WO2019062827A1 - Devices and methods for controlling discontinuous reception in new radio - Google Patents

Devices and methods for controlling discontinuous reception in new radio Download PDF

Info

Publication number
WO2019062827A1
WO2019062827A1 PCT/CN2018/108191 CN2018108191W WO2019062827A1 WO 2019062827 A1 WO2019062827 A1 WO 2019062827A1 CN 2018108191 W CN2018108191 W CN 2018108191W WO 2019062827 A1 WO2019062827 A1 WO 2019062827A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
slot
subframe
slotoffset
inactivity timer
Prior art date
Application number
PCT/CN2018/108191
Other languages
French (fr)
Inventor
Chiahung Wei
Meiju SHIH
Original Assignee
Fg Innovation Ip Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65808597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019062827(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fg Innovation Ip Company Limited filed Critical Fg Innovation Ip Company Limited
Priority to KR1020207010686A priority Critical patent/KR102425402B1/en
Priority to JP2020516852A priority patent/JP7036907B2/en
Priority to CN201880060393.1A priority patent/CN111096026B/en
Priority to KR1020227025471A priority patent/KR20220108200A/en
Priority to EP18862440.7A priority patent/EP3689067B1/en
Publication of WO2019062827A1 publication Critical patent/WO2019062827A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure generally relates to wireless communication, and more particularly, to devices and methods for controlling discontinuous reception.
  • discontinuous reception is commonly used between a base station and one or more user equipments (UEs) to preserve battery life of the UEs.
  • UEs user equipments
  • a UE may switch off its RF module and/or suspend control channel monitoring between data transmissions to reduce power consumption.
  • the UE may periodically monitor the control channel (e.g., a physical downlink control channel (PDCCH) ) with preconfigured ON/OFF cycles based on, for example, the base station’s configuration and real traffic pattern.
  • the UE monitors PDCCH for possible data transmission/reception indication.
  • the UE may stay active to finish the transmission.
  • next generation e.g., fifth generation (5G) new radio (NR)
  • 3GPP Third Generation Partnership Project
  • the present disclosure is directed to devices and methods for controlling discontinuous reception in new radio.
  • a method for discontinuous reception comprising: receiving, by receiving circuitry of a User Equipment (UE) , a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) ; determining, by processing circuitry of the UE, a start subframe based on the drx-StartOffset; and determining, by the processing circuitry, a starting time of a DRX On-Duration (drx-onDuration) Timer in the start subframe based on the drx-SlotOffset.
  • RRC Radio Resource Control
  • SFN system frame number
  • drx-ShortCycle Short DRX cycle
  • SFN system frame number
  • drx-LongCycle Long DRX cycle
  • the drx-SlotOffset has an actual time value corresponding to one or more slots, a fraction of the one or more slots.
  • the drx-SlotOffset has an actual time unit in milliseconds or a fraction of a millisecond.
  • the method further comprises receiving, by the receiving circuitry, an indication of a new transmission over a physical downlink control channel (PDCCH) ; starting, by the processing circuitry, a DRX Inactivity Timer (drx-Inactivity Timer) in a first symbol after an end of the PDCCH.
  • PDCCH physical downlink control channel
  • a user equipment comprising: receiving circuitry configured to receive a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) ; processing circuitry configured to: determine a start subframe based on the drx-StartOffset; and determine a starting time of a DRX On-Duration (drx-onDuration) Timer in the start subframe based on the drx-SlotOffset.
  • RRC Radio Resource Control
  • drx-StartOffset DRX Start Offset
  • drx-SlotOffset DRX Slot Offset
  • SFN system frame number
  • drx-LongCycle Long DRX cycle
  • the drx-SlotOffset has an actual time value corresponding to one or more slots, a fraction of the one or more slots.
  • the drx-SlotOffset has an actual time unit in milliseconds or a fraction of a millisecond.
  • a method for discontinuous reception comprising: receiving, by receiving circuitry of a User Equipment (UE) , an indication of a new transmission over a physical downlink control channel (PDCCH) ; starting or restarting, by processing circuitry of the UE, a DRX Inactivity Timer (drx-InactivityTimer) in a first symbol after an end of the PDCCH reception.
  • UE User Equipment
  • PDCCH physical downlink control channel
  • Figure 1 is a schematic diagram illustrating a frame structure showing various ON Duration Timer starting time positions, according to example implementations of the present application.
  • Figure 2 is a schematic diagram illustrating a frame structure with data scheduling and showing various DRX Inactive Timer starting time positions, according to example implementations of the present application.
  • Figures 3A and 3B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration time positions configured with according to example implementations of the present application.
  • Figures 4A and 4B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration time positions configured with according to example implementations of the present application.
  • Figure 5 is a schematic diagram illustrating a subframe structure showing various time intervals for expiration of DRX inactive timers, according to example implementations of the present application.
  • Figure 6 is a flowchart illustrating a method by a UE for DRX operation, in accordance with an example implementation of the present application.
  • Figure 7 is a block diagram illustrating a node for wireless communication, in accordance with an example implementation of the present application.
  • any network function (s) or algorithm (s) described in the present disclosure may be implemented by hardware, software or a combination of software and hardware. Described functions may correspond to modules may be software, hardware, firmware, or any combination thereof.
  • the software implementation may comprise computer executable instructions stored on computer readable medium such as memory or other type of storage devices.
  • one or more microprocessors or general purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the described network function (s) or algorithm (s) .
  • the microprocessors or general purpose computers may be formed of applications specific integrated circuitry (ASIC) , programmable logic arrays, and/or using one or more digital signal processor (DSPs) .
  • ASIC applications specific integrated circuitry
  • DSPs digital signal processor
  • the computer readable medium includes but is not limited to random access memory (RAM) , read only memory (ROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , flash memory, compact disc read-only memory (CD ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory compact disc read-only memory (CD ROM)
  • CD ROM compact disc read-only memory
  • magnetic cassettes magnetic tape
  • magnetic disk storage or any other equivalent medium capable of storing computer-readable instructions.
  • a radio communication network architecture typically includes at least one base station, at least one user equipment (UE) , and one or more optional network elements that provide connection towards a network.
  • the UE communicates with the network (e.g., a core network (CN) , an evolved packet core (EPC) network, an Evolved Universal Terrestrial Radio Access network (E-UTRAN) , a Next-Generation Core (NGC) , 5G Core Network (5GC) , or an internet) , through a radio access network (RAN) established by the base station.
  • CN core network
  • EPC evolved packet core
  • E-UTRAN Evolved Universal Terrestrial Radio Access network
  • NGC Next-Generation Core
  • 5GC 5G Core Network
  • internet radio access network
  • a UE may include, but is not limited to, a mobile station, a mobile terminal or device, a user communication radio terminal.
  • a UE may be a portable radio equipment, which includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, or a personal digital assistant (PDA) with wireless communication capability.
  • PDA personal digital assistant
  • the UE is configured to receive and transmit signals over an air interface to one or more cells in a radio access network.
  • a base station may include, but is not limited to, a node B (NB) as in the UMTS, an evolved node B (eNB) as in the LTE-A, a radio network controller (RNC) as in the UMTS, a base station controller (BSC) as in the GSM/GERAN, an NG-eNB as in an E-UTRA base station in connection with the 5GC, a next generation node B (gNB) as in the 5G-RAN, and any other apparatus capable of controlling radio communication and managing radio resources within a cell.
  • the base station may connect to serve the one or more UEs through a radio interface to the network.
  • a base station may be configured to provide communication services according to at least one of the following radio access technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM, often referred to as 2G) , GSM EDGE radio access Network (GERAN) , General Packet Radio Service (GRPS) , Universal Mobile Telecommunication System (UMTS, often referred to as 3G) based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, eLTE (evolved LTE) , New Radio (NR, often referred to as 5G) , and/or LTE-APro.
  • RATs radio access technologies
  • WiMAX Worldwide Interoperability for Microwave Access
  • GSM Global System for Mobile communications
  • GERAN GSM EDGE radio access Network
  • GRPS General Packet Radio Service
  • UMTS Universal Mobile Telecommunication System
  • HSPA high-speed
  • the base station is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the radio access network.
  • the base station supports the operations of the cells.
  • Each cell is operable to provide services to at least one UE within radio coverage of the cell. More specifically, each cell (often referred to as a serving cell) provides services to serve one or more UEs within the cell’s radio coverage, (e.g., each cell schedules the downlink and optionally uplink resources to at least one UE within the cell’s radio coverage for downlink and optionally uplink packet transmissions) .
  • the base station can communicate with one or more UEs in the radio communication system through the plurality of cells.
  • a cell may allocate sidelink (SL) resources for supporting proximity service (ProSe) .
  • Each cell may have overlapped coverage areas with other cells.
  • the frame structure for the next generation (e.g., 5G NR) wireless communication networks is to support flexible configurations for accommodating various next generation communication requirements, such as eMBB, mMTC, and URLLC, while fulfilling high reliability, high data rate and low latency requirements.
  • the orthogonal frequency-division multiplexing (OFDM) technology as agreed in 3GPP may serve as a baseline for NR waveform.
  • the scalable OFDM numerology, such as the adaptive sub-carrier spacing, the channel bandwidth, and the Cyclic Prefix (CP) may be also used.
  • two coding schemes are considered for NR: (1) low-density parity-check (LDPC) code and (2) Polar Code.
  • the coding scheme adaption may be configured based on the channel conditions and/or the service applications.
  • a downlink (DL) transmission data, a guard period, and an uplink (UL) transmission data should at least be included, where the respective portions of the DL transmission data, the guard period, the UL transmission data should also be configurable, for example, based on the network dynamics of NR.
  • sidelink resource may also be provided in an NR frame to support ProSe services.
  • a UE’s Medium Access Control (MAC) entity may be configured by Radio Resource Control (RRC) with a DRX functionality that controls the UE’s Physical Downlink Control Channel (PDCCH) monitoring activities for the MAC entity’s Common-Radio Network Temporary Identifier (C-RNTI) , transmit power control Physical Uplink Control Channel (PUCCH) Radio Network Temporary Identifier (TPC-PUCCH-RNTI) , transmit power control Physical Uplink Shared Channel (PUSCH) Radio Network Temporary Identifier (TPC-PUSCH-RNTI) , Semi-Persistent Scheduling C-RNTI (if configured) , uplink (UL) Semi-Persistent Scheduling Virtual-RNTI (V-RNTI) (if configured) , enhanced interference mitigation with traffic adaptation-RNTI (eIMTA-RNTI) (if configured) , sidelink-RNTI (S-RNTI) (if configured) , SL-
  • the RRC controls the DRX operation by configuring one or more of the following timers and parameters: DRX On Duration Timer (onDurationTimer) , DRX Inactivity Timer (drx-InactivityTimer) , DRX Retransmission Timer (drx-RetransmissionTimer) , DRX UL Retransmission Timer (e.g., drx-ULRetransmissionTimer) , DRX Long Cycle (longDRX-Cycle) , DRX Start Offset (drxStartOffset) , DRX Short Cycle (shortDRX-Cycle) , and DRX Short Cycle Timer (drxShortCycleTimer ) , as list in table I.
  • the UE Based on the DRX configuration provided by the base station (e.g., an evolved NodeB (eNB) ) , the UE is configured with the exact active time.
  • the Active Time includes time indicated by the ON Duration Timer, the DRX Inactivity Timer, the DRX Retransmission Timer, the DRX UL Retransmission Timer, and/or a MAC-Contention Resolution Timer.
  • Implementations of the present application focus on ON Duration Timer and DRX Inactivity Timer. According to the purposes and usages addressed in present application, these parameters can be categorized into four aspects: DRX Cycle, Data Transmission, Data Retransmission and Hybrid Automatic Repeat reQuest (HARQ) . In addition, these parameters may have different time units. For example, the parameters related to DRX Cycle and HARQ are configured with time units in subframe (sf) , and the parameters related to Data Transmission and Data Retransmission are configured with PDCCH subframe (psf) .
  • next generation wireless communication networks there are at least three different types of time units: Fix time unit (FTU) , Scalable time unit (STU) and Absolute time (AT) .
  • FTU Fix time unit
  • STU Scalable time unit
  • AT Absolute time
  • subframes, frames and hyper-frames are FTUs
  • slots and symbols are STUs.
  • the subframes, frames and hyper-frames are each configured with a fixed length of time, for example, 1 ms, 10 ms, and 10240 ms.
  • the slot length in the next generation (e.g., 5G NR) wireless communication networks is not static due to the differences in symbol lengths.
  • symbol length is inversely proportional to subcarrier spacing (SCS)
  • SCS subcarrier spacing
  • a base station e.g., gNB
  • the shortest time interval between two data scheduling can be a slot in 5G NR wireless communication networks, which has a smaller time granularity than a subframe in LTE wireless communication networks.
  • the data scheduling is not bundled with slots.
  • the UE is to be configured with a UE-specific control resource set (CORESET) configuration which may include time and frequency resource allocation information that the UE needs to monitor.
  • CORESET UE-specific control resource set
  • the CORESET configuration also includes a CORESET monitor periodicity.
  • the CORESET monitor periodicity can be in symbol (s) .
  • the base station e.g., an eNB or a gNB
  • the UE also can be configured with a CORESET configuration which indicates time and frequency resource allocation information that the UE needs to monitor within the PDCCH in each slot.
  • the DRX parameters may be configured with different time units (e.g., FTU, STU or AT) .
  • the DRX Short Cycle Timer (drx-ShortCycleTimer)
  • the DRX Long Cycle (drx-LongCycle)
  • the DRX ON Duration Timer (drx-onDurationTimer)
  • the DRX Inactivity Timer (drx-InactivityTimer)
  • AT e.g., ms
  • the DRX Inactivity Timer may be triggered after a subframe in which a PDCCH indicates an initial uplink, downlink or sidelink user data transmission.
  • the DRX Inactivity Timer is configured with psf.
  • the DRX Inactivity Timer may be configured by milliseconds (ms) .
  • ms milliseconds
  • SFN is a system frame number
  • the ON Duration Timer is configured by psf, the starting time of the ON Duration Timer is at the beginning of a subframe (since each subframe includes a PDCCH) when the ON Duration Timer is triggered.
  • the ON Duration Timer in 5G NR networks is configured by ms, and the actual starting time of the ON Duration Timer may have several possible starting positions.
  • Implementations of the present application address the starting time and the ending time of each of the short DRX Cycle, the long DRX Cycle, the ON Duration Timer, and the DRX Inactivity Timer in 5G NR networks.
  • a UE may be configured with a CORESET configuration that includes several parameters for indicating the location (s) of the CORESET.
  • the CORESET configuration includes a starting symbol for the CORESET (CORESET-start-symb) and the continuous time duration of the CORESET (CORESET-time-duration) .
  • Table II includes the abbreviations and descriptions of the parameters used in the present application.
  • a base station may provide DRX configuration having one or more of the following timers and parameters: parameters: DRX On Duration Timer (drx-onDurationTimer) , DRX Inactivity Timer (drx-InactivityTimer) , DRX Retransmission Timer (drx-RetransmissionTimerDL) , DRX UL Retransmission Timer (drx-RetransmissionTimerUL) , DRX Long Cycle (drx-LongCycle) , DRX Start Offset (drx-StartOffset) , DRX Short Cycle (drx-ShortCycle) , DRX Short Cycle Timer (drx-ShortCycleTimer) , DRX Slot Offset (drx-SlotOffset) , DRX DL HARQ RTT Timer (drx-HARQ-RTT-Timer) , DRX DL HARQ RTT Timer (drx-HARQ-RTT
  • Figure 1 is a schematic diagram illustrating a frame structure showing various ON Duration Timer starting time positions, according to example implementations of the present application.
  • the ON Duration Timer may start at the beginning of a subframe.
  • the ON Duration Timer may start at position 198A, which is at the beginning of subframe 1 .
  • no additional parameter is requrired to be signaled to the UE.
  • the ON Duration Timer may start at the beginning of a CORESET, which is applied, for slot-based scheduling.
  • the ON Duration Timer may start at position 198B, which is at the beginning of CORESET 110.
  • the ON Duration Timer may start when at least one of the two following formulas is satisfied:
  • drx-StartOffset is as same as drxStartOffset in LTE
  • drxStartOffset_slot is a offset in slot configured by gNB via RRC message (s) .
  • the start of ON Duration Timer can be implicitly signalled by CORESET configuration and the starting time of ON Duration Timer may be variable based on CORESET re-configuration.
  • the ON Duration Timer may start at the beginning of a slot.
  • the ON Duration Timer may start at position 198C, which is at the beginning of slot 1 of subframe 1 .
  • the ON Duration Timer may start when at least one of the two following formulas is satisfied:
  • drx-StartOffset is as same as drxStartOffset in LTE
  • drxStartOffset_slot is a offset in slot configured by the base station (e.g., an eNB or a gNB) via RRC message (s) .
  • the ON Duration Timer may start at the beginning of a CORESET that is applied for non-slot-based scheduling.
  • the ON Duration Timer may start at position 198D, which is at the beginning of CORESET 110 N of slot N .
  • the ON Duration Timer may start when at least one of the following formulas is satisfied:
  • drx-StartOffset is as same as drxStartOffset in LTE.
  • drxStartOffset_slot is a offset in slot and n is an CORESET numbering within a slot. Both drxStartOffset_slot and n are configured by the base station (e.g., an eNB or a gNB) via RRC message (s) .
  • the UE may automatically cancel/suspend DRX operation when multiple CORESETs are configured, as power saving may not be the main concern in this situation.
  • a per-UE ON Duration Timer may be configured, and may keep running regardless of which CORESET configuration and its corresponding PDSCH, and the ON Duration Timer is to stop when it expires.
  • a per-CORESET ON Duration Timer may be configured, where cach CORESET may be associated with an ON Duration Timer, and the UE is allowed to sleep when all of ON Duration Timers are stopped.
  • a DRX Inactivity Timer may start after a PDCCH indicates an initial uplink, downlink or sidelink user data transmission for the UE.
  • 5G NR wireless communication networks may support both slot based and non-slot based scheduling.
  • the actual starting time of the DRX Inactivity Timer may be related to a DCI/UCI (Uplink control information) within a CORESET indicating data transmission/reception.
  • DCI/UCI Uplink control information
  • Figure 2 is a schematic diagram illustrating a frame structure with data scheduling and showing various DRX Inactive Timer starting time positions, according to example implementations of the present application.
  • the DRX Inactivity Timer may start after the end of a CORESET indicating a DCI transmission.
  • the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the CORESET.
  • the DRX Inactivity Timer may start at position 298A, which is immediately after the end of CORESET 210 that indicates a DCI transmission.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of CORESET 210.
  • the DRX Inactivity Timer may start at the end of a PDCCH having a DCI transmission.
  • the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the PDCCH.
  • the DRX Inactivity Timer may start at position 298B, which is immediately after the end of PDCCH 212 having a DCI transmission.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of PDCCH 212.
  • the DRX Inactivity Timer may start after the end of the slot of data reception/transmission.
  • the DRX Inactivity Timer may start right after the end of the slot of data reception/transmission within the same slot.
  • the DRX Inactivity Timer may start at position 298C, which is immediately after the end of data reception/transmission 214.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 214 within the same slot 0 .
  • DCI 220 indicates data reception/transmission 214 within the same slot 0 as DCI 220.
  • the DRX Inactivity Timer may start at the end of the slot having a DCI transmission.
  • the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the slot containing a DCI transmission.
  • the DRX Inactivity Timer may start at position 298D, which is at the end of slot 0 containing DCI 220.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of slot 0 containing DCI 220.
  • the DRX Inactivity Timer may start at the end of the subframe containing an end of a data reception/transmission.
  • the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the subframe containing a completed data reception/transmission.
  • the DRX Inactivity Timer may start at position 298E, which is at the end of subframe 1 containing slot N with a completed data reception/transmission 218.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of subframe 1 containing slot N with a completed data reception/transmission 218.
  • the DRX Inactivity Timer may start after the end of a consecutive-slot of data reception/transmission.
  • the DRX Inactivity Timer may start at the beginning of the first symbol after the end of data reception/transmission within a scheduled consecutive-slot data reception/transmission (e.g., at the end of the PDSCH) .
  • the DRX Inactivity Timer may start at position 298F, which is immediately after the end of data reception/transmission 216.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 216 within slot 1 .
  • DCI 220 indicates a consecutive-slot data reception/transmission, where the time interval for the data reception/transmission occupies multiple slots which are consecutive in time domain.
  • the base station transmits DCI 220 indicating a data reception over a PDSCH over two consecutive slot 0 and slot 1 .
  • the DRX Inactivity Timer starts immediately after the end of the PDSCH at the end of the consecutive-slot data reception/transmission at position 298F.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 216 within slot 1 .
  • the DRX Inactivity Timer may start after the end of a cross-slot of data reception/transmission.
  • the DRX Inactivity Timer may start at the beginning of the first symbol after the end of data reception/transmission within a scheduled cross-slot data reception/transmission.
  • the DRX Inactivity Timer may start at position 298G, which is immediately after the end of data reception/transmission 218 scheduled by DCI 222.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 218 within slot N .
  • DCI 222 indicates a cross-slot data reception/transmission, where the data reception/transmission occupies a slot not immediately adjacent to slot 1 in time domain.
  • the base stations transmit DCI 222 indicating a data reception over a PDSCH in slot N .
  • the DRX Inactivity Timer starts immediately after the end of the PDSCH at the end of the cross-slot data reception/transmission at position 298G.
  • the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 218 within slot N .
  • the UE may monitor PDCCH and/or CORESET configured by the base station (e.g., an eNB or a gNB) .
  • the DRX Inactivity Timer may be restarted if the UE is scheduled for data transmission/reception.
  • the base station may explicitly or implicitly indicate whether to (re) start the DRX Inactivity Timer for each scheduling (DCI transmission) through a DCI.
  • the DRX Inactivity Timer is not to (re) start when the base station schedules a new transmission/reception to the UE with a DRX Inactivity Timer skipping indication.
  • the DRX Inactivity Timer is to (re) start when the base station schedules a new transmission/reception to the UE with a DRX Inactivity Timer trigger indication.
  • the base station may configure a CORESET configuration specific DRX Inactivity Timer length. The minimal value of the DRX Inactivity Timer can be zero, which means that the UE can skip triggering the DRX Inactivity Timer for specific CORESET configurations configured by the base station.
  • a UE will switch to a short DRX cycle after a DRX Inactivity Timer expires. Since the DRX Inactivity Timer is triggered at the end of a subframe in which the UE receives a DCI indication, and the timer is counted by psf, the starting time and the expiration time are aligning with edge of a subframe. Different from the LTE networks, 5G NR networks may support different slot lengths, and are more flexible on data scheduling and timer configurations. Thus, the DRX Inactivity Timer may expire at timing positions that do not align with the edges of a subframe.
  • a DRX Inactivity Timer may have a time unit in milliseconds, the actual duration of the DRX Inactivity Time may be integer or floating values.
  • CASE 3 includes various DRX Inactivity Timer expiration positions.
  • the various DRX Inactivity Timer expiration positions will be discussed with reference to Figures 3A and 3B and Figures 4A and 4B, respectively, below.
  • Figures 3A and 3B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration time positions configured with according to example implementations of the present application.
  • a subframe includes four slots and a UE is configured by slot-based scheduling, such that the UE is configured to monitor CORESET within a PDCCH in each slot.
  • the PDCCH can be at the beginning of each slot or semi-statically allocated in anywhere within the slot by the base station for each slot.
  • the PDCCH is allocated at the beginning of each slot and the DRX Inactivity Timer is configured with ms.
  • results may be different on different DRX Inactivity Timer configuration values.
  • DCI 320 for the UE is received in slot 0 of subframe N .
  • the DRX Inactivity Timer may expire right after the end of a CORESET of slot 0 at subframe N+1 (which is after the slot indicates a DCI transmission) , for example, at position 398A as shown in Figure 3A.
  • the DRX Inactivity Timer may expire at the end of a PDCCH of slot 0 at subframe N+1 (a slot which is after the slot indicates a DCI transmission) , for example, at position 398B as shown in Figure 3A.
  • the DRX Inactivity Timer may expire within a slot (slot 0 at subframe N+1 (which is after the slot indicating a DCI transmission) , for example, at position 398C as shown in Figure 3A.
  • the DRX Inactivity Timer may expire at the end of a slot (slot 0 at subframe N+1 (which is after the slot indicating a DCI transmission) ) , for example, at position 398C’as shown in Figure 3B.
  • the DRX Inactivity Timer may expire at the end of a slot (e.g., slot 0 in subframe N+1 (which is after the slot indicating a DCI transmission) , for example, at position 398D as shown in Figure 3A.
  • a slot e.g., slot 0 in subframe N+1 (which is after the slot indicating a DCI transmission)
  • the DRX Inactivity Timer may expire at the end of a subframe (e.g., subframe N+1 (which is after the subframe indicating the DCI transmission) ) , for example, at position 398E as shown in Figure 3A.
  • a subframe e.g., subframe N+1 (which is after the subframe indicating the DCI transmission)
  • the DRX Inactivity Timer may expire within a CORESET (e.g., slot 1 of subframe N+1 ) , for example, at position 398F as shown in Figure 3B.
  • the DRX Inactivity Timer may expire within a slot (e.g., in slot 1 of subframe N+1 ) , for example, at position 398G as shown in Figure 3B.
  • the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission. In other words, when the DRX Inactivity Timer starts right after the end of the data reception/transmission, the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission as illustrated in Figures 3A and 3B.
  • Figures 4A and 4B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration times configured with according to example implementations of the present application.
  • the DRX Inactivity Timer is configured ms. It should be noted that, the results may be different on different DRX Inactivity Timer configuration values. As shown in Figure 4A, DCI 420 for the UE is received in slot 0 of subframe N . Based on the various starting time positions of a triggered DRX Inactivity Timer as discussed in CASE 2 above, there are several corresponding expiration time positions of the DRX Inactivity Timer, which is triggered by the DCI 420.
  • the DRX Inactivity Timer may expire right after the end of a CORESET in slot 2 at subframe N (aslot which is after the slot indicating a DCI transmission) , for example, at position 498A as shown in Figure 4A.
  • the DRX Inactivity Timer may expire at the end of a PDCCH of slot 2 at subframe N (aslot which is after the slot indicates a DCI transmission) , for example, at position 498B as shown in Figure 4A.
  • the DRX Inactivity Timer may expire within a slot (slot 2 at subframe N (which is after the slot indicating the DCI transmission) , for example, at position 498C as shown in Figure 4A.
  • the DRX Inactivity Timer may expire at the end of a slot (slot 2 at subframe N (which is after the slot indicating the DCI transmission) , for example, at position 498C’as shown in Figure 4B.
  • the DRX Inactivity Timer may expire at the end of a slot (e.g., slot 2 in subframe N (which is after the slot indicating a DCI transmission) , for example, at position 498D as shown in Figure 4A.
  • the DRX Inactivity Timer may expire at the end of a slot (e.g., slot 1 in subframe N+1 (which is after the slot indicating a DCI transmission) , for example, at position 498E as shown in Figure 4A.
  • a slot e.g., slot 1 in subframe N+1 (which is after the slot indicating a DCI transmission)
  • the DRX Inactivity Timer may expire within a CORESET (e.g., slot 3 of subframe N ) , for example, at position 498F as shown in Figure 4B.
  • the DRX Inactivity Timer may expire within a slot (e.g., in slot 0 of subframe N+1 ) , for example, at position 498G as shown in Figure 4B.
  • the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission. In other words, when the DRX Inactivity Timer starts right after the end of the data reception/transmission, the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission as illustrated in Figures 4A and 4B.
  • Figure 5 is a schematic diagram illustrating a subframe structure showing various time intervals for expiration of DRX inactive timer, according to example implementations of the present application.
  • zone A is the time interval in slot 0 before the appearance of CORESET 510. Zone A starts from the beginning of in slot 0 and ends at the beginning of CORESET 510. The length of this time interval is (CORESET-start-symb) *symbol length.
  • zone B is the time interval of CORESET 510.
  • the length of this time interval is (CORESET-time-duration) *symbol length.
  • zone C is the time interval of a PDCCH which after the appearance of CORESET 510. It means that zone C starts from the end of the CORESET and end at the ends of PDCCH 512.
  • the length of this time interval is the length of the PDCCH minus time lengths of zones A and B.
  • zone D is the time interval of a slot, after the PDCCH, which starts from the end of PDCCH 512 and ends at the end of slot 0 , wherein slot 0 is the same including the DCI received by the UE.
  • zone E is the time interval of slots, exclude slot 0 having the PDCCH, which starts from the end of slot 0 and ends at the end of slot N .
  • the UE can be configured to stop PDCCH/CORESET monitoring at the following possible timings:
  • the UE may be configured to stop PDCCH/CORESET monitoring at the following possible timings:
  • the UE can be configured to stop PDCCH/CORESET monitoring at the following possible timings:
  • the UE can be configured to stop PDCCH/CORESET monitoring at the following possible timings:
  • CORESETs 110, 210, and 510 are contained in PDCCHs 112, 212, and 512, respectively
  • that CORESETs 110, 210, and 510 may contain resource (e.g., time and frequency) allocation information that allows a UE to locate PDCCHs 112, 212, and 512, respectively.
  • resource e.g., time and frequency
  • CORESETs 110, 210, and 510 may not be contained in PDCCHs 112, 212, and 512, respectively.
  • FIG. 6 is a flowchart of by a UE, according to an example implementation of the present application.
  • flowchart 600 includes actions 682, 684, 686, 688, 690, 692, and 694.
  • the UE receives, by receiving circuitry, a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) .
  • RRC Radio Resource Control
  • the UE determines, by processing circuitry, a start subframe based on the drx-StartOffset.
  • the UE determines, by processing circuitry, a starting time of a DRX On-Duration (drx-onDuration) Timer in the start subframe based on the drx-SlotOffset.
  • drx-onDuration DRX On-Duration
  • the UE receives, by receiving circuitry, an indication of a new transmission over a physical downlink control channel (PDCCH) .
  • PDCH physical downlink control channel
  • the UE starts, by the processing circuitry, a DRX Inactivity Timer (drx-Inactivity Timer) in a first symbol after an end of the PDCCH.
  • a DRX Inactivity Timer (drx-Inactivity Timer) in a first symbol after an end of the PDCCH.
  • FIG. 7 illustrates a block diagram of a node for wireless communication, in accordance with various aspects of the present application.
  • a node 700 may include a transceiver 720, a processor 726, a memory 728, one or more presentation components 734, and at least one antenna 736.
  • the node 700 may also include an RF spectrum band module, a base station communications module, a network communications module, and a system communications management module, input/output (I/O) ports, I/O components, and power supply (not explicitly shown in Figure 7) .
  • Each of these components may be in communication with each other, directly or indirectly, over one or more buses 740.
  • the node 700 may be a UE or a base station that performs various functions described herein, for example, with reference to Figures 1 through 6.
  • the transceiver 720 having a transmitter 722 (having transmitting circuitry) and a receiver 724 (having receiving circuitry) may be configured to transmit and/or receive time and/or frequency resource partitioning information.
  • the transceiver 720 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats.
  • the transceiver 720 may be configured to receive data and control channels.
  • the node 700 may include a variety of computer-readable media.
  • Computer-readable media can be any available media that can be accessed by the node 700 and include both volatile and non-volatile media, removable and non-removable media.
  • Computer-readable media may comprise computer storage media and communication media.
  • Computer storage media includes both volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • Computer storage media does not comprise a propagated data signal.
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
  • the memory 728 may include computer-storage media in the form of volatile and/or non-volatile memory.
  • the memory 728 may be removable, non-removable, or a combination thereof.
  • Exemplary memory includes solid-state memory, hard drives, optical-disc drives, and etc.
  • the memory 728 may store computer-readable, computer-executable instructions 732 (e.g., software codes) that are configured to, when executed, cause the processor 726 (e.g., processing circuitry) to perform various functions described herein, for example, with reference to Figures 1 through 6.
  • the instructions 732 may not be directly executable by the processor 726 but be configured to cause the node 700 (e.g., when compiled and executed) to perform various functions described herein.
  • the processor 726 may include an intelligent hardware device, e.g., a central processing unit (CPU) , a microcontroller, an ASIC, and etc.
  • the processor 726 may include memory.
  • the processor 726 may process the data 730 and the instructions 732 received from the memory 728, and information through the transceiver 720, the base band communications module, and/or the network communications module.
  • the processor 726 may also process information to be sent to the transceiver 720 for transmission through the antenna 736, to the network communications module for transmission to a core network.
  • One or more presentation components 734 presents data indications to a person or other device.
  • Exemplary presentation components 734 include a display device, speaker, printing component, vibrating component, and etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for discontinuous reception (DRX) is disclosed. The method includes receiving, by receiving circuitry of a User Equipment (UE), a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset), determining, by processing circuitry of the UE, a start subframe based on the drx-StartOffset, and determining, by the processing circuitry, a starting time of a DRX On-Duration Timer (drx-onDurationTimer) in the start subframe based on the drx-SlotOffset.

Description

DEVICES AND METHODS FOR CONTROLLING DISCONTINUOUS RECEPTION IN NEW RADIO
CROSS-REFERENCE TO RELATED APPLICATION (S)
The present application claims the benefit of and priority to a provisional U.S. Patent Application Serial No. 62/564,650 filed on 9/28/2017, entitled “DRX STATE TRANSITION UNDER MULTIPLE NUMEROLOGY IN NEW RADIO, ” Attorney Docket No. US71996 (hereinafter referred to as “US71996 application” ) . The disclosure of the US71996 application is hereby incorporated fully by reference into the present application.
FIELD
The present disclosure generally relates to wireless communication, and more particularly, to devices and methods for controlling discontinuous reception.
BACKGROUND
In a wireless communication network, such as a long term evolution (LTE) or an evolved LTE (eLTE) network, discontinuous reception (DRX) is commonly used between a base station and one or more user equipments (UEs) to preserve battery life of the UEs. For example, during DRX, a UE may switch off its RF module and/or suspend control channel monitoring between data transmissions to reduce power consumption. The UE may periodically monitor the control channel (e.g., a physical downlink control channel (PDCCH) ) with preconfigured ON/OFF cycles based on, for example, the base station’s configuration and real traffic pattern. During active time (e.g., ON cycles) , the UE monitors PDCCH for possible data transmission/reception indication. When data transmission occurs during the active time, the UE may stay active to finish the transmission.
In order to increase flexibility on data scheduling in the next generation (e.g., fifth generation (5G) new radio (NR) ) wireless communication networks, the Third Generation Partnership Project (3GPP) has introduced new designs on forming frame structures and allocating control channels, where not all elements in a frame structure will have a fixed time unit.
Thus, there is a need in the art for devices and methods for controlling DRX operation for the next generation wireless communication networks.
SUMMARY
The present disclosure is directed to devices and methods for controlling discontinuous reception in new radio.
In a first aspect of the present disclosure, a method for discontinuous reception (DRX) , is disclosed, the method comprising: receiving, by receiving circuitry of a User Equipment (UE) , a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) ; determining, by processing circuitry of the UE, a start subframe based on the drx-StartOffset; and determining, by the processing circuitry, a starting time of a DRX On-Duration (drx-onDuration) Timer in the start subframe based on the drx-SlotOffset.
According to one implementation of the first aspect, the method further comprises receiving, by the receiving circuitry, a system frame number (SFN) , a subframe number, and a Short DRX cycle (drx-ShortCycle) ; starting, by the processing circuitry, the drx-on Duration Timer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) +subframe number]modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) .
According to another implementation of the first aspect, the method further comprises receiving, by the receiving circuitry, a system frame number (SFN) , a subframe number, and a Long DRX cycle (drx-LongCycle) ; starting, by the processing circuitry, the drx-on Duration Timer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) +subframe number]modulo (drx-LongCycle) = drx-StartOffset.
According to another implementation of the first aspect, the drx-SlotOffset has an actual time value corresponding to one or more slots, a fraction of the one or more slots.
According to another implementation of the first aspect, the drx-SlotOffset has an actual time unit in milliseconds or a fraction of a millisecond.
According to another implementation of the first aspect, the method further comprises receiving, by the receiving circuitry, an indication of a new transmission over a physical downlink control channel (PDCCH) ; starting, by the processing circuitry, a DRX Inactivity Timer (drx-Inactivity Timer) in a first symbol after an end of the PDCCH.
In a second aspect of the present disclosure, a user equipment (UE) is disclosed, the UE comprising: receiving circuitry configured to receive a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) ; processing circuitry configured to: determine a start subframe based on the drx-StartOffset; and  determine a starting time of a DRX On-Duration (drx-onDuration) Timer in the start subframe based on the drx-SlotOffset.
According to one implementation of the second aspect, the receiving circuit is further configured to receive a system frame number (SFN) and a Short DRX cycle (drx-ShortCycle) ; the processing circuitry is further configured to: determine a subframe number; start the drx-on Duration Timer after the drx-SlotOffset from a beginning of the start subframe, when [(SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) .
According to another implementation of the second aspect, the receiving circuit is further configured to receive a system frame number (SFN) and a Long DRX cycle (drx-LongCycle) ; the processing circuitry is further configured to: determine a subframe number; start the drx-on Duration Timer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset.
According to another implementation of the second aspect, the drx-SlotOffset has an actual time value corresponding to one or more slots, a fraction of the one or more slots.
According to another implementation of the second aspect, the drx-SlotOffset has an actual time unit in milliseconds or a fraction of a millisecond.
In a third aspect of the present disclosure, a method for discontinuous reception (DRX) is disclosed, the method comprising: receiving, by receiving circuitry of a User Equipment (UE) , an indication of a new transmission over a physical downlink control channel (PDCCH) ; starting or restarting, by processing circuitry of the UE, a DRX Inactivity Timer (drx-InactivityTimer) in a first symbol after an end of the PDCCH reception.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the exemplary disclosure are best understood from the following detailed description when read with the accompanying figures. Various features are not drawn to scale, dimensions of various features may be arbitrarily increased or reduced for clarity of discussion.
Figure 1 is a schematic diagram illustrating a frame structure showing various ON Duration Timer starting time positions, according to example implementations of the present application.
Figure 2 is a schematic diagram illustrating a frame structure with data scheduling and showing various DRX Inactive Timer starting time positions, according to example implementations of the present application.
Figures 3A and 3B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration time positions configured with
Figure PCTCN2018108191-appb-000001
according to example implementations of the present application.
Figures 4A and 4B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration time positions configured with
Figure PCTCN2018108191-appb-000002
according to example implementations of the present application.
Figure 5 is a schematic diagram illustrating a subframe structure showing various time intervals for expiration of DRX inactive timers, according to example implementations of the present application.
Figure 6 is a flowchart illustrating a method by a UE for DRX operation, in accordance with an example implementation of the present application.
Figure 7 is a block diagram illustrating a node for wireless communication, in accordance with an example implementation of the present application.
DETAILED DESCRIPTION
The following description contains specific information pertaining to exemplary implementations in the present disclosure. The drawings in the present disclosure and their accompanying detailed description are directed to merely exemplary implementations. However, the present disclosure is not limited to merely these exemplary implementations. Other variations and implementations of the present disclosure will occur to those skilled in the art. Unless noted otherwise, like or corresponding elements among the figures may be indicated by like or corresponding reference numerals. Moreover, the drawings and illustrations in the present disclosure are generally not to scale, and are not intended to correspond to actual relative dimensions.
For the purpose of consistency and ease of understanding, like features are identified (although, in some examples, not shown) by numerals in the exemplary figures. However, the features in different implementations may be differed in other respects, and thus shall not be narrowly confined to what is shown in the figures.
The description uses the phrases “in one implementation, ” or “in some implementations, ” which may each refer to one or more of the same or different implementations. The term “coupled” is defined as connected, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The term “comprising, ” when utilized, means “including, but not necessarily limited to” ; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the equivalent.
Additionally, for the purposes of explanation and non-limitation, specific details, such as functional entities, techniques, protocols, standard, and the like are set forth for providing an understanding of the described technology. In other examples, detailed description of well-known methods, technologies, system, architectures, and the like are omitted so as not to obscure the description with unnecessary details.
Persons skilled in the art will immediately recognize that any network function (s) or algorithm (s) described in the present disclosure may be implemented by hardware, software or a combination of software and hardware. Described functions may correspond to modules may be software, hardware, firmware, or any combination thereof. The software implementation may comprise computer executable instructions stored on computer readable medium such as memory or other type of storage devices. For example, one or more microprocessors or general purpose computers with communication processing capability may be programmed with corresponding executable instructions and carry out the described network function (s) or algorithm (s) . The microprocessors or general purpose computers may be formed of applications specific integrated circuitry (ASIC) , programmable logic arrays, and/or using one or more digital signal processor (DSPs) . Although some of the exemplary implementations described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative exemplary implementations implemented as firmware or as hardware or combination of hardware and software are well within the scope of the present disclosure.
The computer readable medium includes but is not limited to random access memory (RAM) , read only memory (ROM) , erasable programmable read-only memory (EPROM) , electrically erasable programmable read-only memory (EEPROM) , flash memory, compact disc read-only memory (CD ROM) , magnetic cassettes, magnetic tape, magnetic disk storage, or any other equivalent medium capable of storing computer-readable instructions.
A radio communication network architecture (e.g., a long term evolution (LTE)  system, an LTE-Advanced (LTE-A) system, or an LTE-Advanced Pro system) typically includes at least one base station, at least one user equipment (UE) , and one or more optional network elements that provide connection towards a network. The UE communicates with the network (e.g., a core network (CN) , an evolved packet core (EPC) network, an Evolved Universal Terrestrial Radio Access network (E-UTRAN) , a Next-Generation Core (NGC) , 5G Core Network (5GC) , or an internet) , through a radio access network (RAN) established by the base station.
It should be noted that, in the present application, a UE may include, but is not limited to, a mobile station, a mobile terminal or device, a user communication radio terminal. For example, a UE may be a portable radio equipment, which includes, but is not limited to, a mobile phone, a tablet, a wearable device, a sensor, or a personal digital assistant (PDA) with wireless communication capability. The UE is configured to receive and transmit signals over an air interface to one or more cells in a radio access network.
A base station may include, but is not limited to, a node B (NB) as in the UMTS, an evolved node B (eNB) as in the LTE-A, a radio network controller (RNC) as in the UMTS, a base station controller (BSC) as in the GSM/GERAN, an NG-eNB as in an E-UTRA base station in connection with the 5GC, a next generation node B (gNB) as in the 5G-RAN, and any other apparatus capable of controlling radio communication and managing radio resources within a cell. The base station may connect to serve the one or more UEs through a radio interface to the network.
A base station may be configured to provide communication services according to at least one of the following radio access technologies (RATs) : Worldwide Interoperability for Microwave Access (WiMAX) , Global System for Mobile communications (GSM, often referred to as 2G) , GSM EDGE radio access Network (GERAN) , General Packet Radio Service (GRPS) , Universal Mobile Telecommunication System (UMTS, often referred to as 3G) based on basic wideband-code division multiple access (W-CDMA) , high-speed packet access (HSPA) , LTE, LTE-A, eLTE (evolved LTE) , New Radio (NR, often referred to as 5G) , and/or LTE-APro. However, the scope of the present application should not be limited to the above mentioned protocols.
The base station is operable to provide radio coverage to a specific geographical area using a plurality of cells forming the radio access network. The base station supports the operations of the cells. Each cell is operable to provide services to at least one UE within radio coverage of the cell. More specifically, each cell (often referred to as a serving cell) provides  services to serve one or more UEs within the cell’s radio coverage, (e.g., each cell schedules the downlink and optionally uplink resources to at least one UE within the cell’s radio coverage for downlink and optionally uplink packet transmissions) . The base station can communicate with one or more UEs in the radio communication system through the plurality of cells. A cell may allocate sidelink (SL) resources for supporting proximity service (ProSe) . Each cell may have overlapped coverage areas with other cells.
As discussed above, the frame structure for the next generation (e.g., 5G NR) wireless communication networks is to support flexible configurations for accommodating various next generation communication requirements, such as eMBB, mMTC, and URLLC, while fulfilling high reliability, high data rate and low latency requirements. The orthogonal frequency-division multiplexing (OFDM) technology as agreed in 3GPP may serve as a baseline for NR waveform. The scalable OFDM numerology, such as the adaptive sub-carrier spacing, the channel bandwidth, and the Cyclic Prefix (CP) may be also used. Additionally, two coding schemes are considered for NR: (1) low-density parity-check (LDPC) code and (2) Polar Code. The coding scheme adaption may be configured based on the channel conditions and/or the service applications.
Moreover, it is also considered that in a transmission time interval TX of a single NR frame, a downlink (DL) transmission data, a guard period, and an uplink (UL) transmission data should at least be included, where the respective portions of the DL transmission data, the guard period, the UL transmission data should also be configurable, for example, based on the network dynamics of NR. In addition, sidelink resource may also be provided in an NR frame to support ProSe services.
In Long-Term-Evolution (LTE) wireless communication systems, during DRX operation, a UE’s Medium Access Control (MAC) entity may be configured by Radio Resource Control (RRC) with a DRX functionality that controls the UE’s Physical Downlink Control Channel (PDCCH) monitoring activities for the MAC entity’s Common-Radio Network Temporary Identifier (C-RNTI) , transmit power control Physical Uplink Control Channel (PUCCH) Radio Network Temporary Identifier (TPC-PUCCH-RNTI) , transmit power control Physical Uplink Shared Channel (PUSCH) Radio Network Temporary Identifier (TPC-PUSCH-RNTI) , Semi-Persistent Scheduling C-RNTI (if configured) , uplink (UL) Semi-Persistent Scheduling Virtual-RNTI (V-RNTI) (if configured) , enhanced interference mitigation with traffic  adaptation-RNTI (eIMTA-RNTI) (if configured) , sidelink-RNTI (S-RNTI) (if configured) , SL-V-RNTI (if configured) , Component Carrier-RNTI (CC-RNTI) (if configured) , and Sounding Reference Signal (SRS) -TPC-RNTI (SRS-TPC-RNTI) (if configured) . When in the RRC_CONNECTED state, if DRX is configured, the MAC entity is allowed to monitor the PDCCH discontinuously using DRX operation. The RRC controls the DRX operation by configuring one or more of the following timers and parameters: DRX On Duration Timer (onDurationTimer) , DRX Inactivity Timer (drx-InactivityTimer) , DRX Retransmission Timer (drx-RetransmissionTimer) , DRX UL Retransmission Timer (e.g., drx-ULRetransmissionTimer) , DRX Long Cycle (longDRX-Cycle) , DRX Start Offset (drxStartOffset) , DRX Short Cycle (shortDRX-Cycle) , and DRX Short Cycle Timer (drxShortCycleTimer ) , as list in table I. Based on the DRX configuration provided by the base station (e.g., an evolved NodeB (eNB) ) , the UE is configured with the exact active time. When a DRX cycle is configured, the Active Time includes time indicated by the ON Duration Timer, the DRX Inactivity Timer, the DRX Retransmission Timer, the DRX UL Retransmission Timer, and/or a MAC-Contention Resolution Timer.
Implementations of the present application focus on ON Duration Timer and DRX Inactivity Timer. According to the purposes and usages addressed in present application, these parameters can be categorized into four aspects: DRX Cycle, Data Transmission, Data Retransmission and Hybrid Automatic Repeat reQuest (HARQ) . In addition, these parameters may have different time units. For example, the parameters related to DRX Cycle and HARQ are configured with time units in subframe (sf) , and the parameters related to Data Transmission and Data Retransmission are configured with PDCCH subframe (psf) .
Table I-List of parameters in DRX
Figure PCTCN2018108191-appb-000003
Figure PCTCN2018108191-appb-000004
In the next generation (e.g., 5G NR) wireless communication networks, there are at least three different types of time units: Fix time unit (FTU) , Scalable time unit (STU) and Absolute time (AT) . For example, subframes, frames and hyper-frames are FTUs, while slots and symbols are STUs. The subframes, frames and hyper-frames are each configured with a fixed length of time, for example, 1 ms, 10 ms, and 10240 ms. Different from LTE, the slot length in the next generation (e.g., 5G NR) wireless communication networks is not static due to the differences in symbol lengths. As symbol length is inversely proportional to subcarrier spacing (SCS) , the number of slots within a subframe may vary depending on, for example, SCS.
In a 5G NR wireless communication network, two different scheduling mechanisms, slot-based scheduling and non-slot-based scheduling, are supported. For slot-based scheduling, since each slot includes a PDCCH occasion, a base station (e.g., gNB) may perform data scheduling on a per slot basis. In other words, the shortest time interval between two data scheduling can be a slot in 5G NR wireless communication networks, which has a smaller time granularity than a subframe in LTE wireless communication networks. For non-slot-based scheduling mechanism, the data scheduling is not bundled with slots. The UE is to be configured with a UE-specific control resource set (CORESET) configuration which may include time and frequency resource allocation information that the UE needs to monitor. The CORESET configuration also includes a CORESET monitor periodicity. The CORESET monitor periodicity can be in symbol (s) . Hence, the base station (e.g., an eNB or a gNB) may perform more than one data scheduling within one slot, and may also have a smaller time granularity than slot-based scheduling. In slot-based scheduling, the UE also can be configured with a CORESET configuration which indicates time and frequency resource allocation information that the UE needs to monitor within the PDCCH in each slot.
Furthermore, in 5G NR wireless communication networks, the DRX parameters may be configured with different time units (e.g., FTU, STU or AT) . For example, the DRX Short  Cycle Timer (drx-ShortCycleTimer) , the DRX Long Cycle (drx-LongCycle) , the DRX ON Duration Timer (drx-onDurationTimer) , and the DRX Inactivity Timer (drx-InactivityTimer) may be configured by AT (e.g., ms) . Hence, the DRX operation, in 5G NR wireless communication networks, are more flexible than the DRX operation in LTE wireless communication networks. For example, in LTE networks, the DRX Inactivity Timer may be triggered after a subframe in which a PDCCH indicates an initial uplink, downlink or sidelink user data transmission. As indicated in Table I, the DRX Inactivity Timer is configured with psf. In 5G NR networks, the DRX Inactivity Timer may be configured by milliseconds (ms) . Hence, detailed behaviors of the DRX operation need to be adjusted accordingly. For example, the starting time and/or expiration time of the short DRX Cycle, the long DRX Cycle, the ON Duration Timer and the DRX Inactivity Timer need to be addressed.
In LTE networks, since the ON Duration Timer will be triggered when one of the two following formulas is satisfied:
(1) Short DRX Cycle is used and [ (SFN *10) + subframe number] modulo (shortDRX-Cycle) = (drxStartOffset) modulo (shortDRX-Cycle)
(2) Long DRX Cycle is used and [ (SFN *10) + subframe number] modulo (longDRX-Cycle) = drxStartOffset
where SFN is a system frame number.
Since the ON Duration Timer is configured by psf, the starting time of the ON Duration Timer is at the beginning of a subframe (since each subframe includes a PDCCH) when the ON Duration Timer is triggered. However, the ON Duration Timer in 5G NR networks is configured by ms, and the actual starting time of the ON Duration Timer may have several possible starting positions.
Implementations of the present application address the starting time and the ending time of each of the short DRX Cycle, the long DRX Cycle, the ON Duration Timer, and the DRX Inactivity Timer in 5G NR networks.
In 5G NR networks, there are ten subframes per system frame, 
Figure PCTCN2018108191-appb-000005
slots per subframe, and
Figure PCTCN2018108191-appb-000006
symbols per slot. In other words, there are
Figure PCTCN2018108191-appb-000007
symbols per subframe, and
Figure PCTCN2018108191-appb-000008
symbols per system frame.
Referring to Figure 1, a UE may be configured with a CORESET configuration that  includes several parameters for indicating the location (s) of the CORESET. For example, the CORESET configuration includes a starting symbol for the CORESET (CORESET-start-symb) and the continuous time duration of the CORESET (CORESET-time-duration) . Table II includes the abbreviations and descriptions of the parameters used in the present application.
Table II-Abbreviations of parameters
Figure PCTCN2018108191-appb-000009
In 5G NR wireless communication networks, during DRX operation, a base station (e.g., a gNB) may provide DRX configuration having one or more of the following timers and  parameters: parameters: DRX On Duration Timer (drx-onDurationTimer) , DRX Inactivity Timer (drx-InactivityTimer) , DRX Retransmission Timer (drx-RetransmissionTimerDL) , DRX UL Retransmission Timer (drx-RetransmissionTimerUL) , DRX Long Cycle (drx-LongCycle) , DRX Start Offset (drx-StartOffset) , DRX Short Cycle (drx-ShortCycle) , DRX Short Cycle Timer (drx-ShortCycleTimer) , DRX Slot Offset (drx-SlotOffset) , DRX DL HARQ RTT Timer (drx-HARQ-RTT-TimerDL) , and DRX UL HARQ RTT Timer (drx-HARQ-RTT-TimerUL) .
CASE 1: ON Duration Timer Starting Time
Figure 1 is a schematic diagram illustrating a frame structure showing various ON Duration Timer starting time positions, according to example implementations of the present application.
In one implementation, the ON Duration Timer may start at the beginning of a subframe. In diagram 100, the ON Duration Timer may start at position 198A, which is at the beginning of subframe 1. In this implementation, no additional parameter is requrired to be signaled to the UE.
In one implementation, the ON Duration Timer may start at the beginning of a CORESET, which is applied, for slot-based scheduling. In diagram 100, the ON Duration Timer may start at position 198B, which is at the beginning of CORESET 110. In this implementation, the ON Duration Timer may start when at least one of the two following formulas is satisfied:
(1) Short DRX Cycle is used and [ (SFN *10) + subframe number]modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) and slot number = drxStartOffset_slot and symbol number = CORESET-start-symb;
(2) Long DRX Cycle is used and [ (SFN *10) + subframe number]modulo (drx-LongCycle) = drx-StartOffset and slot number = drxStartOffset_slot and symbol number = CORESET-start-symb;
where drx-StartOffset is as same as drxStartOffset in LTE, and drxStartOffset_slot is a offset in slot configured by gNB via RRC message (s) . Under this implementation, the start of ON Duration Timer can be implicitly signalled by CORESET configuration and  the starting time of ON Duration Timer may be variable based on CORESET re-configuration.
In one implementation, the ON Duration Timer may start at the beginning of a slot. In diagram 100, the ON Duration Timer may start at position 198C, which is at the beginning of slot 1 of subframe 1. In this implementation, the ON Duration Timer may start when at least one of the two following formulas is satisfied:
(1) Short DRX Cycle is used and [ (SFN *10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) and slot number = drxStartOffset_slot
(2) Long DRX Cycle is used and [ (SFN *10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset and slot number = drxStartOffset_slot
where drx-StartOffsetis as same as drxStartOffset in LTE, and drxStartOffset_slot is a offset in slot configured by the base station (e.g., an eNB or a gNB) via RRC message (s) .
In one implementation, the ON Duration Timer may start at the beginning of a CORESET that is applied for non-slot-based scheduling. In diagram 100, the ON Duration Timer may start at position 198D, which is at the beginning of CORESET 110 N of slot N. In this implementation, the ON Duration Timer may start when at least one of the following formulas is satisfied:
(1) Short DRX Cycle is used and [ (SFN *10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) and slot number = drxStartOffset_slot and symbol number = (CORESET-start-symb+n*CORESET-Monitor-periodicity) ;
(2) Long DRX Cycle is used and [ (SFN *10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset and slot number = drxStartOffset_slot and symbol number = (CORESET-start-symb+n*CORESET-Monitor-periodicity) ;
where drx-StartOffsetis as same as drxStartOffset in LTE. drxStartOffset_slot is a offset in slot and n is an CORESET numbering within a slot. Both drxStartOffset_slot and n are configured by the base station (e.g., an eNB or a gNB) via RRC message (s) .
In some implementations, the UE may automatically cancel/suspend DRX operation when multiple CORESETs are configured, as power saving may not be the main concern in this situation. In some implementations, a per-UE ON Duration Timer may be configured, and may keep running regardless of which CORESET configuration and its corresponding PDSCH, and the ON Duration Timer is to stop when it expires. In some implementations, a per-CORESET ON Duration Timer may be configured, where cach CORESET may be associated with an ON Duration Timer, and the UE is allowed to sleep when all of ON Duration Timers are stopped.
CASE 2: DRX Inactivity Timer Starting Time
A DRX Inactivity Timer may start after a PDCCH indicates an initial uplink, downlink or sidelink user data transmission for the UE. In light of the flexible CORESET configurations, 5G NR wireless communication networks may support both slot based and non-slot based scheduling. Hence, the actual starting time of the DRX Inactivity Timer may be related to a DCI/UCI (Uplink control information) within a CORESET indicating data transmission/reception.
Figure 2 is a schematic diagram illustrating a frame structure with data scheduling and showing various DRX Inactive Timer starting time positions, according to example implementations of the present application.
In one implementation, the DRX Inactivity Timer may start after the end of a CORESET indicating a DCI transmission. For example, the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the CORESET. In diagram 200, the DRX Inactivity Timer may start at position 298A, which is immediately after the end of CORESET 210 that indicates a DCI transmission. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of CORESET 210.
In one implementation, the DRX Inactivity Timer may start at the end of a PDCCH having a DCI transmission. For example, the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the PDCCH. In diagram 200, the DRX Inactivity Timer may start at position 298B, which is immediately after the end of PDCCH 212 having a DCI transmission.  For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of PDCCH 212.
In one implementation, the DRX Inactivity Timer may start after the end of the slot of data reception/transmission. For example, the DRX Inactivity Timer may start right after the end of the slot of data reception/transmission within the same slot. In diagram 200, the DRX Inactivity Timer may start at position 298C, which is immediately after the end of data reception/transmission 214. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 214 within the same slot 0. It should be noted that DCI 220 indicates data reception/transmission 214 within the same slot 0 as DCI 220.
In one implementation, the DRX Inactivity Timer may start at the end of the slot having a DCI transmission. For example, the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the slot containing a DCI transmission. In diagram 200, the DRX Inactivity Timer may start at position 298D, which is at the end of slot 0 containing DCI 220. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of slot 0 containing DCI 220.
In one implementation, the DRX Inactivity Timer may start at the end of the subframe containing an end of a data reception/transmission. For example, the DRX Inactivity Timer may start at the beginning of the first symbol after the end of the subframe containing a completed data reception/transmission. In diagram 200, the DRX Inactivity Timer may start at position 298E, which is at the end of subframe 1 containing slot N with a completed data reception/transmission 218. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of subframe 1 containing slot N with a completed data reception/transmission 218.
In one implementation, the DRX Inactivity Timer may start after the end of a consecutive-slot of data reception/transmission. For example, the DRX Inactivity Timer may start at the beginning of the first symbol after the end of data reception/transmission within a scheduled consecutive-slot data reception/transmission (e.g., at the end of the PDSCH) . In diagram 200, the DRX Inactivity Timer may start at position 298F, which is immediately after the end of data reception/transmission 216. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 216 within slot 1. In this  implementation, DCI 220 indicates a consecutive-slot data reception/transmission, where the time interval for the data reception/transmission occupies multiple slots which are consecutive in time domain. For example, in diagram 200, the base station transmits DCI 220 indicating a data reception over a PDSCH over two consecutive slot 0 and slot 1. Then, the DRX Inactivity Timer starts immediately after the end of the PDSCH at the end of the consecutive-slot data reception/transmission at position 298F. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 216 within slot 1.
In one implementation, the DRX Inactivity Timer may start after the end of a cross-slot of data reception/transmission. For example, the DRX Inactivity Timer may start at the beginning of the first symbol after the end of data reception/transmission within a scheduled cross-slot data reception/transmission.
In diagram 200, the DRX Inactivity Timer may start at position 298G, which is immediately after the end of data reception/transmission 218 scheduled by DCI 222. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 218 within slot N. In this implementation, DCI 222 indicates a cross-slot data reception/transmission, where the data reception/transmission occupies a slot not immediately adjacent to slot 1 in time domain. For example, in diagram 200, the base stations transmit DCI 222 indicating a data reception over a PDSCH in slot N. Then, the DRX Inactivity Timer starts immediately after the end of the PDSCH at the end of the cross-slot data reception/transmission at position 298G. For example, the DRX Inactivity Timer starts at the beginning of the first symbol immediately after the end of data reception/transmission 218 within slot N.
During the time interval, in which the DRX Inactivity Timer is running, the UE may monitor PDCCH and/or CORESET configured by the base station (e.g., an eNB or a gNB) . The DRX Inactivity Timer may be restarted if the UE is scheduled for data transmission/reception. In an implementation, the base station may explicitly or implicitly indicate whether to (re) start the DRX Inactivity Timer for each scheduling (DCI transmission) through a DCI. In another implementation, the DRX Inactivity Timer is not to (re) start when the base station schedules a new transmission/reception to the UE with a DRX Inactivity Timer skipping indication. In another implementation, the DRX Inactivity Timer is to (re) start when the base station schedules a new  transmission/reception to the UE with a DRX Inactivity Timer trigger indication. In yet other implementations, the base station may configure a CORESET configuration specific DRX Inactivity Timer length. The minimal value of the DRX Inactivity Timer can be zero, which means that the UE can skip triggering the DRX Inactivity Timer for specific CORESET configurations configured by the base station.
CASE 3: DRX Inactivity Timer Expiration Time
In LTE networks, a UE will switch to a short DRX cycle after a DRX Inactivity Timer expires. Since the DRX Inactivity Timer is triggered at the end of a subframe in which the UE receives a DCI indication, and the timer is counted by psf, the starting time and the expiration time are aligning with edge of a subframe. Different from the LTE networks, 5G NR networks may support different slot lengths, and are more flexible on data scheduling and timer configurations. Thus, the DRX Inactivity Timer may expire at timing positions that do not align with the edges of a subframe.
While a DRX Inactivity Timer may have a time unit in milliseconds, the actual duration of the DRX Inactivity Time may be integer or floating values. Based on the frame structure and the various DRX Inactivity Timer start positions discussed in CASE 2 above, CASE 3 includes various DRX Inactivity Timer expiration positions. Furthermore, as the DRX Inactivity Timer may be configured with an integer
Figure PCTCN2018108191-appb-000010
value or a floating
Figure PCTCN2018108191-appb-000011
value, the various DRX Inactivity Timer expiration positions will be discussed with reference to Figures 3A and 3B and Figures 4A and 4B, respectively, below.
Figures 3A and 3B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration time positions configured with
Figure PCTCN2018108191-appb-000012
according to example implementations of the present application. As the examples illustrated in Figures 3A and 3B, a subframe includes four slots and a UE is configured by slot-based scheduling, such that the UE is configured to monitor CORESET within a PDCCH in each slot. The PDCCH can be at the beginning of each slot or semi-statically allocated in anywhere within the slot by the base station for each slot. In the present implementation, with reference to Figures 3A and 3B, the PDCCH is allocated at the beginning of each slot and the DRX Inactivity Timer is configured with
Figure PCTCN2018108191-appb-000013
ms. It should be noted that, the results may be different on different DRX Inactivity Timer configuration values. As shown in Figure 3A, DCI 320 for the UE is received in slot 0 of subframe N. Based on the various starting time positions of a triggered DRX Inactivity Timer as discussed in  CASE 2 above, there are several corresponding expiration time positions of the DRX Inactivity Timer, which is triggered by the DCI 320.
In one implementation, the DRX Inactivity Timer may expire right after the end of a CORESET of slot 0 at subframe N+1 (which is
Figure PCTCN2018108191-appb-000014
after the slot indicates a DCI transmission) , for example, at position 398A as shown in Figure 3A.
In one implementation, the DRX Inactivity Timer may expire at the end of a PDCCH of slot 0 at subframe N+1 (a slot which is
Figure PCTCN2018108191-appb-000015
after the slot indicates a DCI transmission) , for example, at position 398B as shown in Figure 3A.
In one implementation, where the DCI indicates that a data reception/transmission within same slot as the DCI transmission, the DRX Inactivity Timer may expire within a slot (slot 0 at subframe N+1 (which is
Figure PCTCN2018108191-appb-000016
after the slot indicating a DCI transmission) , for example, at position 398C as shown in Figure 3A.
In one implementation, where the DCI indicates that a data reception/transmission within same slot as the DCI transmission, the DRX Inactivity Timer may expire at the end of a slot (slot 0 at subframe N+1 (which is
Figure PCTCN2018108191-appb-000017
after the slot indicating a DCI transmission) ) , for example, at position 398C’as shown in Figure 3B.
In one implementation, the DRX Inactivity Timer may expire at the end of a slot (e.g., slot 0 in subframe N+1 (which is
Figure PCTCN2018108191-appb-000018
after the slot indicating a DCI transmission) , for example, at position 398D as shown in Figure 3A.
In one implementation, the DRX Inactivity Timer may expire at the end of a subframe (e.g., subframe N+1 (which is
Figure PCTCN2018108191-appb-000019
after the subframe indicating the DCI transmission) ) , for example, at position 398E as shown in Figure 3A.
In one implementation, where the DCI indicates a consecutive-slot data reception/transmission (e.g., slot 0 and slot 1 of subframe N) , the DRX Inactivity Timer may expire within a CORESET (e.g., slot 1 of subframe N+1) , for example, at position 398F as shown in Figure 3B.
In one implementation, where the DCI indicates a cross-slot data reception/transmission (e.g., slot 0 and slot 2 of subframe N) , the DRX Inactivity Timer may expire within a slot (e.g., in slot 1 of subframe N+1) , for example, at position 398G as shown in Figure 3B.
For  positions  398C, 398C’, 398F, and 398G, the expiration time of the DRX  Inactivity Timer depends on the length of the data reception/transmission. In other words, when the DRX Inactivity Timer starts right after the end of the data reception/transmission, the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission as illustrated in Figures 3A and 3B.
Figures 4A and 4B are schematic diagrams illustrating subframe structures showing various DRX inactive timer expiration times configured with
Figure PCTCN2018108191-appb-000020
according to example implementations of the present application.
In the present implementation, with reference to Figures 4A and 4B, the DRX Inactivity Timer is configured
Figure PCTCN2018108191-appb-000021
ms. It should be noted that, the results may be different on different DRX Inactivity Timer configuration values. As shown in Figure 4A, DCI 420 for the UE is received in slot 0 of subframe N. Based on the various starting time positions of a triggered DRX Inactivity Timer as discussed in CASE 2 above, there are several corresponding expiration time positions of the DRX Inactivity Timer, which is triggered by the DCI 420.
In one implementation, the DRX Inactivity Timer may expire right after the end of a CORESET in slot 2 at subframe N (aslot which is
Figure PCTCN2018108191-appb-000022
after the slot indicating a DCI transmission) , for example, at position 498A as shown in Figure 4A.
In one implementation, the DRX Inactivity Timer may expire at the end of a PDCCH of slot 2 at subframe N (aslot which is
Figure PCTCN2018108191-appb-000023
after the slot indicates a DCI transmission) , for example, at position 498B as shown in Figure 4A.
In one implementation, where the DCI indicates that a data reception/transmission within same slot as the DCI transmission, the DRX Inactivity Timer may expire within a slot (slot 2 at subframe N (which is
Figure PCTCN2018108191-appb-000024
after the slot indicating the DCI transmission) , for example, at position 498C as shown in Figure 4A.
In one implementation, where the DCI indicates that a data reception/transmission within same slot as the DCI transmission, the DRX Inactivity Timer may expire at the end of a slot (slot 2 at subframe N (which is
Figure PCTCN2018108191-appb-000025
after the slot indicating the DCI transmission) , for example, at position 498C’as shown in Figure 4B.
In one implementation, the DRX Inactivity Timer may expire at the end of a slot (e.g., slot 2 in subframe N (which is
Figure PCTCN2018108191-appb-000026
after the slot indicating a DCI transmission) , for example, at position 498D as shown in Figure 4A.
In one implementation, the DRX Inactivity Timer may expire at the end of a slot (e.g., slot 1 in subframe N+1 (which is
Figure PCTCN2018108191-appb-000027
after the slot indicating a DCI transmission) , for example, at position 498E as shown in Figure 4A.
In one implementation, where the DCI indicates a consecutive-slot data reception/transmission (e.g., slot 0 and slot 1 of subframe N) , the DRX Inactivity Timer may expire within a CORESET (e.g., slot 3 of subframe N) , for example, at position 498F as shown in Figure 4B.
In one implementation, where the DCI indicates a cross-slot data reception/transmission (e.g., slot 0 and slot 2 of subframe N) , the DRX Inactivity Timer may expire within a slot (e.g., in slot 0 of subframe N+1) , for example, at position 498G as shown in Figure 4B.
For  positions  498C, 498C’, 498F, and 498G, the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission. In other words, when the DRX Inactivity Timer starts right after the end of the data reception/transmission, the expiration time of the DRX Inactivity Timer depends on the length of the data reception/transmission as illustrated in Figures 4A and 4B.
CASE 4: UE Behavior Upon Expiration of the DRX Inactivity Timer
Figure 5 is a schematic diagram illustrating a subframe structure showing various time intervals for expiration of DRX inactive timer, according to example implementations of the present application.
In diagram 500, zone A is the time interval in slot 0 before the appearance of CORESET 510. Zone A starts from the beginning of in slot 0 and ends at the beginning of CORESET 510. The length of this time interval is (CORESET-start-symb) *symbol length.
In diagram 500, zone B is the time interval of CORESET 510. The length of this time interval is (CORESET-time-duration) *symbol length.
In diagram 500, zone C is the time interval of a PDCCH which after the appearance of CORESET 510. It means that zone C starts from the end of the CORESET and end at the ends of PDCCH 512. The length of this time interval is the length of the PDCCH minus time lengths of zones A and B.
In diagram 500, zone D is the time interval of a slot, after the PDCCH, which starts from the end of PDCCH 512 and ends at the end of slot 0, wherein slot 0 is the same including the DCI received by the UE.
In diagram 500, zone E is the time interval of slots, exclude slot 0 having the PDCCH, which starts from the end of slot 0 and ends at the end of slot N.
For the case of zone A, the UE can be configured to stop PDCCH/CORESET monitoring at the following possible timings:
1. the end right after the DRX Inactivity Timer expired;
2. the end of previous slot;
3. the end of the CORESET of this slot;
4. the end of this PDCCH;
5. End of this slot;
6. the end of this slot if the UE is configured with a CORESET configuration for non-slot-based scheduling and this slot includes the CORESET for the non-slot-based scheduling;
7. the end of this slot if this slot includes other CORESET (s) ;
8. the end of this subframe;
9. the end of this subframe if the UE is configured with CORESET configuration for non-slot-based scheduling and this subframe includes the CORESET for the non-slot-based scheduling;
10. the end of this subframe if this subframe includes other CORESET (s) .
For the case of zone B, the UE may be configured to stop PDCCH/CORESET monitoring at the following possible timings:
1. the end of the CORESET of this slot;
2. the end of this PDCCH;
3. the end of this slot;
4. the end of this slot if the UE is configured with a CORESET configuration for non-slot-based scheduling and this slot includes the CORESET for the non-slot-based scheduling;
5. the end of this slot if this slot includes other CORESET (s) ;
6. the end of this subframe;
7. the end of this subframe if the UE is configured with a CORESET configuration for non-slot-based scheduling and this subframe includes the CORESET for the non-slot-based scheduling;
8. the end of this subframe if this subframe includes other CORESET (s) .
For the case of zone C, the UE can be configured to stop PDCCH/CORESET monitoring at the following possible timings:
1. the end of this PDCCH;
2. the end of this slot;
3. the end of this slot if the UE is configured with a CORESET configuration for non-slot-based scheduling and this slot includes the CORESET for the non-slot-based scheduling;
4. the end of this slot if this slot includes other CORESET (s) ;
5. the end of this subframe;
6. the end of this subframe if the UE is configured with a CORESET configuration for non-slot-based scheduling and this subframe includes the CORESET for the non-slot-based scheduling;
7. the end of this subframe if this subframe includes other CORESET (s) .
For the case of zones D and E, the UE can be configured to stop PDCCH/CORESET monitoring at the following possible timings:
1. the end of this slot;
2. the end of this slot if the UE is configured with a CORESET configuration for non-slot-based scheduling and this slot includes the CORESET for the non-slot-based scheduling;
3. the end of this slot if this slot includes other CORESET (s) ;
4. the end of this subframe;
5. the end of this subframe if the UE is configured with a CORESET configuration for non-slot-based scheduling and this subframe includes the CORESET for the non-slot-based scheduling;
6. the end of this subframe if this subframe includes other CORESET (s) .
It should be noted that although Figures 1, 2 and 5 illustrate that  CORESETs  110, 210, and 510 are contained in  PDCCHs  112, 212, and 512, respectively, in other implementations, that  CORESETs  110, 210, and 510 may contain resource (e.g., time and frequency) allocation information that allows a UE to locate  PDCCHs  112, 212, and 512, respectively. In such a case,  CORESETs  110, 210, and 510 may not be contained in  PDCCHs  112, 212, and 512, respectively.
Figure 6 is a flowchart of by a UE, according to an example implementation of the present application. In Figure 6, flowchart 600 includes  actions  682, 684, 686, 688, 690, 692, and 694.
In action 682, the UE receives, by receiving circuitry, a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) .
In action 684, the UE determines, by processing circuitry, a start subframe based  on the drx-StartOffset.
In action 686, the UE determines, by processing circuitry, a starting time of a DRX On-Duration (drx-onDuration) Timer in the start subframe based on the drx-SlotOffset.
In action 688, when a short DRX cycle is used, the UE starts, by the processing circuitry, the drx-on Duration Timer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) , when a system frame number (SFN) , a subframe number, and the Short DRX cycle (drx-ShortCycle) are received.
In action 690, when a long DRX cycle is used, the UE starts, by the processing circuitry, the drx-on Duration Timer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset, when a system frame number (SFN) , a subframe number, and the Long DRX cycle (drx-LongCycle) are received.
In action 692, the UE receives, by receiving circuitry, an indication of a new transmission over a physical downlink control channel (PDCCH) .
In action 692, the UE starts, by the processing circuitry, a DRX Inactivity Timer (drx-Inactivity Timer) in a first symbol after an end of the PDCCH.
Figure 7 illustrates a block diagram of a node for wireless communication, in accordance with various aspects of the present application. As shown in Figure 7, a node 700 may include a transceiver 720, a processor 726, a memory 728, one or more presentation components 734, and at least one antenna 736. The node 700 may also include an RF spectrum band module, a base station communications module, a network communications module, and a system communications management module, input/output (I/O) ports, I/O components, and power supply (not explicitly shown in Figure 7) . Each of these components may be in communication with each other, directly or indirectly, over one or more buses 740. In one implementation, the node 700 may be a UE or a base station that performs various functions described herein, for example, with reference to Figures 1 through 6.
The transceiver 720 having a transmitter 722 (having transmitting circuitry) and a receiver 724 (having receiving circuitry) may be configured to transmit and/or receive time and/or frequency resource partitioning information. In some implementations, the transceiver 720 may be configured to transmit in different types of subframes and slots including, but not limited to, usable, non-usable and flexibly usable subframes and slot formats. The transceiver 720 may be  configured to receive data and control channels.
The node 700 may include a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the node 700 and include both volatile and non-volatile media, removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
Computer storage media includes RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices. Computer storage media does not comprise a propagated data signal. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer-readable media.
The memory 728 may include computer-storage media in the form of volatile and/or non-volatile memory. The memory 728 may be removable, non-removable, or a combination thereof. Exemplary memory includes solid-state memory, hard drives, optical-disc drives, and etc. As illustrated in Figure 7, The memory 728 may store computer-readable, computer-executable instructions 732 (e.g., software codes) that are configured to, when executed, cause the processor 726 (e.g., processing circuitry) to perform various functions described herein, for example, with reference to Figures 1 through 6. Alternatively, the instructions 732 may not be directly executable by the processor 726 but be configured to cause the node 700 (e.g., when compiled and executed) to perform various functions described herein.
The processor 726 may include an intelligent hardware device, e.g., a central processing unit (CPU) , a microcontroller, an ASIC, and etc. The processor 726 may include  memory. The processor 726 may process the data 730 and the instructions 732 received from the memory 728, and information through the transceiver 720, the base band communications module, and/or the network communications module. The processor 726 may also process information to be sent to the transceiver 720 for transmission through the antenna 736, to the network communications module for transmission to a core network.
One or more presentation components 734 presents data indications to a person or other device. Exemplary presentation components 734 include a display device, speaker, printing component, vibrating component, and etc.
From the above description it is manifest that various techniques can be used for implementing the concepts described in the present application without departing from the scope of those concepts. Moreover, while the concepts have been described with specific reference to certain implementations, a person of ordinary skill in the art would recognize that changes can be made in form and detail without departing from the scope of those concepts. As such, the described implementations are to be considered in all respects as illustrative and not restrictive. It should also be understood that the present application is not limited to the particular implementations described above, but many rearrangements, modifications, and substitutions are possible without departing from the scope of the present disclosure.

Claims (13)

  1. A method for discontinuous reception (DRX) , the method comprising:
    receiving, by receiving circuitry of a User Equipment (UE) , a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) ;
    determining, by processing circuitry of the UE, a start subframe based on the drx-StartOffset; and
    determining, by the processing circuitry, a starting time of a DRX On-Duration Timer (drx-onDurationTimer) in the start subframe based on the drx-SlotOffset.
  2. The method of claim 1, further comprising:
    receiving, by the receiving circuitry, a system frame number (SFN) and a Short DRX cycle (drx-ShortCycle) ;
    determining, by the processing circuitry, a subframe number;
    starting, by the processing circuitry, the drx-onDurationTimer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) .
  3. The method of claim 1, further comprising:
    receiving, by the receiving circuitry, a system frame number (SFN) and a Long DRX cycle (drx-LongCycle) ;
    determining, by the processing circuitry, a subframe number;
    starting, by the processing circuitry, the drx-onDurationTimer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset.
  4. The method of claim 1, wherein the drx-SlotOffset has an actual time value corresponding to one or more slots, a fraction of the one or more slots.
  5. The method of claim 1, wherein the drx-SlotOffset has an actual time unit in milliseconds or a fraction of a millisecond.
  6. The method of claim 1, further comprising:
    receiving, by the receiving circuitry, an indication of a new transmission over a physical downlink control channel (PDCCH) ;
    starting or restarting, by the processing circuitry, a DRX Inactivity Timer (drx-InactivityTimer) in a first symbol after an end of the PDCCH reception.
  7. A user equipment (UE) comprising:
    receiving circuitry configured to receive a Radio Resource Control (RRC) message having a DRX Start Offset (drx-StartOffset) and a DRX Slot Offset (drx-SlotOffset) ;
    processing circuitry configured to:
    determine a start subframe based on the drx-StartOffset;
    determine a starting time of a DRX On-Duration Timer (drx-onDurationTimer) in the start subframe based on the drx-SlotOffset.
  8. The UE of claim 7, wherein:
    the receiving circuit is further configured to receive a system frame number (SFN) and a Short DRX cycle (drx-ShortCycle) ;
    the processing circuitry is further configured to:
    determine a subframe number;
    start the drx-onDurationTimer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle) .
  9. The UE of claim 7, wherein:
    the receiving circuit is further configured to receive a system frame number (SFN) and a Long DRX cycle (drx-LongCycle) ;
    the processing circuitry is further configured to:
    determine a subframe number;
    start the drx-onDurationTimer after the drx-SlotOffset from a beginning of the start subframe, when [ (SFN × 10) + subframe number] modulo (drx-LongCycle) = drx-StartOffset.
  10. The UE of claim 7, wherein the drx-SlotOffset has an actual time value corresponding to one or more slots, a fraction of the one or more slots.
  11. The UE of claim 7, wherein the drx-SlotOffset has an actual time unit in milliseconds or a fraction of a millisecond.
  12. The UE of claim 7, wherein:
    the receiving circuitry is further configured to receive an indication of a new transmission over a physical downlink control channel (PDCCH) ;
    the processing circuitry is further configured to start a DRX Inactivity Timer (drx-Inactivity Timer) in a first symbol after an end of the PDCCH.
  13. A method for discontinuous reception (DRX) , the method comprising:
    receiving, by receiving circuitry of a User Equipment (UE) , an indication of a new transmission over a physical downlink control channel (PDCCH) ;
    starting or restarting, by processing circuitry of the UE, a DRX Inactivity Timer (drx-InactivityTimer) in a first symbol after an end of the PDCCH reception.
PCT/CN2018/108191 2017-09-28 2018-09-28 Devices and methods for controlling discontinuous reception in new radio WO2019062827A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207010686A KR102425402B1 (en) 2017-09-28 2018-09-28 Devices and methods for controlling discontinuous reception in new radio
JP2020516852A JP7036907B2 (en) 2017-09-28 2018-09-28 Devices and methods for controlling intermittent reception in the new radio
CN201880060393.1A CN111096026B (en) 2017-09-28 2018-09-28 Apparatus and method for controlling discontinuous reception of new radio
KR1020227025471A KR20220108200A (en) 2017-09-28 2018-09-28 Devices and methods for controlling discontinuous reception in new radio
EP18862440.7A EP3689067B1 (en) 2017-09-28 2018-09-28 Device and method for controlling discontinuous reception in new radio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762564650P 2017-09-28 2017-09-28
US62/564,650 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019062827A1 true WO2019062827A1 (en) 2019-04-04

Family

ID=65808597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108191 WO2019062827A1 (en) 2017-09-28 2018-09-28 Devices and methods for controlling discontinuous reception in new radio

Country Status (7)

Country Link
US (3) US10813163B2 (en)
EP (1) EP3689067B1 (en)
JP (1) JP7036907B2 (en)
KR (2) KR102425402B1 (en)
CN (1) CN111096026B (en)
TW (1) TWI678125B (en)
WO (1) WO2019062827A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020258104A1 (en) * 2019-06-26 2020-12-30 Nokia Shanghai Bell Co., Ltd. Notification of status of discontinuous reception configuration
CN112189363A (en) * 2019-05-03 2021-01-05 联发科技股份有限公司 Physical downlink control channel monitoring
WO2024031632A1 (en) * 2022-08-12 2024-02-15 Lenovo (Beijing) Limited Method and apparatus for dynamic adaptation of discontinuous reception configuration

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10887073B2 (en) * 2017-10-26 2021-01-05 Ofinno, Llc Activation and deactivation of bandwidth part
SG11202004496YA (en) * 2017-11-17 2020-06-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for intercepting pdcch and terminal device
US11601881B2 (en) * 2017-11-17 2023-03-07 Nokia Technologies Oy Control monitoring upon receipt of discontinuous reception trigger
PL3714655T3 (en) * 2017-11-22 2023-07-10 FG Innovation Company Limited Discontinuous reception operations among multiple bandwidth parts
US10834777B2 (en) * 2018-01-11 2020-11-10 Ofinnon, LLC Discontinuous reception and CSI
US10805148B2 (en) * 2018-02-05 2020-10-13 Ofinno, Llc Beam failure recovery request procedure
CN112737740A (en) * 2018-04-04 2021-04-30 华为技术有限公司 Method and device for controlling timer
CN110839248B (en) * 2018-08-17 2021-06-08 华为技术有限公司 Configuration method and equipment
WO2020064710A1 (en) * 2018-09-24 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Control of drx using layer-1 signaling
US20220007289A1 (en) * 2018-11-09 2022-01-06 Lg Electronics Inc. Method for operating discontinuous reception of terminal in wireless communication system, and apparatus using same method
US20220086757A1 (en) * 2019-01-11 2022-03-17 Sony Group Corporation Communications devices, infrastructure equipment and methods
WO2020143806A1 (en) * 2019-01-11 2020-07-16 华为技术有限公司 Communication method and apparatus
CN112970293B (en) * 2019-04-30 2022-07-08 Oppo广东移动通信有限公司 DRX operation method and related equipment
US11297574B2 (en) * 2019-05-03 2022-04-05 Mediatek Inc. Wake-up signal operation for UE power saving
CN111800764B (en) * 2019-08-22 2022-05-13 维沃移动通信有限公司 Method and device for configuring side link DRX (discontinuous reception) parameters and terminal equipment
KR102233403B1 (en) * 2019-10-08 2021-03-29 에스케이텔레콤 주식회사 Method of optimization for downlink latency and base-station operating the same
WO2021087835A1 (en) * 2019-11-07 2021-05-14 Qualcomm Incorporated Signaling in asynchronous carrier aggregation
CN112825579B (en) * 2019-11-21 2022-08-12 大唐移动通信设备有限公司 Method, device and medium for determining discontinuous reception offset parameter
CN113133096B (en) * 2020-01-15 2023-03-28 大唐移动通信设备有限公司 Information determination method, device, equipment and computer readable storage medium
CN113225843B (en) * 2020-01-21 2024-05-07 华硕电脑股份有限公司 Method and apparatus for handling channel state information reporting for discontinuous reception of a side link
CN113260024B (en) * 2020-02-10 2022-08-26 大唐移动通信设备有限公司 Discontinuous reception timer management method and terminal
US11856638B2 (en) * 2020-02-11 2023-12-26 Qualcomm Incorporated Discontinuous reception configuration and sidelink operation with mode-1 and mode-2 scheduling
US11690123B2 (en) * 2020-02-12 2023-06-27 Qualcomm Incorporated Data inactivity indication and expedited recovery action
CN114866210A (en) * 2020-02-13 2022-08-05 上海朗帛通信技术有限公司 Method and device for wireless communication of discontinuous reception
CN113382380A (en) * 2020-03-10 2021-09-10 华为技术有限公司 Communication method and communication device of sidelink
CN113543371B (en) * 2020-04-17 2023-07-28 华为技术有限公司 Communication method and device
CN113677020A (en) * 2020-05-15 2021-11-19 华为技术有限公司 Communication method, device and system
WO2021248450A1 (en) * 2020-06-12 2021-12-16 Lenovo (Beijing) Limited Method and apparatus for sidelink drx operation
WO2022027379A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Scheduling a user equipment as part of a group
CN114080067B (en) * 2020-08-20 2024-03-19 维沃移动通信有限公司 Discontinuous Reception (DRX) configuration method, device and equipment
WO2022061681A1 (en) * 2020-09-25 2022-03-31 Apple Inc. Mechanisms for managing user equipment on sidelink communication
WO2022071765A1 (en) * 2020-09-29 2022-04-07 엘지전자 주식회사 Method and apparatus for sl drx operation using default sl drx configuration in nr v2x
WO2022067733A1 (en) * 2020-09-30 2022-04-07 华为技术有限公司 Method for configuring discontinuous reception drx parameter, device and communication system
CN116326175A (en) * 2020-10-15 2023-06-23 苹果公司 Side link wake-up signal for wireless devices
WO2022086290A1 (en) * 2020-10-22 2022-04-28 엘지전자 주식회사 Method and device for solving packet loss due to misalignment of drx on-duration in nr v2x
EP4236598A4 (en) * 2020-10-22 2023-12-20 Fujitsu Limited Sidelink discontinuous reception method and apparatus
WO2022133935A1 (en) * 2020-12-24 2022-06-30 北京小米移动软件有限公司 Transmission resource selection method and apparatus, communication device, and storage medium
US20230065594A1 (en) * 2021-08-30 2023-03-02 Facebook Technologies, Llc Systems and methods for network traffic shaping
CN116249101A (en) * 2021-12-07 2023-06-09 华为技术有限公司 Data transmission method and data transmission device
CN116744447A (en) * 2022-03-09 2023-09-12 华硕电脑股份有限公司 Method and user equipment for side link discontinuous reception in wireless communication system
WO2023209832A1 (en) * 2022-04-26 2023-11-02 株式会社Nttドコモ Terminal and communication method
US20240049248A1 (en) * 2022-07-27 2024-02-08 Samsung Electronics Co., Ltd. Method and apparatus for discontinuous reception for a group of user equipments
KR20240023015A (en) * 2022-08-11 2024-02-20 엘지전자 주식회사 Method and device for transmitting and receiving wireless signals in a wireless communication system
WO2024050844A1 (en) * 2022-09-09 2024-03-14 Nec Corporation Method, device and computer storage medium of communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101599792A (en) * 2008-06-04 2009-12-09 华为技术有限公司 A kind of dynamic merging method, system and terminal equipment of multi-beacon group
US20100020758A1 (en) * 2007-05-30 2010-01-28 Electronics And Telecommunications Research Institute Radio resource reallocating method for circuit mode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279817B2 (en) * 2008-11-03 2012-10-02 Htc Corporation Method of managing discontinuous reception offset in a wireless communications system and related communication device
WO2014025211A1 (en) * 2012-08-10 2014-02-13 Lg Electronics Inc. Method and apparatus for configuring a discontinuous reception (drx) operation in a wireless communication system
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
US9924534B2 (en) 2013-04-14 2018-03-20 Lg Electronics Inc. Method and apparatus for controlling monitoring timing in wireless communication system
US20140307603A1 (en) * 2013-04-15 2014-10-16 Qualcomm Incorporated Discontinuous reception for multicarrier systems with flexible bandwidth carrier
US10568111B2 (en) * 2013-06-26 2020-02-18 Lg Electronics Inc. Method for supporting discontinuous reception and apparatus therefor in wireless communication system supporting reconfiguration of wireless resource
US20150071089A1 (en) * 2013-09-06 2015-03-12 Qualcomm Incorporated Devices and methods for decreasing awake state durations in access terminals operating in a slotted idle mode
CN105472535B (en) * 2014-09-26 2019-07-02 上海诺基亚贝尔股份有限公司 The configuration method of connection mode discontinuous transmission for MTC user equipment
AU2017206661B2 (en) * 2016-01-11 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling connected mode DRX operations
WO2018208211A1 (en) * 2017-05-12 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Search space monitoring
WO2019030929A1 (en) * 2017-08-10 2019-02-14 株式会社Nttドコモ User terminal and wireless communication method
US11206117B2 (en) * 2017-09-08 2021-12-21 Lg Electronics Inc. Method for transmitting or receiving signal in wireless communication system and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100020758A1 (en) * 2007-05-30 2010-01-28 Electronics And Telecommunications Research Institute Radio resource reallocating method for circuit mode
CN101599792A (en) * 2008-06-04 2009-12-09 华为技术有限公司 A kind of dynamic merging method, system and terminal equipment of multi-beacon group

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3689067A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189363A (en) * 2019-05-03 2021-01-05 联发科技股份有限公司 Physical downlink control channel monitoring
WO2020258104A1 (en) * 2019-06-26 2020-12-30 Nokia Shanghai Bell Co., Ltd. Notification of status of discontinuous reception configuration
WO2024031632A1 (en) * 2022-08-12 2024-02-15 Lenovo (Beijing) Limited Method and apparatus for dynamic adaptation of discontinuous reception configuration

Also Published As

Publication number Publication date
EP3689067B1 (en) 2023-07-19
US20200413475A1 (en) 2020-12-31
CN111096026A (en) 2020-05-01
US20220361285A1 (en) 2022-11-10
JP7036907B2 (en) 2022-03-15
US11425783B2 (en) 2022-08-23
CN111096026B (en) 2023-02-28
TW201922040A (en) 2019-06-01
KR20200052366A (en) 2020-05-14
US20190098689A1 (en) 2019-03-28
TWI678125B (en) 2019-11-21
KR20220108200A (en) 2022-08-02
KR102425402B1 (en) 2022-07-27
EP3689067A4 (en) 2021-06-23
EP3689067A1 (en) 2020-08-05
US11937333B2 (en) 2024-03-19
JP2021500777A (en) 2021-01-07
US10813163B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
EP3689067B1 (en) Device and method for controlling discontinuous reception in new radio
US11764906B2 (en) Discontinuous reception operations among multiple bandwidth parts
US11096122B2 (en) Devices and methods for discontinuous reception in new radio
TWI740473B (en) Method of physical downlink control channel monitoring and related device
US20230247550A1 (en) Method and user equipment for performing sidelink communication
US11665639B2 (en) Method of monitoring physical downlink control channel for power saving signal and related device
WO2021233392A1 (en) Method and user equipment for performing sidelink communication
US11696360B2 (en) Method and user equipment for controlling discontinuous reception behavior on multiple radio interfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010686

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018862440

Country of ref document: EP

Effective date: 20200428