lower end to the upper end of the side wall 31 b of the container body 31, but does not reach the lower surface 31 c 1 of the upper end portion 31 c.
  • the opening 33a of the intake hole 33 provided in the upper end 31c of the container body 31 is a lower surface 31c1 of the upper end 31c and is open at a position separated from the side wall 31b of the container body 31.
  • the liquid film 40 on the inner surface of the side wall 31b of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is rolled up by the suctioned gas and mist is generated. Absent.
  • the intake gas ejected from the intake holes 33 is a liquid formed on the inner surface of the side wall 31 b of the opposing container body 31. It will be in contact with the membrane 40. Therefore, particles contained in the intake gas are directed to the liquid film 40 by centrifugal force, whereby the particles can be reliably adhered to the liquid film 40, and the particles can be reliably collected by the liquid film 40.
  • the cyclone body 21 shown in FIG. 6 may be used by repeatedly pulling the upper end 31c and the lower end 31a up and down, and may bring the gas introduction portion 22 and the exhaust pipe 24 downward.
  • a discharge hole 42 sealed at all times by the plug 43 is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cyclones (AREA)

Abstract

In order to enable the reliable collection of particles in a suctioned gas and prevent the discharge of water mist, this sampling device (10) is provided with a container (21), air intake holes (33) provided in the container (21), and an exhaust pipe (24). The air intake holes (33) extend downward with respect to an orthogonal surface (21B) that is orthogonal to the axial line (21A) of the container (21). A spiral flow of a gas and a liquid is formed inside the container (21) by exhausting the gas from the exhaust pipe (24), and a liquid film (40) is formed inside the container (21). An opening (33a) of each of the air intake holes (33) opens in a region other than the liquid film (40), and the suctioned gas is jetted from the air intake holes (33) toward the liquid film (40).

Description

サンプリング装置Sampling device
 本開示は、液膜を用いて気体中の粒子を捕集するサンプリング装置に関する。 The present disclosure relates to a sampling device that collects particles in a gas using a liquid film.
 従来より、円筒状空間を形成する容器を備えたサンプリング装置が知られている。このサンプリング装置では、吸気気体中の粒子を液膜に付着させて捕集している(特許文献1参照)。 Conventionally, a sampling device provided with a container forming a cylindrical space is known. In this sampling device, particles in the intake gas are attached to the liquid film and collected (see Patent Document 1).
 しかしながら吸気孔が液膜近傍に開口していると、吸気気体によって液膜からミストが生成し、このミストが排気管から放出され捕集効率が低下するといった問題がある。他方、吸気孔からの吸気気体が液膜から離れた液膜が形成されていない部位に当たると、吸気気体中の粒子を水膜によって確実に捕集することができない。 However, when the intake holes are opened in the vicinity of the liquid film, there is a problem that mist is generated from the liquid film by the intake gas, and this mist is released from the exhaust pipe to lower the collection efficiency. On the other hand, if the inspiratory gas from the inspiratory holes strikes a portion where the liquid film separated from the liquid film is not formed, particles in the inspiratory gas can not be reliably collected by the water film.
特表2006-526401号JP 2006-526401
 本開示はこのような点を考慮してなされたものであり、吸気気体中の粒子を確実に捕集することができ、ミストが放出されることがないサンプリング装置を提供することを目的とする。 The present disclosure has been made in consideration of such points, and it is an object of the present disclosure to provide a sampling device capable of reliably collecting particles in inhaled gas and in which mist is not released. .
 本開示は、液体により気体中の粒子を捕集するサンプリング装置において、上端部と、下端部と、前記上端部と下端部との間に延びる側壁とを有し、中心軸線をもつ回転対称体からなるとともに、内部に空間を形成する容器と、前記容器に設けられ、前記容器内に開口する開口部を有し、粒子を含む気体を吸気する吸気孔と、前記容器に設けられた排気管とを備え、前記吸気孔は前記容器の中心軸線に直交する直交面に対して傾斜して前記空間内へ向かって延びる、サンプリング装置である。 The present disclosure relates to a sampling apparatus for collecting particles in a gas with a liquid, comprising: an upper end, a lower end, and a side wall extending between the upper end and the lower end, the rotational symmetric body having a central axis A container forming a space therein, an opening provided in the container, having an opening opening in the container, and an intake hole for taking in gas containing particles, and an exhaust pipe provided in the container And wherein the air inlet is inclined toward an orthogonal plane orthogonal to the central axis of the container and extends into the space.
 本開示は、前記排気管により前記容器の空間内の気体を排気した際、前記吸気孔から粒子を含む気体が前記容器の空間内に入り、前記容器の空間内で気体および液体のらせん流を形成して前記側壁内面に液膜を形成する、サンプリング装置である。 According to the present disclosure, when the gas in the space of the container is exhausted by the exhaust pipe, the gas containing particles enters the space of the container from the air inlet, and the spiral flow of gas and liquid is generated in the space of the container. It is a sampling device which forms and forms a liquid film in the side wall inner surface.
 本開示は、前記吸気孔の開口部全域は前記液膜以外の領域に開口するとともに、前記吸気孔により吸気した気体を前記液膜に噴出する、サンプリング装置である。 The present disclosure is a sampling device in which the entire opening of the intake hole opens to a region other than the liquid film, and the gas sucked by the intake hole is ejected to the liquid film.
 本開示は、前記排気管に排気機構を接続した、サンプリング装置である。 The present disclosure is a sampling device in which an exhaust mechanism is connected to the exhaust pipe.
 本開示は、前記吸気孔は前記容器の前記上端部に設けられている、サンプリング装置である。 The present disclosure is a sampling device, wherein the air inlet is provided at the upper end of the container.
 本開示は、前記液膜は前記容器の前記下端部から上方に延びるよう形成される、サンプリング装置である。 The present disclosure is a sampling device, wherein the liquid film is formed to extend upward from the lower end of the container.
 本開示は、前記容器に複数の吸気孔が設けられている、サンプリング装置である。 The present disclosure is a sampling device, wherein the container is provided with a plurality of intake holes.
 本開示は、前記吸気孔は前記容器の前記上端部に設けられ、その開口部は前記容器の前記空間に開口する、サンプリング装置である。 The present disclosure is a sampling device in which the air intake hole is provided at the upper end of the container, and an opening thereof opens in the space of the container.
 本開示は、前記吸気孔は前記容器の前記上端部に設けられるとともに、前記上端部の表面から突出する突出ノズルを有し、この突出ノズル先端に前記開口部が形成されている、サンプリング装置である。 The present disclosure is a sampling device, wherein the intake hole is provided at the upper end of the container and has a projecting nozzle that protrudes from the surface of the upper end, and the opening is formed at the tip of the projecting nozzle. is there.
 本開示によれば、液体を用いて吸気気体中の粒子を確実に捕集することができ、かつミストの放出を未然に防ぐことができる。 According to the present disclosure, the liquid can be used to reliably collect particles in the inspiratory gas, and the release of mist can be prevented in advance.
図1Aは、第1の実施の形態によるサンプリング装置のサイクロン本体を示す側面図である。FIG. 1A is a side view showing a cyclone body of a sampling device according to a first embodiment. 図1Bは、図1AのA-A’線からみた蓋部の底面図である。FIG. 1B is a bottom view of the lid taken along line A-A 'of FIG. 1A. 図1Cは、サイクロン本体を示す図であって、図1BのB-B’線断面図である。FIG. 1C is a view showing a cyclone body, which is a cross-sectional view taken along line B-B 'of FIG. 1B. 図2Aは、第2の実施の形態によるサンプリング装置のサイクロン本体を示す側面図である。FIG. 2A is a side view showing a cyclone body of a sampling device according to a second embodiment. 図2Bは、図2AのA-A’線からみた蓋部の底面図である。FIG. 2B is a bottom view of the lid taken along line A-A 'of FIG. 2A. 図2Cは、サイクロン本体を示す図であって、図2BのB-B’線断面図である。FIG. 2C is a view showing a cyclone body, which is a cross-sectional view taken along line B-B 'of FIG. 2B. 図3Aは、第3の実施の形態によるサンプリング装置のサイクロン本体を示す側面図である。FIG. 3A is a side view showing a cyclone body of a sampling device according to a third embodiment. 図3Bは、図3AのA-A’線からみた蓋部の底面図である。FIG. 3B is a bottom view of the lid taken along line A-A 'of FIG. 3A. 図3Cは、サイクロン本体を示す図であって、図3BのB-B’線断面図である。FIG. 3C is a view showing a cyclone body, which is a cross-sectional view taken along line B-B 'of FIG. 3B. 図4は、サイクロン本体を示す斜視図である。FIG. 4 is a perspective view showing a cyclone body. 図5(a)(b)は、本開示によるサンプリング装置の作用を示す概略図である。5 (a) and 5 (b) are schematic diagrams showing the operation of the sampling device according to the present disclosure. 図6Aは、第4の実施の形態によるサンプリング装置のサイクロン本体を示す側面図である。FIG. 6A is a side view showing a cyclone body of a sampling device according to a fourth embodiment. 図6Bは、第4の実施の形態によるサンプリング装置のサイクロン本体を示す下端部側からみた斜視図である。FIG. 6B is a perspective view showing the cyclone body of the sampling device according to the fourth embodiment as viewed from the lower end side.
<第1の実施の形態>
 以下に、本開示の第1の実施の形態を詳細に説明する。なお、本実施の形態により開示する発明が限定されるものではない。また以下に示す実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
First Embodiment
Hereinafter, the first embodiment of the present disclosure will be described in detail. Note that the disclosed invention is not limited by the present embodiment. In addition, the embodiments described below can be combined appropriately as long as the processing contents do not contradict each other.
 また、本開示によるサンプリング装置10はサイクロン本体21を有し、このサイクロン本体21は、対称軸である中心軸線(軸線ともいう)21Aをもつ回転対称体からなる。本明細書中において、「上方」、「上端」、「下方」、「下端」の用語は、本開示によるサンプリング装置10のサイクロン本体21を中心軸線21Aが縦方向に延びるよう設置した場合における「上方」、「上端」、「下方」、「下端」を意味する (図1A~図1C参照)。 The sampling device 10 according to the present disclosure also includes a cyclone body 21. The cyclone body 21 is a rotationally symmetric body having a central axis (also referred to as an axis) 21A that is a symmetry axis. In the present specification, the terms "upper", "upper end", "lower" and "lower end" refer to the cyclone main body 21 of the sampling device 10 according to the present disclosure when the central axis 21A extends in the longitudinal direction. Means “upper”, “upper end”, “lower”, “lower end” (see FIGS. 1A to 1C).
 このようなサンプリング装置10は、検査対象の気体中の検出対象粒子を液体中に捕集してサンプリングするものであり、携帯可能な構造をもつ。 Such a sampling device 10 collects particles to be detected in a gas to be inspected in a liquid and samples the particles, and has a portable structure.
 本実施の形態では、図1A~図1Cに示すように、サンプリング装置10はサイクロン本体(容器ともいう)21と、サイクロン本体21の内部に気体を導入するための気体導入部22とを有する。 In the present embodiment, as shown in FIGS. 1A to 1C, the sampling device 10 has a cyclone body (also referred to as a container) 21 and a gas introduction unit 22 for introducing a gas into the inside of the cyclone body 21.
 サイクロン本体21は、切頭円錐形の内面(以下、壁面という)を有しており、小径側の端部が大径側の端部より下方に位置するように向けられている。 The cyclone body 21 has a frusto-conical inner surface (hereinafter referred to as a wall surface), and is directed such that the end on the small diameter side is located below the end on the large diameter side.
 気体導入部22および吸気孔33は、サイクロン本体21の上方部においてサイクロン本体21の壁面の接線方向に延びるように設けられている。ここで壁面の接線方向とは、軸線上方から見たときに後述するように導入する気体がサイクロン本体21の壁面に当接する(衝突する)部分においてサイクロン本体21の壁面を軸線に対して垂直方向となる、水平方向に切り取った場合に出来る円(この円を“当接円”とする)50の接線方向である(図2B参照)。 言い換えると、サイクロン本体21の軸線に対し垂直となる水平方向にサイクロン本体の上端から下端との間のある位置でサイクロン本体21の壁面を切った場合に出来る当接円50の接線方向と、気体導入部22に連結する吸気孔33の長さ方向の中心軸の方向とが一致するように気体導入部22および吸気孔33が配置される。
 吸気孔33と気体導入部22の対(組合せ)が複数ある場合は、軸線の周囲に等間隔に配置される。 吸気孔33と気体導入部22の対(組合せ)が複数ある場合は、各吸気孔33の開口部の中心、即ち、各吸気孔33の長さ方向の中心軸と、開口部がある蓋部32の下部表面との交差する点群は前記当接円50と(軸線上方の蓋の下部表面上に仮想した)同心円上に配列する。 また吸気孔33と気体導入部22の対(組合せ)が複数ある場合は、各吸気孔33の長さ方向の軸線同士は、軸線上方から見た時に360度を吸気孔33と気体導入部22の対(組合せ)の数で割った角度で傾いて同心円状に並んでいることになる。そして吸気孔33の水平方向に対する傾きは、気体の当接位置(軸線上の高さ位置、従って当接位置の高さと開口部のある蓋の下部表面の高さとの差である距離L1によって当接円50が決まり、軸線上方から見た場合、各吸気孔33の開口部の中心と当接円50に接線を引いた場合の接点との距離L2が決まるので、距離L1に対する距離L2の比の正接から傾き角が決定される。  
The gas introducing portion 22 and the air intake hole 33 are provided to extend in the tangential direction of the wall surface of the cyclone body 21 in the upper portion of the cyclone body 21. Here, the tangential direction of the wall surface means that the wall surface of the cyclone body 21 is perpendicular to the axis at a portion where gas introduced as will be described later when viewed from above the axis abuts (collides on) the wall surface of the cyclone body 21. It is a tangential direction of a circle (this circle is referred to as “contact circle”) 50 which can be obtained by cutting in the horizontal direction (see FIG. 2B). In other words, when the wall surface of the cyclone body 21 is cut at a position between the upper end and the lower end of the cyclone body in the horizontal direction perpendicular to the axis of the cyclone body 21, the tangential direction of the contact circle 50 and the gas The gas introduction portion 22 and the intake hole 33 are arranged such that the direction of the central axis in the longitudinal direction of the intake hole 33 connected to the introduction portion 22 matches.
When there are a plurality of combinations (combinations) of the intake holes 33 and the gas introduction portions 22, they are arranged at equal intervals around the axis. When there are a plurality of combinations (combinations) of the intake holes 33 and the gas introduction portions 22, the center of the opening of each intake hole 33, that is, the central axis in the longitudinal direction of each intake hole 33 and the lid with the opening The point cloud intersecting with the lower surface of 32 is arranged concentrically with the contact circle 50 (assumed on the lower surface of the lid above the axis). In addition, when there are a plurality of combinations (combinations) of the intake holes 33 and the gas introduction portions 22, the axes in the longitudinal direction of the intake holes 33 are 360 degrees when viewed from above the axes. They are arranged concentrically at an angle divided by the number of 22 pairs (combinations). The inclination of the intake hole 33 with respect to the horizontal direction is determined by the distance L1 which is the difference between the contact position of the gas (the height position on the axis, and hence the height of the contact position and the lower surface of the lid with the opening). The tangent circle 50 is determined, and when viewed from above the axis, the distance L2 between the center of the opening of each intake hole 33 and the contact point at the time of drawing the tangent to the abutment circle 50 is determined. The tilt angle is determined from the tangent of the ratio.
 本実施の形態では、サイクロン本体21の上方部には、当該サイクロン本体21の内部を吸引排気して減圧させ、差圧により気体導入部22から周方向に旋回するように気体を導入させる吸引排気管24が設けられている。 In the present embodiment, in the upper part of the cyclone body 21, the inside of the cyclone body 21 is sucked and exhausted to reduce the pressure, and a suction and exhaust is caused to introduce gas so as to swirl in the circumferential direction from the gas introducing portion 22 by differential pressure. A tube 24 is provided.
 吸引排気管24は、サイクロン本体21の上方部に同軸状に挿設されている。またこの吸引排気管(排気管ともいう)24には、吸引排気ポンプからなる排気機構41が接続されている。 The suction exhaust pipe 24 is coaxially inserted into the upper portion of the cyclone body 21. Further, an exhaust mechanism 41 including a suction and exhaust pump is connected to the suction and exhaust pipe (also referred to as an exhaust pipe) 24.
 排気機構41を動作させると、サイクロン本体21の内部は吸引排気管24を介して吸引排気されて減圧され、サイクロン本体21の内部と外部との差圧により、サイクロン本体21の外部の気体が、気体導入部22からサイクロン本体21の内部に引き入れられる。そして、サイクロン本体21の内部に導入された気体は、サイクロン本体21の壁面に沿って案内されることで、周方向に旋回しながら下降し、即ちらせん状に旋回する気流を形成する。この時、気体中の検出対象粒子は相対的に比重が大きいため、遠心力によりサイクロン本体21の壁面側に分離される。 When the exhaust mechanism 41 is operated, the inside of the cyclone body 21 is sucked and exhausted via the suction and exhaust pipe 24 to be decompressed, and the pressure outside the cyclone body 21 is reduced by the pressure difference between the inside and the outside of the cyclone body 21 The gas is introduced into the inside of the cyclone body 21 from the gas inlet 22. The gas introduced into the inside of the cyclone body 21 is guided along the wall surface of the cyclone body 21 to form a gas flow that descends while swirling in the circumferential direction, that is, spirally swirls. At this time, since the particles to be detected in the gas have a relatively large specific gravity, they are separated on the wall surface side of the cyclone body 21 by centrifugal force.
 一方、相対的に比重が軽い気体成分は、サイクロン本体21の壁面の切頭円錐形状により、サイクロン本体21の下方部において流れを反転させ、サイクロン本体21の中心軸線側において上昇流を形成して、吸引排気管24を通って外部に排出される。 On the other hand, the gas component having a relatively low specific gravity reverses the flow in the lower part of the cyclone body 21 by the frusto-conical shape of the wall surface of the cyclone body 21 and forms an upward flow on the central axis side of the cyclone body 21 , And is discharged to the outside through the suction exhaust pipe 24.
 この場合、予めサイクロン本体21の内部には液体が充填されており、この液体は周方向に旋回する気流により外向きに押しやられ、サイクロン本体21の壁面(内面)に沿って膜状に液膜40を成形する。 In this case, the inside of the cyclone body 21 is previously filled with the liquid, and the liquid is pushed outward by the air flow that swirls in the circumferential direction, and a liquid film is formed along the wall surface (inner surface) of the cyclone body 21 Mold 40
 本実施の形態では、サイクロン本体21の壁面に、膜状に成形された液体の水位を検出する水位検出部25を設けてもよい。 In the present embodiment, a water level detection unit 25 may be provided on the wall surface of the cyclone body 21 to detect the water level of the film-like liquid.
 より詳しくは、水位検出部25は、サイクロン本体21の内部に露出する一対の電極と、当該電極間の導電率を測定する測定部と、を有している。液体の水位が一対の電極の高さ位置より高い場合、一対の電極は液体を介して通電し、導電率が相対的に高くなる。一方、液体の水位が一対の電極の高さ位置より低い場合、一対の電極は絶縁されて、導電率が相対的に低くなる。液体の水位が一対の電極の高さ位置より高い場合の測定結果と低い場合の測定結果とを予め実験により求めておき、当該2つの測定結果の間の値を閾値として決定する。その後、測定部の測定結果が閾値より高い場合、液体の水位が一対の電極の高さ位置より高いと判断し、測定部の測定結果が閾値より低い場合、液体の水位が一対の電極の高さ位置より低いと判断する。 More specifically, the water level detection unit 25 includes a pair of electrodes exposed inside the cyclone body 21 and a measurement unit that measures the conductivity between the electrodes. When the liquid level of the liquid is higher than the height position of the pair of electrodes, the pair of electrodes is energized through the liquid, and the conductivity becomes relatively high. On the other hand, when the water level of the liquid is lower than the height position of the pair of electrodes, the pair of electrodes are insulated and the conductivity becomes relatively low. The measurement result in the case where the liquid level of the liquid is higher than the height position of the pair of electrodes and the measurement result in the case where it is low are obtained in advance by experiment, and a value between the two measurement results is determined as a threshold. Thereafter, when the measurement result of the measurement unit is higher than the threshold, it is determined that the water level of the liquid is higher than the height position of the pair of electrodes, and when the measurement result of the measurement unit is lower than the threshold, the water level of the liquid is higher than the pair of electrodes It is judged that it is lower than the height position.
 サンプリング装置10について、図1A乃至図1C、および図4を用いて更に述べる。 The sampling device 10 will be further described with reference to FIGS. 1A-1C and FIG.
 ここで図1Aはサンプリング装置10のサイクロン本体21を示す側面図、図1Bは図1AのA-A’線からみた蓋部の底面図、図1Cはサイクロン本体21を示す図であって、図1BのB-B’線断面図である。また図4は、サイクロン本体21を示す斜視図である。 1A is a side view showing the cyclone body 21 of the sampling device 10, FIG. 1B is a bottom view of the lid viewed from the line AA 'in FIG. 1A, and FIG. 1C is a diagram showing the cyclone body 21. It is a BB 'line sectional view of 1B. FIG. 4 is a perspective view showing the cyclone body 21. As shown in FIG.
 上述のように、サンプリング装置10はサイクロン本体(容器ともいう)21と、サイクロン本体21の内部に気体を導入するための気体導入部22とを備えている。 As described above, the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
 具体的には図1A乃至図1Cおよび図4に示すように、サンプリング装置10のサイクロン本体(容器)21は、内部に切頭円錐状の空間35を形成する容器本体31と、容器本体31の上方開口を覆う蓋部32とを有している。容器本体31と蓋部32とを有するサイクロン本体21は中心軸線21Aを有する回転対称体からなり、軸線21Aが縦方向に延びるよう配置されている。なお、サイクロン本体21は、容器本体31と、容器本体31の上方開口を覆う蓋部32とを有する上記構造に限られることはなく、容器本体31と蓋部32とが3Dプリンタ等によって完全に一体に形成された構造をとってもよい。この場合は、サイクロン本体21の蓋部32はサイクロン本体21の上端部を構成し、容器本体31の切頭円錐状の側壁31bはサイクロン本体21の側壁31bを構成する。また、容器本体31の下端部31aは、サイクロン本体21の下端部31aを構成する。この場合においても事前に水を供給する供給部は形成可能である。 Specifically, as shown in FIG. 1A to FIG. 1C and FIG. 4, the cyclone body (container) 21 of the sampling device 10 includes a container body 31 forming a frusto-conical space 35 therein and a container body 31. And a lid 32 covering the upper opening. The cyclone body 21 having the container body 31 and the lid 32 is a rotationally symmetric body having a central axis 21A, and the axis 21A extends in the longitudinal direction. The cyclone main body 21 is not limited to the above structure having the container main body 31 and the lid 32 covering the upper opening of the container main body 31. The container main body 31 and the lid 32 are completely formed by a 3D printer or the like. It may have an integrally formed structure. In this case, the lid 32 of the cyclone body 21 constitutes the upper end of the cyclone body 21, and the frusto-conical side wall 31 b of the container body 31 constitutes the side wall 31 b of the cyclone body 21. Further, the lower end portion 31 a of the container body 31 constitutes the lower end portion 31 a of the cyclone body 21. Also in this case, the supply unit for supplying water in advance can be formed.
 なお、サイクロン本体21の容器本体31と蓋部32とは互いに分離可能となり、後述のように容器本体31から蓋部32を取外して容器本体31内の液体を外方へ排出することが好ましい。しかしながら、容器本体31と蓋部32とを一体に形成した場合であっても、蓋部32に排出孔を設けることにより、この排出孔から容器本体31内の液体を外方へ排出することもできる。 The container body 31 and the lid 32 of the cyclone body 21 can be separated from each other, and it is preferable to remove the lid 32 from the container body 31 and discharge the liquid in the container body 31 outward as described later. However, even in the case where the container main body 31 and the lid 32 are integrally formed, the liquid in the container main body 31 can be discharged outward from the discharge hole by providing the discharge hole in the lid 32. it can.
 またサイクロン本体21の上端部を構成する蓋部32に気体導入部22が連結され、この気体導入部22に蓋部32内に形成された吸気孔33の接続端33bが接続されている。本実施の形態において、気体導入部22は蓋部32の全周にサイクロン本体21の壁面の接線方向に沿って4本連結されており、各気体導入部22は蓋部32の全周に渡って90°ずつ離間して設けられている。このため蓋部32内部には4本の気体導入部22に対応して、4本の吸気孔33が90°ずつ離間して設けられている。ここで壁面の接線方向とは導入する気体がサイクロン本体21の壁面に当接する(衝突する)部分においてサイクロン本体を軸線に対して垂直方向となる、水平方向に切り取った場合に出来る円の接線方向であり、気体導入部22が4本ある場合はこれら4本から導入される気体は同一高さでサイクロン本体21の壁面に当接する(衝突する)することが好ましく、よって軸線上方からみた場合、同一の円の接線方向に沿っていることが好ましい。また4本の吸気孔33に接続された気体導入部22は、吸気孔33の口径よりも大きな口径を有し、吸気孔33の接続端33bへ向かって先細状となる形状をもつ。なお、この4本の気体導入部22は、互いに分離独立していてもよく、互いに連通していてもよい。 Further, the gas introducing portion 22 is connected to the lid portion 32 constituting the upper end portion of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the lid portion 32 is connected to the gas introducing portion 22. In the present embodiment, four gas introducing portions 22 are connected all around the lid 32 along the tangential direction of the wall surface of the cyclone body 21, and each gas introducing portion 22 extends over the entire periphery of the lid 32. It is provided 90 degrees apart. For this reason, in the inside of the lid portion 32, four intake holes 33 are provided at intervals of 90 °, corresponding to the four gas introducing portions 22, respectively. Here, the tangential direction of the wall surface means the tangential direction of the circle formed in the horizontal direction which is perpendicular to the axis at the portion where the introduced gas abuts (collides) the wall surface of the cyclone body 21. In the case where there are four gas introducing parts 22, it is preferable that the gases introduced from these four lines abut (collide) on the wall surface of the cyclone main body 21 at the same height, and hence viewed from above the axis Preferably, it is along the tangent of the same circle. Further, the gas introducing portion 22 connected to the four intake holes 33 has a diameter larger than the diameter of the intake holes 33 and has a shape which is tapered toward the connection end 33 b of the intake holes 33. The four gas introducing portions 22 may be separated and independent from each other, or may be in communication with each other.
 また蓋部32の中心位置には、排気管24が取付けられ、この排気管24は容器本体31の空間35から蓋部32を貫通して上方に延びている。この排気管24は、上述のように外部に設置された排気ポンプからなる排気機構41に接続されている。 Further, an exhaust pipe 24 is attached at a central position of the lid 32. The exhaust pipe 24 extends upward from the space 35 of the container body 31 through the lid 32. The exhaust pipe 24 is connected to an exhaust mechanism 41 including an exhaust pump installed outside as described above.
 次に蓋部32に設けられた4本の吸気孔33について説明する。各吸気孔33は蓋部32内を、サイクロン本体21の軸線21Aに直交する直交面21Bに対して下方に向かって5°~15°の傾斜角θで延びている。また各吸気孔33は、容器本体31の空間35に開口する開口部33aを有している。この開口部33aは、蓋部32の下部表面32aから下方へ突出することなく、下部表面32aと同一面に開口している。下部表面32aは直交面21Bに対し平行に延びている。 Next, the four intake holes 33 provided in the lid 32 will be described. Each intake hole 33 extends in the lid 32 downward at an inclination angle θ of 5 ° to 15 ° with respect to the orthogonal plane 21B orthogonal to the axis 21A of the cyclone body 21. Each intake hole 33 has an opening 33 a that opens into the space 35 of the container body 31. The opening 33 a does not project downward from the lower surface 32 a of the lid 32, and opens in the same plane as the lower surface 32 a. The lower surface 32a extends parallel to the orthogonal plane 21B.
 上述のようにサイクロン本体21の容器本体31内には予め液体が充填されており、サイクロン本体21内に気体が導入されると、サイクロン本体21内で気体と液体のらせん流が形成され、このときサイクロン本体21内面に液膜40が形成される。この液膜40は容器本体31の下端から上端まで、すなわち容器本体31の下端部31aから蓋部32直下の容器本体31の側壁31bに渡って拡がって形成されているが、液膜40は蓋部32の下部表面32aまでは達していない。なお、サイクロン本体21内面に容易かつ確実に液膜40を形成することができるよう、サイクロン本体21内面に対して親水処理が施されていることが好ましい。 As described above, the container body 31 of the cyclone body 21 is pre-filled with liquid, and when gas is introduced into the cyclone body 21, a spiral flow of gas and liquid is formed in the cyclone body 21. When the liquid film 40 is formed on the inner surface of the cyclone body 21. The liquid film 40 is formed to extend from the lower end to the upper end of the container body 31, that is, across the side wall 31 b of the container body 31 directly under the lid 32 from the lower end 31 a of the container body 31. The lower surface 32 a of the portion 32 is not reached. The inner surface of the cyclone body 21 is preferably subjected to a hydrophilic treatment so that the liquid film 40 can be formed easily and reliably on the inner surface of the cyclone body 21.
 一方、蓋部32に設けられた吸気孔33の開口部33aは、蓋部32の下部表面32aであって、容器本体31の側壁から離間した位置に開口している。このため吸気孔33の開口部33aからの吸気気体によって容器本体31の内面の液膜40が巻込まれることはなく、このことにより吸気気体によって液膜が巻込まれてミストが発生することもない。 On the other hand, the opening 33 a of the intake hole 33 provided in the lid 32 is a lower surface 32 a of the lid 32 and is open at a position separated from the side wall of the container body 31. For this reason, the liquid film 40 on the inner surface of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is not rolled up by the suctioned gas and mist is not generated.
 他方、吸気孔33はサイクロン本体21の直交面21Bに対して下方へ向かって延びているため、吸気孔33から噴出される吸気気体は対向する容器本体31内面に形成された液膜40に当接することになる。このことにより、吸気気体に含まれる粒子を確実に液膜40に付着させ、この液膜40によって粒子を確実に捕集することができる。 On the other hand, since the intake holes 33 extend downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 contacts the liquid film 40 formed on the inner surface of the opposing container body 31. It will be in contact with you. As a result, particles contained in the intake gas can be reliably attached to the liquid film 40, and the particles can be reliably collected by the liquid film 40.
 すなわち、吸気孔33から噴出される吸気気体が、容器本体31内の液膜40に当接できないとき、吸気気体中の粒子を液膜40に付着させることができず、粒子が容器本体31内で巻き上げられて排気管24から放出されることも考えられる。 That is, when the intake gas ejected from the intake hole 33 can not contact the liquid film 40 in the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles are in the container body 31. It is also conceivable that it is rolled up and discharged from the exhaust pipe 24.
 これに対して本願発明によれば、吸気孔33からサイクロン本体21内に噴射される吸気気体は、気体が液膜に当接する部分のサイクロン本体21の壁面の接線方向に沿って噴射されて、サイクロン本体21内に円周方向にらせん状に回転する気体流を形成する。このため、吸気気体中の粒子は遠心力によって容器本体31の側壁31bに向かう。次に、吸気孔33から噴出される吸気気体中の粒子を液膜40に確実に当接させて液膜40に付着させた後、捕集することができる。 On the other hand, according to the present invention, the intake gas jetted from the suction holes 33 into the cyclone body 21 is jetted along the tangential direction of the wall surface of the cyclone body 21 in the portion where the gas abuts on the liquid film. In the cyclone body 21, a circumferentially rotating gas flow is formed. For this reason, the particles in the intake gas are directed to the side wall 31 b of the container body 31 by centrifugal force. Next, particles in the intake gas ejected from the intake holes 33 can be collected after being reliably brought into contact with the liquid film 40 and adhering to the liquid film 40.
 次に、以上のような構成からなる本実施の形態の作用について説明する。 Next, the operation of the present embodiment configured as described above will be described.
 まず、容器本体31から蓋部32が取外され、容器本体31内に液体(例えば水)が充填される。その後容器本体31に蓋部32が装着される。 First, the lid 32 is removed from the container body 31, and the container body 31 is filled with a liquid (for example, water). Thereafter, the lid 32 is attached to the container body 31.
 次に図4に示すように、サンプリング装置10の排気管24に排気機構41が接続され、この排気機構41の動作により、気体(例えば、大気)が気体導入部22へと取り込まれ、気体導入部22からサイクロン本体21の内部に導入される。 Next, as shown in FIG. 4, an exhaust mechanism 41 is connected to the exhaust pipe 24 of the sampling device 10, and a gas (for example, the atmosphere) is taken into the gas introduction unit 22 by the operation of the exhaust mechanism 41 to introduce the gas. It is introduced into the inside of the cyclone body 21 from the part 22.
 気体導入部22からサイクロン本体21の内部に導入された気体は、サイクロン本体21の壁面に沿って案内されることで、周方向に旋回し、サイクロン本体21の内部にらせん状の気流を形成する。サイクロン本体21の内部の液体は、気体とともにらせん流を形成し、径方向外向きに押しやられ、サイクロン本体21の壁面に沿って液膜40を形成する。 The gas introduced into the inside of the cyclone main body 21 from the gas introduction part 22 is guided along the wall surface of the cyclone main body 21 to turn in the circumferential direction to form a spiral air flow inside the cyclone main body 21. . The liquid inside the cyclone body 21 forms a spiral flow with the gas, and is forced radially outward to form a liquid film 40 along the wall surface of the cyclone body 21.
 気体中に含まれる検出対象粒子は、遠心力によりサイクロン本体21の壁面側に分離され、膜状に成形された液膜40中に捕集される。 The particles to be detected contained in the gas are separated on the wall surface side of the cyclone body 21 by centrifugal force and collected in the liquid film 40 formed in a film shape.
 次にサイクロン本体21内における気体の挙動を図1A乃至図1Cにより説明する。 Next, the behavior of the gas in the cyclone body 21 will be described with reference to FIGS. 1A to 1C.
 図1A乃至図1Cに示すように気体導入部22から導入された吸気気体は蓋部32に設けられた吸気孔33を通って、吸気孔33の開口部33aから容器本体31の空間35内へ噴出される。 As shown in FIGS. 1A to 1C, the intake gas introduced from the gas introduction part 22 passes through the intake hole 33 provided in the lid 32 and from the opening 33a of the intake hole 33 into the space 35 of the container main body 31. It is spouted.
 この場合、吸気孔33の開口部33aは容器本体31のうち液膜40が形成された側壁31bから離間しているため、吸気気体によって容器本体31の内面に形成された液膜が巻込まれてミストが発生することはない。 In this case, since the opening 33a of the intake hole 33 is separated from the side wall 31b of the container body 31 on which the liquid film 40 is formed, the liquid film formed on the inner surface of the container body 31 is caught by the intake gas. Mist does not occur.
 また吸気孔33の開口部33aから噴出される吸気気体は、容器本体31内面に形成された液膜40に当接するので、吸気気体中の粒子を確実に液膜40に付着させて捕集することができる。 Further, since the intake gas ejected from the opening 33a of the intake hole 33 abuts on the liquid film 40 formed on the inner surface of the container body 31, particles in the intake gas are reliably attached to the liquid film 40 and collected. be able to.
 サイクロン本体21の壁面上において検出対象粒子を捕集した液体は、重力により徐々に下方に流れ落ち、容器本体31の下端部31aに貯留される。 The liquid in which the particles to be detected are collected on the wall surface of the cyclone body 21 gradually flows downward by gravity and is stored in the lower end portion 31 a of the container body 31.
 次に排気機構41が停止して、図5(a)に示すように、容器本体31から蓋部32が取外され、容器本体31内に貯留され粒子を含む液体が試料容器である例えば試験管45内に注がれる。 Next, the exhaust mechanism 41 is stopped, and as shown in FIG. 5A, the lid 32 is removed from the container main body 31, and the liquid containing particles stored in the container main body 31 is a sample container. It is poured into the tube 45.
 その後、図5(b)に示すように、試験管45内の液体に対してpH試験、RT-PCR法(Reverse Transcription Polymerase Chain Reaction)、LC-MS法(Liquid Chromatography)等の各種分析試験が施され、液体内の粒子の種類、およびその成分が特定される。 Thereafter, as shown in FIG. 5 (b), various analysis tests such as pH test, RT-PCR (Reverse Transcription Polymerase Chain Reaction), LC-MS (Liquid Chromatography), etc. were performed on the liquid in the test tube 45. Applied to identify the type of particles in the liquid and its components.
 以上のように本実施の形態によれば、大気中の粒子を確実に捕集して、サンプリングを行うことができる。 As described above, according to the present embodiment, particles in the atmosphere can be reliably collected and sampled.
<第2の実施の形態>
 次に図2A乃至図2Cにより、第2の実施の形態によるサンプリング装置10について述べる。
Second Embodiment
Next, referring to FIGS. 2A to 2C, a sampling device 10 according to a second embodiment will be described.
 図2A乃至図2Cに示す第2の実施の形態において、図1A乃至図1Cおよび図4に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。 In the second embodiment shown in FIGS. 2A to 2C, the same parts as those of the first embodiment shown in FIGS. 1A to 1C and FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted.
 ここで図2Aはサンプリング装置10のサイクロン本体21を示す側面図、図2Bは図2AのA-A’線からみた蓋部の底面図、図2Cはサイクロン本体21を示す図であって、図2BのB-B’線断面図である。 Here, FIG. 2A is a side view showing the cyclone body 21 of the sampling device 10, FIG. 2B is a bottom view of the lid viewed from the line AA 'in FIG. 2A, and FIG. It is a BB 'line sectional view of 2B.
 上述のように、サンプリング装置10はサイクロン本体(容器ともいう)21と、サイクロン本体21の内部に気体を導入するための気体導入部22とを備えている。 As described above, the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
 具体的には図2A乃至図2Cに示すように、サンプリング装置10のサイクロン本体(容器)21は、内部に切頭円錐状の空間35を形成する容器本体31と、容器本体31の上方開口を覆う蓋部32とを有している。 Specifically, as shown in FIGS. 2A to 2C, the cyclone body (container) 21 of the sampling device 10 has a container body 31 forming a frusto-conical space 35 therein and an upper opening of the container body 31. And a cover 32.
 またサイクロン本体21の蓋部32に気体導入部22が連結され、この気体導入部22に蓋部32内に形成された吸気孔33の接続端33bが接続されている。本実施の形態において、気体導入部22は蓋部32の全周にサイクロン本体21の壁面の接線方向に沿って8本連結されており、各気体導入部22は蓋部32の全周に渡って45°ずつ離間して設けられている。このため蓋部32内部には8本の気体導入部22に対応して、8本の吸気孔33が45°ずつ離間して設けられている。 Further, the gas introducing portion 22 is connected to the lid portion 32 of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the lid portion 32 is connected to the gas introducing portion 22. In the present embodiment, eight gas inlets 22 are connected all around the lid 32 along the tangential direction of the wall surface of the cyclone body 21, and each gas inlet 22 extends over the entire periphery of the lid 32. It is spaced 45 degrees apart. Therefore, eight intake holes 33 are provided at 45 ° intervals in the inside of the lid 32 corresponding to the eight gas introduction parts 22.
 また蓋部32には、排気管24が取付けられ、この排気管24は容器本体31の空間35から蓋部32を貫通して上方に延びている。また容器本体31の上部には、水位検出部25が設けられている。 Further, an exhaust pipe 24 is attached to the lid 32. The exhaust pipe 24 penetrates the lid 32 from the space 35 of the container main body 31 and extends upward. Further, a water level detection unit 25 is provided at the upper part of the container body 31.
 次に蓋部32に設けられた8本の吸気孔33について説明する。各吸気孔33は蓋部32内を、サイクロン本体21の軸線21Aに直交する直交面21Bに対して下方に向かって45°~60°の傾斜角θで延びている。また各吸気孔33は、容器本体31の空間35に開口する開口部33aを有している。この開口部33aは、蓋部32の下部表面32aから下方へ突出することなく、下部表面32aと同一位置に開口している。 Next, the eight intake holes 33 provided in the lid 32 will be described. Each intake hole 33 extends in the lid 32 downward at an inclination angle θ of 45 ° to 60 ° with respect to the orthogonal plane 21 B orthogonal to the axis 21 A of the cyclone body 21. Each intake hole 33 has an opening 33 a that opens into the space 35 of the container body 31. The opening 33 a does not project downward from the lower surface 32 a of the lid 32 and opens at the same position as the lower surface 32 a.
 サイクロン本体21の内面には、気体導入部22からサイクロン本体21内に気体が導入され、サイクロン本体21内にらせん流が形成されて、液膜40が形成される。この液膜40は容器本体31の下端から上端まで、すなわち容器本体31の下端部31aから蓋部32直下の容器本体31の側壁31bに渡って拡がって形成されているが、液膜40は蓋部32の下部表面32aまでは達していない。  On the inner surface of the cyclone body 21, a gas is introduced into the cyclone body 21 from the gas introduction unit 22, and a spiral flow is formed in the cyclone body 21 to form a liquid film 40. The liquid film 40 is formed to extend from the lower end to the upper end of the container body 31, that is, across the side wall 31 b of the container body 31 directly under the lid 32 from the lower end 31 a of the container body 31. The lower surface 32 a of the portion 32 is not reached.
 一方、蓋部32に設けられた吸気孔33の開口部33aは、蓋部32の下部表面32aであって、容器本体31の内面から離間した位置に開口している。このため吸気孔33の開口部33aからの吸気気体によって容器本体31の内面の液膜40が巻込まれることはなく、このことにより吸気気体によって液膜が巻込まれて水分ミストが発生することもない。 On the other hand, the opening 33 a of the intake hole 33 provided in the lid 32 is a lower surface 32 a of the lid 32 and is open at a position separated from the inner surface of the container main body 31. For this reason, the liquid film 40 on the inner surface of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is not rolled up by the suctioned gas and water mist is not generated. .
 他方、吸気孔33はサイクロン本体21の直交面21Bに対して下方へ向かって延びているため、吸気孔33から噴出される吸気気体は対向する容器本体31内面に形成された液膜40に当接することになる。このため吸気気体に含まれる粒子を確実に液膜40に付着させ、この液膜40によって粒子を確実に捕集することができる。 On the other hand, since the intake holes 33 extend downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 contacts the liquid film 40 formed on the inner surface of the opposing container body 31. It will be in contact with you. Therefore, particles contained in the intake gas can be reliably attached to the liquid film 40, and the liquid film 40 can reliably collect the particles.
 すなわち、吸気孔33から噴出される吸気気体が、容器本体31内の液膜40に当接できないとき、吸気気体中の粒子を液膜40に付着させることができず、粒子が容器本体31内で巻き上げられて排気管24から放出されることも考えられる。 That is, when the intake gas ejected from the intake hole 33 can not contact the liquid film 40 in the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles are in the container body 31. It is also conceivable that it is rolled up and discharged from the exhaust pipe 24.
 これに対して本願発明によれば、吸気孔33から噴出される吸気気体を液膜40に当接させて、吸気気体中の粒子を液膜40に付着させた後、確実に捕集することができる。以上のように、本実施の形態によれば、吸気孔33の角度θを大きくして吸気孔33の数を増やし、一度に処理できる気体量を増やすことができる。ただし気流の壁面への衝突位置が下方になる。 On the other hand, according to the present invention, after the suctioned gas spouted from the suction hole 33 is made to abut the liquid film 40 and the particles in the suctioned gas adhere to the liquid film 40, it is collected reliably. Can. As described above, according to the present embodiment, the angle θ of the intake holes 33 can be increased to increase the number of the intake holes 33, and the amount of gas that can be processed at one time can be increased. However, the collision position of the air flow to the wall surface is downward.
<第3の実施の形態>
 次に図3A乃至図3Cにより、第3の実施の形態によるサンプリング装置10について述べる。
Third Embodiment
Next, a sampling device 10 according to a third embodiment will be described with reference to FIGS. 3A to 3C.
 図3A乃至図3Cに示す第3の実施の形態において、図1A乃至図1Cおよび図4に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。 In the third embodiment shown in FIGS. 3A to 3C, the same parts as those in the first embodiment shown in FIGS. 1A to 1C and FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted.
 ここで図3Aはサンプリング装置10のサイクロン本体21を示す側面図、図3Bは図3AのA-A’線からみた蓋部の底面図、図3Cはサイクロン本体21を示す図であって、図3BのB-B’線断面図である。 Here, FIG. 3A is a side view showing the cyclone body 21 of the sampling device 10, FIG. 3B is a bottom view of the lid viewed from the line AA 'in FIG. 3A, and FIG. 3C is a diagram showing the cyclone body 21. It is a BB 'sectional view taken on the line 3B.
 上述のように、サンプリング装置10はサイクロン本体(容器ともいう)21と、サイクロン本体21の内部に気体を導入するための気体導入部22とを備えている。 As described above, the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
 具体的には図3A乃至図3Cに示すように、サンプリング装置10のサイクロン本体(容器)21は、内部に切頭円錐状の空間35を形成する容器本体31と、容器本体31の上方開口を覆う蓋部32とを有している。 Specifically, as shown in FIGS. 3A to 3C, the cyclone body (container) 21 of the sampling device 10 has a container body 31 forming a frusto-conical space 35 therein and an upper opening of the container body 31. And a cover 32.
 またサイクロン本体21の蓋部32に気体導入部22が連結され、この気体導入部22に蓋部32内に形成された吸気孔33の接続端33bが接続されている。本実施の形態において、気体導入部22は蓋部32に1本連結されている。しかしながら、気体導入部22,吸気孔33および突出ノズル36を複数設けても良い。 Further, the gas introducing portion 22 is connected to the lid portion 32 of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the lid portion 32 is connected to the gas introducing portion 22. In the present embodiment, one gas inlet 22 is connected to the lid 32. However, a plurality of gas inlets 22, intake holes 33 and projecting nozzles 36 may be provided.
 また蓋部32には、排気管24が取付けられ、この排気管24は容器本体31の空間35から蓋部32を貫通して上方に延びている。また容器本体31の上部には水位検出部25が設けられている。 Further, an exhaust pipe 24 is attached to the lid 32. The exhaust pipe 24 penetrates the lid 32 from the space 35 of the container main body 31 and extends upward. Further, a water level detection unit 25 is provided at the upper part of the container body 31.
 次に蓋部32に設けられた吸気孔33について説明する。吸気孔33は蓋部32内を、サイクロン本体21の軸線21Aに直交する直交面21Bに対して下方に向かって45°~60°の傾斜角θで延びている。また吸気孔23は、蓋部32の下部表面32aから容器本体31の空間35に突出する突出ノズル36を有し、突出ノズル36の下端は開口して開口部33aを形成する。この開口部33aは、蓋部32の下部表面32aから下方へ突出する突出ノズル36の下端に位置している。 Next, the intake holes 33 provided in the lid 32 will be described. The intake holes 33 extend in the lid 32 downward at an inclination angle θ of 45 ° to 60 ° with respect to the orthogonal plane 21 B orthogonal to the axis 21 A of the cyclone body 21. Further, the intake hole 23 has a projecting nozzle 36 projecting from the lower surface 32a of the lid 32 to the space 35 of the container main body 31, and the lower end of the projecting nozzle 36 is opened to form an opening 33a. The opening 33 a is located at the lower end of the projecting nozzle 36 projecting downward from the lower surface 32 a of the lid 32.
 サイクロン本体21の内面には、気体導入部22からサイクロン本体21内に気体が導入され、サイクロン本体21内にらせん流が形成されて、液膜40が形成されている。この液膜40は容器本体31の下端から上端まで、すなわち容器本体31の下端から蓋部32の下部表面32aに渡って拡がって形成されている。 A gas is introduced into the cyclone body 21 from the gas introduction portion 22 on the inner surface of the cyclone body 21, and a spiral flow is formed in the cyclone body 21 to form a liquid film 40. The liquid film 40 is formed so as to extend from the lower end to the upper end of the container body 31, that is, from the lower end of the container body 31 to the lower surface 32 a of the lid 32.
 一方、蓋部32に設けられた吸気孔33の開口部33aは、蓋部32の下部表面32aから突出する突出ノズル36の下端に位置しており、容器本体31の内面から離間した位置に開口している。このため吸気孔33の開口部33aからの吸気気体によって容器本体31の内面の液膜40が巻込まれることはなく、このことにより吸気気体によって液膜が巻込まれてミストが発生することもない。 On the other hand, the opening 33a of the intake hole 33 provided in the lid 32 is located at the lower end of the projecting nozzle 36 projecting from the lower surface 32a of the lid 32 and opens at a position spaced from the inner surface of the container body 31 doing. For this reason, the liquid film 40 on the inner surface of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is not rolled up by the suctioned gas and mist is not generated.
 他方、吸気孔33はサイクロン本体21の直交面21Bに対して下方へ向かって延びているため、吸気孔33から噴出される吸気気体は対向する容器本体31内面に形成された液膜40に当接することになる。このため吸気気体に含まれる粒子を確実に液膜40に付着させ、この液膜40によって粒子を確実に捕集することができる。 On the other hand, since the intake holes 33 extend downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 contacts the liquid film 40 formed on the inner surface of the opposing container body 31. It will be in contact with you. Therefore, particles contained in the intake gas can be reliably attached to the liquid film 40, and the liquid film 40 can reliably collect the particles.
 すなわち、吸気孔33から噴出される吸気気体が、容器本体31内の液膜40に当接できないとき、吸気気体中の粒子を液膜40に付着させることができず、粒子が容器本体31内で巻き上げられて排気管24から放出されることも考えられる。 That is, when the intake gas ejected from the intake hole 33 can not contact the liquid film 40 in the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles are in the container body 31. It is also conceivable that it is rolled up and discharged from the exhaust pipe 24.
 これに対して本願発明によれば、吸気孔33から噴出される吸気気体を液膜40に当接させて、吸気気体中の粒子を液膜40に付着させた後、確実に捕集することができる。 On the other hand, according to the present invention, after the suctioned gas spouted from the suction hole 33 is made to abut the liquid film 40 and the particles in the suctioned gas adhere to the liquid film 40, it is collected reliably. Can.
<第4の実施の形態>
 次に図6Aおよび図6Bにより、第4の実施の形態によるサンプリング装置10について述べる。
Fourth Embodiment
Next, a sampling device 10 according to a fourth embodiment will be described with reference to FIGS. 6A and 6B.
 図6Aおよび図6Bに示す第4の実施の形態において、図1A乃至図1Cおよび図4に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。 In the fourth embodiment shown in FIGS. 6A and 6B, the same parts as those of the first embodiment shown in FIGS. 1A to 1C and FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted.
 ここで図6Aはサンプリング装置10のサイクロン本体21を示す側面図、図6Bはその下端部側からみた斜視図である。 Here, FIG. 6A is a side view showing the cyclone body 21 of the sampling device 10, and FIG. 6B is a perspective view seen from the lower end side thereof.
 上述のように、サンプリング装置10はサイクロン本体(容器ともいう)21と、サイクロン本体21の内部に気体を導入するための気体導入部22とを備えている。 As described above, the sampling device 10 includes the cyclone body (also referred to as a container) 21 and the gas introducing unit 22 for introducing a gas into the cyclone body 21.
 具体的には図6に示すように、サンプリング装置10のサイクロン本体(容器)21は、内部に円筒状の空間35を形成するとともに中心軸線21Aを有する回転対称体からなる容器本体31を有している。容器本体31は全体として密閉され、下端部31aと、上端部31cと、下端部31aと上端部31cとの間に延びる側壁31bとを有している。 Specifically, as shown in FIG. 6, the cyclone main body (container) 21 of the sampling device 10 has a container main body 31 formed of a rotationally symmetric body that forms a cylindrical space 35 inside and has a central axis 21A. ing. The container body 31 is sealed as a whole, and has a lower end 31a, an upper end 31c, and a side wall 31b extending between the lower end 31a and the upper end 31c.
 またサイクロン本体21の容器本体31の上端部31cに気体導入部22が連結され、この気体導入部22に上端部31c内に形成された吸気孔33の接続端33bが接続されている。本実施の形態において、気体導入部22は上端部31cの全周にサイクロン本体21の壁面の接線方向に沿って4本連結されており、各気体導入部22は上端部31cの全周に渡って90°ずつ離間して設けられている。このため上端部31c内部には4本の気体導入部22に対応して、4本の吸気孔33が90°ずつ離間して設けられている。 Further, the gas introducing portion 22 is connected to the upper end portion 31 c of the container body 31 of the cyclone body 21, and the connection end 33 b of the intake hole 33 formed in the upper end portion 31 c is connected to the gas introducing portion 22. In the present embodiment, four gas introducing portions 22 are connected all around the upper end portion 31c along the tangential direction of the wall surface of the cyclone body 21, and each gas introducing portion 22 extends over the entire periphery of the upper end portion 31c. It is provided 90 degrees apart. For this reason, in the upper end portion 31c, four intake holes 33 are provided at intervals of 90 °, corresponding to the four gas introduction portions 22, respectively.
 また上端部31cの中心位置には、排気管24が取付けられ、この排気管24は容器本体31の空間35から上端部31cを貫通して上方に延びている。また容器本体31の上部には、水位検出部25が設けられている。 Further, an exhaust pipe 24 is attached to a central position of the upper end portion 31c, and the exhaust pipe 24 extends upward from the space 35 of the container body 31 through the upper end portion 31c. Further, a water level detection unit 25 is provided at the upper part of the container body 31.
 次に容器本体31の上端部31cに設けられた4本の吸気孔33について説明する。各吸気孔33は蓋部32内を、サイクロン本体21の軸線21Aに直交する直交面21Bに対して下方に向かって5°~15°の傾斜角θで延びている。また各吸気孔23は、容器本体31の空間35に開口する開口部33aを有している。この開口部33aは、上端部31cの下部表面31c1から下方へ突出することなく、下部表面31c1と同一面に開口している。 Next, four intake holes 33 provided in the upper end portion 31 c of the container body 31 will be described. Each intake hole 33 extends in the lid 32 downward at an inclination angle θ of 5 ° to 15 ° with respect to the orthogonal plane 21B orthogonal to the axis 21A of the cyclone body 21. Each intake hole 23 has an opening 33 a that opens to the space 35 of the container body 31. The opening 33a does not project downward from the lower surface 31c1 of the upper end portion 31c, and opens in the same plane as the lower surface 31c1.
 サイクロン本体21の側壁31bには、気体導入部22からサイクロン本体21内に気体が導入され、サイクロン本体21内にらせん流が形成されて、液膜40が形成されている。この液膜40は容器本体31の側壁31b下端から上端に渡って拡がって形成されているが、上端部31cの下部表面31c1には達していない。 On the side wall 31 b of the cyclone body 21, a gas is introduced into the cyclone body 21 from the gas introduction unit 22, and a spiral flow is formed in the cyclone body 21, whereby a liquid film 40 is formed. The liquid film 40 is formed to extend from the lower end to the upper end of the side wall 31 b of the container body 31, but does not reach the lower surface 31 c 1 of the upper end portion 31 c.
 一方、容器本体31の上端部31cに設けられた吸気孔33の開口部33aは、上端部31cの下部表面31c1であって、容器本体31の側壁31bから離間した位置に開口している。このため吸気孔33の開口部33aからの吸気気体によって容器本体31の側壁31b内面の液膜40が巻込まれることはなく、このことにより吸気気体によって液膜が巻込まれてミストが発生することもない。 On the other hand, the opening 33a of the intake hole 33 provided in the upper end 31c of the container body 31 is a lower surface 31c1 of the upper end 31c and is open at a position separated from the side wall 31b of the container body 31. For this reason, the liquid film 40 on the inner surface of the side wall 31b of the container main body 31 is not rolled up by the suctioned gas from the opening 33a of the suction hole 33, whereby the liquid film is rolled up by the suctioned gas and mist is generated. Absent.
 他方、吸気孔33はサイクロン本体21の直交面21Bに対して斜め下方へ向かって延びているため、吸気孔33から噴出される吸気気体は対向する容器本体31の側壁31b内面に形成された液膜40に当接することになる。このため吸気気体に含まれる粒子は遠心力により液膜40に向かい、これにより粒子を確実に液膜40に付着させ、この液膜40によって粒子を確実に捕集することができる。 On the other hand, since the intake holes 33 extend obliquely downward with respect to the orthogonal surface 21 B of the cyclone body 21, the intake gas ejected from the intake holes 33 is a liquid formed on the inner surface of the side wall 31 b of the opposing container body 31. It will be in contact with the membrane 40. Therefore, particles contained in the intake gas are directed to the liquid film 40 by centrifugal force, whereby the particles can be reliably adhered to the liquid film 40, and the particles can be reliably collected by the liquid film 40.
 すなわち、吸気孔33から噴出される吸気気体が、容器本体31の側壁31b内面の液膜40に当接できないとき、吸気気体中の粒子を液膜40に付着させることができず、粒子が容器本体31内で巻き上げられて排気管24から放出されることも考えられる。 That is, when the intake gas ejected from the intake hole 33 can not contact the liquid film 40 on the inner surface of the side wall 31b of the container body 31, the particles in the intake gas can not adhere to the liquid film 40, and the particles It is also conceivable to be rolled up in the main body 31 and discharged from the exhaust pipe 24.
 これに対して本願発明によれば、吸気孔33から噴出される吸気気体を液膜40に当接させて、吸気気体中の粒子を液膜40に付着させた後、確実に捕集することができる。なお、図6に示すサイクロン本体21は、上端部31cと下端部31aを上下引っ繰り返して使用し、気体導入部22および排気管24を下方へ持ってきてもよい。 On the other hand, according to the present invention, after the suctioned gas spouted from the suction hole 33 is made to abut the liquid film 40 and the particles in the suctioned gas adhere to the liquid film 40, it is collected reliably. Can. The cyclone body 21 shown in FIG. 6 may be used by repeatedly pulling the upper end 31c and the lower end 31a up and down, and may bring the gas introduction portion 22 and the exhaust pipe 24 downward.
 なお、図6Aおよび図6Bに示す実施の形態において、サイクロン本体21内に貯留された粒子を含む液体を外部へ排出するため、常時はプラグ43により密封された排出孔42が設けられている。 In the embodiment shown in FIGS. 6A and 6B, in order to discharge the liquid containing particles stored in the cyclone body 21 to the outside, a discharge hole 42 sealed at all times by the plug 43 is provided.
10  サンプリング装置
19  粗大ダスト除去部
21  サイクロン本体
21A 軸線
21B 直交面
22  気体導入部
25  水位検出部
31  容器本体
31a 下端部
31b 側壁
31c 上端部
32  蓋部
32a 下部表面
33  吸気孔
33a 開口部
33b 接続端
35  空間
36  突出ノズル
40  液膜
41  排気機構
42  排出孔
43  プラグ
DESCRIPTION OF SYMBOLS 10 sampling apparatus 19 coarse dust removal part 21 cyclone main body 21A axis 21B orthogonal surface 22 gas introduction part 25 water level detection part 31 container body 31a lower end 31b side wall 31c upper end 32 lid 32a lower surface 33 intake hole 33a opening 33b connection end 35 space 36 projecting nozzle 40 liquid film 41 exhaust mechanism 42 exhaust hole 43 plug

Claims (9)

  1.  液体により気体中の粒子を捕集するサンプリング装置において、
     上端部と、下端部と、前記上端部と下端部との間に延びる側壁とを有し、中心軸線をもつ回転対称体からなるとともに、内部に空間を形成する容器と、
     前記容器に設けられ、前記容器内に開口する開口部を有し、粒子を含む気体を吸気する吸気孔と、
     前記容器に設けられた排気管とを備え、
     前記吸気孔は前記容器の中心軸線に直交する直交面に対して傾斜して前記空間内へ向かって延びる、サンプリング装置。
    In a sampling device for collecting particles in a gas with a liquid,
    A container having an upper end, a lower end, and a side wall extending between the upper end and the lower end, the container being a rotationally symmetric body having a central axis and forming a space therein;
    An air intake hole provided in the container, having an opening opening in the container, and inhaling a gas containing particles;
    And an exhaust pipe provided in the container;
    The sampling device according to claim 1, wherein the air inlet is inclined to an orthogonal plane perpendicular to a central axis of the container and extends into the space.
  2.  前記排気管により前記容器の空間内の気体を排気した際、前記吸気孔から粒子を含む気体が前記容器の空間内に入り、前記容器の空間内で気体および液体のらせん流を形成して前記側壁内面に液膜を形成する、請求項1記載のサンプリング装置。 When the gas in the space of the container is exhausted by the exhaust pipe, the gas containing particles enters the space of the container from the air inlet and forms a spiral flow of gas and liquid in the space of the container. The sampling device according to claim 1, wherein a liquid film is formed on the inner surface of the side wall.
  3.  前記吸気孔の開口部全域は前記液膜以外の領域に開口するとともに、前記吸気孔により吸気した気体を前記液膜に噴出する、請求項2記載のサンプリング装置。 The sampling device according to claim 2, wherein the whole area of the opening of the intake hole is opened to a region other than the liquid film, and the gas sucked by the intake hole is ejected to the liquid film.
  4.  前記排気管に排気機構を接続した、請求項1乃至3のいずれか記載のサンプリング装置。 The sampling device according to any one of claims 1 to 3, wherein an exhaust mechanism is connected to the exhaust pipe.
  5.  前記吸気孔は前記容器の前記上端部に設けられている、請求項1記載のサンプリング装置。 The sampling device according to claim 1, wherein the intake hole is provided at the upper end of the container.
  6.  前記液膜は前記容器の前記下端部から上方に延びるよう形成される、請求項2乃至5のいずれか記載のサンプリング装置。 The sampling device according to any one of claims 2 to 5, wherein the liquid film is formed to extend upward from the lower end of the container.
  7.  前記容器に複数の吸気孔が設けられている、請求項1乃至6のいずれか記載のサンプリング装置。 The sampling device according to any one of claims 1 to 6, wherein the container is provided with a plurality of intake holes.
  8.  前記吸気孔は前記容器の前記上端部に設けられ、その開口部は前記容器の前記空間に開口する、請求項5乃至7のいずれか記載のサンプリング装置。 The sampling device according to any one of claims 5 to 7, wherein the intake hole is provided at the upper end of the container, and an opening of the intake hole is open to the space of the container.
  9.  前記吸気孔は前記容器の前記上端部に設けられるとともに、前記上端部の表面から突出する突出ノズルを有し、この突出ノズル先端に前記開口部が形成されている、請求項5乃至8のいずれか記載のサンプリング装置。 The air intake hole is provided at the upper end portion of the container, and has a projecting nozzle projecting from the surface of the upper end portion, and the opening is formed at the tip of the projecting nozzle. The sampling device described.
PCT/JP2018/034663 2017-09-29 2018-09-19 Sampling device WO2019065418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190944 2017-09-29
JP2017190944 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065418A1 true WO2019065418A1 (en) 2019-04-04

Family

ID=65902438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034663 WO2019065418A1 (en) 2017-09-29 2018-09-19 Sampling device

Country Status (1)

Country Link
WO (1) WO2019065418A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604937U (en) * 1983-06-22 1985-01-14 株式会社 栗本鉄工所 Powder sampling device for gas transportation
JPH09145568A (en) * 1995-11-29 1997-06-06 Matsushita Electric Works Ltd Ipc analytical method
DE19820174A1 (en) * 1998-04-30 1999-11-04 Medium Sensor Gmbh Extraction of aerosol particles from air
JP2003524522A (en) * 2000-02-17 2003-08-19 エルジー エレクトロニクス インコーポレーテッド Cyclone dust collector
WO2012063796A1 (en) * 2010-11-11 2012-05-18 株式会社日立製作所 Analysis device and analysis method
CN204612991U (en) * 2015-04-21 2015-09-02 国电科学技术研究院银川电力技术分院 Boiler smoke mixing, purification sampler
JP2015224991A (en) * 2014-05-28 2015-12-14 東京エレクトロン株式会社 Measurement device and measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604937U (en) * 1983-06-22 1985-01-14 株式会社 栗本鉄工所 Powder sampling device for gas transportation
JPH09145568A (en) * 1995-11-29 1997-06-06 Matsushita Electric Works Ltd Ipc analytical method
DE19820174A1 (en) * 1998-04-30 1999-11-04 Medium Sensor Gmbh Extraction of aerosol particles from air
JP2003524522A (en) * 2000-02-17 2003-08-19 エルジー エレクトロニクス インコーポレーテッド Cyclone dust collector
WO2012063796A1 (en) * 2010-11-11 2012-05-18 株式会社日立製作所 Analysis device and analysis method
JP2015224991A (en) * 2014-05-28 2015-12-14 東京エレクトロン株式会社 Measurement device and measurement method
CN204612991U (en) * 2015-04-21 2015-09-02 国电科学技术研究院银川电力技术分院 Boiler smoke mixing, purification sampler

Similar Documents

Publication Publication Date Title
EP3150993A1 (en) Measurement device and measurement method
EP3150994B1 (en) Measurement device and measurement method
US8646340B2 (en) Sampling method and sampling device
US7458284B2 (en) Three-stage dust sampler
JP2004000997A (en) Improved waste separator
JP2017508954A (en) Sampling device and gas curtain guide
JP5276149B2 (en) Gas sensor
US10663429B2 (en) Device for collecting semi-volatile or non-volatile substrate
JP6858851B2 (en) Cyclone collector
JP2012189483A (en) Particle measuring apparatus
JPWO2018078737A1 (en) Flow-through vial and autosampler
WO2019065418A1 (en) Sampling device
US8728397B2 (en) Substance detection device utilizing a cyclone particle separator
US6595368B2 (en) Pre-separator for inlets of cascade impactors
AU2014369702B2 (en) Method and wet scrubber for removing particles from gases
US20230115355A1 (en) Omni-directional particulate extraction inlet
KR20190051142A (en) Dust collector using axial flow cyclone
CN105675453B (en) Gas particles object amount examining system and method for measurement with gas particles object generating device
JP2007114063A (en) Nebulizer and sample liquid atomizer
CN218524424U (en) Particulate matter removing device
JP6009276B2 (en) Gas-liquid separator
TWI676019B (en) Gas composition measuring device
TWI635280B (en) Gas and aerosol compositions monitor and gas-aerosol separator
JP2013163143A (en) Cyclone separator
TW201912245A (en) Apparatus for processing biological sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP