WO2019063598A1 - Personal care compositions containing encapsulates - Google Patents
Personal care compositions containing encapsulates Download PDFInfo
- Publication number
- WO2019063598A1 WO2019063598A1 PCT/EP2018/076086 EP2018076086W WO2019063598A1 WO 2019063598 A1 WO2019063598 A1 WO 2019063598A1 EP 2018076086 W EP2018076086 W EP 2018076086W WO 2019063598 A1 WO2019063598 A1 WO 2019063598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cationic
- charge density
- composition according
- composition
- per gram
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 70
- 125000002091 cationic group Chemical group 0.000 claims abstract description 31
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 23
- 239000003094 microcapsule Substances 0.000 claims abstract description 22
- 239000003205 fragrance Substances 0.000 claims abstract description 13
- 239000004094 surface-active agent Substances 0.000 claims abstract description 9
- 125000000129 anionic group Chemical group 0.000 claims abstract description 8
- 229920006317 cationic polymer Polymers 0.000 claims abstract description 7
- 229920003180 amino resin Polymers 0.000 claims abstract description 4
- 229920005989 resin Polymers 0.000 claims abstract description 3
- 239000011347 resin Substances 0.000 claims abstract description 3
- 239000002304 perfume Substances 0.000 claims description 18
- 150000001805 chlorine compounds Chemical class 0.000 claims description 7
- 229920002396 Polyurea Polymers 0.000 claims description 3
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims 2
- 229920001296 polysiloxane Polymers 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 244000303965 Cyamopsis psoralioides Species 0.000 description 16
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 13
- 229910021653 sulphate ion Inorganic materials 0.000 description 13
- 238000000151 deposition Methods 0.000 description 11
- 239000000839 emulsion Substances 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- -1 alkyl ether sulphates Chemical class 0.000 description 8
- SFNALCNOMXIBKG-UHFFFAOYSA-N ethylene glycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCO SFNALCNOMXIBKG-UHFFFAOYSA-N 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 241000282372 Panthera onca Species 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 210000004761 scalp Anatomy 0.000 description 5
- 239000002453 shampoo Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000402754 Erythranthe moschata Species 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000003750 conditioning effect Effects 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229930182830 galactose Natural products 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- VFKZECOCJCGZQK-UHFFFAOYSA-M 3-hydroxypropyl(trimethyl)azanium;chloride Chemical class [Cl-].C[N+](C)(C)CCCO VFKZECOCJCGZQK-UHFFFAOYSA-M 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000002280 amphoteric surfactant Substances 0.000 description 3
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 239000004530 micro-emulsion Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- YCIXWYOBMVNGTB-UHFFFAOYSA-N 3-Methyl-2-pentyl-2-cyclopentenone Natural products CCCCCC1=C(C)CCC1=O YCIXWYOBMVNGTB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- 235000014493 Crataegus Nutrition 0.000 description 2
- 241001092040 Crataegus Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000004141 Sodium laurylsulphate Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- IGODOXYLBBXFDW-UHFFFAOYSA-N alpha-Terpinyl acetate Chemical compound CC(=O)OC(C)(C)C1CCC(C)=CC1 IGODOXYLBBXFDW-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- HQKQRXZEXPXXIG-VJOHVRBBSA-N chembl2333940 Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1[C@@](OC(C)=O)(C)CC2 HQKQRXZEXPXXIG-VJOHVRBBSA-N 0.000 description 2
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 description 2
- JOZKFWLRHCDGJA-UHFFFAOYSA-N citronellol acetate Chemical compound CC(=O)OCCC(C)CCC=C(C)C JOZKFWLRHCDGJA-UHFFFAOYSA-N 0.000 description 2
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 2
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 2
- QVBODZPPYSSMEL-UHFFFAOYSA-N dodecyl sulfate;2-hydroxyethylazanium Chemical compound NCCO.CCCCCCCCCCCCOS(O)(=O)=O QVBODZPPYSSMEL-UHFFFAOYSA-N 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 238000001506 fluorescence spectroscopy Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- ONQDVAFWWYYXHM-UHFFFAOYSA-M potassium lauryl sulfate Chemical compound [K+].CCCCCCCCCCCCOS([O-])(=O)=O ONQDVAFWWYYXHM-UHFFFAOYSA-M 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 229940071089 sarcosinate Drugs 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- HLCSDJLATUNSSI-JXMROGBWSA-N (2e)-3,7-dimethylocta-2,6-dienenitrile Chemical compound CC(C)=CCC\C(C)=C\C#N HLCSDJLATUNSSI-JXMROGBWSA-N 0.000 description 1
- OMDQUFIYNPYJFM-XKDAHURESA-N (2r,3r,4s,5r,6s)-2-(hydroxymethyl)-6-[[(2r,3s,4r,5s,6r)-4,5,6-trihydroxy-3-[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@H](O)[C@H](O)O1 OMDQUFIYNPYJFM-XKDAHURESA-N 0.000 description 1
- CSPHGSFZFWKVDL-UHFFFAOYSA-M (3-chloro-2-hydroxypropyl)-trimethylazanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC(O)CCl CSPHGSFZFWKVDL-UHFFFAOYSA-M 0.000 description 1
- VSRVCSJJKWDZSH-UHFFFAOYSA-N (3-pentyloxan-4-yl) acetate Chemical compound CCCCCC1COCCC1OC(C)=O VSRVCSJJKWDZSH-UHFFFAOYSA-N 0.000 description 1
- VCOCESNMLNDPLX-BTXGZQJSSA-N (3s,6s)-2,2,8,8-tetramethyl-octahydro-1h-2,4a-methanonapthalene-10-one Chemical compound O=C1CCC(C)(C)[C@@]2(C3)C1C(C)(C)[C@H]3CC2 VCOCESNMLNDPLX-BTXGZQJSSA-N 0.000 description 1
- 239000001724 (4,8-dimethyl-2-propan-2-ylidene-3,3a,4,5,6,8a-hexahydro-1H-azulen-6-yl) acetate Substances 0.000 description 1
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 description 1
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 description 1
- MAUMSNABMVEOGP-UHFFFAOYSA-N (methyl-$l^{2}-azanyl)methane Chemical compound C[N]C MAUMSNABMVEOGP-UHFFFAOYSA-N 0.000 description 1
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- QUMXDOLUJCHOAY-UHFFFAOYSA-N 1-Phenylethyl acetate Chemical compound CC(=O)OC(C)C1=CC=CC=C1 QUMXDOLUJCHOAY-UHFFFAOYSA-N 0.000 description 1
- FYERTDTXGGOMGT-UHFFFAOYSA-N 2,2-diethoxyethylbenzene Chemical compound CCOC(OCC)CC1=CC=CC=C1 FYERTDTXGGOMGT-UHFFFAOYSA-N 0.000 description 1
- WNJSKZBEWNVKGU-UHFFFAOYSA-N 2,2-dimethoxyethylbenzene Chemical compound COC(OC)CC1=CC=CC=C1 WNJSKZBEWNVKGU-UHFFFAOYSA-N 0.000 description 1
- BEARMGATPGLSKG-UHFFFAOYSA-N 2,6-dimethyloct-7-en-2-yl acetate Chemical compound C=CC(C)CCCC(C)(C)OC(C)=O BEARMGATPGLSKG-UHFFFAOYSA-N 0.000 description 1
- WRFXXJKURVTLSY-UHFFFAOYSA-N 2,6-dimethyloctan-2-ol Chemical compound CCC(C)CCCC(C)(C)O WRFXXJKURVTLSY-UHFFFAOYSA-N 0.000 description 1
- GQDUXZKNWUFJLT-UHFFFAOYSA-N 2-(2-pentylcyclopentyl)acetic acid Chemical compound CCCCCC1CCCC1CC(O)=O GQDUXZKNWUFJLT-UHFFFAOYSA-N 0.000 description 1
- AWNOGHRWORTNEI-UHFFFAOYSA-N 2-(6,6-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethyl acetate Chemical compound CC(=O)OCCC1=CCC2C(C)(C)C1C2 AWNOGHRWORTNEI-UHFFFAOYSA-N 0.000 description 1
- MJTPMXWJHPOWGH-UHFFFAOYSA-N 2-Phenoxyethyl isobutyrate Chemical compound CC(C)C(=O)OCCOC1=CC=CC=C1 MJTPMXWJHPOWGH-UHFFFAOYSA-N 0.000 description 1
- AMRBZKOCOOPYNY-QXMHVHEDSA-N 2-[dimethyl-[(z)-octadec-9-enyl]azaniumyl]acetate Chemical compound CCCCCCCC\C=C/CCCCCCCC[N+](C)(C)CC([O-])=O AMRBZKOCOOPYNY-QXMHVHEDSA-N 0.000 description 1
- SUZKAIPUWCLPCH-UHFFFAOYSA-N 2-[dimethyl-[3-(octanoylamino)propyl]azaniumyl]acetate Chemical compound CCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O SUZKAIPUWCLPCH-UHFFFAOYSA-N 0.000 description 1
- BMYCCWYAFNPAQC-UHFFFAOYSA-N 2-[dodecyl(methyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCN(C)CC(O)=O BMYCCWYAFNPAQC-UHFFFAOYSA-N 0.000 description 1
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 1
- PJXHBTZLHITWFX-UHFFFAOYSA-N 2-heptylcyclopentan-1-one Chemical compound CCCCCCCC1CCCC1=O PJXHBTZLHITWFX-UHFFFAOYSA-N 0.000 description 1
- OYINQIKIQCNQOX-UHFFFAOYSA-M 2-hydroxybutyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCC(O)C[N+](C)(C)C OYINQIKIQCNQOX-UHFFFAOYSA-M 0.000 description 1
- RUUHDEGJEGHQKL-UHFFFAOYSA-M 2-hydroxypropyl(trimethyl)azanium;chloride Chemical group [Cl-].CC(O)C[N+](C)(C)C RUUHDEGJEGHQKL-UHFFFAOYSA-M 0.000 description 1
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 1
- BJLRAKFWOUAROE-UHFFFAOYSA-N 2500-83-6 Chemical compound C12C=CCC2C2CC(OC(=O)C)C1C2 BJLRAKFWOUAROE-UHFFFAOYSA-N 0.000 description 1
- MTDAKBBUYMYKAR-UHFFFAOYSA-N 3,7-dimethyloct-6-enenitrile Chemical compound N#CCC(C)CCC=C(C)C MTDAKBBUYMYKAR-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- BWVZAZPLUTUBKD-UHFFFAOYSA-N 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol Chemical compound CC1(C)C(C)C2CC1CC2C1CCCC(O)C1 BWVZAZPLUTUBKD-UHFFFAOYSA-N 0.000 description 1
- INIOTLARNNSXAE-UHFFFAOYSA-N 4,8-dimethyl-2-propan-2-ylidene-3,3a,4,5,6,8a-hexahydro-1h-azulen-6-ol Chemical compound CC1CC(O)C=C(C)C2CC(=C(C)C)CC12 INIOTLARNNSXAE-UHFFFAOYSA-N 0.000 description 1
- MQBIZQLCHSZBOI-UHFFFAOYSA-N 4-(4-Methyl-3-pentenyl)-3-cyclohexene-1-carboxaldehyde Chemical compound CC(C)=CCCC1=CCC(C=O)CC1 MQBIZQLCHSZBOI-UHFFFAOYSA-N 0.000 description 1
- MBZRJSQZCBXRGK-UHFFFAOYSA-N 4-tert-Butylcyclohexyl acetate Chemical compound CC(=O)OC1CCC(C(C)(C)C)CC1 MBZRJSQZCBXRGK-UHFFFAOYSA-N 0.000 description 1
- LJSJTXAZFHYHMM-UHFFFAOYSA-N 7-methyloctyl acetate Chemical compound CC(C)CCCCCCOC(C)=O LJSJTXAZFHYHMM-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 240000006304 Brachychiton acerifolius Species 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- JOZKFWLRHCDGJA-LLVKDONJSA-N Citronellyl acetate Natural products CC(=O)OCC[C@H](C)CCC=C(C)C JOZKFWLRHCDGJA-LLVKDONJSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 208000001840 Dandruff Diseases 0.000 description 1
- XRHCAGNSDHCHFJ-UHFFFAOYSA-N Ethylene brassylate Chemical compound O=C1CCCCCCCCCCCC(=O)OCCO1 XRHCAGNSDHCHFJ-UHFFFAOYSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- 244000230012 Gleditsia triacanthos Species 0.000 description 1
- 235000013813 Gleditsia triacanthos Nutrition 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 102220549062 Low molecular weight phosphotyrosine protein phosphatase_C13S_mutation Human genes 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 102220470542 Proteasome subunit beta type-3_C14S_mutation Human genes 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- UAVFEMBKDRODDE-UHFFFAOYSA-N Vetiveryl acetate Chemical compound CC1CC(OC(C)=O)C=C(C)C2CC(=C(C)C)CC12 UAVFEMBKDRODDE-UHFFFAOYSA-N 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- JKRWZLOCPLZZEI-UHFFFAOYSA-N alpha-Trichloromethylbenzyl acetate Chemical compound CC(=O)OC(C(Cl)(Cl)Cl)C1=CC=CC=C1 JKRWZLOCPLZZEI-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940062909 amyl salicylate Drugs 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MKHVZQXYWACUQC-UHFFFAOYSA-N bis(2-hydroxyethyl)azanium;dodecyl sulfate Chemical compound OCCNCCO.CCCCCCCCCCCCOS(O)(=O)=O MKHVZQXYWACUQC-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-O carboxymethyl-[3-(dodecanoylamino)propyl]-dimethylazanium Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC(O)=O MRUAUOIMASANKQ-UHFFFAOYSA-O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000007705 chemical test Methods 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 235000000484 citronellol Nutrition 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- BLBJUGKATXCWET-UHFFFAOYSA-N cyclaprop Chemical compound C12CC=CC2C2CC(OC(=O)CC)C1C2 BLBJUGKATXCWET-UHFFFAOYSA-N 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- JZKFHQMONDVVNF-UHFFFAOYSA-N dodecyl sulfate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCCCCCCOS(O)(=O)=O JZKFHQMONDVVNF-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- NYNCZOLNVTXTTP-UHFFFAOYSA-N ethyl 2-(1,3-dioxoisoindol-2-yl)acetate Chemical compound C1=CC=C2C(=O)N(CC(=O)OCC)C(=O)C2=C1 NYNCZOLNVTXTTP-UHFFFAOYSA-N 0.000 description 1
- 229940093468 ethylene brassylate Drugs 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- HIGQPQRQIQDZMP-UHFFFAOYSA-N geranil acetate Natural products CC(C)=CCCC(C)=CCOC(C)=O HIGQPQRQIQDZMP-UHFFFAOYSA-N 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- HIGQPQRQIQDZMP-DHZHZOJOSA-N geranyl acetate Chemical compound CC(C)=CCC\C(C)=C\COC(C)=O HIGQPQRQIQDZMP-DHZHZOJOSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 1
- 229930002839 ionone Natural products 0.000 description 1
- 150000002499 ionone derivatives Chemical class 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- HEBMCVBCEDMUOF-UHFFFAOYSA-N isochromane Chemical compound C1=CC=C2COCCC2=C1 HEBMCVBCEDMUOF-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 229940075468 lauramidopropyl betaine Drugs 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 150000007931 macrolactones Chemical class 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- HRGPYCVTDOECMG-RHBQXOTJSA-N methyl cedryl ether Chemical compound C1[C@@]23[C@H](C)CC[C@H]2C(C)(C)[C@]1([H])[C@@](OC)(C)CC3 HRGPYCVTDOECMG-RHBQXOTJSA-N 0.000 description 1
- YRLWZYCZEVKYRT-UHFFFAOYSA-N n,n-dimethylmethanamine;dodecyl hydrogen sulfate Chemical compound C[NH+](C)C.CCCCCCCCCCCCOS([O-])(=O)=O YRLWZYCZEVKYRT-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical class C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- SATCULPHIDQDRE-UHFFFAOYSA-N piperonal Chemical compound O=CC1=CC=C2OCOC2=C1 SATCULPHIDQDRE-UHFFFAOYSA-N 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- 229940079862 sodium lauryl sarcosinate Drugs 0.000 description 1
- ADWNFGORSPBALY-UHFFFAOYSA-M sodium;2-[dodecyl(methyl)amino]acetate Chemical compound [Na+].CCCCCCCCCCCCN(C)CC([O-])=O ADWNFGORSPBALY-UHFFFAOYSA-M 0.000 description 1
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 1
- DUXXGJTXFHUORE-UHFFFAOYSA-M sodium;4-tridecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCCC1=CC=C(S([O-])(=O)=O)C=C1 DUXXGJTXFHUORE-UHFFFAOYSA-M 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-O triethanolammonium Chemical compound OCC[NH+](CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-O 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 229940117960 vanillin Drugs 0.000 description 1
- ZFNVDHOSLNRHNN-UHFFFAOYSA-N xi-3-(4-Isopropylphenyl)-2-methylpropanal Chemical compound O=CC(C)CC1=CC=C(C(C)C)C=C1 ZFNVDHOSLNRHNN-UHFFFAOYSA-N 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/737—Galactomannans, e.g. guar; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/11—Encapsulated compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q13/00—Formulations or additives for perfume preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/41—Particular ingredients further characterized by their size
- A61K2800/412—Microsized, i.e. having sizes between 0.1 and 100 microns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/54—Polymers characterized by specific structures/properties
- A61K2800/542—Polymers characterized by specific structures/properties characterized by the charge
- A61K2800/5426—Polymers characterized by specific structures/properties characterized by the charge cationic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/592—Mixtures of compounds complementing their respective functions
- A61K2800/5922—At least two compounds being classified in the same subclass of A61K8/18
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/594—Mixtures of polymers
Definitions
- the present invention relates to personal care cleansing compositions such as liquid soaps, body washes and shampoos, which comprise microcapsules.
- benefit agents such as fragrance materials, silicones, dyes, and anti-dandruff agents onto the hair during washing.
- a protective coating such as a polymeric material.
- the polymeric material may protect the benefit agent, such as a fragrance material, from evaporation, reaction, oxidation or otherwise dissipating prior to use.
- the present invention provides a personal cleansing composition comprising, in an aqueous continuous phase:
- aqueous continuous phase is meant a continuous phase which has water as its basis.
- the composition of the invention will comprise from about 50 to about 90%, preferably from about 55 to about 85%, more preferably from about 60 to about 85%, most preferably from about 65 to about 83% water (by weight based on the total weight of the composition).
- Typical anionic cleansing surfactants (i) for use in the invention include those surface active agents which contain an organic hydrophobic group with from 8 to 14 carbon atoms, preferably from 10 to 14 carbon atoms in their molecular structure; and at least one water-solubilising group which is preferably selected from sulphate, sulphonate, sarcosinate and isethionate.
- anionic cleansing surfactants include ammonium lauryl sulphate, ammonium laureth sulphate, trimethylamine lauryl sulphate, trimethylamine laureth sulphate, triethanolamine lauryl sulphate, trimethylethanolamine laureth sulphate, monoethanolamine lauryl sulphate, monoethanolamine laureth sulphate, diethanolamine lauryl sulphate, diethanolamine laureth sulphate, lauric monoglyceride sodium sulphate, sodium lauryl sulphate, sodium laureth sulphate, potassium lauryl sulphate, potassium laureth sulphate, sodium lauryl sarcosinate, sodium lauroyi sarcosinate, lauryl sarcosine, ammonium cocoyi sulphate, ammonium lauroyi sulphate, sodium cocoyi sulphate, sodium lauryl sulphate, potassium cocoyi sulphate,
- a preferred class of anionic cleansing surfactants for use in the invention are alkyl ether sulphates of general formula:
- Such preferred anionic surfactants include the sodium, potassium, ammonium or ethanolamine salts of Cio to C12 alkyl sulphates and Cio to C12 alkyl ether sulphates (for example sodium lauryl ether sulphate),
- the level of anionic cleansing surfactant will generally range from 5 to 30 wt %, preferably from 8 to 25 wt %, and most preferably ranges from 10 to 16 wt % by weight based on the total weight of the composition.
- the aqueous continuous phase of the composition according to the invention preferably also includes one or more amphoteric surfactants, in addition to the anionic cleansing surfactant described above.
- Suitable amphoteric surfactants are betaines, such as those having the general formula R(CH3)2N + CH2COO " , where R is an alkyl or alkylamidoalkyl group, the alkyl group preferably having 10 to 16 carbon atoms.
- Particularly suitable betaines are oleyl betaine, caprylamidopropyl betaine, lauramidopropyl betaine, isostearylamidopropyl betaine, and cocoamidopropyl betaine. Cocoamidopropyl betaine is particularly preferred.
- the total level of amphoteric surfactant is preferably from 0.1 to 10%, more preferably from 0.5 to 5%, and most preferably from 1 to 3% by weight based on the total weight of the hair cleansing composition).
- compositions of the invention preferably comprise dispersed droplets of conditioning agent with a mean diameter (D3,2) of 4 micrometres or less.
- the preferred amount of these dispersed droplets is from 0.1 to 10% by weight of the total composition.
- the preferred dispersed conditioning agent is an emulsified silicone.
- Droplets of emulsified silicone for inclusion in the composition of the invention typically have a mean droplet diameter (D3,2) of 2 micrometres or less.
- the mean droplet diameter (D3,2) is 1 micrometre or less, more preferably 0.5 micrometre or less, and most preferably 0.25 micrometre or less.
- a suitable method for measuring the mean droplet diameter (D3,2) is by laser light scattering using an instrument such as a Malvern Mastersizer.
- Suitable silicones for use in the invention include polydiorganosiloxanes, in particular polydimethylsiloxanes (dimethicones), polydimethyl siloxanes having hydroxyl end groups (dimethiconols), and amino-functional polydimethylsiloxanes (amodimethicones).
- Such silicones are preferably non-volatile (with vapour pressure of less than 1000 Pa at 25°C), and preferably have a molecular weight of greater than 100,000, more preferably greater than 250,000.
- Such silicones preferably have a kinematic viscosity of greater than 50,000 cS (mm 2 .s "1 ) and more preferably a kinematic viscosity of greater than 500,000 cS (mm 2 .s "1 ). Silicone kinematic viscosities in the context of this invention are measured at 25°C and can be measured by means of a glass capillary viscometer as set out further in Dow Corning Corporate Test Method CTM004 July 20, 1970.
- Suitable silicones for use in the invention are available as pre-formed silicone emulsions from suppliers such as Dow Corning and GE Silicones. The use of such pre-formed silicone emulsions is preferred for ease of processing and control of silicone particle size.
- Such pre-formed silicone emulsions will typically additionally comprise a suitable emulsifier, and may be prepared by a chemical emulsification process such as emulsion polymerisation, or by mechanical emulsification using a high shear mixer.
- Pre-formed silicone emulsions having a mean droplet diameter (D3,2) of less than 0.15 micrometres are generally termed microemulsions.
- Suitable pre-formed silicone emulsions include emulsions DC2-1766, DC2- 1784, DC-1785, DC-1786, DC-1788, DC-1310, DC-7123 and microemulsions DC2-1865 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Also suitable are amodimethicone emulsions such as DC939 (from Dow Corning) and SME253 (from GE Silicones).
- the level of silicone ⁇ per se as active ingredient will generally range from 1 to 8%, and preferably ranges from 2 to 7.5% by weight based on the total weight of the composition.
- the composition of the invention may suitably include at least one inorganic electrolyte.
- the inorganic electrolyte may be used to help provide viscosity to the composition.
- the viscosity of the composition suitably ranges from 3,000 to 10,000 mPa.s, preferably from 4,000 to 8,000 mPa.s, more preferably from 5,000 to 7,000 mPa.s when measured using a Brookfield V2 viscometer (spindle RTV5, 1 minute, 20rpm) at 30°C.
- Suitable inorganic electrolytes include metal chlorides (such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, ferric chloride and aluminium chloride) and metal sulphates (such as sodium sulphate and magnesium sulphate).
- metal chlorides such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, ferric chloride and aluminium chloride
- metal sulphates such as sodium sulphate and magnesium sulphate
- Examples of preferred inorganic electrolytes for use in the invention include sodium chloride, potassium chloride, magnesium sulphate and mixtures thereof.
- composition of the invention comprises microcapsules (iii) in which a core comprising benefit agent is encapsulated in a polymeric shell.
- microcapsules are preferably present in an amount of from 0.1 to 5% by weight of the total composition.
- the term "benefit agent” in the context of this invention includes materials which can provide a benefit to the hair and/or the scalp and/or the skin (preferably the hair and/or the scalp) as well as those materials which are beneficially incorporated into personal cleansing compositions, such as aesthetic agents.
- the benefit agent of the core of the microcapsule may suitably be selected from perfumes, cosmetic active ingredients such as antimicrobial agents, antidandruff agents, moisturisers, conditioning agents, sunscreening agents, physiological coolants and emollient oils; and mixtures thereof.
- the benefit agent of the core of the microcapsule is selected from perfumes.
- a perfume normally consists of a mixture of a number of perfume materials, each of which has an odour or fragrance.
- the number of perfume materials in a perfume is typically 10 or more.
- the range of fragrant materials used in perfumery is very wide; the materials come from a variety of chemical classes, but in general are water-insoluble oils. In many instances, the molecular weight of a perfume material is in excess of 150, but does not exceed 300.
- perfume materials for use in the invention include geraniol, geranyl acetate, linalol, linalyl acetate, tetrahydrolinalol, citronellol, citronellyl acetate, dihydromyrcenol, dihydromyrcenyl acetate, tetrahydromyrcenol, terpineol, terpinyl acetate, nopyl acetate, 2- phenyl-ethanol, 2-penylethyl acetate, benzyl alcohol, benzyl acetate, benzyl salicylate, styrallyl acetate, benzyl benzoate, amyl salicylate, dimethylbenzyl-carbinol,
- Optional further materials which may be included in the core of the microcapsule include dyes, pigments and preservatives.
- the polymeric shell of the microcapsule may be prepared using methods known to those skilled in the art such as interfacial polymerisation.
- Interfacial polymerisation produces encapsulated shells from the reaction of at least one oil-soluble wall forming material present in the oil phase with at least one water-soluble wall forming material present in the aqueous phase.
- a polymerisation reaction between the two wall-forming materials occurs resulting in the formation of covalent bonds at the interface of the oil and aqueous phases to form the capsule wall.
- An example of a shell capsule produced by this method is a polyurethane capsule.
- the polymeric shell of the microcapsule is an aminoplast resin selected from polyurea formed by reaction of polyisocyanates and polyamines.
- the microcapsules are activated by shear; that is to say they are broken by shear to release the contents.
- a particularly preferred microcapsule has a polyurea shell, prepared as described in US2013/0330292 A1 and US2012/0148644 A1 and available from International Flavors & Fragrances Inc.
- the polymeric shell comprises at most 20 wt% of the weight of the microcapsules.
- microcapsules of a desired size can be produced in known manner.
- the microcapsules typically have a mean diameter in the range 1 to 500 microns, preferably 1 to 300 microns, more preferably 1 to 50 microns and most preferably 1 to 10 microns.
- the microcapsules as initially produced may be filtered or screened to produce a product of greater size uniformity.
- the level of microcapsules will generally range from 0.2 to 2%, and preferably ranges from 0.5 to 1.5% by weight based on the total weight of the composition.
- composition of the invention comprises, inter alia, a combination of cationic polymers comprising:
- charge density in the context of this invention refers to the ratio of the number of positive charges on a monomeric unit of which a polymer is comprised to the molecular weight of the monomeric unit. The charge density multiplied by the polymer molecular weight determines the number of positively charged sites on a given polymer chain.
- the polygalactomannans are polysaccharides composed principally of galactose and mannose units and are usually found in the endosperm of leguminous seeds, such as guar, locust bean, honey locust, flame tree, and the like.
- Guar flour is composed mostly of a galactomannan which is essentially a straight chain mannan with single membered galactose branches.
- the mannose units are linked in a 1 -4-3-glycosidic linkage and the galactose branching takes place by means of a 1 -6 linkage on alternate mannose units.
- the ratio of galactose to mannose in the guar polymer is therefore one to two.
- Suitable cationic polygalactomannans (a) for use in the invention include
- polygalactomannans such as guars
- polygalactomannan derivatives such as hydroxyalkyl guars (for example hydroxyethyl guars or hydroxypropyl guars), that have been cationically modified by chemical reaction with one or more derivatizing agents.
- Derivatizing agents typically contain a reactive functional group, such as an epoxy group, a halide group, an ester group, an anhydride group or an ethylenically unsaturated group, and at least one cationic group such as a cationic nitrogen group, more typically a quaternary ammonium group.
- the derivatization reaction typically introduces lateral cationic groups on the polygalactomannan backbone, generally linked via ether bonds in which the oxygen atom corresponds to hydroxyl groups on the polygalactomannan backbone which have reacted.
- Preferred cationic polygalactomannans (a) for use in the invention include guar hydroxypropyltrimethylammonium chlorides.
- Guar hydroxypropyltrimethylammonium chlorides for use in the invention are generally comprised of a nonionic guar gum backbone that is functionalized with ether-linked 2- hydroxypropyltrimethylammonium chloride groups, and are typically prepared by the reaction of guar gum with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride.
- Cationic polygalactomannans for use in the invention preferably guar
- hydroxypropyltrimethylammonium chlorides generally have an average molecular weight (weight average molecular mass (Mw) determined by size exclusion chromatography) in the range 500,000 to 3 million g/mol, more preferably 800,000 to 2.5 million g/mol.
- Mw weight average molecular mass
- the cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US Pharmacopoeia under chemical tests for nitrogen determination.
- hydroxypropyltnmonium chlorides having a cationic charge density from 0.5 to 1 .1 meq/g.
- hydroxypropyltnmonium chlorides having a cationic charge density from 1 .2 to 2 meq per gram.
- Specific examples of preferred mixtures of cationic polygalactomannans are mixtures of guar hydroxypropyltnmonium chlorides in which one has a cationic charge density from 0.5 to 1 .1 meq/g, and one has a cationic charge density from 1 .2 to 2 meq per gram.
- Cationic polygalactomannans (a) for use in the invention are commercially available from Rhodia as JAGUAR ® C13S, JAGUAR ® C14.
- a cationic polygalactomannan (b) for use in the invention is commercially available from Rhodia as JAGUAR ® C17.
- a preferred cationic polygalactomannan (a) is selected from guar hydroxypropyltrimonium chlorides having an average molecular weight in the range 800,000 to 2.5 million g/mol and a charge density ranging from 0.5 to 1 .1 meq/g.
- a preferred cationic polygalactomannan (b) is selected from guar hydroxypropyltrimonium chlorides having an average molecular weight in the range 800,000 to 2.5 million g/mol and a charge density ranging from 1.2 to 2 meq/g. In a typical composition according to the invention the total level of cationic
- polygalactomannans will generally range from 0.05 to 0.5%, and preferably ranges from 0.1 to 0.3%, more preferably from 0.15 to 0.25 % by weight based on the total weight of the composition.
- composition of the invention comprises a free, non-encapsulated fragrance.
- a composition of the invention may contain further optional ingredients to enhance performance and/or consumer acceptability.
- ingredients include dyes and pigments, pH adjusting agents and preservatives or antimicrobials. Each of these ingredients will be present in an amount effective to accomplish its purpose.
- these optional ingredients are included individually at a level of up to 5% by weight based on the total weight of the composition.
- the pH of the composition of the invention preferably ranges from 4 to 7, more preferably from 5.5 to 6.5.
- composition of the invention is primarily intended for topical application to the body, preferably the hair and scalp.
- composition of the invention is topically applied to the hair and then massaged into the hair and scalp.
- the composition is then rinsed off the hair and scalp with water prior to drying the hair.
- Encapsulated fragrance (Cap10, branched polyethyleneimine copolymer, purchased from IFF) was added by post dosing to each of the bases at a level of 0.4 wt % by total weight of the composition, as shown in Table 1 below.
- Table 1 summary of shampoo compositions SH1 , SH2 and SH3
- Encapsulated perfume (ex IFF) 0.4
- example 1 Deposition of capsules on hair from SH1 , SH2 and SH3 To measure the deposition of capsules onto hair, the following method was used: 2 inch switches of virgin Caucasian hair were used.
- the formulations were evaluated by measuring encapsulated perfume (encap) deposition on hair and fragrance bloom.
- Encap deposition was measured by fluorescence spectrometry.
- 0.025g test formulation was applied to 250mg/2" switches of wet hair. The formulation was massaged on hair for 30 seconds followed by rinsing with warm water for 30 seconds. The treatment was repeated once. Five replicas were produced for each formulation. The hair was extracted in 2ml of ethanol and fluorescence signal analysed. The extracted samples were placed into a 96-well plate and analysed by fluorescence spectrometry on a Varioskan
- Fluorescence detector to determine the level of deposition of the microcapsules onto the hair. An excitation wavelength of 450nm and an emission wavelength of 520nm were used. According to a calibration plot, the efficiency of the deposition process was measured.
- Table 2 Level of deposition of microcapsules on hair, from SH1 , SH2 and SH3
- Example 2 Perfume Intensity on hair treated with SH1 , SH2 and SH3
- Perfume intensity of hair treated with SH1 , SH2 and SH3 was evaluated by a fragrance expert before and after combing the switches.
- the hair switches were first washed with the composition following wash protocol given above. 7" switches were used. The switches are then left to dry overnight. The perfume intensity was measured 24 hours after washing.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
Abstract
The invention provides a personal cleansing composition comprising, in an aqueous continuous phase: (i) from 5 to 30% by weight of one or more anionic cleansing surfactants; (ii) microcapsules in which a core comprising benefit agent is encapsulated in a polymeric shell, wherein the polymeric shell is an aminoplast resin; (iii) a combination of cationic polymers comprising: (a) at least one cationic polygalactomannan having a mean charge density at pH 7 of less than 1.2 meq per gram; and (b) at least one cationic polygalactomannan having a mean charge density at pH 7 at least 1.2 meq per gram; and (iv) a free fragrance.
Description
PERSONAL CARE COMPOSITIONS CONTAINING ENCAPSULATES
Field of the Invention The present invention relates to personal care cleansing compositions such as liquid soaps, body washes and shampoos, which comprise microcapsules.
Background and Prior Art In personal cleansing compositions such as liquid soaps, body washes and shampoos, the deposition and delivery of benefit agents are often key drivers of product
performance. For example, many of the shampoo products in the market today work to deliver benefits to hair by depositing benefit agents such as fragrance materials, silicones, dyes, and anti-dandruff agents onto the hair during washing.
Various technologies have been employed to enhance the delivery of benefit agents at the desired time. One widely used technology is encapsulation of the benefit agent in a protective coating such as a polymeric material. The polymeric material may protect the benefit agent, such as a fragrance material, from evaporation, reaction, oxidation or otherwise dissipating prior to use.
However, maximizing encapsulate deposition during cleansing is a difficult task since most personal cleansing compositions were designed to carry away particulates from the skin or hair. When encapsulates are washed away, relatively high levels of encapsulated benefit agents may be needed in the composition to deliver the consumer desired benefit.
Accordingly, there is a need for a personal cleansing composition that provides an increased deposition of encapsulated benefit agents onto the hair or skin, without impairing other product attributes such as rheology, sensory and conditioning
performance.
The present invention addresses this problem.
Definition of the Invention
In a first aspect, the present invention provides a personal cleansing composition comprising, in an aqueous continuous phase:
(i) from 5 to 30% by weight of one or more anionic cleansing surfactants;
(ii) microcapsules in which a core comprising benefit agent is encapsulated in a polymeric shell, which is an aminoplast; and
(iii) a combination of cationic polymers comprising:
(a) at least one cationic polygalactomannan having a mean charge density at pH 7 of less than 1.2 meq per gram, preferably from 0.5 to 1 .1 ; and
(b) at least one cationic polygalactomannan having a mean charge density at pH 7 at least 1 .2 meq per gram, preferably from 1 .2 to 3, more preferably from 1 .2 to 2; and
(iv) a free fragrance.
Detailed Description and Preferred Embodiments
All molecular weights as used herein are weight average molecular weights, unless otherwise specified.
By "aqueous continuous phase" is meant a continuous phase which has water as its basis. Suitably, the composition of the invention will comprise from about 50 to about 90%, preferably from about 55 to about 85%, more preferably from about 60 to about 85%, most preferably from about 65 to about 83% water (by weight based on the total weight of the composition).
Typical anionic cleansing surfactants (i) for use in the invention include those surface active agents which contain an organic hydrophobic group with from 8 to 14 carbon atoms, preferably from 10 to 14 carbon atoms in their molecular structure; and at least one water-solubilising group which is preferably selected from sulphate, sulphonate, sarcosinate and isethionate.
Specific examples of such anionic cleansing surfactants include ammonium lauryl sulphate, ammonium laureth sulphate, trimethylamine lauryl sulphate, trimethylamine laureth sulphate, triethanolamine lauryl sulphate, trimethylethanolamine laureth sulphate, monoethanolamine lauryl sulphate, monoethanolamine laureth sulphate, diethanolamine lauryl sulphate, diethanolamine laureth sulphate, lauric monoglyceride sodium sulphate, sodium lauryl sulphate, sodium laureth sulphate, potassium lauryl sulphate, potassium laureth sulphate, sodium lauryl sarcosinate, sodium lauroyi sarcosinate, lauryl sarcosine, ammonium cocoyi sulphate, ammonium lauroyi sulphate, sodium cocoyi sulphate, sodium lauryl sulphate, potassium cocoyi sulphate, potassium lauryl sulphate, monoethanolamine cocoyi sulphate, monoethanolamine lauryl sulphate, sodium tridecyl benzene sulphonate, sodium dodecyl benzene sulphonate, sodium cocoyi isethionate and mixtures thereof.
A preferred class of anionic cleansing surfactants for use in the invention are alkyl ether sulphates of general formula:
R-0-(CH2CH2-0)n-S03-M+ in which R is a straight or branched chain alkyl group having 10 to 14 carbon atoms, n is a number that represents the average degree of ethoxylation and ranges from 1 to 5, preferably from 1 to 3, and M is a alkali metal, ammonium or alkanolammonium cation, preferably sodium, potassium, monoethanolammonium or triethanolammonium, or a mixture thereof.
Specific examples of such preferred anionic surfactants include the sodium, potassium, ammonium or ethanolamine salts of Cio to C12 alkyl sulphates and Cio to C12 alkyl ether sulphates (for example sodium lauryl ether sulphate),
Mixtures of any of the above described materials may also be used.
In a typical composition according to the invention the level of anionic cleansing surfactant will generally range from 5 to 30 wt %, preferably from 8 to 25 wt %, and most preferably ranges from 10 to 16 wt % by weight based on the total weight of the composition.
The aqueous continuous phase of the composition according to the invention preferably also includes one or more amphoteric surfactants, in addition to the anionic cleansing surfactant described above. Suitable amphoteric surfactants are betaines, such as those having the general formula R(CH3)2N+CH2COO", where R is an alkyl or alkylamidoalkyl group, the alkyl group preferably having 10 to 16 carbon atoms. Particularly suitable betaines are oleyl betaine, caprylamidopropyl betaine, lauramidopropyl betaine, isostearylamidopropyl betaine, and cocoamidopropyl betaine. Cocoamidopropyl betaine is particularly preferred. When included, the total level of amphoteric surfactant is preferably from 0.1 to 10%, more preferably from 0.5 to 5%, and most preferably from 1 to 3% by weight based on the total weight of the hair cleansing composition).
The compositions of the invention preferably comprise dispersed droplets of conditioning agent with a mean diameter (D3,2) of 4 micrometres or less.
The preferred amount of these dispersed droplets is from 0.1 to 10% by weight of the total composition.
The preferred dispersed conditioning agent is an emulsified silicone. Droplets of emulsified silicone for inclusion in the composition of the invention typically have a mean droplet diameter (D3,2) of 2 micrometres or less. Preferably the mean droplet diameter (D3,2) is 1 micrometre or less, more preferably 0.5 micrometre or less, and most preferably 0.25 micrometre or less.
A suitable method for measuring the mean droplet diameter (D3,2) is by laser light scattering using an instrument such as a Malvern Mastersizer.
Suitable silicones for use in the invention include polydiorganosiloxanes, in particular polydimethylsiloxanes (dimethicones), polydimethyl siloxanes having hydroxyl end groups (dimethiconols), and amino-functional polydimethylsiloxanes (amodimethicones). Such silicones are preferably non-volatile (with vapour pressure of less than 1000 Pa at 25°C), and preferably have a molecular weight of greater than 100,000, more preferably greater than 250,000.
Such silicones preferably have a kinematic viscosity of greater than 50,000 cS (mm2.s"1) and more preferably a kinematic viscosity of greater than 500,000 cS (mm2.s"1). Silicone kinematic viscosities in the context of this invention are measured at 25°C and can be measured by means of a glass capillary viscometer as set out further in Dow Corning Corporate Test Method CTM004 July 20, 1970.
Suitable silicones for use in the invention are available as pre-formed silicone emulsions from suppliers such as Dow Corning and GE Silicones. The use of such pre-formed silicone emulsions is preferred for ease of processing and control of silicone particle size. Such pre-formed silicone emulsions will typically additionally comprise a suitable emulsifier, and may be prepared by a chemical emulsification process such as emulsion polymerisation, or by mechanical emulsification using a high shear mixer. Pre-formed silicone emulsions having a mean droplet diameter (D3,2) of less than 0.15 micrometres are generally termed microemulsions.
Examples of suitable pre-formed silicone emulsions include emulsions DC2-1766, DC2- 1784, DC-1785, DC-1786, DC-1788, DC-1310, DC-7123 and microemulsions DC2-1865 and DC2-1870, all available from Dow Corning. These are all emulsions/microemulsions of dimethiconol. Also suitable are amodimethicone emulsions such as DC939 (from Dow Corning) and SME253 (from GE Silicones).
Mixtures of any of the above described silicone emulsions may also be used.
In a typical composition according to the invention the level of silicone {per se as active ingredient) will generally range from 1 to 8%, and preferably ranges from 2 to 7.5% by weight based on the total weight of the composition.
The composition of the invention may suitably include at least one inorganic electrolyte. The inorganic electrolyte may be used to help provide viscosity to the composition.
The viscosity of the composition suitably ranges from 3,000 to 10,000 mPa.s, preferably from 4,000 to 8,000 mPa.s, more preferably from 5,000 to 7,000 mPa.s when measured using a Brookfield V2 viscometer (spindle RTV5, 1 minute, 20rpm) at 30°C.
Suitable inorganic electrolytes include metal chlorides (such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, ferric chloride and aluminium chloride) and metal sulphates (such as sodium sulphate and magnesium sulphate).
Examples of preferred inorganic electrolytes for use in the invention include sodium chloride, potassium chloride, magnesium sulphate and mixtures thereof.
The composition of the invention comprises microcapsules (iii) in which a core comprising benefit agent is encapsulated in a polymeric shell.
The microcapsules are preferably present in an amount of from 0.1 to 5% by weight of the total composition.
The term "benefit agent" in the context of this invention includes materials which can provide a benefit to the hair and/or the scalp and/or the skin (preferably the hair and/or the scalp) as well as those materials which are beneficially incorporated into personal cleansing compositions, such as aesthetic agents.
The benefit agent of the core of the microcapsule may suitably be selected from perfumes, cosmetic active ingredients such as antimicrobial agents, antidandruff agents, moisturisers, conditioning agents, sunscreening agents, physiological coolants and emollient oils; and mixtures thereof.
Preferably the benefit agent of the core of the microcapsule is selected from perfumes. A perfume normally consists of a mixture of a number of perfume materials, each of which has an odour or fragrance. The number of perfume materials in a perfume is typically 10
or more. The range of fragrant materials used in perfumery is very wide; the materials come from a variety of chemical classes, but in general are water-insoluble oils. In many instances, the molecular weight of a perfume material is in excess of 150, but does not exceed 300.
Examples of perfume materials for use in the invention include geraniol, geranyl acetate, linalol, linalyl acetate, tetrahydrolinalol, citronellol, citronellyl acetate, dihydromyrcenol, dihydromyrcenyl acetate, tetrahydromyrcenol, terpineol, terpinyl acetate, nopyl acetate, 2- phenyl-ethanol, 2-penylethyl acetate, benzyl alcohol, benzyl acetate, benzyl salicylate, styrallyl acetate, benzyl benzoate, amyl salicylate, dimethylbenzyl-carbinol,
trichloromethylphenyl-carbinyl acetate, p-tert-butylcyclohexyl acetate, isononyl acetate, vetiveryl acetate, vetiverol, ohexylcinnamaldehyde, 2-methyl-3-p-tert- butylpheyl)propanal, 2-methyl-3-(p-isopropylphenyl)propanal, 2-(p-tert- butylpheyl)propanal, 2,4-dimethyl-cyclohex-3-enyl-carboxaldehyde, tricyclodecenyl acetate, tricyclodecenyl propionate, 4-(4-hydroxy-4-methylpentyl)-3- cyclohexenecarboxyaldehyde, 4-(4-methyl-3-pentenyl)-3-cyclohexenecarboxaldehyde, 4- acetoxy-3-pentyl-tetrahydropyran, 3-carboxymethyl-2-pentylcyclopentane, 2-n- heptylcyclopentanone, 3-methyl-2-pentyl-2-cyclopentenone, n-decanal, n-dodecanal, 9- decenol-1 , phenoxyethyl isobutyrate, phenyl-acetaldehyde dimethyl-acetal,
phenylacetaldehyde diethylacetal, geranyl nitrile, citronellyl nitrile, cedryl acetate, 3- isocamphylcyclohexanol, cedryl methyl ether, isolongifolanone, aubepine nitrile, aubepine, heliotropin, coumarin, eugenol, vanillin, diphenyl oxide, hydroxycitronellal, ionones, methylionones, isomethylionones, irones, cis-3-hexenol and esters thereof, indan musks, tetralin musks, isochroman musks, macrocyclic ketones, macrolactone musks, ethylene brassylate and mixtures thereof..
Optional further materials which may be included in the core of the microcapsule include dyes, pigments and preservatives. The polymeric shell of the microcapsule may be prepared using methods known to those skilled in the art such as interfacial polymerisation.
Interfacial polymerisation produces encapsulated shells from the reaction of at least one oil-soluble wall forming material present in the oil phase with at least one water-soluble
wall forming material present in the aqueous phase. A polymerisation reaction between the two wall-forming materials occurs resulting in the formation of covalent bonds at the interface of the oil and aqueous phases to form the capsule wall. An example of a shell capsule produced by this method is a polyurethane capsule.
Preferably the polymeric shell of the microcapsule is an aminoplast resin selected from polyurea formed by reaction of polyisocyanates and polyamines.
Preferably, the microcapsules are activated by shear; that is to say they are broken by shear to release the contents.
A particularly preferred microcapsule has a polyurea shell, prepared as described in US2013/0330292 A1 and US2012/0148644 A1 and available from International Flavors & Fragrances Inc.
Advantageously the polymeric shell comprises at most 20 wt% of the weight of the microcapsules.
By modifying process conditions microcapsules of a desired size can be produced in known manner. The microcapsules typically have a mean diameter in the range 1 to 500 microns, preferably 1 to 300 microns, more preferably 1 to 50 microns and most preferably 1 to 10 microns. If necessary, the microcapsules as initially produced may be filtered or screened to produce a product of greater size uniformity. In a typical composition according to the invention the level of microcapsules will generally range from 0.2 to 2%, and preferably ranges from 0.5 to 1.5% by weight based on the total weight of the composition.
The composition of the invention comprises, inter alia, a combination of cationic polymers comprising:
(a) at least one cationic polygalactomannan having a mean charge density at pH 7 of less than 1 .2 meq per gram, preferably from 0.5 to 1 .1 ; and
(b) at least one cationic polygalactomannan having a mean charge density at pH 7 at least 1 .2 meq per gram, preferably from 1 .2 to 3, more preferably from 1.2 to 2
The term "charge density" in the context of this invention refers to the ratio of the number of positive charges on a monomeric unit of which a polymer is comprised to the molecular weight of the monomeric unit. The charge density multiplied by the polymer molecular weight determines the number of positively charged sites on a given polymer chain.
The polygalactomannans are polysaccharides composed principally of galactose and mannose units and are usually found in the endosperm of leguminous seeds, such as guar, locust bean, honey locust, flame tree, and the like. Guar flour is composed mostly of a galactomannan which is essentially a straight chain mannan with single membered galactose branches. The mannose units are linked in a 1 -4-3-glycosidic linkage and the galactose branching takes place by means of a 1 -6 linkage on alternate mannose units. The ratio of galactose to mannose in the guar polymer is therefore one to two.
Suitable cationic polygalactomannans (a) for use in the invention include
polygalactomannans, such as guars, and polygalactomannan derivatives, such as hydroxyalkyl guars (for example hydroxyethyl guars or hydroxypropyl guars), that have been cationically modified by chemical reaction with one or more derivatizing agents.
Derivatizing agents typically contain a reactive functional group, such as an epoxy group, a halide group, an ester group, an anhydride group or an ethylenically unsaturated group, and at least one cationic group such as a cationic nitrogen group, more typically a quaternary ammonium group. The derivatization reaction typically introduces lateral cationic groups on the polygalactomannan backbone, generally linked via ether bonds in which the oxygen atom corresponds to hydroxyl groups on the polygalactomannan backbone which have reacted. Preferred cationic polygalactomannans (a) for use in the invention include guar hydroxypropyltrimethylammonium chlorides.
Guar hydroxypropyltrimethylammonium chlorides for use in the invention are generally comprised of a nonionic guar gum backbone that is functionalized with ether-linked 2-
hydroxypropyltrimethylammonium chloride groups, and are typically prepared by the reaction of guar gum with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride. Cationic polygalactomannans for use in the invention (preferably guar
hydroxypropyltrimethylammonium chlorides) generally have an average molecular weight (weight average molecular mass (Mw) determined by size exclusion chromatography) in the range 500,000 to 3 million g/mol, more preferably 800,000 to 2.5 million g/mol.
The cationic charge density of the polymer is suitably determined via the Kjeldahl method as described in the US Pharmacopoeia under chemical tests for nitrogen determination.
Specific examples of preferred cationic polygalactomannans (a) are guar
hydroxypropyltnmonium chlorides having a cationic charge density from 0.5 to 1 .1 meq/g.
Specific examples of preferred cationic polygalactomannans (b) are guar
hydroxypropyltnmonium chlorides having a cationic charge density from 1 .2 to 2 meq per gram.
Specific examples of preferred mixtures of cationic polygalactomannans are mixtures of guar hydroxypropyltnmonium chlorides in which one has a cationic charge density from 0.5 to 1 .1 meq/g, and one has a cationic charge density from 1 .2 to 2 meq per gram.
Cationic polygalactomannans (a) for use in the invention are commercially available from Rhodia as JAGUAR ® C13S, JAGUAR ® C14.
A cationic polygalactomannan (b) for use in the invention is commercially available from Rhodia as JAGUAR ® C17.
A preferred cationic polygalactomannan (a) is selected from guar hydroxypropyltrimonium chlorides having an average molecular weight in the range 800,000 to 2.5 million g/mol and a charge density ranging from 0.5 to 1 .1 meq/g.
A preferred cationic polygalactomannan (b) is selected from guar hydroxypropyltrimonium chlorides having an average molecular weight in the range 800,000 to 2.5 million g/mol and a charge density ranging from 1.2 to 2 meq/g.
In a typical composition according to the invention the total level of cationic
polygalactomannans will generally range from 0.05 to 0.5%, and preferably ranges from 0.1 to 0.3%, more preferably from 0.15 to 0.25 % by weight based on the total weight of the composition.
The composition of the invention comprises a free, non-encapsulated fragrance.
A composition of the invention may contain further optional ingredients to enhance performance and/or consumer acceptability. Examples of such ingredients include dyes and pigments, pH adjusting agents and preservatives or antimicrobials. Each of these ingredients will be present in an amount effective to accomplish its purpose.
Generally these optional ingredients are included individually at a level of up to 5% by weight based on the total weight of the composition.
The pH of the composition of the invention preferably ranges from 4 to 7, more preferably from 5.5 to 6.5.
Mode of Use
The composition of the invention is primarily intended for topical application to the body, preferably the hair and scalp.
Most preferably the composition of the invention is topically applied to the hair and then massaged into the hair and scalp. The composition is then rinsed off the hair and scalp with water prior to drying the hair.
The invention will be further illustrated by the following, non-limiting Examples, in which all percentages quoted are by weight based on total weight unless otherwise stated.
EXAMPLES
Three shampoo compositions were prepared.
Encapsulated fragrance (Cap10, branched polyethyleneimine copolymer, purchased from IFF) was added by post dosing to each of the bases at a level of 0.4 wt % by total weight of the composition, as shown in Table 1 below.
Table 1 : summary of shampoo compositions SH1 , SH2 and SH3
Table 2: Composition of SH2:
Table 3: Composition of SH3:
Ingredient Amount (wt %)
Sodium laureth sulfate (2EO) 17.0
Cocamidopropyl betaine 5.3
Carbomer 0.4
JAGUAR® C14S 0.15
JAGUAR® C17 0.05
Perfume 0.7
Silicone (DOW CORNING® 1788 5.0
Emulsion)
Encapsulated perfume (ex IFF) 0.4
Water, minors To 100
example 1 : Deposition of capsules on hair from SH1 , SH2 and SH3
To measure the deposition of capsules onto hair, the following method was used: 2 inch switches of virgin Caucasian hair were used.
The formulations were evaluated by measuring encapsulated perfume (encap) deposition on hair and fragrance bloom.
Encap deposition was measured by fluorescence spectrometry. 0.025g test formulation was applied to 250mg/2" switches of wet hair. The formulation was massaged on hair for 30 seconds followed by rinsing with warm water for 30 seconds. The treatment was repeated once. Five replicas were produced for each formulation. The hair was extracted in 2ml of ethanol and fluorescence signal analysed. The extracted samples were placed into a 96-well plate and analysed by fluorescence spectrometry on a Varioskan
Fluorescence detector to determine the level of deposition of the microcapsules onto the hair. An excitation wavelength of 450nm and an emission wavelength of 520nm were used. According to a calibration plot, the efficiency of the deposition process was measured.
For fragrance assessment 7g hair switches were washed in 2g of formulation. The hair was dried overnight. A fragrance expert assessed the hedonic intensity before and after combing the hair.
The results are given in Table 2 below.
Table 2: Level of deposition of microcapsules on hair, from SH1 , SH2 and SH3
It will be seen that deposition is greatest in SH3, in accordance with the invention.
This is in contrast to SH1 , which contains the same amount of encaps also in
combination with guar hydroxypropyltrimonium chloride polymer.
Example 2: Perfume Intensity on hair treated with SH1 , SH2 and SH3
Perfume intensity of hair treated with SH1 , SH2 and SH3 was evaluated by a fragrance expert before and after combing the switches.
The hair switches were first washed with the composition following wash protocol given above. 7" switches were used. The switches are then left to dry overnight. The perfume intensity was measured 24 hours after washing.
The perfume intensity results are reported in Table 3.
Table 3: Perfume intensity of hair treated with SH 1 , SH2 and SH3
It will be seen that perfume intensity is greatest in hair treated with SH3, in accordance with the invention.
Claims
1 . A personal cleansing composition comprising, in an aqueous continuous phase: (i) from 5 to 30% by weight of one or more anionic cleansing surfactants;
(ii) microcapsules in which a core comprising benefit agent is encapsulated in a polymeric shell, wherein the polymeric shell is an aminoplast resin; (iii) a combination of cationic polymers comprising:
(a) at least one cationic polygalactomannan having a mean charge density at pH 7 of less than 1 .2 meq per gram; and
(b) at least one cationic polygalactomannan having a mean charge density at pH 7 at least 1.2 meq per gram; and
(iv) a free fragrance.
2. A composition according to claim 1 , in which the cationic polygalactomannan (a) has a mean charge density at pH 7 of from 0.5 to 1.1 meq per gram.
3. A composition according to claim 1 or claim 2, in which the cationic
polygalactomannan (b) has a mean charge density at pH 7 of from 1 .2 to 3 meq per gram, preferably from 1 .2 to 2 meq per gram.
4. A composition according to any preceding claim, in which the the polymeric shell of the microcapsule is a polyurea.
5. A composition according to any preceding claim, in which the benefit agent of the core of the microcapsule (iii) is selected from perfumes.
6. A composition according to any preceding claim, in which the cationic
polygalactomannan (a) is selected from guar hydroxypropyltrimonium
chlorides having an average molecular weight in the range 800,000 to 2.5 million g/mol and a charge density ranging from 0.5 to 1.1 meq/g.
7. A composition according to any preceding claim, in which the cationic
polygalactomannan (b) is selected from guar hydroxypropyltrimonium chlorides having an average molecular weight in the range 800,000 to 2.5 million g/mol and a charge density ranging from 1.2 to 2 meq/g.
8. A composition according to any preceding claim, in which the weight ratio of cationic polymer (a) to cationic polymer (b) in the composition ranges from 3:1 to 1 :1 .
9. A composition according to any preceding claim, wherein the combination of cationic polymers is present in an amount of from 0.1 to 0.5% by weight of the total composition.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17193910 | 2017-09-28 | ||
EP17193910.1 | 2017-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019063598A1 true WO2019063598A1 (en) | 2019-04-04 |
Family
ID=59997200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/076086 WO2019063598A1 (en) | 2017-09-28 | 2018-09-26 | Personal care compositions containing encapsulates |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019063598A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004043414A1 (en) * | 2002-11-12 | 2004-05-27 | Unilever Plc | Compositions for washing and conditioning hair |
WO2007065537A1 (en) * | 2005-12-08 | 2007-06-14 | Unilever Plc | Shampoo compositions containing a combination of cationic polymers |
WO2011161618A1 (en) * | 2010-06-25 | 2011-12-29 | Firmenich Sa | Stable formaldehyde-free microcapsules |
US20120148644A1 (en) | 2009-09-18 | 2012-06-14 | Lewis Michael Popplewell | Encapsulated Active Materials |
WO2013068255A1 (en) * | 2011-11-10 | 2013-05-16 | Firmenich Sa | Stable formaldehyde-free microcapsules |
WO2013092375A1 (en) * | 2011-12-22 | 2013-06-27 | Firmenich Sa | Process for preparing polyurea microcapsules |
US20130330292A1 (en) | 2009-09-18 | 2013-12-12 | International Flavors & Fragrances Inc. | Polyurea capsules prepared with a polyisocyanate and cross-linking agent |
WO2015055432A1 (en) * | 2013-10-18 | 2015-04-23 | Unilever N.V. | Hair care composition |
WO2017001672A1 (en) * | 2015-07-02 | 2017-01-05 | Givaudan Sa | Microcapsules |
WO2017071915A1 (en) * | 2015-10-29 | 2017-05-04 | Unilever Plc | Personal cleansing compositions |
WO2017167552A1 (en) * | 2016-04-01 | 2017-10-05 | Unilever Plc | Personal cleansing composition |
-
2018
- 2018-09-26 WO PCT/EP2018/076086 patent/WO2019063598A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004043414A1 (en) * | 2002-11-12 | 2004-05-27 | Unilever Plc | Compositions for washing and conditioning hair |
WO2007065537A1 (en) * | 2005-12-08 | 2007-06-14 | Unilever Plc | Shampoo compositions containing a combination of cationic polymers |
US20120148644A1 (en) | 2009-09-18 | 2012-06-14 | Lewis Michael Popplewell | Encapsulated Active Materials |
US20130330292A1 (en) | 2009-09-18 | 2013-12-12 | International Flavors & Fragrances Inc. | Polyurea capsules prepared with a polyisocyanate and cross-linking agent |
WO2011161618A1 (en) * | 2010-06-25 | 2011-12-29 | Firmenich Sa | Stable formaldehyde-free microcapsules |
WO2013068255A1 (en) * | 2011-11-10 | 2013-05-16 | Firmenich Sa | Stable formaldehyde-free microcapsules |
WO2013092375A1 (en) * | 2011-12-22 | 2013-06-27 | Firmenich Sa | Process for preparing polyurea microcapsules |
WO2015055432A1 (en) * | 2013-10-18 | 2015-04-23 | Unilever N.V. | Hair care composition |
WO2017001672A1 (en) * | 2015-07-02 | 2017-01-05 | Givaudan Sa | Microcapsules |
WO2017071915A1 (en) * | 2015-10-29 | 2017-05-04 | Unilever Plc | Personal cleansing compositions |
WO2017167552A1 (en) * | 2016-04-01 | 2017-10-05 | Unilever Plc | Personal cleansing composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10688025B2 (en) | Personal cleansing compositions comprising a cationic polymer mixture | |
EP3285721B1 (en) | Low viscosity hair care composition | |
EP2694016B2 (en) | Shampoo compositions with increased deposition of polyacrylate microcapsules | |
EP1534216B1 (en) | Compositions comprising encapsulated material | |
JP7254783B2 (en) | Microcapsules with improved adhesion | |
WO2020126660A1 (en) | Hair conditioning composition for improved deposition | |
BR112016027653B1 (en) | use of a particle to absorb and retain odorous compounds | |
WO2019072515A1 (en) | Method of use of personal cleansing compositions | |
EP3435968B1 (en) | Personal cleansing composition | |
CN115279485A (en) | Microcapsules and cosmetic compositions containing the same | |
WO2019063598A1 (en) | Personal care compositions containing encapsulates | |
EP3031496B1 (en) | Rinse-off cosmetic compositions | |
JP7483715B2 (en) | Hair Deposition System | |
BR112020009292A2 (en) | aqueous shampoo composition, method to treat hair and use | |
BR112020009292B1 (en) | AQUEOUS SHAMPOO COMPOSITION, METHOD FOR TREATING HAIR AND USES OF A NOUN CATIONIC CONDITIONING POLYMER AND A COMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18772824 Country of ref document: EP Kind code of ref document: A1 |