WO2019064966A1 - On-vehicle accessory apparatus - Google Patents

On-vehicle accessory apparatus Download PDF

Info

Publication number
WO2019064966A1
WO2019064966A1 PCT/JP2018/030091 JP2018030091W WO2019064966A1 WO 2019064966 A1 WO2019064966 A1 WO 2019064966A1 JP 2018030091 W JP2018030091 W JP 2018030091W WO 2019064966 A1 WO2019064966 A1 WO 2019064966A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
storage device
current
heater
control
Prior art date
Application number
PCT/JP2018/030091
Other languages
French (fr)
Japanese (ja)
Inventor
寿治 岡
酒井 剛志
貴之 福田
輝明 大山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880037945.7A priority Critical patent/CN110741525A/en
Publication of WO2019064966A1 publication Critical patent/WO2019064966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an on-vehicle accessory device.
  • the vehicle is equipped with an on-vehicle accessory device such as a heater for auxiliary air conditioning.
  • the in-vehicle accessory device includes a power storage device, and operates the accessory by supplying current from the power storage device to the accessory such as a heater. Further, the magnitude of the power supplied from the power storage device to the auxiliary device is adjusted by the opening / closing operation of the switching unit formed of a switching element or the like. For example, in the electric heater described in Patent Document 1 below, the magnitude of the current flowing through the heating element is adjusted by opening and closing the plurality of switches in a predetermined order.
  • the storage device When the storage device is charged, the value of the current supplied to the storage device is acquired, and the charge control is performed so that the acquired current value does not exceed a predetermined upper limit value. This prevents the power storage device from becoming a so-called overcharged state. In order to reduce the influence of noise, acquisition of the current value is often performed via a low pass filter.
  • Charging of the storage device may also be performed during operation of the accessory.
  • the current value supplied to the accessory fluctuates along with the opening / closing operation of the switching unit, the current value acquired through the low pass filter fluctuates more gradually than the actual current value.
  • the value of the current supplied to the power storage device may not be accurately obtained. If the value of the current supplied to the power storage device is obtained as a value smaller than the actual current value, control may be performed to increase the current value. As a result, the current value may exceed the upper limit described above, and the power storage device may be in an overcharged state.
  • An object of the present disclosure is to provide an on-vehicle accessory device that can accurately obtain the value of current supplied to a power storage device and prevent overcharging.
  • the on-vehicle auxiliary device includes a power storage device, an auxiliary device that receives power supply from the power storage device, and a switching unit that adjusts the magnitude of power supplied to the auxiliary device by opening and closing.
  • the storage device includes a supply device that supplies current to charge the storage device, a current detection unit that detects a value of the current supplied to the storage device, and a switching control unit that controls the open / close operation of the switching unit.
  • the switching control unit adjusts the open / close operation of the switching unit such that the period in which the value of the current detected by the current detection unit is constant is equal to or longer than a predetermined period when the storage device is being charged. Control is the switching adjustment control.
  • the switching adjustment control is performed when the storage device is being charged.
  • the switching adjustment control is control for adjusting the opening / closing operation (for example, the operation cycle) of the switching unit such that the period in which the value of the current detected by the current detection unit is constant is equal to or longer than a predetermined period.
  • the current value detected by the current detection unit increases or decreases.
  • the next switching operation is not performed until the increased or decreased current value becomes constant, and a period in which the current value becomes constant is ensured for a predetermined period or more.
  • the current value acquired at least in the period coincides with the current value supplied to the power storage device.
  • the value of the current supplied to the power storage device can be accurately acquired while the current is supplied to the accessory device. This prevents the power storage device from being overcharged.
  • an on-vehicle accessory device that can accurately acquire the value of the current supplied to the power storage device and prevent overcharging.
  • FIG. 1 is a view showing the overall configuration of a vehicle-mounted auxiliary device according to the first embodiment.
  • FIG. 2 is a diagram for explaining sampling of current values.
  • FIG. 3 is a diagram for explaining sampling of current values.
  • FIG. 4 is a flowchart showing the flow of processing executed by the heater ECU.
  • FIG. 5 is a view for explaining sampling of current values in the on-vehicle auxiliary device according to the second embodiment.
  • FIG. 6 is a view showing an entire configuration of a vehicle-mounted auxiliary device according to a third embodiment.
  • FIG. 7 is a time chart which shows the time change of the current which flows through a heater.
  • FIG. 8 is a time chart which shows the time change of the current which flows through a heater.
  • FIG. 7 is a time chart which shows the time change of the current which flows through a heater.
  • FIG. 9 is a time chart showing the time change of the current flowing through the heater.
  • FIG. 10 is a time chart which shows the time change of the current which flows through a heater.
  • FIG. 11 is a time chart showing the time change of the current flowing through the heater.
  • FIG. 12 is a time chart which shows the time change of the current which flows through a heater.
  • FIG. 13 is a time chart showing a time change of the current flowing through the heater when the control of the comparative example is executed.
  • FIG. 14 is a time chart showing temporal changes in current flowing through the heater when the control of the comparative example is executed.
  • the in-vehicle accessory device 10 is a device mounted on a vehicle (not shown), and heats air directly or indirectly (for example, via water) by the heater 31 which is an accessory device to assist heating of the vehicle interior. It is configured as a device for In-vehicle accessory device 10 includes power storage device 20, heater device 30, drive circuit 40, capacitor 50, supply device 60, relay system 70, detection circuits 81 and 82, battery ECU 91, and heater ECU 92. And a host ECU 93.
  • the storage device 20 is a device for charging and discharging electric power, and in the present embodiment, is a lithium ion battery.
  • the power storage device 20 supplies a current to a heater device 30 described later, thereby operating the heater 31 (that is, generating heat).
  • the power stored in the power storage device 20 is supplied from a supply device 60 described later. Charging and discharging of power storage device 20 are controlled by a battery ECU 91 described later.
  • the heater device 30 is a device for heating air by the heat generation of the heater 31.
  • the heater 31 receives the supply of power from the power storage device 20 to generate heat, and corresponds to the “auxiliary device” of the on-vehicle accessory device 10.
  • the heater device 30 is provided with a single heater 31, but the number of heaters 31 is not particularly limited.
  • the magnitude of the power supplied to the heater 31 is adjusted by the drive circuit 40 described next. Thereby, the calorific value in the heater 31 is adjusted.
  • the drive circuit 40 adjusts the magnitude of the power supplied to the heater 31 which is an accessory by the switching operation of the switching element 41.
  • an IGBT is used as the switching element 41.
  • Switching element 41 is arranged at a position in series with heater 31 on a path where current is supplied from power storage device 20. Therefore, when the switching element 41 is in the closed state, the electric power from the power storage device 20 is supplied to the heater 31. When the switching element 41 is in the open state, the supply of power to the heater 31 is stopped.
  • the drive circuit 40 adjusts the magnitude of the power supplied to the heater 31 by adjusting the duty when the switching element 41 repeatedly opens and closes. The opening and closing operation of the switching element 41 is controlled by the heater ECU 92.
  • the switching element 41 corresponds to the “switching unit” in the present embodiment.
  • the capacitor 50 functions as a so-called “smoothing capacitor”.
  • the capacitor 50 is disposed in parallel to the heater 31.
  • Supply device 60 is a device for supplying current to power storage device 20 for charging.
  • a motor generator mounted on a vehicle is used as the supply device 60.
  • a pair of wires for outputting power from the supply device 60 to the power storage device 20 is connected to positions that are both ends of the capacitor 50.
  • the magnitude of the current supplied (that is, charged) from power supply device 60 to power storage device 20 is adjusted by the control performed by battery ECU 91.
  • the relay system 70 is a safety device that switches between opening and closing between the power storage device 20 and the heater device 30.
  • the relay system 70 includes a relay 71 and a relay 73, which are disposed on a current path connecting the storage device 20 and the heater device 30. Further, the current path in which the relay 71 is disposed branches off midway, and the relay 72 and the resistor 74 are arranged in series on the branched path.
  • the relay system 70 is closed. At this time, the relay 71 and the relay 73 are in the closed state, and the relay 72 is in the open state.
  • all of the relays 71, 72, 73 are switched to the open state. As a result, the supply of power to the heater device 30 is shut off.
  • the relay system 70 switches from the open state to the closed state, the relay 71 is kept open, and then the relay 72 and the relay 73 are first closed. Thereafter, the relay 72 is opened and at the same time the relay 71 is closed.
  • current starts to be supplied via the resistor 74, so that a large inrush current is prevented from flowing in the heater device 30.
  • Detection circuit 81 is a circuit for detecting a current charged or discharged in power storage device 20, a voltage between terminals of power storage device 20, a temperature of power storage device 20, and the like. Detection circuit 81 detects the above-described current value and the like based on signals from various sensors (not shown) provided around power storage device 20. The current value and the like detected by the detection circuit 81 are acquired by the battery ECU 91. Such a detection circuit 81 corresponds to a "current detection unit" that detects the value of the current supplied to the power storage device 20. The value of the current supplied to the power storage device 20 is detected by the detection circuit 81 via the low pass filter 83. This removes the effect of noise on the acquisition of the current value.
  • the detection circuit 81 can also detect the charging rate (so-called "SOC”) in the power storage device 20. Such a detection circuit 81 also corresponds to the “charging rate detection unit” in the present embodiment.
  • the detection circuit 82 is a circuit for detecting the current flowing through the heater 31, the voltage applied to the heater 31, the temperature of the heater 31, and the like.
  • the detection circuit 82 detects the above current value and the like based on signals from various sensors (not shown) provided around the heater 31.
  • the current value and the like detected by the detection circuit 82 are acquired by the heater ECU 92.
  • the battery ECU 91 is a control device for controlling charge and discharge of the power storage device 20.
  • the battery ECU 91 is configured as a computer system having a CPU, a ROM, a RAM, and the like. The same applies to the heater ECU 92 and the host ECU 93 described later. As described above, the battery ECU 91 can also acquire various information (such as current values) of the power storage device 20 detected by the detection circuit 81.
  • the battery ECU 91 can control the supply device 60 and charge the storage device 20 with the current from the supply device 60 even when the heater 31 is generating heat by the current from the storage device 20.
  • Such battery ECU 91 corresponds to a “charge control unit” that controls charging of the power storage device 20.
  • the battery ECU 91 When receiving the charge request signal from the host ECU 93, the battery ECU 91 starts charging the power storage device 20. At this time, battery ECU 91 operates the power converter (not shown) provided in power storage device 20 so that the value of the current detected by detection circuit 81 (current detection unit) does not exceed the predetermined current upper limit value. Control.
  • the “current upper limit value” is an upper limit value of current set so as not to overcharge the power storage device 20, and is set each time according to the charging rate of the power storage device 20.
  • the heater ECU 92 is a control device for controlling the opening / closing operation of the switching element 41 to adjust the amount of heat generation of the heater 31.
  • the heater ECU 92 transmits a control signal to the drive circuit 40 to adjust the duty in the opening / closing operation of the switching element 41.
  • the heater ECU 92 adjusts the duty as described above so that the calorific value of the heater 31 matches the required heat amount transmitted from the host ECU 93.
  • Such a heater ECU 92 corresponds to the “switching control unit” in the present embodiment.
  • the host ECU 93 is a control device for generally controlling the entire operation of the in-vehicle accessory device 10. As described above, the host ECU 93 transmits a charge request signal to the battery ECU 91, and performs processing for starting charging of the storage device 20. Further, the host ECU 93 transmits the required heat amount to the heater ECU 92, and performs a process of adjusting the calorific value of the heater 31. Furthermore, the host ECU 93 can also perform processing that mediates communication between the battery ECU 91 and the heater ECU 92.
  • the configuration of the control device as described above is merely an example.
  • the battery ECU 91, the heater ECU 92, and the host ECU 93 may not be divided into three devices, but may be entirely configured as a single computer system.
  • at least a part of the battery ECU 91, the heater ECU 92, and the host ECU 93 may be configured as a part of another ECU mounted on the vehicle.
  • a line L11 in FIG. 2 is a graph showing a time change of a current value actually supplied to power storage device 20.
  • the current value fluctuates in a rectangular wave as shown in FIG. 2 along with the switching operation of the switching element 41.
  • the current does not flow to the heater 31, so the value of the current supplied to the power storage device 20 increases to I20.
  • the current flows through the heater 31, and the value of the current supplied to the power storage device 20 decreases to I10.
  • the period TM1 and the period TM2 are alternately repeated, and the duty in the switching operation of the switching element 41 is 50%.
  • duty is a ratio of the length of the period in which the switching element 41 is in the closed state to the length of one cycle of the switching operation of the switching element 41. The same applies to the following description. As the duty approaches 100%, the calorific value of the heater 31 increases.
  • a line L12 in FIG. 2 is a graph showing a time change of the current value input to the detection circuit 81 through the low pass filter 83.
  • the waveform shown by the line L12 is not a rectangular wave like the line L11, but is a waveform that rises and falls gently.
  • the cycle of the switching operation of the switching element 41 is relatively short.
  • the line L12 only increases to a value lower than I20.
  • the line L12 only decreases to a value higher than I10.
  • the current value input to detection circuit 81 is a value different from the value of the current actually supplied to power storage device 20.
  • a plurality of points P shown in FIG. 2 indicate timings at which the battery ECU 91 samples current values.
  • the battery ECU 91 does not continuously acquire the current value input to the detection circuit 81, but discretely acquires the current value each time a predetermined sampling period elapses.
  • the maximum value of the current acquired by the battery ECU 91 is a value lower than the maximum value of the current value input to the detection circuit 81.
  • the battery ECU 91 can not accurately measure the current value (that is, I20 or I10) actually supplied to the power storage device 20. Therefore, although the battery ECU 91 performs control such that the current value detected by the detection circuit 81 does not exceed the current upper limit value, the current value may actually exceed the current upper limit value. .
  • the heater ECU 92 which is a switching control unit performs “switching adjustment control” as needed to temporarily increase the detection accuracy of the current value.
  • a line L21 in FIG. 3 is a graph showing a time change of the current value actually supplied to power storage device 20 when the switching adjustment control is performed.
  • a line L22 shown in FIG. 3 is a graph showing a time change of the current value input to the detection circuit 81 through the low pass filter 83 when the switching adjustment control is performed.
  • the length of the period TM1 in which the switching element 41 is in the open state and the length of the period TM2 in which the switching element 41 is in the closing state are longer than those in the normal time shown in FIG. It has become.
  • the open / close operation cycle of the switching element 41 is longer than that at the normal time (FIG. 2).
  • the current value input to the detection circuit 81 is increased to I20 which is the maximum value. Further, the length of the period during which the current value increases to I20 and becomes a constant value is equal to or longer than the cycle in which the battery ECU 91 performs sampling (that is, the interval between points P). In other words, the heater ECU 92 serving as the switching control unit adjusts the cycle of the switching operation of the switching element 41 so that the length of the period in which the current value is constant (I20) is equal to or longer than the sampling cycle.
  • the heater ECU 92 serving as the switching control unit adjusts the cycle of the switching operation of the switching element 41 so that the length of the period in which the current value is constant (I10) is also longer than the sampling cycle.
  • the current values acquired at the respective points P include both the minimum value I10 and the maximum value I20. Since battery ECU 91 can accurately grasp the value of the current supplied to power storage device 20, the current does not exceed the current upper limit value. As a result, overcharging of power storage device 20 is reliably prevented.
  • the duty in the switching operation of the switching element 41 is 50% similar to the example shown in FIG. 2. That is, in the switching adjustment control in the present embodiment, the opening / closing operation cycle of the switching element 41 is changed so as to be longer than normal, while the duty in the opening / closing operation is not changed. Thereby, the calorific value in the heater 31 can be continuously matched with the calorific value required from the host ECU 93.
  • a flow of processing executed by the heater ECU 92 to realize the control as described above will be described with reference to FIG.
  • the series of processes shown in FIG. 4 are repeatedly executed by the heater ECU 92 each time a predetermined control cycle elapses.
  • various types of information including the required heat generation amount are acquired from the host ECU 93.
  • the information includes information indicating whether or not the power storage device 20 is being charged, the charging rate of the power storage device 20, and the like. Such information indicating the state of the power storage device 20 is transmitted in advance from the battery ECU 91 to the host ECU 93.
  • step S02 following step S01, it is determined whether or not power storage device 20 is being charged, and the charging rate of power storage device 20 is equal to or greater than a predetermined charge threshold.
  • the “charging threshold value” is a threshold value preset as a lower value (for example, 60%) than a limit value (for example, 80%) at which the performance of the power storage device 20 decreases. If the determination in step S02 is negative, the process proceeds to step S03.
  • step S03 the normal control described with reference to FIG. 2 is performed. That is, the control for causing the switching element 41 to perform the opening / closing operation in a relatively short cycle is performed by the heater ECU 92. In parallel to this, a process of measuring the value of the current charged / discharged to / from the power storage device 20 is performed by the battery ECU 91.
  • step S04 the switching adjustment control described with reference to FIG. 3 is performed. That is, the control for causing the switching element 41 to perform the open / close operation in a cycle longer than normal time is performed by the heater ECU 92. In parallel to this, the process of measuring the value of the current supplied to power storage device 20 is performed by battery ECU 91.
  • the heater ECU 92 of the in-vehicle accessory device 10 is a period during which the value of the current detected by the detection circuit 81 becomes constant when the storage battery 20 is being charged.
  • the switching adjustment control which is control for adjusting the opening / closing operation of the switching element 41, is performed so that the time period of the predetermined period is equal to or longer than a predetermined period.
  • heater ECU 92 performs the above-described switching adjustment control only when charging of power storage device 20 is performed and the charging rate of power storage device 20 becomes equal to or higher than a predetermined charging threshold. Is configured as. In a situation where the measurement accuracy of the current value does not matter so much, the operation cycle of the switching element 41 remains short by not performing the switching adjustment control. As a result, temperature control can be performed in an optimal operation cycle.
  • the second embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate.
  • the present embodiment is different from the first embodiment only in the aspect of the switching adjustment control performed by the heater ECU 92.
  • the switching element 41 is temporarily fixed in the closed state.
  • the value of the current supplied to the storage device 20 becomes constant (I10).
  • Such a state is maintained at least for a period longer than the sampling period by the battery ECU 91.
  • a line L31 in FIG. 5 is a graph showing a time change of the current value actually supplied to power storage device 20 when the switching adjustment control is performed.
  • a line L32 in FIG. 5 is a graph showing a time change of the current value input to the detection circuit 81 through the low pass filter 83 when the switching adjustment control is performed.
  • the line L31 and the line L32 are the same as each other. Therefore, the battery ECU 91 samples an accurate current value.
  • the switching element 41 When the switching adjustment control is performed, the switching element 41 may be fixed in the closed state as described above, or may be fixed in the open state. Even in this case, the value of the current supplied to power storage device 20 is constant (I20).
  • control may be performed to fix the open / close state of the switching element 41 in either the closed state or the open state. Even in such a mode, the same effects as those described in the first embodiment can be obtained.
  • the heater device 30 has two heaters 31 and 32.
  • the drive circuit 40 has two switching elements 41 and 42.
  • the heater 32 is disposed at a position parallel to the heater 31. Further, the switching element 42 is disposed in parallel with the switching element 41 and in series with the heater 32. The heater 32, together with the heater 31, corresponds to an accessory of the in-vehicle accessory device 10.
  • the heater 32 When the switching element 42 is closed, the heater 32 is supplied with the current from the power storage device 20. In addition, when the switching element 42 is opened, the supply of power to the heater 32 is stopped.
  • the drive circuit 40 adjusts the magnitude of the power supplied to the heater 32 by adjusting the duty when the switching element 42 repeatedly opens and closes. The opening and closing operation of the switching element 42 is controlled by the heater ECU 92.
  • the switching element 42 and the switching element 41 correspond to the “switching unit” in the present embodiment.
  • the in-vehicle accessory device 10 includes two sets of the accessory (heater) and the switching unit (switching element). Instead of such an aspect, an aspect in which three or more sets of an accessory and a switching unit are provided may be adopted. In the present embodiment, control is performed such that the sum of the calorific value of the heater 31 and the calorific value of the heater 32 matches the required heat amount transmitted from the host ECU 93.
  • FIG. 13A is a graph showing the time change of the current supplied to the heater 31.
  • FIG. 13 (B) is a graph showing the time change of the current supplied to the heater 32.
  • FIG. 13 (C) is a graph showing the time change of the total current supplied to the heater device 30. That is, it is a graph which shows the time change of the total value of the electric current supplied to the heater 31, and the electric current supplied to the heater 32.
  • FIG. 13A is a graph showing the time change of the current supplied to the heater 31.
  • FIG. 13 (B) is a graph showing the time change of the current supplied to the heater 32.
  • FIG. 13 (C) is a graph showing the time change of the total current supplied to the heater device 30. That is, it is a graph which shows the time change of the total value of the electric current supplied to the heater 31, and the electric current supplied to the heater 32.
  • the length of the period in which the current value is the maximum value (I30) is such that battery ECU 91 can accurately obtain the value of the current supplied to power storage device 20. It is assumed that it is the lower limit value. In such a situation, if the duty of the waveform shown in FIG. 13C is smaller than 50%, the length of the period in which the current value becomes I30 becomes too short, so the power storage device 20 is supplied during this period. It becomes impossible to obtain the current value accurately. Conversely, if the duty of the waveform shown in FIG. 13C is greater than 50%, the length of the period in which the current value is 0 becomes too short, so the current value supplied to power storage device 20 in that period is You will not be able to get accurate.
  • the duty of the current supplied to each of the heaters 31 and 32 should be 75% instead of 25%. You can also.
  • FIG. 14A is a graph showing the time change of the current supplied to the heater 31 and is an example in which the duty is 75%.
  • FIG. 14B is a graph showing the time change of the current supplied to the heater 32, and is an example in the case where the duty is 75%.
  • the phase of the current supplied to the heater 31 is 180 degrees out of phase with the phase of the current supplied to the heater 32.
  • FIG. 14 (C) is a graph showing the time change of the total current supplied to the heater device 30.
  • the waveform of the current supplied to the heater device 30 is a waveform that fluctuates at a duty of 50% in the range from I40 to I50.
  • I40 is the maximum value of the current flowing through each of the heaters 31 and 32
  • I50 is a current value equal to twice I40.
  • the heater ECU 92 switching control unit in the present embodiment controls the drive circuit 40 so as to fix the switching element 41 in the open state and open and close the switching element 42 with a predetermined duty.
  • the duty is 25%, and in the example of FIG. 8, the duty is 75%.
  • the current value supplied to the heater 31 is fixed to 0 as described above. Therefore, the duty of the current supplied to the heater device 30 is the same as the duty of the current supplied to the heater 32. Therefore, even if the duty is changed between 25% and 75%, part of the period in which the current value supplied to power storage device 20 is constant (maximum value or minimum value) may be too short. There is not. That is, the duty is adjusted in the range of 25% to 75% while securing the length of the period in which the current value supplied to power storage device 20 is constant longer than the sampling period of the current value by heater ECU 92. The amount of heat generated by the heater device 30 can be adjusted.
  • the heater ECU 92 in this embodiment is configured to perform switching adjustment control by fixing the open / close state of one switching element 41 and adjusting the opening / closing operation of the other switching element 42. .
  • the same effects as those described in the first embodiment can be obtained.
  • the switching element 41 may not be fixed in the open state, but may be fixed in the closed state.
  • An example when such control is performed is shown in FIG. 9 and FIG.
  • the duty of the current flowing through the heater 32 is 25% in the example of FIG. 9 and 75% in the example of FIG. Also in this example, even when the duty of the current supplied to the heater device 30 is changed between 25% and 75%, a period during which the current value supplied to the power storage device 20 is constant (maximum value or minimum value). There is no chance that part of the will be too short. It should be noted that whether the switching element 41 is to be fixed in the open state or the closed state may be appropriately selected in accordance with the required heat amount from the host ECU 93.
  • the heater 31 does not generate heat.
  • the duty of the switching element 42 is adjusted only in the range of 25% to 75%, the calorific value of the entire heater device 30 may be insufficient relative to the required heat quantity from the host ECU 93. .
  • the duty of the switching element 42 is 75% in the period up to the time t10.
  • the calorific value of the entire heater device 30 is in a state in which the calorific value from the host ECU 93 matches.
  • the heater ECU 92 performs control (first control) to open / close the switching element 42 whose open / close state is not fixed at a duty of 75% (first duty), which is larger than 75%
  • the control (second control) for opening and closing operation at the duty (second duty) is alternately executed after time t10.
  • a period in which the first control is being performed is shown as a period TM3
  • a period in which the second control is being performed is shown as a period TM4.
  • the duty of the current supplied to the heater device 30 is substantially greater than 75%. Even when such control is performed, a part of a period in which the current value supplied to power storage device 20 is constant (maximum value or minimum value) will not be too short. Therefore, the current value supplied to power storage device 20 can be accurately acquired by battery ECU 91 while the heater device 30 generates heat according to the amount of heat required from host ECU 93. As described above, even if the duty of the current flowing through the heater 32 is 75%, when the calorific value does not meet the required heat quantity, the calorific value can be reduced by alternately executing the first control and the second control. It can be matched to the required heat quantity.
  • the switching element 42 may be opened and closed at a duty of 100% during the period in which the second control is being performed. That is, the switching element 42 may be maintained in the closed state.
  • FIG. 12 shows the time change of each current when such control is performed.
  • the period TM5 shown in FIG. 12 is a period during which the switching element 42 is operated to open / close at a duty of 100% as described above.
  • the number of switching elements fixed in the open state or the closed state as in switching element 41 may be two or more.
  • the number of switching elements for which the adjustment of duty is performed (or maintained in the closed state as shown in FIG. 12B) may be two or more.
  • the accessory may be an apparatus other than a heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This on-vehicle accessory apparatus (10) is provided with: an electrical storage device (20); an accessory (31, 32) which receives a supply of electric power from the electrical storage device; a switching unit (41, 42) which regulates the magnitude of the electric power supplied from the electrical storage device by performing a switching operation; a supply device (60) which charges up the electrical storage device by supplying electric current thereto; a current detection unit (81) which detects the value of the electric current supplied to the electrical storage device; and a switching control unit (92) which controls the switching operation of the switching unit. The switching control unit performs switching regulation control, which is performed to regulate the switching operation of the switching unit such that, when the charging of the electrical storage device is taking place, the period in which the value of the electric current detected by the current detection unit remains constant continues for at least a prescribed duration of time.

Description

車載用補機装置Automotive auxiliary equipment 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年9月28日に出願された日本国特許出願2017-187691号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-187691 filed on September 28, 2017, and claims the benefit of its priority, and the entire contents of the patent application are: Incorporated herein by reference.
 本開示は車載用補機装置に関する。 The present disclosure relates to an on-vehicle accessory device.
 車両には、例えば補助空調用ヒーターのような車載用補機装置が搭載される。車載用補機装置は蓄電装置を備えており、蓄電装置からヒーター等の補機に電流を供給することにより補機を動作させる。また、蓄電装置から補機に供給される電力の大きさは、スイッチング素子等からなるスイッチング部の開閉動作によって調整される。例えば下記特許文献1に記載の電気ヒーターでは、複数のスイッチを所定の順序で開閉させることにより、発熱素子に流れる電流の大きさを調整している。 The vehicle is equipped with an on-vehicle accessory device such as a heater for auxiliary air conditioning. The in-vehicle accessory device includes a power storage device, and operates the accessory by supplying current from the power storage device to the accessory such as a heater. Further, the magnitude of the power supplied from the power storage device to the auxiliary device is adjusted by the opening / closing operation of the switching unit formed of a switching element or the like. For example, in the electric heater described in Patent Document 1 below, the magnitude of the current flowing through the heating element is adjusted by opening and closing the plurality of switches in a predetermined order.
特開2006-327341号公報JP, 2006-327341, A
 蓄電装置への充電が行われる際には、蓄電装置に供給される電流の値が取得され、取得された電流値が所定の上限値を超えないように充電の制御が行われる。これにより、蓄電装置が所謂過充電の状態となってしまうことが防止される。尚、ノイズの影響を低減するために、電流値の取得はローパスフィルタを介して行われることが多い。 When the storage device is charged, the value of the current supplied to the storage device is acquired, and the charge control is performed so that the acquired current value does not exceed a predetermined upper limit value. This prevents the power storage device from becoming a so-called overcharged state. In order to reduce the influence of noise, acquisition of the current value is often performed via a low pass filter.
 蓄電装置への充電は、補機の動作中においても行われることがある。この場合、スイッチング部の開閉動作に伴って補機に供給される電流値が変動するが、ローパスフィルタを介して取得される電流値は、実際の電流値よりも緩やかに変動することとなる。その結果、蓄電装置に供給される電流の値が正確には取得されないことがある。蓄電装置に供給される電流の値が、実際の電流値よりも小さい値として取得されてしまうと、当該電流値を増加させる制御が行われる可能性がある。その結果、電流値が上記の上限値を超えてしまい、蓄電装置が過充電の状態となってしまうおそれがある。 Charging of the storage device may also be performed during operation of the accessory. In this case, although the current value supplied to the accessory fluctuates along with the opening / closing operation of the switching unit, the current value acquired through the low pass filter fluctuates more gradually than the actual current value. As a result, the value of the current supplied to the power storage device may not be accurately obtained. If the value of the current supplied to the power storage device is obtained as a value smaller than the actual current value, control may be performed to increase the current value. As a result, the current value may exceed the upper limit described above, and the power storage device may be in an overcharged state.
 本開示は、蓄電装置に供給される電流の値を正確に取得し、過充電を防止することのできる車載用補機装置を提供することを目的とする。 An object of the present disclosure is to provide an on-vehicle accessory device that can accurately obtain the value of current supplied to a power storage device and prevent overcharging.
 本開示に係る車載用補機装置は、蓄電装置と、蓄電装置から電力の供給を受ける補機と、補機に供給される電力の大きさを、開閉動作することにより調整するスイッチング部と、蓄電装置に電流を供給し充電を行う供給装置と、蓄電装置に供給される電流の値を検知する電流検知部と、スイッチング部の開閉動作を制御するスイッチング制御部と、を備える。スイッチング制御部は、蓄電装置への充電が行われているときにおいて、電流検知部により検知される電流の値が一定となる期間が所定期間以上となるように、スイッチング部の開閉動作を調整する制御、であるスイッチング調整制御を行う。 The on-vehicle auxiliary device according to the present disclosure includes a power storage device, an auxiliary device that receives power supply from the power storage device, and a switching unit that adjusts the magnitude of power supplied to the auxiliary device by opening and closing. The storage device includes a supply device that supplies current to charge the storage device, a current detection unit that detects a value of the current supplied to the storage device, and a switching control unit that controls the open / close operation of the switching unit. The switching control unit adjusts the open / close operation of the switching unit such that the period in which the value of the current detected by the current detection unit is constant is equal to or longer than a predetermined period when the storage device is being charged. Control is the switching adjustment control.
 このような構成の車載用補機装置では、蓄電装置への充電が行われているときにスイッチング調整制御が行われる。スイッチング調整制御とは、電流検知部により検知される電流の値が一定となる期間が所定期間以上となるように、スイッチング部の開閉動作(例えば動作周期)を調整する制御である。 In the on-vehicle accessory device having such a configuration, the switching adjustment control is performed when the storage device is being charged. The switching adjustment control is control for adjusting the opening / closing operation (for example, the operation cycle) of the switching unit such that the period in which the value of the current detected by the current detection unit is constant is equal to or longer than a predetermined period.
 スイッチング部の開閉が切り換わった直後においては、電流検知部により検知される電流値は増加又は減少する。スイッチング調整制御が行われているときには、増加又は減少した電流値が一定となるまで次の開閉動作が行われず、且つ電流値が一定となる期間が所定期間以上確保される。少なくとも当該期間に取得された電流値は、蓄電装置に供給されている電流値と一致する。 Immediately after the switching of the switching unit is switched, the current value detected by the current detection unit increases or decreases. When the switching adjustment control is being performed, the next switching operation is not performed until the increased or decreased current value becomes constant, and a period in which the current value becomes constant is ensured for a predetermined period or more. The current value acquired at least in the period coincides with the current value supplied to the power storage device.
 このように、上記構成の車載用補機装置では、補機への電流供給を行いながらも、蓄電装置に供給される電流の値を正確に取得することができる。これにより、蓄電装置が過充電となってしまうことが防止される。 As described above, in the on-vehicle accessory device configured as described above, the value of the current supplied to the power storage device can be accurately acquired while the current is supplied to the accessory device. This prevents the power storage device from being overcharged.
 本開示によれば、蓄電装置に供給される電流の値を正確に取得し、過充電を防止することのできる車載用補機装置が提供される。 According to the present disclosure, there is provided an on-vehicle accessory device that can accurately acquire the value of the current supplied to the power storage device and prevent overcharging.
図1は、第1実施形態に係る車載用補機装置の全体構成を示す図である。FIG. 1 is a view showing the overall configuration of a vehicle-mounted auxiliary device according to the first embodiment. 図2は、電流値のサンプリングについて説明するための図である。FIG. 2 is a diagram for explaining sampling of current values. 図3は、電流値のサンプリングについて説明するための図である。FIG. 3 is a diagram for explaining sampling of current values. 図4は、ヒーターECUによって実行される処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing executed by the heater ECU. 図5は、第2実施形態に係る車載用補機装置における、電流値のサンプリングについて説明するための図である。FIG. 5 is a view for explaining sampling of current values in the on-vehicle auxiliary device according to the second embodiment. 図6は、第3実施形態に係る車載用補機装置の全体構成を示す図である。FIG. 6 is a view showing an entire configuration of a vehicle-mounted auxiliary device according to a third embodiment. 図7は、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 7 is a time chart which shows the time change of the current which flows through a heater. 図8は、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 8 is a time chart which shows the time change of the current which flows through a heater. 図9は、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 9 is a time chart showing the time change of the current flowing through the heater. 図10は、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 10 is a time chart which shows the time change of the current which flows through a heater. 図11は、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 11 is a time chart showing the time change of the current flowing through the heater. 図12は、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 12 is a time chart which shows the time change of the current which flows through a heater. 図13は、比較例の制御が実行された場合において、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 13 is a time chart showing a time change of the current flowing through the heater when the control of the comparative example is executed. 図14は、比較例の制御が実行された場合において、ヒーターを流れる電流の時間変化を示すタイムチャートである。FIG. 14 is a time chart showing temporal changes in current flowing through the heater when the control of the comparative example is executed.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1を参照しながら、第1実施形態に係る車載用補機装置10の構成について説明する。車載用補機装置10は不図示の車両に搭載される装置であって、補機であるヒーター31によって空気を直接又は間接的に(例えば水を介して)加熱し、車室内の暖房を補助するための装置として構成されている。車載用補機装置10は、蓄電装置20と、ヒーター装置30と、駆動回路40と、コンデンサ50と、供給装置60と、リレーシステム70と、検出回路81、82と、バッテリECU91と、ヒーターECU92と、上位ECU93と、を備えている。 The configuration of the on-vehicle accessory device 10 according to the first embodiment will be described with reference to FIG. 1. The in-vehicle accessory device 10 is a device mounted on a vehicle (not shown), and heats air directly or indirectly (for example, via water) by the heater 31 which is an accessory device to assist heating of the vehicle interior. It is configured as a device for In-vehicle accessory device 10 includes power storage device 20, heater device 30, drive circuit 40, capacitor 50, supply device 60, relay system 70, detection circuits 81 and 82, battery ECU 91, and heater ECU 92. And a host ECU 93.
 蓄電装置20は、電力の充放電を行うための装置であって、本実施形態ではリチウムイオンバッテリーである。蓄電装置20は、後述のヒーター装置30に電流を供給し、これによりヒーター31を動作(つまり発熱)させる。蓄電装置20に蓄えられている電力は、後述の供給装置60から供給されたものである。蓄電装置20の充放電は、後述のバッテリECU91によって制御される。 The storage device 20 is a device for charging and discharging electric power, and in the present embodiment, is a lithium ion battery. The power storage device 20 supplies a current to a heater device 30 described later, thereby operating the heater 31 (that is, generating heat). The power stored in the power storage device 20 is supplied from a supply device 60 described later. Charging and discharging of power storage device 20 are controlled by a battery ECU 91 described later.
 ヒーター装置30は、ヒーター31の発熱によって空気を加熱するための装置である。ヒーター31は、蓄電装置20から電力の供給を受けて発熱するものであり、車載用補機装置10の「補機」に該当する。本実施形態では、ヒーター装置30には単一のヒーター31が備えられているのであるが、ヒーター31の個数は特に限定されない。ヒーター31に供給される電力の大きさは、次に述べる駆動回路40によって調整される。これにより、ヒーター31における発熱量が調整される。 The heater device 30 is a device for heating air by the heat generation of the heater 31. The heater 31 receives the supply of power from the power storage device 20 to generate heat, and corresponds to the “auxiliary device” of the on-vehicle accessory device 10. In the present embodiment, the heater device 30 is provided with a single heater 31, but the number of heaters 31 is not particularly limited. The magnitude of the power supplied to the heater 31 is adjusted by the drive circuit 40 described next. Thereby, the calorific value in the heater 31 is adjusted.
 駆動回路40は、補機であるヒーター31に供給される電力の大きさを、スイッチング素子41の開閉動作によって調整するものである。本実施形態では、スイッチング素子41としてIGBTが用いられている。スイッチング素子41は、蓄電装置20から電流が供給される経路上において、ヒーター31に対して直列となる位置に配置されている。このため、スイッチング素子41が閉状態になると、ヒーター31には蓄電装置20からの電力が供給される。また、スイッチング素子41が開状態になると、ヒーター31に対する電力の供給が停止される。駆動回路40は、スイッチング素子41が繰り返し開閉動作する際のデューティを調整することにより、ヒーター31に供給される電力の大きさを調整する。スイッチング素子41の開閉動作はヒーターECU92によって制御される。スイッチング素子41は、本実施形態における「スイッチング部」に該当するものである。 The drive circuit 40 adjusts the magnitude of the power supplied to the heater 31 which is an accessory by the switching operation of the switching element 41. In the present embodiment, an IGBT is used as the switching element 41. Switching element 41 is arranged at a position in series with heater 31 on a path where current is supplied from power storage device 20. Therefore, when the switching element 41 is in the closed state, the electric power from the power storage device 20 is supplied to the heater 31. When the switching element 41 is in the open state, the supply of power to the heater 31 is stopped. The drive circuit 40 adjusts the magnitude of the power supplied to the heater 31 by adjusting the duty when the switching element 41 repeatedly opens and closes. The opening and closing operation of the switching element 41 is controlled by the heater ECU 92. The switching element 41 corresponds to the “switching unit” in the present embodiment.
 コンデンサ50は、所謂「平滑コンデンサ」として機能するものである。コンデンサ50は、ヒーター31に対して並列となる位置に配置されている。 The capacitor 50 functions as a so-called "smoothing capacitor". The capacitor 50 is disposed in parallel to the heater 31.
 供給装置60は、蓄電装置20に電流を供給し充電を行うための装置である。本実施形態では、車両に搭載されたモータージェネレータが供給装置60として用いられている。図1に示されるように、供給装置60から蓄電装置20へと電力を出力するための一対の線は、コンデンサ50の両端となる位置にそれぞれ接続されている。供給装置60から蓄電装置20に供給される(つまり充電される)電流の大きさは、バッテリECU91が行う制御によって調整される。 Supply device 60 is a device for supplying current to power storage device 20 for charging. In the present embodiment, a motor generator mounted on a vehicle is used as the supply device 60. As shown in FIG. 1, a pair of wires for outputting power from the supply device 60 to the power storage device 20 is connected to positions that are both ends of the capacitor 50. The magnitude of the current supplied (that is, charged) from power supply device 60 to power storage device 20 is adjusted by the control performed by battery ECU 91.
 リレーシステム70は、蓄電装置20とヒーター装置30との間における開閉を切り換える安全装置である。リレーシステム70はリレー71とリレー73とを有しており、これらが、蓄電装置20とヒーター装置30とを繋ぐ電流経路上に配置されている。また、リレー71が配置されている電流経路は途中で分岐しており、この分岐した経路上にはリレー72と抵抗74とが直列に並ぶように配置されている。 The relay system 70 is a safety device that switches between opening and closing between the power storage device 20 and the heater device 30. The relay system 70 includes a relay 71 and a relay 73, which are disposed on a current path connecting the storage device 20 and the heater device 30. Further, the current path in which the relay 71 is disposed branches off midway, and the relay 72 and the resistor 74 are arranged in series on the branched path.
 通常時においては、リレーシステム70は閉状態とされている。このとき、リレー71とリレー73とは閉状態となっており、リレー72は開状態となっている。車載用補機装置10において何らかの異常が生じた際には、リレー71、72、73のいずれもが開状態に切り換えられる。これにより、ヒーター装置30への電力の供給が遮断される。 Under normal conditions, the relay system 70 is closed. At this time, the relay 71 and the relay 73 are in the closed state, and the relay 72 is in the open state. When any abnormality occurs in the in-vehicle accessory device 10, all of the relays 71, 72, 73 are switched to the open state. As a result, the supply of power to the heater device 30 is shut off.
 リレーシステム70が開状態から閉状態に切り換わる際には、リレー71を開状態のままとした上で、先ずリレー72とリレー73とが閉状態とされる。その後、リレー72が開状態とされ、同時にリレー71が閉状態とされる。このような制御が行われると、先ず抵抗74を介して電流が供給され始めることとなるので、ヒーター装置30に大きな突入電流が流れてしまうことが防止される。 When the relay system 70 switches from the open state to the closed state, the relay 71 is kept open, and then the relay 72 and the relay 73 are first closed. Thereafter, the relay 72 is opened and at the same time the relay 71 is closed. When such control is performed, current starts to be supplied via the resistor 74, so that a large inrush current is prevented from flowing in the heater device 30.
 検出回路81は、蓄電装置20で充電又は放電される電流、蓄電装置20の端子間電圧、及び蓄電装置20の温度等を検出するための回路である。検出回路81は、蓄電装置20の周囲に設けられた各種のセンサ(不図示)からの信号に基づいて、上記の電流値等を検出する。検出回路81によって検出された電流値等はバッテリECU91により取得される。このような検出回路81は、蓄電装置20に供給される電流の値を検知する「電流検知部」に該当する。尚、蓄電装置20に供給される電流の値は、ローパスフィルタ83を介して検出回路81により検知される。これにより、電流値の取得におけるノイズの影響が除去される。 Detection circuit 81 is a circuit for detecting a current charged or discharged in power storage device 20, a voltage between terminals of power storage device 20, a temperature of power storage device 20, and the like. Detection circuit 81 detects the above-described current value and the like based on signals from various sensors (not shown) provided around power storage device 20. The current value and the like detected by the detection circuit 81 are acquired by the battery ECU 91. Such a detection circuit 81 corresponds to a "current detection unit" that detects the value of the current supplied to the power storage device 20. The value of the current supplied to the power storage device 20 is detected by the detection circuit 81 via the low pass filter 83. This removes the effect of noise on the acquisition of the current value.
 また、検出回路81は、蓄電装置20における充電率(所謂「SOC」)を検知することも可能となっている。このような検出回路81は、本実施形態における「充電率検知部」にも該当するものである。 The detection circuit 81 can also detect the charging rate (so-called "SOC") in the power storage device 20. Such a detection circuit 81 also corresponds to the “charging rate detection unit” in the present embodiment.
 検出回路82は、ヒーター31を流れる電流、ヒーター31に印加されている電圧、ヒーター31の温度等を検出するための回路である。検出回路82は、ヒーター31の周囲に設けられた各種のセンサ(不図示)からの信号に基づいて、上記の電流値等を検出する。検出回路82によって検出された電流値等はヒーターECU92により取得される。 The detection circuit 82 is a circuit for detecting the current flowing through the heater 31, the voltage applied to the heater 31, the temperature of the heater 31, and the like. The detection circuit 82 detects the above current value and the like based on signals from various sensors (not shown) provided around the heater 31. The current value and the like detected by the detection circuit 82 are acquired by the heater ECU 92.
 バッテリECU91は、蓄電装置20の充放電を制御するための制御装置である。バッテリECU91は、CPU、ROM、RAM等を有するコンピュータシステムとして構成されている。後に説明するヒーターECU92、及び上位ECU93についても同様である。既に述べたように、バッテリECU91は、検出回路81によって検知された蓄電装置20の各種情報(電流値等)を取得することもできる。 The battery ECU 91 is a control device for controlling charge and discharge of the power storage device 20. The battery ECU 91 is configured as a computer system having a CPU, a ROM, a RAM, and the like. The same applies to the heater ECU 92 and the host ECU 93 described later. As described above, the battery ECU 91 can also acquire various information (such as current values) of the power storage device 20 detected by the detection circuit 81.
 バッテリECU91は、蓄電装置20からの電流によってヒーター31の発熱が行われているときにおいても、供給装置60の制御を行い、供給装置60からの電流を蓄電装置20に充電することができる。このようなバッテリECU91は、蓄電装置20への充電を制御する「充電制御部」に該当する。 The battery ECU 91 can control the supply device 60 and charge the storage device 20 with the current from the supply device 60 even when the heater 31 is generating heat by the current from the storage device 20. Such battery ECU 91 corresponds to a “charge control unit” that controls charging of the power storage device 20.
 上位ECU93からの充電要求信号を受信すると、バッテリECU91は、蓄電装置20への充電を開始する。このとき、バッテリECU91は、検出回路81(電流検知部)により検知される電流の値が所定の電流上限値を越えないように、蓄電装置20に設けられた不図示の電力変換器の動作を制御する。「電流上限値」とは、蓄電装置20が過充電とならないように設定される電流の上限値であって、蓄電装置20の充電率に応じて都度設定されるものである。 When receiving the charge request signal from the host ECU 93, the battery ECU 91 starts charging the power storage device 20. At this time, battery ECU 91 operates the power converter (not shown) provided in power storage device 20 so that the value of the current detected by detection circuit 81 (current detection unit) does not exceed the predetermined current upper limit value. Control. The “current upper limit value” is an upper limit value of current set so as not to overcharge the power storage device 20, and is set each time according to the charging rate of the power storage device 20.
 ヒーターECU92は、スイッチング素子41の開閉動作を制御し、これによりヒーター31の発熱量を調整するための制御装置である。ヒーターECU92は、駆動回路40に制御信号を送信することにより、スイッチング素子41の開閉動作におけるデューティを調整する。ヒーターECU92は、ヒーター31における発熱量が、上位ECU93から送信される要求熱量に一致するように、上記のようなデューティの調整を行う。このようなヒーターECU92は、本実施形態における「スイッチング制御部」に該当するものである。 The heater ECU 92 is a control device for controlling the opening / closing operation of the switching element 41 to adjust the amount of heat generation of the heater 31. The heater ECU 92 transmits a control signal to the drive circuit 40 to adjust the duty in the opening / closing operation of the switching element 41. The heater ECU 92 adjusts the duty as described above so that the calorific value of the heater 31 matches the required heat amount transmitted from the host ECU 93. Such a heater ECU 92 corresponds to the “switching control unit” in the present embodiment.
 上位ECU93は、車載用補機装置10の全体の動作を統括制御するための制御装置である。既に述べたように、上位ECU93は、バッテリECU91に向けて充電要求信号を送信し、蓄電装置20への充電を開始させる処理を行う。また、上位ECU93は、ヒーターECU92に向けて要求熱量を送信し、ヒーター31における発熱量を調整させる処理を行う。更に、上位ECU93は、バッテリECU91とヒーターECU92との間において、両者の間の通信を媒介する処理も行うことが可能となっている。 The host ECU 93 is a control device for generally controlling the entire operation of the in-vehicle accessory device 10. As described above, the host ECU 93 transmits a charge request signal to the battery ECU 91, and performs processing for starting charging of the storage device 20. Further, the host ECU 93 transmits the required heat amount to the heater ECU 92, and performs a process of adjusting the calorific value of the heater 31. Furthermore, the host ECU 93 can also perform processing that mediates communication between the battery ECU 91 and the heater ECU 92.
 尚、以上のような制御装置の構成はあくまでも一例である。例えば、バッテリECU91、ヒーターECU92、及び上位ECU93が、3つの装置に分かれているのではなく、全体が一つのコンピュータシステムとして構成されているような態様であってもよい。また、バッテリECU91、ヒーターECU92、及び上位ECU93のうちの少なくとも一部が、車両に搭載された他のECUの一部として構成されているような態様であってもよい。 The configuration of the control device as described above is merely an example. For example, the battery ECU 91, the heater ECU 92, and the host ECU 93 may not be divided into three devices, but may be entirely configured as a single computer system. Alternatively, at least a part of the battery ECU 91, the heater ECU 92, and the host ECU 93 may be configured as a part of another ECU mounted on the vehicle.
 バッテリECU91により行われる処理のうち、蓄電装置20に供給される電流の値を取得するために行われる処理の概要について、図2を参照しながら説明する。図2の線L11に示されるのは、蓄電装置20に実際に供給される電流値の時間変化を示すグラフである。当該電流値は、スイッチング素子41の開閉動作に伴って、図2に示されるように矩形波状に変動している。スイッチング素子41が開状態となっている期間TM1においては、ヒーター31に電流が流れないため、蓄電装置20に供給される電流の値はI20まで増加している。一方、スイッチング素子41が閉状態となっている期間TM2においては、ヒーター31に電流が流れることにより、蓄電装置20に供給される電流の値はI10まで低下している。 Among the processes performed by the battery ECU 91, an outline of the process performed to obtain the value of the current supplied to the power storage device 20 will be described with reference to FIG. A line L11 in FIG. 2 is a graph showing a time change of a current value actually supplied to power storage device 20. The current value fluctuates in a rectangular wave as shown in FIG. 2 along with the switching operation of the switching element 41. In the period TM1 in which the switching element 41 is in the open state, the current does not flow to the heater 31, so the value of the current supplied to the power storage device 20 increases to I20. On the other hand, during the period TM2 in which the switching element 41 is in the closed state, the current flows through the heater 31, and the value of the current supplied to the power storage device 20 decreases to I10.
 図2に示される例では、上記の期間TM1と期間TM2とが交互に繰り返されており、スイッチング素子41の開閉動作におけるデューティは50%となっている。尚、ここでいう「デューティ」とは、スイッチング素子41の開閉動作の1周期の長さに対して、スイッチング素子41が閉状態となっている期間の長さが占める割合のことである。以下の説明においても同様である。デューティが100%に近づく程、ヒーター31における発熱量は大きくなる。 In the example shown in FIG. 2, the period TM1 and the period TM2 are alternately repeated, and the duty in the switching operation of the switching element 41 is 50%. Here, “duty” is a ratio of the length of the period in which the switching element 41 is in the closed state to the length of one cycle of the switching operation of the switching element 41. The same applies to the following description. As the duty approaches 100%, the calorific value of the heater 31 increases.
 図2の線L12に示されるのは、ローパスフィルタ83を介して検出回路81に入力される電流値、の時間変化を示すグラフである。ローパスフィルタ83を介することにより、線L12に示される波形は、線L11のように矩形波状の波形とはならず、緩やかに上昇及び下降する波形となっている。図2に示される例では、スイッチング素子41の開閉動作の周期が比較的短い。このため、期間TM1においては、線L12はI20よりも低い値までしか増加しない。同様に、期間TM2においては、線L12はI10よりも高い値までしか減少しない。このように、検出回路81に入力される電流値は、蓄電装置20に実際に供給される電流の値とは異なる値となっている。 A line L12 in FIG. 2 is a graph showing a time change of the current value input to the detection circuit 81 through the low pass filter 83. By passing through the low pass filter 83, the waveform shown by the line L12 is not a rectangular wave like the line L11, but is a waveform that rises and falls gently. In the example shown in FIG. 2, the cycle of the switching operation of the switching element 41 is relatively short. Thus, in the period TM1, the line L12 only increases to a value lower than I20. Similarly, in the period TM2, the line L12 only decreases to a value higher than I10. Thus, the current value input to detection circuit 81 is a value different from the value of the current actually supplied to power storage device 20.
 図2において示される複数の点Pは、バッテリECU91によって電流値がサンプリングされるタイミングを示している。このように、バッテリECU91は、検出回路81に入力される電流値を連続的に取得するのではなく、所定のサンプリング周期が経過する毎に電流値を離散的に取得する。その結果、バッテリECU91によって取得される電流の最大値は、検出回路81に入力される電流値の最大値よりも更に低い値となっている。 A plurality of points P shown in FIG. 2 indicate timings at which the battery ECU 91 samples current values. As described above, the battery ECU 91 does not continuously acquire the current value input to the detection circuit 81, but discretely acquires the current value each time a predetermined sampling period elapses. As a result, the maximum value of the current acquired by the battery ECU 91 is a value lower than the maximum value of the current value input to the detection circuit 81.
 バッテリECU91による電流値の取得が以上のような方法で行われているときには、バッテリECU91は、蓄電装置20に実際に供給される電流値(つまりI20やI10)を正確に測定することができない。このため、バッテリECU91は、検出回路81により検知される電流値が電流上限値を越えないように制御を行っているのであるが、実際には電流値が電流上限値を超えてしまうこともある。 When acquisition of the current value by the battery ECU 91 is performed by the above method, the battery ECU 91 can not accurately measure the current value (that is, I20 or I10) actually supplied to the power storage device 20. Therefore, although the battery ECU 91 performs control such that the current value detected by the detection circuit 81 does not exceed the current upper limit value, the current value may actually exceed the current upper limit value. .
 蓄電装置20の充電率が比較的低いときにおいては、電流値が電流上限値を超えてしまっても、蓄電装置20が過充電となってしまう可能性は小さい。しかしながら、蓄電装置20の充電率が100%に近づいているときに、電流値が電流上限値を超えてしまうと、蓄電装置20が過充電となってしまう可能性が高くなる。そこで、本実施形態に係る車載用補機装置10では、スイッチング制御部であるヒーターECU92が必要に応じて「スイッチング調整制御」を行うことにより、一時的に電流値の検出精度を高めている。 When the charging rate of power storage device 20 is relatively low, there is little possibility that power storage device 20 will be overcharged even if the current value has exceeded the current upper limit value. However, if the current value exceeds the current upper limit value when the charging rate of power storage device 20 approaches 100%, the possibility of overcharging of power storage device 20 increases. Therefore, in the on-vehicle accessory device 10 according to the present embodiment, the heater ECU 92 which is a switching control unit performs “switching adjustment control” as needed to temporarily increase the detection accuracy of the current value.
 スイッチング調整制御の概要について、図3を参照しながら説明する。図3の線L21に示されるのは、スイッチング調整制御が行われている際において、蓄電装置20に実際に供給される電流値の時間変化を示すグラフである。図3の線L22に示されるのは、スイッチング調整制御が行われている際において、ローパスフィルタ83を介して検出回路81に入力される電流値、の時間変化を示すグラフである。 The outline of the switching adjustment control will be described with reference to FIG. A line L21 in FIG. 3 is a graph showing a time change of the current value actually supplied to power storage device 20 when the switching adjustment control is performed. A line L22 shown in FIG. 3 is a graph showing a time change of the current value input to the detection circuit 81 through the low pass filter 83 when the switching adjustment control is performed.
 スイッチング調整制御では、スイッチング素子41が開状態とされる期間TM1の長さ、及び、スイッチング素子41が閉状態とされる期間TM2の長さが、図2に示される通常時に比べていずれも長くなっている。その結果、スイッチング素子41の開閉動作周期は通常時(図2)よりも長くなっている。 In the switching adjustment control, the length of the period TM1 in which the switching element 41 is in the open state and the length of the period TM2 in which the switching element 41 is in the closing state are longer than those in the normal time shown in FIG. It has become. As a result, the open / close operation cycle of the switching element 41 is longer than that at the normal time (FIG. 2).
 このため、期間TM1においては、検出回路81に入力される電流値は、最大値であるI20まで増加している。また、電流値がI20まで増加し一定値となっている期間の長さは、バッテリECU91によりサンプリングが行われる周期(つまり点Pの間隔)以上となっている。換言すれば、電流値が一定(I20)となる期間の長さがサンプリング周期以上となるように、スイッチング制御部であるヒーターECU92は、スイッチング素子41の開閉動作の周期を調整している。 Therefore, in the period TM1, the current value input to the detection circuit 81 is increased to I20 which is the maximum value. Further, the length of the period during which the current value increases to I20 and becomes a constant value is equal to or longer than the cycle in which the battery ECU 91 performs sampling (that is, the interval between points P). In other words, the heater ECU 92 serving as the switching control unit adjusts the cycle of the switching operation of the switching element 41 so that the length of the period in which the current value is constant (I20) is equal to or longer than the sampling cycle.
 期間TM2においても同様である。期間TM2においては、検出回路81に入力される電流値は、最小値であるI10まで減少している。また、電流値がI10まで減少し一定値となっている期間の長さは、バッテリECUによりサンプリングが行われる周期以上となっている。換言すれば、電流値が一定(I10)となる期間の長さもサンプリング周期以上となるように、スイッチング制御部であるヒーターECU92は、スイッチング素子41の開閉動作の周期を調整している。 The same applies to the period TM2. In the period TM2, the current value input to the detection circuit 81 decreases to I10 which is the minimum value. Further, the length of a period in which the current value decreases to I10 and becomes a constant value is equal to or longer than the cycle in which sampling is performed by the battery ECU. In other words, the heater ECU 92 serving as the switching control unit adjusts the cycle of the switching operation of the switching element 41 so that the length of the period in which the current value is constant (I10) is also longer than the sampling cycle.
 ヒーターECU92によって以上のようなスイッチング調整制御が行われる結果、それぞれの点Pにおいて取得される電流値には、最小値であるI10、及び最大値であるI20の両方が含まれている。バッテリECU91は、蓄電装置20に供給される電流値を正確に把握することができるので、当該電流値が電流上限値を超えてしまうことはない。その結果、蓄電装置20が過充電となってしまうことが確実に防止される。 As a result of the above-described switching adjustment control being performed by the heater ECU 92, the current values acquired at the respective points P include both the minimum value I10 and the maximum value I20. Since battery ECU 91 can accurately grasp the value of the current supplied to power storage device 20, the current does not exceed the current upper limit value. As a result, overcharging of power storage device 20 is reliably prevented.
 尚、図3に示される例でも、スイッチング素子41の開閉動作におけるデューティは、図2に示される例と同様の50%となっている。つまり、本実施形態におけるスイッチング調整制御では、スイッチング素子41の開閉動作周期を通常時よりも長くなるように変化させる一方で、開閉動作におけるデューティは変化させない。これにより、ヒーター31における発熱量を、上位ECU93からの要求発熱量に対して引き続き一致させることができる。 Also in the example shown in FIG. 3, the duty in the switching operation of the switching element 41 is 50% similar to the example shown in FIG. 2. That is, in the switching adjustment control in the present embodiment, the opening / closing operation cycle of the switching element 41 is changed so as to be longer than normal, while the duty in the opening / closing operation is not changed. Thereby, the calorific value in the heater 31 can be continuously matched with the calorific value required from the host ECU 93.
 以上のような制御を実現するために、ヒーターECU92によって実行される処理の流れについて、図4を参照しながら説明する。図4に示される一連の処理は、所定の制御周期が経過する毎に、ヒーターECU92によって繰り返し実行されるものである。 A flow of processing executed by the heater ECU 92 to realize the control as described above will be described with reference to FIG. The series of processes shown in FIG. 4 are repeatedly executed by the heater ECU 92 each time a predetermined control cycle elapses.
 最初のステップS01では、上位ECU93から、要求発熱量を含む各種の情報が取得される。当該情報には、蓄電装置20が充電中であるか否かを示す情報や、蓄電装置20の充電率等が含まれる。このような蓄電装置20の状態を示す情報は、バッテリECU91から上位ECU93へと予め送信されたものである。 In the first step S01, various types of information including the required heat generation amount are acquired from the host ECU 93. The information includes information indicating whether or not the power storage device 20 is being charged, the charging rate of the power storage device 20, and the like. Such information indicating the state of the power storage device 20 is transmitted in advance from the battery ECU 91 to the host ECU 93.
 ステップS01に続くステップS02では、蓄電装置20が充電中であり、且つ、蓄電装置20の充電率が所定の充電閾値以上であるか否かが判定される。「充電閾値」とは、蓄電装置20の性能が低下するような限界値(例えば80%)よりも低めの値(例えば60%)として予め設定された閾値である。ステップS02の判定が否定であった場合には、ステップS03に移行する。 In step S02 following step S01, it is determined whether or not power storage device 20 is being charged, and the charging rate of power storage device 20 is equal to or greater than a predetermined charge threshold. The “charging threshold value” is a threshold value preset as a lower value (for example, 60%) than a limit value (for example, 80%) at which the performance of the power storage device 20 decreases. If the determination in step S02 is negative, the process proceeds to step S03.
 ステップS03では、図2を参照しながら説明した通常時の制御が行われる。すなわち、比較的短い周期でスイッチング素子41に開閉動作を行わせる制御、がヒーターECU92によって行われる。これと並行して、蓄電装置20に充放電される電流値を測定する処理がバッテリECU91によって行われる。 In step S03, the normal control described with reference to FIG. 2 is performed. That is, the control for causing the switching element 41 to perform the opening / closing operation in a relatively short cycle is performed by the heater ECU 92. In parallel to this, a process of measuring the value of the current charged / discharged to / from the power storage device 20 is performed by the battery ECU 91.
 ステップS02の判定が肯定であった場合には、ステップS04に移行する。ステップS04では、図3を参照しながら説明したスイッチング調整制御が行われる。すなわち、通常時よりも長い周期でスイッチング素子41に開閉動作を行わせる制御、がヒーターECU92によって行われる。これと並行して、蓄電装置20に供給される電流値を測定する処理がバッテリECU91によって行われる。 When determination of step S02 is affirmation, it transfers to step S04. In step S04, the switching adjustment control described with reference to FIG. 3 is performed. That is, the control for causing the switching element 41 to perform the open / close operation in a cycle longer than normal time is performed by the heater ECU 92. In parallel to this, the process of measuring the value of the current supplied to power storage device 20 is performed by battery ECU 91.
 以上のように、本実施形態に係る車載用補機装置10のヒーターECU92は、蓄電装置20への充電が行われているときにおいて、検出回路81により検知される電流の値が一定となる期間が所定期間以上となるように、スイッチング素子41の開閉動作を調整する制御、であるスイッチング調整制御を行う。これにより、ヒーター31への電流供給が行われている状況でも、蓄電装置20に供給される電流の値を正確に取得することが可能となっている。 As described above, the heater ECU 92 of the in-vehicle accessory device 10 according to the present embodiment is a period during which the value of the current detected by the detection circuit 81 becomes constant when the storage battery 20 is being charged. The switching adjustment control, which is control for adjusting the opening / closing operation of the switching element 41, is performed so that the time period of the predetermined period is equal to or longer than a predetermined period. Thereby, even in the situation where the current supply to the heater 31 is performed, it is possible to accurately obtain the value of the current supplied to the power storage device 20.
 また、ヒーターECU92は、蓄電装置20への充電が行われているときであって、且つ、蓄電装置20の充電率が所定の充電閾値以上となったときにのみ、上記のスイッチング調整制御を行うように構成されている。電流値の測定精度があまり問題とならない状況においては、スイッチング調整制御を行わないことによりスイッチング素子41の動作周期は短いままとなる。これにより、最適な動作周期で温度制御を行うことが可能となる。 Further, heater ECU 92 performs the above-described switching adjustment control only when charging of power storage device 20 is performed and the charging rate of power storage device 20 becomes equal to or higher than a predetermined charging threshold. Is configured as. In a situation where the measurement accuracy of the current value does not matter so much, the operation cycle of the switching element 41 remains short by not performing the switching adjustment control. As a result, temperature control can be performed in an optimal operation cycle.
 第2実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。本実施形態では、ヒーターECU92によって行われるスイッチング調整制御の態様においてのみ第1実施形態と異なっている。 The second embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate. The present embodiment is different from the first embodiment only in the aspect of the switching adjustment control performed by the heater ECU 92.
 本実施形態におけるスイッチング調整制御では、スイッチング素子41が一時的に閉状態に固定される。その結果、ヒーター31には一定の電流が流れ続けるので、蓄電装置20に供給される電流値は一定(I10)となる。このような状態は、少なくとも、バッテリECU91によるサンプリングの周期よりも長い期間だけ維持される。 In the switching adjustment control in the present embodiment, the switching element 41 is temporarily fixed in the closed state. As a result, since a constant current continues to flow through the heater 31, the value of the current supplied to the storage device 20 becomes constant (I10). Such a state is maintained at least for a period longer than the sampling period by the battery ECU 91.
 図5の線L31に示されるのは、スイッチング調整制御が行われている際において、蓄電装置20に実際に供給される電流値の時間変化を示すグラフである。図5の線L32に示されるのは、スイッチング調整制御が行われている際において、ローパスフィルタ83を介して検出回路81に入力される電流値、の時間変化を示すグラフである。本実施形態では、蓄電装置20に供給される電流値が、スイッチング調整制御の期間中において常に一定となり変動しないので、線L31と線L32とは互いに同一となっている。このため、バッテリECU91では、正確な電流値がサンプリングされる。 A line L31 in FIG. 5 is a graph showing a time change of the current value actually supplied to power storage device 20 when the switching adjustment control is performed. A line L32 in FIG. 5 is a graph showing a time change of the current value input to the detection circuit 81 through the low pass filter 83 when the switching adjustment control is performed. In the present embodiment, since the current value supplied to the power storage device 20 is always constant and does not fluctuate during the period of the switching adjustment control, the line L31 and the line L32 are the same as each other. Therefore, the battery ECU 91 samples an accurate current value.
 尚、スイッチング調整制御が行われている際には、上記のようにスイッチング素子41が閉状態に固定されてもよいが、開状態に固定されることとしてもよい。この場合でも、蓄電装置20に供給される電流値は一定(I20)となる。 When the switching adjustment control is performed, the switching element 41 may be fixed in the closed state as described above, or may be fixed in the open state. Even in this case, the value of the current supplied to power storage device 20 is constant (I20).
 このように、スイッチング調整制御としては、スイッチング素子41の開閉状態を、閉状態又は開状態のいずれかに固定する制御が行われてもよい。このような態様であっても、第1実施形態において説明したものと同様の効果が得られる。 Thus, as the switching adjustment control, control may be performed to fix the open / close state of the switching element 41 in either the closed state or the open state. Even in such a mode, the same effects as those described in the first embodiment can be obtained.
 第3実施形態について説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図6に示されるように、本実施形態に係る車載用補機装置10では、ヒーター装置30が2つのヒーター31、32を有している。また、駆動回路40が2つのスイッチング素子41、42を有している。 A third embodiment will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate. As shown in FIG. 6, in the in-vehicle accessory device 10 according to the present embodiment, the heater device 30 has two heaters 31 and 32. Further, the drive circuit 40 has two switching elements 41 and 42.
 ヒーター32は、ヒーター31に対して並列となる位置に配置されている。また、スイッチング素子42は、スイッチング素子41に対して並列となる位置であり、且つヒーター32に対して直列となる位置に配置されている。ヒーター32は、ヒーター31と共に、車載用補機装置10の補機に該当するものである。 The heater 32 is disposed at a position parallel to the heater 31. Further, the switching element 42 is disposed in parallel with the switching element 41 and in series with the heater 32. The heater 32, together with the heater 31, corresponds to an accessory of the in-vehicle accessory device 10.
 スイッチング素子42が閉状態になると、ヒーター32には蓄電装置20からの電流が供給される。また、スイッチング素子42が開状態になると、ヒーター32に対する電力の供給が停止される。駆動回路40は、スイッチング素子42が繰り返し開閉動作する際のデューティを調整することにより、ヒーター32に供給される電力の大きさを調整する。スイッチング素子42の開閉動作はヒーターECU92によって制御される。スイッチング素子42は、スイッチング素子41と共に、本実施形態における「スイッチング部」に該当するものである。 When the switching element 42 is closed, the heater 32 is supplied with the current from the power storage device 20. In addition, when the switching element 42 is opened, the supply of power to the heater 32 is stopped. The drive circuit 40 adjusts the magnitude of the power supplied to the heater 32 by adjusting the duty when the switching element 42 repeatedly opens and closes. The opening and closing operation of the switching element 42 is controlled by the heater ECU 92. The switching element 42 and the switching element 41 correspond to the “switching unit” in the present embodiment.
 このように、本実施形態に係る車載用補機装置10は、補機(ヒーター)とスイッチング部(スイッチング素子)を2組備えている。このような態様に換えて、補機とスイッチング部とを3組以上備えているような態様であってもよい。本実施形態では、ヒーター31の発熱量とヒーター32の発熱量との合計が、上位ECU93から送信される要求熱量に一致するように制御が行われることとなる。 As described above, the in-vehicle accessory device 10 according to the present embodiment includes two sets of the accessory (heater) and the switching unit (switching element). Instead of such an aspect, an aspect in which three or more sets of an accessory and a switching unit are provided may be adopted. In the present embodiment, control is performed such that the sum of the calorific value of the heater 31 and the calorific value of the heater 32 matches the required heat amount transmitted from the host ECU 93.
 本実施形態において実行される制御の態様を説明するに先立ち、比較例として実行される制御の態様について説明する。図13(A)に示されるのは、ヒーター31に供給される電流の時間変化を示すグラフである。図13(B)に示されるのは、ヒーター32に供給される電流の時間変化を示すグラフである。図13(C)に示されるのは、ヒーター装置30に供給される全電流の時間変化を示すグラフである。つまり、ヒーター31に供給される電流と、ヒーター32に供給される電流と、の合計値の時間変化を示すグラフである。 Prior to describing an aspect of control executed in the present embodiment, an aspect of control executed as a comparative example will be described. FIG. 13A is a graph showing the time change of the current supplied to the heater 31. As shown in FIG. What is shown in FIG. 13 (B) is a graph showing the time change of the current supplied to the heater 32. FIG. 13 (C) is a graph showing the time change of the total current supplied to the heater device 30. That is, it is a graph which shows the time change of the total value of the electric current supplied to the heater 31, and the electric current supplied to the heater 32. FIG.
 図13(A)に示されるように、この例におけるヒーター31には、デューティが25%となるように電流が供給されている。また、図13(B)に示されるように、ヒーター32にも、デューティが25%となるように電流が供給されている。ヒーター31に供給される電流の位相は、ヒーター32に供給される電流の位相に対して180度ずれている。その結果、図13(C)に示されるように、ヒーター装置30には、実質的にデューティが50%の電流が供給されている状態となっている。 As shown in FIG. 13A, current is supplied to the heater 31 in this example so that the duty is 25%. Further, as shown in FIG. 13B, the current is also supplied to the heater 32 so that the duty is 25%. The phase of the current supplied to the heater 31 is 180 degrees out of phase with the phase of the current supplied to the heater 32. As a result, as shown in FIG. 13C, the heater device 30 is substantially supplied with a current with a duty of 50%.
 図13に示される例において、電流値が最大値(I30)となっている期間の長さは、バッテリECU91が、蓄電装置20に供給される電流値を正確に取得し得るような長さの下限値となっているものと仮定する。このような状況においては、図13(C)に示される波形のデューティを50%よりも小さくすると、電流値がI30となる期間の長さが短くなり過ぎるので、当該期間において蓄電装置20に供給される電流値を正確に取得することができなくなる。逆に、図13(C)に示される波形のデューティを50%よりも大きくすると、電流値が0となる期間の長さが短くなり過ぎるので、当該期間において蓄電装置20に供給される電流値を正確に取得することができなくなる。 In the example shown in FIG. 13, the length of the period in which the current value is the maximum value (I30) is such that battery ECU 91 can accurately obtain the value of the current supplied to power storage device 20. It is assumed that it is the lower limit value. In such a situation, if the duty of the waveform shown in FIG. 13C is smaller than 50%, the length of the period in which the current value becomes I30 becomes too short, so the power storage device 20 is supplied during this period. It becomes impossible to obtain the current value accurately. Conversely, if the duty of the waveform shown in FIG. 13C is greater than 50%, the length of the period in which the current value is 0 becomes too short, so the current value supplied to power storage device 20 in that period is You will not be able to get accurate.
 尚、図13(C)に示されるデューティ50%の波形を実現するためには、ヒーター31、32のそれぞれに供給される電流のデューティを25%とすることに換えて、75%とすることもできる。 In order to realize the waveform with a duty of 50% shown in FIG. 13C, the duty of the current supplied to each of the heaters 31 and 32 should be 75% instead of 25%. You can also.
 図14(A)に示されるのは、図13(A)と同様に、ヒーター31に供給される電流の時間変化を示すグラフであって、デューティを75%とした場合の例である。図14(B)に示されるのは、図13(B)と同様に、ヒーター32に供給される電流の時間変化を示すグラフであって、デューティを75%とした場合の例である。この例でも、ヒーター31に供給される電流の位相は、ヒーター32に供給される電流の位相に対して180度ずれている。図14(C)に示されるのは、図13(C)と同様に、ヒーター装置30に供給される全電流の時間変化を示すグラフである。 Similar to FIG. 13A, FIG. 14A is a graph showing the time change of the current supplied to the heater 31 and is an example in which the duty is 75%. Similar to FIG. 13B, FIG. 14B is a graph showing the time change of the current supplied to the heater 32, and is an example in the case where the duty is 75%. Also in this example, the phase of the current supplied to the heater 31 is 180 degrees out of phase with the phase of the current supplied to the heater 32. Similar to FIG. 13 (C), FIG. 14 (C) is a graph showing the time change of the total current supplied to the heater device 30.
 図14(C)に示されるように、ヒーター装置30に供給される電流の波形は、I40からI50までの範囲において、デューティ50%で変動するような波形となる。I40は、ヒーター31、32のそれぞれを流れる電流の最大値であり、I50は、I40の2倍に等しい電流値である。 As shown in FIG. 14C, the waveform of the current supplied to the heater device 30 is a waveform that fluctuates at a duty of 50% in the range from I40 to I50. I40 is the maximum value of the current flowing through each of the heaters 31 and 32, and I50 is a current value equal to twice I40.
 以上の例では、スイッチング素子41、42の開閉動作周期を変更することなく、ヒーター31、32のいずれかにおけるデューティを変化させようとすると、バッテリECU91が、蓄電装置20に供給される電流の値を正確に測定することができなくなってしまう。このため、ヒーター31、32のデューティについては、図13のように両方を25%とするか、図14のように両方を75%とするか、の2通りしか選択肢が無いことになる。 In the above example, when changing the duty in any of the heaters 31 and 32 without changing the open / close operation cycle of the switching elements 41 and 42, the value of the current supplied to the storage device 20 by the battery ECU 91 is Can not be accurately measured. For this reason, as for the duty of the heaters 31 and 32, there are only two options, ie, 25% for both as shown in FIG. 13 or 75% for both as shown in FIG.
 本実施形態では、スイッチング調整制御の態様を工夫することにより、上記のような制約を無くしている。本実施形態におけるスイッチング調整制御の具体的な態様について、図7乃至12を参照しながら説明する。それぞれの図において(A)に示されるのは、図13(A)と同様に、ヒーター31に供給される電流の時間変化を示すグラフである。また、それぞれの図において(B)に示されるのは、図13(B)と同様に、ヒーター32に供給される電流の時間変化を示すグラフである。更に、それぞれの図において(C)に示されるのは、図13(C)と同様に、ヒーター装置30に供給される全電流の時間変化を示すグラフである。 In the present embodiment, the above limitation is eliminated by devising the aspect of the switching adjustment control. Specific modes of the switching adjustment control in the present embodiment will be described with reference to FIGS. 7 to 12. What is shown in (A) in each figure is a graph showing a time change of the current supplied to the heater 31 as in FIG. 13 (A). Further, (B) in each drawing is a graph showing a time change of the current supplied to the heater 32, as in FIG. 13 (B). Further, (C) in each figure is a graph showing the time change of the total current supplied to the heater device 30 as in FIG. 13 (C).
 図7に示されるように、本実施形態では、スイッチング調整制御が行われる際に、一方のヒーター31に供給される電流が0に固定され、他方のヒーター32には矩形波状の電流が供給される。つまり、本実施形態におけるヒーターECU92(スイッチング制御部)は、スイッチング素子41を開状態に固定し、スイッチング素子42を所定のデューティで開閉動作させるように、駆動回路40の制御を行う。図7の例では当該デューティが25%となっており、図8の例では当該デューティが75%となっている。 As shown in FIG. 7, in the present embodiment, when switching adjustment control is performed, the current supplied to one heater 31 is fixed at 0, and the other heater 32 is supplied with a rectangular wave current. Ru. That is, the heater ECU 92 (switching control unit) in the present embodiment controls the drive circuit 40 so as to fix the switching element 41 in the open state and open and close the switching element 42 with a predetermined duty. In the example of FIG. 7, the duty is 25%, and in the example of FIG. 8, the duty is 75%.
 本実施形態では、ヒーター31に供給される電流値が上記のように0に固定されている。このため、ヒーター装置30に供給される電流のデューティは、ヒーター32に供給される電流のデューティと同じになる。従って、当該デューティを25%から75%の間で変化させても、蓄電装置20に供給される電流値が一定(最大値又は最小値)となる期間の一部が短くなり過ぎてしまうことが無い。つまり、蓄電装置20に供給される電流値が一定となる期間の長さを、ヒーターECU92による電流値のサンプリング期間よりも長く確保しながらも、デューティを25%から75%までの範囲で調整し、ヒーター装置30の発熱量を調整することが可能となっている。 In the present embodiment, the current value supplied to the heater 31 is fixed to 0 as described above. Therefore, the duty of the current supplied to the heater device 30 is the same as the duty of the current supplied to the heater 32. Therefore, even if the duty is changed between 25% and 75%, part of the period in which the current value supplied to power storage device 20 is constant (maximum value or minimum value) may be too short. There is not. That is, the duty is adjusted in the range of 25% to 75% while securing the length of the period in which the current value supplied to power storage device 20 is constant longer than the sampling period of the current value by heater ECU 92. The amount of heat generated by the heater device 30 can be adjusted.
 このように、本実施形態におけるヒーターECU92は、一つのスイッチング素子41の開閉状態を固定し、もう一つのスイッチング素子42の開閉動作を調整することにより、スイッチング調整制御を行うように構成されている。これにより、第1実施形態で説明したものと同様の効果を奏する。 Thus, the heater ECU 92 in this embodiment is configured to perform switching adjustment control by fixing the open / close state of one switching element 41 and adjusting the opening / closing operation of the other switching element 42. . Thereby, the same effects as those described in the first embodiment can be obtained.
 スイッチング調整制御では、スイッチング素子41を開状態に固定するのではなく、閉状態に固定することとしてもよい。このような制御が行われた場合の例を、図9及び図10に示している。ヒーター32を流れる電流のデューティは、図9の例では25%となっており、図10の例では75%となっている。この例においても、ヒーター装置30に供給される電流のデューティを25%から75%の間で変化させても、蓄電装置20に供給される電流値が一定(最大値又は最小値)となる期間の一部が短くなり過ぎてしまうことが無い。尚、スイッチング素子41を開状態及び閉状態のいずれに固定するかは、上位ECU93からの要求熱量に応じて適宜選択されることとすればよい。 In the switching adjustment control, the switching element 41 may not be fixed in the open state, but may be fixed in the closed state. An example when such control is performed is shown in FIG. 9 and FIG. The duty of the current flowing through the heater 32 is 25% in the example of FIG. 9 and 75% in the example of FIG. Also in this example, even when the duty of the current supplied to the heater device 30 is changed between 25% and 75%, a period during which the current value supplied to the power storage device 20 is constant (maximum value or minimum value). There is no chance that part of the will be too short. It should be noted that whether the switching element 41 is to be fixed in the open state or the closed state may be appropriately selected in accordance with the required heat amount from the host ECU 93.
 ところで、図7、8に示される例のように、スイッチング素子41を開状態に固定した場合には、ヒーター31では発熱が行われない。このため、スイッチング素子42のデューティを25%から75%の範囲内においてのみ調整した場合には、ヒーター装置30全体の発熱量が、上位ECU93からの要求熱量に対して不足してしまう場合がある。 By the way, when the switching element 41 is fixed in the open state as in the example shown in FIGS. 7 and 8, the heater 31 does not generate heat. For this reason, when the duty of the switching element 42 is adjusted only in the range of 25% to 75%, the calorific value of the entire heater device 30 may be insufficient relative to the required heat quantity from the host ECU 93. .
 図11に示される例では、時刻t10までの期間においては、スイッチング素子42のデューティが75%とされている。これにより、ヒーター装置30全体の発熱量が、上位ECU93からの要求熱量に一致した状態となっている。 In the example shown in FIG. 11, the duty of the switching element 42 is 75% in the period up to the time t10. As a result, the calorific value of the entire heater device 30 is in a state in which the calorific value from the host ECU 93 matches.
 時刻t10以降は、上位ECU93からの要求熱量が、それまでよりも高めの値に変更されている。これに対応するため、ヒーターECU92は、開閉状態が固定されていない方のスイッチング素子42を、75%のデューティ(第1デューティ)で開閉動作させる制御(第1制御)と、75%よりも大きいデューティ(第2デューティ)で開閉動作させる制御(第2制御)とを、時刻t10以降において交互に実行している。図11では、上記の第1制御が実行されている期間が期間TM3として示されており、上記の第2制御が実行されている期間が期間TM4として示されている。 After time t10, the required heat amount from the host ECU 93 is changed to a higher value than before. In order to cope with this, the heater ECU 92 performs control (first control) to open / close the switching element 42 whose open / close state is not fixed at a duty of 75% (first duty), which is larger than 75% The control (second control) for opening and closing operation at the duty (second duty) is alternately executed after time t10. In FIG. 11, a period in which the first control is being performed is shown as a period TM3, and a period in which the second control is being performed is shown as a period TM4.
 第1制御と第2制御とが交互に実行されることにより、ヒーター装置30に供給される電流のデューティは、実質的に75%よりも大きくなっている。このような制御が行われても、蓄電装置20に供給される電流値が一定(最大値又は最小値)となる期間の一部が短くなり過ぎてしまうことが無い。このため、上位ECU93からの要求熱量に応じた発熱をヒーター装置30において行いながらも、蓄電装置20に供給される電流値をバッテリECU91により正確に取得することができる。このように、ヒーター32に流れる電流のデューティを75%としても、発熱量が要求熱量に満たない場合には、上記の第1制御と第2制御とを交互に実行することで、発熱量を要求熱量に一致させることができる。 By alternately executing the first control and the second control, the duty of the current supplied to the heater device 30 is substantially greater than 75%. Even when such control is performed, a part of a period in which the current value supplied to power storage device 20 is constant (maximum value or minimum value) will not be too short. Therefore, the current value supplied to power storage device 20 can be accurately acquired by battery ECU 91 while the heater device 30 generates heat according to the amount of heat required from host ECU 93. As described above, even if the duty of the current flowing through the heater 32 is 75%, when the calorific value does not meet the required heat quantity, the calorific value can be reduced by alternately executing the first control and the second control. It can be matched to the required heat quantity.
 尚、要求熱量が更に大きい場合には、第2制御が実行されている期間において、スイッチング素子42を100%のデューティで開閉動作させることとしてもよい。つまり、スイッチング素子42を閉状態に維持することとしてもよい。図12には、このような制御が行われた場合における各電流の時間変化が示されている。図12に示される期間TM5が、上記のようにスイッチング素子42を100%のデューティで開閉動作させる期間となっている。 When the required heat amount is further large, the switching element 42 may be opened and closed at a duty of 100% during the period in which the second control is being performed. That is, the switching element 42 may be maintained in the closed state. FIG. 12 shows the time change of each current when such control is performed. The period TM5 shown in FIG. 12 is a period during which the switching element 42 is operated to open / close at a duty of 100% as described above.
 尚、スイッチング素子とヒーターとを3組以上備えているような態様である場合には、スイッチング素子41のように開状態又は閉状態に固定されるスイッチング素子の数を、2つ以上としてもよい。同様に、デューティの調整が行われる(又は図12(B)のように閉状態に維持される)スイッチング素子の数を、2つ以上としてもよい。 In the case of an aspect in which three or more sets of switching elements and heaters are provided, the number of switching elements fixed in the open state or the closed state as in switching element 41 may be two or more. . Similarly, the number of switching elements for which the adjustment of duty is performed (or maintained in the closed state as shown in FIG. 12B) may be two or more.
 以上においては、車載用補機装置10が備える補機が、電力の供給を受けて発熱するヒーター31、32である場合の例について説明した。このような態様に換えて、補機がヒーター以外の装置であるような態様としてもよい。 In the above, the example in case the auxiliary machine with which the vehicle-mounted auxiliary machine 10 is equipped is the heaters 31 and 32 which receive supply of electric power and generates heat was demonstrated. Instead of such an embodiment, the accessory may be an apparatus other than a heater.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to the specific example. However, the present disclosure is not limited to these specific examples. Those appropriately modified in design by those skilled in the art are also included in the scope of the present disclosure as long as the features of the present disclosure are included. The elements included in the above-described specific examples, and the arrangement, conditions, and shapes thereof are not limited to those illustrated, but can be appropriately modified. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (9)

  1.  車載用補機装置(10)であって、
     蓄電装置(20)と、
     前記蓄電装置から電力の供給を受ける補機(31,32)と、
     前記補機に供給される電力の大きさを、開閉動作することにより調整するスイッチング部(41,42)と、
     前記蓄電装置に電流を供給し充電を行う供給装置(60)と、
     前記蓄電装置に供給される電流の値を検知する電流検知部(81)と、
     前記スイッチング部の開閉動作を制御するスイッチング制御部(92)と、を備え、
     前記スイッチング制御部は、
     前記蓄電装置への充電が行われているときにおいて、前記電流検知部により検知される電流の値が一定となる期間が所定期間以上となるように、前記スイッチング部の開閉動作を調整する制御、であるスイッチング調整制御を行う車載用補機装置。
    An on-vehicle accessory device (10),
    A power storage device (20),
    Auxiliary units (31, 32) that receive power supply from the storage device;
    A switching unit (41, 42) for adjusting the magnitude of the power supplied to the auxiliary device by opening and closing operations;
    A supply device (60) for supplying a current to the storage device for charging;
    A current detection unit (81) for detecting the value of the current supplied to the power storage device;
    And a switching control unit (92) that controls the switching operation of the switching unit,
    The switching control unit
    Control for adjusting the open / close operation of the switching unit such that a period in which the value of the current detected by the current detection unit is constant is equal to or longer than a predetermined period when the storage device is being charged. An on-vehicle accessory device that performs switching adjustment control.
  2.  前記蓄電装置への充電を制御する充電制御部(91)を更に備え、
     前記充電制御部は、前記電流検知部により検知される電流の値が所定の電流上限値を越えないように制御を行う、請求項1に記載の車載用補機装置。
    It further comprises a charge control unit (91) that controls charging of the storage device,
    The in-vehicle accessory device according to claim 1, wherein the charge control unit performs control such that the value of the current detected by the current detection unit does not exceed a predetermined current upper limit value.
  3.  前記蓄電装置における充電率を検知する充電率検知部(81)を更に備え、
     前記スイッチング制御部は、
     前記蓄電装置への充電が行われているときであって、且つ、前記充電率が所定の充電閾値以上となったときにのみ、前記スイッチング調整制御を行う、請求項2に記載の車載用補機装置。
    It further comprises a charging rate detection unit (81) for detecting the charging rate in the power storage device,
    The switching control unit
    The vehicle-mounted auxiliary according to claim 2, wherein the switching adjustment control is performed only when the storage device is being charged and the charging rate is equal to or higher than a predetermined charging threshold. Machine equipment.
  4.  前記スイッチング調整制御とは、スイッチング部の開閉動作周期を通常時よりも長くする制御である、請求項1乃至3のいずれか1項に記載の車載用補機装置。 The vehicle-mounted auxiliary device according to any one of claims 1 to 3, wherein the switching adjustment control is control to make the open / close operation cycle of the switching unit longer than normal.
  5.  前記スイッチング調整制御とは、スイッチング部の開閉状態を固定する制御である、請求項1乃至3のいずれか1項に記載の車載用補機装置。 The vehicle-mounted auxiliary device according to any one of claims 1 to 3, wherein the switching adjustment control is control for fixing the open / close state of the switching unit.
  6.  前記補機及び前記スイッチング部を複数組備えており、
     前記スイッチング制御部は、
     少なくとも一つの前記スイッチング部の開閉状態を固定し、それ以外の前記スイッチング部の開閉動作を調整することにより、前記スイッチング調整制御を行う、請求項1乃至3のいずれか1項に記載の車載用補機装置。
    A plurality of sets of the accessory and the switching unit are provided,
    The switching control unit
    The vehicle-mounted according to any one of claims 1 to 3, wherein the switching adjustment control is performed by fixing the open / close state of at least one of the switching units and adjusting the open / close operation of the other switching units. Auxiliary equipment.
  7.  前記スイッチング制御部は、
     開閉状態が固定されていない前記スイッチング部、の開閉動作を制御する際に、
     当該スイッチング部を第1デューティで開閉動作させる第1制御と、
     当該スイッチング部を、前記第1デューティよりも大きい第2デューティで開閉動作させる第2制御と、を交互に実行する、請求項6に記載の車載用補機装置。
    The switching control unit
    When controlling the open / close operation of the switching unit whose open / close state is not fixed,
    First control for opening and closing the switching unit at a first duty;
    The vehicle-mounted auxiliary device according to claim 6, wherein a second control for opening and closing the switching unit at a second duty that is larger than the first duty is alternately performed.
  8.  前記スイッチング制御部は、
     開閉状態が固定されていない前記スイッチング部、の開閉動作を制御する際に、
     当該スイッチング部のうちの少なくとも一部を閉状態に維持する、請求項6に記載の車載用補機装置。
    The switching control unit
    When controlling the open / close operation of the switching unit whose open / close state is not fixed,
    The in-vehicle accessory device according to claim 6, wherein at least a part of the switching unit is maintained in a closed state.
  9.  前記補機は、電力の供給を受けて発熱するヒーターである、請求項1乃至8のいずれか1項に記載の車載用補機装置。 The in-vehicle accessory device according to any one of claims 1 to 8, wherein the accessory is a heater that receives power and generates heat.
PCT/JP2018/030091 2017-09-28 2018-08-10 On-vehicle accessory apparatus WO2019064966A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880037945.7A CN110741525A (en) 2017-09-28 2018-08-10 Auxiliary device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017187691A JP2019062711A (en) 2017-09-28 2017-09-28 On-vehicle auxiliary machine device
JP2017-187691 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019064966A1 true WO2019064966A1 (en) 2019-04-04

Family

ID=65901627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030091 WO2019064966A1 (en) 2017-09-28 2018-08-10 On-vehicle accessory apparatus

Country Status (3)

Country Link
JP (1) JP2019062711A (en)
CN (1) CN110741525A (en)
WO (1) WO2019064966A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654453A (en) * 1992-07-27 1994-02-25 Matsushita Electric Works Ltd Charger
JPH0896854A (en) * 1994-09-27 1996-04-12 Matsushita Electric Works Ltd Electrical equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574471B (en) * 2009-09-09 2014-03-12 丰田自动车株式会社 Power supply system for vehicle and method of controlling same
JP5168308B2 (en) * 2010-04-14 2013-03-21 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654453A (en) * 1992-07-27 1994-02-25 Matsushita Electric Works Ltd Charger
JPH0896854A (en) * 1994-09-27 1996-04-12 Matsushita Electric Works Ltd Electrical equipment

Also Published As

Publication number Publication date
CN110741525A (en) 2020-01-31
JP2019062711A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP7108869B2 (en) On-vehicle charging device and control method for on-vehicle charging device
JP5683710B2 (en) Battery system monitoring device
US11532841B2 (en) Storage battery control device
JP6490148B2 (en) Charge control device
US20100123465A1 (en) Automotive battery circuit fault detection
JP2007288889A (en) Charging method, battery pack, and charger thereof
US20190113581A1 (en) Battery state estimation method and battery state estimation device
US20180345798A1 (en) Vehicle
US11400917B2 (en) Power supply system for vehicle
US20210359533A1 (en) Controller for power supply circuit, storage medium storing program that controls power supply circuit, and control method for power supply circuit
JP6623193B2 (en) Method and apparatus for charging a vehicle battery
WO2011136004A1 (en) Motor device and power tool
JP2009229405A (en) Current value measuring method and current value measuring device of battery
JP6853797B2 (en) Battery monitoring device and relay status diagnostic method
US10717369B2 (en) Charge control apparatus and method for electric vehicle
US11404899B2 (en) Battery system and battery management device for cancelling polarization voltage by applying a reverse current
WO2019064966A1 (en) On-vehicle accessory apparatus
JP6090031B2 (en) Vehicle power supply control device and vehicle battery charging method
JP6677088B2 (en) Power supply system for electric vehicles
JP6587432B2 (en) Alternator power generation control device
KR101879302B1 (en) Glow system and control method using the same
JP2005061849A (en) Characteristic correcting device of current sensor
CN108352719B (en) Power supply device
JP2019129542A (en) Charge control device of electric vehicle
JP2019146460A (en) Vehicle power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860829

Country of ref document: EP

Kind code of ref document: A1