WO2019065357A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2019065357A1
WO2019065357A1 PCT/JP2018/034401 JP2018034401W WO2019065357A1 WO 2019065357 A1 WO2019065357 A1 WO 2019065357A1 JP 2018034401 W JP2018034401 W JP 2018034401W WO 2019065357 A1 WO2019065357 A1 WO 2019065357A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
weight
less
acid
Prior art date
Application number
PCT/JP2018/034401
Other languages
French (fr)
Japanese (ja)
Inventor
恵 谷口
貴俊 向井
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2019544981A priority Critical patent/JP7319190B2/en
Publication of WO2019065357A1 publication Critical patent/WO2019065357A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • This application claims priority based on Japanese Patent Application No. 2017-191175 filed on Sep. 29, 2017, the entire contents of which are incorporated herein by reference.
  • the surface of a silicon substrate used as a component of a semiconductor product or the like is generally finished into a high quality mirror surface through a lapping step (rough polishing step) and a polishing step (precision polishing step).
  • the polishing step typically includes a pre-polishing step (pre-polishing step) and a final polishing step (final-polishing step).
  • a mark such as a bar code, a numeral or a symbol may be written on a silicon substrate by irradiating a laser beam on the surface of the silicon substrate for the purpose of identification and the like. May be attached.
  • the application of the HLM is generally performed after finishing the lapping process of the silicon substrate but before starting the polishing process.
  • the irradiation of the laser beam for applying the HLM causes a bump (swell) on the silicon substrate surface at the periphery of the HLM.
  • the yield may be lowered more than necessary if the above-mentioned bumps are not properly eliminated in the polishing step after the HLM application.
  • the polishing composition for conventional general silicon wafer is effectively eliminated the above-mentioned raised portion. It was difficult to do.
  • Patent documents 1 and 2 are mentioned as technical literature related to eliminating a ridge (hereinafter, also simply referred to as a "ridge") at the periphery of HLM.
  • ridge also simply referred to as a "ridge"
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a polishing composition having an excellent ability to eliminate bumps.
  • the present inventors have completed the present invention by finding that the bump removability can be improved by using tetramethylammonium hydroxide (TMAH) in combination with other specific quaternary ammonium compounds.
  • TMAH tetramethylammonium hydroxide
  • a polishing composition comprising an abrasive, a basic compound, and water.
  • the polishing composition contains, as the basic compound, a combination of two or more types of quaternary ammonium compounds.
  • Those quaternary ammonium compounds include tetramethylammonium hydroxide and one or more selected from the compounds represented by the following general formula (1).
  • X - is a monovalent anion
  • R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of hydrocarbon groups having 1 to 4 carbon atoms .
  • at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms.
  • Preferred examples of the compound represented by the above general formula (1) include tetraethylammonium hydroxide, tetrapropylammonium hydroxide and tetrabutylammonium hydroxide.
  • TEAH tetraethylammonium hydroxide
  • the technology disclosed herein can be preferably implemented in a mode in which TMAH and TEAH are used in combination.
  • the compound (1) accounts for 0% by weight of the total weight of tetramethylammonium hydroxide contained in the upper pre-polishing composition and the compound represented by the general formula (1). It is preferable to use in the range of more than 85 weight%. According to such a configuration, it is easy to achieve both good rise elimination and good polishing rate in a well-balanced manner.
  • silica particles can be preferably used.
  • the use of silica particles can prevent the contamination of the silicon substrate due to the abrasive grains.
  • the average primary particle size of the abrasive grains is preferably 20 nm or more and 150 nm or less. According to the abrasive grain having such an average primary particle diameter, it is easy to achieve both the bump elimination property and the prevention of the occurrence of scratches in a well-balanced manner.
  • the polishing composition disclosed herein can further contain a weak acid salt.
  • a weak acid salt By including the basic compound and the weak acid salt in combination, the buffering action of the pH of the polishing composition can be used to more effectively eliminate the bumps.
  • the polishing composition disclosed herein can be excellent in the ability to eliminate bumps, that is, the ability to eliminate the bumps on the periphery of the HLM. Therefore, the polishing composition is suitable for use in polishing a silicon substrate to which HLM has been applied.
  • the particle diameter is calculated by the formula of value (m 2 / g).
  • the measurement of the specific surface area can be performed, for example, using a surface area measurement device manufactured by Micromeritex, trade name "Flow Sorb II 2300".
  • the aspect ratio of each particle constituting the abrasive grain is the same as the length of the long side of the smallest rectangle circumscribing the image of the particles by scanning electron microscopy (SEM). It can be determined by dividing by.
  • the average aspect ratio of the abrasive grains and the standard deviation of the aspect ratio are the average value and standard deviation of the aspect ratios of a plurality of particles within the field of view of the scanning electron microscope, and these are obtained using general image analysis software. Can be asked.
  • the circle-converted diameter of a particle means a value obtained by measuring the area of the image of the particle by a scanning electron microscope and determining the diameter of a circle having the same area.
  • the average circle-converted diameter and the standard deviation of the circle-converted diameter of the particles constituting the abrasive grains are the average value and the standard deviation of the circle-converted diameters of a plurality of particles within the field of view of the scanning electron microscope. Image analysis software.
  • to eliminate the bumps on the periphery of the HLM means to reduce the height from the reference plane (reference plane) around the HLM on the surface of the object to be polished to the highest point of the bumps.
  • the height from the reference surface to the highest point of the ridge can be measured, for example, by the method described in the examples described later.
  • the polishing composition disclosed herein contains an abrasive.
  • the abrasive grains function to mechanically polish the surface of the object to be polished.
  • the material and properties of the abrasive are not particularly limited, and can be appropriately selected according to the purpose of use, mode of use, and the like.
  • Abrasive grains may be used alone or in combination of two or more.
  • the abrasive include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silicon particles such as silica particles, silicon nitride particles and silicon carbide particles, and diamond particles.
  • Specific examples of the organic particles include poly (methyl methacrylate) (PMMA) particles, polyacrylonitrile particles and the like. Among them, inorganic particles are preferable.
  • Particularly preferred abrasives in the art disclosed herein include silica particles.
  • the technique disclosed herein can be preferably practiced, for example, in a mode in which the abrasive grains substantially consist of silica particles.
  • substantially means that 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and may be 100% by weight) of the particles constituting the abrasive grains. It says that it is a silica particle.
  • the silica particles include colloidal silica, fumed silica, precipitated silica and the like.
  • the silica particles can be used alone or in combination of two or more.
  • Colloidal silica is particularly preferable because it is less likely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (such as the ability to reduce surface roughness and the ability to eliminate bumps).
  • colloidal silica for example, colloidal silica prepared using water glass (Na silicate) as a raw material by an ion exchange method, or alkoxide method colloidal silica can be preferably employed.
  • the alkoxide method colloidal silica is colloidal silica produced by the hydrolysis condensation reaction of an alkoxysilane. Colloidal silica can be used singly or in combination of two or more.
  • the true specific gravity of the silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and still more preferably 1.7 or more.
  • the polishing rate tends to be high due to the increase of the true specific gravity of silica.
  • silica particles having a true specific gravity of 2.0 or more are particularly preferable.
  • the upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less.
  • a value measured by a liquid displacement method using ethanol as a displacement liquid can be adopted.
  • the average primary particle diameter of the abrasive grains is not particularly limited, and can be appropriately selected, for example, from the range of about 10 nm to about 200 nm.
  • the average primary particle diameter is preferably 20 nm or more, and more preferably 30 nm or more, from the viewpoint of improving the protrusion removability.
  • the average primary particle size may be, for example, greater than 40 nm, greater than 45 nm, or greater than 50 nm.
  • the average primary particle diameter is usually advantageously 150 nm or less, preferably 120 nm or less, and more preferably 100 nm or less. In some embodiments, the average primary particle size may be 75 nm or less, or 60 nm or less.
  • the shape (outer shape) of the abrasive may be spherical or non-spherical.
  • specific examples of non-spherical particles include peanut-like shapes, such as peanut-like shell shapes, wedge-like shapes, and projections with a shape such as a bell-and-loop sugar shape, and rugby ball shapes.
  • the average aspect ratio of the abrasive is not particularly limited.
  • the average aspect ratio of the abrasive grains is, in principle, 1.0 or more, and can be 1.05 or more and 1.1 or more. With the increase of the average aspect ratio, the relief property tends to be generally improved.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, from the viewpoints of scratch reduction, polishing stability improvement and the like. In some embodiments, the average aspect ratio of the abrasive may be, for example, 1.5 or less, 1.4 or less, or 1.3 or less.
  • the abrasive one having a volume ratio of particles having a circle-converted diameter of 50 nm or more and an aspect ratio of 1.2 or more of 50% or more can be employed.
  • the volume ratio can be 60% or more.
  • the value of the volume ratio is 50% or more, and more specifically 60% or more, relatively large particles having a size and aspect ratio effective for eliminating bumps can be contained in the abrasive grains. For this reason, it is possible to further improve the ability to eliminate bumps due to the mechanical action of the abrasive grains.
  • the average circle-converted diameter of the abrasive may be, for example, 25 nm or more, 40 nm or more, 55 nm or more, or 70 nm or more.
  • the average circle-converted diameter of the abrasive grains may be, for example, 300 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less.
  • the polishing composition disclosed herein can be suitably carried out using an abrasive having such an average circle-converted diameter.
  • the content of the abrasive is not particularly limited, and may be appropriately set according to the purpose.
  • the content of the abrasive grains relative to the total weight of the polishing composition may be, for example, 0.01% by weight or more, 0.05% by weight or more, or 0.1% by weight or more.
  • the abrasive content may be 0.2 wt% or more, 0.3 wt% or more, 0.5 wt% or more, or 0.7 wt% or more.
  • the content of abrasive grains may be, for example, 10% by weight or less, may be 5% by weight or less, or 3% by weight or less It may be 2% by weight or less.
  • These contents can be preferably applied, for example, to the contents in the polishing liquid (working slurry) supplied to the object to be polished.
  • the polishing composition disclosed herein comprises a combination of two or more quaternary ammonium compounds as a basic compound.
  • the two or more types of quaternary ammonium compounds are tetramethylammonium hydroxide (TMAH), and at least one selected from a compound represented by the following general formula (1) (that is, compound (1)), including.
  • TMAH tetramethylammonium hydroxide
  • X in the general formula (1) - is a monovalent anion.
  • R 1 , R 2 , R 3 and R 4 in the above general formula (1) are each independently selected from the group consisting of hydrocarbon groups having 1 to 4 carbon atoms. However, at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms.
  • the ridge removability can be significantly improved.
  • the reason why such an effect is obtained is considered, for example, as follows. That is, the hydrocarbon group having 2 to 4 carbon atoms exhibits higher hydrophobicity than the methyl group which is a hydrocarbon group having 1 carbon atom. Therefore, the cation moiety of the compound (1) in which at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms has higher hydrophobicity than that of TMAH. It can be said that it shows sex.
  • the cation moiety of the compound (1) tends to be more adsorptive to a hydrophobic surface such as a silicon substrate or the like than the cation moiety of TMAH.
  • TMAH and the compound (1) in combination, a relatively high portion of the surface of the object to be polished is efficiently polished by the mechanical action of the abrasive grains or the chemical action of TMAH, but it is relatively low.
  • the portion being appropriately protected by the adsorption of the compound (1), it is considered that the bump eliminating property is improved.
  • the hydrocarbon group having 2 to 4 carbon atoms may be an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group or the like. From the viewpoint of chemical stability, alkyl groups having 2 to 4 carbon atoms are preferred.
  • the C 2-4 alkyl group may be selected from the group consisting of ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl. Among these, ethyl, n-propyl and n-butyl are more preferable.
  • R 1 , R 2 , R 3 and R 4 in the above formula (1) may be the same group or different groups.
  • the compound (1) in which R 1 , R 2 , R 3 and R 4 are the same group can be preferably employed since high purity materials are easily available.
  • X in the above formula - is a monovalent anion.
  • X - it includes examples of, OH -, F -, Cl -, Br -, I -, ClO 4 -, BH 4 - and the like. Among them, X - is OH -, Compound (1) is preferred.
  • Examples of preferred compounds (1) include tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide and tetrabutylammonium hydroxide.
  • TEAH tetraethylammonium hydroxide
  • tetrapropyl ammonium hydroxide tetra n-propyl ammonium hydroxide is preferable
  • tetrabutyl ammonium hydroxide tetra n-butyl ammonium hydroxide is preferable.
  • TEAH and tetra n-butylammonium hydroxide are mentioned as preferable compound (1).
  • the polishing composition contains two or more quaternary ammonium compounds containing at least TMAH and TEAH. As described above, by using quaternary ammonium compounds having similar structures but different hydrophobicities in combination, it is possible to accurately adjust the improvement of the ridge removal property and the maintenance of the polishing rate.
  • the composition for polishing may have a composition containing TEAH and another quaternary ammonium compound as the compound (1), or may have a composition containing TEAH alone. In the polishing composition disclosed herein, for example, more than 50% by weight, more than 75% by weight, more than 90% by weight, or more than 95% by weight of the compound (1) contained in the composition is TEAH. It can be preferably implemented in an aspect.
  • the weight ratio of the TMAH content W M to the compound (1) content W 1 can suitably balance the improvement of the protrusion removal property and the maintenance of the polishing rate. It can be set as such and is not particularly limited.
  • the content W 1 of the compound (1) refers to the total content of those compounds (1).
  • the ratio of the content of compound (1) to the total content of TMAH and compound (1), that is, W 1 / (W M + W 1 ) may have a value of more than 0% by weight and less than 100% by weight.
  • W 1 / (W M + W 1 ) may be, for example, 1 wt% or more, 2 wt% or more, 5 wt% or more, 7 wt% or more, 10 wt% % Or more, 20% by weight or more, or 30% by weight or more.
  • the increase in W 1 / (W M + W 1 ) tends to improve the ridge-eliminating property.
  • W 1 / (W M + W 1 ) may be, for example, 98% by weight or less and 90% by weight or less It may be 85 wt% or less, or 80 wt% or less.
  • W 1 / (W M + W 1 ) is determined after polishing when polishing is performed using a polishing composition having a composition in which the total amount of compound (1) is replaced with the same weight of TMAH.
  • the polishing is performed using a polishing composition containing TMAH and the compound (1) in combination at a reduced value where the bump height H 0 and the polishing rate R 0 at that time are respectively 100%
  • the HC can be set to 90% or less, preferably 70% or less, more preferably 50% or less, and the polishing rate RC at that time can be set to 85% or more.
  • W 1 / (W M) satisfying the above-described protrusion height H C and the removal rate R C by evaluating the removal rate and removal of protrusions under the conditions described in the examples to be described later.
  • the range of + W 1 ) can be grasped.
  • the total content of TMAH and compound (1) is not particularly limited, and may be appropriately set depending on the purpose. From the viewpoint of improving the polishing rate, in some embodiments, the total content may be, for example, 0.001% by weight or more, or 0.005% by weight or more based on the total weight of the polishing composition. 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more. Also, from the viewpoint of making it easier to obtain higher bump removal property, in some embodiments, the total content may be, for example, 5% by weight or less, 2% by weight or less, or 1% by weight or less. It may be 0.7 wt% or less, or 0.5 wt% or less. These contents can be preferably applied, for example, to the contents in the polishing liquid (working slurry) supplied to the object to be polished.
  • the polishing composition disclosed herein can optionally contain a basic compound other than TMAH and the compound (1), as long as the effects of the present invention are not significantly impaired.
  • basic compounds as optional components include quaternary ammonium compounds other than TMAH and compound (1), alkali metal hydroxides, quaternary phosphonium hydroxides, amines, ammonia, and the like.
  • the basic compound as an optional component is contained, the content thereof is suitably 1/2 or less of the total content of TMAH and compound (1) on a weight basis, and is 1/4 or less. Is preferably 1/10 or less, more preferably 1/20 or less, 1/50 or less, and even 1/100 or less.
  • the polishing composition disclosed herein does not substantially contain a base (in particular, a strong base such as potassium hydroxide or piperazine) as an optional component. It can be preferably implemented.
  • a base in particular, a strong base such as potassium hydroxide or piperazine
  • “not substantially contained” means not at least intentionally contained in the polishing composition.
  • a polishing composition substantially free of potassium hydroxide is preferred.
  • the polishing composition disclosed herein can contain a weak acid salt, if necessary.
  • a weak acid salt typically a weak base
  • one which can exhibit a desired buffering action in combination with a quaternary ammonium compound can be appropriately selected.
  • the polishing composition configured to exhibit such a buffer action has less fluctuation in pH of the polishing composition during polishing, and can be excellent in maintainability of the polishing efficiency. This makes it possible to more preferably achieve both the improvement of the bump removal property and the maintenance of the polishing rate.
  • weak acid salts include sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium orthosilicate, potassium orthosilicate, sodium acetate, potassium acetate, sodium propionate, sodium propionate, potassium propionate, calcium carbonate, calcium hydrogencarbonate And calcium acetate, calcium propionate, magnesium acetate, magnesium propionate, zinc propionate, manganese acetate, cobalt acetate and the like.
  • a weak acid salt in which the anion component is a carbonate ion or a hydrogen carbonate ion is preferred, and a weak acid salt in which the anion component is a carbonate ion is particularly preferred.
  • alkali metal ions such as potassium and sodium, are suitable.
  • a weak acid salt can be used individually by 1 type or in combination of 2 or more types.
  • At least one of the acid dissociation constant (pKa) values is 8.0 to 11.8 (for example, 8.0 to 8) Weak salts in the range of 11.5) are preferred.
  • Preferred examples include carbonates, bicarbonates, borates, phosphates and phenol salts.
  • Particularly preferred weak acid salts include sodium carbonate, potassium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate. Among them, potassium carbonate (K 2 CO 3 ) is preferable.
  • the value of pKa the value of the acid dissociation constant at 25 ° C. described in the known data can be adopted.
  • the content of the weak acid salt can be set so that the buffering action is suitably exerted in relation to the quaternary ammonium compound.
  • the content of the weak acid salt may be, for example, 0.001% by weight or more and 0.005% by weight or more based on the total weight of the polishing composition. It may be 0.01% by weight or more, 0.05% by weight or more, and 0.1% by weight or more.
  • the total content may be, for example, 5% by weight or less, 2% by weight or less, or 1% by weight or less. It may be 0.7 wt% or less, or 0.5 wt% or less.
  • ion-exchanged water deionized water
  • pure water ultrapure water, distilled water or the like
  • the water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less, in order to avoid the inhibition of the functions of other components contained in the polishing composition as much as possible.
  • the purity of water can be increased by operations such as removal of impurity ions by ion exchange resin, removal of foreign matter by filter, and distillation.
  • the polishing composition disclosed herein is a polishing composition such as a chelating agent, an acid, a water-soluble polymer, a surfactant, an antiseptic agent, an antifungal agent, etc., to the extent that the effects of the present invention are not significantly impaired.
  • a known additive that may be used in may further be contained, as needed.
  • Examples of the above-mentioned chelating agents include aminocarboxylic acid-based chelating agents and organic phosphonic acid-based chelating agents.
  • Examples of aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, ammonium hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid Sodium diethylene triamine pentaacetate, triethylene tetramine hexaacetic acid and sodium triethylene tetramine hexaacetate.
  • organic phosphonic acid type chelating agents include 2-aminoethyl phosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylene phosphonic acid), ethylene diamine tetrakis (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid) Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and ⁇ -methylphosphorous Includes nosuccinic acid.
  • organic phosphonic acid type chelating agents are more preferable.
  • preferred are ethylenediaminetetrakis (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid) and diethylene triamine pentaacetic acid.
  • Particularly preferred chelating agents include ethylenediamine tetrakis (methylene phosphonic acid) and diethylene triamine penta (methylene phosphonic acid).
  • the chelating agents can be used alone or in combination of two or more.
  • the amount of the chelating agent used is, for example, about 0.0001 to 1% by weight, about 0.001 to 0.5% by weight, or about 0.005 to 0.1% by weight of the content of the chelating agent in the working slurry. Can be set to be, but not limited to.
  • the acid examples include inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid and boric acid; acetic acid, itaconic acid, succinic acid, tartaric acid, citric acid, maleic acid, glycolic acid, malonic acid Organic acids such as methanesulfonic acid, formic acid, malic acid, gluconic acid, alanine, glycine, lactic acid, hydroxyethylenediphosphonic acid (HEDP), nitrilotris [methylene phosphonic acid] (NTMP), phosphonobutane tricarboxylic acid (PBTC), etc. It can be mentioned.
  • the acid may be used in the form of a salt of the acid.
  • the salts of the acids may be, for example, alkali metal salts such as sodium salts and potassium salts, ammonium salts and the like.
  • water-soluble polymer examples include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and vinyl alcohol polymers. Specific examples thereof include hydroxyethyl cellulose, pullulan, random copolymer or block copolymer of ethylene oxide and propylene oxide, polyvinyl alcohol, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyisoamylene sulfonic acid And polystyrene sulfonate, polyacrylate, polyvinyl acetate, polyethylene glycol, polyvinyl imidazole, polyvinyl carbazole, polyvinyl pyrrolidone, polyvinyl caprolactam, polyvinyl piperidine and the like.
  • the water-soluble polymers can be used alone or in combination of two or more.
  • the polishing composition disclosed herein can be preferably practiced even in an embodiment substantially free of a water-soluble polymer, that is, an embodiment not at least intentionally containing a water-soluble polymer.
  • Examples of the above preservatives and fungicides include isothiazoline compounds, p-hydroxybenzoic acid esters, phenoxyethanol and the like.
  • the polishing composition disclosed herein preferably contains substantially no oxidizing agent. If an oxidizing agent is contained in the polishing composition, the composition is supplied to oxidize the surface of the silicon substrate to form an oxide film, which may lower the polishing rate. It is for.
  • the polishing composition does not substantially contain an oxidizing agent means that at least the oxidizing agent is not intentionally added, and a trace amount of oxidizing agent is unavoidably contained due to the raw materials, the manufacturing method, etc. Being acceptable.
  • the above trace amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less (preferably 0.0001 mol / L or less, more preferably 0.00001 mol / L or less, particularly preferably 0.
  • the polishing composition according to a preferred embodiment does not contain an oxidizing agent.
  • the polishing composition disclosed herein can be preferably practiced, for example, in a mode that does not contain any of hydrogen peroxide, sodium persulfate, ammonium persulfate and sodium dichloroisocyanurate.
  • the polishing composition disclosed herein is typically supplied to an object to be polished in the form of a polishing liquid (working slurry) containing the polishing composition, and used for polishing the object to be polished.
  • the above polishing composition may be, for example, one that is diluted with a solvent such as water and used as a polishing liquid, or may be used as it is as a polishing liquid. That is, the concept of the polishing composition in the art disclosed herein includes both a working slurry which is supplied to a polishing object and used for polishing the polishing object, and a concentrated solution (stock solution) of the working slurry. Is included.
  • the concentration ratio of the concentrated solution may be, for example, about 2 to 50 times on a volume basis, usually about 5 to 30 times, and preferably about 5 to 20 times.
  • the pH of the polishing composition is typically 8.0 or more, preferably 8.5 or more, more preferably 9.0 or more, still more preferably 9.5 or more, for example 10.0 or more.
  • the pH of the polishing composition is usually appropriate to be 12.0 or less And is preferably 11.8 or less, more preferably 11.5 or less, and still more preferably 11.0 or less.
  • the pH of the polishing composition is determined using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator manufactured by Horiba, Ltd. (Model No. F-23)), and a standard buffer (phthalate pH buffer solution pH: After three-point calibration using 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), carbonate pH buffer pH: 10.01 (25 ° C))
  • a pH meter for example, a glass electrode type hydrogen ion concentration indicator manufactured by Horiba, Ltd. (Model No. F-23)
  • a standard buffer phthalate pH buffer solution pH: After three-point calibration using 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), carbonate pH buffer pH: 10.01 (25 ° C)
  • the composition can be grasped by putting a glass electrode into a composition for polishing liquid and measuring a value after being stabilized for 2 minutes or more.
  • the polishing composition disclosed herein may be of one-part type or multi-part type such as two-part type.
  • the polishing liquid may be prepared by mixing Part A containing at least abrasive grains and Part B containing the remaining components, and diluting as needed at an appropriate timing.
  • the method for producing the polishing composition disclosed herein is not particularly limited.
  • the respective components contained in the polishing composition may be mixed using a known mixing device such as a wing stirrer, an ultrasonic disperser, a homomixer or the like.
  • the aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once, and you may mix in the order set suitably.
  • the polishing composition disclosed herein can be used for polishing an object to be polished, for example, in a mode including the following operations. That is, a working slurry containing any of the polishing compositions disclosed herein is prepared. Then, the polishing composition is supplied to the object to be polished and polished by a conventional method.
  • the object to be polished is set in a general polishing apparatus, and the polishing composition is supplied to the surface (surface to be polished) of the object to be polished through the polishing pad of the polishing apparatus.
  • the polishing pad is pressed against the surface of the object to be polished and both are moved (for example, rotationally moved) relative to each other. Polishing of the object to be polished is completed through this polishing process.
  • the polishing pad used in the polishing step is not particularly limited.
  • any of polyurethane foam type, non-woven type, suede type, one containing abrasive grains, one not containing abrasive grains, etc. may be used.
  • the above-mentioned polishing composition may be used in a mode (so-called "deep flow") which is disposable once used for polishing, or may be used repeatedly in circulation.
  • a method of circulating and using the polishing composition there is a method of recovering the used polishing composition discharged from the polishing apparatus into a tank and supplying the recovered polishing composition to the polishing apparatus again. .
  • the polishing composition disclosed herein is excellent in the ability to eliminate the bumps on the periphery of the HLM (bump removability). Taking advantage of such features, the above-mentioned polishing composition can be preferably applied to the polishing of an object to be polished to which HLM has been applied. For example, it is suitable as a polishing composition used in the pre-polishing step of a silicon substrate to which HLM has been applied. It is desirable that the bumps on the HLM rim be eliminated early in the polishing process. For this reason, the polishing composition disclosed herein can be particularly preferably used in the first polishing step (primary polishing step) after the application of HLM.
  • the silicon substrate Prior to the polishing step using the polishing composition disclosed herein, the silicon substrate is subjected to general processing that can be applied to the silicon substrate, such as lapping and etching, and the application of the above-described HLM. It is also good.
  • the silicon substrate typically has a surface made of silicon.
  • Such a silicon substrate is typically a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the polishing composition disclosed herein is suitable for use in polishing HLM-applied silicon single crystal wafers.
  • the polishing composition disclosed herein can also be suitably used for polishing an object to be polished that does not have HLM, and the surface roughness of the surface of the object to be polished can be efficiently reduced.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • EDTPO ethylenediaminetetrakis (methylene phosphonic acid)
  • a polishing composition containing TMAH and TEAH at a concentration ratio shown in Table 1 was prepared by stirring and mixing with ion-exchanged water at room temperature about 25 ° C. for about 30 minutes.
  • the above-mentioned colloidal silica has an average primary particle diameter of 55 nm, an average circle conversion diameter by SEM observation of 92.5 nm, a standard deviation of the circle conversion diameter of 38.5, and an average aspect ratio of 1.29.
  • the volume fraction of particles having a standard deviation of aspect ratio of 0.320, a volume ratio of particles with a circle conversion diameter of 50 nm or more and an aspect ratio of 1.2 or more of 77%, and a circle conversion diameter of 1 to 300 nm was 100%.
  • polishing composition By diluting the polishing composition according to each example to 10 times with ion-exchanged water, 1.0 wt% of colloidal silica, 0.2 wt% of potassium carbonate, and 0.2 wt% in total of TMAH and TEAH A polishing solution was prepared which contained at a concentration of 0.01% by weight of EDTPO.
  • a polishing composition is prepared in the same manner as in Example 1 except that TMAH is used alone as a basic compound, and this is diluted 10-fold with ion-exchanged water to obtain 1.0% by weight of colloidal silica, carbonated A polishing solution was prepared containing 0.2% by weight of potassium, 0.2% by weight of TMAH, and 0.01% by weight of EDTPO.
  • Example 2 A polishing composition was prepared in the same manner as in Example 1 except that TEAH was used alone as a basic compound, and this was diluted 10-fold with ion-exchanged water to obtain 1.0% by weight of colloidal silica, and carbonated A polishing solution was prepared containing 0.2% by weight of potassium, 0.2% by weight of TEAH, and 0.01% by weight of EDTPO.
  • Each of these polishing liquids constitutes a buffer system of K 2 CO 3 and TMAH and / or TEAH.
  • the pH of these polishing liquids was 10.6 to 10.7.
  • test piece a commercially available silicon single crystal wafer of 100 mm in diameter finished with lapping and etching (thickness: 525 ⁇ m, conductivity type: P type, crystal orientation: ⁇ 100>, resistivity: 0.1 ⁇ ⁇ cm or more and 100 ⁇ ⁇ cm Less than). HLM is attached to the above-mentioned wafer.
  • Polishing device Single-side polishing device manufactured by Nihon Engis Co., Ltd., model "EJ-380" Polishing pressure: 12 kPa Plate rotation speed: 50 rpm Head rotation speed: 40 rpm Polishing pad: manufactured by Nitta Hearth, trade name "SUBA 800" Abrasive fluid supply rate: 100 mL / min (over flow use) Holding temperature of polishing environment: 25 ° C Polishing allowance: 4 ⁇ m
  • the polishing rate [nm / min] in each example and comparative example was calculated based on the time required for the above polishing, that is, the time required for the removal amount to reach 4 ⁇ m.
  • the obtained result was converted to a relative value (relative polishing rate) in which the polishing rate of Comparative Example 1 was 100%, and the polishing rate was evaluated based on the values in the following two levels.
  • the results are shown in Table 1.
  • the evaluation result "G" means that a polishing rate substantially equal to or higher than that of Comparative Example 1 in which TMAH was used alone was obtained.
  • NG Relative polishing rate is less than 85%

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided is a polishing composition having excellent capability for removing protrusions at the hard laser mark periphery. This polishing composition contains abrasive grains, a basic compound, and water. The basic compound includes a combination of two or more types of quaternary ammonium compounds. The two or more types of quaternary ammonium compounds include tetramethyl ammonium hydroxide and one or more types selected from compounds represented by general formula (1). (In the formula, X- is a monovalent anion and R1, R2, R3, and R4 are each independently selected from the group consisting of C1-4 hydrocarbon groups. However, at least one of R1, R2, R3 and R4 is a C2-4 hydrocarbon group.)

Description

研磨用組成物Polishing composition
 本発明は、研磨用組成物に関する。本出願は、2017年9月29日に出願された日本国特許出願2017-191175号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a polishing composition. This application claims priority based on Japanese Patent Application No. 2017-191175 filed on Sep. 29, 2017, the entire contents of which are incorporated herein by reference.
 従来、金属や半金属、非金属、その酸化物等の材料表面に対して、研磨用組成物を用いた精密研磨が行われている。例えば、半導体製品の構成要素等として用いられるシリコン基板の表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。 Heretofore, precision polishing using a polishing composition has been performed on the surface of materials such as metals, metalloids, nonmetals and oxides thereof. For example, the surface of a silicon substrate used as a component of a semiconductor product or the like is generally finished into a high quality mirror surface through a lapping step (rough polishing step) and a polishing step (precision polishing step). The polishing step typically includes a pre-polishing step (pre-polishing step) and a final polishing step (final-polishing step).
 シリコン基板には、識別等の目的で、該シリコン基板の表面にレーザー光を照射することによって、バーコード、数字、記号等のマーク(ハードレーザーマーク;以下「HLM」と表記することがある。)が付されることがある。HLMの付与は、一般に、シリコン基板のラッピング工程を終えた後、ポリシング工程を開始する前に行われる。通常、HLMを付すためのレーザー光の照射によって、HLM周縁のシリコン基板表面には隆起(盛り上がり)が生じる。シリコン基板のうちHLMの部分自体は最終製品には用いられないが、HLM付与後のポリシング工程において上記隆起が適切に解消されないと、必要以上に歩留りが低下することがあり得る。しかし、上記隆起部分はレーザー光のエネルギーによりポリシリコン化等の変質を生じて硬くなっていることが多いため、従来の一般的なシリコンウェーハ用の研磨用組成物では上記隆起を効果的に解消することは困難であった。 A mark such as a bar code, a numeral or a symbol (hard laser mark; hereinafter referred to as “HLM”) may be written on a silicon substrate by irradiating a laser beam on the surface of the silicon substrate for the purpose of identification and the like. May be attached. The application of the HLM is generally performed after finishing the lapping process of the silicon substrate but before starting the polishing process. Usually, the irradiation of the laser beam for applying the HLM causes a bump (swell) on the silicon substrate surface at the periphery of the HLM. Although the HLM portion of the silicon substrate itself is not used for the final product, the yield may be lowered more than necessary if the above-mentioned bumps are not properly eliminated in the polishing step after the HLM application. However, since the above-mentioned raised portion is often hardened due to deterioration such as conversion to polysilicon due to the energy of laser light, the polishing composition for conventional general silicon wafer is effectively eliminated the above-mentioned raised portion. It was difficult to do.
日本国特許出願公開2015-233031号公報Japanese Patent Application Publication No. 2015-233031 日本国特許出願公開2017-117917号公報Japanese Patent Application Publication 2017-117917
 HLM周縁の隆起(以下、単に「隆起」ともいう。)を解消することに関連する技術文献として、特許文献1,2が挙げられる。しかし、これらの文献に開示された技術とは異なる手法によって、あるいはより効果的に、上記隆起を解消したいとの要望が依然として存在している。 Patent documents 1 and 2 are mentioned as technical literature related to eliminating a ridge (hereinafter, also simply referred to as a "ridge") at the periphery of HLM. However, there is still a desire to eliminate the above-mentioned bumps by means different from the techniques disclosed in these documents or more effectively.
 本発明は、かかる事情に鑑みてなされたものであって、隆起解消性に優れた研磨用組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a polishing composition having an excellent ability to eliminate bumps.
 本発明者らは、水酸化テトラメチルアンモニウム(TMAH)と他の特定の第四級アンモニウム化合物とを組み合わせて用いることにより隆起解消性を改善し得ることを見出して、本発明を完成した。 The present inventors have completed the present invention by finding that the bump removability can be improved by using tetramethylammonium hydroxide (TMAH) in combination with other specific quaternary ammonium compounds.
 この明細書によると、砥粒と塩基性化合物と水とを含む研磨用組成物が提供される。上記研磨用組成物は、上記塩基性化合物として、2種以上の第四級アンモニウム化合物を組み合わせて含む。それらの第四級アンモニウム化合物は、水酸化テトラメチルアンモニウムと、以下の一般式(1)で表される化合物から選択される1種以上とを含む。 According to this specification, a polishing composition comprising an abrasive, a basic compound, and water is provided. The polishing composition contains, as the basic compound, a combination of two or more types of quaternary ammonium compounds. Those quaternary ammonium compounds include tetramethylammonium hydroxide and one or more selected from the compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、式中のXは一価のアニオンであり、R,R,R,Rは、それぞれ独立に、炭素原子数1~4の炭化水素基からなる群から選択される。ただし、R,R,R,Rのうち少なくとも一つは炭素原子数2~4の炭化水素基である。 Here, in the formula, X - is a monovalent anion, and R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of hydrocarbon groups having 1 to 4 carbon atoms . However, at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms.
 上記一般式(1)で表される化合物(以下、「化合物(1)」ともいう。)の好適例として、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウムおよび水酸化テトラブチルアンモニウムが挙げられる。良好な隆起解消性と良好な研磨レートとをバランスよく両立しやすいことから、水酸化テトラエチルアンモニウム(TEAH)の使用が特に好ましい。ここに開示される技術は、TMAHとTEAHとを組み合わせて用いる態様で好ましく実施することができる。 Preferred examples of the compound represented by the above general formula (1) (hereinafter also referred to as "compound (1)") include tetraethylammonium hydroxide, tetrapropylammonium hydroxide and tetrabutylammonium hydroxide. The use of tetraethylammonium hydroxide (TEAH) is particularly preferred, because it is easy to achieve both good bump elimination and a good polishing rate in a well-balanced manner. The technology disclosed herein can be preferably implemented in a mode in which TMAH and TEAH are used in combination.
 いくつかの態様において、上記化合物(1)は、上前研磨用組成物に含まれる水酸化テトラメチルアンモニウムと上記一般式(1)で表される化合物との合計重量のうち、0重量%を超えて85重量%以下の範囲で用いられることが好ましい。このような構成によると、良好な隆起解消性と良好な研磨レートとをバランスよく両立しやすい。 In some embodiments, the compound (1) accounts for 0% by weight of the total weight of tetramethylammonium hydroxide contained in the upper pre-polishing composition and the compound represented by the general formula (1). It is preferable to use in the range of more than 85 weight%. According to such a configuration, it is easy to achieve both good rise elimination and good polishing rate in a well-balanced manner.
 上記砥粒としては、シリカ粒子を好ましく用いることができる。シリカ粒子の使用により、砥粒に起因するシリコン基板の汚染を防止することができる。 As the above-mentioned abrasive, silica particles can be preferably used. The use of silica particles can prevent the contamination of the silicon substrate due to the abrasive grains.
 いくつかの態様において、上記砥粒の平均一次粒子径は、20nm以上150nm以下であることが好ましい。かかる平均一次粒子径を有する砥粒によると、隆起解消性とスクラッチの発生防止とをバランスよく両立しやすい。 In some embodiments, the average primary particle size of the abrasive grains is preferably 20 nm or more and 150 nm or less. According to the abrasive grain having such an average primary particle diameter, it is easy to achieve both the bump elimination property and the prevention of the occurrence of scratches in a well-balanced manner.
 ここに開示される研磨用組成物には、さらに弱酸塩を含有させることができる。上記塩基性化合物と弱酸塩とを組み合わせて含むことにより、研磨用組成物のpHの緩衝作用を利用して、より効果的に隆起を解消することができる。 The polishing composition disclosed herein can further contain a weak acid salt. By including the basic compound and the weak acid salt in combination, the buffering action of the pH of the polishing composition can be used to more effectively eliminate the bumps.
 ここに開示される研磨用組成物は、隆起解消性、すなわちHLM周縁の隆起を解消する性能に優れたものとなり得る。したがって、上記研磨用組成物は、HLMの付与されたシリコン基板を研磨する用途に好適である。 The polishing composition disclosed herein can be excellent in the ability to eliminate bumps, that is, the ability to eliminate the bumps on the periphery of the HLM. Therefore, the polishing composition is suitable for use in polishing a silicon substrate to which HLM has been applied.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. The matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be understood as the design matters of those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in the present specification and common technical knowledge in the field.
 この明細書において、砥粒の平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径をいう。例えばシリカ粒子の場合、平均一次粒子径(nm)=2727/BET値(m/g)により平均一次粒子径を算出することができる。比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。 In this specification, the average primary particle size of the abrasive grains is the average primary particle size (nm) = 6000 / (true density (g / cm 3 ) × BET) from the specific surface area (BET value) measured by the BET method. The particle diameter is calculated by the formula of value (m 2 / g). For example, in the case of silica particles, the average primary particle size can be calculated from the average primary particle size (nm) = 2727 / BET value (m 2 / g). The measurement of the specific surface area can be performed, for example, using a surface area measurement device manufactured by Micromeritex, trade name "Flow Sorb II 2300".
 この明細書において、砥粒を構成する各粒子のアスペクト比は、走査型電子顕微鏡(SEM)による当該粒子の画像に外接する最小の長方形の長辺の長さを同じ長方形の短辺の長さで除することにより求めることができる。砥粒の平均アスペクト比およびアスペクト比の標準偏差は、走査型電子顕微鏡の視野範囲内にある複数の粒子のアスペクト比の平均値および標準偏差であり、これらは一般的な画像解析ソフトウエアを用いて求めることができる。 In this specification, the aspect ratio of each particle constituting the abrasive grain is the same as the length of the long side of the smallest rectangle circumscribing the image of the particles by scanning electron microscopy (SEM). It can be determined by dividing by. The average aspect ratio of the abrasive grains and the standard deviation of the aspect ratio are the average value and standard deviation of the aspect ratios of a plurality of particles within the field of view of the scanning electron microscope, and these are obtained using general image analysis software. Can be asked.
 この明細書において、粒子の円換算径とは、走査型電子顕微鏡による当該粒子の画像の面積を計測し、それと同じ面積の円の直径を求めることにより得られる値をいう。砥粒を構成する粒子の平均円換算径および円換算径の標準偏差は、走査型電子顕微鏡の視野範囲内にある複数の粒子の円換算径の平均値および標準偏差であり、これらも一般的な画像解析ソフトウエアを用いて求めることができる。 In this specification, the circle-converted diameter of a particle means a value obtained by measuring the area of the image of the particle by a scanning electron microscope and determining the diameter of a circle having the same area. The average circle-converted diameter and the standard deviation of the circle-converted diameter of the particles constituting the abrasive grains are the average value and the standard deviation of the circle-converted diameters of a plurality of particles within the field of view of the scanning electron microscope. Image analysis software.
 この明細書において、HLM周縁の隆起を解消するとは、研磨対象物表面のうちHLM周辺の基準面(基準平面)から上記隆起の最高点までの高さを小さくすることをいう。上記基準面から上記隆起の最高点までの高さは、例えば、後述する実施例に記載の方法により測定することができる。 In this specification, to eliminate the bumps on the periphery of the HLM means to reduce the height from the reference plane (reference plane) around the HLM on the surface of the object to be polished to the highest point of the bumps. The height from the reference surface to the highest point of the ridge can be measured, for example, by the method described in the examples described later.
<砥粒>
 ここに開示される研磨用組成物は、砥粒を含有する。砥粒は、研磨対象物の表面を機械的に研磨する働きをする。
<Abrasive>
The polishing composition disclosed herein contains an abrasive. The abrasive grains function to mechanically polish the surface of the object to be polished.
 砥粒の材質や性状は特に制限されず、使用目的や使用態様等に応じて適宜選択することができる。砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、窒化ケイ素粒子、炭化ケイ素粒子等のシリコン化合物粒子や、ダイヤモンド粒子等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子、ポリアクリロニトリル粒子等が挙げられる。なかでも無機粒子が好ましい。 The material and properties of the abrasive are not particularly limited, and can be appropriately selected according to the purpose of use, mode of use, and the like. Abrasive grains may be used alone or in combination of two or more. Examples of the abrasive include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silicon particles such as silica particles, silicon nitride particles and silicon carbide particles, and diamond particles. Specific examples of the organic particles include poly (methyl methacrylate) (PMMA) particles, polyacrylonitrile particles and the like. Among them, inorganic particles are preferable.
 ここに開示される技術において特に好ましい砥粒として、シリカ粒子が挙げられる。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上(好ましくは98重量%以上、より好ましくは99重量%以上であり、100重量%であってもよい。)がシリカ粒子であることをいう。 Particularly preferred abrasives in the art disclosed herein include silica particles. The technique disclosed herein can be preferably practiced, for example, in a mode in which the abrasive grains substantially consist of silica particles. Here, "substantially" means that 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and may be 100% by weight) of the particles constituting the abrasive grains. It says that it is a silica particle.
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、1種を単独でまたは2種以上を組み合わせて用いることができる。研磨対象物表面にスクラッチを生じさせにくく、かつ良好な研磨性能(表面粗さを低下させる性能や隆起解消性等)を発揮し得ることから、コロイダルシリカが特に好ましい。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカを好ましく採用することができる。ここでアルコキシド法コロイダルシリカとは、アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカである。コロイダルシリカは、1種を単独でまたは2種以上を組み合わせて用いることができる。 Specific examples of the silica particles include colloidal silica, fumed silica, precipitated silica and the like. The silica particles can be used alone or in combination of two or more. Colloidal silica is particularly preferable because it is less likely to cause scratches on the surface of the object to be polished and can exhibit good polishing performance (such as the ability to reduce surface roughness and the ability to eliminate bumps). As the colloidal silica, for example, colloidal silica prepared using water glass (Na silicate) as a raw material by an ion exchange method, or alkoxide method colloidal silica can be preferably employed. Here, the alkoxide method colloidal silica is colloidal silica produced by the hydrolysis condensation reaction of an alkoxysilane. Colloidal silica can be used singly or in combination of two or more.
 シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大により、研磨レートは高くなる傾向にある。かかる観点から、真比重が2.0以上(例えば2.1以上)のシリカ粒子が特に好ましい。シリカの真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下である。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of the silica constituting the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and still more preferably 1.7 or more. The polishing rate tends to be high due to the increase of the true specific gravity of silica. From this viewpoint, silica particles having a true specific gravity of 2.0 or more (for example, 2.1 or more) are particularly preferable. The upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, for example, 2.2 or less. As the true specific gravity of silica, a value measured by a liquid displacement method using ethanol as a displacement liquid can be adopted.
 砥粒の平均一次粒子径は特に限定されず、例えば10nm~200nm程度の範囲から適宜選択し得る。隆起解消性向上の観点から、平均一次粒子径は、20nm以上であることが好ましく、30nm以上であることがより好ましい。いくつかの態様において、平均一次粒子径は、例えば40nm超であってよく、45nm超でもよく、50nm超でもよい。また、スクラッチの発生防止の観点から、平均一次粒子径は、通常、150nm以下であることが有利であり、120nm以下であることが好ましく、100nm以下であることがより好ましい。いくつかの態様において、平均一次粒子径は、75nm以下でもよく、60nm以下でもよい。 The average primary particle diameter of the abrasive grains is not particularly limited, and can be appropriately selected, for example, from the range of about 10 nm to about 200 nm. The average primary particle diameter is preferably 20 nm or more, and more preferably 30 nm or more, from the viewpoint of improving the protrusion removability. In some embodiments, the average primary particle size may be, for example, greater than 40 nm, greater than 45 nm, or greater than 50 nm. Also, from the viewpoint of preventing the occurrence of scratches, the average primary particle diameter is usually advantageously 150 nm or less, preferably 120 nm or less, and more preferably 100 nm or less. In some embodiments, the average primary particle size may be 75 nm or less, or 60 nm or less.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状すなわち落花生の殻の形状、繭型形状、金平糖形状等のような突起付き形状、ラグビーボール形状等が挙げられる。 The shape (outer shape) of the abrasive may be spherical or non-spherical. Specific examples of non-spherical particles include peanut-like shapes, such as peanut-like shell shapes, wedge-like shapes, and projections with a shape such as a bell-and-loop sugar shape, and rugby ball shapes.
 砥粒の平均アスペクト比は特に限定されない。砥粒の平均アスペクト比は、原理的に1.0以上であり、1.05以上、1.1以上とすることができる。平均アスペクト比の増大により、隆起解消性は概して向上する傾向にある。また、砥粒の平均アスペクト比は、スクラッチ低減や研磨の安定性向上等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下である。いくつかの態様において、砥粒の平均アスペクト比は、例えば1.5以下であってよく、1.4以下でもよく、1.3以下でもよい。 The average aspect ratio of the abrasive is not particularly limited. The average aspect ratio of the abrasive grains is, in principle, 1.0 or more, and can be 1.05 or more and 1.1 or more. With the increase of the average aspect ratio, the relief property tends to be generally improved. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, from the viewpoints of scratch reduction, polishing stability improvement and the like. In some embodiments, the average aspect ratio of the abrasive may be, for example, 1.5 or less, 1.4 or less, or 1.3 or less.
 いくつかの態様において、砥粒としては、円換算径が50nm以上でかつアスペクト比が1.2以上である粒子の体積割合が50%以上であるものを採用することができる。上記体積割合は、60%以上とすることもできる。上記体積割合の値が50%以上である場合、さらに言えば60%以上である場合には、隆起の解消に特に有効なサイズおよびアスペクト比の粒子が砥粒中に比較的多く含まれることが理由で、砥粒の機械的作用による隆起解消性をより向上させることができる。 In some embodiments, as the abrasive, one having a volume ratio of particles having a circle-converted diameter of 50 nm or more and an aspect ratio of 1.2 or more of 50% or more can be employed. The volume ratio can be 60% or more. When the value of the volume ratio is 50% or more, and more specifically 60% or more, relatively large particles having a size and aspect ratio effective for eliminating bumps can be contained in the abrasive grains. For this reason, it is possible to further improve the ability to eliminate bumps due to the mechanical action of the abrasive grains.
 いくつかの態様において、砥粒の平均円換算径は、例えば25nm以上であってよく、40nm以上でもよく、55nm以上でもよく、70nm以上でもよい。また、砥粒の平均円換算径は、例えば300nm以下であってよく、200nm以下でもよく、150nm以下でもよく、100nm以下でもよい。ここに開示される研磨用組成物は、このような平均円換算径を有する砥粒を用いて好適に実施され得る。 In some embodiments, the average circle-converted diameter of the abrasive may be, for example, 25 nm or more, 40 nm or more, 55 nm or more, or 70 nm or more. The average circle-converted diameter of the abrasive grains may be, for example, 300 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less. The polishing composition disclosed herein can be suitably carried out using an abrasive having such an average circle-converted diameter.
 砥粒の含有量は、特に限定されず、目的に応じて適宜設定し得る。研磨用組成物の全重量に対する砥粒の含有量は、例えば0.01重量%以上であってよく、0.05重量%以上でもよく、0.1重量%以上でもよい。砥粒の含有量の増大により、隆起解消性は概して向上する傾向にある。いくつかの態様において、砥粒の含有量は、0.2重量%以上でもよく、0.3重量%以上でもよく、0.5重量%以上でもよく、0.7重量%以上でもよい。また、スクラッチ防止や砥粒の使用量節約の観点から、いくつかの態様において、砥粒の含有量は、例えば10重量%以下であってよく、5重量%以下でもよく、3重量%以下でもよく、2重量%以下でもよい。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the abrasive is not particularly limited, and may be appropriately set according to the purpose. The content of the abrasive grains relative to the total weight of the polishing composition may be, for example, 0.01% by weight or more, 0.05% by weight or more, or 0.1% by weight or more. By increasing the content of abrasive grains, the tendency to eliminate bumps tends to be generally improved. In some embodiments, the abrasive content may be 0.2 wt% or more, 0.3 wt% or more, 0.5 wt% or more, or 0.7 wt% or more. In addition, from the viewpoint of scratch prevention and saving of the usage amount of abrasive grains, in some embodiments, the content of abrasive grains may be, for example, 10% by weight or less, may be 5% by weight or less, or 3% by weight or less It may be 2% by weight or less. These contents can be preferably applied, for example, to the contents in the polishing liquid (working slurry) supplied to the object to be polished.
<塩基性化合物>
 ここに開示される研磨用組成物は、塩基性化合物として、2種以上の第四級アンモニウム化合物を組み合わせて含む。上記2種以上の第四級アンモニウム化合物は、水酸化テトラメチルアンモニウム(TMAH)と、下記一般式(1)で表される化合物(すなわち、化合物(1))から選択される少なくとも1種と、を含む。
<Basic compound>
The polishing composition disclosed herein comprises a combination of two or more quaternary ammonium compounds as a basic compound. The two or more types of quaternary ammonium compounds are tetramethylammonium hydroxide (TMAH), and at least one selected from a compound represented by the following general formula (1) (that is, compound (1)), including.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここで、上記一般式(1)におけるXは、一価のアニオンである。上記一般式(1)におけるR,R,R,Rは、それぞれ独立に、炭素原子数1~4の炭化水素基からなる群から選択される。ただし、R,R,R,Rのうち少なくとも一つは、炭素原子数2~4の炭化水素基である。 Here, X in the general formula (1) - is a monovalent anion. R 1 , R 2 , R 3 and R 4 in the above general formula (1) are each independently selected from the group consisting of hydrocarbon groups having 1 to 4 carbon atoms. However, at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms.
 TMAHと化合物(1)とを組み合わせて含むことにより、例えばTMAHを単独で用いる場合に比べて、隆起解消性を有意に向上させ得る。理論により拘束されることを望むものではないが、かかる効果が得られる理由は、例えば以下のように考えられる。すなわち、炭素原子数2~4の炭化水素基は、炭素原子数1の炭化水素基であるメチル基に比べて、より高い疎水性を示す。したがって、R,R,R,Rのうち少なくとも一つが炭素原子数2~4の炭化水素基である化合物(1)のカチオン部分は、TMAHのカチオン部分に比べて、より高い疎水性を示すといえる。このため、化合物(1)のカチオン部分は、TMAHのカチオン部分に比べて、シリコン基板等のような疎水性表面に対する吸着性がより高くなる傾向にある。TMAHと化合物(1)とを組み合わせて用いることにより、研磨対象物表面のうち相対的に高い部分が砥粒の機械的作用やTMAHの化学的作用によって効率よく研磨される一方、相対的に低い部分が化合物(1)の吸着によって適切に保護される結果、隆起解消性が向上するものと考えられる。ただし、これに限定解釈されるものではない。 By including TMAH and the compound (1) in combination, for example, as compared with the case where TMAH is used alone, the ridge removability can be significantly improved. Although not wishing to be bound by theory, the reason why such an effect is obtained is considered, for example, as follows. That is, the hydrocarbon group having 2 to 4 carbon atoms exhibits higher hydrophobicity than the methyl group which is a hydrocarbon group having 1 carbon atom. Therefore, the cation moiety of the compound (1) in which at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms has higher hydrophobicity than that of TMAH. It can be said that it shows sex. For this reason, the cation moiety of the compound (1) tends to be more adsorptive to a hydrophobic surface such as a silicon substrate or the like than the cation moiety of TMAH. By using TMAH and the compound (1) in combination, a relatively high portion of the surface of the object to be polished is efficiently polished by the mechanical action of the abrasive grains or the chemical action of TMAH, but it is relatively low. As a result of the portion being appropriately protected by the adsorption of the compound (1), it is considered that the bump eliminating property is improved. However, this should not be construed as limiting.
 上記炭素原子数2~4の炭化水素基は、アルキル基、アルケニル基、アルキニル基、シクロアルキル基等であり得る。化学的安定性の観点から、炭素原子数2~4のアルキル基が好ましい。炭素原子数2~4のアルキル基は、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基およびtert-ブチル基からなる群から選択され得る。これらのうち、エチル基、n-プロピル基およびn-ブチル基がより好ましい。上記式(1)におけるR,R,RおよびRは、同一の基であってもよく、異なる基であってもよい。高純度の材料を入手しやすいことから、R,R,RおよびRが同一の基である化合物(1)を好ましく採用し得る。 The hydrocarbon group having 2 to 4 carbon atoms may be an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group or the like. From the viewpoint of chemical stability, alkyl groups having 2 to 4 carbon atoms are preferred. The C 2-4 alkyl group may be selected from the group consisting of ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl. Among these, ethyl, n-propyl and n-butyl are more preferable. R 1 , R 2 , R 3 and R 4 in the above formula (1) may be the same group or different groups. The compound (1) in which R 1 , R 2 , R 3 and R 4 are the same group can be preferably employed since high purity materials are easily available.
 上記式中のXは一価のアニオンである。Xの例としては、OH、F、Cl、Br、I、ClO 、BH 等が挙げられる。なかでも、XがOHである化合物(1)が好ましい。 X in the above formula - is a monovalent anion. X - it includes examples of, OH -, F -, Cl -, Br -, I -, ClO 4 -, BH 4 - and the like. Among them, X - is OH -, Compound (1) is preferred.
 好ましい化合物(1)の例として、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラプロピルアンモニウムおよび水酸化テトラブチルアンモニウムが挙げられる。水酸化テトラプロピルアンモニウムとしては水酸化テトラn-プロピルアンモニウムが好ましく、水酸化テトラブチルアンモニウムとしては水酸化テトラn-ブチルアンモニウムが好ましい。なかでも好ましい化合物(1)として、TEAHおよび水酸化テトラn-ブチルアンモニウムが挙げられる。 Examples of preferred compounds (1) include tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide and tetrabutylammonium hydroxide. As tetrapropyl ammonium hydroxide, tetra n-propyl ammonium hydroxide is preferable, and as tetrabutyl ammonium hydroxide, tetra n-butyl ammonium hydroxide is preferable. Among them, TEAH and tetra n-butylammonium hydroxide are mentioned as preferable compound (1).
 いくつかの好ましい態様に係る研磨用組成物は、TMAHとTEAHとを少なくとも含む2種以上の第四級アンモニウム化合物を含有する。このように、類似した構造でありながら疎水性が異なる第四級アンモニウム化合物を組み合わせて用いることにより、隆起解消性の向上と研磨レートの維持とを精度よく調節し得る。上記研磨用組成物は、化合物(1)として、TEAHと他の第四級アンモニウム化合物とを含む組成であってもよく、TEAHを単独で含む組成であってもよい。ここに開示される研磨用組成物は、例えば、該組成物に含まれる化合物(1)のうち、50重量%超、75重量%超、90重量%超、または95重量%超がTEAHである態様で好ましく実施され得る。 The polishing composition according to some preferred embodiments contains two or more quaternary ammonium compounds containing at least TMAH and TEAH. As described above, by using quaternary ammonium compounds having similar structures but different hydrophobicities in combination, it is possible to accurately adjust the improvement of the ridge removal property and the maintenance of the polishing rate. The composition for polishing may have a composition containing TEAH and another quaternary ammonium compound as the compound (1), or may have a composition containing TEAH alone. In the polishing composition disclosed herein, for example, more than 50% by weight, more than 75% by weight, more than 90% by weight, or more than 95% by weight of the compound (1) contained in the composition is TEAH. It can be preferably implemented in an aspect.
 ここに開示される研磨用組成物において、TMAHの含有量Wと化合物(1)の含有量Wとの重量比は、隆起解消性の向上と研磨レートの維持とを好適にバランスさせ得るように設定することができ、特に限定されない。ここで、化合物(1)の含有量Wとは、2種以上の化合物(1)を含有する研磨用組成物においては、それらの化合物(1)の合計含有量のことをいう。TMAHと化合物(1)との合計含有量に占める化合物(1)の含有量の割合、すなわちW/(W+W)は、0重量%より大きく100重量%より小さい値であり得る。 In the polishing composition disclosed herein, the weight ratio of the TMAH content W M to the compound (1) content W 1 can suitably balance the improvement of the protrusion removal property and the maintenance of the polishing rate. It can be set as such and is not particularly limited. Here, in the polishing composition containing two or more types of compounds (1), the content W 1 of the compound (1) refers to the total content of those compounds (1). The ratio of the content of compound (1) to the total content of TMAH and compound (1), that is, W 1 / (W M + W 1 ) may have a value of more than 0% by weight and less than 100% by weight.
 いくつかの態様において、W/(W+W)は、例えば1重量%以上であってよく、2重量%以上でもよく、5重量%以上でもよく、7重量%以上でもよく、10重量%以上でもよく、20重量%以上でもよく、30重量%以上でもよい。W/(W+W)の増大により、隆起解消性は向上する傾向にある。また、隆起解消性と研磨レートとを好適にバランスさせやくする観点から、いくつかの態様において、W/(W+W)は、例えば98重量%以下であってよく、90重量%以下でもよく、85重量%以下でもよく、80重量%以下でもよい。 In some embodiments, W 1 / (W M + W 1 ) may be, for example, 1 wt% or more, 2 wt% or more, 5 wt% or more, 7 wt% or more, 10 wt% % Or more, 20% by weight or more, or 30% by weight or more. The increase in W 1 / (W M + W 1 ) tends to improve the ridge-eliminating property. In addition, from the viewpoint of facilitating balance between the bump removal property and the polishing rate, in some embodiments, W 1 / (W M + W 1 ) may be, for example, 98% by weight or less and 90% by weight or less It may be 85 wt% or less, or 80 wt% or less.
 他のいくつかの態様において、W/(W+W)は、化合物(1)の全量を同重量のTMAHに置き換えた組成の研磨用組成物を用いて研磨を行った場合における研磨後の隆起高さHおよびそのときの研磨レートRをそれぞれ100%とする換算値において、TMAHと化合物(1)とを組み合わせて含む研磨用組成物を用いて研磨を行った場合における隆起高さHが、例えば90%以下、好ましくは70%以下、より好ましくは50%以下となり、かつ、そのときの研磨レートRが例えば85%以上となるように設定することができる。特に限定するものではないが、例えば後述する実施例に記載の条件で研磨レートおよび隆起解消性を評価することにより、上述した隆起高さHおよび研磨レートRを満たすW/(W+W)の範囲を把握することができる。 In some other embodiments, W 1 / (W M + W 1 ) is determined after polishing when polishing is performed using a polishing composition having a composition in which the total amount of compound (1) is replaced with the same weight of TMAH. When the polishing is performed using a polishing composition containing TMAH and the compound (1) in combination at a reduced value where the bump height H 0 and the polishing rate R 0 at that time are respectively 100% For example, the HC can be set to 90% or less, preferably 70% or less, more preferably 50% or less, and the polishing rate RC at that time can be set to 85% or more. Although not particularly limited, for example, W 1 / (W M) satisfying the above-described protrusion height H C and the removal rate R C by evaluating the removal rate and removal of protrusions under the conditions described in the examples to be described later. The range of + W 1 ) can be grasped.
 TMAHと化合物(1)との合計含有量は、特に限定されず、目的に応じて適宜設定し得る。研磨レート向上の観点から、いくつかの態様において、上記合計含有量は、研磨用組成物の全重量に対して、例えば0.001重量%以上であってよく、0.005重量%以上でもよく、0.01重量%以上でもよく、0.05重量%以上でもよく、0.1重量%以上でもよい。また、より高い隆起解消性を得やすくする観点から、いくつかの態様において、上記合計含有量は、例えば5重量%以下であってよく、2重量%以下でもよく、1重量%以下でもよく、0.7重量%以下でもよく、0.5重量%以下でもよい。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The total content of TMAH and compound (1) is not particularly limited, and may be appropriately set depending on the purpose. From the viewpoint of improving the polishing rate, in some embodiments, the total content may be, for example, 0.001% by weight or more, or 0.005% by weight or more based on the total weight of the polishing composition. 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more. Also, from the viewpoint of making it easier to obtain higher bump removal property, in some embodiments, the total content may be, for example, 5% by weight or less, 2% by weight or less, or 1% by weight or less. It may be 0.7 wt% or less, or 0.5 wt% or less. These contents can be preferably applied, for example, to the contents in the polishing liquid (working slurry) supplied to the object to be polished.
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、TMAHおよび化合物(1)以外の塩基性化合物を必要に応じて含有することができる。そのような任意成分としての塩基性化合物の例として、TMAHおよび化合物(1)以外の第四級アンモニウム化合物、アルカリ金属水酸化物、水酸化第四級ホスホニウム、アミン、アンモニア、等が挙げられる。任意成分としての塩基性化合物を含む場合、その含有量は、重量基準で、TMAHと化合物(1)との合計含有量の1/2以下とすることが適当であり、1/4以下とすることが好ましく、1/10以下とすることがより好ましく、1/20以下でもよく、1/50以下でもよく、さらには1/100以下でもよい。組成の単純化や性能安定性の観点から、ここに開示される研磨用組成物は、任意成分としての塩基(特に、強塩基である水酸化カリウム、ピペラジン等)を実質的に含有しない態様で好ましく実施され得る。ここで「実質的に含有しない」とは、少なくとも意図的には研磨用組成物中に含有させないことをいう。例えば、水酸化カリウムを実質的に含有しない研磨用組成物が好ましい。 The polishing composition disclosed herein can optionally contain a basic compound other than TMAH and the compound (1), as long as the effects of the present invention are not significantly impaired. Examples of such basic compounds as optional components include quaternary ammonium compounds other than TMAH and compound (1), alkali metal hydroxides, quaternary phosphonium hydroxides, amines, ammonia, and the like. When the basic compound as an optional component is contained, the content thereof is suitably 1/2 or less of the total content of TMAH and compound (1) on a weight basis, and is 1/4 or less. Is preferably 1/10 or less, more preferably 1/20 or less, 1/50 or less, and even 1/100 or less. From the viewpoint of the simplification of the composition and the performance stability, the polishing composition disclosed herein does not substantially contain a base (in particular, a strong base such as potassium hydroxide or piperazine) as an optional component. It can be preferably implemented. Here, "not substantially contained" means not at least intentionally contained in the polishing composition. For example, a polishing composition substantially free of potassium hydroxide is preferred.
<弱酸塩>
 ここに開示される研磨用組成物には、必要に応じて弱酸塩を含有させることができる。弱酸塩(典型的には弱塩基)としては、第四級アンモニウム化合物との組合せで所望の緩衝作用を発揮し得るものを適宜選択することができる。このような緩衝作用が発揮されるように構成された研磨用組成物は、研磨中における研磨用組成物のpH変動が少なく、研磨能率の維持性に優れたものとなり得る。このことによって、隆起解消性の向上と研磨レートの維持とをより好適に両立することができる。
<Weak acid salt>
The polishing composition disclosed herein can contain a weak acid salt, if necessary. As a weak acid salt (typically a weak base), one which can exhibit a desired buffering action in combination with a quaternary ammonium compound can be appropriately selected. The polishing composition configured to exhibit such a buffer action has less fluctuation in pH of the polishing composition during polishing, and can be excellent in maintainability of the polishing efficiency. This makes it possible to more preferably achieve both the improvement of the bump removal property and the maintenance of the polishing rate.
 弱酸塩の具体例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、オルト珪酸ナトリウム、オルト珪酸カリウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、炭酸カルシウム、炭酸水素カルシウム、酢酸カルシウム、プロピオン酸カルシウム、酢酸マグネシウム、プロピオン酸マグネシウム、プロピオン酸亜鉛、酢酸マンガン、酢酸コバルト等が挙げられる。アニオン成分が炭酸イオンまたは炭酸水素イオンである弱酸塩が好ましく、アニオン成分が炭酸イオンである弱酸塩が特に好ましい。また、カチオン成分としては、カリウム、ナトリウム等のアルカリ金属イオンが好適である。弱酸塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。 Specific examples of weak acid salts include sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium orthosilicate, potassium orthosilicate, sodium acetate, potassium acetate, sodium propionate, sodium propionate, potassium propionate, calcium carbonate, calcium hydrogencarbonate And calcium acetate, calcium propionate, magnesium acetate, magnesium propionate, zinc propionate, manganese acetate, cobalt acetate and the like. A weak acid salt in which the anion component is a carbonate ion or a hydrogen carbonate ion is preferred, and a weak acid salt in which the anion component is a carbonate ion is particularly preferred. Moreover, as a cation component, alkali metal ions, such as potassium and sodium, are suitable. A weak acid salt can be used individually by 1 type or in combination of 2 or more types.
 シリコン基板の研磨に適したpH域において良好な緩衝作用を示す研磨用組成物を得る観点から、酸解離定数(pKa)値の少なくとも一つが8.0~11.8(例えば、8.0~11.5)の範囲にある弱酸塩が有利である。好適例として、炭酸塩、炭酸水素塩、ホウ酸塩、リン酸塩およびフェノール塩が挙げられる。特に好ましい弱酸塩として、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸水素カリウムが挙げられる。なかでも炭酸カリウム(KCO)が好ましい。pKaの値としては、公知資料に記載された25℃における酸解離定数の値を採用することができる。 From the viewpoint of obtaining a polishing composition exhibiting a good buffer action in a pH range suitable for polishing a silicon substrate, at least one of the acid dissociation constant (pKa) values is 8.0 to 11.8 (for example, 8.0 to 8) Weak salts in the range of 11.5) are preferred. Preferred examples include carbonates, bicarbonates, borates, phosphates and phenol salts. Particularly preferred weak acid salts include sodium carbonate, potassium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate. Among them, potassium carbonate (K 2 CO 3 ) is preferable. As the value of pKa, the value of the acid dissociation constant at 25 ° C. described in the known data can be adopted.
 弱酸塩の含有量は、第四級アンモニウム化合物との関係で緩衝作用が好適に発揮されるように設定することができる。特に限定するものではないが、いくつかの態様において、弱酸塩の含有量は、研磨用組成物の全重量に対して、例えば0.001重量%以上であってよく、0.005重量%以上でもよく、0.01重量%以上でもよく、0.05重量%以上でもよく、0.1重量%以上でもよい。また、より高い隆起解消性を得やすくする観点から、いくつかの態様において、上記合計含有量は、例えば5重量%以下であってよく、2重量%以下でもよく、1重量%以下でもよく、0.7重量%以下でもよく、0.5重量%以下でもよい。これらの含有量は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the weak acid salt can be set so that the buffering action is suitably exerted in relation to the quaternary ammonium compound. Although not particularly limited, in some embodiments, the content of the weak acid salt may be, for example, 0.001% by weight or more and 0.005% by weight or more based on the total weight of the polishing composition. It may be 0.01% by weight or more, 0.05% by weight or more, and 0.1% by weight or more. Also, from the viewpoint of making it easier to obtain higher bump removal property, in some embodiments, the total content may be, for example, 5% by weight or less, 2% by weight or less, or 1% by weight or less. It may be 0.7 wt% or less, or 0.5 wt% or less. These contents can be preferably applied, for example, to the contents in the polishing liquid (working slurry) supplied to the object to be polished.
<水>
 ここに開示される研磨用組成物において、水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
<Water>
In the polishing composition disclosed herein, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water or the like can be preferably used as water. The water to be used preferably has, for example, a total content of transition metal ions of 100 ppb or less, in order to avoid the inhibition of the functions of other components contained in the polishing composition as much as possible. For example, the purity of water can be increased by operations such as removal of impurity ions by ion exchange resin, removal of foreign matter by filter, and distillation.
<その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、キレート剤、酸、水溶性高分子、界面活性剤、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコン基板のポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
The polishing composition disclosed herein is a polishing composition such as a chelating agent, an acid, a water-soluble polymer, a surfactant, an antiseptic agent, an antifungal agent, etc., to the extent that the effects of the present invention are not significantly impaired. A known additive that may be used in (the polishing composition typically used in a polishing process of a silicon substrate) may further be contained, as needed.
 上記キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタン-1-ヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸およびα-メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましい。なかでも好ましいものとして、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。キレート剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。キレート剤の使用量は、例えば、ワーキングスラリーにおけるキレート剤の含有量が0.0001~1重量%程度、0.001~0.5重量%程度、または0.005~0.1重量%程度となるように設定することができるが、これに限定されない。 Examples of the above-mentioned chelating agents include aminocarboxylic acid-based chelating agents and organic phosphonic acid-based chelating agents. Examples of aminocarboxylic acid chelating agents include ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, ammonium hydroxyethylethylenediaminetriacetic acid, sodium hydroxyethylethylenediaminetriacetate, diethylenetriaminepentaacetic acid Sodium diethylene triamine pentaacetate, triethylene tetramine hexaacetic acid and sodium triethylene tetramine hexaacetate. Examples of organic phosphonic acid type chelating agents include 2-aminoethyl phosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylene phosphonic acid), ethylene diamine tetrakis (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid) Acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, ethane-1-hydroxy-1,1-diphosphonic acid, ethane-1-hydroxy-1,1,2-triphosphonic acid Ethane-1,2-dicarboxy-1,2-diphosphonic acid, methanehydroxyphosphonic acid, 2-phosphonobutane-1,2-dicarboxylic acid, 1-phosphonobutane-2,3,4-tricarboxylic acid and α-methylphosphorous Includes nosuccinic acid. Among these, organic phosphonic acid type chelating agents are more preferable. Among them, preferred are ethylenediaminetetrakis (methylene phosphonic acid), diethylene triamine penta (methylene phosphonic acid) and diethylene triamine pentaacetic acid. Particularly preferred chelating agents include ethylenediamine tetrakis (methylene phosphonic acid) and diethylene triamine penta (methylene phosphonic acid). The chelating agents can be used alone or in combination of two or more. The amount of the chelating agent used is, for example, about 0.0001 to 1% by weight, about 0.001 to 0.5% by weight, or about 0.005 to 0.1% by weight of the content of the chelating agent in the working slurry. Can be set to be, but not limited to.
 上記酸の例としては、塩酸、リン酸、硫酸、ホスホン酸、硝酸、ホスフィン酸、ホウ酸等の無機酸;酢酸、イタコン酸、コハク酸、酒石酸、クエン酸、マレイン酸、グリコール酸、マロン酸、メタンスルホン酸、ギ酸、リンゴ酸、グルコン酸、アラニン、グリシン、乳酸、hydroxyethylidene diphosphonic acid(HEDP)、nitrilotris[methylene phosphonic acid](NTMP)、phosphonobutane tricarboxylic aci d(PBTC)等の有機酸;等が挙げられる。酸は、該酸の塩の形態で用いられてもよい。上記酸の塩は、例えば、ナトリウム塩やカリウム塩等のアルカリ金属塩や、アンモニウム塩等であり得る。 Examples of the acid include inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid and boric acid; acetic acid, itaconic acid, succinic acid, tartaric acid, citric acid, maleic acid, glycolic acid, malonic acid Organic acids such as methanesulfonic acid, formic acid, malic acid, gluconic acid, alanine, glycine, lactic acid, hydroxyethylenediphosphonic acid (HEDP), nitrilotris [methylene phosphonic acid] (NTMP), phosphonobutane tricarboxylic acid (PBTC), etc. It can be mentioned. The acid may be used in the form of a salt of the acid. The salts of the acids may be, for example, alkali metal salts such as sodium salts and potassium salts, ammonium salts and the like.
 上記水溶性高分子の例としては、セルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、窒素原子を含有するポリマー、ビニルアルコール系ポリマー等が挙げられる。具体例としては、ヒドロキシエチルセルロース、プルラン、エチレンオキサイドとプロピレンオキサイドとのランダム共重合体やブロック共重合体、ポリビニルアルコール、ポリイソプレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリイソアミレンスルホン酸、ポリスチレンスルホン酸塩、ポリアクリル酸塩、ポリ酢酸ビニル、ポリエチレングリコール、ポリビニルイミダゾール、ポリビニルカルバゾール、ポリビニルピロリドン、ポリビニルカプロラクタム、ポリビニルピペリジン等が挙げられる。水溶性高分子は、1種を単独でまたは2種以上を組み合わせて用いることができる。ここに開示される研磨用組成物は、水溶性高分子を実質的に含まない態様、すなわち、少なくとも意図的には水溶性高分子を含有させない態様でも好ましく実施され得る。 Examples of the water-soluble polymer include cellulose derivatives, starch derivatives, polymers containing oxyalkylene units, polymers containing nitrogen atoms, and vinyl alcohol polymers. Specific examples thereof include hydroxyethyl cellulose, pullulan, random copolymer or block copolymer of ethylene oxide and propylene oxide, polyvinyl alcohol, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polyisoamylene sulfonic acid And polystyrene sulfonate, polyacrylate, polyvinyl acetate, polyethylene glycol, polyvinyl imidazole, polyvinyl carbazole, polyvinyl pyrrolidone, polyvinyl caprolactam, polyvinyl piperidine and the like. The water-soluble polymers can be used alone or in combination of two or more. The polishing composition disclosed herein can be preferably practiced even in an embodiment substantially free of a water-soluble polymer, that is, an embodiment not at least intentionally containing a water-soluble polymer.
 上記防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。 Examples of the above preservatives and fungicides include isothiazoline compounds, p-hydroxybenzoic acid esters, phenoxyethanol and the like.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該組成物が供給されることでシリコン基板の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここで、研磨用組成物が酸化剤を実質的に含有しないとは、少なくとも意図的には酸化剤を配合しないことをいい、原料や製法等に由来して微量の酸化剤が不可避的に含まれることは許容され得る。上記微量とは、研磨用組成物における酸化剤のモル濃度が0.0005モル/L以下(好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)であることをいう。好ましい一態様に係る研磨用組成物は、酸化剤を含有しない。ここに開示される研磨用組成物は、例えば、過酸化水素、過硫酸ナトリウム、過硫酸アンモニウムおよびジクロロイソシアヌル酸ナトリウムをいずれも含有しない態様で好ましく実施され得る。 The polishing composition disclosed herein preferably contains substantially no oxidizing agent. If an oxidizing agent is contained in the polishing composition, the composition is supplied to oxidize the surface of the silicon substrate to form an oxide film, which may lower the polishing rate. It is for. Here, that the polishing composition does not substantially contain an oxidizing agent means that at least the oxidizing agent is not intentionally added, and a trace amount of oxidizing agent is unavoidably contained due to the raw materials, the manufacturing method, etc. Being acceptable. The above trace amount means that the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less (preferably 0.0001 mol / L or less, more preferably 0.00001 mol / L or less, particularly preferably 0. It means that it is 000001 mol / L or less. The polishing composition according to a preferred embodiment does not contain an oxidizing agent. The polishing composition disclosed herein can be preferably practiced, for example, in a mode that does not contain any of hydrogen peroxide, sodium persulfate, ammonium persulfate and sodium dichloroisocyanurate.
 <研磨用組成物>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液(ワーキングスラリー)の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨用組成物は、例えば、水等の溶媒により希釈されて研磨液として使用されるものであってもよく、そのまま研磨液として使用されるものであってもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられるワーキングスラリーと、かかるワーキングスラリーの濃縮液(原液)との双方が包含される。上記濃縮液の濃縮倍率は、例えば、体積基準で2倍~50倍程度であってよく、通常は5倍~30倍程度が適当であり、5倍~20倍程度が好ましい。
<Composition for polishing>
The polishing composition disclosed herein is typically supplied to an object to be polished in the form of a polishing liquid (working slurry) containing the polishing composition, and used for polishing the object to be polished. The above polishing composition may be, for example, one that is diluted with a solvent such as water and used as a polishing liquid, or may be used as it is as a polishing liquid. That is, the concept of the polishing composition in the art disclosed herein includes both a working slurry which is supplied to a polishing object and used for polishing the polishing object, and a concentrated solution (stock solution) of the working slurry. Is included. The concentration ratio of the concentrated solution may be, for example, about 2 to 50 times on a volume basis, usually about 5 to 30 times, and preferably about 5 to 20 times.
 研磨用組成物のpHは、典型的には8.0以上であり、好ましくは8.5以上、より好ましくは9.0以上、さらに好ましくは9.5以上、例えば10.0以上である。pHが高くなると、研磨レートや隆起解消性が向上する傾向にある。一方、砥粒(例えばシリカ粒子)の溶解を防ぎ、該砥粒による機械的な研磨作用の低下を抑制する観点から、研磨用組成物のpHは、通常、12.0以下であることが適当であり、11.8以下であることが好ましく、11.5以下であることがより好ましく、11.0以下であることがさらに好ましい。これらのpHは、研磨対象物に供給される研磨液(ワーキングスラリー)およびその濃縮液のpHのいずれにも好ましく適用され得る。 The pH of the polishing composition is typically 8.0 or more, preferably 8.5 or more, more preferably 9.0 or more, still more preferably 9.5 or more, for example 10.0 or more. When the pH is high, the polishing rate and the tendency to eliminate bumps tend to be improved. On the other hand, from the viewpoint of preventing the dissolution of the abrasive grains (for example, silica particles) and suppressing the decrease in mechanical polishing action by the abrasive grains, the pH of the polishing composition is usually appropriate to be 12.0 or less And is preferably 11.8 or less, more preferably 11.5 or less, and still more preferably 11.0 or less. These pHs can be preferably applied to any of the polishing solution (working slurry) supplied to the object to be polished and the pH of the concentrate.
 なお、研磨用組成物のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を研磨液用組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。 The pH of the polishing composition is determined using a pH meter (for example, a glass electrode type hydrogen ion concentration indicator manufactured by Horiba, Ltd. (Model No. F-23)), and a standard buffer (phthalate pH buffer solution pH: After three-point calibration using 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), carbonate pH buffer pH: 10.01 (25 ° C)) The composition can be grasped by putting a glass electrode into a composition for polishing liquid and measuring a value after being stabilized for 2 minutes or more.
 ここに開示される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、少なくとも砥粒を含むパートAと、残りの成分を含むパートBとを混合し、必要に応じて適切なタイミングで希釈することによって研磨液が調製されるように構成されていてもよい。 The polishing composition disclosed herein may be of one-part type or multi-part type such as two-part type. For example, the polishing liquid may be prepared by mixing Part A containing at least abrasive grains and Part B containing the remaining components, and diluting as needed at an appropriate timing.
 ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。 The method for producing the polishing composition disclosed herein is not particularly limited. For example, the respective components contained in the polishing composition may be mixed using a known mixing device such as a wing stirrer, an ultrasonic disperser, a homomixer or the like. The aspect which mixes these components is not specifically limited, For example, all the components may be mixed at once, and you may mix in the order set suitably.
<研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。
 すなわち、ここに開示されるいずれかの研磨用組成物を含むワーキングスラリーを用意する。次いで、その研磨用組成物を研磨対象物に供給し、常法により研磨する。例えば、一般的な研磨装置に研磨対象物をセットし、該研磨装置の研磨パッドを通じて該研磨対象物の表面(研磨対象面)に研磨用組成物を供給する。典型的には、上記研磨用組成物を連続的に供給しつつ、研磨対象物の表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
<Polishing>
The polishing composition disclosed herein can be used for polishing an object to be polished, for example, in a mode including the following operations.
That is, a working slurry containing any of the polishing compositions disclosed herein is prepared. Then, the polishing composition is supplied to the object to be polished and polished by a conventional method. For example, the object to be polished is set in a general polishing apparatus, and the polishing composition is supplied to the surface (surface to be polished) of the object to be polished through the polishing pad of the polishing apparatus. Typically, while continuously supplying the above-mentioned polishing composition, the polishing pad is pressed against the surface of the object to be polished and both are moved (for example, rotationally moved) relative to each other. Polishing of the object to be polished is completed through this polishing process.
 上記研磨工程で使用される研磨パッドは特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。また、上記研磨装置としては、研磨対象物の両面を同時に研磨する両面研磨装置を用いてもよく、研磨対象物の片面のみを研磨する片面研磨装置を用いてもよい。 The polishing pad used in the polishing step is not particularly limited. For example, any of polyurethane foam type, non-woven type, suede type, one containing abrasive grains, one not containing abrasive grains, etc. may be used. Moreover, as said polishing apparatus, you may use the double-sided polish apparatus which grind | polishes both surfaces of a polishing target simultaneously, and may use the single-sided polish apparatus which grind | polishes only the single side of a polishing target.
 上記研磨用組成物は、いったん研磨に使用したら使い捨てにする態様(いわゆる「かけ流し」)で使用されてもよいし、循環して繰り返し使用されてもよい。研磨用組成物を循環使用する方法の一例として、研磨装置から排出される使用済みの研磨用組成物をタンク内に回収し、回収した研磨用組成物を再度研磨装置に供給する方法が挙げられる。 The above-mentioned polishing composition may be used in a mode (so-called "deep flow") which is disposable once used for polishing, or may be used repeatedly in circulation. As an example of a method of circulating and using the polishing composition, there is a method of recovering the used polishing composition discharged from the polishing apparatus into a tank and supplying the recovered polishing composition to the polishing apparatus again. .
<用途>
 ここに開示される研磨用組成物は、HLM周縁の隆起を解消する性能(隆起解消性)に優れる。かかる特長を活かして、上記研磨用組成物は、HLMの付された研磨対象物の研磨に好ましく適用することができる。例えば、HLMの付されたシリコン基板の予備ポリシング工程において用いられる研磨用組成物として好適である。HLM周縁の隆起は、ポリシング工程の初期に解消しておくことが望ましい。このため、ここに開示される研磨用組成物は、HLM付与後の最初のポリシング工程(1次研磨工程)において特に好ましく使用され得る。上記シリコン基板には、ここに開示される研磨用組成物を用いる研磨工程の前に、ラッピングやエッチング、上述したHLMの付与等の、シリコン基板に適用され得る一般的な処理が施されていてもよい。
 上記シリコン基板は、典型的には、シリコンからなる表面を有する。このようなシリコン基板の典型的はシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。ここに開示される研磨用組成物は、HLMが付されたシリコン単結晶ウェーハを研磨する用途に好適である。
 また、ここに開示される研磨用組成物は、HLMを有しない研磨対象物の研磨にも好適に使用することができ、該研磨対象物表面の表面粗さを効率よく低減し得る。
<Use>
The polishing composition disclosed herein is excellent in the ability to eliminate the bumps on the periphery of the HLM (bump removability). Taking advantage of such features, the above-mentioned polishing composition can be preferably applied to the polishing of an object to be polished to which HLM has been applied. For example, it is suitable as a polishing composition used in the pre-polishing step of a silicon substrate to which HLM has been applied. It is desirable that the bumps on the HLM rim be eliminated early in the polishing process. For this reason, the polishing composition disclosed herein can be particularly preferably used in the first polishing step (primary polishing step) after the application of HLM. Prior to the polishing step using the polishing composition disclosed herein, the silicon substrate is subjected to general processing that can be applied to the silicon substrate, such as lapping and etching, and the application of the above-described HLM. It is also good.
The silicon substrate typically has a surface made of silicon. Such a silicon substrate is typically a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot. The polishing composition disclosed herein is suitable for use in polishing HLM-applied silicon single crystal wafers.
In addition, the polishing composition disclosed herein can also be suitably used for polishing an object to be polished that does not have HLM, and the surface roughness of the surface of the object to be polished can be efficiently reduced.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 The following examples illustrate some of the embodiments of the present invention, but are not intended to limit the present invention to those shown.
<研磨用組成物の調製>
 (実施例1~4)
 砥粒としてのコロイダルシリカと、炭酸カリウムと、塩基性化合物としての水酸化テトラメチルアンモニウム(TMAH)および水酸化テトラエチルアンモニウム(TEAH)と、キレート剤としてのエチレンジアミンテトラキス(メチレンホスホン酸)(EDTPO)、イオン交換水とを、室温25℃程度で約30分間攪拌混合することにより、TMAHとTEAHとを表1に示す濃度比で含む研磨用組成物を調製した。上記コロイダルシリカは、平均一次粒子径が55nmであり、SEM観察による平均円換算径が92.5nmであり、円換算径の標準偏差が38.5であり、平均アスペクト比が1.29であり、アスペクト比の標準偏差が0.320であり、円換算径50nm以上かつアスペクト比1.2以上の粒子の体積割合が77%であり、円換算径が1~300nmである粒子の体積含有率が100%であった。
<Preparation of Polishing Composition>
(Examples 1 to 4)
Colloidal silica as abrasive grains, potassium carbonate, tetramethylammonium hydroxide (TMAH) and tetraethylammonium hydroxide (TEAH) as basic compounds, ethylenediaminetetrakis (methylene phosphonic acid) (EDTPO) as a chelating agent, A polishing composition containing TMAH and TEAH at a concentration ratio shown in Table 1 was prepared by stirring and mixing with ion-exchanged water at room temperature about 25 ° C. for about 30 minutes. The above-mentioned colloidal silica has an average primary particle diameter of 55 nm, an average circle conversion diameter by SEM observation of 92.5 nm, a standard deviation of the circle conversion diameter of 38.5, and an average aspect ratio of 1.29. The volume fraction of particles having a standard deviation of aspect ratio of 0.320, a volume ratio of particles with a circle conversion diameter of 50 nm or more and an aspect ratio of 1.2 or more of 77%, and a circle conversion diameter of 1 to 300 nm Was 100%.
 各例に係る研磨用組成物をイオン交換水で10倍に希釈することにより、コロイダルシリカを1.0重量%、炭酸カリウムを0.2重量%、TMAHとTEAHとを合計で0.2重量%、EDTPOを0.01重量%の濃度で含む研磨液を調製した。 By diluting the polishing composition according to each example to 10 times with ion-exchanged water, 1.0 wt% of colloidal silica, 0.2 wt% of potassium carbonate, and 0.2 wt% in total of TMAH and TEAH A polishing solution was prepared which contained at a concentration of 0.01% by weight of EDTPO.
 (比較例1)
 塩基性化合物としてTMAHを単独で使用した他は実施例1と同様にして研磨用組成物を調製し、これをイオン交換水で10倍に希釈して、コロイダルシリカを1.0重量%、炭酸カリウムを0.2重量%、TMAHを0.2重量%、EDTPOを0.01重量%の濃度で含む研磨液を調製した。
(Comparative example 1)
A polishing composition is prepared in the same manner as in Example 1 except that TMAH is used alone as a basic compound, and this is diluted 10-fold with ion-exchanged water to obtain 1.0% by weight of colloidal silica, carbonated A polishing solution was prepared containing 0.2% by weight of potassium, 0.2% by weight of TMAH, and 0.01% by weight of EDTPO.
 (比較例2)
 塩基性化合物としてTEAHを単独で使用した他は実施例1と同様にして研磨用組成物を調製し、これをイオン交換水で10倍に希釈して、コロイダルシリカを1.0重量%、炭酸カリウムを0.2重量%、TEAHを0.2重量%、EDTPOを0.01重量%の濃度で含む研磨液を調製した。
(Comparative example 2)
A polishing composition was prepared in the same manner as in Example 1 except that TEAH was used alone as a basic compound, and this was diluted 10-fold with ion-exchanged water to obtain 1.0% by weight of colloidal silica, and carbonated A polishing solution was prepared containing 0.2% by weight of potassium, 0.2% by weight of TEAH, and 0.01% by weight of EDTPO.
 なお、これらの研磨液は、いずれも、KCOとTMAHおよび/またはTEAHとの緩衝系を構成している。これらの研磨液のpHは10.6~10.7であった。 Each of these polishing liquids constitutes a buffer system of K 2 CO 3 and TMAH and / or TEAH. The pH of these polishing liquids was 10.6 to 10.7.
<性能評価>
 (研磨)
 各例に係る研磨液をそのままワーキングスラリーとして使用して、研磨対象物(試験片)の表面を下記の条件で研磨した。試験片としては、ラッピングおよびエッチングを終えた直径100mmの市販シリコン単結晶ウェーハ(厚さ:525μm、伝導型:P型、結晶方位:<100>、抵抗率:0.1Ω・cm以上100Ω・cm未満)を使用した。上記ウェーハにはHLMが付されている。
<Performance evaluation>
(Polishing)
Using the polishing liquid according to each example as it was as a working slurry, the surface of the object to be polished (test piece) was polished under the following conditions. As a test piece, a commercially available silicon single crystal wafer of 100 mm in diameter finished with lapping and etching (thickness: 525 μm, conductivity type: P type, crystal orientation: <100>, resistivity: 0.1 Ω · cm or more and 100 Ω · cm Less than). HLM is attached to the above-mentioned wafer.
  [研磨条件]
 研磨装置:日本エンギス株式会社製の片面研磨装置、型式「EJ-380」
 研磨圧力:12kPa
 定盤回転数:50rpm
 ヘッド回転数:40rpm
 研磨パッド:ニッタハース社製、商品名「SUBA800」
 研磨液供給レート:100mL/分(かけ流し使用)
 研磨環境の保持温度:25℃
 研磨取り代:4μm
[Polishing conditions]
Polishing device: Single-side polishing device manufactured by Nihon Engis Co., Ltd., model "EJ-380"
Polishing pressure: 12 kPa
Plate rotation speed: 50 rpm
Head rotation speed: 40 rpm
Polishing pad: manufactured by Nitta Hearth, trade name "SUBA 800"
Abrasive fluid supply rate: 100 mL / min (over flow use)
Holding temperature of polishing environment: 25 ° C
Polishing allowance: 4 μm
 (隆起解消性評価)
 研磨後のシリコンウェーハについて、触針式表面粗さ形状測定機(SURFCOM 1500DX、株式会社東京精密製)を使用してHLMを含むサイトの表面形状を測定し、HLM周辺の基準面から隆起の最高点までの高さを計測した。隆起高さが大きいほど、隆起解消性が悪いとの評価結果になる。得られた結果を表1の「隆起高さ」の欄に示す。
(Evaluation of ridge removability)
For the silicon wafer after polishing, the surface shape of the site containing HLM is measured using a stylus surface roughness profile measurement machine (SURFCOM 1500DX, made by Tokyo Seimitsu Co., Ltd.), and the maximum height of the ridge from the reference surface around HLM The height to the point was measured. As the height of the bumps is larger, the evaluation result shows that the bump removability is worse. The obtained results are shown in the column of "Bump height" in Table 1.
 (研磨レート)
 上記研磨に要した時間、すなわち研磨取り代が4μmに到達するまでの所要時間に基づいて、各実施例および比較例における研磨レート[nm/分]を算出した。得られた結果を、比較例1の研磨レートを100%とする相対値(相対研磨レート)に換算し、その値に基づいて以下の2水準で研磨レートを評価した。結果を表1に示す。評価結果「G」は、TMAHを単独で使用した比較例1と概ね同等またはそれ以上の研磨レートが得られたことを意味する。
 G:相対研磨レートが85%以上
 NG:相対研磨レートが85%未満
(Polishing rate)
The polishing rate [nm / min] in each example and comparative example was calculated based on the time required for the above polishing, that is, the time required for the removal amount to reach 4 μm. The obtained result was converted to a relative value (relative polishing rate) in which the polishing rate of Comparative Example 1 was 100%, and the polishing rate was evaluated based on the values in the following two levels. The results are shown in Table 1. The evaluation result "G" means that a polishing rate substantially equal to or higher than that of Comparative Example 1 in which TMAH was used alone was obtained.
G: Relative polishing rate is 85% or more NG: Relative polishing rate is less than 85%
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示されるように、TMAHとTEAHとを組み合わせて用いた実施例1~4によると、研磨レートを維持しつつ、比較例1に比べて隆起高さが低くなり、隆起解消性を明らかに向上させることができた。一方、TEAHを単独で使用した比較例2では研磨レートが大幅に低下した。 As shown in Table 1, according to Examples 1 to 4 in which TMAH and TEAH are used in combination, the height of the bumps is lower than that of Comparative Example 1 while maintaining the polishing rate, and the bump eliminating property is evident. Could be improved. On the other hand, in Comparative Example 2 in which TEAH was used alone, the polishing rate was significantly reduced.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the specific examples of the present invention have been described above in detail, these are merely examples and do not limit the scope of the claims. The art set forth in the claims includes various variations and modifications of the specific examples illustrated above.

Claims (8)

  1.  砥粒と塩基性化合物と水とを含み、
     前記塩基性化合物は、2種以上の第四級アンモニウム化合物を組み合わせて含み、
     前記2種以上の第四級アンモニウム化合物は、水酸化テトラメチルアンモニウムと、以下の一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (ここで、式中のXは一価のアニオンであり、R,R,R,Rは、それぞれ独立に、炭素原子数1~4の炭化水素基からなる群から選択される。ただし、R,R,R,Rのうち少なくとも一つは炭素原子数2~4の炭化水素基である。);
    で表される化合物から選択される1種以上と、を含む、研磨用組成物。
    Containing abrasive grains, basic compounds and water,
    The basic compound contains a combination of two or more quaternary ammonium compounds,
    The two or more types of quaternary ammonium compounds are tetramethylammonium hydroxide and the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, X - is a monovalent anion, and R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of hydrocarbon groups having 1 to 4 carbon atoms. Provided that at least one of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group having 2 to 4 carbon atoms.
    The polishing composition containing 1 or more types selected from the compound represented by these.
  2.  前記一般式(1)で表される化合物として、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウムおよび水酸化テトラブチルアンモニウムからなる群から選択される1種以上を含む、請求項1に記載の研磨用組成物。 The polishing according to claim 1, wherein the compound represented by the general formula (1) contains one or more selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide and tetrabutylammonium hydroxide. Composition.
  3.  前記一般式(1)で表される化合物は、前記研磨用組成物に含まれる水酸化テトラメチルアンモニウムと前記一般式(1)で表される化合物との合計重量のうち0重量%を超えて85重量%以下の範囲で用いられる、請求項1または2に記載の研磨用組成物。 The compound represented by the general formula (1) is more than 0% by weight in the total weight of tetramethyl ammonium hydroxide contained in the polishing composition and the compound represented by the general formula (1). The polishing composition according to claim 1, which is used in a range of 85% by weight or less.
  4.  前記砥粒はシリカ粒子である、請求項1から3のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the abrasive is a silica particle.
  5.  前記砥粒の平均一次粒子径が20nm以上150nm以下である、請求項1から4のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, wherein an average primary particle diameter of the abrasive grains is 20 nm or more and 150 nm or less.
  6.  さらに弱酸塩を含有する、請求項1から5のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 5, further comprising a weak acid salt.
  7.  さらにキレート剤を含有する、請求項1から6のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 6, further comprising a chelating agent.
  8.  ハードレーザーマークの付与されたシリコン基板の研磨に用いられる、請求項1から7のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 7, which is used for polishing a silicon substrate having a hard laser mark.
PCT/JP2018/034401 2017-09-29 2018-09-18 Polishing composition WO2019065357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019544981A JP7319190B2 (en) 2017-09-29 2018-09-18 Polishing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191175 2017-09-29
JP2017-191175 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065357A1 true WO2019065357A1 (en) 2019-04-04

Family

ID=65902886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034401 WO2019065357A1 (en) 2017-09-29 2018-09-18 Polishing composition

Country Status (3)

Country Link
JP (1) JP7319190B2 (en)
TW (1) TW201920587A (en)
WO (1) WO2019065357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178083A (en) * 2019-04-22 2020-10-29 扶桑化学工業株式会社 Colloidal silica for metal polishing
WO2021065815A1 (en) * 2019-10-03 2021-04-08 日産化学株式会社 Cation-containing polishing composition for eliminating protrusions at periphery of laser mark

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511900A (en) * 2000-10-12 2004-04-15 アナン セミコンダクター インコーポレイテッド CMP slurry composition and method for planarizing semiconductor device using the same
JP2014509073A (en) * 2011-01-21 2014-04-10 キャボット マイクロエレクトロニクス コーポレイション Silicon polishing composition having improved PSD performance
WO2015005433A1 (en) * 2013-07-11 2015-01-15 株式会社フジミインコーポレーテッド Polishing composition and method for producing same
JP2015233031A (en) * 2014-06-09 2015-12-24 株式会社フジミインコーポレーテッド Polishing composition
JP2017132944A (en) * 2016-01-29 2017-08-03 株式会社フジミインコーポレーテッド Manufacturing method and stabilizing method of composition for concentration polishing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511900A (en) * 2000-10-12 2004-04-15 アナン セミコンダクター インコーポレイテッド CMP slurry composition and method for planarizing semiconductor device using the same
JP2014509073A (en) * 2011-01-21 2014-04-10 キャボット マイクロエレクトロニクス コーポレイション Silicon polishing composition having improved PSD performance
WO2015005433A1 (en) * 2013-07-11 2015-01-15 株式会社フジミインコーポレーテッド Polishing composition and method for producing same
JP2015233031A (en) * 2014-06-09 2015-12-24 株式会社フジミインコーポレーテッド Polishing composition
JP2017132944A (en) * 2016-01-29 2017-08-03 株式会社フジミインコーポレーテッド Manufacturing method and stabilizing method of composition for concentration polishing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178083A (en) * 2019-04-22 2020-10-29 扶桑化学工業株式会社 Colloidal silica for metal polishing
JP7254603B2 (en) 2019-04-22 2023-04-10 扶桑化学工業株式会社 Colloidal silica for metal polishing
WO2021065815A1 (en) * 2019-10-03 2021-04-08 日産化学株式会社 Cation-containing polishing composition for eliminating protrusions at periphery of laser mark
JP6882727B1 (en) * 2019-10-03 2021-06-02 日産化学株式会社 Polishing composition for eliminating ridges around laser marks containing cations
KR20210103587A (en) * 2019-10-03 2021-08-23 닛산 가가쿠 가부시키가이샤 Abrasive composition for resolving bumps around laser marks containing positive ions
KR102357727B1 (en) 2019-10-03 2022-02-08 닛산 가가쿠 가부시키가이샤 Polishing composition for resolving ridges around laser marks containing positive ions
US11873420B2 (en) 2019-10-03 2024-01-16 Nissan Chemical Corporation Cation-containing polishing composition for eliminating protrusions around laser mark

Also Published As

Publication number Publication date
JP7319190B2 (en) 2023-08-01
TW201920587A (en) 2019-06-01
JPWO2019065357A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6357356B2 (en) Polishing composition
KR20170074869A (en) Composition for polishing
EP3163600B1 (en) Composition for polishing silicon wafers
KR102575250B1 (en) Polishing composition, manufacturing method thereof, and polishing method using the polishing composition
JP6279593B2 (en) Polishing composition, method for producing polishing composition, and method for producing silicon wafer
JP2016069622A (en) Polishing composition and polishing method using the same
KR102617007B1 (en) Method of polishing a substrate and a set of polishing compositions
JP6482200B2 (en) Polishing composition
KR102612276B1 (en) Polishing method and polishing composition set for silicon substrate
JP7237933B2 (en) Polishing composition
JP7440423B2 (en) polishing composition
WO2019065357A1 (en) Polishing composition
JP7253335B2 (en) Polishing composition, method for producing same, and polishing method using polishing composition
JP2020035870A (en) Polishing composition
JP6373029B2 (en) Polishing composition
CN114450376B (en) Polishing composition
WO2023032715A1 (en) Polishing composition
WO2023032714A1 (en) Polishing composition
WO2023032716A1 (en) Polishing composition
WO2020162144A1 (en) Polishing composition
TW201610123A (en) Silicon wafer polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863311

Country of ref document: EP

Kind code of ref document: A1