WO2019065020A1 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
WO2019065020A1
WO2019065020A1 PCT/JP2018/031245 JP2018031245W WO2019065020A1 WO 2019065020 A1 WO2019065020 A1 WO 2019065020A1 JP 2018031245 W JP2018031245 W JP 2018031245W WO 2019065020 A1 WO2019065020 A1 WO 2019065020A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic layer
gas barrier
inorganic
barrier film
Prior art date
Application number
PCT/JP2018/031245
Other languages
French (fr)
Japanese (ja)
Inventor
望月 佳彦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880055572.6A priority Critical patent/CN111065514B/en
Priority to JP2019544427A priority patent/JP6840255B2/en
Publication of WO2019065020A1 publication Critical patent/WO2019065020A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • the present invention relates to a gas barrier film which is excellent in bending resistance and transparency.
  • a gas barrier film is used to protect elements such as solar cells, organic electroluminescent elements, and illumination devices using quantum dots, which are deteriorated by moisture and / or oxygen.
  • the gas barrier film which formed inorganic layers, such as a silicon nitride, a silicon oxide, and aluminum oxide, as a gas barrier layer is known as a gas barrier film which has high gas barrier property.
  • Patent Document 1 has a substrate having a surface made of an organic material, and an inorganic layer (inorganic film) mainly composed of silicon nitride formed on the substrate, and the inorganic layer is N / Si.
  • Composition ratio is 1-1.35, film density is 2.1-2.4 g / cm 2 , thickness is 10-60 nm, and the interface between the substrate and the inorganic layer is derived from the substrate (organic material)
  • a gas barrier film having a mixed layer with a thickness of 5 to 40 nm, which contains the component to be added and the component derived from the inorganic layer is described.
  • Patent Document 2 describes a gas barrier film having a base film and an inorganic layer, wherein the inorganic layer contains Si, N, H, and O, and Si, N, H, and the like at the center in the thickness direction.
  • the uniform region having a uniform ratio to O and having an O ratio represented by the following formula of 10% or less is 5 nm or more, and the region in contact with at least one interface of the inorganic layer has an O ratio
  • a gas barrier film is described, which is an oxygen-containing region in which the change in the O ratio per unit thickness is 2 to 8% / nm, increasing from the uniform region side toward the interface direction.
  • O ratio [%] (number of O / total number of Si, N and O) ⁇ 100
  • a gas barrier film having an inorganic layer as a gas barrier layer as shown in Patent Documents 1 and 2 exhibits very high gas barrier properties as compared to a gas barrier film having an organic layer made of a resin or the like as a gas barrier layer.
  • the thickness of the inorganic layer is thin.
  • a thinner inorganic layer is advantageous in terms of productivity.
  • the inorganic layer is thinned, sufficient gas barrier properties may not be obtained, and further, there arises a problem that the high temperature / high humidity resistance of the gas barrier film is insufficient. .
  • An object of the present invention is to solve such problems, and to provide a gas barrier film which is excellent in bending resistance, transparency, productivity and the like, and further has sufficient gas barrier properties and high temperature high humidity resistance. It is in.
  • a gas barrier film which is excellent in bending resistance, transparency, productivity and the like, and also has sufficient gas barrier properties and high temperature high humidity resistance is provided.
  • FIG. 1 is a conceptual view of the gas barrier film of the present invention as viewed from the surface direction of the main surface.
  • the main surface is the largest surface of the sheet (film, plate).
  • the gas barrier film 10 shown in FIG. 1 is configured to have a support 12, a base organic layer 14, a mixed layer 16, and an inorganic layer 18.
  • the inorganic layer 18 is a layer containing silicon nitride.
  • the mixed layer 16 is a layer containing the component of the inorganic layer 18 and the component of the layer to be the surface on which the inorganic layer 18 is formed.
  • the component of the layer to be the surface on which the inorganic layer 18 is to be formed is preferably a component different from the component of the inorganic layer 18, and more preferably a component of the support 12 or a component of the base organic layer 14.
  • the inorganic layer 18 is formed on the surface of the base organic layer 14. Therefore, the mixed layer 16 includes the components of the inorganic layer 18 and the components of the base organic layer 14.
  • the inorganic layer 18 has a thickness of 2 to 15 nm, an N / Si atomic ratio of 0.7 to 0.97, and a thickness of the mixed layer 16 of 2 to It is 25 nm.
  • the support 12 side of the gas barrier film 10 is also referred to as “down”, and the side opposite to the support 12 is also referred to as “up”.
  • the gas barrier film 10 shown in FIG. 1 has a base organic layer 14 to be a base layer of the inorganic layer 18, and has one set of the base organic layer 14 and the inorganic layer 18 in combination. It has a layer structure of a body 12, an underlying organic layer 14, a mixed layer 16 and an inorganic layer 18.
  • the gas barrier film of the present invention is not limited to this layer configuration, and various layer configurations can be used.
  • the gas barrier film of the present invention does not have the underlying organic layer 14, and directly forms the inorganic layer 18 on the support 12. It may have the layer configuration of the inorganic layer 18.
  • the mixed layer 24 includes the components of the inorganic layer 18 and the components of the support 12.
  • the gas barrier film of the present invention like the gas barrier film 28 shown in FIG. 3, has two sets of the combination of the base organic layer 14 and the inorganic layer 18, the support 12 ⁇ base organic layer 14 ⁇ mixed layer 16 ⁇ inorganic It may have a layer configuration of the layer 18, the base organic layer 14, the mixed layer 16, and the inorganic layer 18.
  • a configuration having three or more sets of the combination of the underlying organic layer 14 and the inorganic layer 18 is also usable.
  • one or more combinations of the base organic layer 14 and the inorganic layer 18 may be laminated on the gas barrier film 20 in which the inorganic layer 18 is directly formed on the support 12 shown in FIG. 2.
  • the gas barrier film of the present invention may have a protective organic layer for protecting the inorganic layer 18 on the top layer, that is, the inorganic layer 18 most separated from the support 12.
  • the inorganic layer 18 when the inorganic layer 18 has two or more layers, the inorganic layer 18 does not satisfy at least one of the thickness 2 to 15 nm and the N / Si atomic ratio 0.7 to 0.97. And / or a mixed layer 16 that does not satisfy the thickness of 2 to 25 nm may be present. Furthermore, in the gas barrier film of the present invention, when the inorganic layer 18 has two or more layers, a combination having no mixed layer exists between the inorganic layer 18 and the layer on which the inorganic layer 18 is to be formed. It is also good.
  • the gas barrier film of the present invention is formed between the inorganic layer 18 having a thickness of 2 to 15 nm and an N / Si atomic ratio of 0.7 to 0.97, and a layer on which the inorganic layer 18 is to be formed. It is sufficient to have one or more sets in combination with the mixed layer 16 with a thickness of 2 to 25 nm.
  • the mixed layer 16 is provided between all the inorganic layers 18 and the layer on which the inorganic layer 18 is to be formed. And preferably, all the inorganic layers 18 and the mixed layers 16 satisfy the conditions of thickness and atomic ratio described above.
  • the support 12 may be a known sheet (film, plate) used as a support in various gas barrier films, various laminated functional films and the like.
  • the material of the support 12 is not limited, and various materials can be used as long as the underlying organic layer 14 and the inorganic layer 18 can be formed.
  • various resin materials are exemplified.
  • the material of the support 12 include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacritonitrile ( PAN), polyimide (PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer ( And ABS), cycloolefin copolymer (COC), cycloolefin polymer (COP), triacetylcellulose (TAC), ethylene-vinyl alcohol copolymer (EVOH
  • the thickness of the support 12 can be set as appropriate depending on the application, material and the like.
  • the thickness of the support 12 is not limited, but the mechanical strength of the gas barrier film 10 can be sufficiently secured, and the gas barrier film 10 having good flexibility can be obtained.
  • the thickness is preferably 5 to 150 ⁇ m, and more preferably 10 to 125 ⁇ m in that a flexible gas barrier film 10 which can be thinned can be obtained.
  • the base organic layer 14 is formed on one surface of the support 12.
  • the underlying organic layer 14 is, for example, a layer formed of an organic compound obtained by polymerizing (crosslinking, curing) monomers, dimers, oligomers and the like. As described above, the underlying organic layer 14 is provided as a preferred embodiment.
  • the underlying organic layer 14 serving as the lower layer of the inorganic layer 18 is a layer serving as an underlying layer for properly forming the inorganic layer 18.
  • the underlying organic layer 14 formed on the surface of the support 12 can have the surface on which the inorganic layer 18 is formed appropriate by embedding the irregularities on the surface of the support 12 and foreign matter attached to the surface. Therefore, by having such a base organic layer 14 on the surface of the support 12, it is possible to properly form the inorganic layer 18 that mainly exhibits gas barrier properties.
  • the gas barrier film of the present invention may have a plurality of combinations of the inorganic layer 18 and the base organic layer 14.
  • the second and subsequent base organic layers 14 are formed on the inorganic layer 18, but even in this configuration, the base organic layer to be the lower layer of the inorganic layer 18 (the surface on which the inorganic layer 18 is formed) 14 exerts the same action.
  • the base organic layer 14 is formed, for example, by curing a composition for forming an organic layer containing an organic compound (monomer, dimer, trimer, oligomer, polymer, etc.).
  • the composition for forming an organic layer may contain only one type of organic compound, or may contain two or more types.
  • the underlying organic layer 14 contains, for example, a thermoplastic resin, an organic silicon compound, and the like.
  • the thermoplastic resin is, for example, polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluorine resin, polyimide, fluorinated polyimide, polyamide, polyamide imide, polyether imide, cellulose acylate, polyurethane And polyether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, and an acrylic compound.
  • organosilicon compounds include polysiloxanes.
  • the base organic layer 14 preferably includes a radical curable compound and / or a polymer of a cationic curable compound having an ether group from the viewpoint of excellent strength and the viewpoint of glass transition temperature. More preferably, the base organic layer 14 contains a (meth) acrylic resin whose main component is a polymer such as a monomer or oligomer of (meth) acrylate from the viewpoint of strength and glass transition temperature.
  • the underlying organic layer 14 is more preferably a bifunctional compound such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), etc.
  • the (meth) acrylic resin containing as a main component a polymer of the above (meth) acrylate monomers, dimers and oligomers, etc., and more preferably, a heavy weight such as trifunctional or higher functional (meth) acrylate monomers, dimers and oligomers It contains (meth) acrylic resin whose main component is coalescence. In addition, a plurality of these (meth) acrylic resins may be used.
  • a main component means the component with the largest contained mass ratio among the components to contain.
  • composition for forming an organic layer preferably contains, in addition to the organic compound, an organic solvent, a surfactant, and a silane coupling agent.
  • the materials of the respective underlying organic layers 14 may be the same or different.
  • the thickness of the underlying organic layer 14 is preferably 0.1 to 5 ⁇ m, and more preferably 0.2 to 3 ⁇ m.
  • the thickness of the base organic layer 14 is preferably 0.1 to 5 ⁇ m, and more preferably 0.2 to 3 ⁇ m.
  • the thicknesses of the underlying organic layers 14 may be the same or different.
  • the underlying organic layer 14 can be formed by a known method depending on the material.
  • the base organic layer 14 can be formed by a coating method in which the composition for forming an organic layer described above is applied and the composition for forming an organic layer is dried.
  • the dried organic layer-forming composition is further irradiated with ultraviolet light, if necessary, to polymerize (crosslink) the organic compound in the organic layer-forming composition.
  • the underlying organic layer 14 is preferably formed by roll-to-roll.
  • roll to roll is also called “RtoR”.
  • RtoR refers to a sheet formed from a roll formed by winding a long sheet, and forming a film while conveying the long sheet in the longitudinal direction, and forming a film It is a manufacturing method which winds a sheet in a roll.
  • the gas barrier film of the present invention may have a protective organic layer for protecting the inorganic layer 18 on the surface of the uppermost inorganic layer 18 (the inorganic layer 18 most separated from the support 12).
  • a protective organic layer for protecting the inorganic layer 18 on the surface of the uppermost inorganic layer 18 (the inorganic layer 18 most separated from the support 12).
  • the material, thickness, formation method, and the like may be similar to those of the base organic layer 14.
  • An inorganic layer 18 is formed on the surface of the base organic layer 14. Further, in the gas barrier film 10 of the present invention, a mixed layer 16 containing the components of the base organic layer 14 and the components of the inorganic layer 18 is formed between the base organic layer 14 and the inorganic layer 18. .
  • the inorganic layer 18 may be formed on the surface of the support 12 as described above, and in this case, the mixed layer 24 includes the components of the support 12 and the components of the inorganic layer 18. (See Figure 2).
  • the inorganic layer 18 is a layer containing silicon nitride, preferably a layer containing silicon nitride as a main component, and more preferably a layer consisting of silicon nitride. Therefore, the inorganic layer 18 is derived from not only silicon nitride but also by-products such as silicon oxynitride, hydrogenated silicon nitride, hydrogenated silicon nitride oxynitride, and silicon oxide, and source gases such as silane gas, ammonia gas and hydrogen gas. You may contain the various components contained unavoidable, such as the component to be.
  • the inorganic layer 18 has a thickness of 2 to 15 nm and an N / Si atomic ratio of 0.7 to 0.97.
  • the thickness of each inorganic layer 18 may be same or different.
  • the inorganic layer 18 can be formed by a known method depending on the material.
  • plasma CVD such as capacitively coupled plasma (CCP) -chemical vapor deposition (CVD) and inductively coupled plasma (ICP) -CVD, and atomic layer deposition (ALD) can be used.
  • CCP capacitively coupled plasma
  • ICP inductively coupled plasma
  • ALD atomic layer deposition
  • the inorganic layer 18 is also formed of RtoR.
  • a mixed layer 16 is provided between the inorganic layer 18 and the base organic layer 14 on which the inorganic layer 18 is to be formed.
  • the mixed layer 16 is a layer formed by, for example, etching the surface of the base organic layer 14 (the layer on which the inorganic layer 18 is to be formed) by plasma when forming the inorganic layer 18 by plasma CVD. . Therefore, the mixed layer 16 contains the components of the inorganic layer 18 and the components of the base organic layer 14.
  • the mixed layer 16 is a layer in which the component derived from the base organic layer 14 and the component derived from the inorganic layer 18 are mixed.
  • the thickness of the inorganic layer 18 is 2 to 15 nm, and the N / Si atomic ratio (atomic ratio of N / Si) of the inorganic layer 18 is 0.7 to 0.97.
  • the thickness of the mixed layer 16 is 2 to 25 nm.
  • a gas barrier film having an inorganic layer as a gas barrier layer is known as a high performance gas barrier film.
  • a gas barrier film having a silicon nitride layer as a gas barrier layer exhibits high gas barrier properties.
  • the gas barrier film having an inorganic layer when the inorganic layer is thinner, breakage of the inorganic layer can be prevented when it is bent, that is, it is excellent in bending resistance (flexibility).
  • the productivity of the gas barrier film can also be improved by thinning the inorganic layer.
  • the inorganic layer is formed (deposited) by plasma CVD such as CCP-CVD.
  • the surface on which the inorganic layer is formed is a base organic layer (or a support made of a resin) which is an organic compound.
  • a base organic layer or a support made of a resin
  • the base organic layer is etched by plasma depending on the film forming conditions of the inorganic layer.
  • a mixed layer containing the component and the component of the base organic layer is formed, and the inorganic layer is formed thereon. That is, the formation surface of the inorganic layer is roughened by etching.
  • the mixed layer can be entirely covered to form the inorganic layer even if the surface on which the inorganic layer is formed is somewhat rough.
  • Sufficient gas barrier properties can be obtained by the formed inorganic layer.
  • the inorganic layer can not cover the mixed layer entirely, and moisture intrudes from the non-formed portion of the inorganic layer, so that sufficient gas barrier properties can not be obtained.
  • the inorganic layer containing silicon nitride when exposed to a high temperature and high humidity environment, oxidation of the inorganic layer is caused, for example, NH 2 group remaining in the inorganic layer is replaced with OH group etc. As it progresses, the density of the membrane decreases.
  • the inorganic layer silicon nitride layer
  • the inorganic layer has a sufficient thickness, sufficient gas barrier properties can be maintained even if oxidation of the inorganic layer proceeds.
  • the inorganic layer when the inorganic layer is made thin, when exposed to a high temperature and high humidity environment, the entire inorganic layer becomes like silicon oxide whose density is lower than that of silicon nitride in a short time, and the gas barrier property is significantly reduced. Resulting in.
  • the present inventors diligently studied to solve such a problem that occurs when the inorganic layer 18 containing a silicon nitride layer is thinned. As a result, even if the inorganic layer 18 is made thin by reducing the amount of nitrogen contained in the inorganic layer 18, that is, by reducing the N / Si atomic ratio, the gas barrier film 10 having excellent gas barrier properties and high temperature high humidity resistance. I found that I could get
  • nitrogen radicals in plasma contribute to the film formation of silicon nitride and also react with the carbon of the underlying organic layer 14 to form the underlying organic layer 14 (the surface on which the inorganic layer 18 is formed). Etch.
  • the nitrogen in the inorganic layer 18 reducing the N / Si atomic ratio
  • excessive etching of the underlying organic layer 14 can be suppressed.
  • this effect can be more suitably obtained.
  • the nitrogen in the inorganic layer 18 is reduced, that is, the N / Si atomic ratio in the inorganic layer 18 is reduced to oxidize the above-mentioned inorganic layer 18 in a high temperature and high humidity environment. It can be difficult to move on. As a result, even if the inorganic layer 18 is thinned, the gas barrier film 10 having sufficient high temperature and high humidity resistance can be obtained.
  • the thickness of the inorganic layer 18 is 2 to 15 nm.
  • the thickness of the inorganic layer 18 is preferably 3 to 13 nm, and more preferably 5 to 12 nm.
  • the inorganic layer 18 has a thickness of 2 nm or more, the gas barrier film 10 having sufficient gas barrier properties can be obtained.
  • the inorganic layer 18 has a thickness of less than 15 nm, the gas barrier film 10 having high transparency and excellent bending resistance can be obtained.
  • the inorganic layer 18 has an N / Si atomic ratio (atomic ratio) of 0.7 to 0.97.
  • the N / Si atomic ratio of the inorganic layer 18 is preferably 0.75 to 0.95, and more preferably 0.8 to 0.93.
  • the transparency of the gas barrier film 10 is excellent.
  • the inorganic layer 18 has an N / Si atomic ratio of 0.97 or less, a gas barrier film 10 having sufficient gas barrier properties and high temperature and high humidity resistance can be obtained.
  • the density of the inorganic layer 18 (film density), preferably 2.1 ⁇ 2.5g / cm 2, more preferably 2.12 ⁇ 2.45g / cm 2, 2.14 ⁇ 2.4g / Cm 2 is more preferred.
  • the density of the inorganic layer 18 By setting the density of the inorganic layer 18 to 2.1 g / cm 2 or more, the gas barrier film 10 having high gas barrier properties can be obtained, and the gas barrier film 10 having high high temperature and high humidity resistance can be obtained. .
  • the density of the inorganic layer 18 By setting the density of the inorganic layer 18 to 2.5 g / cm 2 or less, damage to the inorganic layer 18 caused by film stress and the like can be prevented, which is preferable in that the gas barrier film 10 having high gas barrier properties can be obtained.
  • the density of the inorganic layer 18 may be measured by XRR (X-Ray Reflectometry).
  • the calculation of the density from the XRR measurement result may be performed by simulation using software.
  • the XRR measurement may be performed using, for example, ATX manufactured by Rigaku Corporation.
  • the simulation may be performed using, for example, analysis software GXRR manufactured by Rigaku Corporation.
  • the thickness of the mixed layer 16 (24) is 2 to 25 nm.
  • the thickness of the mixed layer 16 is preferably 4 to 22 nm, and more preferably 5 to 20 nm.
  • the inorganic layer 18 and the base organic layer 14 or the inorganic layer 18 and the support 12 easily peel off, which causes problems such as the inability to secure sufficient bending resistance.
  • the thickness of the mixed layer 16 exceeds 25 nm, the surface roughness of the surface on which the inorganic layer 18 is formed becomes large, so the inorganic layer 18 can not be properly formed, and the gas barrier film 10 having sufficient gas barrier properties can not be obtained. And, the absorption of light by the mixed layer 16 is increased to cause disadvantages such as a decrease in transparency.
  • the N / Si atomic ratio in the mixed layer 16 is not limited, but is preferably 0.2 to 0.85, more preferably 0.3 to 0.82, and 0.4 to 0. .8 is more preferred.
  • it is preferable to further reduce the N / Si atomic ratio ( nitrogen content) in the mixed layer 16, that is, nitrogen radicals in plasma at the time of formation of the mixed layer 16.
  • the N / Si atomic ratio in the mixed layer 16 is 0.2 or more, absorption of light by the mixed layer 16 is suppressed, which is preferable in that the gas barrier film 10 having excellent transparency can be obtained.
  • the N / Si atomic ratio in the mixed layer 16 By setting the N / Si atomic ratio in the mixed layer 16 to 0.85 or less, it is possible to prevent the mixed layer 16 from becoming excessively rough and to form an appropriate inorganic layer 18, and the gas barrier film 10 having high gas barrier properties can be obtained. It is preferable at the point of being obtained etc.
  • the N / Si atomic ratio of the mixed layer 16 is preferably lower than the N / Si atomic ratio of the inorganic layer 18. That is, the mixed layer 16 preferably has a lower amount of nitrogen to silicon than the inorganic layer 18.
  • the N / Si atomic ratio of the mixed layer 16 is preferably lower by 0.05 to 0.5 than the N / Si atomic ratio of the inorganic layer 18, and more preferably by 0.1 to 0.3. . That is, the gas barrier film 10 of the present invention preferably satisfies “0.05 ⁇ (N / Si atomic ratio of inorganic layer 18) ⁇ (N / Si atomic ratio of mixed layer 16) ⁇ 0.5”.
  • the difference between the N / Si atomic ratio of the mixed layer 16 and the N / Si atomic ratio of the inorganic layer 18 can be set to 0.05 or more, the roughness of the mixed layer 16 can be suppressed and an appropriate inorganic layer 18 can be formed.
  • the gas barrier film 10 having high gas barrier properties can be obtained.
  • the difference between the N / Si atomic ratio of the mixed layer 16 and the N / Si atomic ratio of the inorganic layer 18 is preferably improved.
  • ⁇ Method of controlling N / Si atomic ratio> As a method of controlling the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16, that is, the content of nitrogen, the following method is exemplified. First, a method of adjusting the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 by adjusting the composition of the source gas when forming the inorganic layer 18 is exemplified. For example, when the inorganic layer 18 is formed by plasma CVD using silane gas, ammonia gas, and hydrogen gas as source gases, the N / Si atomic ratio can be adjusted by adjusting the amount of ammonia gas to silane gas. .
  • the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can also be adjusted by adjusting the plasma excitation power at the time of forming the inorganic layer 18. For example, as the plasma excitation power at the time of forming the inorganic layer 18 is increased, the N / Si atomic ratio is increased.
  • the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can also be adjusted by temperature control when forming the inorganic layer 18.
  • temperature control at the time of forming the inorganic layer 18 may be performed by, for example, the temperature control of the support 12 at the time of forming the inorganic layer 18.
  • the temperature of the support 12 is adjusted by adjusting the temperature of the drum 102. Good.
  • the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can be adjusted by treating the formation surface of the inorganic layer 18 with hydrogen plasma prior to the formation of the inorganic layer 18. Specifically, the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can be reduced by treating the formation surface of the inorganic layer 18 with hydrogen plasma. Hydrogen plasma generates very strong ultraviolet light. Therefore, by treating the surface on which the inorganic layer 18 is formed with hydrogen plasma prior to the formation of the inorganic layer 18, the curing of the surface on which the inorganic layer 18 is formed can be advanced by the irradiation of ultraviolet light. Thereby, the etching by the plasma at the time of forming the inorganic layer 18 can be suppressed.
  • the inorganic layer 18 when the inorganic layer 18 is formed, mixing of nitrogen into the mixed layer 16 or the like can be suppressed, and the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can be lowered.
  • This method is particularly effective when the surface on which the inorganic layer 18 is formed is, for example, the underlying organic layer 14 or the like formed by curing (polymerization) of an ultraviolet-curable organic compound such as (meth) acrylate. .
  • the thicknesses of the inorganic layer 18 and the mixed layer 16, and the N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 are XPS (X-ray photoelectron spectroscopy) It is to be noted that XPS is also called ESCA (Electron Spectroscopy for Chemical Analysis).
  • etching by argon ion plasma etc. and measurement by XPS are alternately performed, and silicon atoms at each position in the thickness direction
  • the amounts of (Si), nitrogen atom (N), oxygen atom (O) and carbon atom (C) are measured.
  • the measurement interval in the thickness direction by XPS may be appropriately set according to the etching rate, the measuring apparatus, and the like.
  • the position in the thickness direction measured by XPS is detected from the etching rate and the etching time.
  • composition ratio profile of composition ratio
  • the example shown in FIG. 4 is each in the thickness direction (film thickness) in an example of the gas barrier film 10 having the layer structure of the support 12, the base organic layer 14, the mixed layer 16 and the inorganic layer 18 as shown in FIG. It is the content rate of each atom at the position. Therefore, the position of 0 nm is the surface of the inorganic layer 18.
  • oxygen and carbon do not exist in the inorganic layer 18 which is a silicon nitride layer, oxygen atoms and carbon atoms are detected at a thickness of 0 nm and in the vicinity thereof.
  • the gas barrier film 10 usually, after forming the inorganic layer 18, a protective film is laminated on the inorganic layer 18 to protect the inorganic layer 18, and the protective film is used at the time of use (at the time of measurement). Peel off. At the time of this peeling, components of the protective film are transferred to the surface of the inorganic layer 18.
  • the oxygen atom and the carbon atom detected at a thickness of 0 nm and in the vicinity thereof are the ones in which the component transferred from the protective film to the inorganic layer 18 is detected.
  • the maximum value and the minimum value in the composition ratio (amount) of silicon atoms are detected, and as shown in FIG. 4, the maximum value is 100%, and the minimum value is 0%, with 100% therebetween.
  • the maximum value in the composition ratio of silicon atoms is set to 100% and the minimum value is set to 0%
  • the position in the thickness direction where the composition ratio of silicon atoms is reduced by 10% from the maximum value (100%) is mixed with the inorganic layer 18
  • the interface with the layer 16 and the position in the thickness direction where the composition ratio of silicon atoms is increased by 10% from the minimum value (0%) is the interface between the mixed layer 16 and the base organic layer 14.
  • the silicon atom composition ratio profile and the position 1/10 from the top dividing the range from the maximum value (100%) to the minimum value (0%) of the composition ratio of silicon atoms into 10 equal parts.
  • Position in the thickness direction where it intersects is the interface between the inorganic layer 18 and the mixed layer 16, and the profile of the composition ratio of silicon atoms intersects with the position 1/10 from the bottom (the ninth stage)
  • the position in the thickness direction is an interface between the mixed layer 16 and the base organic layer 14.
  • the thickness (from the surface (0 nm) to the interface) of the inorganic layer 18 and , Thickness of the mixed layer 16 (from interface to interface) is detected. Furthermore, the N / Si atomic ratio in the inorganic layer 18 is detected from the detected interface and the composition ratio of silicon atoms and nitrogen atoms at each position in the thickness direction, or further, the N / Si atomic ratio in the mixed layer 16 To detect
  • the N / Si atomic ratio of the inorganic layer 18 is an average value of the N / Si atomic ratio at each position in the thickness direction of the inorganic layer 18.
  • the N / Si atomic ratio of the mixed layer 16 is an average value of the N / Si atomic ratio at each position in the thickness direction of the mixed layer 16. Therefore, for example, in the vicinity of the interface between the inorganic layer 18 and the mixed layer 16, the inorganic layer 18 has a region where the N / Si ratio is not in the range of 0.7 to 0.97 partially in the thickness direction. There is also a case. The same applies to the mixed layer 16 in this regard.
  • the base organic layer 14 may be further formed on the inorganic layer 18 (see FIG. 3), and a protective organic layer is formed on the inorganic layer 18.
  • a protective organic layer is formed on the inorganic layer 18.
  • the same XPS measurement is performed including the upper organic layer of the inorganic layer 18 to detect the minimum value and the maximum value of the composition ratio of silicon atoms in the region of the upper organic layer to the inorganic layer 18.
  • the interval being 100%
  • the position in the thickness direction where the detection result of silicon atoms is 10% lower than the maximum value may be taken as the interface between the upper organic layer and the inorganic layer 18.
  • the thickness and N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 hardly change in the region used as a product in the gas barrier film 10. Therefore, the thickness and the N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 as described above may be measured in the central region of the gas barrier film 10. For example, if the gas barrier film 10 is manufactured by RtoR, the measurement may be performed in the area of the central 80% in the width direction. In addition, if the gas barrier film 10 is manufactured in a sheet-like manner (cut sheet), the measurement may be performed in an area of 10% or more of the length in the longitudinal direction and the lateral direction.
  • the thickness and the N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 as described above are measured at five points in the central region, and the average value is calculated as the inorganic layer 18 of the gas barrier film 10 and The thickness and N / Si atomic ratio of the mixed layer 16 are used.
  • the gas barrier film 10 is preferably manufactured using RtoR.
  • An example of the manufacturing method of the gas barrier film 10 is demonstrated using FIG. 5 and FIG.
  • FIG. 5 shows an organic film forming apparatus 40.
  • the organic film-forming apparatus 40 is an apparatus which forms the base organic layer 14 or further a protection organic layer by RtoR.
  • the organic film forming apparatus 40 includes a rotating shaft 52, conveyance roller pairs 54a and 54b, a coating unit 56, a drying unit 58, a light irradiation unit 60, a winding shaft 62, a collection roll 64, and a supply roll 66.
  • the base organic layer 14 (protective organic layer) is formed by applying the composition for forming an organic layer while conveying the elongated support 12 in the longitudinal direction.
  • a roll 72 formed by winding the long support 12 is loaded on the rotating shaft 52.
  • the support 12 is pulled out of the roll 72, passed through a predetermined transport path, and transported.
  • the conveyance path is a path from the roll 72 to the winding shaft 62 through the conveyance roller pair 54a, the application unit 56, the drying unit 58, the light irradiation unit 60, and the conveyance roller pair 54b.
  • the support 12 drawn from the roll 72 is conveyed in the longitudinal direction, and the composition for forming an organic layer is first applied to the surface in the application unit 56.
  • the coating method in the coating unit 56 include a die coating method, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, and a gravure coating method.
  • the drying unit 58 is a drying unit 58a that performs heating and drying from the front side (the surface on which the base organic layer 14 is formed, the upper side in FIG. 5), and a drying unit 58b that performs heating and drying from the back side (the support 12 side). And can be heated from both the front and back sides.
  • a heating method in the drying unit 58 a known method of heating a sheet-like material can be used. For example, hot air drying may be performed by the drying unit 58a, and drying may be performed by the heat roller (pass roller having a heating mechanism) by the drying unit 58b.
  • the light irradiation part 60 irradiates an ultraviolet-ray etc. to the dried composition for organic layer formation.
  • the organic compound is polymerized (crosslinked) to form the underlying organic layer 14.
  • the polymerization of the organic compound may be carried out in an inert atmosphere such as a nitrogen atmosphere, if necessary.
  • the protective film Ga delivered from the supply roll 66 is laminated on the base organic layer 14 by the transport roller pair 54 b.
  • the protective film Ga is a protective film that protects the underlying organic layer 14.
  • the support 12 on which the protective film Ga is laminated is taken up by a take-up shaft 62 to be a roll 74.
  • FIG. 6 shows an inorganic film forming apparatus 80.
  • the inorganic film-forming apparatus 80 is an apparatus which forms the inorganic layer 18 by RtoR.
  • the inorganic film forming apparatus 80 has a vacuum chamber 82.
  • the vacuum chamber 82 comprises an evacuation means 84. By driving the evacuation means 84, the internal pressure of the inorganic film forming apparatus 80 (vacuum chamber 82) can be adjusted.
  • a rotary shaft 92 In the vacuum chamber 82, a rotary shaft 92, pass rollers 94a to 94c, a recovery roll 98, a first film forming unit 100A, a second film forming unit 100B and a third film forming unit 100C, a drum 102, a supply A roll 104, pass rollers 106a to 106c, and a winding shaft 108 are provided.
  • the inorganic layer 18 is formed on the base organic layer 14 while conveying the long support 12 on which the base organic layer 14 is formed in the longitudinal direction.
  • the roll 74 is loaded on the rotating shaft 92.
  • the support 12 pulled out of the roll 74 is passed through a predetermined transport path leading to the winding shaft 108 via the pass rollers 94a to 94c, the drum 102, and the pass rollers 106a to 106c.
  • the support 12 pulled out of the roll 74 is guided by the pass rollers 94a to 94c, wound around the drum 102, and conveyed along a predetermined path.
  • the inorganic layer 18 is formed by one or more of the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100C.
  • the treatment of the underlying organic layer 14 with hydrogen plasma described above may be performed by the first film formation unit 100A or the second film formation unit 100B.
  • the drum 102 incorporates a temperature control unit, and the support 12 is cooled or heated by the drum 102 as necessary, while the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100 are formed. It is processed by one or more of the membrane units 100C.
  • the drum 102 is configured to be able to supply bias power.
  • the protective film Ga is laminated on the base organic layer 14, the protective film Ga is peeled off from the base organic layer 14 and collected by the collection roll 98.
  • the film forming method in the first film forming unit 100A, the second film forming unit 100B and the third film forming unit 100C is, for example, CCP-CVD. Therefore, by adjusting the film forming conditions, the base organic layer 14 is etched by plasma, and the mixed layer 16 is formed between the base organic layer 14 and the inorganic layer 18.
  • the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100C have the same configuration, and the shower electrode 114 constituting the electrode pair with the drum 102, the high frequency power supply 116, and the gas supply And means 118.
  • the shower electrode 114 is a known shower electrode (shower plate) used for plasma CVD, which has an opening for supplying the source gas to the surface facing the drum 102.
  • the high frequency power source 116 supplies plasma excitation power to the shower electrode 114, and is a known high frequency power source used for plasma CVD. As described above, by adjusting the intensity of plasma excitation power supplied to the shower electrode 114, it is possible to adjust the N / Si atomic ratio and the like in the mixed layer 16 and the inorganic layer 18.
  • the gas supply means 118 is for supplying the source gas to the shower electrode 114, and is a known gas supply means used for plasma CVD.
  • the gas barrier film 10 of the present invention has the inorganic layer 18 containing silicon nitride, and as a source gas, silane gas, ammonia gas and hydrogen gas are exemplified as an example.
  • the N / Si atomic ratio and the like in the mixed layer 16 and the inorganic layer 18 can be adjusted by adjusting the supply amounts of the silane gas and the ammonia gas.
  • the thicknesses of the mixed layer 16 and the inorganic layer 18 can be adjusted by known methods such as adjustment of plasma excitation power, adjustment of film formation time, that is, adjustment of transport speed of the support 12, and adjustment of supply amount of source gas. You can do it.
  • the thickness and / or the composition of the mixed layer 16 and the inorganic layer 18 can be adjusted with a high degree of freedom.
  • the inorganic layer 18 is formed using the first film forming unit 100A and the third film forming unit 100C.
  • the mixed layer 16 is mainly formed in the first film forming unit 100A on the upstream side, and the third film forming on the downstream side is formed.
  • the unit 100C mainly by forming the inorganic layer 18, it is possible to independently adjust the thickness and the composition in forming the mixed layer 16 and forming the inorganic layer 18, respectively.
  • the surface of the base organic layer 14 is treated with hydrogen plasma without film formation, and the third film forming unit 100C or the second film forming unit 100B and the third film forming unit 100B are formed. It is also possible to form the mixed layer 16 and the inorganic layer 18 by the membrane unit 100C.
  • the inorganic film forming apparatus 80 may form the mixed layer 16 and the inorganic layer 18 by using the first film forming unit 100A and the second film forming unit 100B other than the above, and the second film forming unit
  • the mixed layer 16 and the inorganic layer 18 may be formed by using 100B and the third film forming unit 100C, and the mixed layer 16 and the inorganic layer 18 may be formed by using all of the first film forming unit 100A to the third film forming unit 100C.
  • the mixed layer 16 and the inorganic layer 18 may be formed using only one of the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100C.
  • the protective film Gb delivered from the supply roll 104 is laminated on the inorganic layer 18 at the pass roller 106a.
  • the protective film Gb is a film that protects the inorganic layer 18.
  • the gas barrier film 10 on which the protective film Gb is laminated is guided by the pass rollers 106a to 106c and conveyed to the winding shaft 108, and the gas barrier film 10 on which the protective film Gb is laminated is wound on the winding shaft 108
  • the roll 110 in which the film 10 is wound is obtained.
  • the vacuum chamber 82 is opened to the atmosphere to introduce clean dry air.
  • the roll 110 is then removed from the vacuum chamber 82.
  • the same base organic layer 14 and the inorganic layer 18 are formed according to the number of combinations to be formed. And repeat.
  • the formation of the underlying organic layer 14 of the second and subsequent layers is performed after the protective film Gb laminated on the inorganic layer 18 is peeled off by the transport roller pair 54a.
  • the protective organic layer may be formed on the inorganic layer 18 in the same manner as the base organic layer 14.
  • the mixed layer 16 and the inorganic layer 18 are directly formed on the support 12 as in the gas barrier film 20 shown in FIG. 2
  • the formation of the underlying organic layer 14 by the organic film forming apparatus 40 is not performed.
  • the inorganic layer 18 may be formed directly on the support 12 by the film forming apparatus 80.
  • Example 1 ⁇ Support As a support, a PET film having a width of 1000 mm, a thickness of 100 ⁇ m and a length of 100 m (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) was used.
  • ⁇ Formation of base organic layer >> A mixture of TMPTA (manufactured by Daicel Ornex Co., Ltd.) and a photopolymerization initiator (manufactured by Lamberti, ESACURE KTO 46) was weighed so as to have a mass ratio of 95: 5, and methyl ethyl ketone ( It melt
  • the prepared composition for forming an organic layer was filled in an application part of an organic film forming apparatus having an application part, a drying part, and a light irradiation part as shown in FIG. 5 and forming an organic layer by an application method by RtoR.
  • a roll formed by winding a support in a roll was loaded at a predetermined position, and the support unwound from the roll was inserted into a predetermined transport path. Furthermore, the supply roll which wound the protective film made from PE was loaded in the predetermined position, and the protective film was laminated on the foundation organic layer in the conveyance roller pair of the lower stream of a light irradiation part.
  • the composition for forming an organic layer was applied in the coating part while conveying the support in the longitudinal direction, and the composition for forming an organic layer was dried in the drying part.
  • the application part used the die coater.
  • the heating temperature in the drying part was 50 ° C., and the passing time of the drying part was 3 minutes.
  • the dried composition for forming an organic layer was irradiated with ultraviolet light (accumulated irradiation amount: about 600 mJ / cm 2 ) to cure the composition for forming an organic layer, thereby forming a base organic layer.
  • the support on which the base organic layer was formed was wound around a winding shaft to obtain a roll.
  • the thickness of the formed base organic layer was 1 ⁇ m.
  • the roll obtained by winding the support having the underlying organic layer formed thereon has three film forming units, a first film forming unit, a second film forming unit, and a third film forming unit, as shown in FIG.
  • the substrate was loaded onto a predetermined position of an inorganic film forming apparatus for film formation by CCP-CVD with RtoR while being wound around and transported.
  • the support (the support on which the base organic layer was formed) unwound from the roll 74 was passed through a pass roller, a drum, and a predetermined transport path passing through the pass roller and reaching the winding shaft.
  • the supply roll which wound the protective film made from PE was loaded in the predetermined position, and the protective film was laminated on the inorganic layer in the pass roller just downstream of a drum.
  • the protective film is peeled off by the pass roller immediately upstream of the drum while conveying the support unwound from the roll in the longitudinal direction, and then a silicon nitride layer is formed as the inorganic layer on the base organic layer, as shown in FIG.
  • a gas barrier film was produced.
  • a protective film was laminated on the surface of the inorganic layer in a pass roller immediately downstream of the drum, and then wound around the winding shaft.
  • stacked the protective film on the inorganic layer of the gas barrier film was obtained.
  • the most upstream first film formation unit and the most downstream third film formation unit were used.
  • the transport speed of the support was 15 m / min.
  • source gases silane gas, ammonia gas and hydrogen gas were used.
  • the feed rates of the source gas were 150 sccm for the first film forming unit, 300 sccm for the ammonia gas, and 500 sccm for the hydrogen gas
  • the third film forming unit was 150 sccm for the silane gas, 350 sccm for the ammonia gas, and 500 sccm for the hydrogen gas.
  • the plasma excitation power was 2.5 kW, and the frequency of the plasma excitation power was 13.56 MHz.
  • the drum was supplied with bias power at a frequency of 0.4 MHz and 0.5 kW. Also, the drum was temperature controlled to 30 ° C. by the cooling means. The deposition pressure was 50 Pa.
  • Example 2 Comparative Examples 1 to 5
  • the formation of the inorganic layer is the same as in Example 1 except that the film forming unit used, the supply amount of each raw material gas, the plasma excitation power, and the transport speed of the support are changed as shown in Table 1 below.
  • an inorganic layer (silicon nitride layer) was formed on the base organic layer to prepare a gas barrier film, and a protective film Gb was laminated and wound up.
  • the inorganic layer was formed directly on the support without forming the underlying organic layer.
  • Example 2 a PEN film (Teijin Ltd., Theonex Q65HA) having a width of 1000 mm, a thickness of 100 ⁇ m and a length of 100 m was used as the support.
  • This support had an easy adhesion layer on one side, and the formation of the inorganic layer was performed on the side without the easy adhesion layer.
  • Each of the produced gas barrier films is subjected to etching by argon plasma and measurement by XPS as described above to detect the relationship with the composition ratio of silicon atoms, nitrogen atoms, oxygen atoms and hydrogen atoms, and to obtain a mixed layer and an inorganic material.
  • the thickness and N / Si atomic ratio of the layers were measured.
  • XPS was performed using ESCA-3400 manufactured by Shimadzu Corporation. The measurement was performed at five points in the central region, and the average was taken as the thickness and N / Si atomic ratio of the mixed layer and the inorganic layer in each gas barrier film. In addition, in any gas barrier film, there was almost no difference in the measured value at each point. The results are shown in Table 2 below.
  • Water vapor transmission rate (WVTR) [g / (m 2 ⁇ day) of a gas barrier film under the conditions of temperature 25 ° C. and relative humidity 50% RH by the calcium corrosion method (method described in JP 2005-283561 A) ] was measured.
  • the water vapor transmission rate is measured immediately after preparation of the gas barrier film (immediately after preparation), after standing for 1000 hours in an environment with a temperature of 85 ° C. and a relative humidity of 85% RH (after high temperature and high humidity), and a cylinder with a diameter of 6 mm Then, it was carried out under three conditions of bending and bending for 100,000 times so that the inorganic layer was on the outer side (bending for 100,000 times).
  • Total light transmittance The total light transmittance [%] of each gas barrier film was measured according to JIS (Japanese Industrial Standards) K 7361-1 (1996) using NDH-7000 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the gas barrier film of the present invention maintains high gas barrier properties not only immediately after film formation, but also after being left in a high temperature and high humidity environment and after conducting a bending test.
  • the gas barrier film of the present invention has a total light transmittance of 82.5% or more, and also has high transparency.
  • Example 2 and the other examples by having a base organic layer to be a base of the inorganic layer, more excellent gas barrier properties can be obtained. Further, as shown in Example 5 and other examples, by setting the N / Si atomic ratio of the mixed layer to a range of 0.2 to 0.85, more excellent gas barrier properties can be obtained.
  • Example 10 by setting the N / Si atomic ratio of the mixed layer to be lower than the N / Si atomic ratio of the inorganic layer, more superior gas barrier properties can be obtained. Furthermore, as shown in Example 9 and other examples, the N / Si atomic ratio of the mixed layer is made lower than the N / Si atomic ratio of the inorganic layer, and the difference is 0.05 to 0. By setting the range of .5, higher transparency can be obtained. On the other hand, in Comparative Example 1, the gas barrier property is low because the mixed layer is too thick. In Comparative Examples 2 and 3, since the inorganic layer is too thick, the gas barrier property is lowered when the bending test is conducted, and the transparency is also low.
  • Comparative Example 4 since the N / Si atomic ratio of the inorganic layer is too high, the gas barrier property is lowered when left in a high temperature and high humidity environment. Furthermore, Comparative Example 5 has low transparency because the N / Si atomic ratio of the inorganic layer is too low. From the above results, the effects of the present invention are clear.
  • sealing materials such as a solar cell and an organic electroluminescent element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention addresses the problem of providing a gas barrier film having excellent bending resistance, transparency, productivity and the like and also having sufficient gas barrier performance and high-temperature/high-humidity resistance. The gas barrier film has at least one set of a combination of an inorganic layer and a mixed layer, wherein the inorganic layer contains silicon nitride and has a thickness of 2 to 15 nm, the mixed layer contains the component for the inorganic layer and also contains a component for a layer corresponding to a surface on which the inorganic layer is formed, and has a thickness of 2 to 25 nm, and the N/Si atom ratio in the inorganic layer is 0.7 to 0.97.

Description

ガスバリアフィルムGas barrier film
 本発明は、耐屈曲性および透明性に優れるガスバリアフィルムに関する。 The present invention relates to a gas barrier film which is excellent in bending resistance and transparency.
 太陽電池、有機エレクトロルミネッセンス素子、および、量子ドットを用いる照明装置など、水分および/または酸素等によって劣化する素子等を保護するために、ガスバリアフィルムが用いられている。
 また、高いガスバリア性を有するガスバリアフィルムとして、ガスバリア層として窒化ケイ素、酸化ケイ素、および、酸化アルミニウム等の無機層を形成したガスバリアフィルムが知られている。
BACKGROUND ART A gas barrier film is used to protect elements such as solar cells, organic electroluminescent elements, and illumination devices using quantum dots, which are deteriorated by moisture and / or oxygen.
Moreover, the gas barrier film which formed inorganic layers, such as a silicon nitride, a silicon oxide, and aluminum oxide, as a gas barrier layer is known as a gas barrier film which has high gas barrier property.
 例えば、特許文献1には、有機材料からなる表面を有する基板と、基板上に形成された窒化ケイ素を主成分とする無機層(無機膜)とを有し、無機層は、N/Siの組成比が1~1.35で、膜密度が2.1~2.4g/cm2で、厚さが10~60nmであり、基板と無機層との界面に、基板(有機材料)に由来する成分と、無機層に由来する成分とを含有する厚さ5~40nmの混合層を有するガスバリアフィルムが記載されている。 For example, Patent Document 1 has a substrate having a surface made of an organic material, and an inorganic layer (inorganic film) mainly composed of silicon nitride formed on the substrate, and the inorganic layer is N / Si. Composition ratio is 1-1.35, film density is 2.1-2.4 g / cm 2 , thickness is 10-60 nm, and the interface between the substrate and the inorganic layer is derived from the substrate (organic material) A gas barrier film having a mixed layer with a thickness of 5 to 40 nm, which contains the component to be added and the component derived from the inorganic layer is described.
 また、特許文献2には、基材フィルムおよび無機層を有するガスバリアフィルムであって、無機層は、Si、N、HおよびOを含有し、厚さ方向の中央で、SiとNとHとOとの比が均一であり、かつ、下記の式で示されるO比率が10%以下である均一領域を5nm以上、有し、さらに、無機層の少なくとも一方の界面に接する領域が、O比率が均一領域側から界面方向に向かって増加しており、O比率の単位厚さ当たりの変化量が2~8%/nmである酸素含有領域である、ガスバリアフィルムが記載されている。
   O比率[%]=(Oの数/Si、NおよびOの総数)×100
Patent Document 2 describes a gas barrier film having a base film and an inorganic layer, wherein the inorganic layer contains Si, N, H, and O, and Si, N, H, and the like at the center in the thickness direction. The uniform region having a uniform ratio to O and having an O ratio represented by the following formula of 10% or less is 5 nm or more, and the region in contact with at least one interface of the inorganic layer has an O ratio A gas barrier film is described, which is an oxygen-containing region in which the change in the O ratio per unit thickness is 2 to 8% / nm, increasing from the uniform region side toward the interface direction.
O ratio [%] = (number of O / total number of Si, N and O) × 100
特開2013-203050号公報JP, 2013-203050, A 特開2015-182274号公報JP, 2015-182274, A
 特許文献1および2に示されるような、ガスバリア層として無機層を有するガスバリアフィルムは、ガスバリア層として樹脂等からなる有機層を有するガスバリアフィルムに比して、非常に高いガスバリア性を発現する。 A gas barrier film having an inorganic layer as a gas barrier layer as shown in Patent Documents 1 and 2 exhibits very high gas barrier properties as compared to a gas barrier film having an organic layer made of a resin or the like as a gas barrier layer.
 ここで、ガスバリアフィルムの耐屈曲性および透明性の点では、無機層の厚さは薄い方が有利である。また、無機層が薄い方が、生産性の点でも、有利である。
 ところが、本発明者の検討によれば、無機層を薄膜化すると、十分なガスバリア性を得られない場合があり、さらに、ガスバリアフィルムの高温高湿耐性が不足してしまうという問題が生じてしまう。
Here, in terms of the bending resistance and transparency of the gas barrier film, it is advantageous that the thickness of the inorganic layer is thin. In addition, a thinner inorganic layer is advantageous in terms of productivity.
However, according to the study of the present inventor, when the inorganic layer is thinned, sufficient gas barrier properties may not be obtained, and further, there arises a problem that the high temperature / high humidity resistance of the gas barrier film is insufficient. .
 本発明の目的は、このような問題点を解決することにあり、耐屈曲性、透明性および生産性等に優れ、さらに、十分なガスバリア性および高温高湿耐性を有するガスバリアフィルムを提供することにある。 An object of the present invention is to solve such problems, and to provide a gas barrier film which is excellent in bending resistance, transparency, productivity and the like, and further has sufficient gas barrier properties and high temperature high humidity resistance. It is in.
 本発明は、以下の構成によって課題を解決する。
 [1] 窒化ケイ素を含有し、厚さが2~15nmである無機層と、無機層の成分および無機層の形成面になる層の成分を含有し、厚さが2~25nmである混合層との組み合わせを、少なくとも1組、有し、無機層のN/Si原子比が0.7~0.97であるガスバリアフィルム。
 [2] 混合層のN/Si原子比が0.2~0.85である、[1]に記載のガスバリアフィルム。
 [3] 混合層のN/Si原子比が、無機層のN/Si原子比より低い、[1]または[2]に記載のガスバリアフィルム。
 [4] 混合層のN/Si原子比と、無機層のN/Si原子比との差が0.05~0.5である、[3]に記載のガスバリアフィルム。
 [5] 無機層と、無機層の下地となる有機層との組み合わせを、1組以上、有し、無機層と有機層との間に、混合層が存在する、[1]~[4]のいずれかに記載のガスバリアフィルム。
The present invention solves the problems by the following configurations.
[1] A mixed layer containing silicon nitride and having a thickness of 2 to 15 nm, a component of the inorganic layer and a component of the layer to be the surface on which the inorganic layer is to be formed, and having a thickness of 2 to 25 nm And a combination thereof with at least one pair, and the N / Si atomic ratio of the inorganic layer is 0.7 to 0.97.
[2] The gas barrier film according to [1], wherein the N / Si atomic ratio of the mixed layer is 0.2 to 0.85.
[3] The gas barrier film according to [1] or [2], wherein the N / Si atomic ratio of the mixed layer is lower than the N / Si atomic ratio of the inorganic layer.
[4] The gas barrier film according to [3], wherein the difference between the N / Si atomic ratio of the mixed layer and the N / Si atomic ratio of the inorganic layer is 0.05 to 0.5.
[5] One or more combinations of the inorganic layer and the organic layer to be the base of the inorganic layer are included, and a mixed layer exists between the inorganic layer and the organic layer, [1] to [4] The gas barrier film as described in any of the above.
 本発明によれば、耐屈曲性、透明性および生産性等に優れ、さらに、十分なガスバリア性および高温高湿耐性も有するガスバリアフィルムが提供される。 According to the present invention, a gas barrier film which is excellent in bending resistance, transparency, productivity and the like, and also has sufficient gas barrier properties and high temperature high humidity resistance is provided.
本発明のガスバリアフィルムの一例を示す概念図である。It is a conceptual diagram which shows an example of the gas barrier film of this invention. 本発明のガスバリアフィルムの別の例を示す概念図である。It is a conceptual diagram which shows another example of the gas barrier film of this invention. 本発明のガスバリアフィルムの別の例を示す概念図である。It is a conceptual diagram which shows another example of the gas barrier film of this invention. 本発明のガスバリアフィルムの一例の組成比を示すグラフである。It is a graph which shows the composition ratio of an example of the gas barrier film of this invention. 本発明のガスバリアフィルムを製造するための有機成膜装置の一例の概念図である。It is a conceptual diagram of an example of the organic film-forming apparatus for manufacturing the gas barrier film of this invention. 本発明のガスバリアフィルムを製造するための無機成膜装置の一例の概念図である。It is a conceptual diagram of an example of the inorganic film-forming apparatus for manufacturing the gas barrier film of this invention.
 以下、本発明のガスバリアフィルムの実施形態について、図面に基づいて説明する。 Hereinafter, an embodiment of the gas barrier film of the present invention will be described based on the drawings.
(ガスバリアフィルム)
 図1に、本発明のガスバリアフィルムの一例を概念的に示す。
 図1は、本発明のガスバリアフィルムを主面の面方向から見た概念図である。主面とは、シート状物(フィルム、板状物)の最大面である。
(Gas barrier film)
In FIG. 1, an example of the gas barrier film of this invention is shown notionally.
FIG. 1 is a conceptual view of the gas barrier film of the present invention as viewed from the surface direction of the main surface. The main surface is the largest surface of the sheet (film, plate).
 図1に示すガスバリアフィルム10は、支持体12と、下地有機層14と、混合層16と、無機層18と、を有して構成される。
 本発明のガスバリアフィルム10において、無機層18は、窒化ケイ素を含有する層である。また、混合層16は、無機層18の成分と、無機層18の形成面になる層の成分とを含有する層である。無機層18の形成面になる層の成分は、無機層18の成分とは異なる成分であることが好ましく、支持体12の成分、または、下地有機層14の成分であることがより好ましい。図1に示すガスバリアフィルム10において、無機層18は、下地有機層14の表面に形成される。従って、混合層16は、無機層18の成分と、下地有機層14の成分とを含む。また、本発明のガスバリアフィルム10において、無機層18は、厚さが2~15nmで、N/Si原子比が0.7~0.97であり、かつ、混合層16の厚さが2~25nmである。
 以下の説明では、ガスバリアフィルム10の支持体12側を『下』、支持体12とは逆側を『上』とも言う。
The gas barrier film 10 shown in FIG. 1 is configured to have a support 12, a base organic layer 14, a mixed layer 16, and an inorganic layer 18.
In the gas barrier film 10 of the present invention, the inorganic layer 18 is a layer containing silicon nitride. The mixed layer 16 is a layer containing the component of the inorganic layer 18 and the component of the layer to be the surface on which the inorganic layer 18 is formed. The component of the layer to be the surface on which the inorganic layer 18 is to be formed is preferably a component different from the component of the inorganic layer 18, and more preferably a component of the support 12 or a component of the base organic layer 14. In the gas barrier film 10 shown in FIG. 1, the inorganic layer 18 is formed on the surface of the base organic layer 14. Therefore, the mixed layer 16 includes the components of the inorganic layer 18 and the components of the base organic layer 14. In the gas barrier film 10 of the present invention, the inorganic layer 18 has a thickness of 2 to 15 nm, an N / Si atomic ratio of 0.7 to 0.97, and a thickness of the mixed layer 16 of 2 to It is 25 nm.
In the following description, the support 12 side of the gas barrier film 10 is also referred to as “down”, and the side opposite to the support 12 is also referred to as “up”.
 なお、図1に示すガスバリアフィルム10は、好ましい態様として、無機層18の下地層となる下地有機層14を有し、下地有機層14と無機層18との組み合わせを、1組、有する、支持体12・下地有機層14・混合層16・無機層18の層構成を有するものである。しかしながら、本発明のガスバリアフィルムは、この層構成に限定はされず、各種の層構成が利用可能である。 In a preferred embodiment, the gas barrier film 10 shown in FIG. 1 has a base organic layer 14 to be a base layer of the inorganic layer 18, and has one set of the base organic layer 14 and the inorganic layer 18 in combination. It has a layer structure of a body 12, an underlying organic layer 14, a mixed layer 16 and an inorganic layer 18. However, the gas barrier film of the present invention is not limited to this layer configuration, and various layer configurations can be used.
 例えば、本発明のガスバリアフィルムは、図2に示すガスバリアフィルム20のように、下地有機層14を設けず、支持体12に、直接、無機層18を形成した、支持体12・混合層24・無機層18の層構成を有するものであってもよい。この構成においては、混合層24は、無機層18の成分と、支持体12の成分とを含む。
 あるいは、本発明のガスバリアフィルムは、図3に示すガスバリアフィルム28のように、下地有機層14と無機層18との組み合わせを2組有する、支持体12・下地有機層14・混合層16・無機層18・下地有機層14・混合層16・無機層18の層構成を有するものでもよい。さらに、下地有機層14と無機層18との組み合わせを、3組以上、有する構成も、利用可能である。また、図2に示す、支持体12に、直接、無機層18を形成したガスバリアフィルム20に、さらに、下地有機層14と無機層18との組み合わせを、1組以上、積層してもよい。
 さらに、本発明のガスバリアフィルムは、最上層すなわち最も支持体12と離間する無機層18の上に、無機層18を保護するための保護有機層を有してもよい。
For example, like the gas barrier film 20 shown in FIG. 2, the gas barrier film of the present invention does not have the underlying organic layer 14, and directly forms the inorganic layer 18 on the support 12. It may have the layer configuration of the inorganic layer 18. In this configuration, the mixed layer 24 includes the components of the inorganic layer 18 and the components of the support 12.
Alternatively, the gas barrier film of the present invention, like the gas barrier film 28 shown in FIG. 3, has two sets of the combination of the base organic layer 14 and the inorganic layer 18, the support 12 · base organic layer 14 · mixed layer 16 · inorganic It may have a layer configuration of the layer 18, the base organic layer 14, the mixed layer 16, and the inorganic layer 18. Furthermore, a configuration having three or more sets of the combination of the underlying organic layer 14 and the inorganic layer 18 is also usable. In addition, one or more combinations of the base organic layer 14 and the inorganic layer 18 may be laminated on the gas barrier film 20 in which the inorganic layer 18 is directly formed on the support 12 shown in FIG. 2.
Furthermore, the gas barrier film of the present invention may have a protective organic layer for protecting the inorganic layer 18 on the top layer, that is, the inorganic layer 18 most separated from the support 12.
 なお、本発明のガスバリアフィルムにおいて、無機層18を2層以上有する場合には、厚さ2~15nm、および、N/Si原子比0.7~0.97の少なくとも一方を満たさない無機層18、および/または、厚さ2~25nmを満たさない混合層16が、存在してもよい。さらに、本発明のガスバリアフィルムにおいて、無機層18を2層以上有する場合には、無機層18と無機層18の形成面になる層との間に、混合層を有さない組み合わせが存在してもよい。
 すなわち、本発明のガスバリアフィルムは、厚さ2~15nm、N/Si原子比0.7~0.97の無機層18と、無機層18の形成面となる層との間に形成された、厚さ2~25nmの混合層16との組み合わせを、1組以上、有すればよい。
 しかしながら、本発明のガスバリアフィルムにおいては、2層以上の無機層18を有する場合であっても、全ての無機層18と無機層18の形成面になる層との間に混合層16を有し、かつ、全ての無機層18および混合層16が、上述した厚さおよび原子比の条件を満たすのが好ましい。
In the gas barrier film of the present invention, when the inorganic layer 18 has two or more layers, the inorganic layer 18 does not satisfy at least one of the thickness 2 to 15 nm and the N / Si atomic ratio 0.7 to 0.97. And / or a mixed layer 16 that does not satisfy the thickness of 2 to 25 nm may be present. Furthermore, in the gas barrier film of the present invention, when the inorganic layer 18 has two or more layers, a combination having no mixed layer exists between the inorganic layer 18 and the layer on which the inorganic layer 18 is to be formed. It is also good.
That is, the gas barrier film of the present invention is formed between the inorganic layer 18 having a thickness of 2 to 15 nm and an N / Si atomic ratio of 0.7 to 0.97, and a layer on which the inorganic layer 18 is to be formed. It is sufficient to have one or more sets in combination with the mixed layer 16 with a thickness of 2 to 25 nm.
However, in the gas barrier film of the present invention, even when the inorganic layer 18 has two or more layers, the mixed layer 16 is provided between all the inorganic layers 18 and the layer on which the inorganic layer 18 is to be formed. And preferably, all the inorganic layers 18 and the mixed layers 16 satisfy the conditions of thickness and atomic ratio described above.
 <支持体>
 支持体12は、各種のガスバリアフィルムおよび各種の積層型の機能性フィルム等において支持体として利用される、公知のシート状物(フィルム、板状物)を用いることができる。
<Support>
The support 12 may be a known sheet (film, plate) used as a support in various gas barrier films, various laminated functional films and the like.
 支持体12の材料には、制限はなく、下地有機層14および無機層18を形成可能であれば、各種の材料が利用可能である。支持体12の材料としては、好ましくは、各種の樹脂材料が例示される。
 支持体12の材料としては、例えば、ポリエチレン(PE)、ポリエチレンナフタレート(PEN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリアクリトニトリル(PAN)、ポリイミド(PI)、透明ポリイミド、ポリメタクリル酸メチル樹脂(PMMA)、ポリカーボネート(PC)、ポリアクリレート、ポリメタクリレート、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、シクロオレフィン共重合体(COC)、シクロオレフィンポリマー(COP)、トリアセチルセルロース(TAC)、および、エチレン-ビニルアルコール共重合体(EVOH)等が挙げられる。
The material of the support 12 is not limited, and various materials can be used as long as the underlying organic layer 14 and the inorganic layer 18 can be formed. As a material of the support 12, preferably, various resin materials are exemplified.
Examples of the material of the support 12 include polyethylene (PE), polyethylene naphthalate (PEN), polyamide (PA), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyacritonitrile ( PAN), polyimide (PI), transparent polyimide, polymethyl methacrylate resin (PMMA), polycarbonate (PC), polyacrylate, polymethacrylate, polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer ( And ABS), cycloolefin copolymer (COC), cycloolefin polymer (COP), triacetylcellulose (TAC), ethylene-vinyl alcohol copolymer (EVOH) and the like.
 支持体12の厚さは、用途および材料等に応じて、適宜、設定できる。
 支持体12の厚さには、制限はないが、ガスバリアフィルム10の機械的強度を十分に確保できる、可撓性(フレキシブル性)の良好なガスバリアフィルム10が得られる、ガスバリアフィルム10の軽量化および薄膜化を図れる、可撓性の良好なガスバリアフィルム10が得られる等の点で、5~150μmが好ましく、10~125μmがより好ましい。
The thickness of the support 12 can be set as appropriate depending on the application, material and the like.
The thickness of the support 12 is not limited, but the mechanical strength of the gas barrier film 10 can be sufficiently secured, and the gas barrier film 10 having good flexibility can be obtained. The thickness is preferably 5 to 150 μm, and more preferably 10 to 125 μm in that a flexible gas barrier film 10 which can be thinned can be obtained.
 <下地有機層>
 ガスバリアフィルム10において、支持体12の一方の表面には、下地有機層14が形成される。
 下地有機層14は、例えば、モノマー、ダイマーおよびオリゴマー等を重合(架橋、硬化)した有機化合物からなる層である。前述のように、下地有機層14は、好ましい態様として設けられるものである。
<Base organic layer>
In the gas barrier film 10, the base organic layer 14 is formed on one surface of the support 12.
The underlying organic layer 14 is, for example, a layer formed of an organic compound obtained by polymerizing (crosslinking, curing) monomers, dimers, oligomers and the like. As described above, the underlying organic layer 14 is provided as a preferred embodiment.
 無機層18の下層となる下地有機層14は、無機層18を適正に形成するための下地となる層である。
 支持体12の表面に形成される下地有機層14は、支持体12の表面の凹凸および表面に付着する異物等を包埋して、無機層18の形成面を適正にできる。従って、支持体12の表面に、このような下地有機層14を有することにより、主にガスバリア性を発現する無機層18を、適正に形成することが可能になる。
 なお、前述のように、本発明のガスバリアフィルムは、無機層18と下地有機層14との組み合わせを、複数組、有してもよい。この際には、2層目以降の下地有機層14は、無機層18の上に形成されるが、この構成においても、無機層18の下層(無機層18の形成面)となる下地有機層14は、同様の作用を発現する。
The underlying organic layer 14 serving as the lower layer of the inorganic layer 18 is a layer serving as an underlying layer for properly forming the inorganic layer 18.
The underlying organic layer 14 formed on the surface of the support 12 can have the surface on which the inorganic layer 18 is formed appropriate by embedding the irregularities on the surface of the support 12 and foreign matter attached to the surface. Therefore, by having such a base organic layer 14 on the surface of the support 12, it is possible to properly form the inorganic layer 18 that mainly exhibits gas barrier properties.
As described above, the gas barrier film of the present invention may have a plurality of combinations of the inorganic layer 18 and the base organic layer 14. In this case, the second and subsequent base organic layers 14 are formed on the inorganic layer 18, but even in this configuration, the base organic layer to be the lower layer of the inorganic layer 18 (the surface on which the inorganic layer 18 is formed) 14 exerts the same action.
 下地有機層14は、例えば、有機化合物(モノマー、ダイマー、トリマー、オリゴマー、および、ポリマー等)を含有する、有機層形成用組成物を硬化して形成される。有機層形成用組成物は、有機化合物を1種のみ含んでもよく、2種以上含んでもよい。
 下地有機層14は、例えば、熱可塑性樹脂および有機ケイ素化合物等を含有する。熱可塑性樹脂は、例えば、ポリエステル、(メタ)アクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリウレタン、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、および、アクリル化合物等が挙げられる。有機ケイ素化合物は、例えば、ポリシロキサンが挙げられる。
The base organic layer 14 is formed, for example, by curing a composition for forming an organic layer containing an organic compound (monomer, dimer, trimer, oligomer, polymer, etc.). The composition for forming an organic layer may contain only one type of organic compound, or may contain two or more types.
The underlying organic layer 14 contains, for example, a thermoplastic resin, an organic silicon compound, and the like. The thermoplastic resin is, for example, polyester, (meth) acrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluorine resin, polyimide, fluorinated polyimide, polyamide, polyamide imide, polyether imide, cellulose acylate, polyurethane And polyether ether ketone, polycarbonate, alicyclic polyolefin, polyarylate, polyether sulfone, polysulfone, fluorene ring modified polycarbonate, alicyclic modified polycarbonate, fluorene ring modified polyester, and an acrylic compound. Examples of organosilicon compounds include polysiloxanes.
 下地有機層14は、強度が優れる観点と、ガラス転移温度の観点とから、好ましくは、ラジカル硬化性化合物および/またはエーテル基を有するカチオン硬化性化合物の重合物を含む。
 下地有機層14は、強度およびガラス転移温度の観点から、より好ましくは、(メタ)アクリレートのモノマー、オリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含む。
The base organic layer 14 preferably includes a radical curable compound and / or a polymer of a cationic curable compound having an ether group from the viewpoint of excellent strength and the viewpoint of glass transition temperature.
More preferably, the base organic layer 14 contains a (meth) acrylic resin whose main component is a polymer such as a monomer or oligomer of (meth) acrylate from the viewpoint of strength and glass transition temperature.
 下地有機層14は、さらに好ましくは、ジプロピレングリコールジ(メタ)アクリレート(DPGDA)、トリメチロールプロパントリ(メタ)アクリレート(TMPTA)、ジペンタエリスリトールヘキサ(メタ)アクリレート(DPHA)などの、2官能以上の(メタ)アクリレートのモノマー、ダイマーおよびオリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含み、さらに好ましくは、3官能以上の(メタ)アクリレートのモノマー、ダイマーおよびオリゴマー等の重合体を主成分とする(メタ)アクリル樹脂を含む。また、これらの(メタ)アクリル樹脂を、複数用いてもよい。なお、主成分とは、含有する成分のうち、最も含有質量比が大きい成分をいう。 The underlying organic layer 14 is more preferably a bifunctional compound such as dipropylene glycol di (meth) acrylate (DPGDA), trimethylolpropane tri (meth) acrylate (TMPTA), dipentaerythritol hexa (meth) acrylate (DPHA), etc. The (meth) acrylic resin containing as a main component a polymer of the above (meth) acrylate monomers, dimers and oligomers, etc., and more preferably, a heavy weight such as trifunctional or higher functional (meth) acrylate monomers, dimers and oligomers It contains (meth) acrylic resin whose main component is coalescence. In addition, a plurality of these (meth) acrylic resins may be used. In addition, a main component means the component with the largest contained mass ratio among the components to contain.
 有機層形成用組成物は、有機化合物に加え、好ましくは、有機溶剤、界面活性剤、および、シランカップリング剤などを含む。 The composition for forming an organic layer preferably contains, in addition to the organic compound, an organic solvent, a surfactant, and a silane coupling agent.
 下地有機層14が複数設けられる場合、すなわち、下地有機層14と無機層18との組み合わせを複数組有する場合には、それぞれの下地有機層14の材料は、同じでも異なってもよい。 When a plurality of underlying organic layers 14 are provided, that is, when there are a plurality of combinations of the underlying organic layers 14 and the inorganic layers 18, the materials of the respective underlying organic layers 14 may be the same or different.
 下地有機層14の厚さには、制限はなく、有機層形成用組成物に含まれる成分および用いられる支持体12等に応じて、適宜、設定できる。
 下地有機層14の厚さは、0.1~5μmが好ましく、0.2~3μmがより好ましい。下地有機層14の厚さを0.1μm以上とすることにより、支持体12の表面の凹凸および表面に付着した異物等を包埋して、下地有機層14の表面を平坦化できる等の点で好ましい。下地有機層14の厚さを5μm以下とすることにより、下地有機層14のクラックを防止できる、ガスバリアフィルム10の可撓性を高くできる、ガスバリアフィルム10の薄膜化および軽量化を図れる等の点で好ましい。
There is no restriction | limiting in the thickness of the base organic layer 14, According to the component contained in the composition for organic layer formation, the support body 12 used, etc., it can set suitably.
The thickness of the underlying organic layer 14 is preferably 0.1 to 5 μm, and more preferably 0.2 to 3 μm. By setting the thickness of the base organic layer 14 to 0.1 μm or more, unevenness on the surface of the support 12 and foreign substances attached to the surface can be embedded, and the surface of the base organic layer 14 can be flattened, etc. Preferred. By setting the thickness of the base organic layer 14 to 5 μm or less, it is possible to prevent the cracks in the base organic layer 14, to increase the flexibility of the gas barrier film 10, and to make the gas barrier film 10 thinner and lighter. Preferred.
 下地有機層14が複数設けられる場合、すなわち、無機層18と下地有機層14との組み合わせを複数組有する場合には、各下地有機層14の厚さは同じでも異なってもよい。 When a plurality of underlying organic layers 14 are provided, that is, when there are a plurality of combinations of the inorganic layer 18 and the underlying organic layers 14, the thicknesses of the underlying organic layers 14 may be the same or different.
 下地有機層14は、材料に応じた公知の方法で形成できる。
 例えば、下地有機層14は、前述の有機層形成用組成物を塗布して、有機層形成用組成物を乾燥させる、塗布法で形成できる。塗布法による下地有機層14の形成では、必要に応じて、さらに、乾燥した有機層形成用組成物に、紫外線を照射することにより、有機層形成用組成物中の有機化合物を重合(架橋)させる。
The underlying organic layer 14 can be formed by a known method depending on the material.
For example, the base organic layer 14 can be formed by a coating method in which the composition for forming an organic layer described above is applied and the composition for forming an organic layer is dried. In the formation of the underlying organic layer 14 by the coating method, the dried organic layer-forming composition is further irradiated with ultraviolet light, if necessary, to polymerize (crosslink) the organic compound in the organic layer-forming composition. Let
 下地有機層14は、ロール・トゥ・ロールによって形成するのが好ましい。以下の説明では、『ロール・トゥ・ロール』を『RtoR』とも言う。
 周知のように、RtoRとは、長尺なシート状物を巻回してなるロールから、シート状物を送り出し、長尺なシートを長手方向に搬送しつつ成膜を行い、成膜済のシート状物をロール状に巻回する製造方法である。RtoRを利用することで、高い生産性と生産効率が得られる。
The underlying organic layer 14 is preferably formed by roll-to-roll. In the following description, "roll to roll" is also called "RtoR".
As is well known, RtoR refers to a sheet formed from a roll formed by winding a long sheet, and forming a film while conveying the long sheet in the longitudinal direction, and forming a film It is a manufacturing method which winds a sheet in a roll. By using RtoR, high productivity and production efficiency can be obtained.
 なお、本発明のガスバリアフィルムは、最上層の無機層18(最も支持体12と離間する無機層18)の表面に、無機層18を保護するための保護有機層を有してもよい。
 このような保護有機層を有する場合、材料、厚さ、および、形成方法等は、下地有機層14と同様でよい。
The gas barrier film of the present invention may have a protective organic layer for protecting the inorganic layer 18 on the surface of the uppermost inorganic layer 18 (the inorganic layer 18 most separated from the support 12).
When such a protective organic layer is provided, the material, thickness, formation method, and the like may be similar to those of the base organic layer 14.
 <無機層および混合層>
 下地有機層14の表面には、無機層18が形成される。また、本発明のガスバリアフィルム10においては、下地有機層14と無機層18との間には、下地有機層14の成分と、無機層18の成分とを含有する、混合層16が形成される。
 なお、無機層18は、支持体12の表面に形成されてもよいのは、前述のとおりであり、この際には、混合層24は、支持体12の成分と、無機層18の成分とを含む(図2参照)。
<Inorganic layer and mixed layer>
An inorganic layer 18 is formed on the surface of the base organic layer 14. Further, in the gas barrier film 10 of the present invention, a mixed layer 16 containing the components of the base organic layer 14 and the components of the inorganic layer 18 is formed between the base organic layer 14 and the inorganic layer 18. .
The inorganic layer 18 may be formed on the surface of the support 12 as described above, and in this case, the mixed layer 24 includes the components of the support 12 and the components of the inorganic layer 18. (See Figure 2).
 本発明のガスバリアフィルム10において、無機層18は、窒化ケイ素を含む層であり、好ましくは窒化ケイ素を主成分とする層であり、より好ましくは窒化ケイ素からなる層である。
 従って、無機層18は、窒化ケイ素以外にも、酸化窒化ケイ素、水素化窒化ケイ素、水素化酸化窒化ケイ素および酸化ケイ素などの副生物、ならびに、シランガス、アンモニアガスおよび水素ガスなどの原料ガスに由来する成分等、不可避的に含まれる各種の成分を含有してもよい。
In the gas barrier film 10 of the present invention, the inorganic layer 18 is a layer containing silicon nitride, preferably a layer containing silicon nitride as a main component, and more preferably a layer consisting of silicon nitride.
Therefore, the inorganic layer 18 is derived from not only silicon nitride but also by-products such as silicon oxynitride, hydrogenated silicon nitride, hydrogenated silicon nitride oxynitride, and silicon oxide, and source gases such as silane gas, ammonia gas and hydrogen gas. You may contain the various components contained unavoidable, such as the component to be.
 本発明のガスバリアフィルム10において、無機層18は、厚さが2~15nmであり、N/Si原子比が0.7~0.97である。
 なお、前述のように、無機層18が、複数層、設けられる場合には、各無機層18の厚さは、同じでも異なってもよい。
In the gas barrier film 10 of the present invention, the inorganic layer 18 has a thickness of 2 to 15 nm and an N / Si atomic ratio of 0.7 to 0.97.
In addition, as above-mentioned, when the inorganic layer 18 is provided in multiple layers, the thickness of each inorganic layer 18 may be same or different.
 無機層18は、材料に応じた公知の方法で形成できる。
 例えば、CCP(Capacitively Coupled Plasma)-CVD(Chemical Vapor Deposition)およびICP(Inductively Coupled Plasm)-CVD等のプラズマCVD、ならびに、原子層堆積法(ALD(Atomic Layer Deposition))等が利用可能である。
 なお、無機層18も、RtoRで形成するのが好ましい。
The inorganic layer 18 can be formed by a known method depending on the material.
For example, plasma CVD such as capacitively coupled plasma (CCP) -chemical vapor deposition (CVD) and inductively coupled plasma (ICP) -CVD, and atomic layer deposition (ALD) can be used.
Preferably, the inorganic layer 18 is also formed of RtoR.
 ガスバリアフィルム10において、無機層18と、無機層18の形成面になる下地有機層14との間には、混合層16を有する。
 混合層16は、例えば、プラズマCVDによって無機層18を形成する際に、プラズマによって下地有機層14(無機層18の形成面となる層)の表面がエッチングされることで形成される層である。従って、混合層16は、無機層18の成分と下地有機層14の成分とを含有する。言い換えると、混合層16は、下地有機層14に由来する成分と、無機層18に由来する成分とが、混合された層である。
In the gas barrier film 10, a mixed layer 16 is provided between the inorganic layer 18 and the base organic layer 14 on which the inorganic layer 18 is to be formed.
The mixed layer 16 is a layer formed by, for example, etching the surface of the base organic layer 14 (the layer on which the inorganic layer 18 is to be formed) by plasma when forming the inorganic layer 18 by plasma CVD. . Therefore, the mixed layer 16 contains the components of the inorganic layer 18 and the components of the base organic layer 14. In other words, the mixed layer 16 is a layer in which the component derived from the base organic layer 14 and the component derived from the inorganic layer 18 are mixed.
 ここで、本発明のガスバリアフィルム10は、無機層18の厚さは2~15nmで、無機層18のN/Si原子比(N/Siの原子比)は0.7~0.97であり、混合層16の厚さは2~25nmである。
 本発明のガスバリアフィルムは、このような構成を有することにより、耐屈曲性、透明性および生産性等に優れ、さらに、十分なガスバリア性および高温高湿耐性を有するガスバリアフィルムを実現している。
Here, in the gas barrier film 10 of the present invention, the thickness of the inorganic layer 18 is 2 to 15 nm, and the N / Si atomic ratio (atomic ratio of N / Si) of the inorganic layer 18 is 0.7 to 0.97. The thickness of the mixed layer 16 is 2 to 25 nm.
The gas barrier film of the present invention having such a configuration realizes a gas barrier film having excellent flexibility resistance, transparency, productivity and the like, and further having sufficient gas barrier properties and high temperature / high humidity resistance.
 特許文献1および2にも示されるように、高性能なガスバリアフィルムとして、無機層をガスバリア層として有するガスバリアフィルムが知られている。中でも、ガスバリア層として窒化ケイ素層を有するガスバリアフィルムは、高いガスバリア性を発現する。
 ここで、無機層を有するガスバリアフィルムでは、無機層が薄い方が、折り曲げた際の無機層の破壊を防止でき、すなわち、耐屈曲性(可撓性)に優れる。また、ガスバリアフィルムは、無機層を薄くした方が、透明性等の光学特性の点でも有利である。さらに、無機層を薄くすることで、ガスバリアフィルムの生産性も向上できる。
As also shown in Patent Documents 1 and 2, a gas barrier film having an inorganic layer as a gas barrier layer is known as a high performance gas barrier film. Among them, a gas barrier film having a silicon nitride layer as a gas barrier layer exhibits high gas barrier properties.
Here, in the gas barrier film having an inorganic layer, when the inorganic layer is thinner, breakage of the inorganic layer can be prevented when it is bent, that is, it is excellent in bending resistance (flexibility). In addition, it is advantageous in terms of optical characteristics such as transparency that the gas barrier film has a thin inorganic layer. Furthermore, the productivity of the gas barrier film can also be improved by thinning the inorganic layer.
 ところが、本発明者の検討によれば、窒化ケイ素を含有する無機層を薄くすると、十分なガスバリア性を得るのが困難になり、さらに、高温高湿耐性も低くなってしまうという問題が生じる。
 無機層は、CCP-CVD等のプラズマCVDによって形成(成膜)する。また、無機層の形成面は、有機化合物である下地有機層(または樹脂製の支持体)である。前述のように、このような下地有機層(有機化合物を含む層)にプラズマCVDによって無機層を形成すると、無機層の成膜条件によっては、プラズマによって下地有機層がエッチングされて、無機層の成分と下地有機層の成分とを含有する混合層が形成され、その上に無機層が形成される。すなわち、無機層の形成面が、エッチングによって、粗くなる。
 ここで、無機層が十分な厚さを有する場合には、無機層の形成面が、多少、粗くなっても、混合層を全面的に覆って無機層を形成できるため、隙間なく全面的に形成された無機層によって、十分なガスバリア性を得ることができる。
 ところが、無機層を薄くした場合には、無機層が混合層を全面的に覆うことができず、無機層の非形成部から水分が侵入してしまうため、十分なガスバリア性が得られない。
However, according to the study of the present inventor, when the inorganic layer containing silicon nitride is thinned, it becomes difficult to obtain sufficient gas barrier properties, and furthermore, there arises a problem that the high temperature and high humidity resistance is lowered.
The inorganic layer is formed (deposited) by plasma CVD such as CCP-CVD. The surface on which the inorganic layer is formed is a base organic layer (or a support made of a resin) which is an organic compound. As described above, when an inorganic layer is formed on such a base organic layer (a layer containing an organic compound) by plasma CVD, the base organic layer is etched by plasma depending on the film forming conditions of the inorganic layer. A mixed layer containing the component and the component of the base organic layer is formed, and the inorganic layer is formed thereon. That is, the formation surface of the inorganic layer is roughened by etching.
Here, when the inorganic layer has a sufficient thickness, the mixed layer can be entirely covered to form the inorganic layer even if the surface on which the inorganic layer is formed is somewhat rough. Sufficient gas barrier properties can be obtained by the formed inorganic layer.
However, when the inorganic layer is thinned, the inorganic layer can not cover the mixed layer entirely, and moisture intrudes from the non-formed portion of the inorganic layer, so that sufficient gas barrier properties can not be obtained.
 さらに、本発明者の検討によれば、窒化ケイ素を含有する無機層を高温高湿環境に曝すと、無機層中に残存するNH2基などがOH基などに置き換わる等、無機層の酸化が進行し、膜の密度が低下する。
 無機層(窒化ケイ素層)が十分な厚さを有する場合には、無機層の酸化が進行しても、十分なガスバリア性を保つことができる。しかしながら、無機層を薄くした場合には、高温高湿環境に曝すと、短時間で、無機層全体が、窒化ケイ素よりも密度が低い酸化ケイ素のようになってしまい、ガスバリア性が大幅に低下してしまう。
Furthermore, according to the study of the present inventor, when the inorganic layer containing silicon nitride is exposed to a high temperature and high humidity environment, oxidation of the inorganic layer is caused, for example, NH 2 group remaining in the inorganic layer is replaced with OH group etc. As it progresses, the density of the membrane decreases.
When the inorganic layer (silicon nitride layer) has a sufficient thickness, sufficient gas barrier properties can be maintained even if oxidation of the inorganic layer proceeds. However, when the inorganic layer is made thin, when exposed to a high temperature and high humidity environment, the entire inorganic layer becomes like silicon oxide whose density is lower than that of silicon nitride in a short time, and the gas barrier property is significantly reduced. Resulting in.
 本発明者は、窒化ケイ素層を含有する無機層18を薄くした場合に生じる、このような問題点を解決すべく、鋭意、検討を重ねた。
 その結果、無機層18が含有する窒素の量を低減すること、すなわち、N/Si原子比を下げることで、無機層18を薄くした場合でも、ガスバリア性および高温高湿耐性に優れるガスバリアフィルム10を得られることを見出した。
The present inventors diligently studied to solve such a problem that occurs when the inorganic layer 18 containing a silicon nitride layer is thinned.
As a result, even if the inorganic layer 18 is made thin by reducing the amount of nitrogen contained in the inorganic layer 18, that is, by reducing the N / Si atomic ratio, the gas barrier film 10 having excellent gas barrier properties and high temperature high humidity resistance. I found that I could get
 本発明者の検討によれば、プラズマ中の窒素ラジカルは、窒化ケイ素の成膜に寄与するとともに、下地有機層14の炭素とも反応して、下地有機層14(無機層18の形成面)をエッチングする。
 無機層18中の窒素を低減(N/Si原子比を低減)すること、すなわち、プラズマ中の窒素ラジカルを低減することで、下地有機層14の過度なエッチングを抑制できる。その結果、混合層16の荒れすなわち無機層18の成膜面の荒れを抑制することができるので、無機層18を薄くしても、混合層16の表面全面を覆って、適正な無機層18を形成できる。特に、混合層24の窒素量もさらに低減(N/Si原子比を低減)することで、この効果を、より好適に得ることができる。
According to the study of the present inventor, nitrogen radicals in plasma contribute to the film formation of silicon nitride and also react with the carbon of the underlying organic layer 14 to form the underlying organic layer 14 (the surface on which the inorganic layer 18 is formed). Etch.
By reducing the nitrogen in the inorganic layer 18 (reducing the N / Si atomic ratio), that is, reducing the nitrogen radicals in the plasma, excessive etching of the underlying organic layer 14 can be suppressed. As a result, it is possible to suppress the roughening of the mixed layer 16, that is, the roughening of the film formation surface of the inorganic layer 18. Therefore, even if the inorganic layer 18 is thin, it covers the entire surface of the mixed layer 16. Can be formed. In particular, by further reducing the amount of nitrogen in the mixed layer 24 (reducing the N / Si atomic ratio), this effect can be more suitably obtained.
 本発明者の検討によれば、無機層18中の窒素を低減する、すなわち、無機層18中のN/Si原子比を低減することで、高温高湿環境における上述の無機層18の酸化を進みにくくできる。
 その結果、無機層18を薄くしても、十分な高温高湿耐性を有するガスバリアフィルム10を得ることができる。
According to the study of the present inventor, the nitrogen in the inorganic layer 18 is reduced, that is, the N / Si atomic ratio in the inorganic layer 18 is reduced to oxidize the above-mentioned inorganic layer 18 in a high temperature and high humidity environment. It can be difficult to move on.
As a result, even if the inorganic layer 18 is thinned, the gas barrier film 10 having sufficient high temperature and high humidity resistance can be obtained.
 前述のように、本発明のガスバリアフィルム10において、無機層18の厚さは、2~15nmである。無機層18の厚さは、3~13nmが好ましく、5~12nmがより好ましい。
 無機層18が2nm以上の厚さを有すると、十分なガスバリア性を有するガスバリアフィルム10が得られる。
 無機層18が15nm未満の厚さを有すると、ガスバリアフィルム10の透明性が高く、耐屈曲性に優れるガスバリアフィルム10が得られる。
As mentioned above, in the gas barrier film 10 of the present invention, the thickness of the inorganic layer 18 is 2 to 15 nm. The thickness of the inorganic layer 18 is preferably 3 to 13 nm, and more preferably 5 to 12 nm.
When the inorganic layer 18 has a thickness of 2 nm or more, the gas barrier film 10 having sufficient gas barrier properties can be obtained.
When the inorganic layer 18 has a thickness of less than 15 nm, the gas barrier film 10 having high transparency and excellent bending resistance can be obtained.
 また、無機層18は、N/Si原子比(原子比率)が0.7~0.97である。無機層18のN/Si原子比は、0.75~0.95が好ましく、0.8~0.93がより好ましい。
 無機層18が0.7以上のN/Si原子比を有すると、ガスバリアフィルム10の透明性に優れる。
 無機層18が0.97以下のN/Si原子比を有すると、十分なガスバリア性および高温高湿耐性を有するガスバリアフィルム10を得られる。
The inorganic layer 18 has an N / Si atomic ratio (atomic ratio) of 0.7 to 0.97. The N / Si atomic ratio of the inorganic layer 18 is preferably 0.75 to 0.95, and more preferably 0.8 to 0.93.
When the inorganic layer 18 has an N / Si atomic ratio of 0.7 or more, the transparency of the gas barrier film 10 is excellent.
When the inorganic layer 18 has an N / Si atomic ratio of 0.97 or less, a gas barrier film 10 having sufficient gas barrier properties and high temperature and high humidity resistance can be obtained.
 無機層18の密度(膜密度)には制限はないが、2.1~2.5g/cm2が好ましく、2.12~2.45g/cm2がより好ましく、2.14~2.4g/cm2がさらに好ましい。
 無機層18の密度を2.1g/cm2以上とすることにより、高いガスバリア性を有するガスバリアフィルム10が得られる、および、高い高温高湿耐性を有するガスバリアフィルム10が得られる等の点で好ましい。
 無機層18の密度を2.5g/cm2以下とすることにより、膜応力等に起因する無機層18の損傷を防止でき高いガスバリア性を有するガスバリアフィルム10が得られる等の点で好ましい。
 なお、無機層18の密度は、XRR(X線反射率法(X-Ray Reflectometry))によって測定すればよい。XRR測定結果からの密度の計算は、ソフトを用いたシミュレーションによって行うものでもよい。XRR測定は、例えば、リガク社製のATXを用いて行えばよい。また、シミュレーションは、例えば、リガク社製の解析ソフトGXRRを用いて行えばよい。
Although there is no limit to the density of the inorganic layer 18 (film density), preferably 2.1 ~ 2.5g / cm 2, more preferably 2.12 ~ 2.45g / cm 2, 2.14 ~ 2.4g / Cm 2 is more preferred.
By setting the density of the inorganic layer 18 to 2.1 g / cm 2 or more, the gas barrier film 10 having high gas barrier properties can be obtained, and the gas barrier film 10 having high high temperature and high humidity resistance can be obtained. .
By setting the density of the inorganic layer 18 to 2.5 g / cm 2 or less, damage to the inorganic layer 18 caused by film stress and the like can be prevented, which is preferable in that the gas barrier film 10 having high gas barrier properties can be obtained.
The density of the inorganic layer 18 may be measured by XRR (X-Ray Reflectometry). The calculation of the density from the XRR measurement result may be performed by simulation using software. The XRR measurement may be performed using, for example, ATX manufactured by Rigaku Corporation. The simulation may be performed using, for example, analysis software GXRR manufactured by Rigaku Corporation.
 本発明のガスバリアフィルム10において、混合層16(24)の厚さは、2~25nmである。混合層16の厚さは、4~22nmが好ましく、5~20nmがより好ましい。
 混合層16の厚さが2nm未満では、無機層18と下地有機層14、あるいは、無機層18と支持体12とが剥離しやすくなり、十分な耐屈曲性が確保できない等の不都合を生じる。
 混合層16の厚さが25nmを超えると、無機層18の形成面の表面粗さが大きくなるため、無機層18を適正に形成できず十分なガスバリア性を有するガスバリアフィルム10が得られない、および、混合層16による光の吸収が大きくなり透明性が低下する等の不都合を生じる。
In the gas barrier film 10 of the present invention, the thickness of the mixed layer 16 (24) is 2 to 25 nm. The thickness of the mixed layer 16 is preferably 4 to 22 nm, and more preferably 5 to 20 nm.
When the thickness of the mixed layer 16 is less than 2 nm, the inorganic layer 18 and the base organic layer 14 or the inorganic layer 18 and the support 12 easily peel off, which causes problems such as the inability to secure sufficient bending resistance.
If the thickness of the mixed layer 16 exceeds 25 nm, the surface roughness of the surface on which the inorganic layer 18 is formed becomes large, so the inorganic layer 18 can not be properly formed, and the gas barrier film 10 having sufficient gas barrier properties can not be obtained. And, the absorption of light by the mixed layer 16 is increased to cause disadvantages such as a decrease in transparency.
 本発明のガスバリアフィルム10において、混合層16におけるN/Si原子比には制限はないが、0.2~0.85が好ましく、0.3~0.82がより好ましく、0.4~0.8がさらに好ましい。本発明においては、混合層16におけるN/Si原子比(=窒素含有量)、すなわち、混合層16の形成時におけるプラズマ中の窒素ラジカルも、より低減するのが好ましい。
 混合層16におけるN/Si原子比を0.2以上とすることにより、混合層16による光の吸収を抑制し透明性に優れたガスバリアフィルム10が得られる等の点で好ましい。
 混合層16におけるN/Si原子比を0.85以下とすることにより、混合層16が過度に粗くなることを抑制して適正な無機層18を形成できるため高いガスバリア性を有するガスバリアフィルム10が得られる等の点で好ましい。
In the gas barrier film 10 of the present invention, the N / Si atomic ratio in the mixed layer 16 is not limited, but is preferably 0.2 to 0.85, more preferably 0.3 to 0.82, and 0.4 to 0. .8 is more preferred. In the present invention, it is preferable to further reduce the N / Si atomic ratio (= nitrogen content) in the mixed layer 16, that is, nitrogen radicals in plasma at the time of formation of the mixed layer 16.
By setting the N / Si atomic ratio in the mixed layer 16 to 0.2 or more, absorption of light by the mixed layer 16 is suppressed, which is preferable in that the gas barrier film 10 having excellent transparency can be obtained.
By setting the N / Si atomic ratio in the mixed layer 16 to 0.85 or less, it is possible to prevent the mixed layer 16 from becoming excessively rough and to form an appropriate inorganic layer 18, and the gas barrier film 10 having high gas barrier properties can be obtained. It is preferable at the point of being obtained etc.
 ここで、混合層16のN/Si原子比は、無機層18のN/Si原子比よりも低いのが好ましい。すなわち、混合層16は、無機層18よりも、より、ケイ素に対する窒素の量が少ないのが好ましい。 Here, the N / Si atomic ratio of the mixed layer 16 is preferably lower than the N / Si atomic ratio of the inorganic layer 18. That is, the mixed layer 16 preferably has a lower amount of nitrogen to silicon than the inorganic layer 18.
 特に、混合層16のN/Si原子比が、無機層18のN/Si原子比よりも0.05~0.5、低いのが好ましく、0.1~0.3、低いのがより好ましい。すなわち、本発明のガスバリアフィルム10は、『0.05≦(無機層18のN/Si原子比)-(混合層16のN/Si原子比)≦0.5』を満たすのが好ましい。
 混合層16のN/Si原子比と無機層18のN/Si原子比との差を0.05以上とすることにより、混合層16の粗さを抑制して適正な無機層18を形成できるため高いガスバリア性を有するガスバリアフィルム10が得られる等の点で好ましい。
 混合層16のN/Si原子比と無機層18のN/Si原子比との差を0.5以下とすることにより、ガスバリアフィルム10の透明性を向上できる等の点で好ましい。
In particular, the N / Si atomic ratio of the mixed layer 16 is preferably lower by 0.05 to 0.5 than the N / Si atomic ratio of the inorganic layer 18, and more preferably by 0.1 to 0.3. . That is, the gas barrier film 10 of the present invention preferably satisfies “0.05 ≦ (N / Si atomic ratio of inorganic layer 18) − (N / Si atomic ratio of mixed layer 16) ≦ 0.5”.
By setting the difference between the N / Si atomic ratio of the mixed layer 16 and the N / Si atomic ratio of the inorganic layer 18 to 0.05 or more, the roughness of the mixed layer 16 can be suppressed and an appropriate inorganic layer 18 can be formed. Therefore, it is preferable in that the gas barrier film 10 having high gas barrier properties can be obtained.
By setting the difference between the N / Si atomic ratio of the mixed layer 16 and the N / Si atomic ratio of the inorganic layer 18 to 0.5 or less, the transparency of the gas barrier film 10 is preferably improved.
 <N/Si原子比の制御方法>
 無機層18および混合層16におけるN/Si原子比、すなわち、窒素の含有量の制御方法としては、以下の方法が例示される。
 まず、無機層18を形成する際における原料ガスの組成を調節することで、無機層18および混合層16におけるN/Si原子比を調節する方法が例示される。例えば、無機層18を、原料ガスとしてシランガス、アンモニアガス、および、水素ガスを用いるプラズマCVDで形成する際には、シランガスに対するアンモニアガスの量を調節することで、N/Si原子比を調節できる。例えば、アンモニアガスを減らすほど、N/Si原子比を低くできる。
 無機層18を形成する際のプラズマ励起電力を調節することでも、無機層18および混合層16におけるN/Si原子比を調節できる。例えば、無機層18を形成する際のプラズマ励起電力を高くするほど、N/Si原子比が大きくなる。
<Method of controlling N / Si atomic ratio>
As a method of controlling the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16, that is, the content of nitrogen, the following method is exemplified.
First, a method of adjusting the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 by adjusting the composition of the source gas when forming the inorganic layer 18 is exemplified. For example, when the inorganic layer 18 is formed by plasma CVD using silane gas, ammonia gas, and hydrogen gas as source gases, the N / Si atomic ratio can be adjusted by adjusting the amount of ammonia gas to silane gas. . For example, as the ammonia gas is reduced, the N / Si atomic ratio can be lowered.
The N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can also be adjusted by adjusting the plasma excitation power at the time of forming the inorganic layer 18. For example, as the plasma excitation power at the time of forming the inorganic layer 18 is increased, the N / Si atomic ratio is increased.
 無機層18を形成する際の温度調節によっても無機層18および混合層16におけるN/Si原子比を調節できる。例えば、無機層18を形成する際に、温度を高くするほど、無機層18および混合層16から窒素が抜け易くなり、N/Si原子比が低くなる。
 なお、無機層18形成時における温度調節は、例えば、無機層18を形成する際における支持体12の温度調節で行えばよい。一例として、後述するように、ドラム102に支持体12を巻き掛けて、RtoRによって無機層18を形成する際には、ドラム102の温度を調節することで、支持体12の温度を調節すればよい。
The N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can also be adjusted by temperature control when forming the inorganic layer 18. For example, when forming the inorganic layer 18, as the temperature is increased, nitrogen is more easily removed from the inorganic layer 18 and the mixed layer 16, and the N / Si atomic ratio becomes lower.
The temperature control at the time of forming the inorganic layer 18 may be performed by, for example, the temperature control of the support 12 at the time of forming the inorganic layer 18. As an example, as described later, when the support 12 is wound around the drum 102 and the inorganic layer 18 is formed by RtoR, the temperature of the support 12 is adjusted by adjusting the temperature of the drum 102. Good.
 さらに、無機層18の形成に先立ち、無機層18の形成面を水素プラズマで処理することでも、無機層18および混合層16におけるN/Si原子比を調節できる。具体的には、無機層18の形成面を水素プラズマで処理することで、無機層18および混合層16におけるN/Si原子比を低くできる。
 水素プラズマは、非常に強い紫外線を発生する。そのため、無機層18の形成に先立ち、無機層18の形成面を水素プラズマで処理することにより、紫外線の照射によって無機層18の形成面の硬化を進行できる。これにより、無機層18を形成する際のプラズマによるエッチングを抑制できる。その結果、無機層18を形成する際における、混合層16等への窒素の混入を抑制して、無機層18および混合層16におけるN/Si原子比を低くできる。
 この方法は、無機層18の形成面が、例えば、(メタ)アクリレート等の紫外線硬化性の有機化合物の硬化(重合)によって形成された、下地有機層14等である場合に、特に有効である。
Furthermore, the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can be adjusted by treating the formation surface of the inorganic layer 18 with hydrogen plasma prior to the formation of the inorganic layer 18. Specifically, the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can be reduced by treating the formation surface of the inorganic layer 18 with hydrogen plasma.
Hydrogen plasma generates very strong ultraviolet light. Therefore, by treating the surface on which the inorganic layer 18 is formed with hydrogen plasma prior to the formation of the inorganic layer 18, the curing of the surface on which the inorganic layer 18 is formed can be advanced by the irradiation of ultraviolet light. Thereby, the etching by the plasma at the time of forming the inorganic layer 18 can be suppressed. As a result, when the inorganic layer 18 is formed, mixing of nitrogen into the mixed layer 16 or the like can be suppressed, and the N / Si atomic ratio in the inorganic layer 18 and the mixed layer 16 can be lowered.
This method is particularly effective when the surface on which the inorganic layer 18 is formed is, for example, the underlying organic layer 14 or the like formed by curing (polymerization) of an ultraviolet-curable organic compound such as (meth) acrylate. .
(厚さ、および、N/Si原子比の測定方法)
 本発明のガスバリアフィルム10において、無機層18および混合層16の厚さ、ならびに、無機層18および混合層16のN/Si原子比は、XPS(X線光電子分光法(X-ray Photoelectron Spectroscopy)を利用して測定すればよい。なお、XPSは、ESCA(Electron Spectroscopy for Chemical Analysis)とも呼ばれている。
(Method of measuring thickness and N / Si atomic ratio)
In the gas barrier film 10 of the present invention, the thicknesses of the inorganic layer 18 and the mixed layer 16, and the N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 are XPS (X-ray photoelectron spectroscopy) It is to be noted that XPS is also called ESCA (Electron Spectroscopy for Chemical Analysis).
 XPSを用いる各層の厚さおよびN/Si原子比の測定では、一例として、まず、アルゴンイオンプラズマ等によるエッチングと、XPSによる測定とを交互に行って、厚さ方向の各位置における、ケイ素原子(Si)、窒素原子(N)、酸素原子(O)、および、炭素原子(C)の量を測定する。XPSによる厚さ方向の測定間隔は、エッチングレートおよび測定装置等に応じて、適宜、設定すればよい。
 次いで、エッチングレートとエッチング時間とから、XPSによる測定を行った厚さ方向の位置を検出する。さらに、ケイ素原子、窒素原子、酸素原子および炭素原子の合計を1(すなわち100%)として、図4に概念的に示すような、厚さ方向におけるケイ素原子、窒素原子、酸素原子および炭素原子の組成比(組成比のプロファイル)を検出する。
 なお、XPSによる測定は、下地有機層14(無機層18の形成面となる層)も行うが、下地有機層14の領域において、XPSによる測定値が一定になったら、それ以上は、測定を行わなくてもよい。
In the measurement of the thickness and N / Si atomic ratio of each layer using XPS, as an example, first, etching by argon ion plasma etc. and measurement by XPS are alternately performed, and silicon atoms at each position in the thickness direction The amounts of (Si), nitrogen atom (N), oxygen atom (O) and carbon atom (C) are measured. The measurement interval in the thickness direction by XPS may be appropriately set according to the etching rate, the measuring apparatus, and the like.
Next, the position in the thickness direction measured by XPS is detected from the etching rate and the etching time. Furthermore, assuming that the sum of silicon atoms, nitrogen atoms, oxygen atoms and carbon atoms is 1 (that is, 100%), silicon atoms, nitrogen atoms, oxygen atoms and carbon atoms in the thickness direction as schematically shown in FIG. Composition ratio (profile of composition ratio) is detected.
Note that the measurement by XPS is also performed on the base organic layer 14 (the layer to be the surface on which the inorganic layer 18 is formed), but if the measured value by XPS becomes constant in the region of the base organic layer 14 It does not have to be done.
 図4に示す例は、図1に示すような、支持体12・下地有機層14・混合層16・無機層18の層構成を有するガスバリアフィルム10の一例における厚さ方向(膜厚)の各位置における各原子の含有率である。従って、0nmの位置は、無機層18の表面である。
 ここで、窒化ケイ素層である無機層18には、酸素および炭素は存在しないが、厚さ0nm、および、その近傍では、酸素原子および炭素原子が検出されている。後述するが、ガスバリアフィルム10の製造においては、通常、無機層18を成膜した後に、無機層18に保護フィルムを積層して無機層18を保護し、使用時(測定時)に保護フィルムを剥離する。この剥離の際に、無機層18の表面には、保護フィルムの成分が転写される。厚さ0nm、および、その近傍で検出された酸素原子および炭素原子は、この保護フィルムから無機層18に転写された成分が検出されたものである。
The example shown in FIG. 4 is each in the thickness direction (film thickness) in an example of the gas barrier film 10 having the layer structure of the support 12, the base organic layer 14, the mixed layer 16 and the inorganic layer 18 as shown in FIG. It is the content rate of each atom at the position. Therefore, the position of 0 nm is the surface of the inorganic layer 18.
Here, although oxygen and carbon do not exist in the inorganic layer 18 which is a silicon nitride layer, oxygen atoms and carbon atoms are detected at a thickness of 0 nm and in the vicinity thereof. As described later, in the production of the gas barrier film 10, usually, after forming the inorganic layer 18, a protective film is laminated on the inorganic layer 18 to protect the inorganic layer 18, and the protective film is used at the time of use (at the time of measurement). Peel off. At the time of this peeling, components of the protective film are transferred to the surface of the inorganic layer 18. The oxygen atom and the carbon atom detected at a thickness of 0 nm and in the vicinity thereof are the ones in which the component transferred from the protective film to the inorganic layer 18 is detected.
 次いで、ケイ素原子の組成比(量)における最大値および最小値を検出して、図4に示すように、その間を100%として、最大値を100%、最小値を0%とする。
 ケイ素原子の組成比における最大値を100%および最小値を0%と設定したら、ケイ素原子の組成比が、最大値(100%)から10%低下した厚さ方向の位置を無機層18と混合層16との界面とし、ケイ素原子の組成比が、最小値(0%)から10%上昇した厚さ方向の位置を混合層16と下地有機層14との界面とする。
 言い換えれば、ケイ素原子の組成比の最大値(100%)から最小値(0%)までの間を10等分して、ケイ素原子の組成比のプロファイルと上から1/10の位置(1段目)とが交差する厚さ方向の位置を、無機層18と混合層16との界面とし、ケイ素原子の組成比のプロファイルと下から1/10の位置(9段目)とが交差するの厚さ方向の位置を、混合層16と下地有機層14との界面とする。
Next, the maximum value and the minimum value in the composition ratio (amount) of silicon atoms are detected, and as shown in FIG. 4, the maximum value is 100%, and the minimum value is 0%, with 100% therebetween.
When the maximum value in the composition ratio of silicon atoms is set to 100% and the minimum value is set to 0%, the position in the thickness direction where the composition ratio of silicon atoms is reduced by 10% from the maximum value (100%) is mixed with the inorganic layer 18 The interface with the layer 16 and the position in the thickness direction where the composition ratio of silicon atoms is increased by 10% from the minimum value (0%) is the interface between the mixed layer 16 and the base organic layer 14.
In other words, the silicon atom composition ratio profile and the position 1/10 from the top (one step) dividing the range from the maximum value (100%) to the minimum value (0%) of the composition ratio of silicon atoms into 10 equal parts. Position in the thickness direction where it intersects is the interface between the inorganic layer 18 and the mixed layer 16, and the profile of the composition ratio of silicon atoms intersects with the position 1/10 from the bottom (the ninth stage) The position in the thickness direction is an interface between the mixed layer 16 and the base organic layer 14.
 このようにして、無機層18と混合層16との界面、および、混合層16と下地有機層14との界面を決定したら、無機層18の厚さ(表面(0nm)から界面まで)、および、混合層16の厚さ(界面から界面まで)を検出する。
 さらに、検出した界面、および、厚さ方向の各位置におけるケイ素原子および窒素原子の組成比から、無機層18におけるN/Si原子比を検出し、あるいはさらに、混合層16におけるN/Si原子比を検出する。
Thus, when the interface between the inorganic layer 18 and the mixed layer 16 and the interface between the mixed layer 16 and the base organic layer 14 are determined, the thickness (from the surface (0 nm) to the interface) of the inorganic layer 18 and , Thickness of the mixed layer 16 (from interface to interface) is detected.
Furthermore, the N / Si atomic ratio in the inorganic layer 18 is detected from the detected interface and the composition ratio of silicon atoms and nitrogen atoms at each position in the thickness direction, or further, the N / Si atomic ratio in the mixed layer 16 To detect
 本発明において、無機層18のN/Si原子比とは、無機層18の厚さ方向の各位置におけるN/Si原子比の平均値である。また、混合層16のN/Si原子比とは、混合層16の厚さ方向の各位置におけるN/Si原子比の平均値である。
 従って、例えば、無機層18と混合層16との界面近傍等、無機層18は、厚さ方向において、部分的に、N/Si比が0.7~0.97の範囲に入らない領域を有する場合もある。この点に関しては、混合層16も同様である。
In the present invention, the N / Si atomic ratio of the inorganic layer 18 is an average value of the N / Si atomic ratio at each position in the thickness direction of the inorganic layer 18. Further, the N / Si atomic ratio of the mixed layer 16 is an average value of the N / Si atomic ratio at each position in the thickness direction of the mixed layer 16.
Therefore, for example, in the vicinity of the interface between the inorganic layer 18 and the mixed layer 16, the inorganic layer 18 has a region where the N / Si ratio is not in the range of 0.7 to 0.97 partially in the thickness direction. There is also a case. The same applies to the mixed layer 16 in this regard.
 前述のように、本発明のガスバリアフィルムにおいては、無機層18の上に、さらに下地有機層14を形成する場合があり(図3参照)、また、無機層18の上に保護有機層を形成する場合もある。
 この際には、無機層18の上層の有機層を含めて、同様のXPSによる測定を行い、上層の有機層~無機層18の領域において、ケイ素原子の組成比の最小値および最大値を検出し、先と同様に、この間を100%として、ケイ素原子の検出結果が最大値よりも10%低い厚さ方向の位置を、上層の有機層と無機層18との界面とすればよい。
As described above, in the gas barrier film of the present invention, the base organic layer 14 may be further formed on the inorganic layer 18 (see FIG. 3), and a protective organic layer is formed on the inorganic layer 18. There is also a case.
At this time, the same XPS measurement is performed including the upper organic layer of the inorganic layer 18 to detect the minimum value and the maximum value of the composition ratio of silicon atoms in the region of the upper organic layer to the inorganic layer 18. Similarly to the above, with the interval being 100%, the position in the thickness direction where the detection result of silicon atoms is 10% lower than the maximum value may be taken as the interface between the upper organic layer and the inorganic layer 18.
 無機層18および混合層16の厚さおよびN/Si原子比は、ガスバリアフィルム10において製品として使用される領域であれば、殆ど、変動は無い。
 従って、上述のような、無機層18および混合層16の厚さおよびN/Si原子比の測定は、ガスバリアフィルム10の中央領域で行えばよい。例えば、ガスバリアフィルム10が、RtoRによって製造したものであれば、幅方向の中央80%の領域内で測定を行えばよい。また、ガスバリアフィルム10が、枚様式(カットシート)によって製造したものであれば、縦方向および横方向共に、長さの10%以上、内側の領域で測定を行えばよい。
 好ましくは、中央領域の5点の位置で、上述のような無機層18および混合層16の厚さおよびN/Si原子比の測定を行い、その平均値を、ガスバリアフィルム10の無機層18および混合層16の厚さおよびN/Si原子比とする。
The thickness and N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 hardly change in the region used as a product in the gas barrier film 10.
Therefore, the thickness and the N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 as described above may be measured in the central region of the gas barrier film 10. For example, if the gas barrier film 10 is manufactured by RtoR, the measurement may be performed in the area of the central 80% in the width direction. In addition, if the gas barrier film 10 is manufactured in a sheet-like manner (cut sheet), the measurement may be performed in an area of 10% or more of the length in the longitudinal direction and the lateral direction.
Preferably, the thickness and the N / Si atomic ratio of the inorganic layer 18 and the mixed layer 16 as described above are measured at five points in the central region, and the average value is calculated as the inorganic layer 18 of the gas barrier film 10 and The thickness and N / Si atomic ratio of the mixed layer 16 are used.
(ガスバリアフィルムの製造方法)
 ガスバリアフィルム10は、好ましくはRtoRを利用して製造される。ガスバリアフィルム10の製造方法の一例を、図5および図6を用いて説明する。
(Method of manufacturing gas barrier film)
The gas barrier film 10 is preferably manufactured using RtoR. An example of the manufacturing method of the gas barrier film 10 is demonstrated using FIG. 5 and FIG.
 図5は、有機成膜装置40を示す。
 有機成膜装置40は、RtoRによって下地有機層14あるいはさらに保護有機層を形成する装置である。有機成膜装置40は、回転軸52と、搬送ローラ対54aおよび54bと、塗布部56と、乾燥部58と、光照射部60と、巻取り軸62と、回収ロール64と、供給ロール66とを備える。
FIG. 5 shows an organic film forming apparatus 40.
The organic film-forming apparatus 40 is an apparatus which forms the base organic layer 14 or further a protection organic layer by RtoR. The organic film forming apparatus 40 includes a rotating shaft 52, conveyance roller pairs 54a and 54b, a coating unit 56, a drying unit 58, a light irradiation unit 60, a winding shaft 62, a collection roll 64, and a supply roll 66. And
 以下、有機成膜装置40を用いて下地有機層14を形成する方法について説明する。
 下地有機層14(保護有機層)は、長尺な支持体12を長手方向に搬送しつつ、有機層形成用組成物を塗布して形成される。
 まず、長尺な支持体12を巻回してなるロール72が、回転軸52に装填される。次いで、支持体12は、ロール72から引き出されて、所定の搬送経路に挿通され、搬送される。搬送経路は、ロール72から順に搬送ローラ対54a、塗布部56、乾燥部58、光照射部60、および、搬送ローラ対54bを経て、巻取り軸62に至る経路である。
Hereinafter, a method of forming the base organic layer 14 using the organic film forming apparatus 40 will be described.
The base organic layer 14 (protective organic layer) is formed by applying the composition for forming an organic layer while conveying the elongated support 12 in the longitudinal direction.
First, a roll 72 formed by winding the long support 12 is loaded on the rotating shaft 52. Next, the support 12 is pulled out of the roll 72, passed through a predetermined transport path, and transported. The conveyance path is a path from the roll 72 to the winding shaft 62 through the conveyance roller pair 54a, the application unit 56, the drying unit 58, the light irradiation unit 60, and the conveyance roller pair 54b.
 ロール72から引き出された支持体12は、長手方向に搬送されつつ、まず、塗布部56において、表面に有機層形成用組成物が塗布される。塗布部56における塗布方法は、例えば、ダイコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、および、グラビアコート法が挙げられる。 The support 12 drawn from the roll 72 is conveyed in the longitudinal direction, and the composition for forming an organic layer is first applied to the surface in the application unit 56. Examples of the coating method in the coating unit 56 include a die coating method, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, and a gravure coating method.
 次いで、有機層形成用組成物が塗布された支持体12は、乾燥部58によって加熱される。これにより、有機層形成用組成物を乾燥する。
 乾燥部58は、表側(下地有機層14の形成面、図5において上側)から加熱して乾燥を行う乾燥部58aと、裏側(支持体12側)から加熱して乾燥を行う乾燥部58bとを有し、表側および裏側の両方から、加熱できる。
 乾燥部58における加熱方法は、シート状物を加熱する公知の方法が利用可能である。例えば、乾燥部58aで温風乾燥を行い、乾燥部58bでヒートローラ(加熱機構を有するパスローラ)による乾燥を行ってもよい。
Next, the support 12 to which the composition for forming an organic layer is applied is heated by the drying unit 58. Thereby, the composition for organic layer formation is dried.
The drying unit 58 is a drying unit 58a that performs heating and drying from the front side (the surface on which the base organic layer 14 is formed, the upper side in FIG. 5), and a drying unit 58b that performs heating and drying from the back side (the support 12 side). And can be heated from both the front and back sides.
As a heating method in the drying unit 58, a known method of heating a sheet-like material can be used. For example, hot air drying may be performed by the drying unit 58a, and drying may be performed by the heat roller (pass roller having a heating mechanism) by the drying unit 58b.
 次いで、乾燥された有機層形成用組成物に、光照射部60によって紫外線等が照射される。これにより、有機化合物が重合(架橋)して、下地有機層14が形成される。有機化合物の重合は、必要に応じて窒素雰囲気等の不活性雰囲気で行ってもよい。 Subsequently, the light irradiation part 60 irradiates an ultraviolet-ray etc. to the dried composition for organic layer formation. Thereby, the organic compound is polymerized (crosslinked) to form the underlying organic layer 14. The polymerization of the organic compound may be carried out in an inert atmosphere such as a nitrogen atmosphere, if necessary.
 次いで、搬送ローラ対54bにおいて、供給ロール66から送り出した保護フィルムGaが下地有機層14の上に積層される。保護フィルムGaは、下地有機層14を保護する保護フィルムである。保護フィルムGaが積層された支持体12は、巻取り軸62で巻き取られ、ロール74とされる。 Next, the protective film Ga delivered from the supply roll 66 is laminated on the base organic layer 14 by the transport roller pair 54 b. The protective film Ga is a protective film that protects the underlying organic layer 14. The support 12 on which the protective film Ga is laminated is taken up by a take-up shaft 62 to be a roll 74.
 図6は、無機成膜装置80を示す。
 無機成膜装置80は、RtoRによって無機層18を形成する装置である。
 無機成膜装置80は、真空チャンバ82を有する。真空チャンバ82は、真空排気手段84を備える。真空排気手段84を駆動することにより、無機成膜装置80(真空チャンバ82)の内部圧力を調節できる。
 真空チャンバ82内には、回転軸92と、パスローラ94a~94cと、回収ロール98と、第1成膜ユニット100A、第2成膜ユニット100Bおよび第3成膜ユニット100Cと、ドラム102と、供給ロール104と、パスローラ106a~106cと、巻取り軸108とを備える。
FIG. 6 shows an inorganic film forming apparatus 80.
The inorganic film-forming apparatus 80 is an apparatus which forms the inorganic layer 18 by RtoR.
The inorganic film forming apparatus 80 has a vacuum chamber 82. The vacuum chamber 82 comprises an evacuation means 84. By driving the evacuation means 84, the internal pressure of the inorganic film forming apparatus 80 (vacuum chamber 82) can be adjusted.
In the vacuum chamber 82, a rotary shaft 92, pass rollers 94a to 94c, a recovery roll 98, a first film forming unit 100A, a second film forming unit 100B and a third film forming unit 100C, a drum 102, a supply A roll 104, pass rollers 106a to 106c, and a winding shaft 108 are provided.
 このような無機成膜装置80では、下地有機層14が形成された長尺な支持体12を長手方向に搬送しつつ、下地有機層14上に無機層18を形成する。
 まず、ロール74が回転軸92に装填される。次いで、ロール74から引き出された支持体12が、パスローラ94a~94c、ドラム102、パスローラ106a~106cを経て、巻取り軸108に至る、所定の搬送経路に挿通される。
In such an inorganic film forming apparatus 80, the inorganic layer 18 is formed on the base organic layer 14 while conveying the long support 12 on which the base organic layer 14 is formed in the longitudinal direction.
First, the roll 74 is loaded on the rotating shaft 92. Next, the support 12 pulled out of the roll 74 is passed through a predetermined transport path leading to the winding shaft 108 via the pass rollers 94a to 94c, the drum 102, and the pass rollers 106a to 106c.
 ロール74から引き出された支持体12は、パスローラ94a~94cによって案内されてドラム102に巻き掛けられて所定の経路を搬送される。第1成膜ユニット100A、第2成膜ユニット100Bおよび第3成膜ユニット100Cの1以上によって無機層18が形成される。第1成膜ユニット100Aまたは第2成膜ユニット100Bによって、前述の水素プラズマによる下地有機層14の処理を行ってもよい。
 なお、ドラム102は温度調節手段を内蔵しており、支持体12は、必要に応じて、ドラム102によって冷却または加熱されつつ、第1成膜ユニット100A、第2成膜ユニット100Bおよび第3成膜ユニット100Cの1以上によって処理される。前述のように、このような支持体12の温度調節を行うことで、混合層16および無機層18における、N/Si原子比を調節することが可能である。
 さらに、ドラム102には、バイアス電力を供給できるように構成されている。
 また、下地有機層14に保護フィルムGaが積層されている場合には、保護フィルムGaは下地有機層14から剥離され、回収ロール98で回収される。
The support 12 pulled out of the roll 74 is guided by the pass rollers 94a to 94c, wound around the drum 102, and conveyed along a predetermined path. The inorganic layer 18 is formed by one or more of the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100C. The treatment of the underlying organic layer 14 with hydrogen plasma described above may be performed by the first film formation unit 100A or the second film formation unit 100B.
The drum 102 incorporates a temperature control unit, and the support 12 is cooled or heated by the drum 102 as necessary, while the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100 are formed. It is processed by one or more of the membrane units 100C. As described above, by performing such temperature control of the support 12, it is possible to adjust the N / Si atomic ratio in the mixed layer 16 and the inorganic layer 18.
Furthermore, the drum 102 is configured to be able to supply bias power.
When the protective film Ga is laminated on the base organic layer 14, the protective film Ga is peeled off from the base organic layer 14 and collected by the collection roll 98.
 第1成膜ユニット100A、第2成膜ユニット100Bおよび第3成膜ユニット100Cにおける成膜方法は、一例として、CCP-CVDである。従って、成膜条件を調節することで、プラズマによって下地有機層14をエッチングして、下地有機層14と無機層18との間に、混合層16が形成される。
 第1成膜ユニット100A、第2成膜ユニット100Bおよび第3成膜ユニット100Cは、同じ構成を有するものであり、ドラム102と電極対を構成するシャワー電極114、高周波電源116、および、ガス供給手段118を有する。シャワー電極114は、ドラム102との対向面に原料ガスを供給するための開口を有する、プラズマCVDに用いられる公知のシャワー電極(シャワープレート)である。
 高周波電源116は、シャワー電極114にプラズマ励起電力を供給するものであり、プラズマCVDに用いられる公知の高周波電源である。前述のように、シャワー電極114に供給するプラズマ励起電力の強度を調節することで、混合層16および無機層18における、N/Si原子比等の調節が可能である。
 ガス供給手段118は、シャワー電極114に原料ガスを供給するものであり、プラズマCVDに用いられる公知のガス供給手段である。本発明のガスバリアフィルム10は、窒化ケイ素を含有する無機層18を有するものであり、原料ガスとしては、一例として、シランガス、アンモニアガスおよび水素ガスが例示される。前述のように、シランガスとアンモニアガスとの供給量を調節することで、混合層16および無機層18における、N/Si原子比等の調節が可能である。
 なお、混合層16および無機層18の厚さは、プラズマ励起電力の調節、成膜時間の調節すなわち支持体12の搬送速度の調節、および、原料ガスの供給量の調節等、公知の方法で行えばよい。
The film forming method in the first film forming unit 100A, the second film forming unit 100B and the third film forming unit 100C is, for example, CCP-CVD. Therefore, by adjusting the film forming conditions, the base organic layer 14 is etched by plasma, and the mixed layer 16 is formed between the base organic layer 14 and the inorganic layer 18.
The first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100C have the same configuration, and the shower electrode 114 constituting the electrode pair with the drum 102, the high frequency power supply 116, and the gas supply And means 118. The shower electrode 114 is a known shower electrode (shower plate) used for plasma CVD, which has an opening for supplying the source gas to the surface facing the drum 102.
The high frequency power source 116 supplies plasma excitation power to the shower electrode 114, and is a known high frequency power source used for plasma CVD. As described above, by adjusting the intensity of plasma excitation power supplied to the shower electrode 114, it is possible to adjust the N / Si atomic ratio and the like in the mixed layer 16 and the inorganic layer 18.
The gas supply means 118 is for supplying the source gas to the shower electrode 114, and is a known gas supply means used for plasma CVD. The gas barrier film 10 of the present invention has the inorganic layer 18 containing silicon nitride, and as a source gas, silane gas, ammonia gas and hydrogen gas are exemplified as an example. As described above, the N / Si atomic ratio and the like in the mixed layer 16 and the inorganic layer 18 can be adjusted by adjusting the supply amounts of the silane gas and the ammonia gas.
The thicknesses of the mixed layer 16 and the inorganic layer 18 can be adjusted by known methods such as adjustment of plasma excitation power, adjustment of film formation time, that is, adjustment of transport speed of the support 12, and adjustment of supply amount of source gas. You can do it.
 3つの成膜ユニットを有する無機成膜装置80を用いることにより、混合層16および無機層18の厚さおよび/または組成を、高い自由度で調節することが可能になる。
 例えば、第1成膜ユニット100Aと第3成膜ユニット100Cとを用いて無機層18を形成する。このように、複数の成膜ユニットを用いて無機層18を形成することにより、上流側の第1成膜ユニット100Aでは、主に、混合層16の形成を行い、下流側の第3成膜ユニット100Cでは、主に無機層18の形成を行うことで、混合層16の形成、および、無機層18の形成のそれぞれにおいて、独立して厚さおよび組成の調節を行うことが可能になる。
 また、第1成膜ユニット100Aでは、成膜を行わずに下地有機層14の表面に水素プラズマによる処理を行い、第3成膜ユニット100Cによって、または、第2成膜ユニット100Bと第3成膜ユニット100Cとによって、混合層16および無機層18を形成することも可能である。
By using the inorganic film forming apparatus 80 having three film forming units, the thickness and / or the composition of the mixed layer 16 and the inorganic layer 18 can be adjusted with a high degree of freedom.
For example, the inorganic layer 18 is formed using the first film forming unit 100A and the third film forming unit 100C. Thus, by forming the inorganic layer 18 using a plurality of film forming units, the mixed layer 16 is mainly formed in the first film forming unit 100A on the upstream side, and the third film forming on the downstream side is formed. In the unit 100C, mainly by forming the inorganic layer 18, it is possible to independently adjust the thickness and the composition in forming the mixed layer 16 and forming the inorganic layer 18, respectively.
In the first film forming unit 100A, the surface of the base organic layer 14 is treated with hydrogen plasma without film formation, and the third film forming unit 100C or the second film forming unit 100B and the third film forming unit 100B are formed. It is also possible to form the mixed layer 16 and the inorganic layer 18 by the membrane unit 100C.
 なお、無機成膜装置80は、これ以外にも、第1成膜ユニット100Aと第2成膜ユニット100Bとを用いて混合層16および無機層18を形成してもよく、第2成膜ユニット100Bと第3成膜ユニット100Cとを用いて混合層16および無機層18を形成してもよく、第1成膜ユニット100A~第3成膜ユニット100Cを全て用いて混合層16および無機層18を形成してもよく、第1成膜ユニット100A、第2成膜ユニット100Bおよび第3成膜ユニット100Cの1つのみを用いて、混合層16および無機層18を形成してもよい。 The inorganic film forming apparatus 80 may form the mixed layer 16 and the inorganic layer 18 by using the first film forming unit 100A and the second film forming unit 100B other than the above, and the second film forming unit The mixed layer 16 and the inorganic layer 18 may be formed by using 100B and the third film forming unit 100C, and the mixed layer 16 and the inorganic layer 18 may be formed by using all of the first film forming unit 100A to the third film forming unit 100C. The mixed layer 16 and the inorganic layer 18 may be formed using only one of the first film forming unit 100A, the second film forming unit 100B, and the third film forming unit 100C.
 無機層18が形成された支持体12すなわちガスバリアフィルム10には、パスローラ106aにおいて、供給ロール104から送り出した保護フィルムGbが無機層18上に積層される。保護フィルムGbは、無機層18を保護するフィルムである。
 保護フィルムGbが積層されたガスバリアフィルム10は、パスローラ106a~106cに案内されて、巻取り軸108に搬送され、保護フィルムGbが積層されたガスバリアフィルム10が巻取り軸108に巻き取られ、ガスバリアフィルム10を巻回したロール110が得られる。
On the support 12 on which the inorganic layer 18 is formed, that is, the gas barrier film 10, the protective film Gb delivered from the supply roll 104 is laminated on the inorganic layer 18 at the pass roller 106a. The protective film Gb is a film that protects the inorganic layer 18.
The gas barrier film 10 on which the protective film Gb is laminated is guided by the pass rollers 106a to 106c and conveyed to the winding shaft 108, and the gas barrier film 10 on which the protective film Gb is laminated is wound on the winding shaft 108 The roll 110 in which the film 10 is wound is obtained.
 無機層18の形成後、真空チャンバ82が大気開放されて、清浄化した乾燥空気が導入される。その後、ロール110が真空チャンバ82から取り出される。 After formation of the inorganic layer 18, the vacuum chamber 82 is opened to the atmosphere to introduce clean dry air. The roll 110 is then removed from the vacuum chamber 82.
 下地有機層14と無機層18との組み合わせを、2組以上、形成する場合には、形成する組み合わせの数に応じて、同様の下地有機層14と無機層18(混合層16)との形成を、繰り返し行えばよい。なお、この際に、2層目以降の下地有機層14の形成は、無機層18に積層した保護フィルムGbを搬送ローラ対54aにおいて剥離した後、行う。
 無機層18の上に保護有機層を形成する場合には、無機層18を形成した後に、無機層18の上に、下地有機層14と同様に保護有機層を形成すればよい。
 図2に示すガスバリアフィルム20のように、支持体12に、直接、混合層16および無機層18を形成する場合には、有機成膜装置40による下地有機層14の形成を行わずに、無機成膜装置80によって、支持体12に、直接、無機層18を形成すればよい。
When two or more sets of the combination of the base organic layer 14 and the inorganic layer 18 are formed, the same base organic layer 14 and the inorganic layer 18 (mixed layer 16) are formed according to the number of combinations to be formed. And repeat. At this time, the formation of the underlying organic layer 14 of the second and subsequent layers is performed after the protective film Gb laminated on the inorganic layer 18 is peeled off by the transport roller pair 54a.
In the case of forming the protective organic layer on the inorganic layer 18, after forming the inorganic layer 18, the protective organic layer may be formed on the inorganic layer 18 in the same manner as the base organic layer 14.
In the case where the mixed layer 16 and the inorganic layer 18 are directly formed on the support 12 as in the gas barrier film 20 shown in FIG. 2, the formation of the underlying organic layer 14 by the organic film forming apparatus 40 is not performed. The inorganic layer 18 may be formed directly on the support 12 by the film forming apparatus 80.
 以上、本発明のガスバリアフィルムについて詳細に説明したが、本発明は上記の態様に限定はされず、本発明の要旨を逸脱しない範囲において、種々、改良や変更を行ってもよい。 As mentioned above, although the gas barrier film of this invention was demonstrated in detail, this invention is not limited to said aspect, You may perform various improvement and change in the range which does not deviate from the summary of this invention.
 以下に実施例を挙げて本発明を具体的に説明する。本発明は、以下に示す具体例に限定されない。 The present invention will be specifically described by way of examples. The present invention is not limited to the specific examples shown below.
 [実施例1]
  <<支持体>>
 支持体として、幅1000mm、厚さ100μm、長さ100mのPETフィルム(東洋紡社製、コスモシャインA4300)を用いた。
Example 1
<< Support >>
As a support, a PET film having a width of 1000 mm, a thickness of 100 μm and a length of 100 m (Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.) was used.
  <<下地有機層の形成>>
 TMPTA(ダイセルオルネクス社製)および光重合開始剤(ランベルティ社製、ESACURE KTO46)を、質量比率として95:5となるように秤量し、固形分濃度が15質量%となるようにメチルエチルケトン(MEK)に溶解して、下地有機層を形成するための有機層形成用組成物を調製した。
 図5に示すような、塗布部、乾燥部および光照射部を有する、RtoRによって塗布法で有機層を形成する有機成膜装置の塗布部に、調製した有機層形成用組成物を充填した。
 また、支持体をロール状に巻回してなるロールを所定位置に装填して、ロールから巻き出した支持体を所定の搬送経路に挿通した。さらに、PE製の保護フィルムを巻回した供給ロールを所定位置に装填して、光照射部の下流の搬送ローラ対において、保護フィルムを下地有機層に積層するようにした。
<< Formation of base organic layer >>
A mixture of TMPTA (manufactured by Daicel Ornex Co., Ltd.) and a photopolymerization initiator (manufactured by Lamberti, ESACURE KTO 46) was weighed so as to have a mass ratio of 95: 5, and methyl ethyl ketone ( It melt | dissolved in MEK, and prepared the composition for organic layer formation for forming a base organic layer.
The prepared composition for forming an organic layer was filled in an application part of an organic film forming apparatus having an application part, a drying part, and a light irradiation part as shown in FIG. 5 and forming an organic layer by an application method by RtoR.
In addition, a roll formed by winding a support in a roll was loaded at a predetermined position, and the support unwound from the roll was inserted into a predetermined transport path. Furthermore, the supply roll which wound the protective film made from PE was loaded in the predetermined position, and the protective film was laminated on the foundation organic layer in the conveyance roller pair of the lower stream of a light irradiation part.
 有機成膜装置において、支持体を長手方向に搬送しつつ、塗布部において有機層形成用組成物を塗布し、乾燥部において有機層形成用組成物を乾燥した。塗布部は、ダイコータを用いた。乾燥部における加熱温度は50℃とし、乾燥部の通過時間は3分とした。
 次いで、光照射部において、乾燥した有機層形成用組成物に紫外線を照射(積算照射量約600mJ/cm2)して有機層形成用組成物を硬化させることにより、下地有機層を形成した。
 光照射部の下流の搬送ローラ対において、下地有機層の表面に保護フィルムを積層した後、下地有機層を形成した支持体を巻取り軸に巻き取ってロールを得た。形成した下地有機層の厚さは、1μmであった。
In the organic film forming apparatus, the composition for forming an organic layer was applied in the coating part while conveying the support in the longitudinal direction, and the composition for forming an organic layer was dried in the drying part. The application part used the die coater. The heating temperature in the drying part was 50 ° C., and the passing time of the drying part was 3 minutes.
Next, in the light irradiation section, the dried composition for forming an organic layer was irradiated with ultraviolet light (accumulated irradiation amount: about 600 mJ / cm 2 ) to cure the composition for forming an organic layer, thereby forming a base organic layer.
After laminating a protective film on the surface of the base organic layer in the conveyance roller pair downstream of the light irradiation part, the support on which the base organic layer was formed was wound around a winding shaft to obtain a roll. The thickness of the formed base organic layer was 1 μm.
  <<無機層の形成>>
 下地有機層を形成した支持体を巻回したロールを、図6に示すような、第1成膜ユニット、第2成膜ユニットおよび第3成膜ユニットの3つの成膜ユニットを有し、ドラムに支持体を巻き掛けて搬送しつつ、RtoRでCCP-CVDによって成膜を行う無機成膜装置の所定位置に装填した。
 ロール74から巻き出した支持体(下地有機層を形成した支持体)を、パスローラ、ドラム、および、パスローラを経て巻取り軸に到る所定の搬送経路に挿通した。さらに、PE製の保護フィルムを巻回した供給ロールを所定位置に装填して、ドラムの直下流のパスローラにおいて、保護フィルムを無機層に積層するようにした。
 ロールから巻き出した支持体を長手方向に搬送しつつ、ドラムの直上流のパスローラで保護フィルムを剥離した後、下地有機層の上に無機層として窒化ケイ素層を形成して、図1に示すようなガスバリアフィルムを作製した。
 ガスバリアフィルムには、ドラムの直下流のパスローラにおいて、無機層の表面に保護フィルムを積層し、その後、巻取り軸に巻き取った。このようにして、ガスバリアフィルムの無機層に保護フィルムを積層した積層体を巻回したロールを得た。
<< Formation of inorganic layer >>
The roll obtained by winding the support having the underlying organic layer formed thereon has three film forming units, a first film forming unit, a second film forming unit, and a third film forming unit, as shown in FIG. The substrate was loaded onto a predetermined position of an inorganic film forming apparatus for film formation by CCP-CVD with RtoR while being wound around and transported.
The support (the support on which the base organic layer was formed) unwound from the roll 74 was passed through a pass roller, a drum, and a predetermined transport path passing through the pass roller and reaching the winding shaft. Furthermore, the supply roll which wound the protective film made from PE was loaded in the predetermined position, and the protective film was laminated on the inorganic layer in the pass roller just downstream of a drum.
The protective film is peeled off by the pass roller immediately upstream of the drum while conveying the support unwound from the roll in the longitudinal direction, and then a silicon nitride layer is formed as the inorganic layer on the base organic layer, as shown in FIG. Such a gas barrier film was produced.
In the gas barrier film, a protective film was laminated on the surface of the inorganic layer in a pass roller immediately downstream of the drum, and then wound around the winding shaft. Thus, the roll which wound the laminated body which laminated | stacked the protective film on the inorganic layer of the gas barrier film was obtained.
 無機層(窒化ケイ素層)の形成には、最上流の第1成膜ユニットおよび最下流の第3成膜ユニットを用いた。
 支持体の搬送速度は15m/minとした。
 原料ガスは、シランガス、アンモニアガスおよび水素ガスを用いた。原料ガスの供給量は、第1成膜ユニットは、シランガス150sccm、アンモニアガス300sccmおよび水素ガス500sccm、第3成膜ユニットは、シランガス150sccm、アンモニアガス350sccmおよび水素ガス500sccmとした。
 第1成膜ユニットおよび第3成膜ユニット、共に、プラズマ励起電力(電力)は2.5kW、プラズマ励起電力の周波数は13.56MHzとした。
 ドラムには、周波数0.4MHz、0.5kWのバイアス電力を供給した。また、ドラムは、冷却手段によって30℃に温度制御した。
 成膜圧力は50Paとした。
For the formation of the inorganic layer (silicon nitride layer), the most upstream first film formation unit and the most downstream third film formation unit were used.
The transport speed of the support was 15 m / min.
As source gases, silane gas, ammonia gas and hydrogen gas were used. The feed rates of the source gas were 150 sccm for the first film forming unit, 300 sccm for the ammonia gas, and 500 sccm for the hydrogen gas, and the third film forming unit was 150 sccm for the silane gas, 350 sccm for the ammonia gas, and 500 sccm for the hydrogen gas.
In both of the first film forming unit and the third film forming unit, the plasma excitation power (power) was 2.5 kW, and the frequency of the plasma excitation power was 13.56 MHz.
The drum was supplied with bias power at a frequency of 0.4 MHz and 0.5 kW. Also, the drum was temperature controlled to 30 ° C. by the cooling means.
The deposition pressure was 50 Pa.
 [実施例2~13、比較例1~5]
 無機層の形成において、使用する成膜ユニット、各原料ガスの供給量、プラズマ励起電力、および、支持体の搬送速度を、下記の表1に示すように変更した以外は、実施例1と同様に、下地有機層の上に無機層(窒化ケイ素層)を形成して、ガスバリアフィルムを作製し、保護フィルムGbを積層し、巻き取った。
 なお、実施例2のみ、下地有機層を形成せずに、支持体に、直接、無機層を形成した。実施例2では、支持体は、幅1000mm、厚さ100μm、長さ100mのPENフィルム(帝人社製、テオネックスQ65HA)を用いた。この支持体は、片面に易接着層を有するものであり、無機層の形成は、易接着層の無い面に行った。
[Examples 2 to 13, Comparative Examples 1 to 5]
The formation of the inorganic layer is the same as in Example 1 except that the film forming unit used, the supply amount of each raw material gas, the plasma excitation power, and the transport speed of the support are changed as shown in Table 1 below. Then, an inorganic layer (silicon nitride layer) was formed on the base organic layer to prepare a gas barrier film, and a protective film Gb was laminated and wound up.
In Example 2 only, the inorganic layer was formed directly on the support without forming the underlying organic layer. In Example 2, a PEN film (Teijin Ltd., Theonex Q65HA) having a width of 1000 mm, a thickness of 100 μm and a length of 100 m was used as the support. This support had an easy adhesion layer on one side, and the formation of the inorganic layer was performed on the side without the easy adhesion layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [混合層および無機層の厚さ、および、N/Si原子比]
 作製した各ガスバリアフィルムについて、前述のように、アルゴンプラズマによるエッチングおよびXPSによる測定を行って、ケイ素原子、窒素原子、酸素原子および水素原子の組成比との関係を検出して、混合層および無機層の、厚さおよびN/Si原子比を測定した。XPSは、島津製作所製のESCA-3400を用いて行った。
 測定は、中央領域の5点で行い、その平均を、各ガスバリアフィルムにおける、混合層および無機層の、厚さおよびN/Si原子比とした。なお、いずれのガスバリアフィルムも、各点での測定値には、ほとんど差は無かった。
 結果を下記の表2に示す。
[Thickness of mixed layer and inorganic layer, and N / Si atomic ratio]
Each of the produced gas barrier films is subjected to etching by argon plasma and measurement by XPS as described above to detect the relationship with the composition ratio of silicon atoms, nitrogen atoms, oxygen atoms and hydrogen atoms, and to obtain a mixed layer and an inorganic material. The thickness and N / Si atomic ratio of the layers were measured. XPS was performed using ESCA-3400 manufactured by Shimadzu Corporation.
The measurement was performed at five points in the central region, and the average was taken as the thickness and N / Si atomic ratio of the mixed layer and the inorganic layer in each gas barrier film. In addition, in any gas barrier film, there was almost no difference in the measured value at each point.
The results are shown in Table 2 below.
 さらに、作製した各ガスバリアフィルムについて、ガスバリア性および全光線透過率を測定し、また、評価を行った。 Furthermore, the gas barrier properties and the total light transmittance of each of the produced gas barrier films were measured and evaluated.
 [ガスバリア性]
 カルシウム腐食法(特開2005-283561号公報に記載される方法)によって、温度25℃、相対湿度50%RHの条件で、ガスバリアフィルムの水蒸気透過率(WVTR)[g/(m2・day)]を測定した。
 なお、水蒸気透過率の測定は、ガスバリアフィルムの作製直後(作製直後)、温度85℃および相対湿度85%RHの環境下に1000時間放置した後(高温高湿後)、および、直径6mmの円柱に、無機層が外側になるように巻き掛けて屈曲することを10万回行った後(10万回曲げ)の、3つの条件で行った。
[Gas barrier property]
Water vapor transmission rate (WVTR) [g / (m 2 · day) of a gas barrier film under the conditions of temperature 25 ° C. and relative humidity 50% RH by the calcium corrosion method (method described in JP 2005-283561 A) ] Was measured.
The water vapor transmission rate is measured immediately after preparation of the gas barrier film (immediately after preparation), after standing for 1000 hours in an environment with a temperature of 85 ° C. and a relative humidity of 85% RH (after high temperature and high humidity), and a cylinder with a diameter of 6 mm Then, it was carried out under three conditions of bending and bending for 100,000 times so that the inorganic layer was on the outer side (bending for 100,000 times).
 [全光線透過率]
 各ガスバリアフィルムに関して、日本電色工業社製のNDH-7000を用いて、JIS(Japanese Industrial Standards) K 7361-1(1996)に準拠して全光線透過率[%]を測定した。
[Total light transmittance]
The total light transmittance [%] of each gas barrier film was measured according to JIS (Japanese Industrial Standards) K 7361-1 (1996) using NDH-7000 manufactured by Nippon Denshoku Kogyo Co., Ltd.
 [評価]
 全ての水蒸気透過率が1×10-4g/(m2・day)未満、および、全光線透過率が85%超の両方を満たすものをA;
 A評価には入らず、かつ、全ての水蒸気透過率が5×10-4g/(m2・day)以下、および、全光線透過率が82.5%以上の両方を満たすものをB;
 1以上の水蒸気透過率が5×10-4g/(m2・day)超、および、全光線透過率が82.5%未満の、1つでも当てはまるものをC; と評価した。
 結果を下記の表2に示す。
[Evaluation]
All water vapor transmission rates less than 1 × 10 -4 g / (m 2 · day) and total light transmission rates exceeding 85% A;
B which does not enter into the evaluation A and which satisfies both the water vapor transmission rate of 5 × 10 -4 g / (m 2 · day) or less and the total light transmission rate of 82.5% or more;
A water vapor transmission rate of 1 or more, which is more than 5 × 10 -4 g / (m 2 · day), and a total light transmission rate of less than 82.5%, which is one or more applicable, was evaluated as C;
The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表に示されるように、本発明のガスバリアフィルムは、成膜直後のみならず、高温高湿環境に放置した後、および、曲げ試験を行った後にも、高いガスバリア性を維持している。また、本発明のガスバリアフィルムは、全光線透過率も82.5%以上であり、透明性も高い。
 特に、実施例2と、その他の実施例とに示されるように、無機層の下地となる下地有機層を有することにより、より優れたガスバリア性が得られる。また、実施例5と、その他の実施例とに示されるように、混合層のN/Si原子比を0.2~0.85の範囲とすることで、より優れたガスバリア性が得られる。実施例10と、その他の実施例とに示されるように、混合層のN/Si原子比を無機層のN/Si原子比よりも低くすることで、より優れたガスバリア性が得られる。さらに、実施例9と、その他の実施例とに示されるように、混合層のN/Si原子比を無機層のN/Si原子比よりも低くし、かつ、その差を0.05~0.5の範囲とすることで、より高い透明性が得られる。
 一方、比較例1は、混合層が厚すぎるために、ガスバリア性が低い。比較例2および3は、無機層が厚すぎるため、曲げ試験を行うとガスバリア性が低下してしまい、また、透明性も低い。比較例4は、無機層のN/Si原子比が高すぎるため、高温高湿環境に放置すると、ガスバリア性が低下してしまう。さらに、比較例5は、無機層のN/Si原子比が低すぎるため、透明性が低い。
 以上の結果より、本発明の効果は明らかである。
As shown in the above table, the gas barrier film of the present invention maintains high gas barrier properties not only immediately after film formation, but also after being left in a high temperature and high humidity environment and after conducting a bending test. In addition, the gas barrier film of the present invention has a total light transmittance of 82.5% or more, and also has high transparency.
In particular, as shown in Example 2 and the other examples, by having a base organic layer to be a base of the inorganic layer, more excellent gas barrier properties can be obtained. Further, as shown in Example 5 and other examples, by setting the N / Si atomic ratio of the mixed layer to a range of 0.2 to 0.85, more excellent gas barrier properties can be obtained. As shown in Example 10 and other examples, by setting the N / Si atomic ratio of the mixed layer to be lower than the N / Si atomic ratio of the inorganic layer, more superior gas barrier properties can be obtained. Furthermore, as shown in Example 9 and other examples, the N / Si atomic ratio of the mixed layer is made lower than the N / Si atomic ratio of the inorganic layer, and the difference is 0.05 to 0. By setting the range of .5, higher transparency can be obtained.
On the other hand, in Comparative Example 1, the gas barrier property is low because the mixed layer is too thick. In Comparative Examples 2 and 3, since the inorganic layer is too thick, the gas barrier property is lowered when the bending test is conducted, and the transparency is also low. In Comparative Example 4, since the N / Si atomic ratio of the inorganic layer is too high, the gas barrier property is lowered when left in a high temperature and high humidity environment. Furthermore, Comparative Example 5 has low transparency because the N / Si atomic ratio of the inorganic layer is too low.
From the above results, the effects of the present invention are clear.
 太陽電池および有機エレクトロルミネッセンス素子等の封止材として、好適に利用可能である。 It can use suitably as sealing materials, such as a solar cell and an organic electroluminescent element.
 10,20,28 ガスバリアフィルム
 12 支持体
 14 下地有機層
 16,24 混合層
 18 無機層
 40 有機成膜装置
 52、92 回転軸
 54a、54b 搬送ローラ対
 56 塗布部
 58、58a、58b 乾燥部
 60 光照射部
 62、108 巻取り軸
 64、98 回収ロール
 66、104 供給ロール
 72、74、110 ロール
 80 無機成膜装置
 82 真空チャンバ
 84 真空排気手段
 94a~94c、106a~106c パスローラ
 100A 第1成膜ユニット
 100B 第2成膜ユニット
 100C 第3成膜ユニット
 102 ドラム
 114 シャワー電極
 116 高周波電源
 118 ガス供給手段
 Ga,Gb 保護フィルム
DESCRIPTION OF SYMBOLS 10, 20, 28 Gas barrier film 12 Support body 14 Base organic layer 16, 24 Mixed layer 18 Inorganic layer 40 Organic film-forming apparatus 52, 92 Rotating shaft 54a, 54b Conveying roller pair 56 Application part 58, 58a, 58b Drying part 60 Light Irradiator 62, 108 Winding shaft 64, 98 Recovery roll 66, 104 Supply roll 72, 74, 110 Roll 80 Inorganic film forming apparatus 82 Vacuum chamber 84 Vacuum evacuation means 94a to 94c, 106a to 106c Pass roller 100A First film forming unit 100B second film forming unit 100C third film forming unit 102 drum 114 shower electrode 116 high frequency power supply 118 gas supply means Ga, Gb protective film

Claims (5)

  1.  窒化ケイ素を含有し、厚さが2~15nmである無機層と、前記無機層の成分および前記無機層の形成面になる層の成分を含有し、厚さが2~25nmである混合層との組み合わせを、少なくとも1組、有し、
    前記無機層のN/Si原子比が0.7~0.97である、ガスバリアフィルム。
    An inorganic layer containing silicon nitride and having a thickness of 2 to 15 nm, and a mixed layer containing a component of the inorganic layer and a component of the layer to be a surface on which the inorganic layer is to be formed, and having a thickness of 2 to 25 nm At least one combination of
    A gas barrier film, wherein the N / Si atomic ratio of the inorganic layer is 0.7 to 0.97.
  2.  前記混合層のN/Si原子比が0.2~0.85である、請求項1に記載のガスバリアフィルム。 The gas barrier film according to claim 1, wherein the N / Si atomic ratio of the mixed layer is 0.2 to 0.85.
  3.  前記混合層のN/Si原子比が、前記無機層のN/Si原子比より低い、請求項1または2に記載のガスバリアフィルム。 The gas barrier film according to claim 1, wherein an N / Si atomic ratio of the mixed layer is lower than an N / Si atomic ratio of the inorganic layer.
  4.  前記混合層のN/Si原子比と、前記無機層のN/Si原子比との差が0.05~0.5である、請求項3に記載のガスバリアフィルム。 The gas barrier film according to claim 3, wherein the difference between the N / Si atomic ratio of the mixed layer and the N / Si atomic ratio of the inorganic layer is 0.05 to 0.5.
  5.  前記無機層と、前記無機層の下地となる有機層との組み合わせを、1組以上、有し、前記無機層と前記有機層との間に、前記混合層が存在する、請求項1~4のいずれか1項に記載のガスバリアフィルム。 5. The combination of the inorganic layer and the organic layer to be the base of the inorganic layer is one or more, and the mixed layer is present between the inorganic layer and the organic layer. The gas barrier film according to any one of the above.
PCT/JP2018/031245 2017-09-27 2018-08-23 Gas barrier film WO2019065020A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880055572.6A CN111065514B (en) 2017-09-27 2018-08-23 Gas barrier film
JP2019544427A JP6840255B2 (en) 2017-09-27 2018-08-23 Gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-186930 2017-09-27
JP2017186930 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065020A1 true WO2019065020A1 (en) 2019-04-04

Family

ID=65901672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031245 WO2019065020A1 (en) 2017-09-27 2018-08-23 Gas barrier film

Country Status (3)

Country Link
JP (1) JP6840255B2 (en)
CN (1) CN111065514B (en)
WO (1) WO2019065020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181489A1 (en) * 2022-03-25 2023-09-28 富士フイルム株式会社 Laminate and method for producing laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108855A (en) * 2021-01-27 2022-08-04 삼성디스플레이 주식회사 Display device and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342975A (en) * 2004-06-02 2005-12-15 Toppan Printing Co Ltd Transparent barrier film
JP2008214677A (en) * 2007-03-01 2008-09-18 Toyota Central R&D Labs Inc Barrier film and method for producing the same
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
JP2011063851A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Gas barrier coating and gas barrier film
JP2013119209A (en) * 2011-12-07 2013-06-17 Sumitomo Bakelite Co Ltd Transparent composite substrate and display element substrate
JP2013203050A (en) * 2012-03-29 2013-10-07 Fujifilm Corp Gas barrier film and forming method of gas barrier film
WO2014027521A1 (en) * 2012-08-17 2014-02-20 富士フイルム株式会社 Functional film and organic el device
JP2015109384A (en) * 2013-12-05 2015-06-11 富士フイルム株式会社 Substrate with organic functional layer, and manufacturing method of the same
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256134B2 (en) * 2003-08-01 2007-08-14 Applied Materials, Inc. Selective etching of carbon-doped low-k dielectrics
JP2009067040A (en) * 2007-08-21 2009-04-02 Fujifilm Corp Composite gas-barrier film and display element using the same
JP5463168B2 (en) * 2010-03-04 2014-04-09 富士フイルム株式会社 Film forming method and film forming apparatus
CN105246683A (en) * 2013-05-28 2016-01-13 柯尼卡美能达株式会社 Gas-barrier film and process for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342975A (en) * 2004-06-02 2005-12-15 Toppan Printing Co Ltd Transparent barrier film
JP2008214677A (en) * 2007-03-01 2008-09-18 Toyota Central R&D Labs Inc Barrier film and method for producing the same
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
JP2011063851A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Gas barrier coating and gas barrier film
JP2013119209A (en) * 2011-12-07 2013-06-17 Sumitomo Bakelite Co Ltd Transparent composite substrate and display element substrate
JP2013203050A (en) * 2012-03-29 2013-10-07 Fujifilm Corp Gas barrier film and forming method of gas barrier film
WO2014027521A1 (en) * 2012-08-17 2014-02-20 富士フイルム株式会社 Functional film and organic el device
JP2015109384A (en) * 2013-12-05 2015-06-11 富士フイルム株式会社 Substrate with organic functional layer, and manufacturing method of the same
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181489A1 (en) * 2022-03-25 2023-09-28 富士フイルム株式会社 Laminate and method for producing laminate

Also Published As

Publication number Publication date
CN111065514A (en) 2020-04-24
JP6840255B2 (en) 2021-03-10
JPWO2019065020A1 (en) 2020-11-05
CN111065514B (en) 2022-01-25

Similar Documents

Publication Publication Date Title
KR101577547B1 (en) Functional film manufacturing method and functional film
KR101622816B1 (en) Method for producing functional film
JP5730235B2 (en) Gas barrier film and method for producing gas barrier film
JP2009179853A (en) Method for producing functional film
WO2014027521A1 (en) Functional film and organic el device
WO2019065020A1 (en) Gas barrier film
JP6754491B2 (en) Gas barrier film and film formation method
US11203180B2 (en) Gas barrier film and method for producing gas barrier film
US11052642B2 (en) Gas barrier film and method for producing gas barrier film
JP6683836B2 (en) Gas barrier film and method for producing gas barrier film
US20210001601A1 (en) Gas barrier film
WO2018207508A1 (en) Gas barrier film and method for producing gas barrier film
JP5788825B2 (en) Method for producing functional film
US20230257874A1 (en) Method of manufacturing gas barrier film
JP7132431B2 (en) Functional film and method for producing functional film
WO2020050112A1 (en) Film forming method
WO2015141741A1 (en) Electronic device
JP6264096B2 (en) Method for producing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544427

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862212

Country of ref document: EP

Kind code of ref document: A1