WO2019064793A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2019064793A1
WO2019064793A1 PCT/JP2018/025400 JP2018025400W WO2019064793A1 WO 2019064793 A1 WO2019064793 A1 WO 2019064793A1 JP 2018025400 W JP2018025400 W JP 2018025400W WO 2019064793 A1 WO2019064793 A1 WO 2019064793A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
heat sink
recess
heat
motor
Prior art date
Application number
PCT/JP2018/025400
Other languages
French (fr)
Japanese (ja)
Inventor
佳明 山下
小川 裕史
和則 増渕
一樹 原田
Original Assignee
日本電産株式会社
日本電産エレシス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社, 日本電産エレシス株式会社 filed Critical 日本電産株式会社
Priority to CN201880053461.1A priority Critical patent/CN111033976B/en
Publication of WO2019064793A1 publication Critical patent/WO2019064793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a motor.
  • a heat generating element such as a capacitor having a large amount of heat generation is accommodated inside the housing to dissipate heat.
  • a configuration in which an electrolytic capacitor is housed in a step provided in a heat sink of an electronic controller unit (ECU) housing is disclosed (Patent Document 1).
  • the conventional motor does not pay attention to the difference in the amount of heat generation depending on the position of the capacitor, so it can dissipate the heat from the capacitor, but the volume of the heat sink and the amount of heat dissipation material used increase, which may increase the cost of the motor .
  • One aspect of the motor of the present invention includes a motor body having a rotor and a stator, and a columnar capacitor electrically connected to the motor body and extending along a first direction, the motor body comprising the capacitor A heat sink opposed to the side surface of the capacitor, and a heat dissipating material in contact with a part of the side surface of the capacitor and the heat sink, the side surface of the capacitor having a first region in contact with the heat dissipating material;
  • One area is a part of the side surface of the capacitor and is an area including the central portion in the first direction of the side surface of the capacitor.
  • a motor capable of reducing the volume of a heat sink and the use amount of a heat dissipating material while dissipating heat from a capacitor, thereby reducing the cost of the motor.
  • FIG. 1 is a plan view of a motor of the embodiment.
  • FIG. 2 is a perspective view of the motor of FIG. 1 with the cover 40 removed from the housing 50.
  • FIG. 3 is a cross-sectional view of the motor taken along line II-II of FIG.
  • FIG. 4 is a cross-sectional view of the motor in which the region XI of FIG. 3 is enlarged.
  • FIG. 5 is a cross-sectional view showing a first modification of the motor of FIG.
  • FIG. 6 is a cross-sectional view showing a second modification of the motor of FIG.
  • FIG. 7 is a cross-sectional view showing a third modification of the motor of FIG.
  • FIG. 8 is a cross-sectional view showing a fourth modification of the motor of FIG. FIG.
  • FIG. 9 is a cross-sectional view showing a fifth modification of the motor of FIG.
  • FIG. 10 is a cross-sectional view showing a sixth modification of the motor of FIG.
  • FIG. 11 is a cross-sectional view showing a seventh modification of the motor of FIG.
  • FIG. 12 is a cross-sectional view showing an eighth modification of the motor of FIG.
  • FIG. 13 is a cross-sectional view showing a ninth modification of the motor of FIG.
  • FIG. 14 is a cross-sectional view showing a tenth modification of the motor of FIG.
  • FIG. 15 is a cross-sectional view showing an eleventh modification of the motor of FIG.
  • FIG. 16 is a cross-sectional view showing a twelfth modification of the motor of FIG. FIG.
  • FIG. 17 is a cross-sectional view showing a thirteenth modification of the motor of FIG.
  • FIG. 18 is a cross-sectional view showing a fourteenth modification of the motor of FIG. 1
  • FIG. 19 is a cross-sectional view showing a fifteenth modified example of the motor of FIG. 1;
  • an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
  • the direction is parallel to the axial direction of the central axis J described later.
  • the X-axis direction is a direction orthogonal to the Z-axis direction.
  • the Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.
  • the positive side (+ Z side) in the Z-axis direction is referred to as "upper side”
  • the negative side (-Z side) in the Z-axis direction is referred to as "lower side”.
  • the upper side and the lower side are names used merely for explanation, and do not limit the actual positional relationship or direction.
  • a direction (Z-axis direction, first direction) parallel to the central axis J is simply referred to as “axial direction”
  • a radial direction centered on the central axis J is simply referred to as “radial direction”.
  • the circumferential direction around the central axis J that is, around the axis of the central axis J, is simply referred to as “circumferential direction”.
  • plan view means a state viewed from the axial direction.
  • the “other side” is a direction away from the substrate, and the “one side” is a direction approaching the substrate.
  • the “one side in the first direction” may be the upper side of a motor described later with respect to the circuit board (substrate) or the lower side of the motor.
  • FIG. 1 is a plan view of a motor 1 of the present embodiment.
  • FIG. 2 is a perspective view of the motor 1 in a state in which the cover 40 is removed from the housing 50 described later.
  • FIG. 3 is a cross-sectional view of the motor 1 taken along the line II-II of FIG.
  • FIG. 4 is a cross-sectional view of the motor 1 in which the region XI of FIG. 3 is enlarged.
  • FIG. 5 is a cross-sectional view showing a first modified example of the motor 1.
  • FIG. 6 is a cross-sectional view showing a second modification of the motor 1.
  • FIG. 7 is a cross-sectional view showing a third modification of motor 1.
  • FIG. 8 is a cross-sectional view showing a fourth modification of motor 1.
  • FIG. 1 is a plan view of a motor 1 of the present embodiment.
  • FIG. 2 is a perspective view of the motor 1 in a state in which the cover 40 is removed from the housing 50 described later.
  • FIG. 3
  • FIG. 9 is a cross-sectional view showing a fifth modification of motor 1.
  • FIG. 10 is a cross-sectional view showing a sixth modification of motor 1.
  • FIG. 11 is a cross-sectional view showing a seventh modification of motor 1.
  • FIG. 12 is a cross-sectional view showing an eighth modification of the motor 1.
  • FIG. 13 is a cross-sectional view showing a ninth modification of motor 1.
  • FIG. 14 is a cross-sectional view showing a tenth modification of motor 1.
  • FIG. 15 is a cross-sectional view showing an eleventh modification of motor 1.
  • FIG. 16 is a cross-sectional view showing a twelfth modification of the motor 1.
  • FIG. 17 is a cross-sectional view showing a thirteenth modification of motor 1.
  • FIG. 18 is a cross-sectional view showing a fourteenth modified example of the motor 1.
  • FIG. 19 is a cross-sectional view showing a fifteenth modified example of the motor 1. 5 to 19 correspond to cross-sectional views of the motor in which the region XI of FIG. 3 is enlarged.
  • the motor 1 includes a motor body 2, a housing 50, a control unit 3, an upper bearing 7A, and a lower bearing 7B.
  • the motor body 2 has a rotor 20 and a stator 25.
  • the rotor 20 rotates about a central axis J extending along the vertical direction.
  • the rotor 20 has a shaft 21, a rotor core 22, and a rotor magnet 23.
  • the shaft 21 extends along the central axis J.
  • the shaft 21 is rotatably supported around the central axis J by the upper bearing 7A and the lower bearing 7B.
  • the rotor core 22 is fixed to the shaft 21.
  • the rotor core 22 circumferentially surrounds the shaft 21.
  • the rotor magnet 23 is fixed to the rotor core 22. More specifically, the rotor magnet 23 is fixed to the outer surface of the rotor core 22 along the circumferential direction.
  • the rotor core 22 and the rotor magnet 23 rotate with the shaft 21.
  • the stator 25 is located radially outward of the rotor 20.
  • the stator 25 faces the rotor 20 in the radial direction via a gap, and surrounds the radially outer side of the rotor 20.
  • the stator 25 has a stator core 27, an insulator 28 and a coil 29.
  • the insulator 28 is made of an insulating material.
  • the insulator 28 covers at least a part of the stator core 27.
  • the coil 29 excites the stator core 27.
  • the coil 29 is configured by winding a coil wire (not shown). The coil wire is wound around the teeth portion of the stator core 27 through the insulator 28.
  • the end of the coil wire is drawn upward, passes through a through hole provided in the bearing holder 30, and is connected to the circuit board (substrate) 60.
  • the circuit board (substrate) 60 When a bus bar is provided between the motor body 2 and the bearing holder 30, the end of the coil wire is connected to the bus bar and the bus bar is connected to the circuit board 60.
  • the upper bearing 7A rotatably supports the upper end portion of the shaft 21.
  • the upper bearing 7A is located above the stator 25.
  • the upper bearing 7A is supported by the bearing holder 30.
  • the lower bearing 7B rotatably supports the lower end portion of the shaft 21.
  • the lower bearing 7B is located below the stator 25.
  • the lower bearing 7 B is supported by the lower bearing holding portion 53 of the housing 50.
  • the upper bearing 7A and the lower bearing 7B are ball bearings.
  • the types of the upper bearing 7A and the lower bearing 7B are not particularly limited, and may be other types of bearings.
  • the housing 50 accommodates the motor body 2. That is, the housing 50 accommodates the rotor 20 and the stator 25.
  • the housing 50 is in the form of a tube that opens to the upper side (+ Z side).
  • the housing 50 has a cylindrical portion 51, a bottom portion 52, and a lower bearing holding portion 53.
  • the housing 50 may be a cylindrical member not having the bottom 52. In this case, a bearing holder 30 for holding a bearing is separately attached to the lower opening of the housing 50.
  • the cylindrical portion 51 surrounds the stator 25 from the radially outer side.
  • the cylindrical portion 51 is cylindrical.
  • the stator core 27 and the bearing holder 30 are fixed to the inner peripheral surface of the cylindrical portion 51.
  • the bottom portion 52 is located at the lower end of the cylindrical portion 51.
  • the bottom 52 is located below the stator 25.
  • the lower bearing holding portion 53 is located at the center of the bottom portion 52 in plan view.
  • the lower bearing holder 53 holds the lower bearing 7B.
  • a hole 53a penetrating in the axial direction is provided at the center of the lower bearing holding portion 53 in a plan view. The lower end portion of the shaft 21 is inserted into the hole 53a.
  • control unit 3 includes a circuit board 60, a housing 4, and a heat sink 80. Further, as shown in FIG. 2, the control unit 3 has a connector 70.
  • the housing 4 accommodates the circuit board 60 and the heat sink 80.
  • the housing 4 has a bearing holder 30 and a lid 40.
  • the bearing holder 30 is located below the circuit board 60 and the heat sink 80 and covers the circuit board 60 and the heat sink 80 from the lower side.
  • the lid 40 covers the circuit board 60 and the heat sink 80 from the upper side.
  • the bearing holder 30 is located on the upper side (+ Z side) of the stator 25.
  • the bearing holder 30 supports the upper bearing 7A.
  • the bearing holder 30 is positioned at the opening 51 a on the upper side of the cylindrical portion 51 of the housing 50, and is fixed to the inner peripheral surface of the cylindrical portion 51.
  • the bearing holder 30 is made of a metal material having high heat dissipation characteristics and sufficient rigidity.
  • the bearing holder 30 is made of an aluminum alloy.
  • the bearing holder 30 is manufactured by cutting a surface requiring accuracy after forming a schematic shape by die casting or the like.
  • the bearing holder 30 includes a disk-shaped holder body portion 31, an upper bearing holding portion 32 positioned radially inward of the holder body portion 31, and a holder fixing portion 33 positioned radially outward of the holder body portion 31. And a lower heat sink portion 34.
  • the upper bearing holder 32 holds the upper bearing 7A.
  • the upper bearing holder 32 is located at the center of the bearing holder 30 in plan view.
  • the holder fixing portion 33 has a cylindrical shape that protrudes downward from the outer peripheral edge of the holder body 31 in the radial direction.
  • the outer peripheral surface of the holder fixing portion 33 radially faces the inner peripheral surface of the cylindrical portion 51 of the housing 50.
  • the holder fixing portion 33 is fitted and fixed to the inner peripheral surface of the cylindrical portion 51.
  • the lower heat sink portion 34 extends along a horizontal direction (a direction orthogonal to the central axis J) from a partial region of the upper bearing holding portion 32 in the circumferential direction.
  • the lower heat sink portion 34 extends along the circuit board 60 below the circuit board 60.
  • the lower heat sink portion 34 has a heat radiating surface 39 facing upward. That is, the bearing holder 30 has a heat dissipation surface 39.
  • the heat dissipation surface 39 extends along the circuit board 60.
  • the heat dissipation surface 39 contacts the lower surface 61 c of the substrate body 61 of the circuit board 60 directly or indirectly via an interposed member such as a heat dissipation material.
  • the lower heat sink portion 34 absorbs heat from the circuit board 60 at the heat dissipation surface 39 to cool the circuit board 60.
  • the circuit board 60 has a plurality of field effect transistors 66 and a plurality of capacitors 65 mounted on the upper surface 61 d of the substrate body 61.
  • the field effect transistor 66 is a heating element that easily generates heat in the circuit board 60. As viewed in the axial direction, at least a portion of the field effect transistor 66 and the capacitor 65 overlap the heat dissipation surface 39. Thus, the heat generated by the field effect transistor 66 and the capacitor 65 can be effectively transferred to the lower heat sink portion 34 at the heat dissipation surface 39. As a result, the temperature of the field effect transistor 66 can be prevented from rising excessively, and the operation reliability of the field effect transistor 66 can be improved.
  • the bearing holder 30 has an upper surface 30 a facing upward.
  • the upper surface 30 a faces the lid 40 in the vertical direction.
  • the upper surface 30a is provided with a recess 35 extending along the outer edge of the upper surface 30a.
  • the recessed groove portion 35 is recessed downward with respect to the upper surface 30 a.
  • the recessed groove portion 35 extends in a plane orthogonal to the central axis J with a uniform width and a uniform depth to surround the central axis J.
  • the recessed groove portion 35, the convex portion 42 of the cover 40 to be described in the later stage is accommodated.
  • the circuit board 60 is located above the bearing holder 30.
  • the circuit board 60 extends in a direction orthogonal to the central axis J (that is, a direction orthogonal to the vertical direction).
  • a coil wire extending from the coil 29 of the stator 25 is connected to the circuit board 60.
  • the circuit board 60 supplies a current to the coil 29 to control the rotation of the rotor 20.
  • the circuit board 60 includes a substrate body 61, a plurality of capacitors 65, and a plurality of field effect transistors 66.
  • the substrate main body 61 further includes electronic components (not shown) for controlling the rotation of the rotor 20.
  • the substrate body 61 is disposed to be orthogonal to the axial direction (ie, the vertical direction). In the present embodiment, the substrate body 61 is fixed to the bearing holder 30 by the fixing screw 68 .
  • the substrate main body 61 has an upper surface 61 d facing upward and a lower surface 61 c facing downward.
  • the capacitor 65 and the field effect transistor 66 are mounted on the upper surface 61 d of the substrate body 61.
  • the capacitor 65 has the largest dimension in the axial direction (vertical direction) among the mounted components of the circuit board 60. That is, the motor 1 includes a columnar capacitor 65 electrically connected to the motor body 2 through the circuit board 60 and extending along the Z direction. The capacitor 65 extends upward from the circuit board 60.
  • the field effect transistor 66 has a rectangular shape in plan view.
  • the field effect transistor 66 is also referred to as a FET (field effect transistor).
  • electronic components such as a rotation sensor and a choke coil are mounted on one or both of the upper surface 61 d and the lower surface 61 c of the substrate main body 61.
  • the electronic components such as the capacitor 65 and the field effect transistor 66 may be mounted on a board (for example, a two-sheet board) different from the circuit board 60 as long as they can be electrically connected to the motor body 2.
  • the heat sink 80 is located on the upper side of the circuit board 60.
  • the heat sink 80 covers a part of the circuit board 60 from the upper side.
  • the heat sink 80 of the present embodiment is in contact with the circuit board 60 and functions as a heat sink for cooling the circuit board 60.
  • the heat sink 80 may be in direct contact with the circuit board 60 or may be in indirect contact as long as the heat sink 80 is in thermal contact with the circuit board 60 to cool the circuit board 60. More specifically, the heat sink 80 may be in contact with the circuit board 60 via a heat dissipating material such as heat dissipating grease.
  • the heat sink 80 is made of a metal material (for example, an aluminum alloy or a copper alloy) having high heat dissipation characteristics.
  • the heat sink 80 is fixed to the lower heat sink portion 34 of the bearing holder 30 by a fixing screw 68 (not shown).
  • the heat sink 80 and the bearing holder 30 are in direct contact with each other at the fixed portion. Fixing the heat sink 80 and the bearing holder 30 in contact with each other causes heat transfer between the heat sink 80 and the bearing holder 30. For this reason, when either one of the heat sink 80 and the bearing holder 30 becomes high temperature, the heat can be moved to the other side and the heat can also be radiated from the other side. As a result, the heat radiation efficiency is enhanced, and as a result, the cooling effect of the circuit board 60 can be enhanced.
  • the heat sink 80 is located directly above the field effect transistor 66 which is a heat generating element. That is, the heat sink 80 overlaps with at least a part of the field effect transistor 66 when viewed in the axial direction.
  • the heat sink 80 and the field effect transistor 66 are vertically opposed to each other with a gap.
  • a heat dissipating material such as a heat dissipating grease is disposed, for example.
  • the heat sink 80 is preferably the same member as the lower heat sink portion 34.
  • the heat sink 80 and the lower heat sink part 34 are formed of the same member, the heat transfer generated by the field effect transistor 66 becomes smooth and the heat radiation effect is enhanced, and the heat sink 80 is fixed to the lower heat sink part 34
  • the fixing screw 68 is not required, and the motor 1 can be miniaturized.
  • the heat sink 80 is provided with a capacitor accommodation hole 81 penetrating in the vertical direction. As shown in FIG. 3, inside the capacitor accommodation hole 81, a capacitor 65, which is a heating element, is accommodated.
  • the inner circumferential surface of the capacitor housing hole 81 faces the side surface of the capacitor 65. That is, the inner circumferential surface of the capacitor housing hole 81 surrounds the side surface of the capacitor 65.
  • a lid 40 described later covers the heat sink 80 and the capacitor 65 from above.
  • the side surface 65 a of the capacitor 65 has a first region 121 in contact with the heat dissipation material 90.
  • the capacitor 65 is a heating element that easily generates a large amount of heat in the circuit board 60 as compared to the field effect transistor 66 and other electronic components.
  • the central portion 120 hereinafter simply referred to as the “central portion 120” in the longitudinal direction (Z direction in FIG. 4) of the columnar capacitor 65, a large amount of heat is generated compared to the surroundings.
  • the first area 121 is a part of the side surface 65 a of the capacitor 65, and is an area including the central portion 120 in the Z direction of the side surface 65 a of the capacitor 65. In the past, the heat radiation focused on the heat generation portion of the capacitor 65 was not performed.
  • the side surface 65a of the capacitor 65 is in contact with the heat dissipation material 90 in the first region 121 including at least the central portion 120 that generates more heat than the other portions as described above. Furthermore, in the side surface 65 a of the capacitor 65, the region other than the first region 121 does not contact the heat dissipation material 90. As a result, the heat from the capacitor 65 can be dissipated efficiently, the volume of the heat sink 80 and the amount of use of the heat dissipation material 90 can be suppressed, and the cost of the motor 1 can be reduced.
  • the side surface 65 a of the capacitor 65 has a second region 122 up to the end 65 s below the central portion 120 (one side in the first direction). That is, the inner circumferential surface of the capacitor housing hole 81 of the heat sink 80 faces the second region 122. Since the heat sink 80 faces the second area 122 of the side surface 65a of the capacitor 65, the heat sink 90 can easily stay in the second area 122 even if the heat sink 90 leaks out from the heat sink containing recess 130, stabilizing the arrangement of the heat sink. it can.
  • the side surface 65 a of the capacitor 65 further includes a third region 123 up to the end 65 t above the central portion 120 (the other side in the first direction).
  • a heat dissipation material accommodation recess 130 recessed in the X direction is provided on the upper side of the inner peripheral surface of the capacitor accommodation hole 81. That is, the motor body 2 has the heat dissipation material accommodation recess 130 in the X direction orthogonal to the side surface 65 a of the capacitor 65 at the boundary between the heat sink 80 and the lid 40 in the Z direction. Further, the central portion 120 of the capacitor 65 and the heat sink containing recess 130 face each other.
  • the lid 40 is located above the bearing holder 30, the circuit board 60 and the heat sink 80.
  • the lid 40 covers the upper side of the circuit board 60 and protects the circuit board 60.
  • the lid 40 has a flat plate 45 extending in a direction orthogonal to the axial direction, and an outer edge 46 located at the outer edge of the flat 45 and projecting downward with respect to the flat 45. And a connector holder portion 47 extending upward from the flat plate portion 45.
  • the connector holder portion 47 has a tubular shape extending upward from the flat plate portion 45.
  • the external connection terminal 73 of the connector 70 is disposed inside the connector holder portion 47.
  • the external connection terminal 73 is connected to an external device (not shown) that supplies power to the circuit board 60.
  • the flat plate portion 45 extends in a direction orthogonal to the axial direction (vertical direction). That is, the flat plate portion 45 extends along the circuit board 60.
  • the outer edge portion 46 protrudes downward from the outer edge of the flat plate portion 45.
  • the outer edge portion 46 surrounds the flat plate portion 45 over the entire circumference when viewed from the axial direction.
  • a convex portion 42, an inner lower end surface 46a and an outer lower end surface 46b are provided.
  • the convex portion 42 protrudes downward.
  • the convex portion 42 extends in a plane perpendicular to the central axis J with a uniform width and a uniform height.
  • the protrusion 42 extends over the entire outer edge 46. Therefore, the convex portion 42 surrounds the flat plate portion 45 over the entire circumference when viewed from the axial direction.
  • the convex portion 42 is accommodated in the concave groove portion 35 provided in the bearing holder 30.
  • a gap is provided between the inner wall surface of the recessed groove portion 35 and the convex portion 42.
  • the adhesive B is filled in the recessed groove portion 35.
  • the convex portion 42 is accommodated in the concave groove portion 35 filled with the adhesive B. For this reason, it is possible to suppress water and contamination from entering between the lid 40 and the bearing holder 30 into the interior of the motor 1.
  • a moisture-curable adhesive as the adhesive B filled in the recessed groove portion 35.
  • Moisture-curable adhesives cure with moisture in the air.
  • the outer lower end surface 46b is a surface facing downward.
  • the outer lower end surface 46b is located inside the area surrounded by the convex portion 42 in a plan view.
  • the outer lower end surface 46 b contacts the upper surface 30 a of the bearing holder 30.
  • the lid 40 can be positioned in the axial direction (vertical direction) with respect to the bearing holder 30.
  • the inner lower end surface 46 a is a surface facing downward.
  • the inner lower end surface 46 a is located inside the area surrounded by the convex portion 42 in a plan view.
  • the inner lower end surface 46 a is axially separated from the upper surface 30 a of the bearing holder 30.
  • the adhesive B filled in the recessed groove 35 can be exposed to the air to accelerate the curing of the adhesive B.
  • the adhesive B overflowing from the concave groove portion 35 can be accumulated in the gap between the inner lower end surface 46a and the upper surface 30a of the bearing holder 30. Therefore, when the filling amount of the adhesive B varies, the excess adhesive B can be released to the gap between the inner lower end surface 46 a and the upper surface 30 a of the bearing holder 30.
  • a capacitor facing recess 49 is provided on the inner lower end surface 46 a at a position facing the heat sink 80. That is, the lid 40 includes the capacitor facing recess 49.
  • the inner wall surface of the capacitor facing recess 49 faces the third region 123 of the side surface 65 a of the capacitor 65 and the top surface 65 b of the capacitor 65. That is, the motor main body 2 includes the lid 40 facing the third region 123 of the side surface 65 a of the capacitor 65.
  • the lid 40 faces the third region 123 of the side surface 65a of the capacitor 65, and the heat sink 80 faces the second region 122 of the side surface 65a of the capacitor 65 as described in the previous step, thereby confining the capacitor 65 and dissipating the heat 90 leaks can be suppressed.
  • a heat dissipating material 90 such as heat dissipating grease is accommodated between the inner peripheral surface of the capacitor accommodating hole 81 and the side surface 65 a of the capacitor 65.
  • heat dissipating material 90 heat can be efficiently transferred from the side surface of the capacitor 65 toward the heat sink 80.
  • the heat generated in the capacitor 65 can be transferred to the heat sink 80 to cool the capacitor 65. That is, the motor body 2 has the heat sink 80 opposed to the side surface 65 a of the capacitor 65, and the heat dissipation material 90 in contact with a part of the side surface 65 a of the capacitor 65 and the heat sink 80.
  • a fifth recess 135 is provided in the surface 80b facing the upper side of the heat sink 80 on the side of the capacitor 65 so as to be recessed downward.
  • the heat sink containing recess 130 is configured by the fifth recess 135 and the inner lower end surface (surface facing toward one side in the first direction) 46 a of the lid 40.
  • a part of the heat dissipating material 90 is disposed inside the heat dissipating material accommodation recess 130. Since the heat dissipating material 90 is disposed in the housing recess 130, the arrangement of the heat dissipating material 90 can be stabilized. Can be suppressed from entering the motor main body.
  • the heat dissipating material 90 contacts at least the central portion 120 having a large amount of heat generation, so that the heat from the capacitor 65 is efficiently dissipated, and the heat dissipating material 90 contacts the entire side surface 65 a and the top surface 65 b Also, the amount of heat dissipation material 90 used can be reduced. Further, since the heat sink 80 faces only the first region 121 of the side surface 65a of the capacitor 65, the heat from the capacitor 65 transmitted through the heat dissipation material 90 is efficiently dissipated while the side surface 65a and the top surface 65b of the capacitor 65 are The amount of heat dissipation material 90 used can be reduced compared to the case of contacting the whole.
  • the heat dissipation material accommodation recess 130 may be recessed toward the lid 40 at the boundary between the heat sink 80 and the lid 40. That is, in the first modification, a sixth recess 136 that is recessed upward is provided on the inner lower end surface 46 a of the lid 40 on the capacitor 65 side.
  • the heat sink containing recess 130 is provided by the sixth recess 136 and the surface 80 b facing the upper side of the heat sink 80.
  • part of the heat dissipation material 90 is disposed inside the heat dissipation material accommodation recess 130. Since the heat dissipating material 90 is disposed in the heat dissipating material accommodation recess 130, the arrangement of the heat dissipating material 90 can be stabilized.
  • the heat sink 80 may have a first recess 131 recessed on the lower side (one side in the first direction) on the surface 80 b facing the upper side (the other side in the first direction).
  • the first recess 131 constitutes at least a part of the heat dissipation material accommodation recess 130, and in the second modification, constitutes a lower portion of the heat dissipation material accommodation recess 130 and a portion parallel to the X direction.
  • the lid 40 has a first projection 141 that protrudes to the lower side (one side in the first direction) of the capacitor 65 on the inner lower end face (the side facing the one side in the first direction) 46 a.
  • the first protrusion 141 is fitted into the first recess 131 of the heat sink 80.
  • the heat dissipation material accommodation recess 130 is formed between the heat sink 80 and the lid 40 on the capacitor 65 side of the first protrusion 141. That is, the heat dissipation material 90 is disposed so as to be surrounded by the first recess 131 and the first protrusion 141. Since the heat dissipation material 90 is disposed so as to be surrounded by the first recess 131 and the first protrusion 141, the heat dissipation material 90 can be prevented from entering the motor main body by the labyrinth structure.
  • the heat sink 80 has a first recess 131, and in the third modification, the first recess 131 is a portion below the heat sink containing recess 130 and parallel to the X direction; It constitutes an opposing side and a portion parallel to the Z direction.
  • the lid 40 has a first protrusion 141 on the inner lower end surface 46 a.
  • the first protrusion 141 constitutes a portion above the heat dissipation material accommodation recess 130 and parallel to the X direction. That is, in the third modification, the heat dissipation material accommodation recess 130 is provided between the first protrusion 141 and the capacitor 65 in the X direction.
  • the heat dissipation material accommodation recess 130 is provided between the first protrusion 141 and the heat sink 80 in the Z direction. Also in the third modification, the heat dissipating material 90 is disposed so as to be surrounded by the first recess 131 and the first protrusion 141, so that the heat dissipating material 90 is prevented from entering the motor main body by the labyrinth structure. Can.
  • the lid 40 has a second recess 132 that is recessed on the upper side (the other side in the first direction) on the inner lower end face (the surface facing the one side in the first direction) 46a.
  • the second recess 132 constitutes at least a part of the heat dissipation material accommodation recess 130, and in the fourth modification, constitutes a portion above the heat dissipation material accommodation recess 130 and parallel to the X direction.
  • the heat sink 80 may have a second protrusion 142 that protrudes upward (the other side in the first direction) on the surface 80 b facing the upper side (the other side in the first direction).
  • the second protrusion 142 is fitted in the second recess 132.
  • the heat sink containing recess 130 is formed between the heat sink 80 and the lid 40 of the second protrusion 142 on the side of the capacitor 65. That is, the heat dissipation material 90 is disposed so as to be surrounded by the second recess 132 and the second protrusion 142.
  • the heat dissipation material 90 is disposed so as to be surrounded by the circuit board 60, the second recess 132, and the second protrusion 142, the heat dissipation material 90 can be prevented from entering the motor main body by the labyrinth structure.
  • the heat sink 80 may extend from the end 65s on the lower side (that is, the circuit board 60 side) of the capacitor 65 in the Z direction to the upper end 65t in the Z direction. Since the end 65s to the end 65t of the capacitor 65 are surrounded by the heat sink 80, the capacitor 65 can be stabilized at a predetermined position (within the capacitor receiving hole 81 of the heat sink 80).
  • the heat dissipating material 90 opposes at least a part of a region of the side surface 65 a of the capacitor 65 from the central portion 120 to the end 65 s on the lower side in the Z direction or the end 65 t on the upper side.
  • the heat dissipation material 90 faces the central portion 12 of the side surface 65 a of the capacitor 65.
  • the heat sink 80 dissipates heat toward the XY direction (second direction) orthogonal to the side surface 65 a of the capacitor 65 on the side surface 80 c opposite to the central portion 120 of the capacitor 65
  • a material accommodation recess 130 is provided.
  • the heat dissipating material 90 is disposed in the heat dissipating material accommodation recess 130 and faces the central portion 120. By disposing the heat dissipating material 90 in the heat dissipating material accommodation recess 130, the heat dissipating material 90 can be easily held at a predetermined position, and the arrangement of the heat dissipating material 90 can be stabilized.
  • the lid 40 is disposed on the upper side (the other side in the first direction) of the capacitor 65 in the Z direction, and faces the top surface (the end face on the other side of the first direction) 65 b of the capacitor 65 and the upper side in the Z direction of the heat sink 80 It faces the surface 80b. That is, the motor main body 2 includes the lid 40 facing both the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80.
  • the lid 40 is disposed on the upper side (the other side in the first direction) of the capacitor 65. Therefore, the capacitor 65 can be confined in the capacitor housing hole 81 and leakage of the heat dissipation material 90 can be suppressed.
  • the heat sink 80 may have a third recess 133 recessed in the XY direction (second direction) on the side surface 80c opposite to the central portion 120 of the side surface 65a of the capacitor 65.
  • the third recess 133 extends from the central portion 120 of the capacitor 65 to the lower side in the Z direction (one side in the first direction).
  • the heat dissipation material 90 is disposed in the third recess 133.
  • the heat sink 80 may have a fourth recess 134 recessed in the XY direction (second direction) on the side surface 80 c opposite to the central portion 120 of the side surface 65 a of the capacitor 65.
  • the fourth recess 134 extends from the central portion 120 of the capacitor 65 to the upper side in the Z direction (the other side in the first direction).
  • the heat dissipation material 90 is disposed in the fourth recess 134.
  • the heat sink 80 is disposed below the circuit board 60.
  • the housing 50 that accommodates the motor body 2 may have the function of the heat sink 80.
  • the bearing holder 30 attached to the opening 51 a of the housing 50 may have the function of a heat sink. That is, in the lower side of the XI region in FIG. 2, the housing 50 is provided with the capacitor housing recess 150.
  • the capacitor 65 extends from the circuit board 60 to the lower side (the other side in the first direction) in the Z direction.
  • the heat sink 80 may include a capacitor housing recess 150 that opens to the upper side (one side in the first direction) in the Z direction.
  • the capacitor 65 is disposed in the capacitor housing recess 150.
  • the heat dissipating material 90 opposes at least a part of the inner wall surface of the capacitor housing recess 150 and the region of the side surface 65 a of the capacitor 65 up to the end 65 s or the lower end 65 t above the central portion 120.
  • the heat dissipation material 90 faces the central portion 12 of the side surface 65 a of the capacitor 65.
  • the heat sink 80 is recessed in the heat sink 80 toward the XY direction (second direction) orthogonal to the side surface 65 a of the capacitor 65 on the side surface 150 c of the capacitor accommodation recess 150 opposed to the central portion 120 of the capacitor 65. It has a recess 130.
  • the heat dissipating material 90 is disposed in the heat dissipating material accommodation recess 130 and faces the central portion 120. By disposing the heat dissipating material 90 in the heat dissipating material accommodation recess 130, the heat dissipating material 90 can be easily held at a predetermined position, and the arrangement of the heat dissipating material 90 can be stabilized.
  • the heat sink 80 includes a capacitor housing recess 150 as in the eighth modification.
  • Capacitor 65 is arranged in capacitor housing recess 150.
  • the heat sink 80 has the third recess 133 recessed in the XY direction (second direction) on the side surface 150 c of the capacitor housing recess 150 facing the central portion 120 of the side surface 65 a of the capacitor 65. Good.
  • the third recess 133 extends from the central portion 120 of the capacitor 65 to the upper side in the Z direction (one side in the first direction).
  • the heat dissipation material 90 is disposed in the third recess 133.
  • the heat dissipating material 90 is disposed in the third recess 133, more heat dissipating materials 90 are disposed in the third recess 133 than in the configuration of the eighth modification, so the heat dissipating efficiency is improved and the heat dissipating material 90 is increased. Can be well prevented.
  • the heat sink 80 includes a capacitor housing recess 150 as in the eighth modification.
  • Capacitor 65 is arranged in capacitor housing recess 150.
  • the heat sink 80 has a fourth recess 134 recessed in the XY direction (second direction) on the side surface 150 c of the capacitor housing recess 150 facing the central portion 120 of the side surface 65 a of the capacitor 65.
  • the fourth recess 134 extends from the central portion 120 of the capacitor 65 to the lower side in the Z direction (the other side in the first direction).
  • the heat dissipation material 90 is disposed in the fourth recess 134.
  • the heat dissipating material 90 is disposed in the fourth recess 134, the heat dissipating material 90 is disposed more in the fourth recess 134 than in the configuration of the eighth modification, so that the heat dissipating efficiency is enhanced. Can be well prevented.
  • the heat sink 80 extends from the lower end 65 s of the capacitor 65 in the Z direction to the upper end 65 t and includes a capacitor receiving hole 81.
  • the capacitor 65 is disposed in the capacitor receiving hole 81.
  • the motor main body 2 includes a lid 40 facing both the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80.
  • the motor 1 has a sealing member 94 that seals between the capacitor 65 and the heat sink 80 on the upper side (the other side in the first direction) than the central portion 120.
  • the heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94.
  • the heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94, the heat dissipating efficiency can be enhanced.
  • the sealing member 94 can isolate the electric field or the like and the heat dissipation material 90.
  • the heat sink 80 includes a capacitor housing recess 150.
  • Capacitor 65 is arranged in capacitor housing recess 150.
  • the motor body 2 does not include the lid 40.
  • the motor 1 has a sealing member 94 that seals between the capacitor 65 and the heat sink 80 on the upper side (the other side in the first direction) than the central portion 120 of the capacitor.
  • the heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94.
  • the heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94, the heat dissipating efficiency can be enhanced as in the eleventh modification.
  • the sealing member 94 can isolate the electric field or the like and the heat dissipation material 90.
  • the heat sink 80 extends from the lower end 65 s of the capacitor 65 in the Z direction to the upper end 65 t and has a capacitor accommodation hole 81.
  • the capacitor 65 is disposed in the capacitor accommodation hole 81.
  • the motor body 2 includes a lid 40 facing both the top surface 65 b and the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80.
  • a sealing member 94 that seals between the capacitor 65 and the heat sink 80 is provided below the central portion 120 of the capacitor (one side in the first direction).
  • the heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the lid 40, and the sealing member 94.
  • the heat dissipating material is disposed in the space surrounded by the capacitor 65, the heat sink 80, the lid 40, and the sealing member 94, the heat dissipating effect can be enhanced and the heat dissipating material 90 can be favorably prevented from leaking.
  • the heat sink 80 includes a capacitor housing recess 150.
  • Capacitor 65 is arranged in capacitor housing recess 150.
  • the motor 1 has a sealing member 94 that seals between the capacitor 65 and the heat sink 80 below the central portion 120.
  • the heat dissipating material 90 contacts the capacitor 65, the heat sink 80, and the sealing member 94.
  • the heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, and the sealing member 94, so that the heat dissipating efficiency can be enhanced and the heat dissipating material 90 can be favorably prevented from leaking.
  • the heat sink 80 extends from the lower end 65 s of the capacitor 65 in the Z direction to the upper end 65 t and has a capacitor accommodation hole 81.
  • the capacitor 65 is disposed in the capacitor accommodation hole 81.
  • the motor main body 2 includes a lid 40 facing both the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80.
  • the lid portion 40 protrudes toward the lower side in the Z direction (surface) 46 a toward the lower side (one side in the first direction) in the Z direction, and a third protrusion facing the side surface 65 a of the capacitor 65 It has a portion 143.
  • the third protrusion 143 is disposed between the capacitor 65 and the heat sink 80.
  • the heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the third protrusion 143, and the circuit board 60.
  • the heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, the third protrusion 143, and the circuit board 60 to enhance the heat dissipation efficiency, and the third protrusion 143 removes the heat dissipating material 90. Can be well prevented.
  • the connector 70 is provided to connect the circuit board 60 to an external device. As shown in FIG. 2, the connector 70 includes a pair of conductive connector bodies 70 ⁇ / b> A and an insulating support portion 71. The pair of connector bodies 70A are arranged along one direction (one direction in the horizontal plane, in the present embodiment, the X-axis direction) orthogonal to the axial direction.
  • the support portion 71 is located below the circuit board 60.
  • the support portion 71 supports the connector main body 70A.
  • the support 71 is fixed to a bearing holder 30 which is a part of the housing 4. That is, the support 71 is fixed to the housing 4.
  • the support portion 71 is insulating.
  • that the support part 71 is insulating means that the support part 71 insulates the connector main body 70A and the bearing holder 30.
  • the support portion 71 may have an insulating member interposed between the connector main body 70A and the bearing holder 30.
  • a resin material is used as the insulating member.
  • the support portion 71 includes a support portion main body 71 a and a pair of fixing portions 71 b. A part of the connector main body 70A is embedded in the support main body 71a by insert molding. Therefore, the support portion 71 supports the connector main body 70A in the support portion main body 71a.
  • the support portion main body 71a has a rectangular shape whose longitudinal direction is the direction in which the pair of connector main bodies 70A are arranged (X-axis direction).
  • the pair of fixing portions 71b are located at both ends in the longitudinal direction of the support portion main body 71a.
  • the pair of fixing portions 71b respectively extend on both sides in the longitudinal direction of the support portion main body 71a.
  • the housing 4 includes a lid 40 that covers the upper side of the circuit board 60, and a bearing holder 30 as a base located below the circuit board 60.
  • the base located below the circuit board 60 may be part of the housing 50. That is, the base may be at least one of the housing 50 and the bearing holder 30.
  • the circuit board 60 is located on one side in the axial direction with respect to the motor body 2. Also, the circuit board 60 extends in a direction orthogonal to the central axis J. However, the position of the circuit board 60 with respect to the motor body 2 is not limited to this. As an example, the circuit board may be disposed along the central axis J on the side surface of the motor body.
  • the length in the Z direction (first direction) of the capacitor accommodation hole 81 and the capacitor accommodation recess 150 is substantially the same as the length in the Z direction of the capacitor 65. However, the length in the Z direction of capacitor housing hole 81 and capacitor housing recess 150 may be longer than the length in the Z direction of capacitor 65. At this time, since the heat-radiating material accommodation concave portion 130 faces the central portion 120 of the capacitor 65, the heat-radiating material accommodation concave portion 130 is positioned below the capacitor accommodation hole 81.

Abstract

This motor is provided with: a motor main body having a rotor and a stator; and a columnar capacitor, which is electrically connected to the motor main body, and which extends in a first direction. The motor main body has: a heat sink facing the side surface of the capacitor; and a heat dissipating material in contact with the heat sink and a part of the side surface of the capacitor. The side surface of the capacitor has a first region in contact with the heat dissipating material, and the first region is a part of the side surface of the capacitor, and includes a center portion of the side surface of the capacitor, said center portion being in the first direction.

Description

モータmotor
本発明は、モータに関する。 The present invention relates to a motor.
モータ本体を制御する回路基板(基板)を備えた機電一体型のモータでは、発熱量の大きいコンデンサ等の発熱素子をハウジングの内部に収容し、放熱を行う。例えば、電子コントローラユニット(ECU)ハウジングのヒートシンクに設けられた段差内に電解コンデンサが収められた構成が開示されている(特許文献1)。 In a motor-integral motor including a circuit board (substrate) for controlling the motor main body, a heat generating element such as a capacitor having a large amount of heat generation is accommodated inside the housing to dissipate heat. For example, a configuration in which an electrolytic capacitor is housed in a step provided in a heat sink of an electronic controller unit (ECU) housing is disclosed (Patent Document 1).
特開2013-62959号公報JP, 2013-62959, A
従来のモータは、コンデンサの位置による発熱量の違いが着目されていなかったため、コンデンサからの熱を放熱できるがヒートシンクの体積や放熱材の使用量が増え、モータのコストが高くなる虞があった。  The conventional motor does not pay attention to the difference in the amount of heat generation depending on the position of the capacitor, so it can dissipate the heat from the capacitor, but the volume of the heat sink and the amount of heat dissipation material used increase, which may increase the cost of the motor .
本発明の一つの態様は、上記問題点に鑑みて、コンデンサからの熱を放熱しつつ、ヒートシンクの体積や放熱材の使用量を減らし、モータのコストを抑えられるモータの提供を目的の一つとする。 In view of the above problems, it is an object of the present invention to provide a motor capable of reducing the volume of a heat sink and the amount of a heat dissipation material while dissipating heat from a capacitor, thereby reducing the cost of the motor. Do.
本発明のモータの一つの態様は、ロータおよびステータを有するモータ本体と、前記モータ本体と電気的に接続され第1方向に沿って延びる柱状のコンデンサと、を備え、前記モータ本体は、前記コンデンサの側面と対向するヒートシンクと、前記コンデンサの側面の一部および前記ヒートシンクと接触する放熱材と、を有し、前記コンデンサの側面は、前記放熱材と接触する第1領域を有し、前記第1領域は、前記コンデンサの側面の一部であって、前記コンデンサの側面の前記第1方向の中央部を含む領域である。 One aspect of the motor of the present invention includes a motor body having a rotor and a stator, and a columnar capacitor electrically connected to the motor body and extending along a first direction, the motor body comprising the capacitor A heat sink opposed to the side surface of the capacitor, and a heat dissipating material in contact with a part of the side surface of the capacitor and the heat sink, the side surface of the capacitor having a first region in contact with the heat dissipating material; One area is a part of the side surface of the capacitor and is an area including the central portion in the first direction of the side surface of the capacitor.
本発明の一つの態様によれば、コンデンサからの熱を放熱しつつ、ヒートシンクの体積や放熱材の使用量を減らし、モータのコストを抑えられるモータが提供される。 According to one aspect of the present invention, there is provided a motor capable of reducing the volume of a heat sink and the use amount of a heat dissipating material while dissipating heat from a capacitor, thereby reducing the cost of the motor.
図1は、実施形態のモータの平面図である。FIG. 1 is a plan view of a motor of the embodiment. 図2は、図1のモータの斜視図であり、ハウジング50から蓋部40を外した状態の図である。FIG. 2 is a perspective view of the motor of FIG. 1 with the cover 40 removed from the housing 50. 図3は、図1のII-II線に沿うモータの断面図である。FIG. 3 is a cross-sectional view of the motor taken along line II-II of FIG. 図4は、図3のXI領域を拡大したモータの断面図である。FIG. 4 is a cross-sectional view of the motor in which the region XI of FIG. 3 is enlarged. 図5は、図1のモータの第1変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a first modification of the motor of FIG. 図6は、図1のモータの第2変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a second modification of the motor of FIG. 図7は、図1のモータの第3変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a third modification of the motor of FIG. 図8は、図1のモータの第4変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a fourth modification of the motor of FIG. 図9は、図1のモータの第5変形例を示す断面図である。FIG. 9 is a cross-sectional view showing a fifth modification of the motor of FIG. 図10は、図1のモータの第6変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a sixth modification of the motor of FIG. 図11は、図1のモータの第7変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a seventh modification of the motor of FIG. 図12は、図1のモータの第8変形例を示す断面図である。FIG. 12 is a cross-sectional view showing an eighth modification of the motor of FIG. 図13は、図1のモータの第9変形例を示す断面図である。FIG. 13 is a cross-sectional view showing a ninth modification of the motor of FIG. 図14は、図1のモータの第10変形例を示す断面図である。FIG. 14 is a cross-sectional view showing a tenth modification of the motor of FIG. 図15は、図1のモータの第11変形例を示す断面図である。FIG. 15 is a cross-sectional view showing an eleventh modification of the motor of FIG. 図16は、図1のモータの第12変形例を示す断面図である。FIG. 16 is a cross-sectional view showing a twelfth modification of the motor of FIG. 図17は、図1のモータの第13変形例を示す断面図である。FIG. 17 is a cross-sectional view showing a thirteenth modification of the motor of FIG. 図18は、図1のモータの第14変形例を示す断面図である。FIG. 18 is a cross-sectional view showing a fourteenth modification of the motor of FIG. 1; 図19は、図1のモータの第15変形例を示す断面図である。FIG. 19 is a cross-sectional view showing a fifteenth modified example of the motor of FIG. 1;
以下、図面を参照しながら、本発明の実施形態に係るモータ1について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。  Hereinafter, a motor 1 according to an embodiment of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure intelligible, a scale, the number, etc. in an actual structure and each structure may be varied.
また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、後段に説明する中心軸Jの軸方向と平行な方向とする。X軸方向は、Z軸方向と直交する方向とする。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向とする。  In the drawings, an XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate. In the XYZ coordinate system, the direction is parallel to the axial direction of the central axis J described later. The X-axis direction is a direction orthogonal to the Z-axis direction. The Y-axis direction is orthogonal to both the X-axis direction and the Z-axis direction.
また、以下の説明においては、Z軸方向の正の側(+Z側)を「上側」と呼び、Z軸方向の負の側(-Z側)を「下側」と呼ぶ。なお、上側および下側とは、単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。また、特に断りのない限り、中心軸Jに平行な方向(Z軸方向、第1方向)を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。さらに、以下の説明において、「平面視」とは、軸方向から見た状態を意味する。また、特に断りのない限り、「他方側」は基板から遠ざかる方向であって、「一方側」は基板に近づく方向と呼ぶ。なお、「第1方向の一方側」は、回路基板(基板)に対する後述のモータの上側であってもよく、モータの下側であってもよい。  Further, in the following description, the positive side (+ Z side) in the Z-axis direction is referred to as "upper side", and the negative side (-Z side) in the Z-axis direction is referred to as "lower side". Note that the upper side and the lower side are names used merely for explanation, and do not limit the actual positional relationship or direction. Further, unless otherwise noted, a direction (Z-axis direction, first direction) parallel to the central axis J is simply referred to as “axial direction”, and a radial direction centered on the central axis J is simply referred to as “radial direction”. The circumferential direction around the central axis J, that is, around the axis of the central axis J, is simply referred to as “circumferential direction”. Furthermore, in the following description, “plan view” means a state viewed from the axial direction. Moreover, unless otherwise noted, the “other side” is a direction away from the substrate, and the “one side” is a direction approaching the substrate. The “one side in the first direction” may be the upper side of a motor described later with respect to the circuit board (substrate) or the lower side of the motor.
[モータ]



 図1は、本実施形態のモータ1の平面図である。図2は、モータ1の斜視図であり、後段で説明するハウジング50から蓋部40を外した状態の図である。図3は、図1のII-II線に沿うモータ1の断面図である。図4は、図3のXI領域を拡大したモータ1の断面図である。図5は、モータ1の第1変形例を示す断面図である。図6は、モータ1の第2変形例を示す断面図である。図7は、モータ1の第3変形例を示す断面図である。図8は、モータ1の第4変形例を示す断面図である。図9は、モータ1の第5変形例を示す断面図である。図10は、モータ1の第6変形例を示す断面図である。図11は、モータ1の第7変形例を示す断面図である。図12は、モータ1の第8変形例を示す断面図である。図13は、モータ1の第9変形例を示す断面図である。図14は、モータ1の第10変形例を示す断面図である。図15は、モータ1の第11変形例を示す断面図である。図16は、モータ1の第12変形例を示す断面図である。図17は、モータ1の第13変形例を示す断面図である。図18は、モータ1の第14変形例を示す断面図である。図19は、モータ1の第15変形例を示す断面図である。なお、図5から図19は、図3のXI領域を拡大したモータの断面図に相当する。 
[motor]



FIG. 1 is a plan view of a motor 1 of the present embodiment. FIG. 2 is a perspective view of the motor 1 in a state in which the cover 40 is removed from the housing 50 described later. FIG. 3 is a cross-sectional view of the motor 1 taken along the line II-II of FIG. FIG. 4 is a cross-sectional view of the motor 1 in which the region XI of FIG. 3 is enlarged. FIG. 5 is a cross-sectional view showing a first modified example of the motor 1. FIG. 6 is a cross-sectional view showing a second modification of the motor 1. FIG. 7 is a cross-sectional view showing a third modification of motor 1. FIG. 8 is a cross-sectional view showing a fourth modification of motor 1. FIG. 9 is a cross-sectional view showing a fifth modification of motor 1. FIG. 10 is a cross-sectional view showing a sixth modification of motor 1. FIG. 11 is a cross-sectional view showing a seventh modification of motor 1. FIG. 12 is a cross-sectional view showing an eighth modification of the motor 1. FIG. 13 is a cross-sectional view showing a ninth modification of motor 1. FIG. 14 is a cross-sectional view showing a tenth modification of motor 1. FIG. 15 is a cross-sectional view showing an eleventh modification of motor 1. FIG. 16 is a cross-sectional view showing a twelfth modification of the motor 1. FIG. 17 is a cross-sectional view showing a thirteenth modification of motor 1. FIG. 18 is a cross-sectional view showing a fourteenth modified example of the motor 1. FIG. 19 is a cross-sectional view showing a fifteenth modified example of the motor 1. 5 to 19 correspond to cross-sectional views of the motor in which the region XI of FIG. 3 is enlarged.
図1および図2に示すように、モータ1は、モータ本体2と、ハウジング50と、制御部3と、上側ベアリング7Aと、下側ベアリング7Bと、を備える。  As shown in FIGS. 1 and 2, the motor 1 includes a motor body 2, a housing 50, a control unit 3, an upper bearing 7A, and a lower bearing 7B.
[モータ本体]



 モータ本体2は、ロータ20と、ステータ25と、を有する。 ロータ20は、上下方向に沿って延びる中心軸Jを中心として回転する。ロータ20は、シャフト21と、ロータコア22と、ロータマグネット23と、を有する。 シャフト21は、中心軸Jに沿って延びる。シャフト21は、上側ベアリング7Aと下側ベアリング7Bとによって、中心軸Jの軸周りに回転可能に支持される。ロータコア22は、シャフト21に固定される。ロータコア22は、シャフト21を周方向に囲んでいる。ロータマグネット23は、ロータコア22に固定される。より詳細には、ロータマグネット23は、ロータコア22の周方向に沿った外側面に固定される。ロータコア22およびロータマグネット23は、シャフト21とともに回転する。 
[Motor body]



The motor body 2 has a rotor 20 and a stator 25. The rotor 20 rotates about a central axis J extending along the vertical direction. The rotor 20 has a shaft 21, a rotor core 22, and a rotor magnet 23. The shaft 21 extends along the central axis J. The shaft 21 is rotatably supported around the central axis J by the upper bearing 7A and the lower bearing 7B. The rotor core 22 is fixed to the shaft 21. The rotor core 22 circumferentially surrounds the shaft 21. The rotor magnet 23 is fixed to the rotor core 22. More specifically, the rotor magnet 23 is fixed to the outer surface of the rotor core 22 along the circumferential direction. The rotor core 22 and the rotor magnet 23 rotate with the shaft 21.
ステータ25は、ロータ20の径方向外側に位置する。ステータ25は、ロータ20と径方向に隙間を介して対向してロータ20の径方向外側を囲む。ステータ25は、ステータコア27と、インシュレータ28と、コイル29と、を有する。 インシュレータ28は、絶縁性を有する材料から構成される。インシュレータ28は、ステータコア27の少なくとも一部を覆う。モータ1の駆動時において、コイル29は、ステータコア27を励磁する。コイル29は、コイル線(図示略)が巻き回されて構成される。コイル線は、インシュレータ28を介してステータコア27のティース部に巻き回される。コイル線の端部は、上側に引き出され、ベアリングホルダ30に設けられた貫通孔を通過して回路基板(基板)60に接続される。また、モータ本体2とベアリングホルダ30との間にバスバーが設けられる場合には、コイル線の端部がバスバーに接続され、バスバーが回路基板60に接続される。  The stator 25 is located radially outward of the rotor 20. The stator 25 faces the rotor 20 in the radial direction via a gap, and surrounds the radially outer side of the rotor 20. The stator 25 has a stator core 27, an insulator 28 and a coil 29. The insulator 28 is made of an insulating material. The insulator 28 covers at least a part of the stator core 27. When the motor 1 is driven, the coil 29 excites the stator core 27. The coil 29 is configured by winding a coil wire (not shown). The coil wire is wound around the teeth portion of the stator core 27 through the insulator 28. The end of the coil wire is drawn upward, passes through a through hole provided in the bearing holder 30, and is connected to the circuit board (substrate) 60. When a bus bar is provided between the motor body 2 and the bearing holder 30, the end of the coil wire is connected to the bus bar and the bus bar is connected to the circuit board 60.
上側ベアリング7Aは、シャフト21の上端部を回転可能に支持する。上側ベアリング7Aは、ステータ25の上側に位置する。上側ベアリング7Aは、ベアリングホルダ30に支持される。 下側ベアリング7Bは、シャフト21の下端部を回転可能に支持する。下側ベアリング7Bは、ステータ25の下側に位置する。下側ベアリング7Bは、ハウジング50の下側ベアリング保持部53に支持される。  The upper bearing 7A rotatably supports the upper end portion of the shaft 21. The upper bearing 7A is located above the stator 25. The upper bearing 7A is supported by the bearing holder 30. The lower bearing 7B rotatably supports the lower end portion of the shaft 21. The lower bearing 7B is located below the stator 25. The lower bearing 7 B is supported by the lower bearing holding portion 53 of the housing 50.
本実施形態において、上側ベアリング7Aおよび下側ベアリング7Bは、ボールベアリングである。しかし、上側ベアリング7Aおよび下側ベアリング7Bの種類は、特に限定されず、他の種類のベアリングであってもよい。  In the present embodiment, the upper bearing 7A and the lower bearing 7B are ball bearings. However, the types of the upper bearing 7A and the lower bearing 7B are not particularly limited, and may be other types of bearings.
[ハウジング]



 図3に示すように、ハウジング50は、モータ本体2を収容する。すなわち、ハウジング50は、ロータ20およびステータ25を収容する。ハウジング50は、上側(+Z側)に開口する筒状である。ハウジング50は、筒状部51と、底部52と、下側ベアリング保持部53と、を有する。なお、ハウジング50は底部52を有していない筒状部材であってもよい。この場合、ハウジング50の下側の開口には、ベアリングを保持するベアリングホルダ30が別途取り付けられる。 
[housing]



As shown in FIG. 3, the housing 50 accommodates the motor body 2. That is, the housing 50 accommodates the rotor 20 and the stator 25. The housing 50 is in the form of a tube that opens to the upper side (+ Z side). The housing 50 has a cylindrical portion 51, a bottom portion 52, and a lower bearing holding portion 53. The housing 50 may be a cylindrical member not having the bottom 52. In this case, a bearing holder 30 for holding a bearing is separately attached to the lower opening of the housing 50.
筒状部51は、ステータ25を径方向外側から囲む。本実施形態において筒状部51は、円筒状である。筒状部51の内周面には、ステータコア27およびベアリングホルダ30が固定される。  The cylindrical portion 51 surrounds the stator 25 from the radially outer side. In the present embodiment, the cylindrical portion 51 is cylindrical. The stator core 27 and the bearing holder 30 are fixed to the inner peripheral surface of the cylindrical portion 51.
底部52は、筒状部51の下端に位置する。底部52は、ステータ25の下側に位置する。下側ベアリング保持部53は、底部52の平面視中央に位置する。下側ベアリング保持部53は、下側ベアリング7Bを保持する。下側ベアリング保持部53の平面視中央には、軸方向に貫通する孔部53aが設けられる。孔部53aには、シャフト21の下端部が挿通される。  The bottom portion 52 is located at the lower end of the cylindrical portion 51. The bottom 52 is located below the stator 25. The lower bearing holding portion 53 is located at the center of the bottom portion 52 in plan view. The lower bearing holder 53 holds the lower bearing 7B. A hole 53a penetrating in the axial direction is provided at the center of the lower bearing holding portion 53 in a plan view. The lower end portion of the shaft 21 is inserted into the hole 53a.
[制御ユニット]



 図3に示すように、制御部3は、回路基板60と、筐体部4と、ヒートシンク80と、を有する。また、図2に示すように、制御部3は、コネクタ70を有する。 
[Controller unit]



As shown in FIG. 3, the control unit 3 includes a circuit board 60, a housing 4, and a heat sink 80. Further, as shown in FIG. 2, the control unit 3 has a connector 70.
[筐体部]



 図3に示すように、筐体部4は、回路基板60およびヒートシンク80を収容する。筐体部4は、ベアリングホルダ30と、蓋部40と、を有する。ベアリングホルダ30は、回路基板60およびヒートシンク80の下側に位置し、回路基板60およびヒートシンク80を下側から覆う。蓋部40は、回路基板60およびヒートシンク80を上側から覆う。 
[Chassis]



As shown in FIG. 3, the housing 4 accommodates the circuit board 60 and the heat sink 80. The housing 4 has a bearing holder 30 and a lid 40. The bearing holder 30 is located below the circuit board 60 and the heat sink 80 and covers the circuit board 60 and the heat sink 80 from the lower side. The lid 40 covers the circuit board 60 and the heat sink 80 from the upper side.
[ベアリングホルダ]



 ベアリングホルダ30は、ステータ25の上側(+Z側)に位置する。ベアリングホルダ30は、上側ベアリング7Aを支持する。ベアリングホルダ30は、ハウジング50の筒状部51の上側の開口51aに位置し、筒状部51の内周面に固定される。 
[Bearing holder]



The bearing holder 30 is located on the upper side (+ Z side) of the stator 25. The bearing holder 30 supports the upper bearing 7A. The bearing holder 30 is positioned at the opening 51 a on the upper side of the cylindrical portion 51 of the housing 50, and is fixed to the inner peripheral surface of the cylindrical portion 51.
ベアリングホルダ30は、放熱特性が高く十分な剛性を有する金属材料から構成される。一例として、ベアリングホルダ30は、アルミニウム合金から構成される。この場合、ベアリングホルダ30は、ダイカスト等によって概略形状を成形した後に、精度が必要な面を切削加工して製造される。  The bearing holder 30 is made of a metal material having high heat dissipation characteristics and sufficient rigidity. As an example, the bearing holder 30 is made of an aluminum alloy. In this case, the bearing holder 30 is manufactured by cutting a surface requiring accuracy after forming a schematic shape by die casting or the like.
ベアリングホルダ30は、円板状のホルダ本体部31と、ホルダ本体部31の径方向内側に位置する上側ベアリング保持部32と、ホルダ本体部31の径方向外側に位置するホルダ固定部33と、下側ヒートシンク部34と、を有する。  The bearing holder 30 includes a disk-shaped holder body portion 31, an upper bearing holding portion 32 positioned radially inward of the holder body portion 31, and a holder fixing portion 33 positioned radially outward of the holder body portion 31. And a lower heat sink portion 34.
上側ベアリング保持部32は、上側ベアリング7Aを保持する。上側ベアリング保持部32は、ベアリングホルダ30の平面視中央に位置する。 ホルダ固定部33は、ホルダ本体部31の径方向外縁から下側に突出する筒形状である。ホルダ固定部33の外周面は、ハウジング50の筒状部51の内周面と径方向に対向する。ホルダ固定部33は、筒状部51の内周面に嵌合され固定される。  The upper bearing holder 32 holds the upper bearing 7A. The upper bearing holder 32 is located at the center of the bearing holder 30 in plan view. The holder fixing portion 33 has a cylindrical shape that protrudes downward from the outer peripheral edge of the holder body 31 in the radial direction. The outer peripheral surface of the holder fixing portion 33 radially faces the inner peripheral surface of the cylindrical portion 51 of the housing 50. The holder fixing portion 33 is fitted and fixed to the inner peripheral surface of the cylindrical portion 51.
下側ヒートシンク部34は、上側ベアリング保持部32の周方向の一部の領域から水平方向(中心軸Jと直交する方向)に沿って延びる。下側ヒートシンク部34は、回路基板60の下側において、回路基板60に沿って延びる。  The lower heat sink portion 34 extends along a horizontal direction (a direction orthogonal to the central axis J) from a partial region of the upper bearing holding portion 32 in the circumferential direction. The lower heat sink portion 34 extends along the circuit board 60 below the circuit board 60.
下側ヒートシンク部34は、上側を向く放熱面39を有する。すなわち、ベアリングホルダ30は、放熱面39を有する。放熱面39は、回路基板60に沿って延びる。放熱面39は、回路基板60の基板本体61の下面61cに直接的、又は放熱材などの介在する部材を介して間接的に接触する。下側ヒートシンク部34は、放熱面39において、回路基板60から熱を吸収して、回路基板60を冷却する。  The lower heat sink portion 34 has a heat radiating surface 39 facing upward. That is, the bearing holder 30 has a heat dissipation surface 39. The heat dissipation surface 39 extends along the circuit board 60. The heat dissipation surface 39 contacts the lower surface 61 c of the substrate body 61 of the circuit board 60 directly or indirectly via an interposed member such as a heat dissipation material. The lower heat sink portion 34 absorbs heat from the circuit board 60 at the heat dissipation surface 39 to cool the circuit board 60.
後述するように回路基板60は、基板本体61の上面61dに実装される複数の電界効果トランジスタ66および複数のコンデンサ65を有する。電界効果トランジスタ66は、回路基板60において、熱を生じやすい発熱素子である。軸方向から見て、電界効果トランジスタ66およびコンデンサ65の少なくとも一部は、放熱面39と重なる。これにより、電界効果トランジスタ66およびコンデンサ65で生じた熱を、放熱面39において効果的に下側ヒートシンク部34に移動させることができる。結果として、電界効果トランジスタ66の温度が高まりすぎることを抑制し、電界効果トランジスタ66の動作の信頼性を高めることができる。  As described later, the circuit board 60 has a plurality of field effect transistors 66 and a plurality of capacitors 65 mounted on the upper surface 61 d of the substrate body 61. The field effect transistor 66 is a heating element that easily generates heat in the circuit board 60. As viewed in the axial direction, at least a portion of the field effect transistor 66 and the capacitor 65 overlap the heat dissipation surface 39. Thus, the heat generated by the field effect transistor 66 and the capacitor 65 can be effectively transferred to the lower heat sink portion 34 at the heat dissipation surface 39. As a result, the temperature of the field effect transistor 66 can be prevented from rising excessively, and the operation reliability of the field effect transistor 66 can be improved.
ベアリングホルダ30は、上側を向く上面30aを有する。上面30aは、蓋部40と上下方向に対向する。上面30aには、上面30aの外縁に沿って延びる凹溝部35が設けられる。凹溝部35は、上面30aに対して下側に凹む。凹溝部35は、一様な幅および一様な深さで中心軸Jと直交する平面内を延びて中心軸Jを囲む。凹溝部35は、後段において説明する蓋部40の凸部42が収容される。  The bearing holder 30 has an upper surface 30 a facing upward. The upper surface 30 a faces the lid 40 in the vertical direction. The upper surface 30a is provided with a recess 35 extending along the outer edge of the upper surface 30a. The recessed groove portion 35 is recessed downward with respect to the upper surface 30 a. The recessed groove portion 35 extends in a plane orthogonal to the central axis J with a uniform width and a uniform depth to surround the central axis J. The recessed groove portion 35, the convex portion 42 of the cover 40 to be described in the later stage is accommodated.
[回路基板]



 回路基板60は、ベアリングホルダ30の上側に位置する。回路基板60は、中心軸Jに直交する方向(すなわち、上下方向に直交する方向)に延びる。回路基板60には、ステータ25のコイル29から延びるコイル線が接続される。回路基板60は、コイル29に電流を流してロータ20の回転を制御する。 
[Circuit board]



The circuit board 60 is located above the bearing holder 30. The circuit board 60 extends in a direction orthogonal to the central axis J (that is, a direction orthogonal to the vertical direction). A coil wire extending from the coil 29 of the stator 25 is connected to the circuit board 60. The circuit board 60 supplies a current to the coil 29 to control the rotation of the rotor 20.
回路基板60は、基板本体61と、複数のコンデンサ65と、複数の電界効果トランジスタ66と、を有する。なお、基板本体61は、その他に、ロータ20の回転を制御するための電子部品(図示略)を有する。  The circuit board 60 includes a substrate body 61, a plurality of capacitors 65, and a plurality of field effect transistors 66. The substrate main body 61 further includes electronic components (not shown) for controlling the rotation of the rotor 20.
基板本体61は、軸方向(すなわち上下方向)に直交して配置される。本実施形態において、基板本体61は、固定ネジ68によってベアリングホルダ30に固定される。基板本体61は、上側を向く上面61dと、下側を向く下面61cと、を有する。コンデンサ65および電界効果トランジスタ66は、基板本体61の上面61dに実装される。コンデンサ65は、回路基板60の実装部品のうち、最も軸方向(上下方向)の寸法が大きい。すなわち、モータ1は、回路基板60を通してモータ本体2と電気的に接続されZ方向に沿って延びる柱状のコンデンサ65を備える。コンデンサ65は、回路基板60から上側に延びる。つまり、回路基板60から第1方向の他方側に延びる。 電界効果トランジスタ66は、平面視矩形状である。電界効果トランジスタ66は、FET(Field effect transistor)とも呼ばれる。基板本体61の上面61dおよび下面61cの何れか一方又は両方には、コンデンサ65および電界効果トランジスタ66の他に回転センサ、チョークコイル等の電子部品が実装される。なお、コンデンサ65および電界効果トランジスタ66等の電子部品は、モータ本体2と電気的に接続可能であれば回路基板60とは異なる基板(例えば、二枚基板)に実装されてもよい。  The substrate body 61 is disposed to be orthogonal to the axial direction (ie, the vertical direction). In the present embodiment, the substrate body 61 is fixed to the bearing holder 30 by the fixing screw 68 . The substrate main body 61 has an upper surface 61 d facing upward and a lower surface 61 c facing downward. The capacitor 65 and the field effect transistor 66 are mounted on the upper surface 61 d of the substrate body 61. The capacitor 65 has the largest dimension in the axial direction (vertical direction) among the mounted components of the circuit board 60. That is, the motor 1 includes a columnar capacitor 65 electrically connected to the motor body 2 through the circuit board 60 and extending along the Z direction. The capacitor 65 extends upward from the circuit board 60. That is, it extends from the circuit board 60 to the other side in the first direction. The field effect transistor 66 has a rectangular shape in plan view. The field effect transistor 66 is also referred to as a FET (field effect transistor). In addition to the capacitor 65 and the field effect transistor 66, electronic components such as a rotation sensor and a choke coil are mounted on one or both of the upper surface 61 d and the lower surface 61 c of the substrate main body 61. The electronic components such as the capacitor 65 and the field effect transistor 66 may be mounted on a board (for example, a two-sheet board) different from the circuit board 60 as long as they can be electrically connected to the motor body 2.
[ヒートシンク]



 ヒートシンク80は、回路基板60の上側に位置する。ヒートシンク80は、回路基板60の一部を上側から覆う。本実施形態のヒートシンク80は、回路基板60に接触して、回路基板60を冷却するヒートシンクとして機能する。ヒートシンク80は、回路基板60と熱的に接触し回路基板60を冷却するものであれば、回路基板60と直接的に接触していても間接的に接触していてもよい。より具体的には、ヒートシンク80は、回路基板60に放熱グリスなどの放熱材を介して接触していてもよい。ヒートシンク80は、放熱特性が高い金属材料(例えば、アルミニウム合金又は銅合金)から構成される。 
[heatsink]



The heat sink 80 is located on the upper side of the circuit board 60. The heat sink 80 covers a part of the circuit board 60 from the upper side. The heat sink 80 of the present embodiment is in contact with the circuit board 60 and functions as a heat sink for cooling the circuit board 60. The heat sink 80 may be in direct contact with the circuit board 60 or may be in indirect contact as long as the heat sink 80 is in thermal contact with the circuit board 60 to cool the circuit board 60. More specifically, the heat sink 80 may be in contact with the circuit board 60 via a heat dissipating material such as heat dissipating grease. The heat sink 80 is made of a metal material (for example, an aluminum alloy or a copper alloy) having high heat dissipation characteristics.
ヒートシンク80は、図示略の固定ネジ68によりベアリングホルダ30の下側ヒートシンク部34に固定されている。ヒートシンク80とベアリングホルダ30とは、固定部分において、直接的に接触する。ヒートシンク80とベアリングホルダ30とが互いに接触して固定されることで、ヒートシンク80とベアリングホルダ30との間で熱の移動が起こる。このため、ヒートシンク80およびベアリングホルダ30のうち何れか一方が高温となった場合、他方側に熱を移動させて、他方側からも放熱することができる。これにより、放熱効率が高まり結果として回路基板60の冷却効果を高めることができる。  The heat sink 80 is fixed to the lower heat sink portion 34 of the bearing holder 30 by a fixing screw 68 (not shown). The heat sink 80 and the bearing holder 30 are in direct contact with each other at the fixed portion. Fixing the heat sink 80 and the bearing holder 30 in contact with each other causes heat transfer between the heat sink 80 and the bearing holder 30. For this reason, when either one of the heat sink 80 and the bearing holder 30 becomes high temperature, the heat can be moved to the other side and the heat can also be radiated from the other side. As a result, the heat radiation efficiency is enhanced, and as a result, the cooling effect of the circuit board 60 can be enhanced.
ヒートシンク80は、発熱素子である電界効果トランジスタ66の直上に位置する。すなわち、ヒートシンク80は、軸方向から見て電界効果トランジスタ66の少なくとも一部と重なる。ヒートシンク80と電界効果トランジスタ66とは、隙間を介して上下方向に対向する。ヒートシンク80と電界効果トランジスタ66との間の隙間には、例えば放熱グリス等の放熱材が配置される。これにより、電界効果トランジスタ66で生じた熱をヒートシンク80に効率的に移動させる。なお、ヒートシンク80は、下側ヒートシンク部34と同一の部材であることが好ましい。ヒートシンク80と下側ヒートシンク部34が同一の部材で構成されることによって、電界効果トランジスタ66で生じた熱の移動が円滑になって放熱効果が高まると共に、ヒートシンク80を下側ヒートシンク部34に固定する固定ネジ68が不要になり、モータ1の小型化を図ることができる。  The heat sink 80 is located directly above the field effect transistor 66 which is a heat generating element. That is, the heat sink 80 overlaps with at least a part of the field effect transistor 66 when viewed in the axial direction. The heat sink 80 and the field effect transistor 66 are vertically opposed to each other with a gap. In the gap between the heat sink 80 and the field effect transistor 66, a heat dissipating material such as a heat dissipating grease is disposed, for example. Thus, the heat generated by the field effect transistor 66 is efficiently transferred to the heat sink 80. The heat sink 80 is preferably the same member as the lower heat sink portion 34. Since the heat sink 80 and the lower heat sink part 34 are formed of the same member, the heat transfer generated by the field effect transistor 66 becomes smooth and the heat radiation effect is enhanced, and the heat sink 80 is fixed to the lower heat sink part 34 The fixing screw 68 is not required, and the motor 1 can be miniaturized.
ヒートシンク80には、上下方向に貫通するコンデンサ収容孔81が設けられている。図3に示すように、コンデンサ収容孔81の内側には、発熱素子であるコンデンサ65が収容される。コンデンサ収容孔81の内周面は、コンデンサ65の側面と対向する。すなわち、コンデンサ収容孔81の内周面は、コンデンサ65の側面を囲む。後段で説明する蓋部40がヒートシンク80およびコンデンサ65の上方から覆う。  The heat sink 80 is provided with a capacitor accommodation hole 81 penetrating in the vertical direction. As shown in FIG. 3, inside the capacitor accommodation hole 81, a capacitor 65, which is a heating element, is accommodated. The inner circumferential surface of the capacitor housing hole 81 faces the side surface of the capacitor 65. That is, the inner circumferential surface of the capacitor housing hole 81 surrounds the side surface of the capacitor 65. A lid 40 described later covers the heat sink 80 and the capacitor 65 from above.
コンデンサ65の側面65aは、放熱材90と接触する第1領域121を有する。コンデンサ65は、回路基板60において、電界効果トランジスタ66や他の電子部品に比べて大きな熱を生じやすい発熱素子である。特に、柱状のコンデンサ65における長手方向(図4のZ方向)の中央部120(以下、単に「中央部120」という)からは周囲に比べて大きな熱が生じる。第1領域121は、コンデンサ65の側面65aの一部であり、コンデンサ65の側面65aのZ方向において中央部120を含む領域である。従来は、コンデンサ65の発熱箇所に注目した放熱はされていなかった。本発明では、コンデンサ65の側面65aが、前述のように他の部分より発熱量の多い中央部120を少なくとも含む第1領域121で放熱材90と接触する。さらに、コンデンサ65の側面65aのうち、第1領域121以外の領域は、放熱材90と接触しない。このことにより、コンデンサ65からの熱を効率的に放熱しつつ、ヒートシンク80の体積や放熱材90の使用量を抑え、モータ1の低コスト化を図ることができる。  The side surface 65 a of the capacitor 65 has a first region 121 in contact with the heat dissipation material 90. The capacitor 65 is a heating element that easily generates a large amount of heat in the circuit board 60 as compared to the field effect transistor 66 and other electronic components. In particular, from the central portion 120 (hereinafter simply referred to as the “central portion 120”) in the longitudinal direction (Z direction in FIG. 4) of the columnar capacitor 65, a large amount of heat is generated compared to the surroundings. The first area 121 is a part of the side surface 65 a of the capacitor 65, and is an area including the central portion 120 in the Z direction of the side surface 65 a of the capacitor 65. In the past, the heat radiation focused on the heat generation portion of the capacitor 65 was not performed. In the present invention, the side surface 65a of the capacitor 65 is in contact with the heat dissipation material 90 in the first region 121 including at least the central portion 120 that generates more heat than the other portions as described above. Furthermore, in the side surface 65 a of the capacitor 65, the region other than the first region 121 does not contact the heat dissipation material 90. As a result, the heat from the capacitor 65 can be dissipated efficiently, the volume of the heat sink 80 and the amount of use of the heat dissipation material 90 can be suppressed, and the cost of the motor 1 can be reduced.
コンデンサ65の側面65aは、中央部120より下側(第1方向の一方側)の端部65sまでの第2領域122を有する。すなわち、ヒートシンク80のコンデンサ収容孔81の内周面は、第2領域122と対向する。コンデンサ65の側面65aの第2領域122にヒートシンク80が対向するので、放熱材90が放熱材収容凹部130から漏れ出たとしても第2領域122にとどまりやすく、放熱材の配置を安定させることができる。コンデンサ65の側面65aは、中央部120より上側(第1方向の他方側)の端部65tまでの第3領域123をさらに有する。  The side surface 65 a of the capacitor 65 has a second region 122 up to the end 65 s below the central portion 120 (one side in the first direction). That is, the inner circumferential surface of the capacitor housing hole 81 of the heat sink 80 faces the second region 122. Since the heat sink 80 faces the second area 122 of the side surface 65a of the capacitor 65, the heat sink 90 can easily stay in the second area 122 even if the heat sink 90 leaks out from the heat sink containing recess 130, stabilizing the arrangement of the heat sink. it can. The side surface 65 a of the capacitor 65 further includes a third region 123 up to the end 65 t above the central portion 120 (the other side in the first direction).
コンデンサ収容孔81の内周面の上側には、X方向に凹む放熱材収容凹部130が設けられる。すなわち、モータ本体2は、Z方向におけるヒートシンク80と蓋部40との境界に、コンデンサ65の側面65aに直交するX方向に凹む放熱材収容凹部130を有する。また、コンデンサ65の中央部120と放熱材収容凹部130が対向する。  On the upper side of the inner peripheral surface of the capacitor accommodation hole 81, a heat dissipation material accommodation recess 130 recessed in the X direction is provided. That is, the motor body 2 has the heat dissipation material accommodation recess 130 in the X direction orthogonal to the side surface 65 a of the capacitor 65 at the boundary between the heat sink 80 and the lid 40 in the Z direction. Further, the central portion 120 of the capacitor 65 and the heat sink containing recess 130 face each other.
[蓋部]



 図2に示すように、蓋部40は、ベアリングホルダ30、回路基板60およびヒートシンク80の上側に位置する。蓋部40は、回路基板60の上側を覆い回路基板60を保護する。 
[Lid]



As shown in FIG. 2, the lid 40 is located above the bearing holder 30, the circuit board 60 and the heat sink 80. The lid 40 covers the upper side of the circuit board 60 and protects the circuit board 60.
図1に示すように、蓋部40は、軸方向と直交する方向に沿って延びる平板部45と、平板部45の外縁に位置し平板部45に対して下側に突出する外縁部46と、平板部45から上側に延びるコネクタホルダ部47と、を有する。  As shown in FIG. 1, the lid 40 has a flat plate 45 extending in a direction orthogonal to the axial direction, and an outer edge 46 located at the outer edge of the flat 45 and projecting downward with respect to the flat 45. And a connector holder portion 47 extending upward from the flat plate portion 45.
コネクタホルダ部47は、平板部45から上側に延びる筒状である。コネクタホルダ部47の内部には、コネクタ70の外部接続端子73が配置される。外部接続端子73は、回路基板60に電力を供給する外部機器(図示略)に接続される。  The connector holder portion 47 has a tubular shape extending upward from the flat plate portion 45. The external connection terminal 73 of the connector 70 is disposed inside the connector holder portion 47. The external connection terminal 73 is connected to an external device (not shown) that supplies power to the circuit board 60.
図3に示すように、平板部45は、軸方向(上下方向)と直交する方向に延びる。すなわち、平板部45は、回路基板60に沿って延びる。  As shown in FIG. 3, the flat plate portion 45 extends in a direction orthogonal to the axial direction (vertical direction). That is, the flat plate portion 45 extends along the circuit board 60.
外縁部46は、平板部45の外縁から下側に突出する。外縁部46は、軸方向から見て平板部45を一周に亘って囲む。外縁部46の下端部には、凸部42と内側下端面46aと外側下端面46bとが設けられる。  The outer edge portion 46 protrudes downward from the outer edge of the flat plate portion 45. The outer edge portion 46 surrounds the flat plate portion 45 over the entire circumference when viewed from the axial direction. At the lower end portion of the outer edge portion 46, a convex portion 42, an inner lower end surface 46a and an outer lower end surface 46b are provided.
凸部42は、下側に突出する。凸部42は、一様な幅および一様な高さで中心軸Jと直交する平面内を延びる。凸部42は、外縁部46の全体に亘って延びる。したがって、凸部42は、軸方向から見て、平板部45を一周に亘って囲む。  The convex portion 42 protrudes downward. The convex portion 42 extends in a plane perpendicular to the central axis J with a uniform width and a uniform height. The protrusion 42 extends over the entire outer edge 46. Therefore, the convex portion 42 surrounds the flat plate portion 45 over the entire circumference when viewed from the axial direction.
凸部42は、ベアリングホルダ30に設けられた凹溝部35に収容される。凹溝部35の内壁面と、凸部42との間には、隙間が設けられる。凹溝部35には、接着剤Bが充填される。  The convex portion 42 is accommodated in the concave groove portion 35 provided in the bearing holder 30. A gap is provided between the inner wall surface of the recessed groove portion 35 and the convex portion 42. The adhesive B is filled in the recessed groove portion 35.
本実施形態によれば、接着剤Bが充填された凹溝部35に凸部42が収容されている。このため、蓋部40とベアリングホルダ30との間からモータ1の内部に水およびコンタミが侵入することを抑制できる。  According to the present embodiment, the convex portion 42 is accommodated in the concave groove portion 35 filled with the adhesive B. For this reason, it is possible to suppress water and contamination from entering between the lid 40 and the bearing holder 30 into the interior of the motor 1.
本実施形態において、凹溝部35に充填される接着剤Bとして湿気硬化型の接着剤を用いることが好ましい。湿気硬化型の接着剤は、空気中の水分により硬化する。接着剤Bとして湿気硬化型の接着剤を用いることで、水分による接着剤の劣化を抑制することができ、モータ1の防水の信頼性を高めることができる。  In the present embodiment, it is preferable to use a moisture-curable adhesive as the adhesive B filled in the recessed groove portion 35. Moisture-curable adhesives cure with moisture in the air. By using a moisture-curable adhesive as the adhesive B, the deterioration of the adhesive due to moisture can be suppressed, and the waterproof reliability of the motor 1 can be enhanced.
外側下端面46bは、下側を向く面である。外側下端面46bは、平面視において凸部42で囲まれた領域の内側に位置する。外側下端面46bは、ベアリングホルダ30の上面30aに接触する。外側下端面46bがベアリングホルダ30の上面30aに接触することで、ベアリングホルダ30に対し蓋部40を軸方向(上下方向)に位置決めできる。  The outer lower end surface 46b is a surface facing downward. The outer lower end surface 46b is located inside the area surrounded by the convex portion 42 in a plan view. The outer lower end surface 46 b contacts the upper surface 30 a of the bearing holder 30. When the outer lower end surface 46 b contacts the upper surface 30 a of the bearing holder 30, the lid 40 can be positioned in the axial direction (vertical direction) with respect to the bearing holder 30.
内側下端面46aは、下側を向く面である。内側下端面46aは、平面視において凸部42で囲まれた領域の内側に位置する。内側下端面46aは、ベアリングホルダ30の上面30aと軸方向に離間している。これにより、凹溝部35に充填された接着剤Bを空気に触れさせて接着剤Bの硬化を促進できる。また、凹溝部35に凸部42を収容させる工程において、凹溝部35から溢れ出た接着剤Bを、内側下端面46aとベアリングホルダ30の上面30aとの間の隙間に溜めることができる。したがって、接着剤Bの充填量がばらついた場合に、過剰な接着剤Bを内側下端面46aとベアリングホルダ30の上面30aとの間の隙間に逃がすことができる。


The inner lower end surface 46 a is a surface facing downward. The inner lower end surface 46 a is located inside the area surrounded by the convex portion 42 in a plan view. The inner lower end surface 46 a is axially separated from the upper surface 30 a of the bearing holder 30. Thereby, the adhesive B filled in the recessed groove 35 can be exposed to the air to accelerate the curing of the adhesive B. Further, in the step of accommodating the convex portion 42 in the concave groove portion 35, the adhesive B overflowing from the concave groove portion 35 can be accumulated in the gap between the inner lower end surface 46a and the upper surface 30a of the bearing holder 30. Therefore, when the filling amount of the adhesive B varies, the excess adhesive B can be released to the gap between the inner lower end surface 46 a and the upper surface 30 a of the bearing holder 30.


図4に拡大して示すように、ヒートシンク80に対向する位置の内側下端面46aには、コンデンサ対向凹部49が設けられている。つまり、蓋部40は、コンデンサ対向凹部49を備える。コンデンサ対向凹部49の内壁面は、コンデンサ65の側面65aの第3領域123、及びコンデンサ65の天面65bと対向する。つまり、モータ本体2は、コンデンサ65の側面65aの第3領域123と対向する蓋部40を備える。コンデンサ65の側面65aの第3領域123に蓋部40が対向し、前段で説明したようにコンデンサ65の側面65aの第2領域122にヒートシンク80が対向することによって、コンデンサ65を閉じ込めて放熱材90の漏れを抑制できる。  As shown in FIG. 4 in an enlarged manner, a capacitor facing recess 49 is provided on the inner lower end surface 46 a at a position facing the heat sink 80. That is, the lid 40 includes the capacitor facing recess 49. The inner wall surface of the capacitor facing recess 49 faces the third region 123 of the side surface 65 a of the capacitor 65 and the top surface 65 b of the capacitor 65. That is, the motor main body 2 includes the lid 40 facing the third region 123 of the side surface 65 a of the capacitor 65. The lid 40 faces the third region 123 of the side surface 65a of the capacitor 65, and the heat sink 80 faces the second region 122 of the side surface 65a of the capacitor 65 as described in the previous step, thereby confining the capacitor 65 and dissipating the heat 90 leaks can be suppressed.
図4に拡大図で示すように、コンデンサ収容孔81の内周面とコンデンサ65の側面65aとの間には、放熱グリス等の放熱材90が収容される。放熱材90を配置することにより、コンデンサ65の側面からヒートシンク80に向けて効率的に熱を移動させることができる。また、コンデンサ65において発生する熱をヒートシンク80に移動させて、コンデンサ65を冷却できる。すなわち、モータ本体2は、コンデンサ65の側面65aと対向するヒートシンク80と、コンデンサ65の側面65aの一部およびヒートシンク80と接触する放熱材90と、を有する。  As shown in an enlarged view in FIG. 4, a heat dissipating material 90 such as heat dissipating grease is accommodated between the inner peripheral surface of the capacitor accommodating hole 81 and the side surface 65 a of the capacitor 65. By arranging the heat dissipating material 90, heat can be efficiently transferred from the side surface of the capacitor 65 toward the heat sink 80. In addition, the heat generated in the capacitor 65 can be transferred to the heat sink 80 to cool the capacitor 65. That is, the motor body 2 has the heat sink 80 opposed to the side surface 65 a of the capacitor 65, and the heat dissipation material 90 in contact with a part of the side surface 65 a of the capacitor 65 and the heat sink 80.
本実施形態では、コンデンサ65側のヒートシンク80の上側を向く面80bに、下側に凹む第5凹所135が設けられる。第5凹所135と蓋部40の内側下端面(第1方向の一方側に向く面)46aによって、放熱材収容凹部130が構成される。放熱材90の一部は放熱材収容凹部130の内部に配置される。放熱材90が収容凹部130内に配置されるので、放熱材90の配置を安定させることができる。がモータ本体部に入り込むことを抑制することができる。  In the present embodiment, a fifth recess 135 is provided in the surface 80b facing the upper side of the heat sink 80 on the side of the capacitor 65 so as to be recessed downward. The heat sink containing recess 130 is configured by the fifth recess 135 and the inner lower end surface (surface facing toward one side in the first direction) 46 a of the lid 40. A part of the heat dissipating material 90 is disposed inside the heat dissipating material accommodation recess 130. Since the heat dissipating material 90 is disposed in the housing recess 130, the arrangement of the heat dissipating material 90 can be stabilized. Can be suppressed from entering the motor main body.
本実施形態では、放熱材90は少なくとも発熱量が大きい中央部120に接触するため、コンデンサ65からの熱を効率的に逃がしつつ、コンデンサ65の側面65aおよび天面65bの全体に接触させる場合よりも放熱材90の使用量を減らすことができる。また、ヒートシンク80をコンデンサ65の側面65aの第1領域121のみに対向させるので、放熱材90を介して伝わるコンデンサ65からの熱を効率的に逃がしつつ、コンデンサ65の側面65aおよび天面65bの全体に接触させる場合よりも放熱材90の使用量を減らすことができる。  In the present embodiment, the heat dissipating material 90 contacts at least the central portion 120 having a large amount of heat generation, so that the heat from the capacitor 65 is efficiently dissipated, and the heat dissipating material 90 contacts the entire side surface 65 a and the top surface 65 b Also, the amount of heat dissipation material 90 used can be reduced. Further, since the heat sink 80 faces only the first region 121 of the side surface 65a of the capacitor 65, the heat from the capacitor 65 transmitted through the heat dissipation material 90 is efficiently dissipated while the side surface 65a and the top surface 65b of the capacitor 65 are The amount of heat dissipation material 90 used can be reduced compared to the case of contacting the whole.
[ヒートシンクおよび蓋部の変形例]



 コンデンサ65に対向するヒートシンク80および蓋部40の構成について、前段の実施形態の変形例を説明する。 
[Modification of Heat Sink and Lid]



About the structure of the heat sink 80 which opposes the capacitor | condenser 65, and the cover part 40, the modification of embodiment of a front | former stage is demonstrated.
<第1変形例>



 図5に示すように、放熱材収容凹部130は、ヒートシンク80と蓋部40との境界で、蓋部40側に凹んでもよい。すなわち、第1変形例では、コンデンサ65側の蓋部40の内側下端面46aに、上側に凹む第6凹所136が設けられる。第6凹所136とヒートシンク80の上側に向く面80bによって、放熱材収容凹部130が設けられる。前段の実施形態と同様に、放熱材90の一部は放熱材収容凹部130の内部に配置される。放熱材90が放熱材収容凹部130内に配置されるので、放熱材90の配置を安定させることができる。 
First Modified Example



As shown in FIG. 5, the heat dissipation material accommodation recess 130 may be recessed toward the lid 40 at the boundary between the heat sink 80 and the lid 40. That is, in the first modification, a sixth recess 136 that is recessed upward is provided on the inner lower end surface 46 a of the lid 40 on the capacitor 65 side. The heat sink containing recess 130 is provided by the sixth recess 136 and the surface 80 b facing the upper side of the heat sink 80. As in the previous embodiment, part of the heat dissipation material 90 is disposed inside the heat dissipation material accommodation recess 130. Since the heat dissipating material 90 is disposed in the heat dissipating material accommodation recess 130, the arrangement of the heat dissipating material 90 can be stabilized.
<第2変形例>



 図6に示すように、ヒートシンク80は、上側(第1方向の他方側)を向く面80bに、下側(第1方向の一方側)に凹む第1凹所131を有してもよい。第1凹所131は、放熱材収容凹部130の少なくとも一部を構成し、第2変形例では放熱材収容凹部130の下側かつX方向に平行な部分を構成する。 
Second Modified Example



As shown in FIG. 6, the heat sink 80 may have a first recess 131 recessed on the lower side (one side in the first direction) on the surface 80 b facing the upper side (the other side in the first direction). The first recess 131 constitutes at least a part of the heat dissipation material accommodation recess 130, and in the second modification, constitutes a lower portion of the heat dissipation material accommodation recess 130 and a portion parallel to the X direction.
図6に示すように、蓋部40は、内側下端面(第1方向の一方側に向く面)46aに、コンデンサ65の下側(第1方向の一方側)へ突出する第1突起部141を有する。第1突起部141は、ヒートシンク80の第1凹所131に嵌めこまれる。第1突起部141が第1凹所131に嵌入されることによって、第1突起部141のコンデンサ65側かつヒートシンク80と蓋部40との間に、放熱材収容凹部130が構成される。すなわち、放熱材90が第1凹所131と第1突起部141に囲まれて配置される。第1凹所131と第1突起部141に囲まれて放熱材90が配置されることで、ラビリンス構造により、放熱材90がモータ本体部に入り込むことを抑制することができる。  As shown in FIG. 6, the lid 40 has a first projection 141 that protrudes to the lower side (one side in the first direction) of the capacitor 65 on the inner lower end face (the side facing the one side in the first direction) 46 a. Have. The first protrusion 141 is fitted into the first recess 131 of the heat sink 80. By fitting the first protrusion 141 into the first recess 131, the heat dissipation material accommodation recess 130 is formed between the heat sink 80 and the lid 40 on the capacitor 65 side of the first protrusion 141. That is, the heat dissipation material 90 is disposed so as to be surrounded by the first recess 131 and the first protrusion 141. Since the heat dissipation material 90 is disposed so as to be surrounded by the first recess 131 and the first protrusion 141, the heat dissipation material 90 can be prevented from entering the motor main body by the labyrinth structure.
<第3変形例>



 図7に示すように、ヒートシンク80は第1凹所131を有し、第3変形例では第1凹所131が放熱材収容凹部130の下側かつX方向に平行な部分と、コンデンサ65に対向する側かつZ方向に平行な部分とを構成する。蓋部40は、内側下端面46aに第1突起部141を有する。第3変形例では第1突起部141が放熱材収容凹部130の上側かつX方向に平行な部分を構成する。すなわち、第3変形例では、放熱材収容凹部130がX方向において第1突起部141とコンデンサ65との間に設けられる。第3変形例では、放熱材収容凹部130がZ方向において第1突起部141とヒートシンク80との間に設けられる。第3変形例においても、放熱材90が第1凹所131と第1突起部141に囲まれて配置されることで、ラビリンス構造により、放熱材90がモータ本体部に入り込むことを抑制することができる。 
Third Modified Example



As shown in FIG. 7, the heat sink 80 has a first recess 131, and in the third modification, the first recess 131 is a portion below the heat sink containing recess 130 and parallel to the X direction; It constitutes an opposing side and a portion parallel to the Z direction. The lid 40 has a first protrusion 141 on the inner lower end surface 46 a. In the third modification, the first protrusion 141 constitutes a portion above the heat dissipation material accommodation recess 130 and parallel to the X direction. That is, in the third modification, the heat dissipation material accommodation recess 130 is provided between the first protrusion 141 and the capacitor 65 in the X direction. In the third modification, the heat dissipation material accommodation recess 130 is provided between the first protrusion 141 and the heat sink 80 in the Z direction. Also in the third modification, the heat dissipating material 90 is disposed so as to be surrounded by the first recess 131 and the first protrusion 141, so that the heat dissipating material 90 is prevented from entering the motor main body by the labyrinth structure. Can.
<第4変形例>



 図8に示すように、蓋部40は、内側下端面(第1方向の一方側に向く面)46aに、上側(第1方向の他方側)に凹む第2凹所132を有してもよい。第2凹所132は、放熱材収容凹部130の少なくとも一部を構成し、第4変形例では放熱材収容凹部130の上側かつX方向に平行な部分を構成する。 
Fourth Modified Example



As shown in FIG. 8, even if the lid 40 has a second recess 132 that is recessed on the upper side (the other side in the first direction) on the inner lower end face (the surface facing the one side in the first direction) 46a. Good. The second recess 132 constitutes at least a part of the heat dissipation material accommodation recess 130, and in the fourth modification, constitutes a portion above the heat dissipation material accommodation recess 130 and parallel to the X direction.
図8に示すように、ヒートシンク80は、上側(第1方向の他方側)を向く面80bに、上側(第1方向の他方側)へ突出する第2突起部142を有してもよい。第2突起部142は、第2凹所132に嵌められる。第2突起部142が第2凹所132に嵌入されることによって、第2突起部142のコンデンサ65側かつヒートシンク80と蓋部40との間に、放熱材収容凹部130ができる。すなわち、放熱材90が第2凹所132と第2突起部142に囲まれて配置される。回路基板60と第2凹所132と第2突起部142に囲まれて放熱材90が配置されることで、ラビリンス構造により、放熱材90がモータ本体部に入り込むことを抑制することができる。  As shown in FIG. 8, the heat sink 80 may have a second protrusion 142 that protrudes upward (the other side in the first direction) on the surface 80 b facing the upper side (the other side in the first direction). The second protrusion 142 is fitted in the second recess 132. By fitting the second protrusion 142 into the second recess 132, the heat sink containing recess 130 is formed between the heat sink 80 and the lid 40 of the second protrusion 142 on the side of the capacitor 65. That is, the heat dissipation material 90 is disposed so as to be surrounded by the second recess 132 and the second protrusion 142. Since the heat dissipation material 90 is disposed so as to be surrounded by the circuit board 60, the second recess 132, and the second protrusion 142, the heat dissipation material 90 can be prevented from entering the motor main body by the labyrinth structure.
<第5変形例>



 図9に示すように、ヒートシンク80は、コンデンサ65のZ方向の下側(すなわち、回路基板60側)の端部65sからZ方向の上側の端部65tまで延びてもよい。コンデンサ65の端部65sから端部65tまでをヒートシンク80で囲むので、コンデンサ65を所定の位置(ヒートシンク80のコンデンサ収容孔81内)に安定させることができる。 
Fifth Modified Example



As shown in FIG. 9, the heat sink 80 may extend from the end 65s on the lower side (that is, the circuit board 60 side) of the capacitor 65 in the Z direction to the upper end 65t in the Z direction. Since the end 65s to the end 65t of the capacitor 65 are surrounded by the heat sink 80, the capacitor 65 can be stabilized at a predetermined position (within the capacitor receiving hole 81 of the heat sink 80).
放熱材90は、コンデンサ65の側面65aのうち、中央部120よりZ方向の下側の端部65s又は上側の端部65tに至る領域の少なくとも一部に対向する。放熱材90は、コンデンサ65の側面65aの中央部12に対向する。第5変形例では、図9に示すように、ヒートシンク80は、コンデンサ65の中央部120に対向する側面80cに、コンデンサ65の側面65aに直交するXY方向(第2方向)に向かって凹む放熱材収容凹部130を有する。放熱材90は、放熱材収容凹部130内に配置され、中央部120に対向する。放熱材90が放熱材収容凹部130内に配置されることによって、放熱材90を所定の位置に保持し易く、放熱材90の配置を安定させることができる。  The heat dissipating material 90 opposes at least a part of a region of the side surface 65 a of the capacitor 65 from the central portion 120 to the end 65 s on the lower side in the Z direction or the end 65 t on the upper side. The heat dissipation material 90 faces the central portion 12 of the side surface 65 a of the capacitor 65. In the fifth modification, as shown in FIG. 9, the heat sink 80 dissipates heat toward the XY direction (second direction) orthogonal to the side surface 65 a of the capacitor 65 on the side surface 80 c opposite to the central portion 120 of the capacitor 65 A material accommodation recess 130 is provided. The heat dissipating material 90 is disposed in the heat dissipating material accommodation recess 130 and faces the central portion 120. By disposing the heat dissipating material 90 in the heat dissipating material accommodation recess 130, the heat dissipating material 90 can be easily held at a predetermined position, and the arrangement of the heat dissipating material 90 can be stabilized.
蓋部40は、コンデンサ65のZ方向の上側(第1方向の他方側)に配置され、コンデンサ65の天面(第1方向の他方側の端面)65bおよびヒートシンク80のZ方向の上側を向く面80bと対向する。すなわち、モータ本体2は、コンデンサ65の天面65bとヒートシンク80の面80bの両方と対向する蓋部40を備える。第5変形例では、コンデンサ65の上側(第一方向の他方側)に蓋部40が配置されるので、コンデンサ65をコンデンサ収容孔81内に閉じ込めると共に、放熱材90の漏れを抑制できる。  The lid 40 is disposed on the upper side (the other side in the first direction) of the capacitor 65 in the Z direction, and faces the top surface (the end face on the other side of the first direction) 65 b of the capacitor 65 and the upper side in the Z direction of the heat sink 80 It faces the surface 80b. That is, the motor main body 2 includes the lid 40 facing both the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80. In the fifth modification, the lid 40 is disposed on the upper side (the other side in the first direction) of the capacitor 65. Therefore, the capacitor 65 can be confined in the capacitor housing hole 81 and leakage of the heat dissipation material 90 can be suppressed.
<第6変形例>



 図10に示すように、ヒートシンク80は、コンデンサ65の側面65aの中央部120に対向する側面80cに、XY方向(第2方向)に凹む第3凹所133を有してもよい。第3凹所133は、コンデンサ65の中央部120よりZ方向の下側(第1方向の一方側)まで延びる。放熱材90は、第3凹所133に配置される。放熱材90が第3凹所133に配置されることによって、放熱材90の配置を安定させることができる。 
<Sixth Modified Example>



As shown in FIG. 10, the heat sink 80 may have a third recess 133 recessed in the XY direction (second direction) on the side surface 80c opposite to the central portion 120 of the side surface 65a of the capacitor 65. The third recess 133 extends from the central portion 120 of the capacitor 65 to the lower side in the Z direction (one side in the first direction). The heat dissipation material 90 is disposed in the third recess 133. By arranging the heat dissipation material 90 in the third recess 133, the arrangement of the heat dissipation material 90 can be stabilized.
<第7変形例>



 図11に示すように、ヒートシンク80は、コンデンサ65の側面65aの中央部120に対向する側面80cに、XY方向(第2方向)に凹む第4凹所134を有してもよい。第4凹所134は、コンデンサ65の中央部120よりZ方向の上側(第1方向の他方側)まで延びる。放熱材90は、第4凹所134に配置される。放熱材90が第4凹所134に配置されることによって、放熱材の配置を安定させることができる。 
Seventh Modification



As shown in FIG. 11, the heat sink 80 may have a fourth recess 134 recessed in the XY direction (second direction) on the side surface 80 c opposite to the central portion 120 of the side surface 65 a of the capacitor 65. The fourth recess 134 extends from the central portion 120 of the capacitor 65 to the upper side in the Z direction (the other side in the first direction). The heat dissipation material 90 is disposed in the fourth recess 134. By arranging the heat dissipation material 90 in the fourth recess 134, the arrangement of the heat dissipation material can be stabilized.
<第8変形例>



 第8変形例及び後段で説明する第9変形例、第10変形例では、ヒートシンク80は回路基板60よりも下側に配置される。例えば、モータ本体2を収容するハウジング50がヒートシンク80の機能を有してもよい。また、ハウジング50の開口51aに取り付けられるベアリングホルダ30がヒートシンクの機能を有していてもよい。つまり、図2のXI領域の下側において、ハウジング50にコンデンサ収容凹部150が設けられている構造である。 第8変形例では、図12に示すように、コンデンサ65は、回路基板60からZ方向における下側(第1方向の他方側)に延びる。ヒートシンク80は、Z方向における上側(第1方向の一方側)に開口するコンデンサ収容凹部150を備えてもよい。第8変形例では、コンデンサ65は、コンデンサ収容凹部150内に配置される。放熱材90は、コンデンサ収容凹部150の内壁面と、コンデンサ65の側面65aのうち中央部120より上側の端部65s又は下側の端部65tに至る領域の少なくとも一部に対向する。放熱材90は、コンデンサ65の側面65aの中央部12に対向する。第8変形例では、ヒートシンク80は、コンデンサ65の中央部120に対向するコンデンサ収容凹部150の側面150cに、コンデンサ65の側面65aに直交するXY方向(第2方向)に向かって凹む放熱材収容凹部130を有する。放熱材90は、放熱材収容凹部130内に配置され、中央部120に対向する。放熱材90が放熱材収容凹部130内に配置されることによって、放熱材90を所定の位置に保持し易く、放熱材90の配置を安定させることができる。 
Eighth Modified Example



In the ninth modification and the tenth modification described in the eighth modification and the subsequent stage, the heat sink 80 is disposed below the circuit board 60. For example, the housing 50 that accommodates the motor body 2 may have the function of the heat sink 80. In addition, the bearing holder 30 attached to the opening 51 a of the housing 50 may have the function of a heat sink. That is, in the lower side of the XI region in FIG. 2, the housing 50 is provided with the capacitor housing recess 150. In the eighth modification, as shown in FIG. 12, the capacitor 65 extends from the circuit board 60 to the lower side (the other side in the first direction) in the Z direction. The heat sink 80 may include a capacitor housing recess 150 that opens to the upper side (one side in the first direction) in the Z direction. In the eighth modification, the capacitor 65 is disposed in the capacitor housing recess 150. The heat dissipating material 90 opposes at least a part of the inner wall surface of the capacitor housing recess 150 and the region of the side surface 65 a of the capacitor 65 up to the end 65 s or the lower end 65 t above the central portion 120. The heat dissipation material 90 faces the central portion 12 of the side surface 65 a of the capacitor 65. In the eighth modification, the heat sink 80 is recessed in the heat sink 80 toward the XY direction (second direction) orthogonal to the side surface 65 a of the capacitor 65 on the side surface 150 c of the capacitor accommodation recess 150 opposed to the central portion 120 of the capacitor 65. It has a recess 130. The heat dissipating material 90 is disposed in the heat dissipating material accommodation recess 130 and faces the central portion 120. By disposing the heat dissipating material 90 in the heat dissipating material accommodation recess 130, the heat dissipating material 90 can be easily held at a predetermined position, and the arrangement of the heat dissipating material 90 can be stabilized.
<第9変形例>



 図13に示すように、第8変形例と同様に、ヒートシンク80はコンデンサ収容凹部150を備える。コンデンサ65はコンデンサ収容凹部150内に配置される。第9変形例では、ヒートシンク80は、コンデンサ65の側面65aの中央部120に対向するコンデンサ収容凹部150の側面150cに、XY方向(第2方向)に凹む第3凹所133を有してもよい。第3凹所133は、コンデンサ65の中央部120よりZ方向の上側(第1方向の一方側)まで延びる。放熱材90は、第3凹所133に配置される。放熱材90が第3凹所133に配置されることによって、放熱材90が第8変形例の構成に比べて第3凹所133に多く配置されるので、放熱効率を高め、かつ放熱材90の漏れを良好に防止できる。 
<The 9th modification>



As shown in FIG. 13, the heat sink 80 includes a capacitor housing recess 150 as in the eighth modification. Capacitor 65 is arranged in capacitor housing recess 150. In the ninth modification, the heat sink 80 has the third recess 133 recessed in the XY direction (second direction) on the side surface 150 c of the capacitor housing recess 150 facing the central portion 120 of the side surface 65 a of the capacitor 65. Good. The third recess 133 extends from the central portion 120 of the capacitor 65 to the upper side in the Z direction (one side in the first direction). The heat dissipation material 90 is disposed in the third recess 133. Since the heat dissipating material 90 is disposed in the third recess 133, more heat dissipating materials 90 are disposed in the third recess 133 than in the configuration of the eighth modification, so the heat dissipating efficiency is improved and the heat dissipating material 90 is increased. Can be well prevented.
<第10変形例>



 図14に示すように、第8変形例と同様に、ヒートシンク80はコンデンサ収容凹部150を備える。コンデンサ65はコンデンサ収容凹部150内に配置される。第10変形例では、ヒートシンク80は、コンデンサ65の側面65aの中央部120に対向するコンデンサ収容凹部150の側面150cに、XY方向(第2方向)に凹む第4凹所134を有する。第4凹所134は、コンデンサ65の中央部120よりZ方向の下側(第1方向の他方側)まで延びる。放熱材90は、第4凹所134に配置される。放熱材90が第4凹所134に配置されることによって、放熱材90が第8変形例の構成に比べて第4凹所134に多く配置されるので、放熱効率を高め、かつ放熱材90の漏れを良好に防止できる。 
<The tenth modification>



As shown in FIG. 14, the heat sink 80 includes a capacitor housing recess 150 as in the eighth modification. Capacitor 65 is arranged in capacitor housing recess 150. In the tenth modification, the heat sink 80 has a fourth recess 134 recessed in the XY direction (second direction) on the side surface 150 c of the capacitor housing recess 150 facing the central portion 120 of the side surface 65 a of the capacitor 65. The fourth recess 134 extends from the central portion 120 of the capacitor 65 to the lower side in the Z direction (the other side in the first direction). The heat dissipation material 90 is disposed in the fourth recess 134. Since the heat dissipating material 90 is disposed in the fourth recess 134, the heat dissipating material 90 is disposed more in the fourth recess 134 than in the configuration of the eighth modification, so that the heat dissipating efficiency is enhanced. Can be well prevented.
<第11変形例>



 図15に示すように、ヒートシンク80は、コンデンサ65のZ方向の下側の端部65sから上側の端部65tまで延び、コンデンサ収容孔81を備える。コンデンサ65はコンデンサ収容孔81内に配置される。モータ本体2は、コンデンサ65の天面65bとヒートシンク80の面80bの両方と対向する蓋部40を備える。第11変形例では、モータ1は、中央部120より上側(第1方向の他方側)においてコンデンサ65とヒートシンク80との間を封止する封止部材94を有する。放熱材90は、コンデンサ65と、ヒートシンク80と、回路基板60と、封止部材94に接触する。放熱材90がコンデンサ65と、ヒートシンク80と、回路基板60と、封止部材94に囲まれた空間内に配置されるので、放熱効率を高めることができる。また、コンデンサ65の上側(第1方向の他方側)から電解液等が漏れ出た際に、封止部材94によって電界物等と放熱材90とを隔離できる。 
<Eleventh Modification>



As shown in FIG. 15, the heat sink 80 extends from the lower end 65 s of the capacitor 65 in the Z direction to the upper end 65 t and includes a capacitor receiving hole 81. The capacitor 65 is disposed in the capacitor receiving hole 81. The motor main body 2 includes a lid 40 facing both the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80. In the eleventh modification, the motor 1 has a sealing member 94 that seals between the capacitor 65 and the heat sink 80 on the upper side (the other side in the first direction) than the central portion 120. The heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94. Since the heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94, the heat dissipating efficiency can be enhanced. In addition, when the electrolytic solution or the like leaks from the upper side (the other side in the first direction) of the capacitor 65, the sealing member 94 can isolate the electric field or the like and the heat dissipation material 90.
<第12変形例>



 図16に示すように、ヒートシンク80はコンデンサ収容凹部150を備える。コンデンサ65はコンデンサ収容凹部150内に配置される。第12変形例では、モータ本体2は、蓋部40を備えない。第12変形例では、モータ1は、コンデンサの中央部120より上側(第1方向の他方側)においてコンデンサ65とヒートシンク80との間を封止する封止部材94を有する。放熱材90は、コンデンサ65と、ヒートシンク80と、回路基板60と、封止部材94に接触する。放熱材90がコンデンサ65と、ヒートシンク80と、回路基板60と、封止部材94に囲まれた空間内に配置されるので、第11変形例と同様に、放熱効率を高めることができる。また、コンデンサ65の上側(第1方向の他方側)から電解液等が漏れ出た際に、封止部材94によって電界物等と放熱材90とを隔離できる。 
<The 12th modification>



As shown in FIG. 16, the heat sink 80 includes a capacitor housing recess 150. Capacitor 65 is arranged in capacitor housing recess 150. In the twelfth modification, the motor body 2 does not include the lid 40. In the twelfth modification, the motor 1 has a sealing member 94 that seals between the capacitor 65 and the heat sink 80 on the upper side (the other side in the first direction) than the central portion 120 of the capacitor. The heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94. Since the heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, the circuit board 60, and the sealing member 94, the heat dissipating efficiency can be enhanced as in the eleventh modification. In addition, when the electrolytic solution or the like leaks from the upper side (the other side in the first direction) of the capacitor 65, the sealing member 94 can isolate the electric field or the like and the heat dissipation material 90.
<第13変形例>



 図17に示すように、ヒートシンク80は、コンデンサ65のZ方向の下側の端部65sから上側の端部65tまで延び、コンデンサ収容孔81を有する。コンデンサ65は、コンデンサ収容孔81内に配置される。モータ本体2は、コンデンサ65の天面65bと天面65bとヒートシンク80の面80bの両方と対向する蓋部40を備える。第13変形例では、コンデンサの中央部120より下側(第1方向の一方側)においてコンデンサ65とヒートシンク80との間を封止する封止部材94を有する。放熱材90は、コンデンサ65と、ヒートシンク80と、蓋部40と、前記封止部材94と、に接触する。放熱材がコンデンサ65と、ヒートシンク80と、蓋部40と、封止部材94に囲まれた空間内に配置されるので、放熱効果を高め、かつ放熱材90の漏れを良好に防止できる。 
<The 13th modification>



As shown in FIG. 17, the heat sink 80 extends from the lower end 65 s of the capacitor 65 in the Z direction to the upper end 65 t and has a capacitor accommodation hole 81. The capacitor 65 is disposed in the capacitor accommodation hole 81. The motor body 2 includes a lid 40 facing both the top surface 65 b and the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80. In the thirteenth modification, a sealing member 94 that seals between the capacitor 65 and the heat sink 80 is provided below the central portion 120 of the capacitor (one side in the first direction). The heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the lid 40, and the sealing member 94. Since the heat dissipating material is disposed in the space surrounded by the capacitor 65, the heat sink 80, the lid 40, and the sealing member 94, the heat dissipating effect can be enhanced and the heat dissipating material 90 can be favorably prevented from leaking.
<第14変形例>



 図18に示すように、ヒートシンク80はコンデンサ収容凹部150を備える。コンデンサ65はコンデンサ収容凹部150内に配置される。第14変形例では、モータ1は、中央部120より下側においてコンデンサ65とヒートシンク80との間を封止する封止部材94を有する。放熱材90は、コンデンサ65と、ヒートシンク80と、封止部材94と、に接触する。放熱材90がコンデンサ65と、ヒートシンク80と、封止部材94に囲まれた空間内に配置されることで放熱効率を高め、かつ放熱材90の漏れを良好に防止できる。 
The fourteenth modified example



As shown in FIG. 18, the heat sink 80 includes a capacitor housing recess 150. Capacitor 65 is arranged in capacitor housing recess 150. In the fourteenth modification, the motor 1 has a sealing member 94 that seals between the capacitor 65 and the heat sink 80 below the central portion 120. The heat dissipating material 90 contacts the capacitor 65, the heat sink 80, and the sealing member 94. The heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, and the sealing member 94, so that the heat dissipating efficiency can be enhanced and the heat dissipating material 90 can be favorably prevented from leaking.
<第15変形例>



 図19に示すように、ヒートシンク80は、コンデンサ65のZ方向の下側の端部65sから上側の端部65tまで延び、コンデンサ収容孔81を有する。コンデンサ65は、コンデンサ収容孔81内に配置される。モータ本体2は、コンデンサ65の天面65bとヒートシンク80の面80bの両方と対向する蓋部40を備える。蓋部40は、Z方向の下側に向く内側下端面(面)46aに、Z方向の下側(第1方向の一方側)に向かって突出し、コンデンサ65の側面65aと対向する第3突起部143を有する。第3突起部143は、コンデンサ65とヒートシンク80との間に配置される。放熱材90は、コンデンサ65と、ヒートシンク80と、第3突起部143と、回路基板60に接触する。放熱材90がコンデンサ65と、ヒートシンク80と、第3突起部143と、回路基板60に囲まれた空間内に配置されることで、放熱効率を高め、かつ第3突起部143によって放熱材90の漏れを良好に防止できる。 
The 15th Modification



As shown in FIG. 19, the heat sink 80 extends from the lower end 65 s of the capacitor 65 in the Z direction to the upper end 65 t and has a capacitor accommodation hole 81. The capacitor 65 is disposed in the capacitor accommodation hole 81. The motor main body 2 includes a lid 40 facing both the top surface 65 b of the capacitor 65 and the surface 80 b of the heat sink 80. The lid portion 40 protrudes toward the lower side in the Z direction (surface) 46 a toward the lower side (one side in the first direction) in the Z direction, and a third protrusion facing the side surface 65 a of the capacitor 65 It has a portion 143. The third protrusion 143 is disposed between the capacitor 65 and the heat sink 80. The heat dissipating material 90 contacts the capacitor 65, the heat sink 80, the third protrusion 143, and the circuit board 60. The heat dissipating material 90 is disposed in the space surrounded by the capacitor 65, the heat sink 80, the third protrusion 143, and the circuit board 60 to enhance the heat dissipation efficiency, and the third protrusion 143 removes the heat dissipating material 90. Can be well prevented.
[コネクタ]



 コネクタ70は、回路基板60を外部機器に接続するために設けられる。図2に示すように、コネクタ70は、一対の導電性のコネクタ本体70Aと、絶縁性の支持部71と、を有する。一対のコネクタ本体70Aは、軸方向と直交する一方向(水平面内の一方向、本実施形態ではX軸方向)に沿って並ぶ。 
[connector]



The connector 70 is provided to connect the circuit board 60 to an external device. As shown in FIG. 2, the connector 70 includes a pair of conductive connector bodies 70 </ b> A and an insulating support portion 71. The pair of connector bodies 70A are arranged along one direction (one direction in the horizontal plane, in the present embodiment, the X-axis direction) orthogonal to the axial direction.
支持部71は、回路基板60の下側に位置する。支持部71は、コネクタ本体70Aを支持する。支持部71は、筐体部4の一部であるベアリングホルダ30に固定される。すなわち、支持部71は、筐体部4に固定される。  The support portion 71 is located below the circuit board 60. The support portion 71 supports the connector main body 70A. The support 71 is fixed to a bearing holder 30 which is a part of the housing 4. That is, the support 71 is fixed to the housing 4.
支持部71は、絶縁性である。なお、支持部71が絶縁性であるとは、支持部71が、コネクタ本体70Aとベアリングホルダ30とを絶縁していることを意味する。したがって、支持部71は、コネクタ本体70Aとベアリングホルダ30との間に介在する絶縁性の部材を有していればよい。本実施形態では、絶縁性の部材として樹脂材料が用いられる。  The support portion 71 is insulating. In addition, that the support part 71 is insulating means that the support part 71 insulates the connector main body 70A and the bearing holder 30. As shown in FIG. Therefore, the support portion 71 may have an insulating member interposed between the connector main body 70A and the bearing holder 30. In the present embodiment, a resin material is used as the insulating member.
支持部71は、支持部本体71aと、一対の固定部71bと、を有する。 支持部本体71aには、コネクタ本体70Aの一部がインサート成型によって埋め込まれている。したがって、支持部71は、支持部本体71aにおいてコネクタ本体70Aを支持する。支持部本体71aは、一対のコネクタ本体70Aが並ぶ方向(X軸方向)を長手方向とする矩形状である。  The support portion 71 includes a support portion main body 71 a and a pair of fixing portions 71 b. A part of the connector main body 70A is embedded in the support main body 71a by insert molding. Therefore, the support portion 71 supports the connector main body 70A in the support portion main body 71a. The support portion main body 71a has a rectangular shape whose longitudinal direction is the direction in which the pair of connector main bodies 70A are arranged (X-axis direction).
一対の固定部71bは、支持部本体71aの長手方向の両端に位置する。一対の固定部71bは、それぞれ、支持部本体71aの長手方向両側に傍出する。  The pair of fixing portions 71b are located at both ends in the longitudinal direction of the support portion main body 71a. The pair of fixing portions 71b respectively extend on both sides in the longitudinal direction of the support portion main body 71a.
本実施形態において、筐体部4は、回路基板60の上側を覆う蓋部40と、回路基板60の下側に位置する基底部としてのベアリングホルダ30と、を有する。しかしながら、回路基板60の下側に位置する基底部は、ハウジング50の一部であってもよい。すなわち、基底部は、ハウジング50およびベアリングホルダ30の少なくとも一方であってもよい。  In the present embodiment, the housing 4 includes a lid 40 that covers the upper side of the circuit board 60, and a bearing holder 30 as a base located below the circuit board 60. However, the base located below the circuit board 60 may be part of the housing 50. That is, the base may be at least one of the housing 50 and the bearing holder 30.
以上に、本発明の実施形態および変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。  Although the embodiment and the modified example of the present invention have been described above, each configuration and the combination thereof in the embodiment and the modified example are an example, and addition and omission of the configuration are possible without departing from the spirit of the present invention , Substitution and other modifications are possible. Further, the present invention is not limited by the embodiments.
また、上述の実施形態において、回路基板60は、モータ本体2に対して軸方向一方側に位置する。また、回路基板60は、中心軸Jに対して直交する方向に沿って延びる。しかしながら、モータ本体2に対する回路基板60の位置は、これに限定されない。一例として、回路基板が、モータ本体の側面において中心軸Jに沿って配置されていてもよい。なお、本実施形態において、コンデンサ収容孔81とコンデンサ収容凹部150のZ方向(第一方向)の長さは、コンデンサ65のZ方向の長さと略同一である。しかし、コンデンサ収容孔81とコンデンサ収容凹部150のZ方向の長さは、コンデンサ65のZ方向の長さよりも長くてもよい。このとき、放熱材収容凹部130は、コンデンサ65の中央部120と対向するため、コンデンサ収容孔81に対して下側に位置する。 Further, in the above-described embodiment, the circuit board 60 is located on one side in the axial direction with respect to the motor body 2. Also, the circuit board 60 extends in a direction orthogonal to the central axis J. However, the position of the circuit board 60 with respect to the motor body 2 is not limited to this. As an example, the circuit board may be disposed along the central axis J on the side surface of the motor body. In the present embodiment, the length in the Z direction (first direction) of the capacitor accommodation hole 81 and the capacitor accommodation recess 150 is substantially the same as the length in the Z direction of the capacitor 65. However, the length in the Z direction of capacitor housing hole 81 and capacitor housing recess 150 may be longer than the length in the Z direction of capacitor 65. At this time, since the heat-radiating material accommodation concave portion 130 faces the central portion 120 of the capacitor 65, the heat-radiating material accommodation concave portion 130 is positioned below the capacitor accommodation hole 81.
1…モータ、2…モータ本体、3…制御ユニット、4…筐体部、7A…上側ベアリング、8…外部機器、9…シールド部、20…ロータ、25…ステータ、30…ベアリングホルダ、38…収容凹部、39…放熱面、40…蓋部、50…ハウジング、52…底部、60…回路基板(基板)、65…コンデンサ、70…コネクタ、71…支持部、72…基板接続端子、73…外部接続端子、74…連結部、74a…被支持部、74b…露出部、80…ヒートシンク、90…放熱材、94…封止部材、120…中央部、121…第1領域、122…第2領域、123…第3領域、130…放熱材収容凹部、131…第1凹所、132…第2凹所、133…第3凹所、134…第4凹所、141…第1突起部、142…第2突起部、143…第3突起部 DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Motor main body, 3 ... Control unit, 4 ... Housing | casing part, 7A ... Upper side bearing, 8 ... External apparatus, 9 ... Shield part, 20 ... Rotor, 25 ... Stator, 30 ... Bearing holder, 38 ... Housing recess, 39: Heat dissipation surface, 40: Lid portion, 50: Housing, 52: Bottom portion, 60: Circuit board (substrate), 65: Capacitor, 70: Connector, 71: Support portion, 72: Board connection terminal, 73: External connection terminal 74: Coupling portion 74a: Supported portion 74b: Exposed portion 80: Heat sink: 90: Heat dissipation material 94: Sealing member: 120: Central portion: 121: First region: 122: Second Region 123: third region 130: heat sink containing recess 131: first recess 132: second recess 133: third recess 134: fourth recess 141: first protrusion 142: second projection, 143: third collision Part

Claims (17)

  1. ロータおよびステータを有するモータ本体と、



     前記モータ本体と電気的に接続され第1方向に沿って延びる柱状のコンデンサと、



     を備え、



     前記モータ本体は、



      前記コンデンサの側面と対向するヒートシンクと、



      前記コンデンサの側面の一部および前記ヒートシンクと接触する放熱材と、



     を有し、



     前記コンデンサの側面は、前記放熱材と接触する第1領域を有し、



     前記第1領域は、前記コンデンサの側面の一部であって、前記コンデンサの側面の前記第1方向の中央部を含む領域である、モータ。
    A motor body having a rotor and a stator;



    A columnar capacitor electrically connected to the motor body and extending along a first direction;



    Equipped with



    The motor body is



    A heat sink facing the side of the capacitor;



    A heat dissipating material in contact with part of the side surface of the capacitor and the heat sink;



    Have



    The side surface of the capacitor has a first region in contact with the heat dissipating material,



    The motor is a part of the side surface of the capacitor, and the first region is a region including a central portion in the first direction of the side surface of the capacitor.
  2. 前記コンデンサは、前記コンデンサが実装される基板から前記第1方向の他方側に延び、



     前記コンデンサの側面は、



      前記中央部から前記第1方向の一方側の端部までの第2領域をさらに有し、



     前記ヒートシンクは前記第2領域と対向する、



     請求項1に記載のモータ。
    The capacitor extends from the substrate on which the capacitor is mounted to the other side in the first direction,



    The side of the capacitor is



    It further has a second region from the central portion to an end on one side of the first direction,



    The heat sink faces the second area,



    The motor according to claim 1.
  3. 前記コンデンサは、前記コンデンサが実装される基板から前記第1方向の他方側に延び、



     前記コンデンサの側面は、



      前記中央部から前記第1方向の他方側の端部までの第3領域をさらに有し、



     前記モータ本体は、



      前記第3領域と対向する蓋部をさらに備える、



     請求項1または2に記載のモータ。
    The capacitor extends from the substrate on which the capacitor is mounted to the other side in the first direction,



    The side of the capacitor is



    And a third region from the central portion to the other end of the first direction,



    The motor body is



    And a lid facing the third area,



    A motor according to claim 1 or 2.
  4. 前記モータ本体は、



      前記ヒートシンクと前記蓋部との境界に、前記コンデンサの側面に直交する第2方向に凹む放熱材収容凹部を有し、



     前記放熱材の一部は前記放熱材収容凹部内に配置される、



     請求項3に記載のモータ。
    The motor body is



    At the boundary between the heat sink and the lid portion, there is a heat sink containing recess recessed in a second direction orthogonal to the side surface of the capacitor,



    A part of the heat dissipating material is disposed in the heat dissipating material accommodation recess,



    The motor according to claim 3.
  5. 前記ヒートシンクは、前記第1方向の他方側を向く面から、前記第1方向の一方側に凹む第1凹所を有し、



     前記第1凹所は、前記放熱材収容凹部の少なくとも一部を構成する、



     請求項4に記載のモータ。
    The heat sink has a first recess that is recessed to one side in the first direction from the surface facing the other side in the first direction,



    The first recess constitutes at least a part of the heat sink containing recess.



    The motor according to claim 4.
  6. 前記蓋部は、前記第1方向の一方側を向く面に、前記コンデンサの前記第1方向の他方側の端面より前記第1方向の一方側へ突出する第1突起部を有し、



     前記第1突起部は、前記第1凹所に嵌入される、



     請求項5に記載のモータ。
    The lid portion has, on a surface facing the one side in the first direction, a first protrusion which protrudes from the end surface on the other side in the first direction of the capacitor to the one side in the first direction.



    The first protrusion is inserted into the first recess.



    The motor according to claim 5.
  7. 前記蓋部は、前記第1方向の一方側を向く面に、前記第1方向の他方側に凹む第2凹所を有し、



     前記第2凹所は、前記放熱材収容凹部の少なくとも一部を構成する、



     請求項4に記載のモータ。
    The lid portion has, on a surface facing one side in the first direction, a second recess recessed to the other side in the first direction,



    The second recess constitutes at least a part of the heat dissipation material accommodation recess.



    The motor according to claim 4.
  8. 前記ヒートシンクは、前記第1方向の他方側を向く面に、前記第1方向の他方側へ突出する第2突起部を有し、



     前記第2突起部は前記第2凹所に嵌入される、



     請求項7に記載のモータ。
    The heat sink has, on a surface facing the other side in the first direction, a second protrusion that protrudes to the other side in the first direction,



    The second protrusion is inserted into the second recess.



    The motor according to claim 7.
  9. 前記コンデンサは、前記コンデンサが実装される基板から前記第1方向の他方側に延び、



     前記ヒートシンクは、前記第1方向の一方側の端部から前記第1方向の他方側の端部まで延び、



     前記放熱材は、前記コンデンサの側面のうち、前記中央部から前記第1方向の一方側の端部又は前記第1方向の他方側の端部に至る領域の少なくとも一部に対向し、



     前記モータ本体は、



      前記コンデンサの前記第1方向の他方側に配置され、前記コンデンサの前記第1方向の他方側の端面および前記ヒートシンクの前記第1方向の他方側を向く面と対向する蓋部をさらに備える、



     請求項1に記載のモータ。
    The capacitor extends from the substrate on which the capacitor is mounted to the other side in the first direction,



    The heat sink extends from one end of the first direction to the other end of the first direction,



    The heat dissipation material faces at least a part of a region of the side surface of the capacitor from the central portion to an end on one side in the first direction or an end on the other side in the first direction,



    The motor body is



    The capacitor further includes a lid portion disposed on the other side of the first direction of the capacitor and facing an end face of the other side of the capacitor in the first direction and a surface facing the other side of the heat sink in the first direction.



    The motor according to claim 1.
  10. 前記コンデンサは、前記コンデンサが実装される基板から前記第1方向の他方側に延び、



     前記ヒートシンクは、前記第1方向の一方側に開口するコンデンサ収容凹部を備え、



     前記コンデンサは、前記コンデンサ収容凹部内に配置され、



     前記放熱材は、前記コンデンサ収容凹部の内壁面と、前記コンデンサの側面のうち前記第1方向の中央部から一方側の端部又は他方側の端部に至る領域の少なくとも一部に対向する、



     請求項1に記載のモータ。
    The capacitor extends from the substrate on which the capacitor is mounted to the other side in the first direction,



    The heat sink includes a capacitor housing recess opened to one side in the first direction,



    The capacitor is disposed in the capacitor housing recess,



    The heat dissipation material faces at least a part of an inner wall surface of the capacitor housing recess and a region extending from a central portion in the first direction to one end or the other end of the side surfaces of the capacitor.



    The motor according to claim 1.
  11. 前記ヒートシンクは、前記コンデンサの前記中央部に対向する側面に、前記コンデンサの側面に直交する第2方向に向かって凹む放熱材収容凹部を有し、



     前記放熱材は前記放熱材収容凹部内に配置される、



     請求項9または10に記載のモータ。
    The heat sink has a heat sink containing recess recessed on a side surface facing the central portion of the capacitor in a second direction orthogonal to the side surface of the capacitor,



    The heat dissipating material is disposed in the heat dissipating material receiving recess.



    A motor according to claim 9 or 10.
  12. 前記ヒートシンクは、前記コンデンサの側面の前記中央部に対向する面に、前記コンデンサの側面に直交する第2方向に凹む第3凹所を有し、



     前記第3凹所は、前記コンデンサの前記中央部から前記第1方向の他方側まで延び、



     前記放熱材は前記第3凹所に配置される、



     請求項9または10に記載のモータ。
    The heat sink has a third recess which is recessed in a second direction orthogonal to the side surface of the capacitor on a surface opposite to the central portion of the side surface of the capacitor.



    The third recess extends from the central portion of the capacitor to the other side in the first direction,



    The heat dissipating material is disposed in the third recess.



    A motor according to claim 9 or 10.
  13. 前記ヒートシンクは、前記コンデンサの側面の前記中央部に対向する面に、前記第2方向に凹む第4凹所を有し、



     前記第4凹所は、前記コンデンサの前記中央部から前記第1方向の他方側まで延び、



     前記放熱材は前記第4凹所に配置される、



     請求項9または10に記載のモータ。
    The heat sink has a fourth recess that is recessed in the second direction on a surface facing the central portion of the side surface of the capacitor,



    The fourth recess extends from the central portion of the capacitor to the other side in the first direction,



    The heat dissipating material is disposed in the fourth recess.



    A motor according to claim 9 or 10.
  14. 前記第1方向の中央部より他方側において前記コンデンサと前記ヒートシンクとの間を封止する封止部材を有し、



     前記放熱材は、前記コンデンサと、前記ヒートシンクと、前記基板と、前記封止部材に接触する、



     請求項9または10に記載のモータ。
    A sealing member sealing between the capacitor and the heat sink on the other side of the central portion in the first direction;



    The heat dissipating material is in contact with the capacitor, the heat sink, the substrate, and the sealing member.



    A motor according to claim 9 or 10.
  15. 前記第1方向の前記中央部より一方側において前記コンデンサと前記ヒートシンクとの間を封止する封止部材を有し、



     前記放熱材は、前記コンデンサと、前記ヒートシンクと、前記蓋部と、前記封止部材と、に接触する、



     請求項9に記載のモータ。
    A sealing member for sealing between the capacitor and the heat sink on one side of the central portion in the first direction;



    The heat dissipating material is in contact with the capacitor, the heat sink, the lid, and the sealing member.



    The motor according to claim 9.
  16. 前記第1方向の中央部より一方側において前記コンデンサと前記ヒートシンクとの間を封止する封止部材を有し、



     前記放熱材は、前記コンデンサと、前記ヒートシンクと、前記封止部材と、に接触する、



     請求項10に記載のモータ。
    A sealing member for sealing between the capacitor and the heat sink on one side of the central portion in the first direction;



    The heat dissipating material is in contact with the capacitor, the heat sink, and the sealing member.



    A motor according to claim 10.
  17. 前記蓋部は、前記第1方向の一方側に向く面に、前記第1方向の一方側に向かって突出し、前記コンデンサの側面と対向する第3突起部を有し、



     前記第3突起部は、前記コンデンサと前記ヒートシンクとの間に配置され、



     前記放熱材は、前記コンデンサと、前記ヒートシンクと、前記第3突起部と、前記基板に接触する、



     請求項9に記載のモータ。
    The lid portion has, on a surface facing the one side in the first direction, a third protrusion which protrudes toward the one side in the first direction and faces the side surface of the capacitor.



    The third protrusion is disposed between the capacitor and the heat sink,



    The heat dissipating material is in contact with the capacitor, the heat sink, the third protrusion, and the substrate.



    The motor according to claim 9.
PCT/JP2018/025400 2017-09-29 2018-07-04 Motor WO2019064793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880053461.1A CN111033976B (en) 2017-09-29 2018-07-04 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-192190 2017-09-29
JP2017192190A JP7002904B2 (en) 2017-09-29 2017-09-29 motor

Publications (1)

Publication Number Publication Date
WO2019064793A1 true WO2019064793A1 (en) 2019-04-04

Family

ID=65901505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025400 WO2019064793A1 (en) 2017-09-29 2018-07-04 Motor

Country Status (3)

Country Link
JP (1) JP7002904B2 (en)
CN (1) CN111033976B (en)
WO (1) WO2019064793A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065452A1 (en) * 2019-09-30 2021-04-08 日本電産株式会社 Motor unit
CN114503399A (en) * 2019-09-30 2022-05-13 日本电产株式会社 Motor unit
WO2022230007A1 (en) * 2021-04-26 2022-11-03 三菱電機株式会社 Rotating electrical machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035165A (en) * 2019-08-23 2021-03-01 日本電産トーソク株式会社 Electric actuator
JP7435151B2 (en) 2020-03-27 2024-02-21 ニデックパワートレインシステムズ株式会社 Control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280089A (en) * 2005-03-29 2006-10-12 Jtekt Corp Motor controller
WO2012056735A1 (en) * 2010-10-27 2012-05-03 三菱電機株式会社 Device for controlling drive of motor for electric power steering device
JP2013106421A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Inverter integrated type electric motor-driven compressor
WO2015140961A1 (en) * 2014-03-19 2015-09-24 三菱電機株式会社 Electric motor and electric power steering device using same
JP2015198168A (en) * 2014-04-01 2015-11-09 富士電機株式会社 Electronic device, power converter and dynamo-electric machine
JP2017163771A (en) * 2016-03-11 2017-09-14 三菱電機株式会社 Dynamo-electric machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201715304U (en) * 2010-05-28 2011-01-19 符建 High-power LED light source based on liquid metal for heat radiating and threaded connection structure
DE202010018108U1 (en) * 2010-06-02 2014-05-06 Ssb Wind Systems Gmbh & Co. Kg Electric drive arrangement
JP5687027B2 (en) * 2010-10-27 2015-03-18 三菱重工業株式会社 Inverter-integrated electric compressor
US8570767B2 (en) * 2011-03-21 2013-10-29 Deere & Company Capacitor assembly
JP6457256B2 (en) * 2013-12-19 2019-01-23 日本電産エレシス株式会社 Motor drive device for electric power steering
JP6070581B2 (en) * 2014-01-15 2017-02-01 三菱電機株式会社 Terminal block and power conversion device including the terminal block
JP6514135B2 (en) * 2016-03-09 2019-05-15 日立オートモティブシステムズ株式会社 Electric drive device and electric power steering device
CN206282731U (en) * 2016-12-27 2017-06-27 深圳市汇北川电子技术有限公司 A kind of thin film capacitor used for electric vehicle for carrying heat abstractor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280089A (en) * 2005-03-29 2006-10-12 Jtekt Corp Motor controller
WO2012056735A1 (en) * 2010-10-27 2012-05-03 三菱電機株式会社 Device for controlling drive of motor for electric power steering device
JP2013106421A (en) * 2011-11-11 2013-05-30 Mitsubishi Heavy Ind Ltd Inverter integrated type electric motor-driven compressor
WO2015140961A1 (en) * 2014-03-19 2015-09-24 三菱電機株式会社 Electric motor and electric power steering device using same
JP2015198168A (en) * 2014-04-01 2015-11-09 富士電機株式会社 Electronic device, power converter and dynamo-electric machine
JP2017163771A (en) * 2016-03-11 2017-09-14 三菱電機株式会社 Dynamo-electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065452A1 (en) * 2019-09-30 2021-04-08 日本電産株式会社 Motor unit
CN114450873A (en) * 2019-09-30 2022-05-06 日本电产株式会社 Motor unit
CN114503399A (en) * 2019-09-30 2022-05-13 日本电产株式会社 Motor unit
WO2022230007A1 (en) * 2021-04-26 2022-11-03 三菱電機株式会社 Rotating electrical machine

Also Published As

Publication number Publication date
CN111033976B (en) 2022-04-08
CN111033976A (en) 2020-04-17
JP2019068628A (en) 2019-04-25
JP7002904B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2019064793A1 (en) Motor
CN109983669B (en) Motor and electric power steering apparatus
CN111033964B (en) Motor
WO2019064897A1 (en) Motor
CN110140284B (en) Motor and electric power steering apparatus
CN109565212B (en) Motor and electric power steering apparatus
JP2011147319A (en) Rotary electric machine with built-in controller
JP5934879B2 (en) Brushless motor
JP2017184542A (en) motor
JP2010098817A (en) Outer-rotor brushless motor
CN111033975B (en) Motor
CN111133572B (en) Component assembly and electronic device
JP6852271B2 (en) motor
US20200220435A1 (en) Motor and electric power steering device
JP7156292B2 (en) motor
CN111052569B (en) Motor
JP2019125640A (en) Heat dissipation block and power converter
JP2021044984A (en) Motor and electric power steering device
JP6961990B2 (en) Motor unit
JP7424021B2 (en) motor and electric pump
JP2022053882A (en) Electric actuator
JP2021097500A (en) Motor and electric pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862897

Country of ref document: EP

Kind code of ref document: A1