WO2019064725A1 - Power conversion device, motor module, and electric power steering device - Google Patents

Power conversion device, motor module, and electric power steering device Download PDF

Info

Publication number
WO2019064725A1
WO2019064725A1 PCT/JP2018/022912 JP2018022912W WO2019064725A1 WO 2019064725 A1 WO2019064725 A1 WO 2019064725A1 JP 2018022912 W JP2018022912 W JP 2018022912W WO 2019064725 A1 WO2019064725 A1 WO 2019064725A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
switch element
inverter
motor
Prior art date
Application number
PCT/JP2018/022912
Other languages
French (fr)
Japanese (ja)
Inventor
香織 鍋師
貴 小池上
雄飛 中田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201890001071.5U priority Critical patent/CN211830634U/en
Publication of WO2019064725A1 publication Critical patent/WO2019064725A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device, a motor module, and an electric power steering device that convert power from a power supply into power to be supplied to an electric motor.
  • Patent Document 1 discloses a power conversion device that includes a control unit and two inverters, and converts power from a power supply into power to be supplied to a three-phase motor.
  • Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND").
  • One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding.
  • Each inverter has a bridge circuit composed of three legs, each of which includes a high side switch element and a low side switch element.
  • the control unit switches motor control from normal control to abnormal control when it detects a failure of the switch element in the two inverters. In the normal control, for example, the motor is driven by switching switch elements of two inverters. In the control at the time of abnormality, for example, the motor is driven by the unfailed inverter using the neutral point of the winding in the broken inverter.
  • Patent Document 2 discloses a device for driving a motor having a Y-connected winding by one inverter (hereinafter, referred to as “single inverter type device”). Patent Document 2 discloses that a signal detected in a predetermined energization pattern is collated with a predetermined abnormality type correspondence table to detect a disconnection and a short circuit of a wiring.
  • An embodiment of the present disclosure provides a power converter capable of detecting a failure of a switch element of an inverter in a shorter time, a motor module including the power converter, and an electric power steering apparatus including the motor module.
  • An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of a winding of each phase, the first inverter having n legs each having a low side switching device and a high side switching device; and a winding of each phase of the motor A second inverter connected to the other end, the second inverter having n legs each having a low side switch element and a high side switch element, and presence or absence of a failure of the switch elements in the first and second inverters And a memory for storing processing data of the failure detection device, the failure detection device comprising an n-phase current of the motor and a dq coordinate system And at least one of the current and voltage represented is acquired every predetermined cycle, the data of the acquired current and voltage is written to the memory, and the data of the current and voltage acquired at the reference time of failure detection, The presence or absence of a failure of
  • a converter, a motor module including the power converter, and an electric power steering apparatus including the motor module are provided.
  • FIG. 1 is a circuit diagram showing a circuit configuration of an inverter unit 100 according to an exemplary embodiment 1.
  • FIG. 2 is a block diagram showing the block configuration of the motor module 2000 according to the exemplary embodiment 1, mainly showing the block configuration of the power conversion device 1000.
  • FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Is a graph.
  • FIG. 4 is a schematic view showing the configuration of the H bridge.
  • FIG. 1 is a circuit diagram showing a circuit configuration of an inverter unit 100 according to an exemplary embodiment 1.
  • FIG. 2 is a block diagram showing the block configuration of the motor module 2000 according to the exemplary embodiment 1, mainly showing the block configuration of the power conversion device 1000.
  • FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in
  • FIG. 5 is a graph illustrating waveforms of simulation results of the three-phase currents Ia, Ib and Ic when the switch element L1 of the A-phase and H-bridge has an open failure.
  • FIG. 6 is a diagram illustrating a table of data groups of three-phase currents recorded in the internal register 341 of the failure detection device 340.
  • FIG. 7 shows a current waveform obtained by plotting current values flowing in the B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the winding M1 is broken. It is a graph which illustrates.
  • FIG. 6 is a diagram illustrating a table of data groups of three-phase currents recorded in the internal register 341 of the failure detection device 340.
  • FIG. 7 shows a current waveform obtained by plotting current values flowing in the B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the
  • FIG. 8 shows a current waveform obtained by plotting current values flowing in the A-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the winding M2 is broken. It is a graph which illustrates.
  • FIG. 9 shows a current waveform obtained by plotting the values of currents flowing through the A-phase and B-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the winding M3 is broken. It is a graph which illustrates.
  • FIG. 10A is a graph showing waveforms of simulation results of three-phase current, d-axis current, q-axis current, and zero-phase current obtained when an open failure occurs in a switch element on the high side of the A-phase H bridge.
  • FIG. 10B is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current obtained when a switch element on the high side of the A-phase H bridge fails.
  • FIG. 10B is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current obtained when a switch element on the high side of the A-phase H bridge fails.
  • FIG. 10C is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current obtained when an open failure occurs in a switch element on the low side of the A-phase H bridge.
  • FIG. 10D is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current, which are obtained when a switch element on the low side of the A-phase H bridge fails.
  • FIG. 11 is a diagram exemplifying a table of data groups of d-axis current, q-axis current, zero-phase current and q-axis voltage recorded in the internal register 341.
  • FIG. 12 is a schematic view showing a typical configuration of the electric power steering apparatus 3000 according to the second embodiment.
  • the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings.
  • the form will be described.
  • a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .
  • FIG. 1 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
  • the inverter unit 100 includes a power shutoff circuit 110, a first inverter 120 and a second inverter 130.
  • the inverter unit 100 can convert the power from the power supplies 101A and 101B into the power to be supplied to the motor 200.
  • the first and second inverters 120, 130 can convert DC power into three-phase AC power which is pseudo-sinusoidal waves of A-phase, B-phase and C-phase.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130.
  • the first inverter 120 is connected to one end of the winding of each phase of the motor 200
  • the second inverter 130 is connected to the other end of the winding of each phase.
  • “connection” between components (components) mainly means electrical connection.
  • the first inverter 120 has terminals A_L, B_L and C_L corresponding to the respective phases.
  • the second inverter 130 has terminals A_R, B_R and C_R corresponding to the respective phases.
  • the terminal A_L of the first inverter 120 is connected to one end of the A-phase winding M1
  • the terminal B_L is connected to one end of the B-phase winding M2
  • the terminal C_L is connected to one end of the C-phase winding M3.
  • the terminal A_R of the second inverter 130 is connected to the other end of the A-phase winding M1
  • the terminal B_R is connected to the other end of the B-phase winding M2
  • the terminal C_R is , C phase is connected to the other end of the winding M3.
  • Such motor connections are different from so-called star connections and delta connections.
  • the power supply shutoff circuit 110 has first to fourth switch elements 111, 112, 113 and 114.
  • the first inverter 120 can be electrically connected to the power supply 101A and the GND by the power shutoff circuit 110.
  • the second inverter 130 can be electrically connected to the power supply 101 B and the GND by the power shutoff circuit 110.
  • the first switch element 111 switches connection / non-connection between the first inverter 120 and GND.
  • the second switch element 112 switches connection / non-connection between the power supply 101 and the first inverter 120.
  • the third switch element 113 switches connection / disconnection between the second inverter 130 and GND.
  • the fourth switch element 114 switches connection / disconnection between the power supply 101 and the second inverter 130.
  • the on / off of the first to fourth switch elements 111, 112, 113 and 114 may be controlled by, for example, a microcontroller or a dedicated driver.
  • the first to fourth switch elements 111, 112, 113 and 114 can block bidirectional current.
  • semiconductor switches such as thyristors, analog switch ICs, or field effect transistors (typically MOSFETs) having parasitic diodes formed therein as the first to fourth switch elements 111, 112, 113 and 114, and A mechanical relay or the like can be used.
  • a combination of a diode and an insulated gate bipolar transistor (IGBT) may be used.
  • the SW 111 is arranged such that a forward current flows toward the first inverter 120 in an internal parasitic diode.
  • the SW 112 is arranged such that a forward current flows in the parasitic diode toward the power supply 101A.
  • the SW 113 is disposed such that a forward current flows to the second inverter 130 in the parasitic diode.
  • the SW 114 is arranged such that forward current flows in the parasitic diode toward the power supply 101B.
  • the power shutoff circuit 110 preferably further includes fifth and sixth switch elements 115 and 116 for reverse connection protection, as shown.
  • the fifth and sixth switch elements 115, 116 are typically semiconductor switches of a MOSFET having parasitic diodes.
  • the fifth switch element 115 is connected in series to the SW 112, and is disposed such that a forward current flows toward the first inverter 120 in the parasitic diode.
  • the sixth switch element 116 is connected in series to the SW 114, and is disposed such that a forward current flows toward the second inverter 130 in the parasitic diode. Even when the power supplies 101A and 101B are connected in the reverse direction, the reverse current can be cut off by the two switch elements for reverse connection protection.
  • the number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements for each inverter.
  • the power supply may comprise a power supply 101A for the first inverter 120 and a power supply 101B for the second inverter 130.
  • the power supplies 101A and 101B generate a predetermined power supply voltage (for example, 12 V).
  • a power supply for example, a DC power supply is used.
  • the power source may be an AC-DC converter and a DC-DC converter, or may be a battery (storage battery).
  • the power supply 101 may be a single power supply common to the first and second inverters 120 and 130.
  • a coil 102 is provided between the power supplies 101A and 101B and the power shutoff circuit 110.
  • the coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply side.
  • a capacitor 103 is connected to the power supply terminal of each inverter.
  • the capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
  • the first inverter 120 comprises a bridge circuit having three legs. Each leg has a low side switch element and a high side switch element.
  • the A-phase leg has a low side switch element 121L and a high side switch element 121H.
  • the B-phase leg has a low side switch element 122L and a high side switch element 122H.
  • the C-phase leg has a low side switch element 123L and a high side switch element 123H.
  • a switch element FET or IGBT can be used, for example.
  • an example using a MOSFET as a switch element will be described, and the switch element may be described as SW.
  • the switch elements 121L, 122L and 123L are described as SW 121L, 122L and 123L.
  • the first inverter 120 has three shunt resistors 121R, 122R and 123R as a current sensor 150 (see FIG. 3) for detecting the current flowing in the winding of each phase A, B and C.
  • Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • the shunt resistors 121R, 122R and 123R are respectively connected between the three low side switch elements included in the three legs of the first inverter 120 and the GND.
  • shunt resistor 121R is electrically connected between SW121L and SW111
  • shunt resistor 122R is electrically connected between SW122L and SW111
  • shunt resistor 123R is between SW123L and SW111. Electrically connected.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ .
  • the second inverter 130 includes a bridge circuit having three legs.
  • the A-phase leg has a low side switch element 131L and a high side switch element 131H.
  • the B-phase leg has a low side switch element 132L and a high side switch element 132H.
  • the C-phase leg has a low side switch element 133L and a high side switch element 133H.
  • the second inverter 130 includes three shunt resistors 131R, 132R, and 133R. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
  • the number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for A phase and B phase, two shunt resistors for B phase and C phase, and two shunt resistors for A phase and C phase.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
  • the second inverter 130 has substantially the same structure as the structure of the first inverter 120.
  • the inverter on the left side of the drawing is described as a first inverter 120 and the inverter on the right side is described as a second inverter 130 for convenience of description.
  • the first and second inverters 120 and 130 may be used as components of the inverter unit 100 without distinction.
  • FIG. 2 schematically shows a block configuration of the motor module 2000 according to the present embodiment, and mainly shows a block configuration of the power conversion device 1000. As shown in FIG.
  • the motor module 2000 includes a power converter 1000 having an inverter unit 100 and a control circuit 300, and a motor 200.
  • the motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
  • the power conversion device 1000 other than the motor 200 can be modularized and manufactured and sold.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360.
  • the control circuit 300 is connected to the inverter unit 100, and drives the motor 200 by controlling the inverter unit 100.
  • control circuit 300 can realize closed loop control by controlling the target position, rotational speed, current and the like of the rotor of the motor 200.
  • Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates DC voltages (for example, 3 V, 5 V) necessary for each block in the circuit.
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
  • rotation signal a rotation angle of the rotor
  • the input circuit 330 receives the motor current value (hereinafter referred to as "actual current value") detected by the current sensor 150, converts the level of the actual current value to the input level of the controller 340 as necessary, The value is output to the controller 340.
  • the input circuit 330 is, for example, an analog-to-digital converter.
  • the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the controller 340 controls the switching operation (turn on or off) of each SW in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350. Further, the controller 340 can control on / off of each SW in the power shutoff circuit 110 of the inverter unit 100.
  • the controller 340 can further detect the presence or absence of a failure of the switch element in the first and second inverters 120, 130. Therefore, when describing the operation of detecting the presence or absence of a failure of the switch element, in the present specification, "controller 340" may be described as “fault detection device 340" as the subject of the operation.
  • the drive circuit 350 is typically a gate driver (or pre-driver).
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of the MOSFET of each SW in the first and second inverters 120 and 130 in accordance with the PWM signal, and supplies the control signal to the gate of each SW.
  • the drive circuit 350 can generate a control signal for controlling on / off of each SW in the power shutoff circuit 110 according to an instruction from the controller 340.
  • the gate driver may not be required. In that case, the function of the gate driver may be implemented in the controller 340.
  • the ROM 360 is electrically connected to the controller 340.
  • the ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM 360 stores a control program including an instruction group for causing the controller 340 to control the power conversion apparatus 1000 and an instruction group for executing failure detection of a switch element described later.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • the control circuit 300 turns on all the SWs 111, 112, 113 and 114 of the power shutoff circuit 110. Thereby, the power supply 101A and the first inverter 120 are electrically connected, and the power supply 101B and the second inverter 130 are electrically connected. In addition, the first inverter 120 and GND are electrically connected, and the second inverter 130 and GND are electrically connected. In this connected state, the control circuit 300 drives the motor 200 by energizing the windings M1, M2 and M3 using both the first and second inverters 120, 130.
  • energization of a three-phase winding is referred to as “three-phase energization control”
  • energization of a two-phase winding is referred to as “two-phase energization control”.
  • FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. doing.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • current values are plotted every 30 ° of electrical angle.
  • I pk represents the maximum current value (peak current value) of each phase.
  • the control circuit 300 controls the switching operation of each switch element of the first and second inverters 120 and 130 by PWM control that obtains the current waveform shown in FIG. 3.
  • the fault detection device (i.e., the controller) 340 is based on at least one of the three-phase current of the motor 200 and the current / voltage represented in the dq coordinate system (which may also be expressed as dqz rotational coordinate system). The presence or absence of a failure of the switch element in the two inverters 120 and 130 can be detected.
  • the current / voltage in the dq coordinate system is, for example, a zero-phase current, the details of which will be described later.
  • the failure detection device 340 can detect the presence or absence of a failure of the switch element in the first and second inverters 120 and 130 while driving the motor 200 based on, for example, vector control. For example, when the power conversion device 1000 is powered on and motor control starts, the failure detection device 340 starts detecting a failure of the switch element in response to the start. For example, the failure detection device 340 may continue the detection of the failure of the switch element during the period of controlling the motor 200, or performs the detection of the failure of the switch element only during the designated period (for example, periodically). You may
  • the failure of the switch element will be described.
  • the failure of the switch element means the failure of the switch element in the first and second inverters 120 and 130.
  • the failure of the switch element is roughly classified into “open failure” and “short failure”.
  • Open fault refers to a fault in which the source-drain of FET is opened (in other words, resistance rds between source-drain becomes high impedance), and "short fault” is in the source-drain of FET Refers to a short circuit failure.
  • the failure detection device 340 detects a failure of the switch element.
  • the outline of the failure detection of the switch element is as follows.
  • the failure detection device (controller) 340 acquires at least one of the three-phase current of the motor 200 and the current / voltage represented in the dq coordinate system at a predetermined cycle, and acquires data of the acquired current / voltage, for example, in the controller Write to the register 341 (see FIG. 2) of The internal register 341 stores data that the failure detection device 340 performs arithmetic processing.
  • the failure detection device 340 compares the current / voltage data acquired at the failure detection reference time with the past data group including data of a plurality of current / voltages acquired earlier than the reference time. Based on the detection, the presence or absence of a failure of the switch element in the first and second inverters 120 and 130 is detected.
  • the predetermined cycle is determined from the number of points at which current and voltage data are acquired during one cycle and one cycle of the electrical angle of the motor.
  • the predetermined cycle is, for example, 100 ⁇ s.
  • the failure detection device 340 acquires the three-phase current of the motor 200 for each predetermined cycle, and writes it in the internal register 341.
  • the failure detection device 340 compares the data of the three-phase current acquired at the reference time with the data group of a plurality of three-phase currents acquired at a time earlier than the reference time, and the first and second inverters 120. , 130 detects the presence or absence of a failure of the switch element. In other words, the failure detection device 340 detects the presence or absence of a failure of the switch element based on the past data group related to the three-phase current recorded in the internal register 341.
  • FIG. 4 schematically shows the H bridge of each phase.
  • the H bridge of each phase includes the switch element H1 on the high side of the first inverter 120, the switch element L1 on the low side, the switch element H2 on the high side of the second inverter 130, the switch element L2 on the low side, and the winding M. Have.
  • the inventor conducted a simulation to verify the behavior of the three-phase currents Ia, Ib and Ic after a failure occurs in the switch element of the H bridge. This simulation was performed under the condition that the time when the open failure of the switch element L1 (corresponding to the SW121L in FIG. 1) of the A phase H bridge is 0.01 ms.
  • FIG. 5 exemplifies waveforms of simulation results of the three-phase currents Ia, Ib and Ic when the switch element L1 of the A-phase H bridge has an open failure.
  • the horizontal axis of the upper and lower graphs in FIG. 5 indicates time [s], and the vertical axis indicates current [A].
  • the upper graph illustrates the waveforms of the three-phase currents Ia, Ib and Ic from 0s to 0.02s
  • the lower graph shows the waveforms of the three-phase currents Ia, Ib and Ic in the upper graph.
  • the waveform of the portion from 6 ms to 11 ms is shown enlarged.
  • the waveforms of the three-phase current shown in FIG. 5 are based on data of the three-phase currents Ia, Ib and Ic acquired in a cycle of 0.1 ms.
  • the phase current Ia of the A-phase fluctuates to generate a period in which a peculiar behavior is exhibited. More specifically, when an open failure occurs in the low side or high side switch element of the H bridge, it is possible to observe a period in which the phase current becomes zero and does not change. This is because, for example, the actual current or voltage of phase A can not follow the target current or voltage of PI (Proportional-Integral) control in vector control.
  • PI Proportional-Integral
  • FIG. 6 illustrates a table of three-phase current data groups recorded in the internal register 341 of the failure detection device 340.
  • the table of FIG. 6 shows the values of the phase currents Ia and Ib of A-phase and B-phase for 14 points acquired between 9.6 ms and 11 ms in the graph of FIG.
  • the value of the phase current Ic of the C phase is not shown.
  • the fault detection device 340 writes the latest data group of the three-phase current acquired every 0.1 ms during one cycle of the electrical angle of the motor into the internal register 341, and the data group recorded in the internal register 341 Update every cycle of electrical angle.
  • a microcontroller having an internal register with a data width of 8 bits can be used as the failure detection device 340.
  • a dedicated buffer (not shown) can be used instead of the internal register 341. The buffer may have a capacity capable of recording the latest data group of the three-phase current acquired during one cycle of the electrical angle.
  • the failure detection device 340 may write the data group of three-phase current acquired during a part of one period of the electrical angle of the motor as the latest data group in the internal ranger.
  • the predetermined period is determined from the partial period and the number of points for acquiring current / voltage data in the period.
  • the reference time is a time at which the latest data in the latest data group is acquired or calculated.
  • the reference time is the latest time at which the latest data is acquired or calculated in the failure detection of the switch element, and changes with the passage of time.
  • the reference time can be arbitrarily set in the latest data group.
  • the time when certain data in the latest data group is acquired can be used as a reference time, and the data group acquired before the reference time can be treated as a past data group.
  • a past data group including data of a plurality of current and voltage acquired at a time prior to the reference time has point No. It consists of data groups of three-phase currents acquired at a total of 13 points from 0 to 12 (9.6 ms to 10.9 ms).
  • This past data group is included in the above-mentioned latest data group (data group for one period of electrical angle). In other words, the past data group is a part of the latest data group.
  • the failure detection device 340 compares the data of the reference time (point No. 13) with the past (point No. 0 to 12) data group. In the table of FIG. 6, it is observed that the phase current of A phase continues to be zero during a period of 8 points from the reference time to the past 7 points.
  • the failure detection device 340 identifies the failure of the A-phase H bridge when the phase current of A-phase is continuously zero during a predetermined point (for example, 8 points) going back from the reference time.
  • the failure of the H bridge refers to the open failure of at least one of the four switch elements H1, L1, H2 and L2.
  • the failure detection device 340 can determine the failure at the reference time (11 ms) after an open failure occurs in the low-side switch element 121L of the A-phase H bridge. On the other hand, based on the data group of B phase and C phase (not shown) in the past data group, the failure detection device 340 determines that the failure of the B bridge and the C phase H bridge has not occurred. Time is determined.
  • failure detection of the switch element has been performed in response to a trigger notifying that start of the failure detection of the switch element, for example.
  • data necessary for failure detection of the switch element is acquired in response to the trigger, and failure detection of the switch element is performed based on the acquired data. Therefore, much time has been spent on failure detection of the switch element.
  • failure detection of switch elements is performed in parallel during control of the motor, it is desirable to make the detection time as short as possible so as not to affect motor control.
  • failure detection of the switch element is performed based on a past data group acquired at a time prior to the failure detection reference time. Data may not be newly acquired to detect a failure of the switch element. Therefore, it becomes unnecessary to acquire new data, and failure detection of the switch element can be performed in a shorter time. As a result, for example, it becomes possible to quickly switch the motor control from the three-phase energization control to the two-phase energization control described later.
  • the failure detection device 340 can switch the control mode of the motor from normal three-phase current control to abnormal two-phase current control.
  • energization of a three-phase winding is referred to as “three-phase energization control”
  • energization of a two-phase winding is referred to as “two-phase energization control”.
  • the failure detection device 340 when the failure detection device 340 detects a failure in the A-phase H bridge, it performs two-phase energization control of energizing the windings M2 and M3 using the B-phase and C-phase H bridges other than the A phase. it can.
  • the failure detection device 340 detects a failure in the B-phase H bridge, the failure detection device 340 can perform two-phase energization control of energizing the windings M1 and M3 using the A-phase and C-phase H bridges other than the B phase.
  • the failure detection device 340 can perform two-phase energization control of energizing the windings M1 and M2 using the A-phase and B-phase H bridges other than the C phase.
  • FIG. 7 is a current waveform obtained by plotting current values flowing in the B-phase and C-phase windings of motor 200 when power converter 1000 is controlled in accordance with two-phase energization control when A-phase H bridge fails.
  • FIG. 8 is a current waveform obtained by plotting the values of currents flowing through the A-phase and C-phase windings of motor 200 when power converter 1000 is controlled according to two-phase energization control when the B-phase H bridge fails.
  • FIG. 9 is a current waveform obtained by plotting current values flowing through the A-phase and B-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the C-phase H bridge fails. Is illustrated.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • current values are plotted at every electrical angle of 30 °.
  • I pk represents the maximum current value (peak current value) of each phase during energization control of each phase.
  • ⁇ B. Failure detection of switch element based on current and voltage of dq coordinate system> A configuration in which two inverters as shown in FIG. 1 are respectively connected to one end and the other end of a winding, that is, a circuit configuration including an H bridge for each phase In this case, it is possible to control the current flowing through the three-phase winding independently, in which case zero-phase current may flow.
  • the zero phase current is also called z phase current.
  • an axis corresponding to the zero phase is represented as the z axis.
  • the fault detection device 340 can monitor, for example, the zero phase current, and detect a fault of the switch element in the first and second inverters 120 and 130 according to a change in the current.
  • the fault detection device 340 can monitor the current / voltage represented in the dq coordinate system.
  • the current / voltage in the dq coordinate system indicates at least one of d-axis current, q-axis current, zero-phase current, d-axis voltage, q-axis voltage and z-phase voltage.
  • the current / voltage of the dq coordinate system to be monitored preferably includes a zero-phase current. In the present embodiment, an example will be described in which a zero-phase current is mainly used as the current / voltage in the dq coordinate system.
  • the failure detection device (i.e., the controller) 340 acquires the current and voltage represented in the dq coordinate system at predetermined intervals.
  • the predetermined cycle is, for example, 0.1 ms.
  • the failure detection device 340 has, for example, a failure detection unit that performs failure detection.
  • the failure detection unit converts the currents Ia, Ib and Ic into the d-axis current Id, the q-axis current Iq, and the zero-phase current Iz in the dqz rotational coordinate system, using a conversion matrix.
  • the controller 340 typically has a control unit that performs vector control.
  • the fault detection unit may also receive necessary data from the control unit among the d-axis current, q-axis current, zero-phase current, d-axis voltage, q-axis voltage and z-phase voltage.
  • the fault detection device 340 acquires at least one of these currents and voltages in the dq coordinate system.
  • the inventor conducted a simulation to verify the behavior of the three-phase currents Ia, Ib, Ic, d-axis current, q-axis current, and zero-phase current after a failure occurs in the switch element of the H bridge. This simulation was performed under the condition that the time when the switch element H1 or L1 (corresponding to the SW 121H or 121L in FIG. 1) of the A-phase H bridge is open or shorted is 0.015 s.
  • FIG. 10A shows waveforms of simulation results of three-phase current, d-axis current, q-axis current, and zero-phase current obtained when an open failure occurs in a switch element on the high side of the A-phase H bridge.
  • FIG. 10B shows waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current, which are obtained when the switch element on the high side of the A-phase H bridge fails.
  • FIG. 10C shows waveforms of simulation results of three-phase current, d-axis current, q-axis current, and zero-phase current obtained when an open failure occurs in a switch element on the low side of the A-phase H bridge.
  • 10D shows waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current, which are obtained when the switch element on the low side of the A-phase H bridge fails.
  • the horizontal axis of the graph indicates time (s), and the vertical axis indicates current (A).
  • d-axis voltage and the q-axis voltage in the dq coordinate system are calculated based on the abc phase voltage.
  • the failure detection device 340 acquires, for example, d-axis current, q-axis current, zero-phase current and q-axis voltage in the dq coordinate system based on the three-phase current, and writes the acquired data to the internal register 341.
  • the failure detection device 340 detects a failure of the switch element in the first and second inverters 120 and 130 based on the comparison result between the data acquired at the reference time and a plurality of data groups acquired at a time earlier than the reference time. To detect the presence or absence of
  • FIG. 11 illustrates a table of data groups of d-axis current, q-axis current, zero-phase current, and q-axis voltage, which are recorded in the internal register 341.
  • the table shows data of 5 points in the latest data group acquired.
  • the failure detection device 340 refers to the table to monitor the current / voltage fluctuation of the dq coordinate system, for example, monitors the fluctuation of the zero phase current.
  • the failure detection device 340 detects a failure of the switch element in the first and second inverters 120 and 130 when the point value at the reference time deviates from the value of the past data group.
  • the failure detection device 340 determines that the Iz value “20” of the reference time is a past data group acquired earlier than the reference time: point T, T + 1, T + 2 It is determined that the values are out of the Iz values “6.8”, “5”, and “7” in For this determination, for example, a threshold value stored in advance in the ROM 360 can be used. If the difference between the Iz value at the reference time and each Iz value included in the past data group is equal to or less than the threshold value, the failure detection device 340 does not detect a failure of the switch element. On the other hand, when the difference is larger than the threshold, the failure detection device 340 can determine that at least one switch element in the first and second inverters 120 and 130 is open failure or short failure.
  • the failure detection device 340 does not detect a switch element failure when the reference time is at point T + 2, shifts the reference time to point T + 3 for the first time It can be decided.
  • the failure detection device 340 can detect the failure of the switch element by monitoring the variation of the current / voltage of the dq coordinate system which is the DC component.
  • the failure detection unit of the controller 340 may generate, for example, a motor control shutdown signal and output it to the control unit when it detects a short failure or an open failure of the switch element.
  • the control unit may shut down the three-phase conduction control in response to the signal.
  • the control mode can be switched from the assist mode of torque to the manual steering mode.
  • EPS electric power steering
  • the comparison between the data acquired at the reference time and the plurality of data groups acquired at the time before the reference time is more It becomes easy to do. Therefore, for example, an advantage such as circuit scale reduction or memory size reduction can be obtained in the implementation on a microcontroller. Furthermore, by performing failure detection based on the past data group, failure detection can be performed in a shorter time.
  • FIG. 12 schematically shows a typical configuration of an electric power steering apparatus 3000 according to this embodiment.
  • Vehicles such as automobiles generally have an electric power steering device.
  • the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel.
  • the assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 2000 according to the first embodiment can be suitably used for the unit.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power conversion device capable of detecting failure of switching elements in inverters in a shorter period of time. A power conversion device 1000 according to the present disclosure comprises: a first inverter 120; a second inverter 130; a failure detection device 340 for detecting the presence/absence of failure in switching elements in the first and second inverters; and a memory 341. The failure detection device acquires, for each predetermined period, at least one of an n-phase (n is an integer of 3 or more) current of a motor and a current/voltage represented by a dq coordinate system, writes data on the acquired current/voltage into the memory, and detects the presence/absence of failure of the switching elements in the first and second inverters on the basis of the result of comparison between data on the current/voltage acquired at a reference time for failure detection and a past data group including a plurality of data on currents/voltages acquired at times before the reference time.

Description

電力変換装置、モータモジュールおよび電動パワーステアリング装置Power converter, motor module and electric power steering apparatus
本開示は、電源からの電力を電動モータに供給する電力に変換する電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。 The present disclosure relates to a power conversion device, a motor module, and an electric power steering device that convert power from a power supply into power to be supplied to an electric motor.
近年、電動モータ(以下、単に「モータ」と表記する。)およびECU(Electrical Control Unit)が一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つのインバータを設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。  In recent years, a machine-electric integrated motor has been developed in which an electric motor (hereinafter simply referred to as "motor") and an ECU (Electrical Control Unit) are integrated. Particularly in the automotive field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design is adopted that can continue safe operation even if part of the part fails. As an example of redundant design, it is considered to provide two inverters for one motor. As another example, it is considered to provide a backup microcontroller on the main microcontroller.
特許文献1は、制御部と、2つのインバータとを有し、電源からの電力を三相モータに供給する電力に変換する電力変換装置を開示している。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相の巻線の一端に接続され、他方のインバータは、三相の巻線の他端に接続される。各インバータは、各々がハイサイドスイッチ素子およびローサイドスイッチ素子を含む3つのレグから構成されるブリッジ回路を有する。制御部は、2つのインバータにおけるスイッチ素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。正常時の制御では、例えば、2つのインバータのスイッチ素子をスイッチングすることによりモータが駆動される。異常時の制御では、例えば、故障したインバータにおける巻線の中性点を用いて、故障していないインバータによってモータが駆動される。 Patent Document 1 discloses a power conversion device that includes a control unit and two inverters, and converts power from a power supply into power to be supplied to a three-phase motor. Each of the two inverters is connected to a power supply and a ground (hereinafter referred to as "GND"). One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding. Each inverter has a bridge circuit composed of three legs, each of which includes a high side switch element and a low side switch element. The control unit switches motor control from normal control to abnormal control when it detects a failure of the switch element in the two inverters. In the normal control, for example, the motor is driven by switching switch elements of two inverters. In the control at the time of abnormality, for example, the motor is driven by the unfailed inverter using the neutral point of the winding in the broken inverter.
特開2014-192950号公報JP 2014-192950 A 特開2017-063571号公報JP, 2017-063571, A
上記のような2つのインバータを用いてモータを駆動する装置において、インバータに故障が発生した場合、その故障箇所を可能な限り短い時間で特定することが求められる。  In a device that drives a motor using two inverters as described above, when a failure occurs in an inverter, it is required to identify the failure location in as short a time as possible.
特許文献2は、Y結線された巻線を有するモータを1つのインバータで駆動する装置(以降、「シングルインバータタイプの装置」と表記する。)を開示している。特許文献2では、予め定められた通電パターンにおいて検出された信号を、予め定められた異常種類対応表に照合して、配線の断線および短絡を検出することが開示されている。  Patent Document 2 discloses a device for driving a motor having a Y-connected winding by one inverter (hereinafter, referred to as “single inverter type device”). Patent Document 2 discloses that a signal detected in a predetermined energization pattern is collated with a predetermined abnormality type correspondence table to detect a disconnection and a short circuit of a wiring.
しかしながら、特許文献2の技術では、測定した電流値および電圧値を用いて、配線の断線などの故障検知がなされるため、故障検知および故障個所の特定に時間がより費やされることとなる。  However, in the technique of Patent Document 2, since the failure detection such as disconnection of the wiring is performed using the measured current value and voltage value, more time is spent for the failure detection and the identification of the failure point.
本開示の実施形態は、インバータのスイッチ素子の故障をより短時間で検知することが可能な電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置を提供する。 An embodiment of the present disclosure provides a power converter capable of detecting a failure of a switch element of an inverter in a shorter time, a motor module including the power converter, and an electric power steering apparatus including the motor module.
本開示の例示的な電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記モータの各相の巻線の一端に接続される第1インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを有する第1インバータと、前記モータの各相の巻線の他端に接続される第2インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを有する第2インバータと、前記第1および第2インバータにおけるスイッチ素子の故障の有無を検知する故障検知装置と、前記故障検知装置の処理データを格納するメモリと、を備え、前記故障検知装置は、前記モータのn相電流およびdq座標系において表現される電流・電圧の少なくとも1つを所定の周期毎に獲得し、獲得した電流・電圧のデータを前記メモリに書き込み、故障検知の基準時刻で獲得した電流・電圧のデータと、前記基準時刻よりも前の時刻で獲得した複数の電流・電圧のデータを含む過去のデータ群との比較結果に基づいて前記第1および第2インバータにおけるスイッチ素子の故障の有無を検知する。 An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having n-phase (n is an integer of 3 or more) windings, A first inverter connected to one end of a winding of each phase, the first inverter having n legs each having a low side switching device and a high side switching device; and a winding of each phase of the motor A second inverter connected to the other end, the second inverter having n legs each having a low side switch element and a high side switch element, and presence or absence of a failure of the switch elements in the first and second inverters And a memory for storing processing data of the failure detection device, the failure detection device comprising an n-phase current of the motor and a dq coordinate system And at least one of the current and voltage represented is acquired every predetermined cycle, the data of the acquired current and voltage is written to the memory, and the data of the current and voltage acquired at the reference time of failure detection, The presence or absence of a failure of the switch element in the first and second inverters is detected based on a comparison result with a past data group including data of a plurality of current and voltage acquired at a time before the reference time.
本開示の例示的な実施形態によると、故障検知の基準時刻よりも前に獲得した過去のデータ群を参照することにより、インバータのスイッチ素子の故障をより短時間で検知することが可能な電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, it is possible to detect a failure of a switch element of an inverter in a shorter time by referring to a past data group acquired before a reference time of failure detection. A converter, a motor module including the power converter, and an electric power steering apparatus including the motor module are provided.
図1は、例示的な実施形態1によるインバータユニット100の回路構成を示す回路図である。FIG. 1 is a circuit diagram showing a circuit configuration of an inverter unit 100 according to an exemplary embodiment 1. 図2は、例示的な実施形態1によるモータモジュール2000のブロック構成を示し、主として電力変換装置1000のブロック構成を示すブロック構成図である。FIG. 2 is a block diagram showing the block configuration of the motor module 2000 according to the exemplary embodiment 1, mainly showing the block configuration of the power conversion device 1000. As shown in FIG. 図3は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Is a graph. 図4は、Hブリッジの構成を示す模式図である。FIG. 4 is a schematic view showing the configuration of the H bridge. 図5は、A相Hブリッジのスイッチ素子L1がオープン故障した場合の三相電流Ia、IbおよびIcのシミュレーション結果の波形を例示するグラフである。FIG. 5 is a graph illustrating waveforms of simulation results of the three-phase currents Ia, Ib and Ic when the switch element L1 of the A-phase and H-bridge has an open failure. 図6は、故障検知装置340の内部レジスタ341に記録される三相電流のデータ群のテーブルを例示する図である。FIG. 6 is a diagram illustrating a table of data groups of three-phase currents recorded in the internal register 341 of the failure detection device 340. 図7は、巻線M1が断線した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 7 shows a current waveform obtained by plotting current values flowing in the B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the winding M1 is broken. It is a graph which illustrates. 図8は、巻線M2が断線した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 8 shows a current waveform obtained by plotting current values flowing in the A-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the winding M2 is broken. It is a graph which illustrates. 図9は、巻線M3が断線した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 9 shows a current waveform obtained by plotting the values of currents flowing through the A-phase and B-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control when the winding M3 is broken. It is a graph which illustrates. 図10Aは、A相Hブリッジのハイサイド側のスイッチ素子がオープン故障した場合に得られる、三相電流、d軸電流、q軸電流および零相電流のシミュレーション結果の波形を示すグラフである。FIG. 10A is a graph showing waveforms of simulation results of three-phase current, d-axis current, q-axis current, and zero-phase current obtained when an open failure occurs in a switch element on the high side of the A-phase H bridge. 図10Bは、A相Hブリッジのハイサイド側のスイッチ素子がショート故障した場合に得られる、三相電流、d軸電流、q軸電流および零相電流のシミュレーション結果の波形を示すグラフである。FIG. 10B is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current obtained when a switch element on the high side of the A-phase H bridge fails. 図10Cは、A相Hブリッジのローサイド側のスイッチ素子がオープン故障した場合に得られる、三相電流、d軸電流、q軸電流および零相電流のシミュレーション結果の波形を示すグラフである。FIG. 10C is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current obtained when an open failure occurs in a switch element on the low side of the A-phase H bridge. 図10Dは、A相Hブリッジのローサイド側のスイッチ素子がショート故障した場合に得られる、三相電流、d軸電流、q軸電流および零相電流のシミュレーション結果の波形を示すグラフである。FIG. 10D is a graph showing waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current, which are obtained when a switch element on the low side of the A-phase H bridge fails. 図11は、内部レジスタ341に記録される、d軸電流、q軸電流、零相電流およびq軸電圧のデータ群のテーブルを例示する図である。FIG. 11 is a diagram exemplifying a table of data groups of d-axis current, q-axis current, zero-phase current and q-axis voltage recorded in the internal register 341. 図12は、例示的な実施形態2による電動パワーステアリング装置3000の典型的な構成を示す模式図である。FIG. 12 is a schematic view showing a typical configuration of the electric power steering apparatus 3000 according to the second embodiment.
添付の図面を参照しながら、本開示の電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Embodiments of the power conversion device, the motor module and the electric power steering device of the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to facilitate the understanding of the person skilled in the art, the following description may be omitted unnecessarily to avoid redundant description. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted.
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。  In the present specification, the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings. The form will be described. However, a power conversion device that converts power from a power supply to power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase is also within the scope of the present disclosure. .
(実施形態1) 〔1-1.インバータユニット100の構造〕 図1は、本実施形態によるインバータユニット100の回路構成を模式的に示す。  Embodiment 1 [1-1. Structure of Inverter Unit 100] FIG. 1 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
インバータユニット100は、電源遮断回路110、第1インバータ120および第2インバータ130を備える。インバータユニット100は、電源101A、101Bからの電力を、モータ200に供給する電力に変換することができる。例えば、第1および第2インバータ120、130は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。  The inverter unit 100 includes a power shutoff circuit 110, a first inverter 120 and a second inverter 130. The inverter unit 100 can convert the power from the power supplies 101A and 101B into the power to be supplied to the motor 200. For example, the first and second inverters 120, 130 can convert DC power into three-phase AC power which is pseudo-sinusoidal waves of A-phase, B-phase and C-phase.
モータ200は、例えば、三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。本明細書において、部品(構成要素)同士の間の「接続」は、主に電気的な接続を意味する。  The motor 200 is, for example, a three-phase alternating current motor. The motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130. Specifically, the first inverter 120 is connected to one end of the winding of each phase of the motor 200, and the second inverter 130 is connected to the other end of the winding of each phase. In the present specification, “connection” between components (components) mainly means electrical connection.
第1インバータ120は、各相に対応した端子A_L、B_LおよびC_Lを有する。第2インバータ130は、各相に対応した端子A_R、B_RおよびC_Rを有する。第1インバータ120の端子A_Lは、A相の巻線M1の一端に接続され、端子B_Lは、B相の巻線M2の一端に接続され、端子C_Lは、C相の巻線M3の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子A_Rは、A相の巻線M1の他端に接続され、端子B_Rは、B相の巻線M2の他端に接続され、端子C_Rは、C相の巻線M3の他端に接続される。このようなモータ結線は、いわゆるスター結線およびデルタ結線とは異なる。  The first inverter 120 has terminals A_L, B_L and C_L corresponding to the respective phases. The second inverter 130 has terminals A_R, B_R and C_R corresponding to the respective phases. The terminal A_L of the first inverter 120 is connected to one end of the A-phase winding M1, the terminal B_L is connected to one end of the B-phase winding M2, and the terminal C_L is connected to one end of the C-phase winding M3. Connected Similar to the first inverter 120, the terminal A_R of the second inverter 130 is connected to the other end of the A-phase winding M1, the terminal B_R is connected to the other end of the B-phase winding M2, and the terminal C_R is , C phase is connected to the other end of the winding M3. Such motor connections are different from so-called star connections and delta connections.
電源遮断回路110は、第1から第4スイッチ素子111、112、113および114を有する。インバータユニット100において、第1インバータ120は、電源遮断回路110によって電源101AとGNDとに電気的に接続可能である。第2インバータ130は、電源遮断回路110によって電源101BとGNDとに電気的に接続可能である。具体的に説明すると、第1スイッチ素子111は、第1インバータ120とGNDとの接続・非接続を切替える。第2スイッチ素子112は、電源101と第1インバータ120との接続・非接続を切替える。第3スイッチ素子113は、第2インバータ130とGNDとの接続・非接続を切替える。第4スイッチ素子114は、電源101と第2インバータ130との接続・非接続を切替える。  The power supply shutoff circuit 110 has first to fourth switch elements 111, 112, 113 and 114. In the inverter unit 100, the first inverter 120 can be electrically connected to the power supply 101A and the GND by the power shutoff circuit 110. The second inverter 130 can be electrically connected to the power supply 101 B and the GND by the power shutoff circuit 110. Specifically, the first switch element 111 switches connection / non-connection between the first inverter 120 and GND. The second switch element 112 switches connection / non-connection between the power supply 101 and the first inverter 120. The third switch element 113 switches connection / disconnection between the second inverter 130 and GND. The fourth switch element 114 switches connection / disconnection between the power supply 101 and the second inverter 130.
第1から第4スイッチ素子111、112、113および114のオン・オフは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。第1から第4スイッチ素子111、112、113および114は、双方向の電流を遮断することが可能である。第1から第4スイッチ素子111、112、113および114として、例えば、サイリスタ、アナログスイッチIC、または寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)などの半導体スイッチ、および、メカニカルリレーなどを用いることができる。ダイオードおよび絶縁ゲートバイポーラトランジスタ(IGBT)などの組み合わせを用いても構わない。本明細書の図面には、第1から第4スイッチ素子111、112、113および114として、MOSFETを用いる例を示す。以降、第1から第4スイッチ素子111、11
2、113および114を、SW111、112、113および114とそれぞれ表記する場合がある。 
The on / off of the first to fourth switch elements 111, 112, 113 and 114 may be controlled by, for example, a microcontroller or a dedicated driver. The first to fourth switch elements 111, 112, 113 and 114 can block bidirectional current. For example, semiconductor switches such as thyristors, analog switch ICs, or field effect transistors (typically MOSFETs) having parasitic diodes formed therein as the first to fourth switch elements 111, 112, 113 and 114, and A mechanical relay or the like can be used. A combination of a diode and an insulated gate bipolar transistor (IGBT) may be used. In the drawings of this specification, an example in which MOSFETs are used as the first to fourth switch elements 111, 112, 113 and 114 is shown. Thereafter, the first to fourth switch elements 111 and 11 are provided.
2, 113 and 114 may be described as SWs 111, 112, 113 and 114, respectively.
SW111は、内部の寄生ダイオードに順方向電流が第1インバータ120に向けて流れるよう配置される。SW112は、寄生ダイオードに順方向電流が電源101Aに向けて流れるよう配置される。SW113は、寄生ダイオードに順方向電流が第2インバータ130に向けて流れるよう配置される。SW114は、寄生ダイオードに順方向電流が電源101Bに向けて流れるよう配置される。  The SW 111 is arranged such that a forward current flows toward the first inverter 120 in an internal parasitic diode. The SW 112 is arranged such that a forward current flows in the parasitic diode toward the power supply 101A. The SW 113 is disposed such that a forward current flows to the second inverter 130 in the parasitic diode. The SW 114 is arranged such that forward current flows in the parasitic diode toward the power supply 101B.
電源遮断回路110は、図示するように、逆接続保護用の第5および第6スイッチ素子115、116をさらに有していることが好ましい。第5および第6スイッチ素子115、116は、典型的に、寄生ダイオードを有するMOSFETの半導体スイッチである。第5スイッチ素子115は、SW112に直列に接続され、寄生ダイオードにおいて第1インバータ120に向けて順方向電流が流れるよう配置される。第6スイッチ素子116は、SW114に直列に接続され、寄生ダイオードにおいて第2インバータ130に向けて順方向電流が流れるよう配置される。電源101A、101Bが逆向きに接続された場合でも、逆接続保護用の2つのスイッチ素子によって逆電流を遮断することができる。  The power shutoff circuit 110 preferably further includes fifth and sixth switch elements 115 and 116 for reverse connection protection, as shown. The fifth and sixth switch elements 115, 116 are typically semiconductor switches of a MOSFET having parasitic diodes. The fifth switch element 115 is connected in series to the SW 112, and is disposed such that a forward current flows toward the first inverter 120 in the parasitic diode. The sixth switch element 116 is connected in series to the SW 114, and is disposed such that a forward current flows toward the second inverter 130 in the parasitic diode. Even when the power supplies 101A and 101B are connected in the reverse direction, the reverse current can be cut off by the two switch elements for reverse connection protection.
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野においては、安全性の観点から高い品質保証が要求されるので、各インバータ用として複数のスイッチ素子を設けておくことが好ましい。  The number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements for each inverter.
電源は、第1インバータ120用の電源101Aおよび第2インバータ130用の電源101Bを備えることができる。電源101A、101Bは所定の電源電圧(例えば、12V)を生成する。電源として、例えば直流電源が用いられる。ただし、電源は、AC-DCコンバータおよびDC-DCコンバータであってもよいし、バッテリー(蓄電池)であっても良い。また、電源101は、第1および第2インバータ120、130に共通の単一電源であってもよい。   The power supply may comprise a power supply 101A for the first inverter 120 and a power supply 101B for the second inverter 130. The power supplies 101A and 101B generate a predetermined power supply voltage (for example, 12 V). As a power supply, for example, a DC power supply is used. However, the power source may be an AC-DC converter and a DC-DC converter, or may be a battery (storage battery). In addition, the power supply 101 may be a single power supply common to the first and second inverters 120 and 130.
電源101A、101Bと電源遮断回路110との間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源側に流出させないように平滑化する。  A coil 102 is provided between the power supplies 101A and 101B and the power shutoff circuit 110. The coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply side.
各インバータの電源端子には、コンデンサ103が接続される。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  A capacitor 103 is connected to the power supply terminal of each inverter. The capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple. The capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
第1インバータ120は、3個のレグを有するブリッジ回路を備える。各レグは、ローサイドスイッチ素子およびハイサイドスイッチ素子を有する。A相レグは、ローサイドスイッチ素子121Lおよびハイサイドスイッチ素子121Hを有する。B相レグは、ローサイドスイッチ素子122Lおよびハイサイドスイッチ素子122Hを有する。C相レグは、ローサイドスイッチ素子123Lおよびハイサイドスイッチ素子123Hを有する。スイッチ素子として、例えばFETまたはIGBTを用いることができる。以下、スイッチ素子としてMOSFETを用いる例を説明し、スイッチ素子をSWと表記する場合がある。例えば、スイッチ素子121L、122Lおよび123Lは、SW121L、122Lおよび123Lと表記される。  The first inverter 120 comprises a bridge circuit having three legs. Each leg has a low side switch element and a high side switch element. The A-phase leg has a low side switch element 121L and a high side switch element 121H. The B-phase leg has a low side switch element 122L and a high side switch element 122H. The C-phase leg has a low side switch element 123L and a high side switch element 123H. As a switch element, FET or IGBT can be used, for example. Hereinafter, an example using a MOSFET as a switch element will be described, and the switch element may be described as SW. For example, the switch elements 121L, 122L and 123L are described as SW 121L, 122L and 123L.
第1インバータ120は、A相、B相およびC相の各相の巻線に流れる電流を検出するための電流センサ150(図3を参照)として、3個のシャント抵抗121R、122Rおよび123Rを備える。電流センサ150は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。例えば、シャント抵抗121R、122Rおよび123Rは、第1インバータ120の3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間にそれぞれ接続される。具体的には、シャント抵抗121RはSW121LとSW111との間に電気的に接続され、シャント抵抗122RはSW122LとSW111との間に電気的に接続され、シャント抵抗123RはSW123LとSW111との間に電気的に接続される。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。  The first inverter 120 has three shunt resistors 121R, 122R and 123R as a current sensor 150 (see FIG. 3) for detecting the current flowing in the winding of each phase A, B and C. Prepare. Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor. For example, the shunt resistors 121R, 122R and 123R are respectively connected between the three low side switch elements included in the three legs of the first inverter 120 and the GND. Specifically, shunt resistor 121R is electrically connected between SW121L and SW111, shunt resistor 122R is electrically connected between SW122L and SW111, and shunt resistor 123R is between SW123L and SW111. Electrically connected. The resistance value of the shunt resistor is, for example, about 0.5 mΩ to 1.0 mΩ.
第2インバータ130は、第1インバータ120と同様に、3個のレグを有するブリッジ回路を備える。A相レグは、ローサイドスイッチ素子131Lおよびハイサイドスイッチ素子131Hを有する。B相レグは、ローサイドスイッチ素子132Lおよびハイサイドスイッチ素子132Hを有する。C相レグは、ローサイドスイッチ素子133Lおよびハイサイドスイッチ素子133Hを有する。第2インバータ130は、3個のシャント抵抗131R、132R、133Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチ素子とGNDとの間に接続される。  Similar to the first inverter 120, the second inverter 130 includes a bridge circuit having three legs. The A-phase leg has a low side switch element 131L and a high side switch element 131H. The B-phase leg has a low side switch element 132L and a high side switch element 132H. The C-phase leg has a low side switch element 133L and a high side switch element 133H. The second inverter 130 includes three shunt resistors 131R, 132R, and 133R. The shunt resistors are connected between the three low side switch elements included in the three legs and GND.
各インバータに対し、シャント抵抗の数は3つに限られない。例えば、A相、B相用の2つのシャント抵抗、B相、C相用の2つのシャント抵抗、および、A相、C相用の2つのシャント抵抗を用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。  The number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for A phase and B phase, two shunt resistors for B phase and C phase, and two shunt resistors for A phase and C phase. The number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
上述したとおり、第2インバータ130は、第1インバータ120の構造と実質的に同じ構造を備える。図1では、説明の便宜上、紙面の左側のインバータを第1インバータ120と表記し、右側のインバータを第2インバータ130と表記している。ただし、このような表記は、本開示を限定する意図で解釈されてはならない。第1および第2インバータ120、130は、インバータユニット100の構成要素として区別なく用いられ得る。  As described above, the second inverter 130 has substantially the same structure as the structure of the first inverter 120. In FIG. 1, the inverter on the left side of the drawing is described as a first inverter 120 and the inverter on the right side is described as a second inverter 130 for convenience of description. However, such notations should not be construed with the intention of limiting the present disclosure. The first and second inverters 120 and 130 may be used as components of the inverter unit 100 without distinction.
〔1-2.電力変換装置1000およびモータモジュール2000の構造〕 図2は、本実施形態によるモータモジュール2000のブロック構成を模式的に示し、主に電力変換装置1000のブロック構成を模式的に示す。  [1-2. Structure of Power Conversion Device 1000 and Motor Module 2000] FIG. 2 schematically shows a block configuration of the motor module 2000 according to the present embodiment, and mainly shows a block configuration of the power conversion device 1000. As shown in FIG.
モータモジュール2000は、インバータユニット100および制御回路300を有する電力変換装置1000と、モータ200とを備える。  The motor module 2000 includes a power converter 1000 having an inverter unit 100 and a control circuit 300, and a motor 200.
モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。また、モータ200以外の電力変換装置1000もモジュール化されて製造および販売され得る。  The motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller. In addition, the power conversion device 1000 other than the motor 200 can be modularized and manufactured and sold.
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300は、インバータユニット100に接続され、インバータユニット100を制御することによりモータ200を駆動する。  The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. The control circuit 300 is connected to the inverter unit 100, and drives the motor 200 by controlling the inverter unit 100.
具体的には、制御回路300は、目的とするモータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。  Specifically, the control circuit 300 can realize closed loop control by controlling the target position, rotational speed, current and the like of the rotor of the motor 200. Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。  The power supply circuit 310 generates DC voltages (for example, 3 V, 5 V) necessary for each block in the circuit. The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
入力回路330は、電流センサ150によって検出されたモータ電流値(以下「実電流値」とする。)を受け取り、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル変換回路である。  The input circuit 330 receives the motor current value (hereinafter referred to as "actual current value") detected by the current sensor 150, converts the level of the actual current value to the input level of the controller 340 as necessary, The value is output to the controller 340. The input circuit 330 is, for example, an analog-to-digital converter.
コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。  The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各SWのスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。また、コントローラ340は、インバータユニット100の電源遮断回路110における各SWのオン・オフを制御することができる。  The controller 340 controls the switching operation (turn on or off) of each SW in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350. Further, the controller 340 can control on / off of each SW in the power shutoff circuit 110 of the inverter unit 100.
コントローラ340は、さらに、第1および第2インバータ120、130におけるスイッチ素子の故障の有無を検知することができる。そのため、スイッチ素子の故障の有無を検知する動作を説明するとき、本明細書ではその動作の主体として「コントローラ340」を「故障検知装置340」と表記する場合がある。  The controller 340 can further detect the presence or absence of a failure of the switch element in the first and second inverters 120, 130. Therefore, when describing the operation of detecting the presence or absence of a failure of the switch element, in the present specification, "controller 340" may be described as "fault detection device 340" as the subject of the operation.
駆動回路350は、典型的にはゲートドライバ(またはプリドライバ)である。駆動回路350は、第1および第2インバータ120、130における各SWのMOSFETのスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各SWのゲートに制御信号を与える。また、駆動回路350は、電源遮断回路110における各SWのオン・オフを制御する制御信号を、コントローラ340からの指示に従って生成することができる。駆動対象が低電圧で駆動可能なモータであるとき、ゲートドライバは必ずしも必要とされない場合がある。その場合、ゲートドライバの機能は、コントローラ340に実装され得る。  The drive circuit 350 is typically a gate driver (or pre-driver). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of the MOSFET of each SW in the first and second inverters 120 and 130 in accordance with the PWM signal, and supplies the control signal to the gate of each SW. In addition, the drive circuit 350 can generate a control signal for controlling on / off of each SW in the power shutoff circuit 110 according to an instruction from the controller 340. When the drive target is a low voltage driveable motor, the gate driver may not be required. In that case, the function of the gate driver may be implemented in the controller 340.
ROM360は、コントローラ340に電気的に接続される。ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群、および、後述するスイッチ素子の故障検知を実行させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。  The ROM 360 is electrically connected to the controller 340. The ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory. The ROM 360 stores a control program including an instruction group for causing the controller 340 to control the power conversion apparatus 1000 and an instruction group for executing failure detection of a switch element described later. For example, the control program is temporarily expanded in a RAM (not shown) at boot time.
〔1-3.スイッチ素子の故障検知〕 先ず、電力変換装置1000の正常時の制御方法の具体例を説明する。正常とは、第1インバータ120、第2インバータ130および電源遮断回路110の各SWは故障しておらず、かつ、モータ200の三相の巻線M1、M2およびM3のいずれも故障していない状態を指す。本明細書では、電源遮断回路110の逆接続保護用のSW115、116は常時オン状態であるとする。  [1-3. Detection of Failure of Switch Element] First, a specific example of a control method at the time of normal operation of the power conversion device 1000 will be described. Normal means that each SW of the first inverter 120, the second inverter 130, and the power cut-off circuit 110 has not failed, and none of the three-phase windings M1, M2 and M3 of the motor 200 has failed. Point to the state. In the present specification, the switches 115 and 116 for reverse connection protection of the power shutoff circuit 110 are always on.
正常時において、制御回路300は、電源遮断回路110のSW111、112、113および114を全てオンする。これにより、電源101Aと第1インバータ120とが電気的に接続され、かつ、電源101Bと第2インバータ130とが電気的に接続される。また、第1インバータ120とGNDとが電気的に接続され、かつ、第2インバータ130とGNDとが電気的に接続される。この接続状態において、制御回路300は、第1および第2インバータ120、130の両方を用いて巻線M1、M2およびM3を通電することによりモータ200を駆動する。本明細書において、三相の巻線を通電することを「三相通電制御」と呼び、二相の巻線を通電することを「二相通電制御」と呼ぶこととする。  At normal times, the control circuit 300 turns on all the SWs 111, 112, 113 and 114 of the power shutoff circuit 110. Thereby, the power supply 101A and the first inverter 120 are electrically connected, and the power supply 101B and the second inverter 130 are electrically connected. In addition, the first inverter 120 and GND are electrically connected, and the second inverter 130 and GND are electrically connected. In this connected state, the control circuit 300 drives the motor 200 by energizing the windings M1, M2 and M3 using both the first and second inverters 120, 130. In the present specification, energization of a three-phase winding is referred to as "three-phase energization control", and energization of a two-phase winding is referred to as "two-phase energization control".
図3は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値
(A)を示す。図3の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。


FIG. 3 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. doing. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveform of FIG. 3, current values are plotted every 30 ° of electrical angle. I pk represents the maximum current value (peak current value) of each phase.


図3に示される電流波形において、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に「0」となる。ただし、電力変換装置1000の回路構成によれば、三相の巻線に流れる電流を独立に制御することができるため、電流の総和が「0」とはならない制御を行うことも可能である。例えば、制御回路300は、図3に示される電流波形が得られるPWM制御によって第1および第2インバータ120、130の各スイッチ素子のスイッチング動作を制御する。  In the current waveform shown in FIG. 3, the sum of the currents flowing in the three-phase winding considering the direction of the current is "0" for each electrical angle. However, according to the circuit configuration of power conversion apparatus 1000, the currents flowing through the three-phase windings can be controlled independently, so it is also possible to perform control such that the sum of the currents does not become "0". For example, the control circuit 300 controls the switching operation of each switch element of the first and second inverters 120 and 130 by PWM control that obtains the current waveform shown in FIG. 3.
故障検知装置(つまりコントローラ)340は、モータ200の三相電流およびdq座標系(dqz回転座標系とも表記され得る。)において表現される電流・電圧の少なくとも1つに基づいて、第1および第2インバータ120、130におけるスイッチ素子の故障の有無を検知することができる。dq座標系の電流・電圧とは、例えば零相電流であり、詳細は後述する。  The fault detection device (i.e., the controller) 340 is based on at least one of the three-phase current of the motor 200 and the current / voltage represented in the dq coordinate system (which may also be expressed as dqz rotational coordinate system). The presence or absence of a failure of the switch element in the two inverters 120 and 130 can be detected. The current / voltage in the dq coordinate system is, for example, a zero-phase current, the details of which will be described later.
故障検知装置340は、例えばベクトル制御に基づいてモータ200を駆動しながら、第1および第2インバータ120、130におけるスイッチ素子の故障の有無を検知することが可能である。例えば、電力変換装置1000に電源が投入されモータ制御が開始すると、故障検知装置340は、その開始に応答してスイッチ素子の故障の検知を開始する。例えば、故障検知装置340は、モータ200を制御する期間中はスイッチ素子の故障の検知を継続してもよいし、指定された期間においてのみ(例えば定期的に)スイッチ素子の故障の検知を実施してもよい。  The failure detection device 340 can detect the presence or absence of a failure of the switch element in the first and second inverters 120 and 130 while driving the motor 200 based on, for example, vector control. For example, when the power conversion device 1000 is powered on and motor control starts, the failure detection device 340 starts detecting a failure of the switch element in response to the start. For example, the failure detection device 340 may continue the detection of the failure of the switch element during the period of controlling the motor 200, or performs the detection of the failure of the switch element only during the designated period (for example, periodically). You may
スイッチ素子の故障を説明する。スイッチ素子の故障とは、第1および第2インバータ120、130におけるスイッチ素子の故障を意味する。スイッチ素子の故障には、大きく分けて「オープン故障」と「ショート故障」とがある。「オープン故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗rdsがハイインピーダンスになること)を指し、「ショート故障」は、FETのソース-ドレイン間が短絡する故障を指す。  The failure of the switch element will be described. The failure of the switch element means the failure of the switch element in the first and second inverters 120 and 130. The failure of the switch element is roughly classified into “open failure” and “short failure”. "Open fault" refers to a fault in which the source-drain of FET is opened (in other words, resistance rds between source-drain becomes high impedance), and "short fault" is in the source-drain of FET Refers to a short circuit failure.
電力変換装置1000を長期間使用すると、2つのインバータの複数のSWのうちの少なくとも1つが故障する可能性がある。これらの故障は、製造時に発生し得る製造故障とは異なる。複数のスイッチ素子のうちの1つでも故障すると、正常時の三相通電制御は不可能となる。故障検知装置340は、そのスイッチ素子の故障を検知する。  When the power converter 1000 is used for a long time, at least one of the plurality of SWs of the two inverters may fail. These failures are different from the manufacturing failures that can occur during manufacturing. If even one of the plurality of switch elements fails, normal three-phase conduction control becomes impossible. The failure detection device 340 detects a failure of the switch element.
スイッチ素子の故障検知の概要は下記のとおりである。  The outline of the failure detection of the switch element is as follows.
故障検知装置(コントローラ)340は、モータ200の三相電流およびdq座標系において表現される電流・電圧の少なくとも1つを所定の周期毎に獲得し、獲得した電流・電圧のデータを例えばコントローラ内部のレジスタ341(図2を参照)に書き込む。内部レジスタ341は、故障検知装置340が演算処理するデータを格納する。故障検知装置340は、故障検知の基準時刻で獲得した電流・電圧のデータと、その基準時刻よりも前の時刻で獲得した複数の電流・電圧のデータを含む過去のデータ群との比較結果に基づいて第1および第2インバータ120、130におけるスイッチ素子の故障の有無を検知する。所定の周期は、モータの電気角の一周期および一周期の間に電流・電圧のデータを獲得するポイント数から決定される。所定の周期は、例えば、100μsである。  The failure detection device (controller) 340 acquires at least one of the three-phase current of the motor 200 and the current / voltage represented in the dq coordinate system at a predetermined cycle, and acquires data of the acquired current / voltage, for example, in the controller Write to the register 341 (see FIG. 2) of The internal register 341 stores data that the failure detection device 340 performs arithmetic processing. The failure detection device 340 compares the current / voltage data acquired at the failure detection reference time with the past data group including data of a plurality of current / voltages acquired earlier than the reference time. Based on the detection, the presence or absence of a failure of the switch element in the first and second inverters 120 and 130 is detected. The predetermined cycle is determined from the number of points at which current and voltage data are acquired during one cycle and one cycle of the electrical angle of the motor. The predetermined cycle is, for example, 100 μs.
<A.三相電流に基づくスイッチ素子の故障検知> この例では、故障検知装置340は、モータ200の三相電流を所定の周期毎に獲得し、内部レジスタ341に書き込む。故障検知装置340は、基準時刻で獲得した三相電流のデータと、基準時刻よりも前の時刻で獲得した複数の三相電流のデータ群との比較結果に基づいて第1および第2インバータ120,130におけるスイッチ素子の故障の有無を検知する。換言すると、故障検知装置340は、内部レジスタ341に記録された三相電流に関する過去のデータ群に基づいてスイッチ素子の故障の有無を検知する。  <A. Detection of Failure of Switch Element Based on Three-Phase Current In this example, the failure detection device 340 acquires the three-phase current of the motor 200 for each predetermined cycle, and writes it in the internal register 341. The failure detection device 340 compares the data of the three-phase current acquired at the reference time with the data group of a plurality of three-phase currents acquired at a time earlier than the reference time, and the first and second inverters 120. , 130 detects the presence or absence of a failure of the switch element. In other words, the failure detection device 340 detects the presence or absence of a failure of the switch element based on the past data group related to the three-phase current recorded in the internal register 341.
図4は、各相のHブリッジを模式的に示している。各相のHブリッジは、第1インバータ120のハイサイド側のスイッチ素子H1、ローサイド側のスイッチ素子L1、第2インバータ130のハイサイド側のスイッチ素子H2、ローサイド側のスイッチ素子L2および巻線Mを有する。  FIG. 4 schematically shows the H bridge of each phase. The H bridge of each phase includes the switch element H1 on the high side of the first inverter 120, the switch element L1 on the low side, the switch element H2 on the high side of the second inverter 130, the switch element L2 on the low side, and the winding M. Have.
本発明者は、Hブリッジのスイッチ素子に故障が生じた後の三相電流Ia、Ib、Icの挙動を検証するためにシミュレーションを実施した。A相Hブリッジのスイッチ素子L1(図1のSW121Lに相当)がオープン故障する時刻を0.01msとした条件下で本シミュレーションを実施した。  The inventor conducted a simulation to verify the behavior of the three-phase currents Ia, Ib and Ic after a failure occurs in the switch element of the H bridge. This simulation was performed under the condition that the time when the open failure of the switch element L1 (corresponding to the SW121L in FIG. 1) of the A phase H bridge is 0.01 ms.
図5は、A相Hブリッジのスイッチ素子L1がオープン故障した場合の三相電流Ia、IbおよびIcのシミュレーション結果の波形を例示している。図5の上下のグラフの横軸は時間〔s〕を示し、縦軸は電流〔A〕を示している。上側のグラフは、0s~0.02sまでの三相電流Ia、IbおよびIcの波形を例示しており、下側のグラフは、上側のグラフの三相電流Ia、IbおよびIcの波形の9.6msから11msまでの部分の波形を拡大して示している。  FIG. 5 exemplifies waveforms of simulation results of the three-phase currents Ia, Ib and Ic when the switch element L1 of the A-phase H bridge has an open failure. The horizontal axis of the upper and lower graphs in FIG. 5 indicates time [s], and the vertical axis indicates current [A]. The upper graph illustrates the waveforms of the three-phase currents Ia, Ib and Ic from 0s to 0.02s, and the lower graph shows the waveforms of the three-phase currents Ia, Ib and Ic in the upper graph. The waveform of the portion from 6 ms to 11 ms is shown enlarged.
図5に示す三相電流の波形は、0.1msの周期で獲得される三相電流Ia、IbおよびIcのデータに基づいている。例えば、A相Hブリッジのスイッチ素子L1がオープン故障したとすると、図示するように、A相の相電流Iaは変動して特異な挙動を示す期間が生じる。より具体的には、Hブリッジのローサイドまたはハイサイドスイッチ素子がオープン故障すると、相電流はゼロになり変化しない期間を観測することができる。これは、例えばベクトル制御におけるPI(Proportional-Integral)制御の目標電流または目標電圧に対し、A相の実電流または実電圧が追従できなくなったことに起因する。なお、B相、C相ブリッジは故障していないので、相電流Ib、Icに特異な変化は見られない。  The waveforms of the three-phase current shown in FIG. 5 are based on data of the three-phase currents Ia, Ib and Ic acquired in a cycle of 0.1 ms. For example, assuming that the switch element L1 of the A-phase H bridge is open failure, as shown in the figure, the phase current Ia of the A-phase fluctuates to generate a period in which a peculiar behavior is exhibited. More specifically, when an open failure occurs in the low side or high side switch element of the H bridge, it is possible to observe a period in which the phase current becomes zero and does not change. This is because, for example, the actual current or voltage of phase A can not follow the target current or voltage of PI (Proportional-Integral) control in vector control. In addition, since the B-phase and C-phase bridges are not broken, no particular change is observed in the phase currents Ib and Ic.
図6は、故障検知装置340の内部レジスタ341に記録される三相電流のデータ群のテーブルを例示する。図6のテーブルには、図5のグラフの9.6msから11msの間に獲得した14ポイント分のA相、B相の相電流Ia、Ibの値を示す。なお、C相の相電流Icの値は示していない。  FIG. 6 illustrates a table of three-phase current data groups recorded in the internal register 341 of the failure detection device 340. The table of FIG. 6 shows the values of the phase currents Ia and Ib of A-phase and B-phase for 14 points acquired between 9.6 ms and 11 ms in the graph of FIG. The value of the phase current Ic of the C phase is not shown.
故障検知装置340は、例えば、モータの電気角の一周期の間に0.1ms毎に獲得する三相電流の最新のデータ群を内部レジスタ341に書き込み、内部レジスタ341に記録されるデータ群を電気角の一周期毎に更新する。例えば、故障検知装置340として、データ幅8ビットの内部レジスタを有するマイクロコントローラを用いることができる。または、内部レジスタ341に代えて専用バッファ(不図示)を用いることができる。そのバッファは、電気角の一周期の間に獲得する三相電流の最新のデータ群を記録できる容量を有していればよい。  For example, the fault detection device 340 writes the latest data group of the three-phase current acquired every 0.1 ms during one cycle of the electrical angle of the motor into the internal register 341, and the data group recorded in the internal register 341 Update every cycle of electrical angle. For example, as the failure detection device 340, a microcontroller having an internal register with a data width of 8 bits can be used. Alternatively, instead of the internal register 341, a dedicated buffer (not shown) can be used. The buffer may have a capacity capable of recording the latest data group of the three-phase current acquired during one cycle of the electrical angle.
故障検知装置340は、例えば、モータの電気角の一周期のうちの一部の期間に獲得する三相電流のデータ群を最新のデータ群として内部レンジスタに書き込んでも構わない。その場合、所定の周期は、その一部の期間およびその期間に電流・電圧のデータを獲得するポイント数から決定される。  For example, the failure detection device 340 may write the data group of three-phase current acquired during a part of one period of the electrical angle of the motor as the latest data group in the internal ranger. In that case, the predetermined period is determined from the partial period and the number of points for acquiring current / voltage data in the period.
基準時刻は、最新のデータ群の中の最新のデータを獲得または算出する時刻である。換言すると、基準時刻は、スイッチ素子の故障検知において最新のデータを獲得または算出する最新の時刻であり、時間の経過と共に変化する。ただし、基準時刻は、最新のデータ群の中において任意に設定することができる。最新のデータ群の中のあるデータを獲得した時刻を基準時刻とし、その基準時刻よりも前の時刻で獲得したデータ群を過去のデータ群として扱うことができる。  The reference time is a time at which the latest data in the latest data group is acquired or calculated. In other words, the reference time is the latest time at which the latest data is acquired or calculated in the failure detection of the switch element, and changes with the passage of time. However, the reference time can be arbitrarily set in the latest data group. The time when certain data in the latest data group is acquired can be used as a reference time, and the data group acquired before the reference time can be treated as a past data group.
例えば、故障検知の基準時刻は時刻11ms(ポイントNo.13に相当)にあるときを見てみる。その基準時刻よりも前の時刻で獲得した複数の電流・電圧のデータを含む過去のデータ群は、ポイントNo.0~12(9.6ms~10.9ms)までの合計13ポイントにおいて獲得された三相電流のデータ群から構成される。この過去のデータ群は、上述した最新のデータ群(電気角の一周期分のデータ群)に含まれている。換言すると、過去のデータ群は最新のデータ群の一部である。  For example, let's look at when the reference time of failure detection is at time 11 ms (corresponding to point No. 13). A past data group including data of a plurality of current and voltage acquired at a time prior to the reference time has point No. It consists of data groups of three-phase currents acquired at a total of 13 points from 0 to 12 (9.6 ms to 10.9 ms). This past data group is included in the above-mentioned latest data group (data group for one period of electrical angle). In other words, the past data group is a part of the latest data group.
故障検知装置340は、基準時刻(ポイントNo.13)のデータと、過去(ポイントNo.0~12)のデータ群とを比較する。図6のテーブルにおいて、基準時刻から過去7ポイントまでの8ポイントの期間にA相の相電流にゼロが連続することが観測される。故障検知装置340は、基準時刻から遡る所定ポイント(例えば8ポイント)の期間にA相の相電流にゼロが連続する場合、A相のHブリッジの故障を特定する。Hブリッジの故障は、4つのスイッチ素子H1、L1、H2およびL2のうちの少なくとも1つがオープン故障することを指す。  The failure detection device 340 compares the data of the reference time (point No. 13) with the past (point No. 0 to 12) data group. In the table of FIG. 6, it is observed that the phase current of A phase continues to be zero during a period of 8 points from the reference time to the past 7 points. The failure detection device 340 identifies the failure of the A-phase H bridge when the phase current of A-phase is continuously zero during a predetermined point (for example, 8 points) going back from the reference time. The failure of the H bridge refers to the open failure of at least one of the four switch elements H1, L1, H2 and L2.
故障検知装置340は、A相のHブリッジのローサイドスイッチ素子121Lにオープン故障が発生してから、基準時刻(11ms)においてその故障を確定することができる。これに対し、故障検知装置340は、過去のデータ群の中のB相、C相(不図示)のデータ群に基づいて、B相、C相のHブリッジの故障は発生していないと基準時刻では判定する。  The failure detection device 340 can determine the failure at the reference time (11 ms) after an open failure occurs in the low-side switch element 121L of the A-phase H bridge. On the other hand, based on the data group of B phase and C phase (not shown) in the past data group, the failure detection device 340 determines that the failure of the B bridge and the C phase H bridge has not occurred. Time is determined.
従来のスイッチ素子の故障検知では、例えば、スイッチ素子の故障検知の開始を知らせるトリガーに応答してスイッチ素子の故障検知がなされていた。その場合、そのトリガーに応答してスイッチ素子の故障検知に必要なデータが取得され、取得したデータに基づいてスイッチ素子の故障検知がなされることとなる。そのため、スイッチ素子の故障検知により多くの時間が費やされていた。モータを制御している期間中に、スイッチ素子の故障検知を同時並行的に行う場合、モータ制御に影響を与えないよう、検知時間を可能な限り短くすることが望ましい。  In the conventional failure detection of a switch element, failure detection of the switch element has been performed in response to a trigger notifying that start of the failure detection of the switch element, for example. In that case, data necessary for failure detection of the switch element is acquired in response to the trigger, and failure detection of the switch element is performed based on the acquired data. Therefore, much time has been spent on failure detection of the switch element. In the case where failure detection of switch elements is performed in parallel during control of the motor, it is desirable to make the detection time as short as possible so as not to affect motor control.
本実施形態によれば、故障検知の基準時刻よりも前の時刻で取得した過去のデータ群に基づいてスイッチ素子の故障検知を行う。スイッチ素子の故障を検知するためにデータを新たに取得しなくてもよい。そのため、新たなデータ取得が不要となり、スイッチ素子の故障検知をより短時間で行うことが可能となる。その結果、例えば、モータ制御を三相通電制御から後述する二相通電制御に迅速に切替えることが可能となる。  According to the present embodiment, failure detection of the switch element is performed based on a past data group acquired at a time prior to the failure detection reference time. Data may not be newly acquired to detect a failure of the switch element. Therefore, it becomes unnecessary to acquire new data, and failure detection of the switch element can be performed in a shorter time. As a result, for example, it becomes possible to quickly switch the motor control from the three-phase energization control to the two-phase energization control described later.
故障検知装置340は、スイッチ素子のオープン故障を検知すると、モータの制御モードを正常時の三相通電制御から異常時の二相通電制御に切替えることができる。本明細書において、三相の巻線を通電することを「三相通電制御」と呼び、二相の巻線を通電することを「二相通電制御」と呼ぶ。  When the open failure of the switch element is detected, the failure detection device 340 can switch the control mode of the motor from normal three-phase current control to abnormal two-phase current control. In the present specification, energization of a three-phase winding is referred to as "three-phase energization control", and energization of a two-phase winding is referred to as "two-phase energization control".
例えば、故障検知装置340は、A相のHブリッジの故障を検知すると、A相以外のB相、C相のHブリッジを用いて巻線M2、M3を通電する二相通電制御を行うことができる。故障検知装置340は、B相のHブリッジの故障を検知すると、B相以外のA相、C相のHブリッジを用いて巻線M1、M3を通電する二相通電制御を行うことができる。故障検知装置340は、C相のHブリッジの故障を検知すると、C相以外のA相、B相のHブリッジを用いて巻線M1、M2を通電する二相通電制御を行うことができる。  For example, when the failure detection device 340 detects a failure in the A-phase H bridge, it performs two-phase energization control of energizing the windings M2 and M3 using the B-phase and C-phase H bridges other than the A phase. it can. When the failure detection device 340 detects a failure in the B-phase H bridge, the failure detection device 340 can perform two-phase energization control of energizing the windings M1 and M3 using the A-phase and C-phase H bridges other than the B phase. When the failure detection device 340 detects a failure in the C-phase H bridge, the failure detection device 340 can perform two-phase energization control of energizing the windings M1 and M2 using the A-phase and B-phase H bridges other than the C phase.
図7は、A相Hブリッジが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。図8は、B相Hブリッジが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。図9は、C相Hブリッジが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す
。図7から図9の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の通電制御時の各相の最大電流値(ピーク電流値)を表す。
FIG. 7 is a current waveform obtained by plotting current values flowing in the B-phase and C-phase windings of motor 200 when power converter 1000 is controlled in accordance with two-phase energization control when A-phase H bridge fails. Is illustrated. FIG. 8 is a current waveform obtained by plotting the values of currents flowing through the A-phase and C-phase windings of motor 200 when power converter 1000 is controlled according to two-phase energization control when the B-phase H bridge fails. Is illustrated. FIG. 9 is a current waveform obtained by plotting current values flowing through the A-phase and B-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the C-phase H bridge fails. Is illustrated. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveforms of FIG. 7 to FIG. 9, current values are plotted at every electrical angle of 30 °. I pk represents the maximum current value (peak current value) of each phase during energization control of each phase.
<B.dq座標系の電流・電圧に基づくスイッチ素子の故障検知> 図1に示すような2つのインバータが巻線の一端および他端にそれぞれ接続される構成、すなわち、相毎のHブリッジを備える回路構成では、三相の巻線に流れる電流を独立に制御することが可能となり、その場合、零相電流が流れ得る。零相電流は、z相電流とも呼ばれる。なお、dq座標系において、零相に対応する軸をz軸として表している。故障検知装置340は、例えば零相電流を監視し、その電流の変化に応じて第1および第2インバータ120、130におけるスイッチ素子の故障を検知することができる。  <B. Failure detection of switch element based on current and voltage of dq coordinate system> A configuration in which two inverters as shown in FIG. 1 are respectively connected to one end and the other end of a winding, that is, a circuit configuration including an H bridge for each phase In this case, it is possible to control the current flowing through the three-phase winding independently, in which case zero-phase current may flow. The zero phase current is also called z phase current. In the dq coordinate system, an axis corresponding to the zero phase is represented as the z axis. The fault detection device 340 can monitor, for example, the zero phase current, and detect a fault of the switch element in the first and second inverters 120 and 130 according to a change in the current.
故障検知装置340は、dq座標系で表現される電流・電圧を監視の対象とし得る。dq座標系の電流・電圧は、d軸電流、q軸電流、零相電流、d軸電圧、q軸電圧およびz相電圧の少なくとも1つを指す。監視の対象とされるdq座標系の電流・電圧は、零相電流を含んでいることが好ましい。本実施形態では、dq座標系の電流・電圧として、主に零相電流を利用する実施例を説明する。  The fault detection device 340 can monitor the current / voltage represented in the dq coordinate system. The current / voltage in the dq coordinate system indicates at least one of d-axis current, q-axis current, zero-phase current, d-axis voltage, q-axis voltage and z-phase voltage. The current / voltage of the dq coordinate system to be monitored preferably includes a zero-phase current. In the present embodiment, an example will be described in which a zero-phase current is mainly used as the current / voltage in the dq coordinate system.
故障検知装置(つまりコントローラ)340は、dq座標系で表現される電流・電圧を所定の周期毎に獲得する。所定の周期は、例えば0.1msである。故障検知装置340は、例えば、故障検知を行う故障検知ユニットを有する。例えば、故障検知ユニットは、変換行列を用いて、電流Ia、IbおよびIcを、dqz回転座標系における、d軸電流Id、q軸電流Iq、零相電流Izに変換する。または、コントローラ340は、典型的に、ベクトル制御を行う制御ユニットを有する。故障検知ユニットは、d軸電流、q軸電流、零相電流、d軸電圧、q軸電圧、z相電圧のうちの必要なデータを制御ユニットから受け取ることもできる。このように、故障検知装置340は、dq座標系のこれらの電流・電圧の少なくとも1つを獲得する。  The failure detection device (i.e., the controller) 340 acquires the current and voltage represented in the dq coordinate system at predetermined intervals. The predetermined cycle is, for example, 0.1 ms. The failure detection device 340 has, for example, a failure detection unit that performs failure detection. For example, the failure detection unit converts the currents Ia, Ib and Ic into the d-axis current Id, the q-axis current Iq, and the zero-phase current Iz in the dqz rotational coordinate system, using a conversion matrix. Alternatively, the controller 340 typically has a control unit that performs vector control. The fault detection unit may also receive necessary data from the control unit among the d-axis current, q-axis current, zero-phase current, d-axis voltage, q-axis voltage and z-phase voltage. Thus, the fault detection device 340 acquires at least one of these currents and voltages in the dq coordinate system.
本発明者は、Hブリッジのスイッチ素子に故障が生じた後の三相電流Ia、Ib、Ic、d軸電流、q軸電流、零相電流の挙動を検証するためにシミュレーションを実施した。A相Hブリッジのスイッチ素子H1またはL1(図1のSW121Hまたは121Lに相当)がオープンまたはショート故障する時刻を0.015sとした条件下で本シミュレーションを実施した。  The inventor conducted a simulation to verify the behavior of the three-phase currents Ia, Ib, Ic, d-axis current, q-axis current, and zero-phase current after a failure occurs in the switch element of the H bridge. This simulation was performed under the condition that the time when the switch element H1 or L1 (corresponding to the SW 121H or 121L in FIG. 1) of the A-phase H bridge is open or shorted is 0.015 s.
図10Aは、A相Hブリッジのハイサイド側のスイッチ素子がオープン故障した場合に得られる、三相電流、d軸電流、q軸電流、零相電流のシミュレーション結果の波形を示している。図10Bは、A相Hブリッジのハイサイド側のスイッチ素子がショート故障した場合に得られる、三相電流、d軸電流、q軸電流および零相電流のシミュレーション結果の波形を示している。図10Cは、A相Hブリッジのローサイド側のスイッチ素子がオープン故障した場合に得られる、三相電流、d軸電流、q軸電流、零相電流のシミュレーション結果の波形を示している。図10Dは、A相Hブリッジのローサイド側のスイッチ素子がショート故障した場合に得られる、三相電流、d軸電流、q軸電流、零相電流のシミュレーション結果の波形を示している。グラフの横軸は時間(s)を示し、縦軸は電流(A)を示す。  FIG. 10A shows waveforms of simulation results of three-phase current, d-axis current, q-axis current, and zero-phase current obtained when an open failure occurs in a switch element on the high side of the A-phase H bridge. FIG. 10B shows waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current, which are obtained when the switch element on the high side of the A-phase H bridge fails. FIG. 10C shows waveforms of simulation results of three-phase current, d-axis current, q-axis current, and zero-phase current obtained when an open failure occurs in a switch element on the low side of the A-phase H bridge. FIG. 10D shows waveforms of simulation results of a three-phase current, a d-axis current, a q-axis current, and a zero-phase current, which are obtained when the switch element on the low side of the A-phase H bridge fails. The horizontal axis of the graph indicates time (s), and the vertical axis indicates current (A).
本シミュレーションにおいて、スイッチ素子が故障した後、三相電流のうちの相電流Iaは変動して特異な挙動を示す期間が生じることが分かる。特にオープン故障の場合に、相電流はゼロになり変化しない期間を観測することができる。これは既に説明したとおりである。ショート故障の場合においても、相電流Iaの変動を確認できる。  In this simulation, it can be seen that, after the switch element has failed, the phase current Ia of the three-phase current fluctuates to generate a period in which a peculiar behavior is exhibited. In particular, in the case of an open failure, it is possible to observe a period in which the phase current is zero and does not change. This is as already explained. Even in the case of the short failure, the fluctuation of the phase current Ia can be confirmed.
dq座標系におけるd軸電流、q軸電流および零相電流に着目する。dq座標系における電流は、DC成分と見なすことができるので、正常時の三相通電制御において変化しない。しかし、スイッチ素子が故障すると、d軸電流、q軸電流および零相電流の変動を観測することができる。これは、A相の相電流Iaの変動に起因している。この現象は、A相の相電流Iaの変動に限られず、B相の相電流IbまたはC相の相電流Icの変動に起因しても観測される。このように、dq座標系における電流(または電圧)の変化を監視することにより、2つのインバータにおける少なくとも1つのスイッチ素子の故障を検知することができる。なお、dq座標系におけるd軸電圧、q軸電圧は、abc相電圧に基づいて算出される。  Focus on the d-axis current, q-axis current and zero-phase current in the dq coordinate system. Since the current in the dq coordinate system can be regarded as a DC component, it does not change in normal three-phase conduction control. However, when the switch element fails, fluctuations in d-axis current, q-axis current, and zero-phase current can be observed. This is due to the fluctuation of the phase current Ia of the A phase. This phenomenon is not limited to the fluctuation of the phase current Ia of the A phase, and is also observed due to the fluctuation of the phase current Ib of the B phase or the phase current Ic of the C phase. Thus, by monitoring changes in current (or voltage) in the dq coordinate system, failure of at least one switch element in two inverters can be detected. The d-axis voltage and the q-axis voltage in the dq coordinate system are calculated based on the abc phase voltage.
故障検知装置340は、例えば、dq座標系におけるd軸電流、q軸電流、零相電流およびq軸電圧を三相電流に基づいて獲得し、獲得したそれらのデータを内部レジスタ341に書き込む。故障検知装置340は、基準時刻で獲得したデータと、基準時刻よりも前の時刻で獲得した複数のデータ群との比較結果に基づいて、第1および第2インバータ120、130におけるスイッチ素子の故障の有無を検知する。  The failure detection device 340 acquires, for example, d-axis current, q-axis current, zero-phase current and q-axis voltage in the dq coordinate system based on the three-phase current, and writes the acquired data to the internal register 341. The failure detection device 340 detects a failure of the switch element in the first and second inverters 120 and 130 based on the comparison result between the data acquired at the reference time and a plurality of data groups acquired at a time earlier than the reference time. To detect the presence or absence of
図11は、内部レジスタ341に記録される、d軸電流、q軸電流、零相電流およびq軸電圧のデータ群のテーブルを例示している。テーブルには、獲得した最新のデータ群の中の5ポイント分のデータを示している。故障検知装置340は、そのテーブルを参照して、dq座標系の電流・電圧の変動を監視し、例えば零相電流の変動を監視する。故障検知装置340は、基準時刻のポイントの値が過去のデータ群の値から外れている場合、第1および第2インバータ120、130におけるスイッチ素子の故障を検知する。  FIG. 11 illustrates a table of data groups of d-axis current, q-axis current, zero-phase current, and q-axis voltage, which are recorded in the internal register 341. The table shows data of 5 points in the latest data group acquired. The failure detection device 340 refers to the table to monitor the current / voltage fluctuation of the dq coordinate system, for example, monitors the fluctuation of the zero phase current. The failure detection device 340 detects a failure of the switch element in the first and second inverters 120 and 130 when the point value at the reference time deviates from the value of the past data group.
故障検知の基準時刻はポイントT+3にあるとき、故障検知装置340は、基準時刻のIz値「20」は、基準時刻よりも前の時刻に取得された過去のデータ群:ポイントT、T+1、T+2におけるIz値「6.8」、「5」、「7」から外れていると判定する。この判定には、例えばROM360に予め保持された閾値を用いることができる。基準時刻のIz値と過去のデータ群に含まれる各Iz値との差分がいずれも閾値以下である場合、故障検知装置340は、スイッチ素子の故障を検知しない。一方、その差分が閾値よりも大きい場合、故障検知装置340は、第1および第2インバータ120、130における少なくとも1つのスイッチ素子がオープン故障またはショート故障していると判定することができる。  When the reference time for failure detection is at point T + 3, the failure detection device 340 determines that the Iz value “20” of the reference time is a past data group acquired earlier than the reference time: point T, T + 1, T + 2 It is determined that the values are out of the Iz values “6.8”, “5”, and “7” in For this determination, for example, a threshold value stored in advance in the ROM 360 can be used. If the difference between the Iz value at the reference time and each Iz value included in the past data group is equal to or less than the threshold value, the failure detection device 340 does not detect a failure of the switch element. On the other hand, when the difference is larger than the threshold, the failure detection device 340 can determine that at least one switch element in the first and second inverters 120 and 130 is open failure or short failure.
例えば閾値として値「3」を用いた場合、故障検知装置340は、基準時刻はポイントT+2にあるとき、スイッチ素子の故障を検出せず、基準時刻はポイントT+3に移ってスイッチ素子の故障を初めて確定することができる。このように、故障検知装置340は、DC成分であるdq座標系の電流・電圧の変動を監視することにより、スイッチ素子の故障を検知できる。  For example, when the value “3” is used as the threshold value, the failure detection device 340 does not detect a switch element failure when the reference time is at point T + 2, shifts the reference time to point T + 3 for the first time It can be decided. As described above, the failure detection device 340 can detect the failure of the switch element by monitoring the variation of the current / voltage of the dq coordinate system which is the DC component.
コントローラ340の故障検知ユニットは、スイッチ素子のショート故障またはオープン故障を検知すると、例えば、モータ制御シャットダウン信号を生成し、制御ユニットに出力してもよい。制御ユニットは、その信号に応答して三相通電制御をシャットダウンしてもよい。これにより、例えば電動パワーステアリング(EPS)装置において、制御モードをトルクのアシストモードからマニュアルステアリングモードに切替えることができる。  The failure detection unit of the controller 340 may generate, for example, a motor control shutdown signal and output it to the control unit when it detects a short failure or an open failure of the switch element. The control unit may shut down the three-phase conduction control in response to the signal. Thereby, for example, in the electric power steering (EPS) apparatus, the control mode can be switched from the assist mode of torque to the manual steering mode.
本実施例によれば、DC成分であるdq座標系における信号変化を監視することにより、基準時刻で獲得したデータと、基準時刻よりも前の時刻で獲得した複数のデータ群との比較がよりし易くなる。そのため、例えばマイクロコントローラへの実装において回路規模またはメモリサイズの縮小といった利点が得られる。さらに、過去のデータ群に基づいて故障検知を行うことにより、故障検知をより短い時間で行うことが可能となる。  According to the present embodiment, by monitoring the signal change in the dq coordinate system which is the DC component, the comparison between the data acquired at the reference time and the plurality of data groups acquired at the time before the reference time is more It becomes easy to do. Therefore, for example, an advantage such as circuit scale reduction or memory size reduction can be obtained in the implementation on a microcontroller. Furthermore, by performing failure detection based on the past data group, failure detection can be performed in a shorter time.
(実施形態2) 図12は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示している。  Second Embodiment FIG. 12 schematically shows a typical configuration of an electric power steering apparatus 3000 according to this embodiment.
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。  Vehicles such as automobiles generally have an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque. Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bを備える。  The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544を備える。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。  The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544. The steering torque sensor 541 detects a steering torque in the steering system 520. The ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのユニットに、実施形態1によるモータモジュール2000を好適に用いることができる。 The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In automobiles, an electronic control system is built around an ECU. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545. The motor module 2000 according to the first embodiment can be suitably used for the unit.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

Claims (12)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、



     前記モータの各相の巻線の一端に接続される第1インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを有する第1インバータと、



     前記モータの各相の巻線の他端に接続される第2インバータであって、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有するn個のレグを有する第2インバータと、



     前記第1および第2インバータにおけるスイッチ素子の故障の有無を検知する故障検知装置と、



     前記故障検知装置が演算処理するデータを格納するメモリと、



    を備え、



     前記故障検知装置は、



      前記モータのn相電流およびdq座標系において表現される電流・電圧の少なくとも1つを所定の周期毎に獲得し、獲得した電流・電圧のデータを前記メモリに書き込み、



      故障検知の基準時刻で獲得した電流・電圧のデータと、前記基準時刻よりも前の時刻で獲得した複数の電流・電圧のデータを含む過去のデータ群との比較結果に基づいて前記第1および第2インバータにおけるスイッチ素子の故障の有無を検知する、電力変換装置。
    A power converter that converts power from a power supply into power supplied to a motor having n-phase (n is an integer of 3 or more) windings,



    A first inverter connected to one end of a winding of each phase of the motor, the first inverter having n legs each having a low side switch element and a high side switch element;



    A second inverter connected to the other end of the winding of each phase of the motor, the second inverter having n legs each having a low side switch element and a high side switch element;



    A failure detection device for detecting the presence or absence of a failure of a switch element in the first and second inverters;



    A memory for storing data to be processed by the failure detection device;



    Equipped with



    The failure detection device is



    At least one of the n-phase current of the motor and the current / voltage represented in the dq coordinate system is acquired for each predetermined cycle, and the acquired current / voltage data is written to the memory.



    The first and the second are based on the comparison result of current / voltage data acquired at a reference detection time of failure detection and a past data group including data of a plurality of current / voltage acquired at a time before the reference time. The power converter device which detects the existence of failure of the switch element in the 2nd inverter.
  2. 前記故障検知装置は、前記dq座標系において表現される電流・電圧を前記モータのn相電流に基づいて前記所定の周期毎に獲得し、前記メモリに書き込む、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the failure detection device acquires the current / voltage represented in the dq coordinate system for each predetermined cycle based on the n-phase current of the motor, and writes the current / voltage in the memory. .
  3. 前記dq座標系の電流・電圧は、d軸電流、q軸電流、零相電流、d軸電圧、q軸電圧およびz相電圧の少なくとも1つである、請求項2に記載の電力変換装置。 The power converter according to claim 2, wherein the current / voltage of the dq coordinate system is at least one of d-axis current, q-axis current, zero-phase current, d-axis voltage, q-axis voltage and z-phase voltage.
  4. 前記故障検知装置は、前記基準時刻で獲得した零相電流のデータと、前記基準時刻よりも前の時刻で獲得した複数の零相電流のデータ群との比較結果に基づいて前記第1および第2インバータにおけるスイッチ素子の故障の有無を検知する、請求項3に記載の電力変換装置。 The failure detection device may be configured to compare the first and second data based on the comparison result of the zero-phase current data acquired at the reference time and a plurality of zero-phase current data groups acquired at times earlier than the reference time. The power converter according to claim 3, wherein presence or absence of a failure of a switch element in two inverters is detected.
  5. 前記故障検知装置は、前記モータのn相電流を前記所定の周期毎に獲得し、前記メモリに書き込む、請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the failure detection device acquires the n-phase current of the motor for each of the predetermined cycles and writes the n-phase current in the memory.
  6. 前記故障検知装置は、前記基準時刻で獲得したn相電流のデータと、前記基準時刻よりも前の時刻で獲得した複数のn相電流のデータ群との比較結果に基づいて前記第1および第2インバータにおけるスイッチ素子の故障の有無を検知する、請求項5に記載の電力変換装置。 The failure detection device compares the first and the second on the basis of the comparison result of data of n-phase current acquired at the reference time and data groups of a plurality of n-phase currents acquired at time before the reference time. The power converter according to claim 5, wherein presence or absence of a failure of the switch element in the two inverters is detected.
  7. 前記故障検知装置は、前記モータの電気角の一周期の間に獲得する前記電流・電圧の最新のデータ群を前記メモリに書き込み、かつ、前記メモリに記録されるデータ群を前記一周期毎に更新し、



     前記過去のデータ群は前記最新のデータ群に含まれる、請求項1から6のいずれかに記載の電力変換装置。
    The failure detection device writes the latest data group of the current and voltage acquired during one cycle of the electric angle of the motor in the memory, and the data group recorded in the memory is in each cycle. Updated,



    The power converter according to any one of claims 1 to 6, wherein the past data group is included in the latest data group.
  8. 前記所定の周期は、前記電気角の前記一周期および前記一周期の間に前記電流・電圧のデータを獲得するポイント数から決定される、請求項7に記載の電力変換装置。 The power conversion device according to claim 7, wherein the predetermined cycle is determined from the number of points for acquiring data of the current and voltage during the one cycle of the electrical angle and the one cycle.
  9. 前記基準時刻は、前記最新のデータ群の中の最新のデータを獲得する時刻である、請求項8に記載の電力変換装置。 The power conversion device according to claim 8, wherein the reference time is a time at which latest data in the latest data group is acquired.
  10. 前記第1インバータとグランドとの接続・非接続を切替える第1スイッチ素子と、



     前記第1インバータと前記電源との接続・非接続を切替える第2スイッチ素子と、



     前記第2インバータと前記グランドとの接続・非接続を切替える第3スイッチ素子と、



     前記第2インバータと前記電源との接続・非接続を切替える第4スイッチ素子と、



    をさらに備える、請求項1から9のいずれかに記載の電力変換装置。
    A first switch element for switching connection / disconnection between the first inverter and the ground;



    A second switch element for switching connection / disconnection between the first inverter and the power supply;



    A third switch element for switching connection / disconnection between the second inverter and the ground;



    A fourth switch element for switching connection / disconnection between the second inverter and the power supply;



    The power converter according to any one of claims 1 to 9, further comprising:
  11. モータと、



     請求項1から10のいずれかに記載の電力変換装置と、



    を備える、モータモジュール。
    Motor,



    The power converter according to any one of claims 1 to 10,



    , A motor module.
  12. 請求項11に記載のモータモジュールを備える電動パワーステアリング装置。 An electric power steering apparatus comprising the motor module according to claim 11.
PCT/JP2018/022912 2017-09-29 2018-06-15 Power conversion device, motor module, and electric power steering device WO2019064725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890001071.5U CN211830634U (en) 2017-09-29 2018-06-15 Power conversion device, motor module, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-189765 2017-09-29
JP2017189765 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064725A1 true WO2019064725A1 (en) 2019-04-04

Family

ID=65901224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022912 WO2019064725A1 (en) 2017-09-29 2018-06-15 Power conversion device, motor module, and electric power steering device

Country Status (2)

Country Link
CN (1) CN211830634U (en)
WO (1) WO2019064725A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858904A (en) * 2019-11-26 2021-05-28 富士电机机器制御株式会社 Diagnostic device, distributor, control panel, diagnostic method and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065881A (en) * 1998-08-25 2000-03-03 Hitachi Ltd Failure monitor device for power converter
JP2011201336A (en) * 2010-03-24 2011-10-13 Hitachi Ltd System for supporting determination of abnormality of moving object
WO2017150640A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065881A (en) * 1998-08-25 2000-03-03 Hitachi Ltd Failure monitor device for power converter
JP2011201336A (en) * 2010-03-24 2011-10-13 Hitachi Ltd System for supporting determination of abnormality of moving object
WO2017150640A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858904A (en) * 2019-11-26 2021-05-28 富士电机机器制御株式会社 Diagnostic device, distributor, control panel, diagnostic method and storage medium

Also Published As

Publication number Publication date
CN211830634U (en) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2017150640A1 (en) Power conversion device, motor drive unit, and electric power steering device
JP7238777B2 (en) Power conversion device, motor module and electric power steering device
JP7014183B2 (en) Power converter, motor drive unit and electric power steering device
JP7136110B2 (en) Power conversion device, motor drive unit and electric power steering device
JP7063322B2 (en) Power converter, motor drive unit and electric power steering device
JP6947184B2 (en) Power converter, motor drive unit and electric power steering device
JP7070575B2 (en) Power converters, motor modules and electric power steering devices
JPWO2019159665A1 (en) Power converter, motor module and electric power steering device
WO2018180238A1 (en) Power conversion device, motor drive unit, and electric power steering device
CN212413082U (en) Power conversion device, motor module, and electric power steering device
CN212258835U (en) Power conversion device, motor module, and electric power steering device
CN211830634U (en) Power conversion device, motor module, and electric power steering device
WO2019021647A1 (en) Power conversion device, motor module, and electric power steering device
JP7052801B2 (en) Power converters, motor modules and electric power steering devices
WO2019159663A1 (en) Power conversion device, motor module, and electric power steering device
WO2019049449A1 (en) Electric power converting device, motor module, and electric power steering device
WO2019159664A1 (en) Power conversion device, motor module, and electric power steering device
WO2019044105A1 (en) Power conversion device, motor drive unit and electric power steering device
WO2019044106A1 (en) Power conversion device, motor drive unit and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP