WO2019062782A1 - 一种发光二极管直管灯及发光二极管照明系统 - Google Patents

一种发光二极管直管灯及发光二极管照明系统 Download PDF

Info

Publication number
WO2019062782A1
WO2019062782A1 PCT/CN2018/107773 CN2018107773W WO2019062782A1 WO 2019062782 A1 WO2019062782 A1 WO 2019062782A1 CN 2018107773 W CN2018107773 W CN 2018107773W WO 2019062782 A1 WO2019062782 A1 WO 2019062782A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
led
signal
module
lamp
Prior art date
Application number
PCT/CN2018/107773
Other languages
English (en)
French (fr)
Inventor
熊爱明
刘新通
Original Assignee
嘉兴山蒲照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴山蒲照明电器有限公司 filed Critical 嘉兴山蒲照明电器有限公司
Priority to CN201880063107.7A priority Critical patent/CN111801989B/zh
Publication of WO2019062782A1 publication Critical patent/WO2019062782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/357Driver circuits specially adapted for retrofit LED light sources
    • H05B45/3578Emulating the electrical or functional characteristics of discharge lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the utility model relates to the field of lighting fixtures, in particular to a light-emitting diode (LED) straight tube lamp and a light-emitting diode (LED) illumination system comprising a light source, a power module and a lamp cap.
  • LED light-emitting diode
  • LED light-emitting diode
  • LED lighting technology is rapidly evolving to replace traditional incandescent and fluorescent lamps. Compared to fluorescent lamps filled with inert gas and mercury, LED straight tube lamps do not need to be filled with mercury. Therefore, in a variety of lighting systems for home or workplace dominated by lighting options such as conventional fluorescent bulbs and tubes, LED straight tube lamps have become an increasingly desirable lighting option without any surprise.
  • the advantages of LED straight tube lamps include increased durability and longevity, as well as lower energy consumption. Therefore, considering all the factors, LED straight tube lamps will be a cost-saving lighting option.
  • the LED straight tube lamp generally comprises a lamp tube, a circuit board disposed in the lamp tube and having a light source, and a lamp cap disposed at two ends of the lamp tube, the lamp head is provided with a power source, and the light source and the power source are electrically connected through the circuit board.
  • the existing LED straight tube lamps still have the following types of quality problems to be solved.
  • the circuit board is generally a rigid board. When the lamp tube is broken, especially when the lamp is partially broken, the entire LED straight tube lamp is still in the straight tube. In the state of the user, the user may mistakenly believe that the lamp can be used, thereby installing it by itself, which may easily cause electric leakage and electric shock.
  • the applicant has proposed a corresponding structural improvement method in a previous case, for example, CN105465640U.
  • the circuit design of the existing LED straight tube lamp does not provide an appropriate solution for complying with relevant certification specifications.
  • relevant certification specifications there are no electronic components inside the fluorescent lamp, which is quite simple for the UL certification and EMI compliance of the lighting device.
  • the LED straight tube lamp has a considerable number of electronic components in the lamp. It is important to consider the influence of the layout between the electronic components, and it is not easy to comply with the UL certification and EMI specifications.
  • the driving signal used for the LED driving is a direct current signal, but the driving signal of the fluorescent lamp is a low frequency, low voltage alternating current signal of a commercial power source or a high frequency and high voltage alternating current signal of an electronic ballast, and even an emergency lighting battery used for emergency lighting. It is a DC signal.
  • the voltage and frequency range between different drive signals are large, and it is not compatible with simple rectification.
  • ballast compatible LED tube T-LED lamp
  • the conventional fluorescent tube is directly replaced by the LED tube.
  • the other is a ballast by-pass LED tube, which eliminates the traditional ballast and directly connects the mains to the LED tube.
  • the latter is suitable for new installations, with new drive circuits and LED tubes.
  • the ballast compatible LED tube can be generally called "Type-A” type LED tube
  • the ballast bypass type LED tube with built-in lamp tube drive can be generally called "Type-B" type. LED tube.
  • the lamp holder corresponding to the Type-B type LED tube is directly connected to the mains signal and does not pass through the ballast first, when the LED straight tube lamp is a double-ended power source, the LED is straight. If one of the two ends of the tube lamp has been inserted into the socket and the other end has not been inserted into the socket, the user may risk the risk of electric shock when touching a metal or electrically conductive portion that is not inserted into the socket end.
  • the lamp at both ends must be along the lamp inside the lamp tube.
  • a board (such as a flexible circuit board) is provided with a wire (called Line or Neutral) for receiving an external drive voltage.
  • This wire is different from the LED+ wire and the LED wire and the (2) ground wire in the lamp tube (1) connected to the positive and negative terminals of the LED unit.
  • the wire runs through the lamp and is close to the LED+ wire, causing parasitic capacitance between the two wires (for example, about 200 PF), the wire is susceptible to or affected by electromagnetic interference (EMI). , causing the conduction of the power supply to become very poor.
  • EMI electromagnetic interference
  • the utility model provides a new LED straight tube lamp and installation detection module, and various aspects (and features) thereof to solve the above problems.
  • the utility model provides a double-ended power type Type-B LED straight tube lamp, the LED straight tube lamp further has a lamp tube and two lamp holders, and the two lamp holders are respectively disposed on two sides of the lamp tube, One of the two caps has a first pin and a third pin, and the other of the two caps has a second pin and a fourth pin, wherein the LED straight tube lamp comprises an LED module and a power source
  • the module wherein the power module comprises a rectifier circuit, a filter circuit, a drive circuit, and an installation detection module.
  • the power module is coupled to the external power grid through two of the first to fourth pins to receive an external driving signal provided by the external power grid, and is configured to generate the lighting driving signal and provide the LED driving module.
  • the rectifier circuit is configured to rectify the external drive signal and generate a rectified signal.
  • a filter circuit receives the rectified signal and produces a filtered signal.
  • the driving circuit performs power conversion according to the filtered signal to generate the lighting driving signal, wherein the rectifier circuit, the filtering circuit and the driving circuit are connected through a power supply loop and supply power to the LED module.
  • the driving circuit receives a dimming signal from pins of the first to fourth pins in which the external power grid is not coupled, and adjusts brightness and color temperature of the lighting driving signal based on the dimming signal. one.
  • the LED straight tube lamp receives the external driving signal through the first pin and the second pin, receives the dimming signal through the fourth pin, and passes through the The second pin and the third pin receive an auxiliary power source.
  • the installation detection module includes a detection pulse generation module, a detection path circuit, a detection determination circuit, and a control circuit.
  • the detection pulse generation module is configured to generate a control signal having a pulse.
  • a detection path circuit is coupled to the detection pulse generation module and turns on the detection path in response to the control signal.
  • the detection decision circuit is connected to the detection path circuit for sampling an electrical signal on the detection path and generating a detection result signal indicating whether there is a risk of electric shock.
  • the control circuit is connected to the detection determining circuit and the driving circuit of the power module for adjusting a bias state of the driving circuit according to the detection result signal.
  • the detection path is established between an input of the rectifier circuit and a ground.
  • the detection path circuit establishes a first detection path during a positive half-wave period of the external drive signal and establishes a different phase during a negative half-wave period of the external drive signal during the detection phase A second detection path of the first detection path is described.
  • the power module further includes an emergency control module, configured to determine whether the external driving signal received by the power module is a DC signal.
  • the emergency control module determines that the external driving signal is a DC signal
  • the emergency control module outputs a first status signal to the control circuit, so that the control circuit controls the switching circuit to remain in an on state
  • the emergency control module determines that the external driving signal is a non-DC signal
  • the emergency control module outputs a second status signal to the control circuit, so that the control circuit is based on the detection pulse generating module and the detecting The output of the decision circuit is controlled to control the turn-on or turn-off of the switch circuit.
  • 1A is a plan sectional view showing a lamp board and a power module of the LED straight tube lamp of the first embodiment of the present invention inside the lamp tube;
  • 1B is a plan cross-sectional view of the lamp panel and the power module of the LED straight tube lamp in the interior of the lamp tube according to the second embodiment of the present invention
  • 1C is a plan cross-sectional view of the lamp panel and the power module of the LED straight tube lamp in the interior of the lamp tube according to the third embodiment of the present invention
  • FIG. 2 is a plan sectional view of a lamp panel of an LED straight tube lamp according to an embodiment of the present invention
  • FIG. 3 is a perspective view of a lamp panel of an LED straight tube lamp according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a printed circuit board of a lamp board and a power module of an LED straight tube lamp according to an embodiment of the present invention
  • 5A to 5C are partial schematic views showing a welding process of a lamp board and a power source according to an embodiment of the present invention
  • 5D is a partial schematic view of a lamp panel of an LED straight tube lamp according to an embodiment of the present invention.
  • 5E is a plan cross-sectional view showing the connection of the lamp board of the LED straight tube lamp and the circuit board of the power module according to an embodiment of the present invention
  • 5F is a partial structural schematic view of a light source pad of an LED straight tube lamp according to an embodiment of the present invention.
  • 5G is a partial structural schematic view of a power supply pad of an LED straight tube lamp according to an embodiment of the present invention.
  • FIG. 6A is a schematic perspective structural view of a lamp board and a power module of the LED straight tube lamp according to the first embodiment of the present invention
  • 6B is a schematic perspective structural view of a lamp board and a power module of the LED straight tube lamp according to the second embodiment of the present invention.
  • FIG. 7 is a schematic view of an internal conductor of an LED straight tube lamp according to an embodiment of the present invention.
  • FIG. 8A is a circuit block diagram of an LED straight tube lamp illumination system according to a first embodiment of the present invention.
  • 8B is a circuit block diagram of a LED straight tube lamp illumination system according to a second embodiment of the present invention.
  • 8C is a circuit block diagram of a LED straight tube lamp illumination system according to a third embodiment of the present invention.
  • 8D is a circuit block diagram of a LED straight tube lamp illumination system according to a fourth embodiment of the present invention.
  • 8E is a circuit block diagram of a LED straight tube lamp illumination system according to a fifth embodiment of the present invention.
  • FIG. 9A is a circuit block diagram of a power module according to a first embodiment of the present invention.
  • 9B is a circuit block diagram of a power module according to a second embodiment of the present invention.
  • 9C is a circuit block diagram of a power module according to a third embodiment of the present invention.
  • FIG. 10A is a schematic diagram of a circuit structure of an LED module according to a first embodiment of the present invention.
  • FIG. 10B is a schematic circuit diagram of an LED module according to a second embodiment of the present invention.
  • 10C is a schematic view showing the wiring of the LED module of the first embodiment of the present invention.
  • FIG. 10D is a schematic view showing the wiring of the LED module according to the second embodiment of the present invention.
  • FIG. 10E is a schematic view showing the wiring of the LED module according to the third embodiment of the present invention.
  • FIG. 10F is a schematic view showing the wiring of the LED module according to the fourth embodiment of the present invention.
  • 10G is a schematic view showing the wiring of the LED module according to the fifth embodiment of the present invention.
  • 10H is a schematic view showing the wiring of the LED module of the sixth embodiment of the present invention.
  • FIG. 10I is a schematic diagram of a wiring of an LED module according to a seventh embodiment of the present invention.
  • 11A is a schematic circuit diagram of a rectifier circuit according to a first embodiment of the present invention.
  • 11B is a schematic circuit diagram of a rectifier circuit according to a second embodiment of the present invention.
  • 11C is a schematic circuit diagram of a rectifier circuit according to a third embodiment of the present invention.
  • 11D is a schematic circuit diagram of a rectifier circuit according to a fourth embodiment of the present invention.
  • 11E is a schematic circuit diagram of a rectifier circuit according to a fifth embodiment of the present invention.
  • 11F is a schematic circuit diagram of a rectifier circuit according to a sixth embodiment of the present invention.
  • FIG. 12A is a circuit block diagram of a filter circuit according to a first embodiment of the present invention.
  • FIG. 12B is a schematic diagram of a circuit structure of a filtering unit according to a first embodiment of the present invention.
  • 12C is a schematic diagram of a circuit structure of a filtering unit according to a second embodiment of the present invention.
  • 12D is a circuit block diagram of a filter circuit according to a second embodiment of the present invention.
  • 12E is a schematic diagram of a circuit structure of a filtering unit and a negative voltage eliminating unit according to an embodiment of the present invention
  • FIG. 13A is a circuit block diagram of a driving circuit according to a first embodiment of the present invention.
  • 13B is a schematic circuit diagram of a driving circuit of a first embodiment of the present invention.
  • 13C is a schematic circuit diagram of a driving circuit of a second embodiment of the present invention.
  • 13D is a schematic circuit diagram of a driving circuit of a third embodiment of the present invention.
  • 13E is a schematic circuit diagram of a driving circuit of a fourth embodiment of the present invention.
  • 14A is a schematic diagram of signal waveforms of a driving circuit according to a first embodiment of the present invention.
  • 14B is a schematic diagram showing signal waveforms of a driving circuit according to a second embodiment of the present invention.
  • 14C is a schematic diagram showing signal waveforms of a driving circuit according to a third embodiment of the present invention.
  • 14D is a schematic diagram showing signal waveforms of a driving circuit according to a fourth embodiment of the present invention.
  • 15A is a circuit block diagram of a power module according to a fourth embodiment of the present invention.
  • 15B is a circuit block diagram of a power module according to a fifth embodiment of the present invention.
  • 15C is a schematic circuit diagram of an overvoltage protection circuit according to an embodiment of the present invention.
  • 16A is a circuit block diagram of a power module according to a sixth embodiment of the present invention.
  • 16B is a circuit block diagram of a power module according to a seventh embodiment of the present invention.
  • 16C is a schematic circuit diagram of an auxiliary power supply module according to an embodiment of the present invention.
  • 16D is a circuit block diagram of a power module according to an eighth embodiment of the present invention.
  • 16E is a circuit block diagram of an auxiliary power supply module according to the first embodiment of the present invention.
  • 16F is a circuit block diagram of a power module according to a ninth embodiment of the present invention.
  • 16G is a circuit block diagram of an auxiliary power supply module according to a second embodiment of the present invention.
  • 16H is a circuit block diagram of an auxiliary power supply module according to a third embodiment of the present invention.
  • 16I is a schematic diagram of the configuration of an auxiliary power supply module according to the first embodiment of the present invention.
  • 16J is a schematic diagram showing the configuration of an auxiliary power supply module according to a second embodiment of the present invention.
  • 16K is a circuit block diagram of a LED straight tube lamp illumination system according to a sixth embodiment of the present invention.
  • 16L is a circuit block diagram of a LED straight tube lamp illumination system according to a seventh embodiment of the present invention.
  • 16M is a circuit block diagram of an LED straight tube lamp illumination system according to an eighth embodiment of the present invention.
  • 16N is a schematic diagram of a circuit structure of an auxiliary power supply module according to a first embodiment of the present invention.
  • 16O is a schematic circuit diagram of an auxiliary power supply module according to a second embodiment of the present invention.
  • 16P is a timing diagram of signals when the auxiliary power supply module is in a normal state according to an embodiment of the present invention.
  • 16Q is a timing diagram of signals when the auxiliary power supply module is in an abnormal state according to an embodiment of the present invention.
  • 17A is a circuit block diagram of an LED straight tube lamp illumination system according to a ninth embodiment of the present invention.
  • 17B is a circuit block diagram of a LED straight tube lamp illumination system according to a tenth embodiment of the present invention.
  • FIG. 18 is a circuit block diagram of a power module according to a tenth embodiment of the present invention.
  • 19A is a circuit block diagram of a mounting detection module according to a first embodiment of the present invention.
  • 19B to 19E are schematic diagrams showing the circuit structure of the mounting detection module according to the first embodiment of the present invention.
  • 20A is a circuit block diagram of a mounting detection module according to a second embodiment of the present invention.
  • FIG. 20B to FIG. 20E are schematic diagrams showing the circuit structure of the mounting detection module according to the second embodiment of the present invention.
  • 21A is a circuit block diagram of a mounting detection module according to a third embodiment of the present invention.
  • FIG. 21B to FIG. 21E are schematic diagrams showing the circuit structure of the mounting detection module according to the third embodiment of the present invention.
  • 22A is a circuit block diagram of a mounting detection module according to a fourth embodiment of the present invention.
  • FIG. 22B to FIG. 22F are schematic diagrams showing the circuit structure of the mounting detection module according to the fourth embodiment of the present invention.
  • 22B is a schematic circuit diagram of a signal processing unit of a mounting detection module according to a fourth embodiment of the present invention.
  • 22C is a schematic circuit diagram of a signal generating unit of a mounting detection module according to a fourth embodiment of the present invention.
  • 22D is a circuit schematic diagram of a signal acquisition unit of a mounting detection module according to a fourth embodiment of the present invention.
  • 22E is a schematic circuit diagram of a switch unit of a mounting detection module according to a fourth embodiment of the present invention.
  • 22F is a circuit block diagram of an internal power detecting unit of the mounting detecting module according to the fourth embodiment of the present invention.
  • 23A is a circuit block diagram of a mounting detection module according to a fifth embodiment of the present invention.
  • 23B is a schematic circuit diagram of a detection path circuit according to a first embodiment of the present invention.
  • 23C is a schematic circuit diagram of a detection path circuit according to a second embodiment of the present invention.
  • 23D is a schematic circuit diagram of a detection path circuit according to a third embodiment of the present invention.
  • 24A is a circuit block diagram of a mounting detection module according to a sixth embodiment of the present invention.
  • 24B is a schematic circuit diagram of a mounting detection module according to a fifth embodiment of the present invention.
  • 24C is a schematic circuit diagram of a mounting detection module according to a sixth embodiment of the present invention.
  • 25A is a circuit block diagram of a mounting detection module according to a seventh embodiment of the present invention.
  • 25B is a schematic circuit diagram of a mounting detection module according to a seventh embodiment of the present invention.
  • 25C is a schematic circuit diagram of a mounting detection module according to an eighth embodiment of the present invention.
  • 25D is a schematic circuit diagram of a mounting detection module according to a ninth embodiment of the present invention.
  • 26A is a circuit block diagram of a mounting detection module according to an eighth embodiment of the present invention.
  • 26B is a circuit block diagram of a mounting detection module according to a ninth embodiment of the present invention.
  • Figure 27 is a circuit block diagram of a power module of an eleventh embodiment of the present invention.
  • 28A is a circuit block diagram of a mounting detection module according to a tenth embodiment of the present invention.
  • 28B is a schematic circuit diagram of a mounting detection module according to a tenth embodiment of the present invention.
  • 29 is a circuit block diagram of a power module of a twelfth embodiment of the present invention.
  • FIG. 30A is a circuit block diagram of a mounting detection module according to an eleventh embodiment of the present invention.
  • FIGS. 30B to 30F are schematic diagrams showing the circuit structure of the mounting detection module according to the eleventh embodiment of the present invention.
  • FIG. 30G is a schematic circuit diagram of a mounting detection module according to a twelfth embodiment of the present invention.
  • 31A is a circuit block diagram of a mounting detection module according to a twelfth embodiment of the present invention.
  • FIG. 31B is a schematic diagram of a circuit structure of a bias adjustment circuit according to an embodiment of the present invention.
  • 32A is a circuit block diagram of a mounting detection module according to a thirteenth embodiment of the present invention.
  • 32B is a schematic diagram of a circuit structure of a driving circuit with an electric shock detecting function according to a first embodiment of the present invention
  • 33A is a circuit block diagram of a mounting detection module according to a fourteenth embodiment of the present invention.
  • 33B is a schematic diagram of a circuit structure of a driving circuit with an electric shock detecting function according to a second embodiment of the present invention.
  • 33C is a circuit block diagram of an integrated controller according to an embodiment of the present invention.
  • 33D is a schematic diagram of a circuit structure of a driving circuit with an electric shock detecting function according to a third embodiment of the present invention.
  • Figure 34 is a circuit block diagram of a power module of a thirteenth embodiment of the present invention.
  • 35A is a circuit block diagram of a mounting detection module according to a fifteenth embodiment of the present invention.
  • FIG. 35B and FIG. 35C are schematic diagrams showing the circuit structure of the mounting detection module according to the thirteenth embodiment of the present invention.
  • 35B is a circuit schematic diagram of a detection pulse generation module of a mounting detection module according to a fifteenth embodiment of the present invention.
  • 35C is a circuit schematic diagram of a detection path circuit of a mounting detection module according to a fifteenth embodiment of the present invention.
  • 36A is a circuit block diagram of a mounting detection module according to a sixteenth embodiment of the present invention.
  • 36B is a schematic circuit diagram of a bias circuit of the first embodiment of the present invention.
  • 36C is a schematic circuit diagram of a bias circuit of a second embodiment of the present invention.
  • FIG. 37 is a circuit block diagram of a detection pulse generation module according to an embodiment of the present invention.
  • 38A is a schematic diagram of a circuit structure of a detection pulse generation module according to a first embodiment of the present invention.
  • 38B is a schematic circuit diagram of a detection pulse generation module according to a second embodiment of the present invention.
  • 39A is a schematic diagram of signal timing of a detection pulse generation module according to a first embodiment of the present invention.
  • 39B is a schematic diagram showing signal timing of a detection pulse generation module according to a second embodiment of the present invention.
  • 39C is a schematic diagram of signal timing of a detection pulse generation module according to a third embodiment of the present invention.
  • 39D is a schematic diagram of signal timing of a detection pulse generation module according to a fourth embodiment of the present invention.
  • FIG. 40 is a circuit block diagram of a power module of a fourteenth embodiment of the present invention.
  • 41A is a schematic diagram of signal timing of a power module according to a first embodiment of the present invention.
  • 41B is a schematic diagram showing signal timing of a power module according to a second embodiment of the present invention.
  • 41C is a schematic diagram showing signal timing of a power module according to a third embodiment of the present invention.
  • 41D is a schematic diagram of a waveform of a detected current according to the first embodiment of the present invention.
  • 41E is a schematic diagram of a waveform of a detected current according to a second embodiment of the present invention.
  • 41F is a schematic diagram of a waveform of a detected current according to a third embodiment of the present invention.
  • 42A is a flow chart showing the steps of the electric shock detecting method according to the first embodiment of the present invention.
  • 42B is a flow chart showing the steps of the control method of the installation detecting module according to the first embodiment of the present invention.
  • 42C is a flow chart showing the steps of the control method of the mounting detection module according to the second embodiment of the present invention.
  • the utility model proposes a new LED straight tube lamp to solve the problems mentioned in the background art and the above problems.
  • the above described objects, features and advantages of the present invention will become more apparent from the aspects of the invention.
  • the following description of the various embodiments of the invention are intended to be illustrative and not restrictive
  • the same component numbers may be used to represent the same, corresponding or similar components, and are not limited to only the same components.
  • the LED straight tube lamp includes a light board 2 and a power source 5, wherein the power source 5 can be in a modular state, that is, the power source 5 can be an integrated power module.
  • the power source 5 can be a single unit that is integrated (for example, all components of the power source 5 are disposed in a body) and disposed in a lamp cap at one end of the lamp tube.
  • the power source 5 may be two separate components (for example, the components of the power source 5 are divided into two parts) and are respectively disposed in the two lamp caps.
  • the power source 5 is illustrated as being integrated into one module (hereinafter referred to as the power module 5), and the power module 5 is disposed in the lamp cap parallel to the axial direction cyd of the lamp.
  • the axial cyd of the tube refers to the direction in which the axis of the tube is directed, which is perpendicular to the end wall of the cap.
  • the axial direction cyd of the power module 5 parallel to the lamp means that the power module circuit board on which the electronic component is disposed is parallel to the axial cyd, that is, the normal of the circuit board is orthogonal to the axial cyd.
  • the power module 5 can be disposed at a position where the axial cyd passes, the upper side or the lower side of the axial cyd (relative to the drawing) in different embodiments, and the present invention is not limited thereto.
  • FIG. 1B is a plan cross-sectional view of the lamp panel and the power module of the LED straight tube lamp according to the second embodiment of the present invention.
  • the power module 5 is disposed in the lamp cap perpendicular to the axial direction of the lamp tube, that is, parallel to the end wall of the lamp cap.
  • the electronic components on the power module 5 are disposed on the side facing the inside of the lamp tube, the present invention is not limited thereto.
  • the electronic component can also be disposed on a side adjacent the end wall of the lamp cap. Under this configuration, since the opening can be provided on the lamp cap, the heat dissipation effect of the electronic component can be improved.
  • the power module 5 can be further split into a plurality of circuit board configurations, as shown in FIG. 1C, wherein FIG. 1C is A plan sectional view of a lamp panel and a power module of the LED straight tube lamp of the third embodiment of the present invention inside the lamp tube.
  • FIG. 1C is A plan sectional view of a lamp panel and a power module of the LED straight tube lamp of the third embodiment of the present invention inside the lamp tube.
  • the power source 5 is composed of two power modules 5a and 5b, and the two power modules 5a and 5b are disposed in the lamp head perpendicular to the axial direction cyd, and the power module 5a and 5b are oriented toward the end wall of the lamp cap and are sequentially arranged in the axial direction cyd.
  • the power modules 5a and 5b respectively have independent circuit boards, and the circuit boards are respectively provided with corresponding electronic components, wherein the two circuit boards can be connected together through various electrical connection means, so that the overall power circuit
  • the topology is similar to the previously described embodiment of Figure 1A or Figure 1B. With the configuration of FIG.
  • the accommodating space in the lamp cap can be utilized more effectively, so that the circuit layout space of the power modules 5a and 5b is larger.
  • electronic components such as capacitors and inductors
  • the circuit boards of the power modules 5a and 5b may adopt an octagonal structure to maximize the layout area.
  • the separate power modules 5a and 5b can be connected through the male plug and the female plug, or can be connected by wire bonding, and the outer layer of the wire can be wrapped with an insulating sleeve as Electrical insulation protection.
  • the power modules 5a and 5b can also be directly connected together by rivets, solder paste bonding, soldering or wire bonding.
  • FIG. 2 is a plan cross-sectional view of a lamp panel of an LED straight tube lamp according to an embodiment of the present invention.
  • the flexible circuit board as the lamp board 2 includes a circuit layer 2a having a conductive effect.
  • the LED light source 202 is disposed on the circuit layer 2a and is electrically connected to the power source through the circuit layer 2a.
  • the circuit layer having a conductive effect in this specification may also be referred to as a conductive layer.
  • the flexible circuit board may further include a dielectric layer 2b stacked on the circuit layer 2a, and the dielectric layer 2b and the circuit layer 2a are equal in area or slightly smaller than the dielectric layer.
  • the wiring layer 2a is used to set the LED light source 202 on the surface opposite to the dielectric layer 2b.
  • the circuit layer 2a is electrically connected to the power source 5 (see FIG. 1) for passing a direct current.
  • the dielectric layer 2b is bonded to the inner peripheral surface of the bulb 1 by the adhesive sheet 4 on the surface opposite to the wiring layer 2a.
  • the circuit layer 2a may be a metal layer or a power layer covered with a wire such as a copper wire.
  • the outer surfaces of the circuit layer 2a and the dielectric layer 2b may each be coated with a circuit protection layer.
  • the circuit protection layer may be an ink material having the functions of solder resist and reflection enhancement.
  • the flexible circuit board may be a layer structure, that is, consisting of only one layer 2a, and then the circuit layer 2a is coated with a circuit protection layer of the above-mentioned ink material, and the protection layer may be provided with an opening. So that the light source can be electrically connected to the circuit layer. Either a layer of the wiring layer 2a or a two-layer structure (a layer of the wiring layer 2a and a layer of the dielectric layer 2b) can be combined with the circuit protection layer.
  • the circuit protection layer may also be disposed on one side surface of the flexible circuit board, for example, only one side of the LED light source 202 is provided with a circuit protection layer.
  • the flexible circuit board is a layer layer structure 2a or a two-layer structure (one layer 2a and one layer 2b), which is obviously larger than the general three-layer flexible substrate (two-layer circuit) A layer of dielectric layer is added to the layer) for flexibility and flexibility. Therefore, it can be matched with a lamp 1 with a special shape (for example, a non-straight tube lamp), and the flexible circuit board is placed close to the board. On the wall of the tube 1 tube.
  • the flexible circuit board is closely attached to the tube wall for better configuration, and the fewer the number of layers of the flexible circuit board, the better the heat dissipation effect, and the lower the material cost, the more environmentally friendly and flexible. There are also opportunities for improvement.
  • the flexible circuit board of the present invention is not limited to one or two layers of circuit boards.
  • the flexible circuit board includes a plurality of circuit layers 2a and a plurality of dielectric layers 2b.
  • the electric layer 2b and the circuit layer 2a are alternately stacked and arranged on the side of the circuit layer 2a opposite to the LED light source 202.
  • the LED light source 202 is disposed on the uppermost layer of the multilayer circuit layer 2a, and passes through the uppermost layer of the circuit layer 2a.
  • One layer is electrically connected to the power source.
  • the axial projection length of the flexible circuit board as the light panel 2 is greater than the length of the tube.
  • FIG. 3 is a perspective view of a lamp panel of an LED straight tube lamp according to an embodiment of the present invention.
  • the flexible circuit board as the lamp board 2 includes a first circuit layer 2a, a dielectric layer 2b and a second circuit layer 2c, and a second circuit layer 2c, in order from top to bottom.
  • the thickness is greater than the thickness of the first circuit layer 2a, and the axial projection length of the lamp panel 2 is greater than the length of the lamp tube 1, wherein the LED board 20 is not provided with the LED light source 202 and protrudes from the end region of the lamp tube 1, the first line
  • the layer 2a and the second wiring layer 2c are electrically connected to each other through the two through holes 203 and 204, but the through holes 203 and 204 are not in communication with each other to avoid a short circuit.
  • the thickness of the second circuit layer 2c is large, the effect of supporting the first circuit layer 2a and the dielectric layer 2b can be achieved, and the lamp board 2 is not easily generated when attached to the inner tube wall of the lamp tube 1. Offset or deformation to increase manufacturing yield.
  • the first circuit layer 2a and the second circuit layer 2c are electrically connected such that the circuit layout on the first circuit layer 2a can extend to the second circuit layer 2c, so that the circuit layout on the lamp board 2 is more diverse.
  • the original circuit layout traces are changed from a single layer to a double layer, and the single layer area of the wiring layer on the light board 2, that is, the dimension in the width direction, can be further reduced, and the number of light plates for batch solidification is allowed. Can increase and increase productivity.
  • first circuit layer 2a and the second circuit layer 2c which are provided on the lamp board 2 and protrude from the end region of the lamp tube 1 can also be directly used to realize the circuit layout of the power module, and The power module is directly configured on the flexible circuit board.
  • connection mode of the lamp panel 2 and the power source 5 is preferably selected as soldering.
  • FIG. 4 is a perspective view of a printed circuit board of a lamp panel and a power module of an LED straight tube lamp according to an embodiment of the present invention.
  • the specific method may be to leave the output end of the power source 5 out of the power source pad a, and leave tin on the power source pad a to increase the thickness of the tin on the pad to facilitate soldering, correspondingly, A light source pad b is also left on the end of the lamp panel 2, and the power source pad a at the output end of the power source 5 is soldered to the light source pad b of the lamp panel 2.
  • the plane in which the pad is located is defined as the front side, and the connection mode of the lamp board 2 and the power source 5 is most stable with the pad on the front side of the both sides, but the soldering head is typically pressed against the back side of the lamp board 2 during soldering.
  • the lamp board 2 is used to heat the solder, which is more likely to cause reliability problems. If, in some embodiments, the hole is formed in the middle of the light source pad b on the front side of the lamp panel 2, and then the face is superposed on the power pad a on the front side of the power source 5 for soldering, the soldering head can directly solder. Heating and melting is easier to implement in practice.
  • the flexible circuit board as the lamp board 2 is mostly fixed on the inner peripheral surface of the lamp tube 1, and is not fixed to the lamp tube 1 at both ends (please refer to the figure).
  • the lamp panel 2 not fixed to the inner circumferential surface of the bulb 1 forms a free portion 21 (see FIGS. 1A-1C and 3), and the lamp panel 2 is fixed to the inner circumference of the bulb 1.
  • the portion on the face forms a fixing portion 22.
  • the free portion 21 has the above-described light source pad b, one end of which is welded to the power source 5, the other end of which is integrally extended to the fixing portion 22, and the portion between the both ends of the free portion 21 does not overlap the inner circumference of the bulb 1.
  • the surface is attached (that is, the middle portion of the free portion 21 is in a suspended state).
  • the welded end of the free portion 21 and the power source 5 causes the free portion 21 to contract toward the inside of the bulb 1.
  • the flexible circuit board as the light board 2 has a structure in which the two circuit layers 2a and 2c sandwich a dielectric layer 2b as shown in FIG. 3, the light board 2 is not provided with the LED light source 202.
  • the end portion of the lamp tube 1 can be used as the free portion 21, and the free portion 21 can realize the communication of the two-layer circuit layer and the circuit layout of the power module.
  • the pin design of the LED straight tube lamp it can be a single-ended single pin (two pins in total) or a double-ended double pin (four pins in total). Therefore, in the case of input from the double end of the LED straight tube lamp, at least one pin of each of the two ends can be used to receive the external driving signal.
  • the wires disposed between each of the two pins are typically referred to as a live wire (generally labeled "L") and a neutral/neutral line (generally labeled "N”) and can be used for signal input and transmission. .
  • FIG. 5A to FIG. 5C are partial schematic views showing the welding process of the lamp board and the power source according to an embodiment of the present invention, which shows the connection structure between the lamp board 2 and the power circuit board 420 of the power source 5.
  • Connection method In the present embodiment, the lamp panel 2 has the same structure as that of the foregoing FIG. 4, and the free portion is a portion of the opposite ends of the lamp panel 2 for connecting the power circuit board 420, and the fixing portion is attached to the lamp panel 2 for the lamp panel 2.
  • the light board 2 is a flexible circuit board, and the light board 2 includes a laminated circuit layer 200a and a circuit protection layer 200c.
  • the side of the circuit layer 200a away from the circuit protection layer 200c is defined as the first surface 2001, and the side of the circuit protection layer 200c away from the circuit layer 200a is defined as the second surface 2002, that is, the first surface 2001 and the second surface 2002 are Opposite two sides of the light board 2.
  • a plurality of LED light sources 202 are disposed on the first surface 2001 and electrically connected to the circuit of the circuit layer 200a.
  • the circuit protection layer 200c is a polyimide layer (Polyimide, PI), which is not easy to conduct heat, but has the effect of protecting the circuit.
  • the first face 2001 of the lamp panel 2 has a pad b on which the solder g is placed, and the soldered end of the lamp panel 2 has a notch f.
  • the power circuit board 420 includes a power circuit layer 420a, and the power circuit board 420 defines opposite first and second faces 421, 422, and the second face 422 is located on a side of the power circuit board 420 having the power circuit layer 420a.
  • pads a corresponding to each other are formed, and solder g may be formed on the pads a.
  • the present embodiment places the lamp panel 2 below the power supply circuit board 420 (refer to the direction of FIG. 5A), that is, the first side 2001 of the lamp panel 2 is connected to The second side 422 of the power circuit board 420.
  • the circuit protection layer 200C of the lamp board 2 is first placed on the support table 42 (the second side 2002 of the lamp board 2 is in contact with each other).
  • the support table 42 directly contacts the pad a of the second surface 422 of the power circuit board 420 with the pad b of the first surface 2001 of the lamp board 2, and then presses the soldering head 41 against the lamp board 2 and the power supply circuit.
  • the weld of the plate 420 is first placed on the support table 42 (the second side 2002 of the lamp board 2 is in contact with each other).
  • the heat of the bonding ram 41 is directly transmitted to the pad b of the first surface 2001 of the lamp board 2 through the pad a of the first surface 421 of the power circuit board 420, and the heat of the bonding ram 41 is not
  • the circuit protection layer 200c having a relatively poor thermal conductivity affects the efficiency and stability of the bonding between the lamp board 2 and the pad a of the power supply board 420 at the time of soldering.
  • the pad b of the first surface 2001 of the lamp board 2 is soldered to the pad a of the second surface 422 of the power circuit board 420, and the pad a of the first surface 521 of the power circuit board 520 is soldered.
  • the heads 41 are connected. As shown in FIG.
  • the power supply circuit board 420 and the light board 2 are completely soldered together by solder g, and the main lines of the power supply board 420, the light board 2, and the solder g are between the virtual lines M and N in FIG. 5C.
  • the connection portion is, in order from top to bottom, the pad a of the first surface 421 of the power supply circuit board 420, the power supply circuit layer 420a, the pad a of the second surface 422 of the power supply circuit board 420, and the circuit layer of the light board 2. 200a, the circuit protection layer 200c of the lamp board 2.
  • the power circuit board 420 and the light board 2 formed in this order are combined to be more stable and firm.
  • another circuit protection layer may be further disposed on the first surface 2001 of the circuit layer 200a, that is, the circuit layer 200a is sandwiched between the two circuit protection layers, so that the circuit layer The first side 2001 of the 200a can also be protected by the circuit protection layer, and only a portion of the circuit layer 200a (the portion where the pad b is provided) is exposed for connection with the pad a of the power supply circuit board 420. At this time, a portion of the bottom of the LED light source 202 will contact the circuit protection layer on the first side 2001 of the circuit layer 200a, and another portion will contact the circuit layer 200a.
  • the circular hole h on the pad a of the power supply circuit board 420 is automatically pressed down to the power supply after the solder is placed in the automated soldering process.
  • the solder is pushed into the round hole h due to this pressure, which satisfies the needs of automated processing.
  • FIG. 5D is a partial schematic view of the lamp panel of the LED straight tube lamp according to an embodiment of the present invention, which shows the structure of the insulating sheet in which the free portion of the lamp board is disposed with the hollow hole k. Most of them are used in the case where the lamp board 2 has two or more pads.
  • the width of the insulating sheet 210 is substantially the same as the width of the lamp board 2; the length of the insulating sheet 210 is 1 to 50 times the length of the pad.
  • the length of the edge sheet is 10 times the length of the pad; the insulating sheet 210
  • the thickness of the insulating sheet 210 is 0.5 to 5 times the thickness of the lamp board 2.
  • the thickness of the insulating sheet 210 is the same; the hollow shape of the insulating sheet 210 is substantially the same as the shape of the pad, and the hollowed out area is slightly larger than the soldering.
  • the area of the disk preferably, the area of the hollow is between 101% and 200% of the area of the pad).
  • the insulating sheet 210 as a whole has a substantially elongated shape or an elliptical shape.
  • the ink in the soldering area of the circuit board may be damaged, and the exposed wire has the risk of being exposed.
  • the insulating sheet 210 is additionally disposed in the area to reduce the risk of short circuit and improve the reliability of the soldering; 3; the light board 2 is provided with L or N line, the straight tube lamp adopting this scheme flows through the strong light (via the layout N line) on the light board 2 during power-on, and in some occasions, the high voltage of the light board 2 and the short circuit board welding area exceeds the high voltage of 300V.
  • the ink covering the surface of the lamp panel 2 is broken by the high voltage, which causes the conductive layer under the ink to be short-circuited with the short circuit board of the power source.
  • the insulating member insulating sheet 210) to the region, the risk of short-circuit is reduced, and the reliability of the straight tube lamp is improved.
  • FIG. 5E is a plan cross-sectional view showing the connection of the board of the LED straight tube lamp and the circuit board of the power module according to an embodiment of the present invention.
  • the free portion of the lamp panel 2 is provided with three pads b10, b11, and b12 (the pads are arranged in two rows in the y direction, one row of b10, one row of b11 and b12), and the corresponding power source (not shown) the board configuration corresponds to three pads; when soldering, the pad of the lamp 2 and the board pad of the power supply may be offset in the y direction, at this time matching the connection pad b11 or b12
  • the configuration is offset on the corresponding pad (also called pad) of the short circuit board of the power supply.
  • the offset portion of the pad b41 (also referred to as the pad b41) is pressed between the pads b11 and b12.
  • the region is provided with a conductive layer that flows through the strong electricity, the applied ink, in some cases, the ink is broken down by high voltage, causing the conductive layer to be shorted to the pad of the short circuit board of the power source.
  • the pad b10 on the lamp board 2 is electrically connected to the live line or the neutral line
  • the pad b11 corresponds to the first drive output end
  • b12 corresponds to the second drive output end.
  • the pad b10 is electrically connected to the live line or the neutral line
  • the pad b11 corresponds to the second drive output end
  • b12 corresponds to the first drive output end.
  • pad b10 corresponds to a first drive output
  • pad b11 corresponds to a second drive output
  • b12 is electrically connected to a live or neutral line.
  • pad b10 corresponds to a first drive output
  • pad b12 corresponds to a second drive output
  • b11 corresponds to a live or neutral line.
  • FIG. 5F is a partial structural diagram of a light source pad of an LED straight tube lamp according to an embodiment of the present invention.
  • FIG. 5F is a diagram showing the configuration of the end pad of the lamp board 2.
  • the pads b1 and b2 on the lamp board 2 are adapted to be soldered to the power pad of the power supply board.
  • the pad configuration of this embodiment can be applied to the input mode of the double-ended single pin, that is, the pad on the same side receives the external drive signal of the same polarity.
  • the pads b1 and b2 of the present embodiment are connected together through an S-type fuse FS, wherein the fuse FS can be formed, for example, as a thin wire, and the impedance thereof is relatively low, so that the pad b1 can be regarded as B2 is shorted together.
  • pads b1 and b2 will receive external drive signals of the same polarity.
  • the fuse FS is blown in response to a large current passing through, thereby preventing the lamp from being damaged.
  • a configuration in which the pad b2 is vacant and the pad b1 is still connected to the lamp panel 2 is formed, so that the lamp panel 2 can continue to be used by receiving an external driving signal through the pad b1.
  • the traces of the pads b1 and b2 and the thickness of the pad body are at least 0.4 mm, and the actual thickness can be selected to be greater than that in the case of implementation, according to the knowledge of those skilled in the art. Any thickness of 0.4mm.
  • the wiring of the pads b1 and b2 and the thickness of the pad body are at least 0.4 mm, when the lamp board 2 is connected to the power supply circuit board through the pads b1 and b2 and placed in the lamp tube Even if the copper foil at the pads b1 and b2 is broken, the copper foil attached to the periphery of the pads can connect the lamp 2 to the circuit of the power supply board, so that the lamp can work normally.
  • FIG. 5G is a partial structural diagram of a power supply pad of an LED straight tube lamp according to an embodiment of the present invention.
  • the power circuit board may have a configuration of, for example, three pads a1, a2, and a3, and the power circuit board may be, for example, a printed circuit board, but the present invention is not limited thereto.
  • a plurality of perforations hp are disposed on each of the pads a1, a2, and a3.
  • a soldering substance such as solder
  • the pads on the light board 2 (such as b1, b2, hereinafter referred to as the light source pads) are electrically connected to each other, wherein the light board 2 can be, for example, a flexible circuit board.
  • the contact area between the solder and the power supply pads a1, a2, and a3 is increased by the punching hp, the adhesive force between the power supply pads a1, a2, and a3 and the light source pad is further enhanced.
  • the setting of the perforated hp can also increase the heat dissipation area, so that the thermal characteristics of the lamp can be improved.
  • the number of perforations hp can be selected to be seven or nine depending on the sizes of the pads a1, a2, and a3. If the configuration is chosen to be 7 perforated hp, the perforation hp can be arranged in which six perforations hp are arranged on a circumference and the remaining one is placed on the center of the circle. If the configuration is chosen to be 9 perforated hp, the perforated hp can be arranged in a 3x3 array arrangement. The above configuration selection can preferably increase the contact area and improve the heat dissipation effect.
  • FIG. 6A and FIG. 6B are schematic diagrams showing the three-dimensional structure of the lamp board and the power module of the LED straight tube lamp according to different embodiments of the present invention.
  • the lamp panel 2 and the power source 5 fixed by the above-described transmission welding method may be replaced by a circuit board assembly 25 on which the power module 5 is mounted.
  • the circuit board assembly 25 has a long circuit board 251 and a short circuit board 253.
  • the long circuit board 251 and the short circuit board 253 are fixed to each other by a bonding method, and the short circuit board 253 is located near the periphery of the long circuit board 251.
  • the short circuit board 253 has a power supply module 25, which integrally constitutes a power supply.
  • the short circuit board 253 is made of a long circuit board 251 hard to support the power module 5.
  • the long circuit board 251 may be the above-described flexible circuit board or flexible substrate as the lamp board 2, and has the wiring layer 2a shown in FIG.
  • the manner in which the circuit layer 2a of the lamp panel 2 and the power module 5 are electrically connected may have different electrical connections depending on actual use.
  • the circuit layer 2a electrically connected to the power module 5 on the power module 5 and the long circuit board 251 is located on the same side of the short circuit board 253, and the power module 5 is directly electrically connected to the long circuit board 251.
  • FIG. 6A the circuit layer 2a electrically connected to the power module 5 on the power module 5 and the long circuit board 251 is located on the same side of the short circuit board 253, and the power module 5 is directly electrically connected to the long circuit board 251.
  • the circuit layers 2a electrically connected to the power module 5 are respectively located on both sides of the short circuit board 253, and the power module 5 penetrates the short circuit board 253 and the light.
  • the wiring layer 2a of the board 2 is electrically connected.
  • the electronic component of the power module 5 located on the left short circuit board 253 may be referred to as the power module 5a, and the electronic component of the power module 5 located on the right short circuit board 253 may be referred to as the power module 5b.
  • FIG. 7 is a schematic diagram of internal wires of an LED straight tube lamp according to an embodiment of the present invention.
  • the LED straight tube lamp of the present disclosure may include a lamp tube, a lamp holder (not shown in FIG. 3B), a lamp board 2 (or a long circuit board 251), a short circuit board 253, and an inductor 526 in an embodiment.
  • Each of the two ends of the lamp has at least one pin for receiving an external driving signal.
  • it can be a single-ended single pin (two pins in total) or a double-ended dual pin (four pins in total).
  • At least one pin of each of the two ends can be used to receive the external driving signal.
  • the wires disposed between each of the two pins are typically referred to as a live wire (generally labeled "L") and a neutral/neutral line (generally labeled "N”) and can be used for signal input and transmission. .
  • the lamp caps are disposed at two ends of the lamp tube, and (at least part of the electronic components) of the short circuit board 253 on the left and right sides of the lamp tube as shown in FIG. 7 are respectively located in the lamp caps at the two ends.
  • the light panel 2 is disposed within the light tube and includes an LED module, and the LED module includes an LED unit 632.
  • the power modules 5a and 5b are electrically connected to the light board 2 through the corresponding short circuit board 253, respectively.
  • the electrical connection (for example, the transmission pad) may include connecting the two ends of the light board 2 through the signal terminal (L).
  • the corresponding pins are connected to the positive and negative poles of the LED unit 632 through the driving output ends 531 and 532, respectively, and the reference ground of the light board 2 is connected through the grounding terminal, and the reference ground is connected to the grounding end GND through the grounding terminal.
  • the level of the reference ground can be defined as the ground level.
  • the inductor 526 is connected in series between the fourth terminals of the short circuit board 253 at both ends of the lamp.
  • the inductor 526 may comprise, for example, a choke inductor or a dual-inline-package. Inductor).
  • the straight tube lamp design with double-ended power especially for long-size (such as eight-foot) straight tube lamps, some power circuits (power modules a and b) may be placed in the lamp caps at both ends. Therefore, it is necessary to provide the extended signal wire LL and the ground wire GL along the lamp panel 2.
  • the signal conductor LL is usually in close proximity to the positive conductor on the lamp panel 2, so parasitic capacitance may be generated between the two. The high frequency interference through the positive lead is reflected by the parasitic capacitance onto the signal conductor LL, thereby producing an electromagnetic interference (EMI) effect that can be detected.
  • EMI electromagnetic interference
  • the signal loop of the high-frequency interference can be blocked by the high-impedance characteristic of the inductor 526 at high frequency, thereby eliminating the positive electrode.
  • High frequency interference on the wires to prevent EMI effects from parasitic capacitances on the signal conductors LL.
  • the function of the inductor 526 is to eliminate or reduce the EMI effect caused by the positive lead LL or to be affected by EMI, thereby improving the power signal transmission in the lamp (including the signal conductor LL, the positive lead, and the negative lead). The quality of LED straight tube lamps.
  • FIG. 8A is a circuit block diagram of a LED straight tube lamp illumination system according to a first embodiment of the present invention.
  • An AC power source 508 (or external power grid 508) is used to provide an AC power signal.
  • the AC power source 508 can be a commercial power source with a voltage range of 100-277V and a frequency of 50 or 60 Hz.
  • the LED straight tube lamp 500 receives the AC power signal supplied from the AC power source 508 as an external driving signal, and is driven to emit light.
  • the LED straight tube lamp 500 is a single-ended power supply driving structure, and the same end of the lamp tube has a first pin 501 and a second pin 502 for receiving an external driving signal.
  • the first pin 501 and the second pin 502 of the embodiment are used for receiving an external driving signal; in other words, when the LED straight tube lamp is mounted on the socket, the power module (not shown) in the LED straight tube lamp 500
  • the first pin 501 and the second pin 502 are coupled (ie, electrically connected, or directly or indirectly connected) to the AC power source 508 to receive an AC power signal.
  • FIG. 8B is a circuit block diagram of the LED straight tube lamp illumination system according to the second embodiment of the present invention. As shown in FIG. 8A, the first pin 501 and the second pin 502 of the embodiment are respectively disposed on the opposite end of the lamp tube of the LED straight tube lamp 500 to receive an external driving signal from both ends of the lamp tube.
  • the configuration of the double-ended power supply, the remaining circuit connections and functions are the same as the circuit shown in Figure 8A.
  • FIG. 8C to FIG. 8E are circuit block diagrams of the LED straight tube lamp illumination system according to the third to fifth embodiments of the present invention.
  • the embodiment further includes a third pin 503 and a fourth pin 504.
  • the lamp cap has a first pin 501 and a third pin 503, and the other end has a second pin 502 and a fourth pin 504.
  • the first pin 501, the second pin 502, the third pin 503, and the fourth pin 504 can be used to receive an external driving signal to drive the LED component (not shown) in the LED straight tube lamp 500 to emit light.
  • the power supply of the lamp can be realized by adjusting the configuration of the power module.
  • the power input mode of the double-ended single pin that is, the external driving signals of different polarities are respectively given to the lamp pin of the two ends, or can be regarded as coupling the live wire and the neutral wire of the alternating current power source 508 respectively.
  • the power input mode of the double-ended single pin that is, the external driving signals of different polarities are respectively given to the lamp pin of the two ends, or can be regarded as coupling the live wire and the neutral wire of the alternating current power source 508 respectively.
  • the double-ended base can have a single pin for free/floating, for example, the third pin 503 and the first of FIG. 8D.
  • the four pins 504 can be in an empty/floating state, so that the lamp receives the external driving signal through the first pin 501 and the second pin 502, so that the power module inside the lamp performs subsequent rectification and filtering operations.
  • the pins of the double-ended base can be short-circuited through the wires outside the lamp or the inside of the lamp, for example, the first pin 501 and the third on the same side.
  • the pins 503 are short-circuited together, and the second pins 502 are short-circuited with the fourth pins 504 on the same side, so that the first pins 501 and the second pins 502 can be used to receive the positive or negative electrodes.
  • the external external driving signal, and the third pin 503 and the fourth pin 504 receive an external driving signal of opposite polarity, so that the power module inside the lamp performs subsequent rectification and filtering operations.
  • FIG. 9A is a circuit block diagram of a power module according to a first embodiment of the present invention.
  • the power module 5 of the LED lamp of the embodiment is coupled to the LED module 50 and includes a rectifier circuit 510 (which may be referred to as a first rectifier circuit 510), a filter circuit 520, and a drive circuit 530.
  • the rectifier circuit 510 is coupled to the first pin 501 and the second pin 502 to receive an external driving signal, and rectify the external driving signal, and then output the rectified signal by the first rectifying output terminal 511 and the second rectifying output terminal 512. .
  • the external drive signal herein may be the AC power signal provided by the AC power source 508 in Figures 8A through 8E, or even a DC signal without affecting the operation of the LED lamp.
  • the filter circuit 520 is coupled to the rectifier circuit 510 for filtering the rectified signal; that is, the filter circuit 520 is coupled to the first rectified output terminal 511 and the second rectified output terminal 512 to receive the rectified signal, and is rectified The signal is filtered, and then the filtered output signal is outputted by the first filter output terminal 521 and the second filter output terminal 522.
  • the driving circuit 530 is coupled to the filtering circuit 520 and the LED module 50 to receive the filtered signal and generate a driving signal to drive the LED module 50 at the rear end to emit light.
  • the driving circuit 530 can be, for example, a DC-to-DC conversion circuit for receiving The filtered signal is converted into a driving signal and output through the first driving output terminal 531 and the second driving output terminal 532; that is, the driving circuit 530 is coupled to the first filtering output terminal 521 and the second filtering output terminal 522 to receive the filtered signal.
  • the LED components (not shown) within the LED module 50 are then driven to illuminate. Please refer to the description of the following examples for details in this section.
  • the LED module 50 is coupled to the first driving output end 531 and the second driving output end 532 to receive the driving signal to emit light.
  • the current of the LED module 50 is stabilized at a set current value.
  • the specific configuration of the LED module 50 refer to the description of the subsequent FIGS. 10A to 10I.
  • FIG. 9B is a circuit block diagram of a power module according to a second embodiment of the present invention.
  • the power module 5 of the LED lamp of the embodiment is coupled to the LED module 50, and includes a rectifier circuit 510, a filter circuit 520, a driving circuit 530, and a rectifier circuit 50 (which may be referred to as a second rectifier circuit 540), which can be applied to FIG. 8C.
  • the rectifier circuit 510 is coupled to the first pin 501 and the second pin 502 for receiving and rectifying the external driving signals transmitted by the first pin 501 and the second pin 502.
  • the second rectifier circuit 540 is coupled to the third terminal.
  • the foot 503 and the fourth pin 504 are configured to receive and rectify an external driving signal transmitted by the third pin 503 and the fourth pin 504. That is, the power module 5 of the LED lamp may include the first rectifying circuit 510 and the second rectifying circuit 540 outputting the rectified signal together with the first rectifying output terminal 511 and the second rectifying output terminal 512.
  • the filter circuit 520 is coupled to the first rectified output terminal 511 and the second rectified output terminal 512 to receive the rectified signal, and filters the rectified signal, and then outputs the filtered output by the first filter output terminal 521 and the second filter output terminal 522. signal.
  • the driving circuit 530 is coupled to the first filtering output 521 and the second filtering output 522 to receive the filtered signal, and then drives the LED components (not shown) in the LED module 50 to emit light.
  • FIG. 9C is a circuit block diagram of a power module according to a third embodiment of the present invention.
  • the power module of the LED lamp mainly includes a rectifying circuit 510, a filter circuit 520, and a driving circuit 530, which can also be applied to the single-ended power supply architecture of FIG. 8A or 8C or the double-ended power supply architecture of FIG. 8B, 8D or 8E.
  • the difference between this embodiment and the foregoing embodiment of FIG. 9B is that the rectifier circuit 510 can have three input terminals to respectively couple the first pin 501, the second pin 502 and the third pin 503, and can be used for each pin.
  • the signals received by the 501 to 503 are rectified, wherein the fourth pin 504 can be floating or short-circuited with the third pin 503. Therefore, the configuration of the second rectifying circuit 540 can be omitted in this embodiment.
  • the rest of the circuit operation is substantially the same as that of FIG. 9B, and thus the detailed description thereof will not be repeated.
  • the number of the first rectified output end 511, the second rectified output end 512, the first filtered output end 521, and the second filtered output end 522 are both two, and the actual application is based on
  • the requirements for signal transmission between the circuits of the rectifier circuit 510, the filter circuit 520, the driving circuit 530, and the LED module 50 are increased or decreased, that is, the number of coupling terminals between the circuits may be one or more.
  • the power module of the LED straight tube lamp shown in FIG. 9A to FIG. 9C and the power module of the following LED straight tube lamp are respectively applicable to the LED straight tube lamp shown in FIG. 8A to FIG. 8E, and include two connections.
  • Light-emitting circuit architecture for transmitting power such as bulbs, PAL lamps, intubation energy-saving lamps (PLS lamps, PLD lamps, PLT lamps, PLL lamps, etc.) .
  • Embodiments for Bulbs This embodiment can be used in conjunction with the implementation of CN105465630A or CN105465663.
  • the LED straight tube lamp 500 of the present invention When the LED straight tube lamp 500 of the present invention is applied to a double-ended at least single-pin energized structure, it can be retrofitted and then installed in a lamp-containing driving circuit or ballast 505 (such as an electronic ballast or an inductive ballast).
  • a lamp-containing driving circuit or ballast 505 such as an electronic ballast or an inductive ballast.
  • the lamp holder is adapted to be used by the bypass ballast 505 and is powered by an AC power source 508 (e.g., mains).
  • FIG. 10A is a schematic diagram of a circuit structure of an LED module according to a first embodiment of the present invention.
  • the positive terminal of the LED module 50 is coupled to the first driving output end 531, and the negative terminal is coupled to the second driving output end 532.
  • the LED module 50 includes at least one LED unit 632. When the LED units 632 are two or more, they are connected in parallel with each other.
  • the positive end of each LED unit is coupled to the positive end of the LED module 50 to be coupled to the first filter output end 521; the negative end of each LED unit is coupled to the negative end of the LED module 50 to be coupled to the second filter output end. 522.
  • the LED unit 632 includes at least one LED component 631, that is, the LED light source 202 in the foregoing embodiment.
  • the LED component 631 is plural, the LED components 631 are connected in series, the positive terminal of the first LED component 631 is coupled to the positive terminal of the associated LED unit 632, and the negative terminal of the first LED component 631 is coupled to the next (second LED component 631.
  • the positive terminal of the last LED component 631 is coupled to the negative terminal of the previous LED component 631, and the negative terminal of the last LED component 631 is coupled to the negative terminal of the associated LED unit 632.
  • the current detection signal labeled S531 represents the magnitude of the current flowing through the LED module 50, which can be used for detecting and controlling the LED module 50.
  • FIG. 10B is a schematic diagram of a circuit structure of an LED module according to a second embodiment of the present invention.
  • the positive terminal of the LED module 50 is coupled to the first driving output end 531, and the negative terminal is coupled to the second driving output end 532.
  • the LED module 50 of the present embodiment includes at least two LED units 732, and the positive end of each LED unit 732 is coupled to the positive end of the LED module 50, and the negative end is coupled to the negative end of the LED module 50.
  • the LED unit 732 includes at least two LED components 731.
  • the LED components 731 in the associated LED unit 732 are connected in the same manner as described in FIG. 10A.
  • the negative electrode of the LED component 731 is coupled to the positive electrode of the next LED component 731.
  • the anode of one LED component 731 is coupled to the anode of the associated LED unit 732, and the cathode of the last LED component 731 is coupled to the cathode of the associated LED unit 732. Furthermore, the LED units 732 in this embodiment are also connected to each other. The anodes of the nth LED assembly 731 of each of the LED units 732 are connected to each other, and the anodes are also connected to each other. Therefore, the connection between the LED components of the LED module 50 of the present embodiment is a mesh connection.
  • the current detection signal S531 of the present embodiment can similarly represent the magnitude of the current flowing through the LED module 50 for detecting and controlling the LED module 50.
  • the number of LED components 731 included in the LED unit 732 is preferably 15-25, more preferably 18-22.
  • FIG. 10C is a schematic diagram of the wiring of the LED module of the first embodiment of the present invention.
  • the connection relationship of the LED assembly 831 of this embodiment is the same as that shown in FIG. 10B.
  • three LED units will be described as an example.
  • the positive lead 834 and the negative lead 835 receive a driving signal to provide power to each of the LED components 831.
  • the positive lead 834 is coupled to the first filtered output 521 of the filter circuit 520
  • the negative lead 835 is coupled to the filter circuit 520.
  • the second filter output 522 receives the filtered signal.
  • the nth of each LED unit is divided into the same LED group 832.
  • the positive lead 834 is connected to the first LED component 831 of the leftmost three LED units, that is, the (left) positive pole of the three LED components in the leftmost LED group 832 as shown, and the negative lead 835 is connected to three The last of the LED units 831, the (right) negative of the three LED assemblies in the rightmost LED group 832 as shown.
  • the anode of the first LED component 831 of each LED unit, the anode of the last LED component 831, and the anode and cathode of the other LED component 831 are connected by a connecting wire 839.
  • the anodes of the three LED assemblies 831 of the leftmost LED group 832 are connected to each other through the positive electrode lead 834, and the negative electrodes thereof are connected to each other through the leftmost connecting wire 839.
  • the anodes of the three LED assemblies 831 of the left second LED group 832 are connected to each other through the leftmost connecting wires 839, and the negative electrodes thereof are connected to each other through the second connecting wires 839. Since the anodes of the three LED components 831 of the leftmost LED group 832 and the anodes of the three LED components 831 of the left LED group 832 are connected to each other through the leftmost connecting wire 839, the first one of each LED unit The negative electrode of the LED assembly and the positive electrode of the second LED assembly are connected to each other. And so on to form a mesh connection as shown in FIG. 10B.
  • the width 836 of the connecting portion of the connecting wire 839 with the positive electrode of the LED assembly 831 is smaller than the width 837 of the connecting portion with the negative electrode of the LED assembly 831.
  • the area of the negative electrode connecting portion is made larger than the area of the positive electrode connecting portion.
  • the width 837 is smaller than the width 838 of the portion of the connecting wire 839 that simultaneously connects the positive electrode of one of the adjacent two LED assemblies 831 and the negative electrode of the other, so that the area of the positive and negative portions simultaneously is greater than that of the negative electrode only portion.
  • Area and area of the positive connection portion Therefore, such a wiring structure contributes to heat dissipation of the LED components.
  • the positive lead 834 may further include a positive lead 834a
  • the negative lead 835 may further include a negative lead 835a such that both ends of the LED module have positive and negative connection points.
  • Such a wiring structure can enable other circuits of the power module of the LED lamp, for example, the filter circuit 520, the first rectifier circuit 510, and the second rectifier circuit 540 to be coupled to the LED module by the positive and negative connection points of either or both ends. Increase the flexibility of the configuration of the actual circuit.
  • FIG. 10D is a schematic diagram of the wiring of the LED module according to the second embodiment of the present invention.
  • the connection relationship of the LED assembly 931 of this embodiment is the same as that shown in FIG. 10A.
  • three LED units and each LED unit including seven LED components will be described as an example.
  • the positive lead 934 and the negative lead 935 receive a driving signal to provide power to each of the LED components 931.
  • the positive lead 934 is coupled to the first filter output 521 of the filter circuit 520
  • the negative lead 935 is coupled to the filter circuit 520.
  • the second filter output 522 receives the filtered signal.
  • the seven LED components in each LED unit are divided into the same LED group 932.
  • a positive lead 934 connects the (left) positive pole of the first (leftmost) LED assembly 931 of each LED group 932.
  • a negative lead 935 connects the (right) negative of the last (rightmost) LED assembly 931 of each LED group 932.
  • the anode of the left LED assembly 931 adjacent to the two LED assemblies 931 is connected to the anode of the right LED assembly 931 through a connection wire 939. Thereby, the LED components of the LED group 932 are connected in series.
  • the connecting wire 939 is used to connect the negative electrode of one of the adjacent two LED components 931 and the positive electrode of the other.
  • the negative lead 935 is used to connect the negative pole of the last (rightmost) LED assembly 931 of each LED group.
  • the positive lead 934 is used to connect the positive pole of the first (leftmost) LED assembly 931 of each LED group. Therefore, the width and the heat dissipation area of the LED assembly are as large as possible in the above order. That is, the width 938 of the connecting wire 939 is the largest, the negative wire 935 is connected to the width 937 of the negative electrode of the LED assembly 931, and the width 936 of the positive electrode 934 connecting the positive electrode of the LED assembly 931 is the smallest. Therefore, such a wiring structure contributes to heat dissipation of the LED components.
  • the positive lead 934 may further include a positive lead 934a
  • the negative lead 935 may further include a negative lead 935a such that both ends of the LED module have positive and negative connection points.
  • a wiring structure can enable other circuits of the power module of the LED lamp, for example, the filter circuit 520, the first rectifier circuit 510, and the second rectifier circuit 540 to be coupled to the LED module by the positive and negative connection points of either or both ends. Increase the flexibility of the configuration of the actual circuit.
  • the traces shown in Figures 10C and 10D can be implemented with a flexible circuit board.
  • the flexible circuit board has a single layer circuit layer, and the positive electrode wire 834, the positive electrode lead 834a, the negative electrode lead 835, the negative electrode lead 835a, and the connecting lead 839 in FIG. 10C are formed in an etched manner, and the positive lead wire in FIG. 10D 934, a positive electrode lead 934a, a negative electrode lead 935, a negative electrode lead 935a, and a connecting wire 939.
  • FIG. 10E is a schematic diagram of the wiring of the LED module according to the third embodiment of the present invention.
  • the connection relationship of the LED component 1031 of this embodiment is the same as that of FIG. 12B.
  • the configuration of the positive electrode lead and the negative lead (not shown) and the connection relationship with other circuits are substantially the same as those of the foregoing FIG. 10D, and the difference between the two is that the embodiment shows the horizontal direction shown in FIG. 10C.
  • the LED assembly 831 is disposed (ie, each LED assembly 831 is arranged with its positive and negative poles arranged along the direction in which the wires extend) to be arranged in the longitudinal direction of the LED assembly 1031 (ie, the connection direction and the wire of the positive and negative electrodes of each LED assembly 1031).
  • the extending direction is vertical), and the configuration of the connecting wires 1039 is adjusted correspondingly based on the arrangement direction of the LED components 1031.
  • the connecting wire 1039_2 is taken as an example.
  • the connecting wire 1039_2 includes a first long side portion having a narrow width 1037, a second long side portion having a width 1038, and a turning portion connecting the long side portions.
  • the connecting wires 1039_2 may be arranged in a right-angled z-shape, that is, the connection between each long side portion and the turning portion is at a right angle.
  • the first long side portion of the connecting wire 1039_2 is disposed corresponding to the second long side portion of the adjacent connecting wire 1039_3; similarly, the second long side portion of the connecting wire 1039_2 and the first long connecting portion of the adjacent connecting wire 1039_1
  • the edge corresponds to the configuration.
  • each connecting wire 1039 is arranged to extend the extending direction of the side portions, and the first long side portion of each connecting wire 1039 is disposed corresponding to the second long side portion of the adjacent connecting wire 1039; similarly, each The second long side portion of the connecting wire 1039 is disposed corresponding to the first long side portion of the adjacent connecting wire 1039, so that the connecting wires 1039 are integrally formed in a configuration having a uniform width.
  • the connecting wires 1039_2 described above.
  • the connecting wire 1039_2 In terms of the relative arrangement of the LED component 1031 and the connecting wire 1039, the same is also illustrated by the connecting wire 1039_2.
  • the positive electrode of the partial LED component 1031 (for example, the four LED components 1031 on the right side) is connected to the connecting wire.
  • a negative electrode of the portion of the LED assembly 1031 is connected to a second long side portion of the adjacent connecting wire 1039_3, and passes through the second long side portion Connect to each other.
  • the anode of the other portion of the LED assembly 1031 (for example, the four LED assemblies 1031 on the left side) is connected to the first long side portion of the connection wire 1039_1, and the negative electrode is connected to the second long side portion of the connection wire 1039_2.
  • the anodes of the four LED assemblies 1031 on the left side are connected to each other through the connection wires 1039_1, and the cathodes thereof are connected to each other through the connection wires 1039_2.
  • the anodes of the four LED assemblies 831 on the right side are connected to each other through the connection wires 1039_2, and the cathodes thereof are connected to each other through the connection wires 1039_3. Since the negative electrode of the left four LED components 1031 is connected to the positive electrode of the right four LED components 1031 through the connecting wire 1039_2, the left four LED components 1031 can be simulated as the first LED component of the four LED cells of the LED module. And the four LED components 1031 on the right side can simulate the LED as the second LED component of the four LED units of the LED module, and so on to form a mesh connection as shown in FIG. 10B.
  • the present embodiment changes the LED assembly 1031 to a vertical configuration, which can increase the gap between the LED assemblies 1031 and widen the traces connecting the wires, thereby avoiding the lights.
  • the line is easily punctured, and at the same time, when the number of LED components 1031 is large and needs to be closely arranged, the copper foil coverage area between the beads is insufficient to cause the shortness of the solder balls.
  • the width 1037 of the first long side portion of the positive electrode connecting portion is smaller than the width 1038 of the second long side portion of the negative electrode connecting portion, the area of the LED component 1031 at the negative electrode connecting portion can be made larger than the positive electrode connection. Part of the area. Therefore, such a wiring structure contributes to heat dissipation of the LED components.
  • FIG. 10F is a schematic diagram of the wiring of the LED module according to the fourth embodiment of the present invention.
  • This embodiment is substantially the same as the foregoing embodiment of FIG. 10E, and the only difference is that the connecting wire 1139 of the present embodiment is implemented by a Z-shaped wire that is not a right angle.
  • the turning portion forms the oblique wiring so that the connection of each long side portion of the connecting wire 1139 and the turning portion is a non-right angle.
  • the gap between the LED assemblies 1031 can be increased, and the effect of widening the traces of the connecting wires can be achieved.
  • the connecting wire 1139 of the present embodiment can also be configured such that the long side portion width 1137 of the positive electrode connecting portion is smaller than the long side portion width 1138 of the negative electrode connecting portion, thereby achieving the effect of improving heat dissipation characteristics.
  • the vertical traces (as shown in FIGS. 10C to 10E) generate a regular white oil recessed area at the turn of the wire, so that the connecting wires are The tin on the LED component pad is relatively in a raised position. Since the upper tin is not a flat surface, the LED component may not be attached to a predetermined position due to unevenness of the surface when the LED component is mounted. Therefore, in the embodiment, by adjusting the vertical traces to the oblique traces, the strength of the copper foil of the entire trace can be made uniform without protruding or uneven at a specific position, thereby causing the LED assembly.
  • the 1131 can be attached to the wire more easily, improving the reliability of the lamp when it is fitted.
  • each LED unit in the embodiment since each LED unit in the embodiment only walks the oblique substrate once on the lamp board, the strength of the entire lamp board can be greatly improved, thereby preventing the board from being bent and shortening the length of the board.
  • the copper foil may be covered on the periphery of the pad of the LED component 1131, thereby offsetting the offset of the LED component 1131 when it is mounted, thereby avoiding the occurrence of a short circuit caused by the solder balls.
  • FIG. 10G is a schematic diagram of the wiring of the LED module according to the fifth embodiment of the present invention.
  • This embodiment is substantially the same as FIG. 10C, and the difference between the two is mainly due to the fact that the corresponding line between the connecting wire 1239 and the connecting wire 1239 of the present embodiment (at the pad of the non-LED component 1231) is changed to an oblique direction. Traces.
  • the strength of the copper foil running on the whole line can be made uniform without protruding or uneven at a specific position, thereby causing the LED component 1131. It can be attached to the wire more easily, improving the reliability of the lamp when it is fitted.
  • the color temperature point CTP can be uniformly disposed between the LED components 1231, as shown in FIG. 10H, and FIG. 10H is the wiring of the LED module of the sixth embodiment of the present invention. schematic diagram.
  • the color temperature points CTP of the corresponding positions on the respective wires 1234 and 1239 can be on the same line. In this way, when the tin is applied, the entire LED module can use only a few strips of tape (as shown in the figure, if each strip has 3 color temperature points, only 3 strips are needed) to block all the LED modules.
  • the color temperature point is used to improve the smoothness of the assembly process and save assembly time.
  • FIG. 10I is a schematic diagram of the wiring of the LED module according to the seventh embodiment of the present invention.
  • the trace of the LED module of FIG. 10C is changed from a single layer circuit layer to a double layer circuit layer, and the positive electrode lead 834a and the negative electrode lead 835a are mainly changed to the second layer circuit layer. described as follows.
  • the flexible circuit board has a double layer circuit layer, including a first circuit layer 2a, a dielectric layer 2b and a second circuit layer 2c.
  • the first circuit layer 2a and the second circuit layer 2c are electrically isolated by a dielectric layer 2b.
  • the first circuit layer 2a of the flexible circuit board is formed in an etching manner to form the positive electrode lead 834, the negative electrode lead 835, and the connecting lead 839 of FIG.
  • the LED assembly is a grid-connected LED group 832, and the second wiring layer 2c is etched in a positive electrode lead 834a and a negative electrode lead 835a to electrically connect the filter output of the filter circuit.
  • the positive electrode lead 834 and the negative electrode lead 835 of the first circuit layer 2a of the flexible circuit board have layer connection points 834b and 835b.
  • the positive electrode lead 834a and the negative electrode lead 835a of the second wiring layer 2 have layer connection points 834c and 835c.
  • the layer connection points 834b and 835b are opposite to the layer connection points 834c and 835c for electrically connecting the positive electrode lead 834 and the positive lead 834a, and the negative lead 835 and the negative lead 835a.
  • the positions of the layer connection points 834b and 835b of the first circuit layer are formed with the lower dielectric layer to the bare exposed layer connection points 834c and 835c, and then soldered to make the positive electrode wire 834 and the positive electrode lead. 834a, and the negative electrode lead 835 and the negative electrode lead 835a are electrically connected to each other.
  • the trace of the LED module shown in FIG. 10D can also change the positive lead 934a and the negative lead 935a to the second wiring layer to form a wiring structure of the double-layer wiring layer.
  • the thickness of the second conductive layer of the flexible circuit board having the double-layer conductive layer or the circuit layer is preferably thicker than the thickness of the first conductive layer, thereby reducing the lead and the negative lead in the positive lead and the negative lead Line loss (pressure drop).
  • the flexible circuit board having the double-layer conductive layer can reduce the flexible circuit board by moving the positive electrode lead and the negative electrode lead at both ends to the second layer compared to the flexible circuit board of the single-layer conductive layer. The width. On the same jig, the narrower substrate discharges more than the wider substrate, so the production efficiency of the LED module can be improved.
  • the flexible circuit board having the double-layer conductive layer is relatively easy to maintain the shape to increase the reliability of production, for example, the accuracy of the soldering position of the LED assembly during soldering.
  • the present invention also provides an LED straight tube lamp, at least part of the electronic component of the power module of the LED straight tube lamp is disposed on the lamp board: that is, using PEC (Printed Electronic Circuit, PEC: Printed Electronic Circuits)
  • PEC Printed Electronic Circuit
  • the technology prints or embeds at least some of the electronic components on the panel.
  • the electronic components of the power module are all disposed on the lamp panel.
  • the manufacturing process is as follows: substrate preparation (flexible printed circuit board preparation) ⁇ printing metal nano ink ⁇ printing passive components / active devices (power modules) ⁇ drying / sintering ⁇ printing interlayer connection bumps ⁇ Spraying Insulating Inks ⁇ Printing Metal Nano Inks ⁇ Printing Passive Components and Active Devices (Sequentially Forming Multilayer Plates Included) ⁇ Spraying Surface Soldering Plates ⁇ Spraying Solder Masks to Solder LED Components.
  • the power modules are disposed at both ends of the light panel to minimize the effects of heat generated by the operation on the LED components. In this embodiment, the overall reliability of the power module is improved by reducing welding.
  • the design of the lamp head is optimized by arranging a part of the electronic components on the lamp board and rationally arranging the power modules.
  • the electronic components of the power module can also be arranged on the lamp panel by means of an embedded method. That is, the electronic component is embedded in the flexible lamp board in an embedded manner.
  • the electronic component can be implemented by a method comprising a resistive/capacitive type copper clad laminate (CCL) or a screen printing related ink; or an ink jet printing technique for embedding a passive component, that is, an inkjet printer
  • CCL resistive/capacitive type copper clad laminate
  • a screen printing related ink or an ink jet printing technique for embedding a passive component, that is, an inkjet printer
  • the conductive ink and related functional inks as passive components are directly printed on the set position in the light board. Then, through UV light treatment or drying/sintering treatment, a light board embedded with passive components is formed.
  • the electronic components embedded in the panel include resistors, capacitors, and inductors; in other embodiments, active components are also suitable.
  • the power module is reasonably arranged to achieve the optimized lamp head design (this part saves valuable surface space of the printed circuit board due to the partial use of embedded resistors and capacitors, reduces the size of the printed circuit board and reduces its size. Weight and thickness.
  • the reliability of the power module is improved by eliminating the solder joints of these resistors and capacitors (the solder joint is the most easily introduced fault on the printed circuit board), and the wiring on the printed circuit board will be shortened. The length and allows for a more compact device layout, thus improving electrical performance).
  • the method of using embedded capacitors is usually a concept called distributed capacitor or planar capacitor.
  • a very thin insulating layer is pressed on the basis of the copper layer. Generally appear in pairs in the form of a power layer/ground layer.
  • the very thin insulating layer makes the distance between the power plane and the ground layer very small.
  • Such capacitance can also be achieved by conventional metallized holes. Basically, such a method creates a large parallel plate capacitance on the board.
  • Some high-capacity products some are distributed capacitors, others are discretely embedded.
  • a higher capacitance is obtained by filling the insulating layer with barium titanate, a material having a high dielectric constant.
  • a common method of making embedded resistors is to use a resistive adhesive. It is a resin doped with conductive carbon or graphite, which is used as a filler, screen printed to a designated location, and then processed and laminated into the inside of the board. The resistor is connected to other electronic components on the board by metallized or microvias.
  • Another method is the Ohmega-Ply method: it is a bimetallic layer structure in which a copper layer and a thin nickel alloy layer form resistor elements that form a layered resistor relative to the underlying layer.
  • Various nickel resistors having copper terminals are then formed by etching the copper layer and the nickel alloy layer. These resistors are laminated into the inner layer of the board.
  • the wires are directly printed on the inner wall of the glass tube (disposed in a line shape), and the LED components are directly attached to the inner wall to be electrically connected to each other through the wires.
  • the chip form of the LED component is directly attached to the wire of the inner wall (the connection point is set at both ends of the wire, and the LED module is connected to the power module through the connection point), and after attaching, the phosphor is dripped on the chip. (When the LED straight tube lamp works, it produces white light, but also other colors of light).
  • the luminous efficiency of the LED module of the present invention is 80 lm/W or more, preferably 120 lm/W or more, and more preferably 160 lm/W or more.
  • the LED component may be a light of a monochromatic LED chip mixed with white light by a phosphor, and its main wavelengths are 430-460 nm and 550-560 nm, or 430-460 nm, 540-560 nm, and 620-640 nm.
  • connection manner of the LED module 50 of the embodiment of FIGS. 10A to 10I is not limited to the implementation of the straight tube lamp, and is applicable to various types of AC power supply LED lamps (ie, no In the ballast LED lamp, for example, an LED bulb, an LED filament lamp or an integrated LED lamp, the present invention is not limited thereto.
  • the electronic components of the power module can be placed on a board or on a circuit board within the base.
  • some of the capacitors in the embodiment will employ a chip capacitor (e.g., a ceramic chip capacitor) that is disposed on the board or on a circuit board within the lamp cap.
  • the chip capacitor thus set will emit significant noise due to the piezoelectric effect during use, which affects the comfort of the customer.
  • a suitable hole or slot can be drilled directly under the chip capacitor, which can change the chip capacitor and the circuit board carrying the chip capacitor under the piezoelectric effect. The vibration system is so sharp that the noise emitted is significantly reduced.
  • the shape of the edge or perimeter of the hole or slot may be close to, for example, circular, elliptical or rectangular and located in the conductive layer in the light panel or in the circuit board within the base and below the chip capacitance.
  • FIG. 11A is a schematic diagram of a circuit structure of a rectifier circuit according to a first embodiment of the present invention.
  • the rectifier circuit 610 is a bridge rectifier circuit, and includes a first rectifier diode 611, a second rectifier diode 612, a third rectifier diode 613, and a fourth rectifier diode 614 for full-wave rectification of the received signal.
  • the anode of the first rectifier diode 611 is coupled to the second rectification output 512, and the cathode is coupled to the second pin 502.
  • the anode of the second rectifier diode 612 is coupled to the second rectified output 512, and the cathode is coupled to the first pin 501.
  • the anode of the third rectifier diode 613 is coupled to the second pin 502, and the cathode is coupled to the first rectified output terminal 511.
  • the anode of the rectifier diode 614 is coupled to the first pin 501, and the cathode is coupled to the first rectified output terminal 511.
  • the operation of the rectifier circuit 610 is described as follows.
  • the AC signal is in a positive half wave
  • the AC signal flows through the first pin 501, the rectifier diode 614 and the first rectified output terminal 511, and sequentially flows through the second rectified output terminal 512, the first rectifying diode 611, and
  • the second pin 502 flows out.
  • the AC signal is in the negative half wave
  • the AC signal flows through the second pin 502, the third rectifier diode 613 and the first rectified output terminal 511, and sequentially passes through the second rectified output terminal 512 and the second rectifying diode. 612 and pin 501 flow out.
  • the positive pole of the rectified signal of the rectifier circuit 610 is located at the first rectified output terminal 511, and the cathode is located at the second rectified output terminal 512. According to the above operation description, the rectified signal output from the rectifier circuit 610 is a full-wave rectified signal.
  • the operation of the rectifier circuit 610 is described as follows.
  • the DC signal sequentially passes through the first pin 501, the rectifier diode 614, and the first rectified output terminal 511.
  • the current flows in and flows out through the second rectified output terminal 512, the first rectifying diode 611 and the second pin 502.
  • the AC signal sequentially passes through the second pin 502, the third rectifier diode 613, and the first rectified output terminal. After 511, it flows in, and then flows out through the second rectified output terminal 512, the second rectifying diode 612, and the first pin 501.
  • the positive pole of the rectified signal of the rectifier circuit 610 is located at the first rectified output terminal 511, and the negative pole is located at the second rectified output terminal 512.
  • the rectified signal can be correctly output regardless of whether the received signal is an AC signal or a DC signal.
  • FIG. 11B is a schematic diagram of a circuit structure of a rectifier circuit according to a second embodiment of the present invention.
  • the rectifier circuit 710 includes a first rectifier diode 711 and a second rectifier diode 712 for half-wave rectifying the received signal.
  • the anode of the first rectifier diode 711 is coupled to the second pin 502, and the cathode is coupled to the first rectified output terminal 511.
  • the anode of the second rectifier diode 712 is coupled to the first rectified output terminal 511, and the cathode is coupled to the first pin 501.
  • the second rectified output 512 can be omitted or grounded depending on the actual application.
  • the signal level of the AC signal input at the first pin 501 is higher than the signal level input at the second pin 502.
  • the first rectifier diode 711 and the second rectifier diode 712 are both in an off-state of the reverse bias, and the rectifier circuit 710 stops outputting the rectified signal.
  • the signal level of the AC signal input at the first pin 501 is lower than the signal level input at the second pin 502.
  • the first rectifier diode 711 and the second rectifier diode 712 are both in a forward conduction state, and the AC signal flows in through the first rectifier diode 711 and the first rectification output terminal 511, and is outputted by the second rectification output terminal 512 or Another circuit or ground of the LED lamp flows out.
  • the rectified signal output from the rectifier circuit 710 is a half-wave rectified signal.
  • Circuit 540 More specifically, in an exemplary embodiment, when the full-wave/full-bridge rectifier circuit 610 shown in FIG. 11A is applied to the double-ended input lamp of FIG. 9B, the first rectifier circuit 510 and the second rectifier circuit 540 are used.
  • the configuration can be as shown in Figure 11C.
  • FIG. 11C is a schematic diagram of a circuit structure of a rectifier circuit according to a third embodiment of the present invention.
  • the architecture of the rectifier circuit 840 is the same as that of the rectifier circuit 810, and both are bridge rectifier circuits.
  • the rectifier circuit 810 includes first to fourth rectifier diodes 611-614, which are configured as described above with respect to the embodiment of FIG. 10A.
  • the rectifier circuit 840 includes a fifth rectifier diode 641, a sixth rectifier diode 642, a seventh rectifier diode 643, and an eighth rectifier diode 644 for full-wave rectification of the received signal.
  • the anode of the fifth rectifier diode 641 is coupled to the second rectified output 512, and the cathode is coupled to the fourth pin 504.
  • the anode of the sixth rectifier diode 642 is coupled to the second rectified output 512, and the cathode is coupled to the third pin 503.
  • the anode of the third rectifier diode 613 is coupled to the second pin 502, and the cathode is coupled to the first rectified output terminal 511.
  • the anode of the rectifier diode 614 is coupled to the third pin 503, and the cathode is coupled to the first rectified output terminal 511.
  • the rectifying circuits 840 and 810 are corresponding configurations, and the difference is only that the input end of the rectifying circuit 810 (which can be compared to the first rectifying circuit 510 of FIG. 9B) is coupled to the first pin 501.
  • the input pin of the rectifier circuit 840 (which is alignable to the second rectifier circuit 540 of FIG. 9B) is coupled to the third pin 503 and the fourth pin 504.
  • this embodiment is a circuit structure that implements a double-ended dual pin using the architecture of two full-wave rectification circuits.
  • the configuration is implemented by a double-ended double pin
  • the power supply mode of the double-ended double pin whether it is single-ended power or
  • the power feeding mode of the double-ended single pin can supply power to the LED straight tube lamp through the circuit structure of the embodiment. The specific operation is as follows:
  • an external drive signal can be applied to the first pin 501 and the second pin 502 or to the third pin 503 and the fourth pin 504.
  • the rectifying circuit 810 performs full-wave rectification on the external driving signal according to the operation mode described in the embodiment of FIG. 10A, and the rectifying circuit 840 does not. Operation.
  • the rectifying circuit 840 performs full-wave rectification on the external driving signal according to the operation mode described in the embodiment of FIG. 10A, and the rectifying circuit 810 It will not work.
  • the external driving signal can be applied to the first pin 501 and the fourth pin 504 or to the second pin 502 and the third pin 503.
  • the external driving signal is applied to the first pin 501 and the fourth pin 504, and the external driving signal is an alternating current signal
  • the alternating current signal sequentially passes through the first pin 501 and the fourth while the alternating current signal is in the positive half wave.
  • the rectifier diode 614 and the first rectified output terminal 511 flow in, and then flow out through the second rectification output terminal 512, the fifth rectification diode 641, and the fourth pin 504.
  • the AC signal flows through the fourth pin 504, the seventh rectifier diode 643 and the first rectified output terminal 511, and sequentially passes through the second rectified output terminal 512 and the second rectification.
  • the diode 612 and the first pin 501 flow out. Therefore, regardless of whether the AC signal is in a positive half wave or a negative half wave, the anode of the rectified signal is located at the first rectified output end 511, and the negative electrode is located at the second rectified output end 512.
  • the second rectifying diode 612 and the fourth rectifying diode 614 in the rectifying circuit 810 are combined with the fifth rectifying diode 641 and the seventh rectifying diode 643 in the rectifying circuit 840 to perform full-wave rectification of the alternating current signal, and the rectification of the output
  • the post signal is a full wave rectified signal.
  • the alternating current signal sequentially passes through the third pin while the alternating current signal is in the positive half wave. 503.
  • the eighth rectifying diode 644 and the first rectifying output end 511 flow in, and then flow out through the second rectifying output terminal 512, the first rectifying diode 611 and the second pin 502.
  • the AC signal flows through the second pin 502, the third rectifier diode 613, and the first rectified output terminal 511, and sequentially flows through the second rectified output terminal 512 and the sixth rectification.
  • the diode 642 and the third pin 503 flow out.
  • the positive pole of the rectified signal is located at the first rectified output end 511, and the negative pole is located at the second rectified output end 512.
  • the first rectifying diode 611 and the third rectifying diode 613 in the rectifying circuit 810 are combined with the sixth rectifying diode 642 and the eighth rectifying diode 644 in the rectifying circuit 840 to perform full-wave rectification of the alternating current signal, and the rectification of the output
  • the post signal is a full wave rectified signal.
  • the operation of the rectifying circuits 810 and 840 can be referred to the description of the embodiment of FIG. 11A, and details are not described herein again.
  • the rectified signals generated by the rectifier circuits 810 and 840 are superimposed on the first rectified output terminal 511 and the second rectified output terminal 512, and then output to the circuit at the back end.
  • FIG. 11D is a schematic diagram of a circuit structure of a rectifier circuit according to a fourth embodiment of the present invention.
  • the rectifying circuit 910 includes first to fourth rectifying diodes 911-914, the configuration of which is as described in the foregoing embodiment of Fig. 11A.
  • the rectifier circuit 910 further includes a fifth rectifier diode 915 and a sixth rectifier diode 916.
  • the anode of the fifth rectifier diode 915 is coupled to the second rectified output 512, and the cathode is coupled to the third pin 503.
  • the anode of the sixth rectifier diode 916 is coupled to the third pin 503, and the cathode is coupled to the first rectified output terminal 511.
  • the fourth pin 504 is in a floating state here.
  • the rectifier circuit 510 of the present embodiment can be regarded as a rectifier circuit having three sets of bridge arm units, each of which can provide an input signal receiving end.
  • the first rectifier diode 911 and the third rectifier diode 913 form a first bridge arm unit, which correspondingly receives the signal on the second pin 502;
  • the second rectifier diode 912 and the fourth rectifier diode 914 form a second bridge arm
  • the unit correspondingly receives the signal on the first pin 501;
  • the fifth rectifier diode 915 and the sixth rectifier diode 916 form a third bridge arm unit, which correspondingly receives the signal on the third pin 503.
  • the three sets of bridge arm units can perform full-wave rectification as long as two of them receive AC signals of opposite polarities. Therefore, in the configuration of the rectifier circuit of the embodiment of FIG. 11E, the power supply mode of single-ended power input, double-ended single-pin power input, and double-ended double-pin power input is also compatible.
  • the specific operation is as follows:
  • an external drive signal can be applied to the first pin 501 and the third pin 503, or to the second pin 502 and the third pin 503.
  • the external driving signal is applied to the first pin 501 and the third pin 503, and the external driving signal is an alternating current signal
  • the alternating current signal sequentially passes through the first pin 501 and the fourth.
  • the rectifier diode 914 and the first rectified output terminal 511 flow in, and then flow out through the second rectification output terminal 512, the fifth rectification diode 915, and the third pin 503.
  • the AC signal flows through the third pin 503, the sixth rectifier diode 916 and the first rectified output terminal 511, and sequentially passes through the second rectified output terminal 512 and the second rectification.
  • the diode 912 and the first pin 501 flow out. Therefore, regardless of whether the AC signal is in a positive half wave or a negative half wave, the positive pole of the rectified signal is located at the first rectified output end 511, and the negative pole is located at the second rectified output end 512.
  • the second rectifier diode 912, the fourth rectifier diode 914, the fifth rectifier diode 915 and the sixth rectifier diode 916 in the rectifier circuit 910 perform full-wave rectification on the AC signal, and the output rectified signal is a full wave. Rectified signal.
  • the alternating current signal sequentially passes through the third pin while the alternating current signal is in the positive half wave. 503.
  • the sixth rectifying diode 916 and the first rectifying output end 511 flow in, and then flow out through the second rectifying output terminal 512, the first rectifying diode 911 and the second pin 502.
  • the AC signal flows through the second pin 502, the third rectifier diode 913 and the first rectified output terminal 511, and sequentially flows through the second rectified output terminal 512 and the fifth rectification.
  • the diode 915 and the third pin 503 flow out.
  • the positive pole of the rectified signal is located at the first rectified output end 511, and the negative pole is located at the second rectified output end 512.
  • the first rectifier diode 911, the third rectifier diode 913, the fifth rectifier diode 915, and the sixth rectifier diode 916 in the rectifier circuit 910 perform full-wave rectification on the AC signal, and the output rectified signal is a full wave. Rectified signal.
  • the operation of the first to fourth rectifier diodes 911 914 can be referred to the description of the embodiment of FIG. 11A, and details are not described herein again.
  • the signal polarity of the third pin 503 is the same as that of the first pin 501, the fifth rectifier diode 915 and the sixth rectifier diode 916 operate similarly to the second rectifier diode 912 and the fourth rectifier diode 914 (ie, First bridge arm unit).
  • the fifth rectifier diode 915 and the sixth rectifier diode 916 operate similarly to the first rectifier diode 911 and the third rectifier diode 913 ( That is, the second bridge arm unit).
  • FIG. 11E is a schematic diagram of a circuit structure of a rectifier circuit according to a fifth embodiment of the present invention.
  • 11E is substantially the same as FIG. 11D, and the difference is that the input end of the first rectifier circuit 610 of FIG. 11E is further coupled to the terminal conversion circuit 941.
  • the end point conversion circuit 941 of the present embodiment includes fuses 947 and 948. One end of the fuse 947 is coupled to the first pin 501, and the other end is coupled to a common node of the second rectifier diode 912 and the fourth rectifier diode 914 (ie, the input end of the first bridge arm unit).
  • One end of the fuse 948 is coupled to the second pin 502, and the other end is coupled to a common node of the first rectifier diode 911 and the third rectifier diode 913 (ie, the input end of the second bridge arm unit). Therefore, when the current flowing through any of the first pin 501 and the second pin 502 is higher than the rated current of the fuses 947 and 948, the fuses 947 and 948 are correspondingly blown and opened, thereby achieving overcurrent protection.
  • the rectifier circuit of the embodiment can continue to be based on the double after the overcurrent condition is eliminated. The power supply mode of the single pin continues to operate.
  • FIG. 11F is a schematic diagram of a circuit structure of a rectifier circuit according to a sixth embodiment of the present invention.
  • 11F is substantially the same as FIG. 11D, with the difference that the two pins 503 and 504 of FIG. 11F are connected by thin wires 917.
  • the rectifier circuit of the embodiment is applied regardless of whether the external driving signal is applied to the third pin 503 or the fourth pin 504. It works normally.
  • the thin wire 917 of the embodiment can be reliably blown, so when the lamp tube is inserted back into the correct lamp holder, the application is applied.
  • the straight tube lamp of this rectifier circuit can still maintain normal rectification work.
  • the rectifier circuit of the embodiment of FIG. 11C to FIG. 11F can be compatible with the situation of single-ended power feeding, double-ended single-pin power feeding, and double-ended double-pin power feeding, thereby improving the compatibility of the application environment of the overall LED straight tube lamp. Sex.
  • the embodiment of FIGS. 11D to 11F requires only three pads to be connected to the corresponding lamp pins in the circuit configuration inside the lamp tube, for the overall process yield. Promotion has a significant contribution.
  • FIG. 12A is a circuit block diagram of a filter circuit according to a first embodiment of the present invention.
  • the first rectifying circuit 510 is depicted only to indicate the connection relationship, and not the filtering circuit 520 includes the first rectifying circuit 510.
  • the filter circuit 520 includes a filtering unit 523 coupled to the first rectified output terminal 511 and the second rectified output terminal 512 to receive the rectified signal output by the rectifying circuit, and filter the ripple in the rectified signal to output the filtered signal. . Therefore, the waveform of the filtered signal is smoother than the waveform of the rectified signal.
  • the filter circuit 520 may further include a filtering unit 525 coupled between one of the first pin 501 and the second pin 502 and the diode of one of the first rectifier circuits 510 or the third pin 503 and the fourth connection
  • a diode of one of the legs 504 and one of the second rectifier circuits 540 is used to reduce or filter out electromagnetic interference (EMI).
  • the filtering unit 525 is coupled between the first pin 501 and a diode (not shown) of one of the first rectifier circuits 510. Since the filtering units 524 and 525 are added or omitted depending on the actual application, they are indicated by broken lines in the figure.
  • FIG. 12B is a schematic diagram of a circuit structure of a filtering unit according to a first embodiment of the present invention.
  • Filter unit 623 includes a capacitor 625. One end of the capacitor 625 is coupled to the first rectified output end 511 and the first filter output end 521, and the other end is coupled to the second rectified output end 512 and the second filtered output end 522 for pairing the first rectified output end 511 and the second
  • the rectified signal outputted by the rectified output 512 is low-pass filtered to filter out high-frequency components in the rectified signal to form a filtered signal, and then outputted by the first filter output terminal 521 and the second filter output terminal 522.
  • FIG. 12C is a schematic diagram of a circuit structure of a filtering unit according to a second embodiment of the present invention.
  • the filtering unit 723 is a ⁇ -type filtering circuit and includes a capacitor 725, an inductor 726, and a capacitor 727.
  • One end of the capacitor 725 is coupled to the first rectified output 511 and coupled to the first filter output 521 via the inductor 726, and coupled to the second rectified output 512 and the second filter output 522.
  • the inductor 726 is coupled between the first rectified output terminal 511 and the first filter output terminal 521 .
  • One end of the capacitor 727 is coupled to the first rectified output end 511 via the inductor 726 and coupled to the first filter output end 521 , and the other end is coupled to the second rectified output end 512 and the second filtered output end 522 .
  • the filtering unit 723 has more inductance 726 and capacitance 727 than the filtering unit 623 shown in FIG. 12B. Moreover, the inductor 726 and the capacitor 727 are also the same as the capacitor 725, and have low-pass filtering. Therefore, the filtering unit 723 of the present embodiment has better high-frequency filtering capability than the filtering unit 623 shown in FIG. 12B, and the waveform of the output filtered signal is smoother.
  • the inductance of the inductor 726 in the above embodiment is preferably selected from the range of 10 nH to 10 mH.
  • the capacitance of the capacitors 625, 725, 727 is preferably selected from the range of 100 pF to 1 uF.
  • FIG. 12D is a circuit block diagram of a filter circuit according to a second embodiment of the present invention.
  • This embodiment is substantially the same as FIG. 12A, and the difference is that the embodiment further includes a negative pressure eliminating unit 528.
  • the negative voltage eliminating unit 528 is coupled to the filtering unit 523 for eliminating the negative voltage that may be generated when the filtering unit 523 is resonating, thereby preventing the chip or controller in the driving circuit of the subsequent stage from being damaged.
  • the filtering unit 523 itself is generally a circuit formed by a combination of a resistor, a capacitor, or an inductor, wherein the filter unit 5 exhibits a purely resistive property (ie, a resonance point) at a specific frequency due to characteristics of capacitance and inductance. .
  • the signal received by the filtering unit 523 at the resonance point is amplified and output, so that the phenomenon of signal oscillation is observed at the output of the re-filtering unit 523.
  • FIG. 12E is a schematic diagram of a circuit structure of a filtering unit and a negative voltage eliminating unit according to an embodiment of the present invention.
  • the negative pressure eliminating unit can be implemented by the diode 728, but the present invention is not limited thereto.
  • the filtering unit 723 does not resonate, the first filter output terminal 521 has a high level with respect to the second filter output terminal 522, so the diode 728 is turned off without current flowing.
  • the filtering unit 723 resonates and generates a negative voltage
  • the second filter output terminal 522 has a high level with respect to the first filter output terminal 521, and the diode 728 is biased by the forward bias to turn on the reverse current. It will be groomed back to the first filter output 521.
  • FIG. 13A is a circuit block diagram of a driving circuit according to a first embodiment of the present invention.
  • the driving circuit 530 includes a controller 533 and a conversion circuit 534 for performing power conversion in a mode of a current source to drive the LED module to emit light.
  • the conversion circuit 534 includes a switching circuit (also referred to as a power switch) 535 and a tank circuit 536.
  • the conversion circuit 534 is coupled to the first filter output terminal 521 and the second filter output terminal 522, receives the filtered signal, and is converted into a drive signal by the first drive output terminal 531 and the second drive output terminal according to the control of the controller 533. 532 output to drive the LED module.
  • the driving signal outputted by the conversion circuit 534 is a steady current, and the LED module is stably illuminated.
  • FIGS. 14A through 14D are schematic diagrams showing signal waveforms of driving circuits of different embodiments of the present invention.
  • 14A and FIG. 14B are diagrams showing signal waveforms and control scenarios in which the driving circuit 530 operates in a Continuous-Conduction Mode (CCM)
  • FIGS. 14C and 14D are diagrams showing that the driving circuit 530 operates in discontinuous conduction.
  • Signal waveform and control context of the mode Discontinuous-Conduction Mode, DCM).
  • t on the horizontal axis represents time
  • the vertical axis represents voltage or current value (depending on the type of signal).
  • the controller 533 of the present embodiment adjusts the duty ratio (Duty Cycle) of the output lighting control signal Slc according to the received current detection signal Sdet, so that the switching circuit 535 is turned on in response to the lighting control signal Slc or cutoff.
  • the tank circuit 536 reverses the charge/discharge according to the on/off state of the switch circuit 535, so that the drive current ILED received by the LED module 50 can be stably maintained at a preset current value Ipred.
  • the lighting control signal Slc will have a fixed signal period Tlc and signal amplitude, and the length of the pulse enable period (such as Ton1, Ton2, Ton3, or pulse width) in each signal period Tlc will be adjusted according to control requirements. .
  • the duty ratio of the lighting control signal Slc is the ratio of the pulse enable period to the signal period Tlc. For example, if the pulse enable period Ton1 is 40% of the signal period Tlc, it means that the duty ratio of the lighting control signal at the first signal period Tlc is 0.4.
  • the current detection signal Sdet may be, for example, a signal representing the magnitude of the current flowing through the LED module 50 or a signal representing the magnitude of the current flowing through the switch circuit 535.
  • the present invention is not limited thereto.
  • FIG. 14A illustrates a signal waveform change of the driving circuit 530 under a plurality of signal periods Tlc in a case where the driving current ILED is smaller than the preset current value Ipred.
  • the switch circuit 535 is turned on in the pulse enable period Ton1 in response to the high voltage level lighting control signal Slc.
  • the conversion circuit 534 generates a driving current ILED according to the input power source received from the first filtering output terminal 521 and the second filtering output terminal 522, and supplies the driving current ILED to the LED module 50, and also via the turned-on switching circuit 535.
  • the tank circuit 536 is charged such that the current IL flowing through the tank circuit 536 gradually rises. In other words, during the pulse enable period Ton1, the tank circuit 536 stores energy in response to the input power received from the first filter output 521 and the second filter output 522.
  • the switch circuit 535 turns off the lighting control signal Slc that is reflected at the low voltage level.
  • the input power on the first filter output terminal 521 and the second filter output terminal 522 is not supplied to the LED module 50, but is discharged by the tank circuit 536 to generate a drive current ILED.
  • the LED module 50 is applied, wherein the tank circuit 536 causes the current IL to gradually decrease due to the release of electrical energy. Therefore, even when the lighting control signal Slc is at a low voltage level (ie, during the disable period), the driving circuit 530 continues to supply power to the LED module 50 based on the energy release of the tank circuit 536. In other words, regardless of whether the switching circuit 535 is turned on or not, the driving circuit 530 continuously supplies a stable driving current ILED to the LED module 50, and the driving current ILED has a current value of about I1 in the first signal period Tlc.
  • the controller 533 determines that the current value I1 of the driving current ILED is smaller than the preset current value Ipred according to the current detecting signal Sdet, so that the lighting control signal Slc will be lit when entering the second signal period Tlc.
  • the pulse enable period is adjusted to Ton2, wherein the pulse enable period Ton2 is the pulse enable period Ton1 plus the unit period Tu1.
  • the operation of the switching circuit 535 and the tank circuit 536 is similar to the previous signal period Tlc.
  • the main difference between the two is that since the pulse enable period Ton2 is longer than the pulse enable period Ton1, the tank circuit 536 has a longer charging time and the discharge time is relatively short, so that the driving circuit 530 is in the second.
  • the average value of the drive current ILED provided in the signal period Tlc is increased to a current value I2 closer to the preset current value Ipred.
  • the controller 533 further adjusts the pulse enable period of the lighting control signal Slc to the third signal period Tlc. Ton3, wherein the pulse enable period Ton3 is the pulse enable period Ton2 plus the unit period t1, which is equal to the pulse enable period Ton1 plus the period Tu2 (corresponding to two unit periods Tu1).
  • Ton3 is the pulse enable period Ton2 plus the unit period t1, which is equal to the pulse enable period Ton1 plus the period Tu2 (corresponding to two unit periods Tu1).
  • the operation of the switching circuit 535 and the tank circuit 536 is similar to the first two signal periods Tlc. Since the pulse enable period Ton3 is further extended, the current value of the drive current ILED is raised to I3, and substantially reaches the preset current value Ipred. Thereafter, since the current value I3 of the drive current ILED has reached the preset current value Ipred, the controller 533 maintains the same duty ratio so that the drive current ILED can be continuously maintained at the preset current value Ipred.
  • FIG. 14B illustrates a signal waveform change of the driving circuit 530 under a plurality of signal periods Tlc in a case where the driving current ILED is greater than the preset current value Ipred.
  • the switch circuit 535 is turned on in the pulse enable period Ton1 in response to the high voltage level lighting control signal Slc.
  • the conversion circuit 534 generates a driving current ILED according to the input power source received from the first filtering output terminal 521 and the second filtering output terminal 522, and supplies the driving current ILED to the LED module 50, and also via the turned-on switching circuit 535.
  • the tank circuit 536 is charged such that the current IL flowing through the tank circuit 536 gradually rises. In other words, during the pulse enable period Ton1, the tank circuit 536 stores energy in response to the input power received from the first filter output 521 and the second filter output 522.
  • the switch circuit 535 turns off the lighting control signal Slc that is reflected at the low voltage level.
  • the input power on the first filter output terminal 521 and the second filter output terminal 522 is not supplied to the LED module 50, but is discharged by the tank circuit 536 to generate a drive current ILED.
  • the LED module 50 is applied, wherein the tank circuit 536 causes the current IL to gradually decrease due to the release of electrical energy. Therefore, even when the lighting control signal Slc is at a low voltage level (ie, during the disable period), the driving circuit 530 continues to supply power to the LED module 50 based on the energy release of the tank circuit 536. In other words, regardless of whether the switching circuit 535 is turned on or not, the driving circuit 530 continuously supplies a stable driving current ILED to the LED module 50, and the driving current ILED has a current value of about I4 in the first signal period Tlc.
  • the controller 533 determines that the current value I4 of the driving current ILED is greater than the preset current value Ipred according to the current detecting signal Sdet, so that the control signal Slc will be lit when entering the second signal period Tlc.
  • the pulse enable period is adjusted to Ton2, wherein the pulse enable period Ton2 is the pulse enable period Ton1 minus the unit period Tu1.
  • the operation of the switching circuit 535 and the tank circuit 536 is similar to the previous signal period Tlc.
  • the main difference between the two is that since the pulse enable period Ton2 is shorter than the pulse enable period Ton1, the tank circuit 536 has a shorter charging time and the discharge time is relatively longer, so that the drive circuit 530 is in the second.
  • the average value of the drive current ILED provided in the signal period Tlc is lowered to a current value I5 closer to the preset current value Ipred.
  • the controller 533 further adjusts the pulse enable period of the lighting control signal Slc to be within the third signal period Tpwm. Ton3, wherein the pulse enable period Ton3 is the pulse enable period Ton2 minus the unit period Tu1, which is equal to the pulse enable period Ton1 minus the period Tu2 (corresponding to two unit periods Tu1).
  • Ton3 is further shortened during the pulse enable period, the current value of the drive current ILED is lowered to I6, and substantially reaches the preset current value Ipred. Thereafter, since the current value I6 of the drive current ILED has reached the preset current value Ipred, the controller 533 maintains the same duty ratio so that the drive current ILED can be continuously maintained at the preset current value Ipred.
  • the driving circuit 530 adjusts the pulse width of the lighting control signal Slc step by step so that the driving current ILED is gradually adjusted to be close to the preset current when being lower or higher than the preset current value Ipred.
  • the value Ipred in turn, achieves a constant current output.
  • the driving circuit 530 is exemplified by operating in the continuous conduction mode, that is, the tank circuit 536 is not discharged until the current IL is zero during the off period of the switching circuit 535.
  • the driving circuit 530 in the continuous conduction mode to supply power to the LED module 50, the power supply to the LED module 50 can be stabilized and chopping is less likely to occur.
  • the signal waveform of FIG. 14D and the driving circuit 530 operate substantially the same as FIG. 14B.
  • the main difference between FIG. 14D and FIG. 14B is that the driving circuit 530 of the present embodiment operates in the discontinuous conduction mode, so the tank circuit 536 is discharged to the current IL equal to zero during the pulse disable period of the lighting control signal Slc. And then re-charging at the beginning of the next signal period Tlc.
  • the driving circuit 530 of the present embodiment operates in the discontinuous conduction mode, so the tank circuit 536 is discharged to the current IL equal to zero during the pulse disable period of the lighting control signal Slc. And then re-charging at the beginning of the next signal period Tlc.
  • the driving circuit 530 By operating the driving circuit 530 in the discontinuous conduction mode to supply power to the LED module 50, the power loss of the driving circuit 530 can be made low, thereby having high conversion efficiency.
  • the driving circuit 530 is exemplified by a single-stage DC-DC conversion circuit, the present invention is not limited thereto.
  • the driving circuit 530 can also be a two-stage driving circuit composed of an active power factor correction circuit and a DC-to-DC conversion circuit.
  • any power conversion circuit architecture that can be used for LED light source driving can be applied to this.
  • the above description of the operation of the power conversion is not limited to the LED straight tube lamp for driving the AC input, and it can be applied to various types of AC power supply LED lamps (ie, ballastless LED lamps), for example, In the LED bulb, LED filament lamp or integrated LED lamp, the utility model is not limited thereto.
  • FIG. 13B is a schematic diagram of a circuit structure of a driving circuit according to a first embodiment of the present invention.
  • the driving circuit 630 is a step-down DC-to-DC conversion circuit, and includes a controller 633 and a conversion circuit.
  • the conversion circuit includes an inductor 636, a freewheeling diode 634, a capacitor 637, and a switch 635.
  • the driving circuit 630 is coupled to the first filtering output terminal 521 and the second filtering output terminal 522 to convert the received filtered signal into a driving signal for driving the first driving output end 531 and the second driving output end 532.
  • LED module between.
  • the switch 635 is a gold-oxygen half field effect transistor having a control end, a first end, and a second end.
  • the first end of the switch 635 is coupled to the anode of the freewheeling diode 634, the second end is coupled to the second filter output 522, and the control end is coupled to the controller 633 to receive control of the controller 633 to enable the first end and the second end.
  • the conduction is either on or off.
  • the first driving output end 531 is coupled to the first filter output end 521
  • the second driving output end 532 is coupled to one end of the inductor 636
  • the other end of the inductor 636 is coupled to the first end of the switch 635 .
  • the capacitor 637 is coupled between the first driving output end 531 and the second driving output end 532 to stabilize the voltage difference between the first driving output end 531 and the second driving output end 532.
  • the negative terminal of the freewheeling diode 634 is coupled to the first driving output end 531.
  • the controller 633 determines the on and off times of the changeover switch 635 based on the current detection signals S535 or / and S531, that is, controls the duty ratio (Duty Cycle) of the changeover switch 635 to adjust the magnitude of the drive signal.
  • the current detection signal S535 represents the magnitude of the current flowing through the switch 635.
  • the current detection signal S531 represents the magnitude of the current flowing through the LED module coupled between the first drive output 531 and the second drive output 532. According to any of the current detection signals S531 and S535, the controller 633 can obtain information on the magnitude of the power converted by the conversion circuit.
  • the switch 635 When the switch 635 is turned on, the current of the filtered signal flows from the first filter output terminal 521, and passes through the capacitor 637 and the first drive output terminal 531 to the LED module, the inductor 636, and the switch 635, and then the second filter output terminal. 522 flowed out. At this time, the capacitor 637 and the inductor 636 perform energy storage. When the switch 635 is turned off, the inductor 636 and the capacitor 637 release the stored energy, and the current continues to flow through the freewheeling diode 634 to the first drive output 531 to cause the LED module to continue to emit light. It is worth noting that the capacitor 637 is optional and can be omitted, so it is indicated by a broken line in the figure. In some applications, the effect of stabilizing the LED module current can be achieved by the characteristic that the inductor changes the impedance current, and the capacitor 637 is omitted. Detection detection detection
  • the driving circuit 630 keeps the current flowing through the LED module unchanged, so for some LED modules (for example, white, red, blue, green, etc.), the color temperature varies with the current.
  • the changed situation can be improved, that is, the LED module can maintain the color temperature at different brightnesses.
  • the inductor 636 which acts as the energy storage circuit, releases the stored energy when the switch 635 is turned off, on the one hand, the LED module keeps continuously emitting light, and on the other hand, the current and voltage on the LED module does not suddenly drop to the lowest value, and when When the switch 635 is turned on again, the current and voltage do not need to go back to the maximum value from the lowest value, thereby avoiding intermittent illumination of the LED module, thereby improving the overall brightness of the LED module and lowering the minimum on period and increasing the driving frequency.
  • FIG. 13C is a schematic diagram of a circuit structure of a driving circuit according to a second embodiment of the present invention.
  • the driving circuit 730 is a step-up DC-to-DC conversion circuit, and includes a controller 733 and a conversion circuit.
  • the conversion circuit includes an inductor 736, a freewheeling diode 734, a capacitor 737, and a changeover switch 735.
  • the driving circuit 730 converts the filtered signal received by the first filtering output terminal 521 and the second filtering output terminal 522 into a driving signal to drive the LED coupled between the first driving output end 531 and the second driving output end 532. Module.
  • One end of the inductor 736 is coupled to the first filter output end 521, and the other end is coupled to the anode of the filter diode 734 and the first end of the switch 735.
  • the second end of the switch 735 is coupled to the second filter output 522 and the second drive output 532.
  • the cathode of the freewheeling diode 734 is coupled to the first driving output end 531.
  • the capacitor 737 is coupled between the first driving output end 531 and the second driving output end 532.
  • the controller 733 is coupled to the control end of the switch 735, and controls the on and off of the switch 735 according to the current detection signal S531 or/and the current detection signal S535.
  • the switch 735 When the switch 735 is turned on, the current flows from the first filter output terminal 521 and flows through the inductor 736, the switch 735, and then flows out through the second filter output terminal 522. At this point, the current flowing through inductor 736 increases with time and inductor 736 is in an energy storage state.
  • the capacitor 737 is in an energy release state to continuously drive the LED module to emit light.
  • the switch 735 is turned off, the inductor 736 is in an energy release state, and the current of the inductor 736 decreases with time. The current of the inductor 736 continues to flow through the freewheeling diode 734 to the capacitor 737 and the LED module. At this time, the capacitor 737 is in an energy storage state.
  • the capacitor 737 is an omitting component, indicated by a dashed line.
  • the switch 735 when the switch 735 is turned on, the current of the inductor 736 does not flow through the LED module to make the LED module not emit light; when the switch 735 is turned off, the current of the inductor 736 flows through the LED module through the freewheeling diode 734.
  • the LED module is illuminated. By controlling the illumination time of the LED module and the current flowing through it, the average brightness of the LED module can be stabilized at a set value to achieve the same stable illumination. Detection and detection
  • a sense resistor (not shown) is disposed between the switch 735 and the second filter output 522.
  • the switch 735 When the switch 735 is turned on, the current flowing through the sense resistor causes a voltage difference across the sense resistor, so that the voltage across the sense resistor can be passed back to the controller 733 as a current detection signal S535 as a basis for control.
  • the circuit of the changeover switch 735 is prone to generate a large current (possibly reaching 10 A or more) and the detection resistor and the controller 733 are destroyed.
  • the driving circuit 730 may further include a clamping component connectable to the detecting resistor for when the voltage difference between the current flowing through the detecting resistor or the current detecting resistor exceeds a predetermined value.
  • the loop of the sense resistor is clamped to limit the current flowing through the sense resistor.
  • the clamping component can be, for example, a plurality of diodes that are connected in series with one another to form a diode string that is in parallel with the sense resistor. Under this configuration, when a large current is generated in the loop of the changeover switch 735, the diode string connected in parallel to the sense resistor is quickly turned on, so that both ends of the sense resistor can be limited to a certain level. For example, if the diode string is composed of 5 diodes, since the turn-on voltage of a single diode is about 0.7V, the diode string can clamp the across-voltage of the sense resistor to about 3.5V.
  • the driving circuit 730 keeps the current flowing through the LED module unchanged, so for some LED modules (for example, LED modules such as white, red, blue, green, etc.), the color temperature varies with the current.
  • the changed situation can be improved, that is, the LED module can maintain the color temperature at different brightnesses.
  • the inductor 736 which acts as the energy storage circuit, releases the stored energy when the switch 735 is turned off.
  • the LED module continues to emit light, and on the other hand, the current and voltage on the LED module does not suddenly drop to a minimum value, and when switching When the switch 735 is turned on again, the current and voltage do not need to go back to the maximum value from the lowest value, thereby avoiding the intermittent illumination of the LED module, thereby improving the overall brightness of the LED module and lowering the minimum on period and increasing the driving frequency.
  • FIG. 13D is a schematic diagram of a circuit structure of a driving circuit according to a third embodiment of the present invention.
  • the driving circuit 830 is a step-down DC-to-DC conversion circuit, and includes a controller 833 and a conversion circuit.
  • the conversion circuit includes an inductor 836, a freewheeling diode 834, a capacitor 837, and a changeover switch 835.
  • the driving circuit 830 is coupled to the first filter output terminal 521 and the second filter output terminal 522 to convert the received filtered signal into a driving signal for driving the first driving output terminal 531 and the second driving output terminal 532.
  • LED module between.
  • the first end of the switch 835 is coupled to the first filter output 521, the second end is coupled to the cathode of the freewheeling diode 834, and the control end is coupled to the controller 833 to receive the lighting control signal of the controller 833 to make the first end
  • the state between the second end and the second end is either on or off.
  • the anode of the freewheeling diode 834 is coupled to the second filtered output 522.
  • One end of the inductor 836 is coupled to the second end of the switch 835, and the other end is coupled to the first drive output end 531.
  • the second drive output 532 is coupled to the anode of the freewheeling diode 834.
  • the capacitor 837 is coupled between the first driving output end 531 and the second driving output end 532 to stabilize the voltage between the first driving output end 531 and the second driving output end 532.
  • the controller 833 controls the on and off of the changeover switch 835 based on the current detection signal S531 or/and the current detection signal S535.
  • the switch 835 When the switch 835 is turned on, the current flows from the first filter output terminal 521, and passes through the switch 835, the inductor 836, and the capacitor 837 and the first drive output terminal 531, the LED module and the second drive output terminal 532, and then the second Filter output 522 flows out. At this time, the current flowing through the inductor 836 and the voltage of the capacitor 837 increase with time, and the inductor 836 and the capacitor 837 are in an energy storage state.
  • the switch 835 When the switch 835 is turned off, the inductor 836 is in a release state, and the current of the inductor 836 decreases with time. At this time, the current of the inductor 836 flows back to the inductor 836 through the first driving output terminal 531, the LED module and the second driving output terminal 532, and the freewheeling dio
  • the capacitor 837 is an omitting component, which is indicated by a broken line in the drawing.
  • the current of the inductor 836 can flow through the first drive output 531 and the second drive output 532 to drive the LED module to continuously emit light.
  • the driving circuit 830 keeps the current flowing through the LED module unchanged, so for some LED modules (for example, white, red, blue, green, etc.), the color temperature varies with the current.
  • the changed situation can be improved, that is, the LED module can maintain the color temperature at different brightnesses.
  • the inductor 836 which acts as the energy storage circuit, releases the stored energy when the switch 835 is turned off.
  • the LED module maintains continuous illumination, and on the other hand, the current and voltage on the LED module does not suddenly drop to a minimum value.
  • the switch 835 is turned on again, the current and voltage do not need to go back to the maximum value from the lowest value, thereby avoiding intermittent illumination of the LED module, thereby improving the overall brightness of the LED module and lowering the minimum on period and increasing the driving frequency.
  • FIG. 13E is a schematic diagram of a circuit structure of a driving circuit according to a fourth embodiment of the present invention.
  • the driving circuit 930 is a step-down DC-to-DC conversion circuit, and includes a controller 933 and a conversion circuit.
  • the conversion circuit includes an inductor 936, a freewheeling diode 934, a capacitor 937, and a changeover switch 935.
  • the driving circuit 930 is coupled to the first filtering output terminal 521 and the second filtering output terminal 522 to convert the received filtered signal into a driving signal for driving the first driving output end 531 and the second driving output end 532.
  • LED module between.
  • One end of the inductor 936 is coupled to the first filter output end 521 and the second drive output end 532 , and the other end is coupled to the first end of the switch 935 .
  • the second end of the switch 935 is coupled to the second filter output 522, and the control end of the switch 935 is coupled to the controller 933 to be turned on or off according to the lighting control signal of the controller 933.
  • the anode of the freewheeling diode 934 is coupled to the connection point of the inductor 936 and the switch 935, and the cathode is coupled to the first drive output 531.
  • the capacitor 937 is coupled to the first driving output end 531 and the second driving output end 532 to stably couple the driving of the LED module between the first driving output end 531 and the second driving output end 532.
  • the controller 933 controls the on and off of the changeover switch 935 based on the current detection signal S531 or/and the current detection signal S535.
  • the switch 935 When the switch 935 is turned on, the current flows from the first filter output terminal 521 and flows through the inductor 936 and the switch 935 to be discharged from the second filter output terminal 522. At this time, the current flowing through the inductor 936 increases with time, the inductor 936 is in the energy storage state; the voltage of the capacitor 937 decreases with time, and the capacitor 937 is in the energy release state to maintain the LED module to emit light.
  • the switch 935 When the switch 935 is turned off, the inductor 936 is in a release state, and the current of the inductor 936 decreases with time.
  • the current of the inductor 936 passes through the freewheeling diode 934, the first driving output terminal 531, the LED module and the second driving output terminal 532, and returns to the inductor 936 to form a freewheeling flow.
  • the capacitor 937 is in an energy storage state, and the voltage of the capacitor 937 increases with time.
  • the capacitor 937 is an omitting component, which is indicated by a broken line in the drawing.
  • the switch 935 when the switch 935 is turned on, the current of the inductor 936 does not flow through the first drive output end 531 and the second drive output end 532 to cause the LED module to not emit light.
  • the switch 935 When the switch 935 is turned off, the current of the inductor 936 flows through the LED module through the freewheeling diode 934 to cause the LED module to emit light.
  • the average brightness of the LED module can be stabilized at a set value to achieve the same stable illumination. Detection and detection
  • the driving circuit 930 keeps the current flowing through the LED module unchanged, so for some LED modules (for example, LED modules such as white, red, blue, green, etc.), the color temperature varies with the current.
  • the changed situation can be improved, that is, the LED module can maintain the color temperature at different brightnesses.
  • the inductor 936 which acts as the energy storage circuit, releases the stored energy when the switch 935 is turned off.
  • the LED module continues to emit light, and on the other hand, the current and voltage on the LED module do not suddenly drop to a minimum value, and when switching When the switch 935 is turned on again, the current and voltage do not need to go back to the maximum value from the lowest value, thereby avoiding the intermittent illumination of the LED module, thereby improving the overall brightness of the LED module and lowering the minimum on period and increasing the driving frequency.
  • the short circuit board 253 is divided into a first short circuit board and a second short circuit board connected to both ends of the long circuit board 251, and the electronic components in the power supply module are respectively disposed on the short circuit boards.
  • the lengths of the first short circuit board and the second short circuit board may be approximately the same or may be inconsistent.
  • the length of the first short circuit board (the right side circuit board of the short circuit board 253 of FIG. 6 and the left side circuit board of the short circuit board 253 of FIG. 7) is 30% of the length dimension of the second short circuit board - 80%.
  • a preferred first short circuit board has a length dimension of 1/3 - 2/3 of the length dimension of the second short circuit board.
  • the length of the first short circuit board is approximately half the size of the second short circuit board.
  • the size of the second short circuit board is between 15mm and 65mm (depending on the application).
  • the first short circuit board is disposed in the base of one end of the LED straight tube lamp, and the second short circuit board is disposed in the base of the opposite end of the LED straight tube lamp.
  • the capacitance of the driving circuit may actually be two or more capacitors connected in parallel.
  • the capacitance of the driving circuit in the power module is at least partially or entirely disposed on the first short circuit board of the short circuit board 253. That is, the rectifier circuit, the filter circuit, the inductance of the drive circuit, the controller, the changeover switch, the diode, and the like are all disposed on the second short circuit board of the short circuit board 253. Inductors, controllers, switchers, etc.
  • the capacitors are components of higher temperature in electronic components, and some or all of the capacitors are placed on different circuit boards, so that capacitors (especially electrolytic capacitors) can avoid components due to higher temperature.
  • the life expectancy is affected and the reliability of the capacitor is improved.
  • the EMI problem can be solved by spatially separating the capacitor from the rectifier circuit and the filter circuit.
  • the higher temperature component of the drive circuit is disposed on one side of the lamp tube (which may be referred to as the first side of the lamp tube) and the ⁇ component is disposed on the other side of the lamp tube (may be referred to as a lamp) The second side of the tube).
  • the tubes are connected to the socket in a staggered arrangement, ie the first side of any of the tubes will abut the second side of the other adjacent tubes. This configuration allows the higher temperature components to be evenly distributed in the luminaire system, thereby preventing heat from being concentrated at specific locations in the luminaire, thereby affecting the overall luminescence efficiency of the LED.
  • FIG. 15A is a circuit block diagram of a power module according to a fourth embodiment of the present invention.
  • the power module 5 of the embodiment includes a first rectifier circuit 510 , a filter circuit 520 , a driving circuit 530 , and an LED module 50 , and an overvoltage protection circuit 550 is further added.
  • the overvoltage protection circuit 550 is coupled to the first filter output terminal 521 and the second filter output terminal 522 to detect the filtered signal, and clamp the filtered signal when the level of the filtered signal is higher than the set overvoltage value. Bit. Therefore, the overvoltage protection circuit 550 can protect the components of the LED module 50 from being damaged by excessive pressure.
  • FIG. 15B is a circuit block diagram of a power module according to a fifth embodiment of the present invention.
  • the power module 5 of the present embodiment is substantially the same as the power module 5 of FIG. 15A.
  • the difference between the two is mainly that the overvoltage protection circuit 550 of the embodiment is disposed between the driving circuit 530 and the LED module 50, that is, overvoltage protection.
  • the circuit 550 is coupled to the first driving output end 531 and the second driving output end 532 to detect the driving signal and clamp the level of the driving signal when the level of the driving signal is higher than the set overvoltage value. Therefore, the overvoltage protection circuit 550 can protect the components of the LED module 50 from being damaged by excessive pressure.
  • FIG. 15C is a schematic diagram of a circuit structure of an overvoltage protection circuit according to an embodiment of the present invention.
  • the overvoltage protection circuit 650 includes a Zener diode 652, such as a Zener diode, coupled to the first filter output 521 and the second filter output 522 (as in the embodiment of FIG. 15A), or coupled to the first driver.
  • the output terminal 531 and the second drive output terminal 532 (as in the embodiment of Fig. 15B).
  • the voltage difference between the Zener diode 652 at the first filter output terminal 521 and the second filter output terminal 522 (ie, filtering)
  • the level of the post signal is turned on when the breakdown voltage is reached, and the voltage difference is clamped to the breakdown voltage.
  • the breakdown voltage is preferably in the range of 40 to 100 V, more preferably in the range of 55 to 75 V.
  • FIG. 16A is a circuit block diagram of a power module according to a sixth embodiment of the present invention.
  • the power module 5 of the present embodiment includes a first rectifier circuit 510, a filter circuit 520, and a driver circuit 530, and an auxiliary power supply module 560, wherein the power module 5 can also include an LED. Part of the module 50.
  • the auxiliary power supply module 560 is coupled between the first filter output terminal 521 and the second filter output terminal 522.
  • the auxiliary power supply module 560 detects the filtered signals on the first filter output terminal 521 and the second filter output terminal 522, and determines whether to provide auxiliary power to the first filter output terminal 521 and the second filter output terminal 522 according to the detection result.
  • the auxiliary power supply module 560 When the filtered signal is stopped or the AC level is insufficient, that is, when the driving voltage of the LED module 50 is lower than an auxiliary voltage, the auxiliary power supply module 560 provides auxiliary power so that the LED module 50 can continue to emit light.
  • the auxiliary voltage is determined according to the auxiliary power supply voltage supplied from the auxiliary power supply module 560.
  • FIG. 16B is a circuit block diagram of a power module according to a seventh embodiment of the present invention.
  • the power module 5 of the embodiment includes a first rectifier circuit 510, a filter circuit 520, a driving circuit 530, and an auxiliary power supply module 560.
  • the auxiliary power supply module 560 is coupled between the first driving output end 531 and the second driving output end 532.
  • the auxiliary power supply module 560 detects the driving signals of the first driving output end 531 and the second driving output end 532, and determines whether to provide auxiliary power to the first driving output end 531 and the second driving output end 532 according to the detection result.
  • the auxiliary power supply module 560 provides auxiliary power so that the LED module 50 can continue to emit light.
  • the LED module 50 can receive only the auxiliary power supply provided by the auxiliary power supply module 560 as the operating power source, and the external driving signal is used to charge the auxiliary power supply module 560. Since the present embodiment uses only the auxiliary power provided by the auxiliary power supply module 960 to illuminate the LED module 50, that is, whether the external driving signal is provided by the mains or provided by the ballast, the auxiliary power supply module is first used. The energy storage unit of the 960 is charged, and then the energy storage unit uniformly supplies power to the back end. Thereby, the LED straight tube lamp to which the power module architecture of the embodiment is applied can be compatible with the external driving signal provided by the commercial power.
  • the auxiliary power supply module 560 is connected to the output end of the filter circuit 520 (the first filter output terminal 521 and the second filter output terminal 522) or the output terminal of the drive circuit 530 (the first drive output) between the terminal 531 and the second driving output 532), in an exemplary embodiment, the circuit can be placed in the lamp (for example, adjacent to the LED module 50) to avoid excessive length of wiring to cause power. Transmission loss. In another exemplary embodiment, the circuit of the auxiliary power supply module 560 may also be placed in the base, so that the thermal energy generated by the auxiliary power supply module 560 during charging and discharging is less likely to affect the operation and luminous performance of the LED module.
  • FIG. 16C is a schematic diagram of a circuit structure of an auxiliary power supply module according to an embodiment of the present invention.
  • the auxiliary power supply module 660 of this embodiment can be applied to the configuration of the auxiliary power supply module 560 described above.
  • the auxiliary power supply module 660 includes an energy storage unit 663 and a voltage detection circuit 664.
  • the auxiliary power supply module 660 has an auxiliary power supply positive end 661 and an auxiliary power supply negative end 662 respectively coupled to the first filter output end 521 and the second filter output end 522, or respectively coupled to the first drive output end 531 and the second drive output end. 532.
  • the voltage detecting circuit 664 detects the level of the signal on the auxiliary power positive terminal 661 and the auxiliary power negative terminal 662 to determine whether to discharge the power of the energy storage unit 663 through the auxiliary power positive terminal 661 and the auxiliary power negative terminal 662.
  • the energy storage unit 663 is a battery or a super capacitor.
  • the voltage detection circuit 664 is higher than the voltage of the energy storage unit 663, the signal of the auxiliary power supply positive terminal 661 and the auxiliary power supply negative terminal 662 is higher than that of the auxiliary power supply positive terminal 661 and the auxiliary power supply negative terminal 662.
  • Unit 663 is charged.
  • the signal level of the auxiliary power source positive terminal 661 and the auxiliary power source negative terminal 662 is lower than the voltage of the energy storage unit 663, the energy storage unit 663 is externally discharged via the auxiliary power source positive terminal 661 and the auxiliary power source negative terminal 662.
  • the voltage detection circuit 664 includes a diode 665, a bipolar junction transistor 666, and a resistor 667.
  • the anode of the diode 665 is coupled to the anode of the energy storage unit 663, and the cathode is coupled to the auxiliary power source 661.
  • the negative pole of the energy storage unit 663 is coupled to the auxiliary power supply negative terminal 662.
  • the collector of the bipolar junction transistor 666 is coupled to the positive power supply terminal 661, and the emitter is coupled to the anode of the energy storage unit 663.
  • One end of the resistor 667 is coupled to the positive power supply positive terminal 661, and the other end is coupled to the base of the dual carrier junction transistor 666.
  • the resistor 667 turns on the bipolar junction transistor 666 when the collector of the bipolar junction transistor 666 is higher than the emitter one.
  • the filtered signal charges the energy storage unit 663 via the first filter output terminal 521 and the second filter output terminal 522 and the turned-on dual-carrier junction transistor 666, or the drive signal passes through
  • the first driving output terminal 531 and the second driving output terminal 532 and the turned-on bipolar junction transistor 666 charge the energy storage unit 663 until the difference of the collector-shooting of the bipolar junction transistor 666 is equal to or less than Until the voltage is passed.
  • the energy storage unit 663 provides power to the LED module 50 through the diode 665 to maintain illumination.
  • the highest voltage stored by the energy storage unit 663 when charging is at least lower than the voltage applied to the auxiliary power supply positive terminal 661 and the auxiliary power supply negative terminal 662 by a dual carrier junction transistor 666.
  • the voltage output by the auxiliary power supply positive terminal 661 and the auxiliary power supply negative terminal 662 when the energy storage unit 663 is discharged is lower than the voltage of the energy storage unit 663 by a threshold voltage of one diode 665. Therefore, when the auxiliary power supply module starts to supply power, the supplied voltage will be lower (approximately equal to the sum of the threshold voltage of the diode 665 and the turn-on voltage of the bipolar junction transistor 666). In the embodiment shown in FIG.
  • the voltage drop during powering of the auxiliary power supply module causes a significant decrease in the brightness of the LED module 50.
  • the user can know the main lighting power source, for example, the mains power, abnormality, and can perform necessary preventive measures.
  • the configuration of the embodiment of Figures 16A-16C can be applied to a multi-lamp luminaire architecture in addition to the emergency power supply available to a single lamp.
  • the four LED straight tube lamps may be one of which includes an auxiliary power supply module.
  • the LED straight tube lamp containing the auxiliary power supply module will continue to be lit, and the other LED straight tube lights will be extinguished.
  • the LED straight tube lamp provided with the auxiliary power supply module may be disposed in the middle of the luminaire.
  • the four LED straight tube lamps may be one of which includes an auxiliary power supply module.
  • the LED straight tube lamps including the auxiliary power supply module may all be illuminated by the auxiliary power at the same time. In this way, the luminaire as a whole can provide a certain brightness even in an emergency situation.
  • the two LED straight tube lamps may be arranged in a staggered arrangement with the LED straight tube lamps not provided with the auxiliary power supply module.
  • the four LED straight tube lamps may be one of which includes an auxiliary power supply module.
  • the external driving signal is abnormal, some of the LED straight tube lamps are first illuminated by the auxiliary power, and after a period of time (for example,), another portion of the LED straight tube lamps are illuminated by the auxiliary power.
  • the embodiment can provide an auxiliary power sequence in coordination with other lamps, so that the illumination time of the LED straight tube lamp in an emergency state can be extended.
  • the embodiment in which the auxiliary power sequence is provided in coordination with other lamps can be configured by setting the startup time of the auxiliary power supply module in different lamps or by setting a controller in each lamp.
  • the operating state between the power supply modules is not limited by the present invention.
  • FIG. 16D is a circuit block diagram of a power module according to an eighth embodiment of the present invention.
  • the power module 5 of the embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an auxiliary power supply module 760.
  • the auxiliary power supply module 760 of the present embodiment is connected between the first pin 501 and the second pin 502, thereby receiving an external driving signal, and charging and discharging based on an external driving signal. Actions.
  • the operation of the auxiliary power supply module 760 can be similar to an off-line UPS.
  • the external power grid/external drive signal will be directly supplied to the rectifier circuit 510 and simultaneously charge the auxiliary power supply module 760; once the power supply quality is unstable or powered off, the auxiliary power supply module 760 will cut off the external power grid and the rectifier circuit 510.
  • the auxiliary power supply module 760 of the present embodiment can operate, for example, in a redundant manner, and only participates in power supply when the power grid is powered off.
  • the power supply supplied by the auxiliary power supply module 760 may be alternating current or direct current.
  • the auxiliary power supply module 760 includes, for example, an energy storage unit and a voltage detection circuit.
  • the voltage detection circuit detects an external drive signal, and determines whether to cause the energy storage unit to provide auxiliary power to the input end of the rectifier circuit 510 according to the detection result. .
  • the energy storage unit of the auxiliary power supply module 760 provides auxiliary power so that the LED module 50 can continue to emit light based on the auxiliary power provided by the auxiliary energy storage unit.
  • the energy storage unit for providing auxiliary power can be implemented by using an energy storage component such as a battery or a super capacitor, but the present invention is not limited thereto.
  • FIG. 16E is a circuit block diagram of the auxiliary power supply module of the first embodiment of the present invention.
  • the auxiliary power supply module 760 includes, for example, a charging unit 761 and an auxiliary power supply unit 762, the input of the charging unit 761 is connected to the external power grid 508, and the output of the charging unit 761 is connected to the input terminal of the auxiliary power supply unit 762.
  • the output of the auxiliary power supply unit 762 is connected to a power supply loop between the external power grid 508 and the rectifier circuit 510.
  • the system further includes a switch unit 763 connected to the external power grid 508, the output end of the auxiliary power supply unit 762, and the input end of the rectifier circuit 510, wherein the switch unit 763 selectively turns on the external power grid according to the power supply state of the external power grid 508.
  • the loop between 508 and rectifier circuit 510, or the loop between auxiliary power supply module 760 and rectifier circuit 510 are connected to the input of the rectifier circuit 510 through the switch unit 763 as an external drive signal Sed.
  • the charging unit 761 charges the auxiliary power supply unit 762 based on the power supplied from the external power grid 508, and the auxiliary power supply unit 762 does not discharge the rectifier circuit 510 at the rear end in response to the external driving signal Sed normally transmitted on the power supply circuit.
  • the auxiliary power supply unit 762 begins to discharge through the switching unit 763 to provide auxiliary power as the external drive signal Sed to the rectifier circuit 510.
  • FIG. 16F is a circuit block diagram of a power module according to a ninth embodiment of the present invention.
  • the power module 5 of the embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an auxiliary power supply module 860.
  • the input terminals Pi1 and Pi2 of the auxiliary power supply module 860 of the embodiment receive an external driving signal, and perform charging and discharging operations based on the external driving signal, and then generate the auxiliary power source.
  • the outputs Po1 and Po2 are supplied to the rectifying circuit 510 of the back end.
  • the first pin (such as 501) and the second pin (such as 502) of the LED straight tube lamp may be the input terminals Pi1 and Pi2 or the output terminal Po1 of the auxiliary power supply module 860.
  • the first pin 501 and the second pin 502 are the input terminals Pi1 and Pi2 of the auxiliary power supply module 860, it means that the auxiliary power supply module 860 is disposed inside the LED straight tube lamp; if the first pin 501 and the second pin are 502 is the output terminals Po1 and Po2 of the auxiliary power supply module 860, that is, the auxiliary power supply module 860 is disposed outside the LED straight tube lamp.
  • the subsequent embodiments will further explain the specific configuration of the auxiliary power supply module.
  • the operation of the auxiliary power supply module 860 is similar to an on-line UPS.
  • the external power grid/external drive signal is not directly supplied to the rectifier circuit 510 but through the auxiliary power supply module 860. Power is supplied.
  • the external power grid and the LED straight tube lamp are isolated from each other, and the auxiliary power supply module 860 is fully involved in the process of starting/powering the LED straight tube lamp, thereby enabling the power supply to the rectifier circuit 510. Not affected by the instability of the external power grid.
  • FIG. 16G is a circuit block diagram of an auxiliary power supply module according to a second embodiment of the present invention, which shows an exemplary configuration of the online operation auxiliary power supply module 860.
  • the auxiliary power supply module 860 includes a charging unit 861 and an auxiliary power supply unit 862.
  • the input of the charging unit 861 is connected to the external power grid 508, and the output of the charging unit 861 is connected to the first input of the auxiliary power supply unit 862.
  • the second input of the auxiliary power supply unit 862 is connected to the external power grid 508, and its output is connected to the rectifier circuit 510.
  • the auxiliary power supply unit 862 performs power conversion based on the power provided by the external power grid 508, and accordingly generates an external drive signal Sed to the rectifier circuit 510 at the back end; during this period, charging Unit 861 simultaneously charges the energy storage unit in auxiliary power supply unit 862.
  • the auxiliary power supply unit 862 performs power conversion based on the power provided by its own energy storage unit, and accordingly generates an external drive signal Sed to the rectifier circuit 510 at the rear end.
  • the power conversion action described herein may be one of circuit operations such as rectification, filtering, boosting, and bucking, or a reasonable combination thereof, and the present invention is not limited thereto.
  • the auxiliary power supply module 860 operates similar to an online line-interactive UPS, and its basic operation is similar to an offline power-off system, but the difference lies in the online interactive operation.
  • the auxiliary power supply module 860 monitors the power supply of the external power grid at any time, and has its own boosting and decompression compensation circuit to instantly correct when the external power supply is not ideal, thereby reducing the frequency of switching the battery to supply power.
  • the auxiliary power supply module 860 includes, for example, a charging unit 861, an auxiliary power supply unit 862, and a switch unit 863.
  • the input of the charging unit 861 is connected to the external power grid 508, and the output of the charging unit 861 is connected to the input of the auxiliary power supply unit 862.
  • the switch unit 863 is respectively connected to the external power grid 508, the output end of the auxiliary power supply unit 862, and the input end of the rectifier circuit 510.
  • the switch unit 863 selectively turns on the external power grid 508 and the rectifier circuit 510 according to the power supply state of the external power grid 508.
  • the switch unit 863 turns on the loop between the external power grid 508 and the rectifier circuit 510, and disconnects the loop between the auxiliary power supply unit 862 and the rectifier circuit 510 such that the external power grid 508
  • the supplied power is supplied to the input terminal of the rectifying circuit 510 through the switching unit 863 as an external driving signal Sed.
  • the charging unit 861 charges the auxiliary power supply unit 862 based on the power supplied from the external power grid 508.
  • the switch unit 863 switches to turn on the loop between the auxiliary power supply unit 862 and the rectifier circuit 510, so that the auxiliary power supply unit 862 starts discharging to provide auxiliary power as the external drive signal Sed. Rectifier circuit 510.
  • the auxiliary power provided by the auxiliary power supply unit 762/862 may be alternating current or direct current.
  • the auxiliary power supply unit 762/862 includes, for example, an energy storage unit and a DC-AC converter; when the supplied power is direct current, the auxiliary power supply unit 762/862 includes, for example, a
  • the energy storage unit and the DC-DC converter, or only the energy storage unit, are not limited thereto.
  • the energy storage unit can be, for example, a battery module of a plurality of energy storage battery combinations.
  • the DC to DC converter can be, for example, a step-up, step-down or step-down DC-to-DC converter circuit.
  • the auxiliary power supply module 760/860 further includes a voltage detecting circuit (not shown).
  • the voltage detecting circuit can be used to detect the working state of the external power grid 508, and send a signal according to the detection result to control the switching unit 763/863 or the auxiliary power supply unit 862, thereby determining that the LED straight tube lamp operates in the normal lighting mode (ie, through the external power grid 508).
  • Power supply or emergency mode (ie, powered by the auxiliary power supply module 760/860).
  • the switch unit 863/863 can be implemented by using a three-terminal switch or two switches of complementary switching.
  • the two switches are implemented by complementary switching, the two switches can be respectively connected in series on the power supply circuit of the external power grid 508 and the power supply circuit of the auxiliary power supply module 760/860; and when one of the switches is turned on, The other switch is turned off.
  • the switch unit 763/863 can be implemented using a relay.
  • the relay is similar to the selection switch of the two modes. If it works in the normal lighting mode (ie, the mains is used as the external driving signal), after the power is turned on, the relay is energized and pulled, and the power module of the LED straight tube lamp is not connected with the auxiliary power supply module. 760/860 electrical connection; if the mains is abnormal, the electromagnetic suction of the relay disappears and returns to the initial position. At this time, the power module of the LED straight tube lamp is electrically connected to the auxiliary power supply module through the relay 760/860, so that the auxiliary power supply module jobs.
  • the auxiliary power supply module 760/860 does not work, and the utility power supplies power; and the utility battery charges the battery module in the auxiliary power supply module.
  • the battery module boosts the voltage of the battery module to the voltage required for the operation of the LED module 50 through the step-up DC-to-DC conversion circuit, and the LED module 50 emits light.
  • the voltage after boosting is 4-10 times of the voltage of the battery module before boosting (4 ⁇ 6 times is preferred); the voltage required for LED module 50 to operate is 40-80V (better between 55-75V) In this case, 60V is selected.
  • a single cylindrical battery is selected; the battery is packaged in a metal case to reduce the risk of electrolyte leakage in the battery.
  • the battery adopts a modular design, and two battery cells are connected in series and then packaged to form a battery module, wherein a plurality of the battery modules can be electrically connected in series (can be connected in series or in parallel). And set in the luminaire, so that it is easy to maintain it later; if some battery modules are damaged, the damaged battery module can be replaced in time without replacing all the battery modules.
  • the battery module can be arranged in a cylindrical shape, and the inner diameter thereof is slightly larger than the outer diameter of the battery unit, so that the battery unit is sequentially placed in the battery module, and the positive terminal and the negative terminal are formed at both ends of the battery module.
  • the voltage of the plurality of serially connected battery modules is less than 36V.
  • the battery module can be arranged in a rectangular shape, and the width of the rectangular parallelepiped is slightly larger than the outer diameter of the battery, so that the battery is firmly clamped in the battery module, and the module is provided with a snap-type pluggable structure, or Other structures that can be easily inserted and assembled.
  • the charging unit 761 / 861 can be, for example, a BMS module (battery management system) for managing battery modules, mainly for intelligently managing and maintaining each battery module, preventing overcharging and overdischarging of the battery, and extending The life of the battery, monitoring the status of the battery.
  • BMS module battery management system
  • the BMS module presets an external interface, and the information of the battery in the battery module is read by connecting the interface during periodic detection. Replace the corresponding battery module if it detects that the battery module is abnormal.
  • the number of batteries in the battery module may be multiple, such as three, four, 30, etc., at this time, the battery in the battery module can be sampled in series, mixed in series and parallel, depending on the application.
  • the voltage of a single lithium battery is about 3.7V, and the number of batteries can be appropriately reduced so that the voltage of the battery system is lower than 36V.
  • an electromagnetic relay which is mainly composed of an iron core, a coil, an armature, a contact spring, and the like.
  • the working principle as long as a certain voltage is applied to both ends of the coil, a certain current flows in the coil, thereby generating an electromagnetic effect, and the armature will absorb the pulling force of the return spring to attract the iron core under the action of electromagnetic force attraction.
  • the movable contact of the armature is brought into contact with the stationary contact (normally open contact).
  • the electromagnetic suction force also disappears, and the armature returns to the initial position at the reaction force of the spring, so that the movable contact is attracted to the original static contact (normally closed contact).
  • the brightness of the LED module illuminated by the external drive signal is different than the brightness illuminated by the auxiliary power.
  • the auxiliary power supply module 760/860 of the present embodiment can provide the auxiliary power of the power to the LED module by using an auxiliary power different from the external driving signal when the external driving signal is abnormal, so that the LED module has different brightness as an external An indication of whether the drive signal is normally supplied.
  • the LED module when the LED module is illuminated according to an external driving signal, its brightness may be, for example, 1600-2000 lumens; when the LED module is illuminated according to the auxiliary power provided by the auxiliary power supply module 760/860
  • the brightness can be, for example, 200-250 lumens.
  • the output power of the auxiliary power supply module 760/860 may be, for example, 1 watt to 5 watts, but the present invention Not limited to this.
  • the capacity of the energy storage component in the auxiliary power supply module 760/860 may be, for example, 1.5 watt hours to 7.5 watt hours or more, whereby the LED module can be continuously illuminated for more than 90 minutes at a brightness of 200-250 lumens based on the auxiliary power.
  • the present invention is also not limited thereto.
  • FIG. 16I is a schematic configuration diagram of an auxiliary power supply module according to the first embodiment of the present invention.
  • the auxiliary power supply module 760/860 (for simplicity of description, only 760 is shown in the figure, and the auxiliary power supply module 760 is also described below), except that it can be configured in the lamp tube 1 as in the foregoing embodiment.
  • it can also be arranged in the base 3.
  • the auxiliary power supply module 760 can be internally connected from the base 3 to the corresponding first pin 501 and second pin 502 to receive external driving signals provided to the first pin 501 and the second pin 502. .
  • the auxiliary power supply module 760 of the present embodiment is disposed in the lamp cap 3 on both sides of the lamp tube 1, the LED in the lamp tube 1 is distanced. The module is far away, so that the thermal energy generated by the auxiliary power supply module 760 during charging and discharging is less likely to affect the operation and luminous performance of the LED module.
  • the power supply modules of the auxiliary power supply module 760 and the LED straight tube lamps may be disposed in the same side light head or respectively disposed in the two side light heads. Wherein, if the auxiliary power supply module 760 and the power module are placed in different lamp heads, the overall circuit layout can have more space.
  • the auxiliary power supply module 760 can also be disposed in a socket corresponding to the LED straight tube lamp, as shown in FIG. 16J, and FIG. 16J is the auxiliary power supply module of the second embodiment of the present invention.
  • the socket 1_LH includes a base 101_LH and a connection socket 102_LH, wherein the base 101_LH is equipped with a power supply line and is adapted to be fitted/attached to a fixed object such as a wall or a ceiling.
  • the connection socket 102_LH has a slot corresponding to a pin on the LED straight tube lamp (such as the first pin 501 and the second pin 502), wherein the slot is electrically connected to the corresponding power line.
  • the connection socket 102_LH may be integrally formed with the base 101_LH or detachably mounted to the base 101_LH, and the present invention is not limited thereto.
  • the auxiliary power supply module 760 is disposed in the connection socket 102_LH and is connected to the power supply line to receive an external drive signal. For example, when the first pin 501 and the second pin 502 are inserted into the slot of the left connection socket 102_LH, the auxiliary power supply module 760 is electrically connected to the first pin through the slot. 501 and the second pin 502, thereby implementing the connection configuration of FIG. 16D.
  • connection socket 102_LH can be designed in a detachable configuration
  • the connection socket 102_LH and the auxiliary power supply module 760 can be integrated.
  • the new auxiliary power supply module 760 can be replaced by replacing the modular connection socket 102_LH, without replacing the entire LED. Straight tube light.
  • the auxiliary power supply module 760 can also be disposed in the base 101_LH of the socket 1_LH or outside the socket 1_LH, and the present invention is not limited thereto.
  • the auxiliary power supply module 760 can be divided into two types: (1) integrated inside the LED straight tube lamp, and (2) independent of the LED straight tube lamp externally.
  • the auxiliary power supply module 760 if the auxiliary power supply mode is off-line, the power supply of the auxiliary power supply module 760 and the external power grid can be supplied to the LED straight tube lamp through different pins. Or give the LED straight tube lamp with at least one pin shared.
  • the power signal of the external power grid will not be directly applied to the pin of the LED straight tube lamp, but will be given to the auxiliary power supply module 760 first.
  • the auxiliary power supply module 760 sends a signal to the power module inside the LED straight tube lamp through the pin of the LED straight tube lamp.
  • the overall configuration of the auxiliary power supply module (referred to as the independent auxiliary power supply module) and the LED straight tube lamp outside the LED straight tube lamp is further explained below.
  • FIG. 16K is a circuit block diagram of a LED straight tube lamp illumination system according to a sixth embodiment of the present invention.
  • the LED straight tube lighting system includes an LED straight tube lamp 600 and an auxiliary power supply module 960.
  • the LED straight tube lamp 600 of the present embodiment includes rectifying circuits 510 and 540, a filter circuit 520, a driving circuit 530, and an LED module (not shown).
  • the rectifier circuits 510 and 540 can be respectively the full-wave rectifier circuit 610 shown in FIG. 11A or the half-wave rectifier circuit 710 shown in FIG. 11B.
  • the two input terminals of the rectifier circuit 510 are respectively connected to the first pin 501 and the first The two pins 502, and the two input ends of the rectifier circuit 540 are connected to the third pin 503 and the fourth pin 504, respectively.
  • the LED straight tube lamp 600 is exemplified by a double-ended power input configuration, and the external power grid 508 is connected to the pins 501 and 503 on the lamp caps on both sides of the LED straight tube lamp 600, and the auxiliary power supply module 960 is Connect to pins 502 and 504 on the lamp caps on both sides of the LED straight tube lamp 600. That is, the external power grid 508 and the auxiliary power supply module 960 are powered by the different pins to the LED straight tube lamp 600.
  • the configuration of the dual-ended power input is taken as an example, but the present invention is not limited thereto.
  • the external power grid 508 can also be powered by the first pin 501 and the second pin 502 on the same side light head (ie, a single-ended power input configuration).
  • the auxiliary power supply module 960 can supply power through the third pin 503 and the fourth pin 504 on the other side of the lamp.
  • the original unused switch pins (such as 502 and 504) in the LED straight tube lamp 600 can be used as receiving by selecting the corresponding rectifier circuit configuration under the configuration of single-ended power or double-ended power.
  • the interface of the auxiliary power supply realizes the integration of the emergency lighting function in the LED straight tube lamp 600.
  • FIG. 16L is a circuit block diagram of a LED straight tube lamp illumination system according to a seventh embodiment of the present invention.
  • the LED straight tube lamp illumination system includes an LED straight tube lamp 700 and an auxiliary power supply module 1060.
  • the LED straight tube lamp 700 of the embodiment includes a rectifier circuit 510, a filter circuit 520, a driving circuit 530, and an LED module (not shown).
  • the rectifier circuit 510 can be, for example, a rectifier circuit 910 having three bridge arms as shown in one of FIGS. 11D to 11F, wherein the rectifier circuit 510 has three input signal receiving terminals P1, P2, and P3.
  • the input signal receiving end P1 is connected to the first pin 501
  • the input signal receiving end P2 is connected to the second pin 502, and is adapted to be connected to the auxiliary power supply module 1060 via the second pin 502, and the input signal receiving end P3 is adapted to pass
  • the third pin 503 is connected to the auxiliary power supply module 1060.
  • the LED straight tube lamp 700 is also exemplified by a double-ended power input configuration, and the external power grid 508 is connected to the pins 501 and 503 on the lamp caps on both sides of the LED straight tube lamp 700.
  • the auxiliary power supply module 1060 of the present embodiment shares the third pin 503 with the external power grid 508 except for being connected to the second pin 502.
  • the power supply provided by the external power grid 508 is supplied to the signal receiving terminals P1 and P3 of the rectifier circuit 510 through the first pin 501 and the third pin 503, and the power supply provided by the auxiliary power supply module 1060 is passed through
  • the two pins 502 and the third pin 503 are supplied to the signal receiving terminals P2 and P3 of the rectifier circuit 510.
  • the auxiliary power supply module 1060 is connected to the external power grid 508.
  • the neutral line (N) is shared, while the fire lines are independent.
  • the signal receiving end P3 is a shared end of the external power grid 508 and the auxiliary power supply module 1060.
  • the rectifier circuit 510 can perform full-wave rectification through the bridge arms corresponding to the signal receiving terminals P1 and P3, thereby supplying power to the LED module.
  • the rectifier circuit 510 can receive the auxiliary power supply provided by the auxiliary power supply module 1060 through the signal receiving terminals P2 and P3, thereby supplying power to the LED module.
  • the diode unidirectional characteristic of the rectifier circuit 510 isolates the external drive signal from the input of the auxiliary power source so that the two do not affect each other, and the effect of providing the auxiliary power when the external power grid 508 is abnormal can also be achieved.
  • the rectifier circuit 510 can be implemented using a fast recovery diode in response to the high frequency characteristics of the emergency power supply output current.
  • the LED straight tube lamp 700 since the embodiment supports the auxiliary power supply provided by the auxiliary power supply module 1060 by sharing the third pin 503, the LED straight tube lamp 700 also has an unused fourth pin ( Not shown) can be used as a signal input interface for other control functions.
  • the other control functions may be, for example, a dimming function, a communication function, a sensing function, and the like, and the present invention is not limited thereto.
  • the following is a description of an embodiment in which the LED straight tube lamp 700 further integrates the dimming control function.
  • FIG. 16M is a circuit block diagram of an LED straight tube lamp illumination system according to an eighth embodiment of the present invention.
  • the LED straight tube lamp 800 of the present embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an LED module 50.
  • the LED straight tube lamp illumination system configuration of the present embodiment is substantially the same as the foregoing embodiment of FIG. 16L, and the difference is that the LED straight tube lamp illumination system of the embodiment further includes a fourth pin 504 coupled to the LED straight tube lamp 800.
  • the dimming control circuit 570 wherein the dimming control circuit 570 is coupled to the driving circuit 530 through the fourth pin 504, thereby regulating the driving current supplied by the driving circuit 530 to the LED module 50, so that the brightness and/or color temperature of the LED module 50 is Can change accordingly.
  • the dimming control circuit 570 can be, for example, a circuit module composed of a variable impedance element and a signal conversion circuit, and the user can control the impedance of the variable impedance element to cause the dimming control circuit 570 to generate a corresponding level.
  • the dimming signal is transmitted to the driving circuit 530 after being converted into a signal type conforming to the format of the driving circuit 530 by the signal converting circuit, so that the driving circuit 530 can adjust the output to the LED based on the dimming signal.
  • the magnitude of the drive current of module 50 If the brightness of the LED module 50 is to be adjusted, the frequency of the driving signal or the reference level can be adjusted. If the color temperature of the LED module 50 is to be adjusted, the brightness of the red LED unit in the LED module 50 can be adjusted.
  • the present invention is not limited thereto.
  • auxiliary power supply modules 960, 1060 can also refer to the configurations of FIGS. 16I and 16J in hardware configuration, and the same beneficial effects can be obtained.
  • the configuration of the embodiment of Figures 16D-16M can be applied in addition to the emergency power supply to a single lamp, which can also be applied under a multi-lamp parallel architecture to provide emergency auxiliary power.
  • a structure in which a plurality of LED straight tube lamps are connected in parallel corresponding pins of the LED straight tube lamps are connected to each other to receive the same external driving signal.
  • the first pins 501 of the LED straight tube lamps are connected to each other, and the second pins of the LED straight tube lamps are connected to each other, and so on.
  • the auxiliary power supply module 760 can be equivalently connected to the pins of each LED straight tube lamp in parallel.
  • auxiliary power can be supplied to illuminate all the parallel LEDs when an abnormality occurs in the external power supply (ie, the external driving signal cannot be normally supplied).
  • Straight tube lights are used as emergency lighting.
  • the auxiliary power supply module 760 can be designed to have an energy storage unit with a capacity of 1.5 watt hours to 7.5 watt hours and an output power of 1 watt to 5 watts. .
  • the luminaire as a whole may have at least a brightness of 200-250 lumens and may continue to illuminate for 90 minutes.
  • the embodiment can be provided with an auxiliary power supply module in one of the lamps of the luminaire, or in a plurality of lamps of the luminaire.
  • An auxiliary power supply module is provided, wherein the lamp arrangement for the light uniformity is equally applicable to the present embodiment.
  • the main difference between the embodiment and the foregoing embodiment of FIG. 16A to FIG. 16C is that the single lamp is provided with an auxiliary power supply module, and the auxiliary power supply module can be used for other lamps. Pipe power supply.
  • the auxiliary power supply modules 560, 660, 760, 960, 1060 of FIGS. 16D to 16M may further determine whether to provide auxiliary power to the LED straight tube lamp according to a one-light signal.
  • the lighting signal may be an indication signal that reflects a switching state of the light switch.
  • the level of the lighting signal may be adjusted to a first level (eg, a high logic level) or a second level different from the first level (eg, low logic) depending on the switching of the light switch. Level).
  • the lighting signal is adjusted to the first level; when the user switches the light switch to the closed position, the lighting signal is adjusted to the second standard Bit.
  • the indicator switch when the lighting signal is at the first level, the indicator switch is switched to the illuminated position; when the lighting signal is at the second level, the indicator switch is switched to the closed position.
  • the generation of the lighting signal can be realized by a circuit for detecting the switching state of the light switch.
  • the auxiliary power supply module 560, 660, 760, 860, 960, 1060 may further include a one-light determination circuit for receiving the lighting signal, and detecting according to the level of the lighting signal and the voltage detecting circuit. The result is to decide whether to power the energy storage unit to the back end.
  • the detection result based on the level of the lighting signal and the voltage detecting circuit may have the following three states: (1) the lighting signal is at the first level and the external driving signal is normally provided; (2) the lighting signal is the first standard And the external drive signal is stopped or the AC level is insufficient; and (3) the lighting signal is at the second level and the external drive signal is stopped.
  • the state (1) is a case where the user turns on the light switch and the external power supply is normal, the state (2) is that the user turns on the light switch but the external power supply is abnormal, and the state (3) is that the user turns off the light switch so that the external power source is Stop providing.
  • both the state (1) and the state (3) belong to a normal state, that is, the external power supply is normally provided when the user turns on the light, and the external power supply is stopped when the user turns off the light. Therefore, under state (1) and state (3), the auxiliary power supply module does not provide auxiliary power to the back end. More specifically, the lighting judgment circuit causes the energy storage unit not to supply power to the back end according to the judgment results of the state (1) and the state (3).
  • the external driving signal is directly input to the rectifying circuit 510, and the external driving signal charges the energy storage unit; in the state (3), the external driving signal is stopped, so that the energy storage unit is not charged.
  • the lighting judgment circuit at this time will cause the energy storage unit to supply power to the back end according to the judgment result of the state (2).
  • the LED module 50 is caused to emit light based on the auxiliary power provided by the energy storage unit.
  • the LED module 50 can have three different brightness variations under the application of the lighting determination circuit.
  • the first segment is that when the external power source is normally powered, the LED module 50 has a first brightness (for example, 1600-2200 lumens), and the second segment is when the external power source is not normally powered and is supplied with auxiliary power, the LED module 50 has a second brightness ( For example, 200-250 lumens), the third segment is that the user turns off the power by itself, so that the external power source is not supplied to the LED straight tube lamp, and the LED module 50 has the third brightness (the LED module is not lit).
  • first brightness for example, 1600-2200 lumens
  • the second segment is when the external power source is not normally powered and is supplied with auxiliary power
  • the LED module 50 has a second brightness ( For example, 200-250 lumens
  • the third segment is that the user turns off the power by itself, so that the external power source is not supplied to the LED straight tube lamp, and the LED module 50 has the third brightness (the LED module is not lit).
  • the lighting determination circuit can be, for example, a switching circuit (not shown) connected in series between the auxiliary power supply positive end 661 and the auxiliary power supply negative end 662, the switching circuit.
  • the control terminal receives the lighting signal.
  • the switching circuit is turned on in response to the lighting signal, and when the external driving signal is normally supplied, the auxiliary power source positive end 661 and the auxiliary power source negative end 662 are opposite to the energy storage unit.
  • the energy storage unit 663 charging (state 1); or when the external driving signal is stopped or the AC level is insufficient, the energy storage unit 663 is supplied with auxiliary power to the rear LED module 50 or LED module via the auxiliary power positive terminal 661 and the auxiliary power negative terminal 662. 50 use (state 2).
  • the switching circuit is turned off in response to the lighting signal. At this time, even if the external driving signal is stopped or the AC level is insufficient, the energy storage unit 663 does not have a back end. Provide auxiliary power.
  • the circuit of the auxiliary power supply unit (such as 762 and 862) is designed as open loop control, that is, the output voltage of the auxiliary power supply unit has no feedback signal, and if the load is open, the auxiliary power supply module is caused.
  • the output voltage rises all the time and burns out.
  • the present disclosure proposes a circuit embodiment of a plurality of auxiliary power supply modules with open circuit protection, as shown in FIGS. 16N and 16O.
  • the auxiliary power supply module 1160 includes a charging unit 1161 and an auxiliary power supply unit 1162.
  • the auxiliary power supply unit 1162 includes an energy storage unit 1163 that provides a voltage Vcc, a transformer, a sampling module 1164, and a chip control module 1165.
  • the transformer includes a primary winding assembly L1 and a secondary winding assembly L2.
  • the sampling module 1164 includes a winding L3, and the winding L3 and the secondary winding assembly L2 are wound on the secondary side; the voltage of the secondary winding assembly L2 is sampled by the winding L3, and if the sampled voltage exceeds the set threshold, the feedback is sent to the chip control module.
  • the switching frequency of the switch M1 electrically connected to the primary winding assembly L1 is adjusted by the chip control module. Furthermore, the voltage output from the secondary side is controlled to achieve the purpose of open circuit protection.
  • the transformer has a primary side unit and a secondary side unit, and the primary side unit includes an energy storage unit 1163, a primary winding assembly L1, and a changeover switch M1.
  • the anode of the energy storage unit 1163 is electrically connected to the same end of the primary winding assembly L1 (ie, the dot end), and the cathode of the energy storage unit 1163 is electrically connected to the ground.
  • the opposite end of the primary winding assembly L1 is electrically connected to the drain of the changeover switch M1 (taking MOS as an example).
  • the gate of the switch M1 is electrically connected to the chip control module 1165, and the source of the switch M1 is connected to the ground.
  • the secondary side unit includes a secondary winding assembly L2, a diode D2, and a capacitor C1.
  • the opposite end of the secondary winding assembly L2 is electrically connected to the anode of the diode D1, and the end of the secondary winding assembly L2 is electrically connected to one end of the capacitor C1.
  • the cathode of the diode D1 is electrically connected to the other end of the capacitor C1.
  • Both ends of the capacitor C1 constitute auxiliary power supply output terminals V1, V2 (corresponding to both ends of the auxiliary power supply module 960 in Fig. 16K or both ends of the auxiliary power supply module 1060 in Figs. 16L, 16M).
  • the sampling module 1164 includes a third winding component L3, a diode D2, a capacitor C2, and a resistor R1.
  • the opposite end of the third winding component L3 is electrically connected to the anode of the diode D2, and the same end of the third winding component L3 is electrically connected to the capacitor C2 and one end of the resistor R1.
  • the cathode of the diode D2 is electrically connected to the capacitor C2 and the other end of the resistor R1 (ie, the A terminal).
  • the capacitor C2 and the resistor R1 are electrically connected to the chip control module 1165 through the A terminal.
  • the chip control module 1165 includes a chip 1166, a diode D3, capacitors C3-C5, and resistors R2-R4.
  • the ground terminal (GT) of the chip 1166 is grounded; the output end (OUT) of the chip 1166 is electrically connected to the gate of the switch M1; the trigger end (TRIG) of the chip 1166 is electrically connected to one end of the resistor R2 (B end), and the chip 1166
  • the discharge end (DIS) is electrically connected to the other end of the resistor R2; the reset end (RST) and the control end (CV) end of the chip 1166 are electrically connected to the capacitors C3 and C4, respectively, and grounded; the discharge end (DIS) of the chip 1166 is via
  • the resistor R2 is electrically connected to the capacitor C5 and grounded.
  • the power supply end (VC end) of the chip 1166 receives the voltage Vcc and is electrically connected to one end of the resistor R3; the other end of the resistor R3 is electrically connected to the B end.
  • the anode of the diode D3 is electrically connected to the A terminal
  • the cathode of the diode D3 is electrically connected to one end of the resistor R4
  • the other end of the resistor R4 is electrically connected to the B terminal.
  • the action of the above embodiment is described; if the auxiliary power supply module 1160 is operating in a normal state, the output voltage between the output terminals V1m3V2 of the auxiliary power supply module 1160 is low, usually lower than a certain value (for example, less than 100V, the implementation) Medium, V1, V2 voltage 60V-80V). At this time, the sampling point A of the sampling module 1164 has a low voltage to ground, and a small current flows through the resistor R4 (negligible).
  • auxiliary power supply module 1160 If the auxiliary power supply module 1160 is abnormal, when the voltage between the nodes V1 and V2 of the auxiliary power supply module 1160 is high (for example, exceeds 300V), the sampling voltage of the point A in the sampling module 1164 is high, and the current flows through the resistor R4. A large current; the discharge time of the capacitor C5 becomes longer due to the flow of the larger current, but the charging time of the capacitor C5 does not change; it is equivalent to adjusting the duty ratio of the switch; and further, the cut-off time of the switch M1 is extended. For the output side of the transformer, the output energy becomes smaller and the output voltage no longer rises, thus achieving the purpose of open circuit protection.
  • the trigger end (TRIG) of the chip 1166 is electrically connected to the resistor R2 branch and electrically connected to the DIS terminal of the discharge terminal, and the DIS terminal is triggered when the voltage of the B terminal is between 1/3Vcc-2/3Vcc. If the auxiliary power supply module 1160 is operating in a normal state (ie, the output voltage does not exceed the set threshold), the voltage at the A terminal can be less than 1/3 Vcc; if the auxiliary power supply module 1160 is abnormal, the voltage at the A point can reach or exceed 1/2 Vcc. .
  • the DIS end of the chip of the chip 1166 is normally discharged (according to its predetermined logic); its waveform is as shown in FIG. 16P, wherein FIG. 16P is that the auxiliary power supply module 1160 is in a normal state. In the state, the discharge terminal DIS in the chip 1166 is charged and discharged and the timing diagram of the output terminal OUT.
  • the output terminal OUT of the chip 1166 When the discharge terminal DIS of the chip 1166 is triggered (ie, the capacitor C5 is in the discharge phase), the output terminal OUT of the chip outputs a low level signal, and when the discharge terminal DIS of the chip 1166 is not triggered (ie, the capacitor C5) In the charging phase), the output OUT of the chip 1166 outputs a high level. Thereby, the chip 1166 can control the on/off of the changeover switch M1 by the high/low level of the signal output from the output terminal OUT.
  • Fig. 16Q is a timing chart of the DIS discharge and the output end of the discharge terminal in the chip 1166 when the auxiliary power supply module 1160 is in an abnormal state. It can be seen from the timing that whether the auxiliary power supply module 1160 is in the normal state, the time required for the capacitor C5 to charge is the same; when it is abnormal, since the current flows into the discharge terminal DIS through the B terminal, this is equivalent to prolonging the discharge time of the capacitor C5. Therefore, the output energy is made smaller, and the output voltage is no longer raised, thereby achieving the purpose of open circuit protection.
  • the chip control module 1165 can select a chip with a time adjustment function (such as a 555 timing chip); thereby controlling the cutoff time of the switch M1.
  • a time adjustment function such as a 555 timing chip
  • the above solution requires only a simple resistor and capacitor to achieve a delay. No complicated control algorithms are required.
  • the voltage Vcc has a voltage ranging from 4.5V to 16V.
  • the open circuit voltage of the auxiliary power supply module 1160 is limited to a certain value (for example, below 300V, and the specific value can be determined by selecting appropriate parameters).
  • the electronic components displayed in the circuit topology are equivalent diagrams of the components, and may be connected by a plurality of rules according to certain rules in actual use.
  • FIG. 16O is a schematic diagram of a circuit structure of an auxiliary power supply module according to a second embodiment of the present invention.
  • the auxiliary power supply module 1260 includes a charging unit 1261 and an auxiliary power supply unit 1262.
  • the auxiliary power supply unit 1262 includes an energy storage unit 1263 that provides a voltage Vcc, a transformer, a sampling module 1264, and a chip control module 1265.
  • the embodiment of FIG. 16O differs from the embodiment of FIG. 16N in that the sampling module 1264 of the present embodiment is implemented using an optocoupler sensor.
  • the transformer includes a primary winding assembly L1 and a secondary winding assembly L2.
  • the configuration of the primary winding assembly L1 and the changeover switch M1 is the same as that of the foregoing embodiment.
  • the same-name end of the secondary winding assembly L2 is electrically connected to the anode of the diode D1, and the opposite end of the secondary winding assembly L2 is electrically connected to one end of the capacitor C1.
  • the cathode of the diode D1 is electrically connected to the other end of the capacitor C1.
  • the two ends of the capacitor C1 are the auxiliary power output terminals V1 and V2.
  • the sampling module 1264 includes a photocoupler PD.
  • the anode side of the photodiode in the photocoupler PD is electrically connected to the cathode of the diode D1 and one end of the capacitor C1.
  • the cathode side of the photodiode is electrically connected to one side of the resistor R4, and the resistor R4.
  • the other side of the crimping component Rcv is electrically connected to the other end of the capacitor C1.
  • the collector and the emitter of the triode in the photocoupler PD are electrically connected to both ends of the resistor R3.
  • the chip control module 1265 includes a chip 1266, capacitors C3-C5, and resistors R2 and R3.
  • the power supply end (VC end) of the chip 1266 is electrically connected to the voltage Vcc and the collector of the triode in the photocoupler PD; the discharge end (DIS end) of the chip 1266 is electrically connected to one end of the resistor R2, and the other end of the resistor R2 is electrically connected.
  • the sampling end (THRS end) of the chip 1266 is electrically connected to the emitter of the triode in the photocoupler PD and electrically connected to the capacitor C5; the ground end of the chip 1266 (the GT end) Electrical grounding; the reset end (RST) of the chip 1266 is electrically grounded via the capacitor C3; the constant voltage terminal (CV end) of the chip 1266 is electrically grounded via the capacitor C4; the trigger end (TRIG) of the chip 1266 is electrically connected to the sampling end. (THRS terminal); the output terminal (OUT) of the chip 1266 is electrically connected to the gate of the switch M1.
  • the output voltage of the auxiliary power output terminal (V1, V2) is lower than the clamp voltage of the clamp component Rcv, and the current I1 flowing through the resistor R4 is small and can be ignored.
  • the current I2 flowing through the collector and emitter of the triode in the photocoupler PD is small.
  • the clamp component Rcv is turned on, so that the current flowing through the current limiting resistor R4 increases by I1, so that the photocoupler
  • the PD diode emits light, and the collector of the triode in the photocoupler PD increases in proportion to the current I2 of the emitter.
  • the current I2 compensates the discharge current of the capacitor C5 through the resistor R2, so that the discharge time of the capacitor C5 is lengthened, so that the corresponding The switch-off time of the switch is lengthened (ie, the switching duty ratio becomes smaller), the output energy becomes smaller, the output energy of the secondary side becomes correspondingly smaller, and the output voltage is no longer increased, thereby achieving open circuit protection.
  • the clamping component Rcv is a varistor, a TVS (Transient Voltage Suppressor diode, also known as a transient suppression diode), and a Zener diode.
  • the trigger threshold of the clamping component Rcv is selected from 100V-400V, preferably 150V-350V. In this embodiment, 300V is selected.
  • the resistor R4 mainly has a current limiting function, and the resistance value is selected from 20K ohm to 1M ohm, preferably 20K ohm to 500KM ohm, and in this embodiment, 50K ohm is selected.
  • the resistor R3 mainly has a current limiting function, and the resistance value is selected from 1K ohm to 100K ohm, preferably 5K ohm to 50KM ohm, and 6K ohm is selected in this embodiment.
  • the capacitance C5 has a capacitance of 1 nF to 1000 nF, preferably 1 nF to 100 nF, and 2.2 nF is selected in this embodiment.
  • the capacitance C4 has a capacitance of 1 nF-1 pF, preferably 5 nF-50 nF, and 10 nF is selected in this embodiment.
  • the capacitance C1 has a capacitance of 1uF-100uF, preferably 1uF-10uF, and 4.7uF is selected in this embodiment.
  • the energy storage unit 1263 included in the auxiliary power supply module 1160/1260 may be a battery or a super capacitor.
  • the DC power supply of the auxiliary power supply module 1160/1260 can be managed by the BMS (Battery Management System) and charged in the normal illumination mode. Or directly omitting the BMS and charging the DC power supply in the normal lighting mode. By selecting the appropriate component parameters, it is charged at a lower current (current not exceeding 300 mA).
  • the auxiliary power supply module 1160/1260 of the embodiment of FIG. 16N or 16O has a simple circuit topology and does not require a dedicated integrated chip. Open circuit protection with fewer components. Improve the reliability of the ballast. In addition, the emergency ballast of the scheme has a circuit topology of output isolation. Reduce the hidden danger of leakage current.
  • the principle of the above FIG. 16N and FIG. 16O schemes is to use the detection module to sample the voltage (current) information of the output terminal, and if the detected information exceeds the set threshold, extend the discharge time of the discharge end of the control chip to extend the time.
  • the off time of the switch to adjust the duty cycle of the switch (for the control chip, the discharge voltage (DIS) and / or the sampling end (THRS) operating voltage is between 1/3Vcc-2/3Vcc, working capacitor C5
  • the charging time has not changed, and the discharge time becomes longer.
  • the output energy becomes smaller, and the output voltage does not rise, thereby achieving the purpose of open circuit protection.
  • FIG. 16P and FIG. 16Q illustrate a timing diagram of the output terminal OUT and the discharge terminal DIS being triggered when the output terminal OUT of the chip is initially outputted at a high level.
  • 16P is a signal timing diagram of the auxiliary power supply module in a normal state according to an embodiment of the present invention
  • FIG. 16Q is a signal timing diagram when the auxiliary power supply module is in an abnormal state according to an embodiment of the present invention (eg, load open circuit) ).
  • the output terminal OUT of the chip 1266 initially outputs a high level, at which time the discharge terminal DIS is not triggered (ie, the capacitor C5 is charged); when the discharge terminal DIS is triggered (ie, the capacitor C5 is discharged), the output terminal OUT starts to output a low level.
  • the chip 1266 controls the on/off of the changeover switch M1 by the signal of the output terminal OUT.
  • the power module 5 of the LED straight tube lamp 900 of the present embodiment includes a rectifying circuit (such as 510) and a filter circuit (in comparison with the LED straight tube lamp 500, 600, 700 or 800 described in the previous embodiment).
  • the electric shock detecting module 2000 is further added, wherein the electric shock detecting module 2000 includes a detecting control circuit 2100 (or a detecting controller) and a current limiting circuit 2200.
  • the detection control circuit 2100 is a circuit configuration for performing installation state detection/impedance detection of the LED straight tube lamp 900, thereby generating a corresponding control signal according to the detection result, wherein the detection result indicates the LED straight tube Whether the lamp 900 is properly mounted to the socket, or can be said to indicate whether there is an abnormal external impedance access (such as body impedance).
  • the current limiting circuit 2200 is configured to determine whether to limit the current flow on the LED straight tube lamp 900 in response to the detection result indicated by the control signal, wherein the current limiting circuit 2200 receives the indication LED straight tube lamp 900 for correct installation/none
  • the current limiting circuit 2200 causes the power module 5 to normally supply power to the LED module 50 (ie, the current of the power circuit that controls the LED straight tube 900 is normally circulated), and in the current limiting circuit 2200
  • the current limiting circuit 2200 will flow the upper limit of the LED straight tube lamp to be less than the electric shock safety value, for example, the electric shock safety value. It is 5MIU (effective value) or 7.07MIU (peak).
  • the power circuit refers to a path in which the power module 5 transmits current to the LED module 50.
  • the mounting state detection/impedance detection is, for example, a circuit operation of the detection control circuit 2100 to obtain the installation state information/equivalent impedance information of the LED straight tube lamp 900 by detecting the electrical characteristics (eg, voltage, current) of the LED straight tube lamp 900.
  • the detection control circuit 2100 can also perform electrical characteristic detection by controlling current continuity of the power supply loop or establishing an additional detection path, thereby avoiding the risk of electric shock during detection. A specific circuit embodiment in which the detection control circuit performs electrical characteristic detection will be described below with reference to FIGS. 18 to 41F.
  • FIG. 17B is a circuit block diagram of an LED straight tube lamp illumination system according to a tenth embodiment of the present invention.
  • the electric shock detecting module 2000 of the present embodiment is disposed outside the LED straight tube lamp 1000 and is located on the power supply path of the external power grid 508, for example, disposed in the socket.
  • the electric shock detecting module 2000 is connected to the power circuit of the LED straight tube lamp 1000 via the corresponding pin, so that the electric shock detecting module 2000 can be The mounting detection/impedance detection method described in the above embodiment of FIG.
  • the configuration of the electric shock detecting module 2000 is the same as that of the foregoing embodiment of FIG. 17A, and details are not described herein again.
  • the architecture of the embodiment of Figures 17A and 17B can be integrated.
  • a plurality of electric shock detecting modules 2000 may be disposed in the LED straight tube lamp illumination system, wherein at least one of the electric shock detecting modules 2000 is disposed inside the LED straight tube lamp, and at least another mounting detecting module is disposed on the LED straight tube lamp.
  • the power supply circuit of the LED straight tube lamp is electrically connected through the pin on the lamp cap, thereby further improving the effect of the electric shock protection.
  • the electric shock detecting module 2000 is a circuit configuration applied in a power module of an LED straight tube lamp, which can be implemented by using a discrete circuit or an integrated circuit, and the disclosure is not limited thereto.
  • the name of the electric shock detection module 2000 is only for the purpose of recognizing its main function, but is not intended to limit its scope. In other words, as long as it is any circuit configuration, it can perform the circuit operation claimed in the disclosure, or has the electronic component configuration and connection relationship claimed in the disclosure, that is, the scope claimed by the electric shock detection module 2000 of the present disclosure. .
  • the electric shock detection module 2000 may be named as a detection circuit, an installation detection module/circuit, an anti-shock module/circuit, an anti-shock detection module/circuit, an impedance detection module/circuit, or a direct expression according to the description manner.
  • the disclosure is not limited thereto.
  • FIGS. 17A and 17B only the connection relationship between the LED straight tube lamp 900/1000 and the external power grid 508 is illustrated in a schematic manner, and the external driving signal is not limited to the single-ended input LED straight tube lamp 900/ 1000, combined with the first description.
  • FIG. 17A A plurality of different circuit configurations under the embodiment of FIG. 17A (ie, the electric shock detecting module 2000 is disposed inside the LED straight tube lamp 1100) will be described below.
  • FIG. 18 is a circuit block diagram of a power module according to a tenth embodiment of the present invention.
  • the LED straight tube lamp 1100 is, for example, directly receiving an external driving signal provided by the external power grid 508, wherein the external driving signal is supplied to the LED straight tube lamp through the live line (L) and the neutral line (N). Both ends of the 1100 are connected to the legs 501, 502.
  • the LED straight tube lamp 1100 can further include pins 503, 504. Under the structure that the LED straight tube lamp 1100 includes four pins 501-504, the two pins on the same side lamp head (such as 501 and 503, or 502 and 504) can be electrically connected or mutually connected according to design requirements.
  • the electric shock detection module 3000 is disposed in the lamp tube and includes a detection control circuit 3100 and a current limiting circuit 3200.
  • the electric shock detection module 3000 may also be referred to as an installation detection module 3000 (described below by installing a detection module 3000).
  • the current limiting circuit 3200 is coupled to the rectifier circuit 510 via the first mounting detection terminal TE1, and coupled to the filter circuit 520 via the second mounting detection terminal TE2, that is, connected in series to the power supply loop of the LED straight tube lamp 1100.
  • the detection control circuit 3100 detects a signal flowing through the first mounting detection terminal TE1 and the second mounting detection terminal TE2 (ie, a signal flowing through the power supply loop) in the detection mode, and determines whether to prohibit the external driving signal according to the detection result (ie, The signal provided by the external power grid 508 flows through the LED straight tube lamp 1100.
  • the detection control circuit 3100 detects a small current signal and judges that the signal flows excessively high impedance.
  • the current limiting circuit 3200 will install the first mounting detection terminal TE1 and The current path cutoff between the second mounting detection terminals TE2 causes the LED straight tube lamp 1100 to stop operating (ie, the LED straight tube lamp 1100 is not illuminated). If not, the detection control circuit 3100 determines that the LED straight tube lamp is correctly mounted on the socket, and the current limiting circuit 3200 maintains the conduction between the first mounting detecting end TE1 and the second mounting detecting end TE2 to enable the LED straight tube lamp 1100 to operate normally. (ie, the LED straight tube lamp 1100 can be illuminated normally).
  • the mounting detecting module 3000 determines the LED straight tube lamp 1100. Properly mounted on the lamp holder to turn on the current limiting circuit 3200 to operate the LED straight tube lamp 1100 in a conducting state; when flowing through the first mounting detecting end TE1 and the second mounting detecting end TE2 When the current is lower than the installation set current (or current value), the installation detecting module 3000 determines that the LED straight tube lamp 1100 is not properly mounted on the socket, and the current limiting circuit 3200 is turned off, so that the LED straight tube lamp 1100 enters a no
  • the conduction state or the current rms value on the power supply loop of the LED straight tube lamp 1100 is limited to less than 5 mA (5 MIU based on the verification standard).
  • the mounting detection module 3000 determines whether to turn on or off based on the detected impedance, causing the LED straight tube lamp 1100 to operate in conduction or into a non-conducting/restricting current state.
  • the installation detecting module 3000 can determine whether the user touches the lamp by detecting the voltage/current change on the power circuit.
  • the above anti-shock function can be realized.
  • the installation detecting module 3000 can detect whether the lamp is correctly installed and whether the user accidentally touches the lamp if the lamp is not properly installed by detecting an electrical signal (including voltage or current).
  • the conductive part of the tube compared with the general LED power module, in some embodiments, the power module configured with the detection module 3000 itself has the effect of preventing electric shock, so it is not necessary to be in the rectifier circuit as in the general power circuit design.
  • a safety capacitor (ie, an X capacitor) is placed at the input of 510 (ie, between the live and neutral lines).
  • the equivalent capacitance value between the input terminals of the rectifier circuit 510 can be, for example, less than 47 nF.
  • the power supply circuit refers to a current path in the LED straight tube lamp 1100, that is, a pin that receives the first polarity/phase power source (eg, the L line) passes through the power line and the circuit component to reach the LED module. And then via the LED module to receive a path formed by the pins of the second polarity/phase power source (eg, N line).
  • the power supply circuit is formed between the pins 501 and 502 on the lamp caps on opposite sides of the lamp tube, instead of the two pins 501 and 503 on the same side lamp head ( Or between 502 and 504).
  • the current limiting circuit 3200 is disposed between the rectifier circuit 510 and the filter circuit 520, which is only an embodiment of the present invention. In other embodiments, the current limiting circuit 3200 only needs to be disposed at a position where the power circuit can be controlled to be turned on and off to achieve the anti-shock effect of the mounting detection module 3000.
  • the current limiting circuit 3200 can be disposed between the filter circuit 520 and the driving circuit 530, or between the driving circuit 530 and the LED module (50), and the present invention is not limited thereto.
  • the detection control circuit 3100 determines in the detection mode whether the LED straight tube lamp 1100 is correctly mounted to the socket or has an abnormal impedance access step as shown in FIG. 42A, and FIG. 42A is the utility.
  • the detection path may be a power supply loop or an independent current path connected to the output side of the rectifier circuit 510.
  • the detection control circuit 3100 turns on the period length, interval, trigger time, and the like of the detection path, and can also refer to the description of the following embodiments.
  • step S101 turning on the detection path for a period of time can be realized by a pulsed switching control means.
  • the sampled electrical signal may be a voltage signal, a current signal, a frequency signal, or a phase signal, etc., which may represent a change in impedance of the detection path.
  • the action of determining whether the sampled electrical signal conforms to the preset signal characteristic may be, for example, comparing the relative relationship between the sampled electrical signal and a predetermined signal.
  • the detecting controller 7100 determines that the electrical signal conforms to the preset signal characteristic may be a state corresponding to determining that the LED straight tube lamp is correctly installed/no abnormal impedance access, and the detecting controller 7100 determines that the electrical signal does not comply with the pre-
  • the signal characteristic may be a state corresponding to the determination that the LED straight tube lamp is incorrectly installed/having abnormal impedance access.
  • the first configuration and the second configuration are two different circuit configurations, and the configuration position and type of the visual current limiting circuit 3200 are determined.
  • the first configuration may be a conduction configuration (not limited to a flow group) State)
  • the second configuration can be a cutoff configuration (current limiting configuration).
  • FIG. 19A is a circuit block diagram of a mounting detection module according to a first embodiment of the present invention.
  • the mounting detection module 3000a includes a pulse generation module 3110, a detection result latch circuit 3120, a detection determination circuit 3130, and a current limiting circuit 3200.
  • the detection pulse generation module 3110, the detection result latch circuit 3120, and the detection determination circuit 3130 constitute a detection control circuit 3100.
  • the detection determining circuit 3130 (via the switch coupling end 3201 and the current limiting circuit 3200) is coupled to the first mounting detecting end TE1 and the second mounting detecting end TE2 to detect the first mounting detecting end TE1 and the second mounting detecting end TE2. The signal between.
  • the detection determination circuit 3130 is coupled to the detection result latch circuit 3120 via the detection result terminal 3131 to transmit the detection result signal to the detection result latch circuit 3120 via the detection result terminal 3131.
  • the detection pulse generation module 3110 is coupled to the detection result latch circuit 3120 via the pulse signal output terminal 3111, and generates a pulse signal to notify the detection result latch circuit 3120 of the timing point at which the detection result is latched.
  • the detection result latch circuit 3120 latches the detection result according to the detection result signal (or the detection result signal and the pulse signal), and the detection result latch terminal 3121 is coupled to the current limiting circuit 3200 to transmit or reflect the detection result to the current limiting circuit 3200. .
  • the current limiting circuit 3200 determines to turn on or off between the first mounting detecting end TE1 and the second mounting detecting end TE2 according to the detection result.
  • the current limiting circuit 3200 may also be a switching circuit 3200 (described below by the switching circuit 3200).
  • the installation detection module 3000a further includes an emergency control module 3140.
  • the emergency control module 3140 is configured to determine whether the external driving signal is a DC signal provided by the auxiliary power supply module, so that the detection result latch circuit 3120 can adjust the control mode of the switch circuit 3200 according to the determination result, thereby directly controlling the LED
  • the installation detection module may be prevented from malfunctioning due to the input of the auxiliary power supply.
  • the emergency control module 3140 is connected to the detection result latch circuit 3120 through the path 3141, wherein the emergency control module 3140 detects the power module, and determines whether the external driving signal currently received by the LED straight tube lamp is DC. signal. If the emergency control module 3140 determines that the external driving signal is a DC signal, the emergency control module 3140 outputs a first status signal indicating the emergency status to the detection result latch circuit 3120; otherwise, if the emergency control module 3140 determines that the external driving signal is non-DC The signal, the emergency control module 3140 outputs a second status signal indicating a non-emergency state to the detection result latch circuit 3120.
  • the detection result latch circuit 3120 When the detection result latch circuit 3120 receives the first status signal, regardless of the output of the detection pulse generation module 3110 and the detection determination circuit 3130, the detection result latch circuit 3120 maintains the current limiting circuit 3200 in an on state ( This status can be considered as emergency mode).
  • the detection result latch circuit 3120 receives the second status signal, the detection result latch circuit 3120 operates in accordance with the original mechanism, that is, the on/off of the current limiting circuit 3200 is controlled based on the pulse signal and the detection result signal.
  • FIG. 42B is a flow chart showing the steps of the control method of the installation detecting module according to the first embodiment of the present invention.
  • the emergency control module 3140 first detects the bus voltage (step S201), and determines whether the bus voltage continues to be high during the first period.
  • the first level may be, for example, 75 ms, and the first level may be any level between 100V-140V, such as 110V or 120V.
  • the emergency control module 3140 determines if the bus voltage is continuously above 110V or 120V for more than 75ms.
  • step S202 If the emergency control module 3140 determines YES in step S202, it represents that the currently received external drive signal is a DC signal. At this time, the installation detecting module 3000a enters the emergency mode, and causes the detection result latch circuit 3120 to control the switching circuit 3200 to operate in the first configuration (step S203), wherein the first configuration may be, for example, a conduction configuration. Conversely, if the emergency control module 3140 determines "NO" in step S202, it represents that the currently received external drive signal is an alternating current signal. At this time, the mounting detection module 3000a enters the detection mode, and causes the detection result latch circuit 3120 to output the pulse signal to the switch circuit 3200 to determine the installation state of the LED straight tube lamp. For the specific operation of the installation detection module 3000a in the detection mode, reference may be made to the description of the related embodiments.
  • the emergency control module 3140 in addition to maintaining the switch circuit 3200 outside of the first configuration, further determines whether the bus voltage has risen above the second level (step S204). If the emergency control module 3140 determines that the bus voltage has not risen above the second level, it represents that it is still in the emergency mode, thus causing the switch circuit 3200 to continue to maintain the first configuration. If the emergency control module 3140 determines that the bus voltage rises from the first level to be greater than the second level, the external driving signal currently received by the power module has been switched from the DC signal to the AC signal, that is, the external power grid has resumed power supply. The emergency control module 3140 causes the installation detection module 3000a to enter the detection mode.
  • the second level can be any level greater than the first level but less than 277V, such as when the first level is 110V and the second level is 120V.
  • the emergency control module 3140 determines whether the bus voltage has a rising edge greater than 120V, and when the determination is yes, enters the detection mode.
  • the detection pulse generation module 3110, the detection determination circuit 3130, the detection result latch circuit 3120, and the switch circuit 3200 in the installation detection module 3000a can be implemented by the circuit architectures of FIGS. 19B to 19E, respectively (but not only FIG. 19B to FIG. 19E are schematic diagrams showing the circuit architecture of the mounting detection module of the first embodiment of the present invention. The modules/units are described below.
  • FIG. 19B is a circuit schematic diagram of a detection pulse generation module of the installation detection module according to the first embodiment of the present invention.
  • the detection pulse generation module 3110 includes a capacitor C11 (or a first capacitor), a C12 (or a second capacitor), and a C13 (or a third capacitor), a resistor R11 (or a first resistor), and a R12 (or a first Two resistors) and R13 (or third resistor), buffer BF1 (or first buffer) and BF2 (or second buffer), inverter INV, diode D11 (or It is the first diode) and the OR gate OG1 (or the first gate).
  • capacitor C11 and resistor R11 are connected in series between a drive voltage (eg, referred to as VCC, and often referred to as a high level) and a reference potential (here, the potential at ground is an embodiment thereof). Its connection point is coupled to the input end of the buffer BF1.
  • the resistor R12 is coupled to a driving voltage (which may be referred to as VCC) and an input terminal of the inverter INV.
  • the resistor R13 is coupled between the input terminal of the buffer BF2 and a reference potential (here, the potential of the ground is its embodiment).
  • the positive terminal of the diode is grounded, and the negative terminal is also coupled to the input of the buffer BF2.
  • One end of the capacitor C12 and one end of the C13 are coupled to the output end of the buffer BF1, the other end of the capacitor C12 is connected to the input end of the inverter INV, and the other end of the capacitor C13 is coupled to the input end of the buffer BF2.
  • the output of the inverter INV and the output of the buffer BF2 are coupled to the input of the OR gate OG1.
  • FIG. 4A is a signal timing diagram of the power module of the first embodiment of the present invention.
  • the LED straight tube lamp is energized.
  • the installation detection module enters the detection mode DTM.
  • the connection point of the capacitor C11 and the resistor R11 is initially high (equal to the driving voltage VCC), gradually decreases with time, and finally falls to zero.
  • the input end of the buffer BF1 is coupled to the connection point of the capacitor C11 and the resistor R11, so the high-level signal is output at the beginning, and when the connection point of the capacitor C11 and the resistor R11 is lowered to the low logic judgment level, it is converted into Low level signal. That is, the buffer BF1 generates an input pulse signal, and then continues to maintain the low level (stops outputting the input pulse signal).
  • the pulse width of the input pulse signal is equal to an (initial setting) time period, and the time period is determined by the capacitance of the capacitor C11 and the resistance of the resistor R11.
  • the connection end of the capacitor C12 and the resistor R12 is also at a high level. Further, one end of the resistor R13 is grounded, and one end of the capacitor C13 receives a pulse signal of the buffer BF1. Therefore, the connection between the capacitor C13 and the resistor R13 is at a high level at the beginning, and then gradually decreases to zero with time (while the capacitor stores a voltage equal to or close to the driving voltage VCC).
  • the inverter INV outputs a low level signal
  • the buffer BF2 outputs a high level signal
  • the OR gate OG1 outputs a high level signal (first pulse signal DP1) at the pulse signal output terminal 3111.
  • the detection result latch circuit 3120 latches the detection result for the first time based on the detection result signal and the pulse signal.
  • the buffer BF2 is turned to the output low level signal
  • the OR gate OG1 is output to the low signal level at the pulse signal output terminal 3111 (stop output) First pulse signal DP1).
  • the pulse width of the pulse signal output by the OR gate OG1 is determined by the capacitance of the capacitor C13 and the resistance of the resistor R13.
  • the buffer BF2 still maintains the output low level signal.
  • the level of one end of the capacitor C12 is instantaneously reduced by zero by the driving voltage VCC, so that the connection end of the capacitor C12 and the resistor R12 is at a low level.
  • the output signal of the inverter INV is turned to a high level, and the OR gate is output to a high level (second pulse signal DP2).
  • the detection result latch circuit 3120 latches the detection result for the second time based on the detection result signal and the pulse signal.
  • the resistor R12 charges the capacitor C12 such that the level of the connection end of the capacitor C12 and the resistor R12 gradually rises with time to be equal to the driving voltage VCC.
  • the inverter INV When the level of the connection terminal of the capacitor C12 and the resistor R12 rises to the high logic judgment level, the inverter INV outputs the low level again, and causes the OR gate OG1 to stop outputting the second pulse signal DP2.
  • the pulse width of the second pulse signal is determined by the capacitance of the capacitor C12 and the resistance of the resistor R12.
  • the detection pulse generation module 3110 generates two high-level pulse signals in the detection mode - the first pulse signal DP1 and the second pulse signal DP2, which are output from the pulse signal output terminal 3111, and the first pulse signal and the first The two pulse signals are separated by a set time interval TIV.
  • the set time interval TIV is mainly caused by the capacitance of the capacitor C11 and the resistance R11. The resistance is determined.
  • the adjustment of the set time interval TIV can be accomplished by setting the frequency/cycle of the digital circuit or other tunable parameters.
  • FIG. 19C is a circuit schematic diagram of a detection determination circuit of the installation detection module according to the first embodiment of the present invention.
  • the detection determination circuit 3130 includes a comparator CP11 (or a first comparator) and a resistor R14 (or a fourth resistor).
  • the inverting terminal of the comparator CP11 receives the reference level signal Vref, and the non-inverting terminal is grounded via the resistor R14 and simultaneously coupled to the switch coupling end 3201.
  • the signal flowing into the current limiting circuit 3200 by the first mounting detecting terminal TE1 is outputted through the switch coupling terminal 3201 and flows through the resistor R14.
  • the level on the resistor R14 is higher than the level of the reference level signal Vref (corresponding to The two lamp caps are correctly inserted into the lamp holder, and the comparator CP11 generates a high-level detection result signal and is outputted by the detection result terminal 3131.
  • the comparator CP11 outputs a high-level detection result signal Sdr at the detection result terminal 3131.
  • the comparator CP11 When the current flowing through the resistor R14 is insufficient to make the level on the resistor R14 higher than the level of the reference level signal Vref (corresponding to only one of the lamps being properly inserted into the socket), the comparator CP11 generates a low level.
  • the detection result signal Sdr of the bit is outputted by the detection result terminal 3131. For example, when the LED straight tube lamp is not properly mounted on the lamp holder, or one end is mounted on the lamp holder and the other end is grounded through the human body, the current will be too small, so that the comparator CP11 outputs a low level detection result at the detection result end 3131. Signal Sdr.
  • FIG. 19D is a circuit schematic diagram of a detection result latch circuit of the mounting detection module according to the first embodiment of the present invention.
  • the detection result latch circuit 32120 includes a D flip-flop DFF (or a first D-type flip-flop), a resistor R15 (or a fifth resistor), and an OR gate OG2 (or a second gate). ).
  • the clock input terminal (CLK) of the D-type flip-flop DFF is coupled to the detection result terminal 3131, and the input terminal D is coupled to the driving voltage VCC.
  • the D-type flip-flop DFF When the detection result terminal 3131 outputs the low-level detection result signal Sdr, the D-type flip-flop DFF outputs a low-level signal at the output terminal Q; when the detection result terminal 3131 outputs the high-level detection result signal, the D-type flip-flop The DFF outputs a high level signal at the output terminal Q.
  • the resistor R15 is coupled between the output terminal Q of the D-type flip-flop DFF and a reference potential (eg, ground potential).
  • the detection result latch terminal 3121 outputs The detection result of the high level latches the signal. Since the detection pulse generation module 3110 outputs the first pulse signal DP1 or the second pulse signal DP2 only in the detection mode DTS, the master OR gate OG2 outputs the high-level detection result latch signal, and the rest of the time (including the operation after the detection mode DTM) Mode DRM) is dominated by the D-type flip-flop DFF, and the detection result latch signal is at a high level or a low level.
  • the D-type flip-flop DFF maintains the low-level signal at the output terminal Q, and the detection result latch terminal 3121 remains low in the operation mode DRM.
  • the detection result of the level is the latched signal.
  • the detection result terminal 3131 has a detection result signal Sdr of a high level
  • the D-type flip-flop DFF is latched and the high-level signal is maintained at the output terminal Q.
  • the detection result latch terminal 3121 enters the operation mode DRM, the detection result latch signal of the high level is also maintained.
  • FIG. 19E is a circuit schematic diagram of a switch circuit for mounting a detection module according to a first embodiment of the present invention.
  • the switching circuit 3200a may include a transistor, such as a bipolar junction transistor M11 (or first transistor) as a power transistor. Power transistors can handle high currents and power, and are especially used in switching circuits.
  • the collector of the bipolar junction transistor M11 is coupled to the first mounting detection terminal TE1, the base is coupled to the detection result latch terminal 3121, and the emitter switch is coupled to the terminal 3201.
  • the bipolar junction transistor M11 When the detection pulse generation module 3110 generates the first pulse signal DP1 or the second pulse signal DP2, the bipolar junction transistor M11 will be turned on briefly, and the detection determination circuit 3130 performs detection to determine that the detection result latch signal is high. Bit or low level.
  • the detection result latch circuit 3120 When the detection result latch circuit 3120 outputs the detection result latch signal of the high level at the detection result latch terminal 3121, it indicates that the LED straight tube lamp has been correctly mounted on the lamp holder, so the bipolar junction transistor M11 will be guided.
  • the first mounting detecting end TE1 and the second mounting detecting end TE2 are turned on (ie, the power supply circuit is turned on).
  • the driving circuit (not shown) in the power module is started based on the voltage on the power circuit and starts to operate, thereby generating the lighting control signal Slc to switch the power switch (not shown), so that the driving current can be generated. And light the LED module.
  • the detection result latch circuit 3120 outputs the detection result latch signal of the low level at the detection result latch terminal 3121, the bipolar junction transistor M11 is turned off to make the first mounting detection terminal TE1 and the second mounting. The detection terminal TE2 is cut off.
  • the drive circuit in the power supply module is not activated, so the lighting control signal Slc is not generated.
  • the detection pulse generation module 3110 generates the first pulse signal DP1 and the second pulse signal DP2 to cause the detection determination circuit 3130 to detect twice, so as to avoid the problem that the level of the external drive signal is just near the zero point in the single detection.
  • the time difference of generation of the first pulse signal DP1 and the second pulse signal DP2 is not an integer multiple of a half of the period T of the external drive signal Sed, that is, an integer that is not a phase difference of 180 degrees corresponding to the external drive signal Sed. multiple.
  • the time difference of generation of the first pulse signal and the second pulse signal that is, the set time interval TIV, can be expressed by the following formula:
  • TIV (X+Y)(T/2);
  • T is the period of the external drive signal
  • X is an integer greater than or equal to zero, 0 ⁇ Y ⁇ 1.
  • Y preferably ranges from 0.05 to 0.95, more preferably from 0.15 to 0.85.
  • the architecture for generating two pulse signals for mounting detection is only one embodiment of the detection pulse generation module.
  • the detection pulse generation module can be configured to generate one or more pulse signals for installation detection, and the present invention is not limited thereto.
  • the level of the driving voltage VCC is too low, which may cause the circuit logic judgment error of the installation detection module to start to rise.
  • the generation of the first pulse signal DP1 can be set when the driving voltage VCC reaches or exceeds a predetermined level, and the detection determining circuit 3130 is performed after the driving voltage VCC reaches a sufficient level to avoid the shortage of the level.
  • the circuit logic of the installation detection module is judged to be wrong.
  • the detection determination circuit when the lamp cap of one end of the LED straight tube lamp is inserted into the lamp holder and the other end of the lamp head is floating or electrically contacted with the human body, the detection determination circuit outputs a low level detection result signal Sdr due to the large impedance.
  • the detection result latch circuit latches the low-level detection result signal Sdr into the low-level detection result latch signal based on the pulse signal DP1/DP2 of the detection pulse generation block, and maintains the detection result in the operation mode DRM. In this way, the switching circuit can be kept off and the continuous energization can be avoided. This also avoids the possibility of human body electric shock, so as to meet the requirements of safety regulations.
  • the detection determination circuit When the lamp caps of the LED straight tube lamps are correctly inserted into the lamp holders (time point td), the detection determination circuit outputs a high-level detection result signal Sdr due to the small impedance of the circuit of the LED straight tube lamps.
  • the detection result latch circuit latches the detection result signal Sdr of the high level into the detection result latch signal of the high level based on the pulse signal DP1/DP2 of the detection pulse generation block, and maintains the detection result even in the operation mode DRM. In this way, the switching circuit can be kept turned on and continuously energized, so that the LED straight tube lamp operates normally in the working mode DRM.
  • the detection determination circuit input is low. And detecting the detection result signal Sdr of the level to the detection result latch circuit, and then the detection pulse generation module outputs a low level signal to the detection result latch circuit, so that the detection result latch circuit output is low.
  • a detection result of the level is latched to turn off the switching circuit, wherein the turning off of the switching circuit turns off between the first mounting detecting end and the second mounting detecting end, even if the LED straight tube lamp Enter a non-conducting state.
  • the detection determining circuit when the two lamp caps of the LED straight tube lamp are correctly inserted into the lamp socket, the detection determining circuit inputs the detection result signal of the high level to the detection result latch circuit. And causing the detection result latch circuit to output a high-level detection result latch signal to turn on the switch circuit, wherein the switch circuit is turned on to enable the first installation detection end and the second installation detection The terminals are turned on even if the LED straight tube lamp is operated in a conducting state.
  • the installation detection module first performs a pulse generation operation to detect the installation state of the LED straight tube lamp, and turns on the power supply circuit to give a driving current sufficient to illuminate the LED module after confirming that the LED straight tube lamp has been properly installed, thus The LED straight tube lamp will not be illuminated at least until the first pulse is generated (ie, the power supply loop will not be turned on, or the current on the power supply loop will be limited to less than 5 mA/MIU).
  • the time required for the LED straight tube lamp to be energized until the first pulse is generated is substantially greater than or equal to 100 milliseconds (ms). In other words, the LED straight tube lamp of the present embodiment will not be illuminated for at least 100 ms after the power is applied.
  • the mounting detection module continuously pulses to detect the installation state before the LED straight tube lamp is properly installed, if the LED straight tube lamp is not lit after a pulse is generated (ie, not If the LED is correctly installed, the LED straight tube will be lit at least for the aforementioned set time interval TIV (ie, after the next pulse is generated).
  • the LED straight tube lamp of the present embodiment is not lit for 100 ms after the installation is energized, it will not be illuminated during the period of 100 ms + TIV.
  • the "LED straight tube lamp energization" as used herein means that an external power source (such as a commercial power source) is applied to the straight tube lamp, and the power supply loop of the LED straight tube lamp is electrically connected to the ground level ( Ground level), which in turn creates a voltage difference across the power supply loop.
  • the correct installation of the LED straight tube lamp means that the external power source is applied to the LED straight tube lamp, and the LED straight tube lamp is electrically connected to the ground level through the ground line of the lamp; and the LED straight tube lamp is incorrect.
  • the pulse width of the pulse signal DP1/DP2 generated by the detection pulse generation module is between 1 us and 1 ms, and its function is only to make the switch circuit conduct for a short time when the LED straight tube lamp is energized. .
  • This can generate a pulse current and flow through the detection and determination circuit for detection and judgment. It is caused by a short-time pulse and is turned on for a long time without causing an electric shock hazard.
  • the detection result latch circuit maintains the detection result in the operation mode DRM, and does not change the previously latched detection result due to the circuit state change, thereby avoiding the problem caused by the detection result being changed.
  • the installation detection module ie, the switching circuit, the detection pulse generation module, the detection result latch circuit, and the detection determination circuit
  • the pulse width of the pulse signal DP1/DP2 may further be between 10 us and 1 ms; in another embodiment, the pulse width of the pulse signal DP1/DP2 may further be between 15 us and 30 us.
  • the pulse width of the pulse signal DP1/DP2 may further be between 200us and 400us; in another embodiment, the pulse signal DP1/DP2 may have a pulse width of 20us, 35us. Or within 15% of 45us; in another embodiment, the pulse width of the pulse signal DP1/DP2 may be within plus or minus 15% of 300us.
  • the pulse/pulse signal refers to a signal change of a violent voltage or current that occurs briefly during a continuous signal time, that is, the signal mutates in a short time, and then quickly returns to it. Initial value. Therefore, the pulse signal may be a voltage or current signal that is converted from a low level to a high level and then returned to a low level, or a voltage or current signal that is converted from a high level to a low level. Utility models are not limited to this.
  • the period corresponding to the "transiently occurring signal change" described herein refers to a period of time insufficient to cause the overall LED straight tube lamp to change its operational state and not cause an electric shock hazard to the human body.
  • the switching circuit 3200/3200a when the switching circuit 3200/3200a is turned on by the pulse signal DP1/DP2, the conduction period of the switching circuit 3200/3200a is short enough that the LED module is not illuminated, and the effective current on the power supply circuit is not Will be greater than the current limit setting (5MIU).
  • “aggressive signal change” means that the signal change is sufficient for the electronic component receiving the pulse signal to react to the pulse signal to cause a change in operational state.
  • the switching circuit 3200/3200a receives the pulse signal DP1/DP2
  • the current limiting circuit 3200/3200a turns on or off in response to the level switching of the pulse signal DP1/DP2.
  • the detection pulse generation module 3110 is described by taking two pulse signals DP1 and DP2 as an example, the detection pulse generation module 3110 of the present invention is not limited thereto.
  • the detection pulse generation module 3110 may be a circuit for generating a single pulse or a circuit for independently generating a plurality of pulses.
  • a single pulse output can be achieved using a simple circuit configuration of the RC circuit with the active/active components.
  • the detection pulse generation module 3110a may include only the capacitor C11, the resistor R11, and the buffer BF1. Under this configuration, the detection pulse generation module 3110a generates only a single pulse signal DP1.
  • the detection pulse generation module 3110a may further include a reset circuit (not shown), and the reset circuit may generate the first pulse signal and/or the second pulse signal. Thereafter, the operational state of the circuit is reset such that the detection pulse generation module 3110a can again generate the first pulse signal and/or the second pulse signal after a period of time. That is, the detection pulse generation module 3110a can generate a plurality of pulse signals according to a fixed or random set time interval TIV by the action of the reset circuit.
  • the generating a plurality of pulse signals according to the fixed set time interval TIV may also be, for example, fixed to generate a pulse signal every 20 milliseconds to 2 seconds (ie, 20 ms ⁇ TIV ⁇ 2 s).
  • the setting The time interval TIV may be between 500ms and 2s; in some embodiments, the set time interval TIV may be within plus or minus 15% of 75ms; in some embodiments, the set time interval TIV may be 45ms Within plus or minus 15%; in some embodiments, the set time interval TIV can be within plus or minus 15% of 30ms.
  • the generating a plurality of pulse signals according to the random set time interval TIV may be, for example, a set time interval between each adjacent pulse signal. The TIV is selected from a random set value in a range of 0.5 seconds to 2 seconds. .
  • the timing and frequency at which the detection pulse generation module 3110 emits a pulse signal for mounting detection can be appropriately set in consideration of the influence of the detection current on the human body in the detection mode.
  • the magnitude of the current and the duration of the damage to the human body are generally negatively correlated, that is, under the premise that the current does not endanger the safety of the human body, the current through the current is shorter, and the shorter the current duration is required; If the power is continuously applied for a long time, it will not cause harm to the human body.
  • whether the human body is exposed to electric shock is the amount of current (or electric power) applied to the human body per unit time, rather than simply looking at the amount of current flowing through the human body.
  • the detection pulse generation module 3110 can be configured to issue a pulse signal for installation detection only within a certain time interval, and to stop emitting a pulse signal after the time interval is exceeded to avoid detection of current causing human hazard.
  • FIG. 41D is a waveform diagram of the detected current according to the first embodiment of the present invention, wherein the horizontal axis of the graph is time (labeled as t) and the vertical axis is current value (labeled as I).
  • the detection pulse module 3110 emits a pulse signal during the detection time interval (the pulse width of the pulse signal and the set time interval can be referred to other related embodiments), so that the detection path/power supply circuit is turned on.
  • the detection current Iin (which can be obtained by measuring the input current of the power supply module) generates a corresponding current pulse Idp in response to the pulse generation time point of the pulse signal, wherein the detection determination circuit 3130 is By detecting the current value of these current pulses Idp, it is judged whether the LED straight tube lamp has been correctly mounted to the socket.
  • the detection pulse generation module 3110 stops issuing the pulse signal so that the detection path/power supply circuit is turned off. From a larger time dimension, the detection pulse generation module 3110 generates a pulse group DGP within the detection time interval Tw, and determines whether the LED straight tube lamp has been correctly mounted on the lamp holder by detecting the pulse group DPg.
  • the detection pulse generation module 3110 emits a pulse signal only within the detection time interval Tw, wherein the detection time interval Tw can be set to 0.5 seconds to 2 seconds and includes between 0.5 seconds and 2 seconds.
  • the numerical value of any two decimal places for example, 0.51, 0.52, 0.53, ..., 0.6, 0.61, 0.62, ... 1.97, 1.98, 1.99, 2, but the present invention is not limited thereto. It is worth mentioning that through the appropriate selection of the detection time interval Tw, the detection action of the entire pulse group DPg does not generate enough electric power to harm the human body, thereby achieving the effect of preventing electric shock.
  • the detection pulse generation module 3110 can be implemented using a pulse generation circuit (as shown in FIGS. 19B and 20B) in conjunction with a timing circuit (not shown), which can be output after counting for a certain period of time.
  • the signalling pulse generating circuit stops generating pulses.
  • the detection pulse generation module 3110 can be implemented by using a pulse generation circuit (as shown in FIGS. 19B and 20B) in combination with a signal shielding circuit (not shown), wherein the signal shielding circuit can transmit the pulse after a predetermined time. The output of the circuit is pulled to the ground to shield the pulse signal output by the pulse generating circuit.
  • the signal shielding circuit can be implemented with a simple circuit (such as an RC circuit) without changing the design of the original pulse generating circuit.
  • the detection pulse generation module 3110 can be configured to re-issue the next pulse signal every time the pulse signal is sent at least a set time interval greater than or equal to a certain safety value, to avoid detecting the current causing harm to the human body.
  • FIG. 41E is a waveform diagram of the detected current according to the second embodiment of the present invention.
  • the detection pulse generation module 3110 emits a pulse signal at a set time interval TIV greater than a certain safety value (for example, 1 second) (the pulse width setting of the pulse signal can be referred to other related embodiments), so that the detection path / The power circuit is turned on.
  • a certain safety value for example, 1 second
  • the detection current Iin (which can be obtained by measuring the input current of the power supply module) generates a corresponding current pulse Idp in response to the pulse generation time point of the pulse signal, wherein the detection determination circuit 3130 is By detecting the current value of these current pulses Idp, it is judged whether the LED straight tube lamp has been correctly mounted to the socket.
  • the detection pulse generation module 3110 can be configured to issue a burst of pulses for each set of time intervals greater than or equal to a particular safety value for installation detection to avoid detection of current causing human hazards.
  • FIG. 41F is a waveform diagram of the detected current according to the third embodiment of the present invention.
  • the detection pulse generation module 3110 first sends a plurality of pulse signals in the first detection time interval Tw (the pulse width of the pulse signal and the set time interval can be referred to other related embodiments), so that the detection path/power source The loop is turned on.
  • the detection current Iin generates a plurality of corresponding current pulses Idp in response to the pulse generation timing of the pulse signal, and the current pulse Idp in the first detection time interval Tw constitutes the first pulse group DPG1.
  • the detection pulse generation module 3110 suspends the output pulse signal for a set time interval TIVs (for example, 1 second or longer), and again pulses after entering the next detection time interval Tw. signal.
  • the second detection time interval Tw and the detection current Iin in the third detection time interval Tw respectively constitute the second pulse group DPg2 and the third pulse group DPg3, wherein the detection determination
  • the circuit 3130 determines whether the LED straight tube lamp has been correctly mounted to the socket by detecting the current values of the pulse groups Dg1, DPg2, and DPg3.
  • the current magnitude of the current pulse Idp is related to the impedance on the detection path/power supply loop. Therefore, when designing the detection pulse generation module 3110, the format of the output pulse signal can be correspondingly designed according to the selection and setting of the detection path/power supply loop.
  • FIG. 20A is a circuit block diagram of a mounting detection module according to a second embodiment of the present invention.
  • the mounting detection module 3000b includes a detection pulse generation module 3210, a detection result latch circuit 3220, a detection determination circuit 3230, and a switch circuit 3200.
  • 4B is a signal timing diagram of the power module of the second embodiment of the present invention.
  • the detection pulse generation module 3210 is electrically connected to the detection result latch circuit 3220 for generating a control signal Sc including at least one pulse signal DP.
  • the detection result latch circuit 3220 is electrically connected to the switch circuit 3200 for receiving and outputting the control signal Sc output by the detection pulse generation module 3210.
  • the switch circuit 3200 is electrically connected to one end of the LED straight tube lamp power supply circuit and the detection determining circuit 3230 for receiving the control signal Sc outputted by the detection result latch circuit 3220 and being turned on during the pulse signal DP, so that the LED straight tube lamp The power circuit is turned on.
  • the detection determination circuit 3230 is electrically connected to the switch circuit 3200, the other end of the LED straight tube lamp power supply circuit, and the detection result latch circuit 3220, for detecting the sampling signal on the power supply circuit when the switch circuit 3200 and the LED power supply circuit are turned on. Ssp is used to judge the installation status of the LED straight tube lamp and the lamp holder.
  • the power supply circuit of the present embodiment is used as a detection path for mounting the detection module (the aforementioned embodiment of Fig.
  • the detection determination circuit 3230 further transmits the detection result to the detection result latch circuit 3220 to perform further control.
  • the detection pulse generation module 3210 is more electrically connected to the output of the detection result latch circuit 3220, thereby controlling the cutoff pulse signal DP. time.
  • the detection pulse generation module 3210 generates a control signal Sc via the detection result latch circuit 3220 to cause the switching circuit 3200 to operate in an on state during the pulse.
  • the LED straight tube lamp is located at the same time as the power circuit between the installation detection terminals TE1 and TE2.
  • the detection determination circuit 3230 detects a sampling signal on the power supply loop, and notifies the detection result latch circuit 3220 of the timing point at which the detection signal is latched based on the detected signal.
  • the detection determination circuit 3230 can be, for example, a circuit that can generate an output level for controlling the latch circuit, wherein the output level of the latch circuit can correspond to the on/off state of the LED straight tube lamp.
  • the detection result latch circuit 3220 stores the detection result in accordance with the sampling signal Ssp (or the sampling signal Ssp and the pulse signal DP), and transmits or supplies the detection result to the switching circuit 3200. After receiving the detection result transmitted by the detection result latch circuit 3220, the switch circuit 3200 controls the conduction state between the mounting detection terminals TE1 and TE2 according to the detection result.
  • the installation detection module 3000b further includes an emergency control module 3240.
  • the configuration and operation of the emergency control module 3240 are similar to those of the emergency control module 3140 of the previous embodiment. Therefore, reference may be made to the above description, and details are not described herein again.
  • the detection pulse generation module 3210, the detection determination circuit 3230, the detection result latch circuit 3220, and the switch circuit 3200 in the installation detection module 3000b can be implemented by the circuit architecture of FIG. 20B to FIG. 20E, respectively, but are not limited thereto. 2), FIG. 20B to FIG. 20E are schematic diagrams showing the circuit structure of the mounting detection module according to the second embodiment of the present invention. The modules/units are described below.
  • FIG. 20B is a circuit schematic diagram of a detection pulse generation module of the installation detection module according to the second embodiment of the present invention.
  • the detection pulse generation module 3210 includes: a resistor R21 (sixth resistor), one end is connected to a driving voltage; a capacitor C21 (fourth capacitor), one end is connected to the other end of the resistor R21, and the other end of the capacitor C21 is grounded;
  • the special trigger STRG has an input end and an output end. The input end is connected with a connection end of a resistor R21 and a capacitor C21. The output end is connected to the detection result latch circuit 3220; a resistor R22 (seventh resistor) is connected to the resistor at one end.
  • the detection pulse generating module 3210 further includes a Zener diode ZD1 having an anode end and a cathode end. The other end of the anode end connection capacitor C21 is grounded, and the cathode end is connected to one end of the capacitor C21 connected to the resistor R21.
  • the circuit of the detection pulse generation module of the embodiment and the foregoing embodiment of FIG. 19B is only an example. Actually, the specific operation of the detection pulse generation circuit is performed based on the function module configured in the embodiment of FIG. 36A, and this part will be shown in FIG. 36A. The embodiment is further detailed.
  • FIG. 20C is a circuit schematic diagram of a detection determination circuit of the installation detection module according to the second embodiment of the present invention.
  • the detection determination circuit 3230 includes: a resistor R24 (ninth resistor), one end of which is connected to the emitter end of the transistor M22, and the other end of the resistor R24 is connected to the other end of the LED power circuit (for example, the second mounting detection terminal TE2); a diode D21 (second diode) having an anode end and a cathode end, the anode end being connected to one end of the resistor R24; a comparator CP21 (second comparator) having a first input end and a second input end An output terminal, the first input terminal is connected to a setting signal (for example, a reference voltage Vref, which is 1.3V in this embodiment, but is not limited thereto), the second input terminal is connected to the cathode end of the diode D21, and the comparator The output end of the CP
  • the diode D21, the comparator CP22, the resistor R25, the resistor R26, and the capacitor C22 may be omitted.
  • the second input of the comparator CP21 is directly connected to one end of the resistor R24.
  • resistor R24 can be in parallel with two resistors, with an equivalent resistance value of 0.1 ohm-5 ohms.
  • FIG. 20D is a circuit schematic diagram of a detection result latch circuit of the mounting detection module according to the second embodiment of the present invention.
  • the detection result latch circuit 3220 includes: a D-type flip-flop DFF (second D-type flip-flop) having a data input end, a frequency input end and an output end, the data input end is connected to the driving voltage, the frequency input The end connection detection determining circuit 3230; and an OR gate OG (third OR gate) having a first input end, a second input end and an output end, the first input end being connected to the output of the Schmitt trigger STRG
  • the second input terminal is connected to the output end of the D-type flip-flop DFF, and the output end of the OR gate OG is connected to the other end of the resistor R23 and the switch circuit 3200.
  • FIG. 20E is a circuit schematic diagram of a switch circuit for mounting a detection module according to a second embodiment of the present invention.
  • the switch circuit 3200 includes a transistor M22 (third transistor) having a base terminal, an episode terminal and an emitter terminal, the base terminal being connected to an output terminal of the gate OG, the collector terminal being connected to one end of the LED power circuit (eg: The first mounting detecting terminal TE1) is connected to the detection detecting circuit 3230.
  • the transistor M22 can also be replaced with an equivalent component of other electronic switches, such as a MOSFET.
  • part of the circuit of the above-mentioned installation detection module can be integrated into an integrated circuit, thereby saving the circuit cost and volume of installing the detection module.
  • the Schmitt trigger STRG, the detection result latch circuit 3220, and the two comparators CP21 and CP22 of the detection decision circuit 3230 of the detection pulse generation module 3210 are integrated in an integrated circuit, but the present invention is not limited thereto.
  • the utility model utilizes the principle that the capacitor voltage does not abruptly change; the capacitor in the LED straight tube lamp power supply loop has zero voltage at both ends and the transient response exhibits a short circuit state before the power source loop is turned on;
  • the transient response current limiting resistance is small and the response peak current is large.
  • the transient state is The response current limiting resistor is large and the response peak current is small, and the leakage current of the LED straight tube lamp is less than 5MIU.
  • the LED straight tube lamp is in normal operation (that is, the lamp caps are correctly installed in the lamp holder at both ends of the LED straight tube lamp) and the lamp replacement test (that is, the LED straight tube lamp end lamp head is installed in the lamp holder and the other end lamp holder is installed. Contacting the human body)
  • Rfuse is the resistance value of the LED straight tube lamp (10 ohms), and 500 ohms is the resistance value of the transient response of the simulated human body; and in the molecular part, the voltage rms is taken.
  • the maximum voltage value (305*1.414) and the minimum voltage difference of 50V are 90V to 305V. It can be known from the above embodiment that if the LED straight tube lamp is correctly installed in the lamp holder at both ends, the minimum transient current during normal operation is 5A; but when the LED straight tube lamp is installed at the lamp holder at one end, When the other end of the lamp contacts the human body, its maximum transient current is only 845mA.
  • the utility model utilizes a current that can flow through a capacitor (for example, a filter capacitor of a filter circuit) in the LED power supply loop through a transient response to detect the installation state of the LED straight tube lamp and the lamp socket, that is, the LED straight tube lamp is detected. Whether it is correctly installed in the lamp holder, and when the LED straight tube lamp is not properly installed in the lamp holder, a protection mechanism is further provided to avoid the user's electric shock due to accidental contact with the conductive portion of the LED straight tube lamp.
  • a capacitor for example, a filter capacitor of a filter circuit
  • the detection pulse generation module 3210 increases the output from a first low level voltage to a period of time after a period of time (the period of time determines the pulse period).
  • a first high level voltage is outputted via a path 3311 to the detection result latch circuit 3220.
  • the detection result latch circuit 3220 After receiving the first high level voltage, the detection result latch circuit 3220 simultaneously outputs a second high level voltage to the switch circuit 3200 and the detection pulse generation module 3210 via a path 3321.
  • the switch circuit 3200 After the switch circuit 3200 receives the second high level voltage, the switch circuit 3200 turns on a power circuit of the LED straight tube lamp (including at least the first mounting detection terminal TE1, the switch circuit 3200, the path 3201, the detection determination circuit 3230, and The second mounting detection terminal TE2) is turned on; at the same time, the detection pulse generating module 3210 determines the pulse width after receiving the second high-level voltage returned by the detection result latch circuit 3220.
  • the output of the first low-level voltage is reduced from the first high-level voltage (the first low-level voltage of the first time, the first high-level voltage, and the first low-level voltage of the second time) First pulse signal DP1).
  • the detection determining circuit 3230 detects a first sampling signal SP1 (eg, a voltage signal) on the loop when the power circuit of the LED straight tube lamp is turned on, when the first sampling signal SP1 is greater than and/or equal to a setting.
  • a first sampling signal SP1 eg, a voltage signal
  • Vref a reference voltage
  • the detection determination circuit 3230 outputs a third high level voltage via a path 3331 ( The first high level signal is passed to the detection result latch circuit 3220.
  • the detection result latch circuit 3220 receives the third high level voltage and outputs and maintains a second high level voltage (second high level signal) to the switch circuit 3200, and the switch circuit 3200 receives the second high level voltage.
  • the conduction is maintained to maintain the power supply loop of the LED straight tube lamp, during which the detection pulse generation module 3210 no longer produces a pulse output.
  • the detection determining circuit 3230 When the first sampling signal SP1 is smaller than the setting signal, according to the application principle of the present invention, it is indicated that the LED straight tube lamp has not been correctly installed in the socket, so the detection determining circuit 3230 outputs a third low level voltage ( The first low level signal is passed to the detection result latch circuit 3220.
  • the detection result latch circuit 3220 receives the third low level voltage to output and maintain the second low level voltage (second low level signal) to the switch circuit 3200, and the switch circuit 3200 receives the second low level voltage to maintain Cut off to keep the power circuit of the LED straight tube lamp open. In this case, the user is prevented from getting an electric shock by accidentally touching the conductive portion of the LED straight tube lamp when the LED straight tube lamp is not properly installed in the socket.
  • the output of the detection pulse generation module 3210 rises again from the first low level voltage to the first high level voltage, and is output via the path 3311.
  • the detection result latch circuit 3220 After receiving the first high level voltage, the detection result latch circuit 3220 simultaneously outputs a second high level voltage to the switch circuit 3200 and the detection pulse generation module 3210 via the path 3321. After the switch circuit 3200 receives the second high level voltage, the switch circuit 3200 turns on the power circuit of the LED straight tube lamp (including at least the first mounting detection terminal TE1, the switch circuit 3200, the path 3201, and the detection determination circuit 3230).
  • the second mounting detection terminal TE2) is also turned on again; at the same time, the detection pulse generating module 3210 receives the second high-level voltage returned by the detection result latching circuit 3220 for a period of time (this period of time determines the pulse) Width), the output is reduced from the first high level voltage back to a first low level voltage (the third low level voltage of the third time, the first high level voltage of the second time and the first time of the fourth time
  • the low level voltage constitutes a second pulse signal DP2).
  • the detection determination circuit 3230 detects a second sampling signal SP2 (eg, a voltage signal) on the circuit again, when the second sampling signal SP2 is greater than and/or equal to
  • the signal for example, a reference voltage Vref
  • the detection determination circuit 3230 outputs a third high level voltage via the path 3331. (first high level signal) to the detection result latch circuit 3220.
  • the detection result latch circuit 3220 receives the third high level voltage and outputs and maintains a second high level voltage (second high level signal) to the switch circuit 3200, and the switch circuit 3200 receives the second high level voltage.
  • the conduction is maintained to maintain the power supply loop of the LED straight tube lamp, during which the detection pulse generation module 3210 no longer generates a pulse wave output.
  • the detection determining circuit 3230 When the second sampling signal SP2 is smaller than the setting signal, according to the application principle of the present invention, the LED straight tube lamp is still not correctly installed in the socket, so the detection determining circuit 3230 outputs a third low level voltage. (the first low level signal) to the detection result latch circuit 3220.
  • the detection result latch circuit 3220 receives the third low level voltage and outputs and maintains a second low level voltage (second low level signal) to the switch circuit 3200, and the switch circuit 3200 receives the second low level voltage. The cutoff is maintained to maintain the power circuit of the LED straight tube lamp open.
  • the switch is performed during this period.
  • the circuit 3200 will be maintained in an off state and the drive circuit (not shown) will not be activated.
  • the detection determination circuit 3230 since the detection determination circuit 3230 generates a detection result that the LED straight tube lamp has been correctly mounted according to the third sampling signal SP3 higher than the reference voltage Vref, the switching circuit 3200 is latched by the detection result.
  • the high level voltage output by the circuit 3220 is maintained in an on state to maintain the power supply circuit conducting.
  • the driving circuit in the power module is started and starts to operate based on the voltage on the power circuit, thereby generating a lighting control signal Slc to switch the power switch (not shown), so that the driving current can be generated and the LED module is illuminated. .
  • a driving voltage charges the capacitor C21 via the resistor R21, and when the voltage of the capacitor C21 rises enough to trigger the Schmitt trigger
  • the Schmitt trigger STRG is converted from an initial first low level voltage to a first high level voltage output to an input of the OR gate OG.
  • the OR gate OG receives the first high level voltage output from the Schmitt trigger STRG, the OR gate OG outputs a second high level voltage to the base terminal of the transistor M22 and the resistor R23.
  • the collector terminal of the transistor M22 When the base terminal of the transistor M22 receives the second high-level voltage output from the OR gate OG, the collector terminal of the transistor M22 is electrically connected to the emitter terminal, thereby causing the power supply circuit of the LED straight tube lamp (including at least the first mounting detection end)
  • the TE1, the transistor M22, the resistor R24 and the second mounting detection terminal TE2) are turned on; and at the same time, the base terminal of the transistor M21 receives the second high-level voltage output by the OR gate OG via the resistor R23, and the set of the transistor M21
  • the extreme and the emitter terminal are grounded such that the voltage of the capacitor C21 is discharged to the ground via the resistor R22.
  • the output of the Schmitt trigger STRG is from the first high level.
  • the voltage drops back to the first low level voltage (the first low level voltage of the first time, the first high level voltage and the first low level voltage of the second time constitute a first pulse signal).
  • the power loop of the LED straight tube lamp is turned on, the current flowing through the capacitor in the LED power supply loop (for example, the filter capacitor of the filter circuit) through the transient response flows through the transistor M22 and the resistor R24, and forms on the resistor R24.
  • the voltage signal is compared with a reference voltage (1.3V in this embodiment, but not limited thereto) via the comparator CP21, and when the voltage signal is greater than and/or equal to the reference voltage, the comparator CP21 outputs A third high-level voltage is applied to the frequency input terminal CLK of the D-type flip-flop DFF, and since the data input terminal D of the D-type flip-flop DFF is connected to the driving voltage, the output terminal Q of the D-type flip-flop DFF outputs a high level.
  • a reference voltage 1.3V in this embodiment, but not limited thereto
  • the voltage is applied to the other input of the OR gate OG such that the OR gate OG outputs and maintains the second high level voltage to the base terminal of the transistor M22, thereby maintaining the power supply loop of the transistor M22 and the LED straight tube lamp. Since the OR gate OG outputs and maintains the second high level voltage, the transistor M21 also maintains conduction to ground, so that the voltage of the capacitor C21 cannot rise enough to trigger the Schmitt trigger STRG.
  • the comparator CP21 When the voltage signal on the resistor R24 is less than the reference voltage, the comparator CP21 outputs a third low level voltage to the frequency input terminal CLK of the D-type flip-flop DFF, and since the initial output value of the D-type flip-flop DFF is zero, Therefore, the output terminal Q of the D-type flip-flop DFF outputs a low-level voltage to the other input terminal of the OR gate OG, and the Schmitt trigger STRG connected to one end of the OR gate OG also resumes outputting the first low level.
  • the voltage, therefore OR gate OG outputs and maintains the second low level voltage to the base terminal of transistor M22, thereby maintaining transistor M22 off and the power supply loop of the LED straight tube lamp remaining open.
  • the OR gate OG outputs and maintains the second low level voltage, the transistor M21 is also maintained in an off state, and the to-be-driven voltage charges the capacitor C21 via the resistor R21 to repeat the next (pulse) detection.
  • the pulse period is determined by the resistance value of the resistor R21 and the capacitance value of the capacitor C21.
  • the set time interval (TIV) of the pulse signal is 3ms-500ms, and further, the pulse signal The time interval is 20 ms - 50 ms; in some embodiments, the set time interval (TIV) of the pulse signal is 500 ms - 2000 ms.
  • the pulse width is determined by the resistance value of the resistor R22 and the capacitance value of the capacitor C21. In some embodiments, the width of the pulse signal includes 1 us-100 us, and further, the width of the pulse signal includes 10 us-20 us.
  • the generation mechanism of the pulse signal and the corresponding detection current state in this embodiment can be described with reference to the embodiments of the foregoing FIGS. 41D to 41F, and details are not described herein again.
  • Zener diode ZD1 provides protection, but it can be omitted; resistor R24 is based on power factor, it can be paralleled by two resistors, its equivalent resistance value includes 0.1 ohm-5 ohm; resistors R25 and R26 provide voltage division to ensure input voltage
  • the reference voltage is higher than the reference voltage of the comparator CP22 (0.3V in this embodiment, but is not limited thereto); the capacitor C22 provides a voltage stabilization and filtering function; the diode D21 ensures the unidirectionality of signal transmission.
  • the installation detection module disclosed in the present invention can be applied to other LED lighting devices with double-ended power input, for example, LED lamps with dual-end power supply architecture and including direct utilization of utility power or utilization.
  • the signal output by the ballast is used as an LED lamp for external driving voltage, etc., and the utility model does not limit the application range of the mounting detection module.
  • FIG. 21A is a circuit block diagram of a mounting detection module according to a third embodiment of the present invention.
  • the installation detection module 3000c can include a pulse generation auxiliary circuit 3310, an integrated control module 3320, a switch circuit 3200, and a detection determination auxiliary circuit 3330.
  • the overall operation of the mounting and detecting module of this embodiment is similar to that of the mounting and detecting module of the second preferred embodiment. Therefore, reference may be made to the signal timing illustrated in FIG. 41B.
  • the integrated control module 3320 includes at least two input terminals IN1, IN2 and an output terminal OT.
  • the pulse generation auxiliary circuit 3310 is electrically connected to the input terminal IN1 and the output terminal OT of the integrated control module 3320 to assist the integrated control module 3320 to generate a control signal.
  • the detection determination auxiliary circuit 3330 is electrically connected to the input terminal IN2 of the integrated control module 3320 and the switch circuit 3200, which can be used to return the sampling signal associated with the power supply loop to the integrated control module when the switch circuit 3200 and the LED power supply circuit are turned on.
  • the input terminal IN2 of the 3320 enables the integrated control module 3320 to determine the installation state of the LED straight tube lamp and the socket based on the sampling signal.
  • the switch circuit 3200 is electrically connected to one end of the LED straight tube lamp power supply circuit and the detection determination auxiliary circuit 3330 for receiving the control signal output by the integrated control module 3320, and during the enablement period of the control signal (ie, during the pulse period) Turn on, so that the LED straight tube lamp power circuit is turned on.
  • the integrated control module 3320 can be used to briefly turn on the switching circuit 3200 by outputting a control signal having at least one pulse from the output terminal OT in a detection mode according to the signal received on the input terminal IN1.
  • the integrated control module 3320 can detect whether the LED straight tube lamp is correctly installed into the socket according to the signal on the input terminal IN2 and latch the detection result as whether the switch is turned on after the detection mode ends.
  • the basis of the circuit 3200 ie, determining whether power is normally supplied to the LED module).
  • the detailed circuit architecture of the third preferred embodiment and the description of the overall circuit operation will be described below.
  • the integrated control module 3320, the pulse generation auxiliary circuit 3310, the detection determination auxiliary circuit 3330, and the switch circuit 3200 in the installation detection module 3000c can be implemented by the circuit architecture of FIG. 21B to FIG. 21E, respectively, but are not limited thereto. 2), FIG. 21B to FIG. 21E are schematic diagrams showing the circuit structure of the mounting detection module according to the third embodiment of the present invention. The modules/units are described below.
  • FIG. 21B is a block diagram of an internal circuit of an integrated control module for installing a detection module according to a third embodiment of the present invention.
  • the integrated control module 3320 includes a pulse generating unit 3322, a detection result latching unit 3323, and a detecting unit 3324.
  • the pulse generating unit 3322 receives the signal supplied from the pulse generation assisting circuit 3310 from the input terminal IN1, and accordingly generates at least one pulse signal, and the generated pulse signal is supplied to the detection result latch unit 3323.
  • the pulse generating unit 3322 can be implemented, for example, by a Schmitt trigger (not shown, referring to the Schmitt trigger STRG of FIG.
  • the pulse generation unit 3322 of the present invention is not limited to implementation using a Schmitt trigger circuit architecture. Any analog/digital circuit architecture that can achieve the function of generating at least one pulse signal can be applied to this.
  • the detection result latch unit 3323 is coupled to the pulse generating unit 3322 and the detecting unit 3324. In the detection mode, the detection result latch unit 3323 supplies the pulse signal generated by the pulse generating unit 3322 as a control signal to the output terminal OT. On the other hand, the detection result latch unit 3323 also latches the detection result signal supplied from the detecting unit 3324, and supplies it to the output terminal OT after the detection mode, thereby determining whether or not the mounting state of the LED straight tube lamp is correct.
  • the switch circuit 3200 is turned on.
  • the detection result latch unit 3323 can be implemented, for example, with a circuit structure of a D-type flip-flop or an OR gate (not shown, and can refer to the D-type flip-flop DFF and the OR gate OG of FIG. 20D).
  • the D-type flip-flop has a data input end, a frequency input end and an output end.
  • the data input terminal is connected to a driving voltage VCC, and the frequency input terminal is connected to the detecting unit 3324.
  • the OR gate has a first input end, a second input end and an output end, the first input end is connected to the pulse generating unit 3322, the second input end is connected to the output end of the D-type flip-flop, and the output end of the OR gate Connect the output OT.
  • the detection result latch unit 3323 of the present invention is not limited to implementation using a circuit structure of a D-type flip-flop and an OR gate. Any analog/digital circuit architecture that can implement the function of latching and outputting control signals to control switching of the switching circuit 3200 can be applied thereto.
  • the detecting unit 3324 is coupled to the detection result latch unit 3323.
  • the detecting unit 3324 receives the signal provided by the detection determining auxiliary circuit 3330 from the input terminal IN2, and generates a detection result signal indicating whether the LED straight tube lamp is correctly mounted, and the generated detection result signal is supplied to the detection result lock.
  • the storage unit 3323 is stored.
  • the detecting unit 3324 can be implemented, for example, by a comparator (not shown, which can be referred to the comparator CP21 of FIG. 20C).
  • the comparator has a first input end, a second input end and an output end. The first input end is connected to a setting signal, the second input end is connected to the input end IN2, and the output end of the comparator CP21 is connected and detected.
  • the detection unit 3324 of the present invention is not limited to implementation using the circuit architecture of the comparator. Any analog/digital circuit architecture that can determine whether the LED straight tube lamp is properly installed based on the signal at input IN2 can be applied to this.
  • FIG. 21C is a circuit schematic diagram of a pulse generation auxiliary circuit for mounting a detection module according to a third embodiment of the present invention.
  • the pulse generation assist circuit 3310 includes resistors R31, R32, and R33, a capacitor C31, and a transistor M31.
  • One end of the resistor R31 is connected to a driving voltage (such as VCC).
  • One end of the capacitor C31 is connected to the other end of the resistor R31, and the other end of the capacitor C31 is grounded.
  • One end of the resistor R32 is connected to the connection end of the resistor R31 and the capacitor C31.
  • Transistor M31 has a base extreme, an episode extreme and an emitter extreme.
  • the set is connected to the other end of the resistor R32 and the emitter is grounded.
  • One end of the resistor R33 is connected to the base terminal of the transistor M31, and the other end of the resistor R33 is connected to the output terminal OT of the integrated control module 3310 and the control terminal of the switch circuit 3200 via the path 3311.
  • the pulse generation auxiliary circuit 3310 further includes a Zener diode ZD1 having an anode end and a cathode end connected to the other end of the capacitor C31 and grounded, the cathode end being connected to one end of the capacitor 3323 connected to the resistor R31.
  • FIG. 21D is a schematic diagram of a circuit structure of a detection determination auxiliary circuit of the installation detection module according to the third embodiment of the present invention.
  • the detection determination auxiliary circuit 3330 includes resistors R34, R35, and R36, a capacitor C32, and a diode D31.
  • One end of the resistor R34 is connected to one end of the switch circuit 3200, and the other end of the resistor R34 is connected to the other end of the LED power circuit (for example, the second mounting detection terminal TE2).
  • One end of the resistor R35 is connected to the driving voltage (such as VCC).
  • resistor R36 One end of the resistor R36 is connected to the other end of the resistor R35, and is connected to the input terminal IN2 of the integrated control module 3320 via the path 3331, and the other end of the resistor R36 is grounded.
  • Capacitor C32 is connected in parallel with resistor R36.
  • the diode D31 has an anode end and a cathode end. The anode end is connected to one end of the resistor R34, and the cathode end is connected to the connection end of the resistors R35 and R36.
  • the resistor R35, the resistor R36, the capacitor C32, and the diode D31 may be omitted.
  • resistor R34 When the diode D31 is omitted, one end of the resistor R34 is directly connected to the input terminal IN2 of the integrated control module 3320 via the path 3331.
  • resistor R34 can be in parallel with two resistors, with equivalent resistance values ranging from 0.1 ohms to 5 ohms.
  • FIG. 21E is a circuit schematic diagram of a switch circuit for mounting a detection module according to a third embodiment of the present invention.
  • the switching circuit 3200c includes a transistor M32 having a base terminal, an episode terminal, and an emitter terminal.
  • the base terminal of the transistor M32 is connected to the output terminal OT of the integrated control module 3320 via the path 3321, the collector terminal of the transistor M32 is connected to one end of the LED power supply loop (for example, the first mounting detection terminal TE1), and the emitter terminal connection detection determination of the transistor M32 is performed.
  • the transistor M32 can also be replaced with an equivalent component of other electronic switches, such as a MOSFET.
  • the installation detection principle utilized by the mounting detection module of this embodiment is the same as the foregoing second preferred embodiment, and is based on the principle that the capacitance voltage does not change suddenly, and the LED straight tube lamp power supply circuit
  • the capacitor in the capacitor is zero before the power supply loop is turned on and the transient response is short-circuited; and when the power supply loop is correctly installed in the lamp holder, the transient response current limiting resistance is small and The response peak current is large.
  • the transient response current limiting resistor is large and the response peak current is small, and the LED straight tube lamp is leaked.
  • the current is less than 5MIU.
  • the LED straight tube lamp when the LED straight tube lamp is replaced with the lamp holder, the LED straight tube lamp causes the driving voltage VCC to be supplied to the module/circuit in the mounting detection module 3000c when one end is charged.
  • the pulse generation assisting circuit 3310 performs a charging operation in response to the driving voltage VCC. After a period of time (this period determines the pulse period), the output voltage (herein referred to as the first output voltage) rises from a first low level voltage to a forward threshold voltage (the voltage value can be defined according to the circuit design) And output to the input terminal IN1 of the integrated control module 3320 via a path 3311.
  • the integrated control module 3320 After receiving the first output voltage from the input terminal IN1, the integrated control module 3320 outputs a matching control signal (for example, a high level voltage) to the switch circuit 3200 and the pulse generation assisting circuit 3310 via a path 3321.
  • the switch circuit 3200 After the switch circuit 3200 receives the enable control signal, the switch circuit 3200 turns on a power supply circuit of the LED straight tube lamp (including at least the first mounting detection terminal TE1, the switch circuit 3200, the path 3201, the detection determination auxiliary circuit 3330, and the The second mounting detection terminal TE2) is turned on; and at the same time, the pulse generating auxiliary circuit 3310 reacts with the enabled control signal to turn on the discharging path for discharging operation, and receives the return from the integrated control module 3320.
  • a matching control signal for example, a high level voltage
  • the first output voltage gradually drops back to the first low level voltage from a voltage level exceeding the forward threshold voltage.
  • the integrated control module 3320 reacts to the first output voltage to pull down the enabled control signal to the disable level.
  • a bit ie, an output disable control signal, wherein the disabled control signal is, for example, a low level voltage
  • the control signal has a signal waveform in the form of a pulse (ie, by the first low level in the control signal)
  • the bit voltage, the high level voltage and the second low level voltage constitute a first pulse signal).
  • the detection determination auxiliary circuit 3330 detects a first sampling signal (eg, a voltage signal) on the loop of the LED straight tube lamp, and supplies the first sampling signal to the integrated control module via the input terminal IN2. 3320.
  • a first sampling signal eg, a voltage signal
  • the integrated control module 3320 determines that the first sampling signal is greater than or equal to a setting signal (eg, a reference voltage), according to the application principle of the present invention, the LED straight tube lamp is correctly installed in the socket, thus integrating
  • the control module 3320 outputs and maintains the enabled control signal to the switch circuit 3200.
  • the switch circuit 3200 receives the enable control signal to maintain conduction to maintain the power loop of the LED straight tube lamp, and the integrated control module 3320 is no longer active. Generate a pulse output.
  • the integrated control circuit 3320 determines that the first sampling signal is smaller than the setting signal, according to the application principle of the present invention, it is indicated that the LED straight tube lamp has not been correctly installed in the socket, so the integrated control circuit outputs The disable control signal is maintained to the switch circuit 3200, and the switch circuit 3200 receives the disable control signal to maintain the cutoff to maintain the power circuit of the LED straight tube lamp open.
  • the pulse generation assisting circuit 3310 Since the discharge path of the pulse generation assisting circuit 3310 is turned off, the pulse generation assisting circuit 3310 re-charges the operation. Therefore, when the power supply loop of the LED straight tube lamp is kept open for a period of time (ie, the pulse cycle time), the first output voltage of the pulse generation auxiliary circuit 3310 rises again from the first low level voltage to exceed the forward threshold voltage, and Output to the input terminal IN1 of the integrated control module 3320 via the path 3311. After receiving the first output voltage from the input terminal IN1, the integrated control module 3320 pulls the control signal from the disable level to the enable level (ie, outputs the enable control signal), and the enabled control signal It is supplied to the switching circuit 3200 and the pulse generation assisting circuit 3310.
  • the switch circuit 3200 After the switch circuit 3200 receives the enable control signal, the switch circuit 3200 turns on the power circuit of the LED straight tube lamp (including at least the first mounting detection terminal TE1, the switch circuit 3200, the path 3201, the detection determination auxiliary circuit 3330, and the second The installation detection terminal TE2) is also turned on again.
  • the pulse generation assisting circuit 3310 will again react to the enabled control signal to turn on the discharge path and perform the discharging action, and after receiving the enabled control signal returned by the integrated control module 3320 (for a while) ( This period of time determines the pulse width), and the first output voltage gradually drops back to the first low level voltage from the voltage level exceeding the forward threshold voltage.
  • the integrated control module 3320 reacts to the first output voltage to pull down the enabled control signal to the disable level, thereby causing the control signal to have a pulsed signal
  • the waveform i.e., the third low level voltage in the control signal, the second high level voltage, and the fourth low level voltage constitute a second pulse signal.
  • the detection determination auxiliary circuit 3330 detects a second sampling signal (for example, a voltage signal) on the circuit again when the power supply circuit of the LED straight tube lamp is turned on again, and supplies the second sampling signal to the input terminal IN2.
  • a second sampling signal for example, a voltage signal
  • the LED straight tube lamp is correctly installed in the socket, so the integrated control module 3320 will Outputting and maintaining the enabled control signal to the switch circuit 3200, the switch circuit 3200 receives the enable control signal to maintain conduction to maintain the power loop of the LED straight tube lamp, and the integrated control module 3320 no longer generates pulse output. .
  • the setting signal for example, a reference voltage
  • the integrated control module 3320 determines that the second sampling signal is smaller than the setting signal, according to the application principle of the present invention, it is indicated that the LED straight tube lamp is still not properly installed in the socket, so the integrated control circuit outputs and maintains the ban.
  • the control signal is passed to the switch circuit 3200, and the switch circuit 3200 receives the disable control signal to maintain the cutoff to maintain the power circuit of the LED straight tube lamp open. In this case, the user is prevented from getting an electric shock by accidentally touching the conductive portion of the LED straight tube lamp when the LED straight tube lamp is not properly installed in the socket.
  • a driving voltage VCC charges the capacitor C21 via the resistor R21, and when the voltage of the capacitor C31 rises enough to trigger the pulse generating unit 3322 ( That is, the forward threshold voltage is exceeded, and the output of the pulse generating unit 3322 is outputted from the initial first low level voltage to a first high level voltage to the detection result latch unit 3323.
  • the detection result latch unit 3323 After receiving the first high-level voltage outputted from the pulse generating unit 3322, the detection result latch unit 3323 outputs a second high-level voltage to the base terminal of the transistor M32 via the output terminal OT and Resistor R33.
  • the collector terminal of the transistor M32 When the base terminal of the transistor M32 receives the second high-level voltage outputted from the detection result latch unit 3323, the collector terminal of the transistor M32 is electrically connected to the emitter terminal, thereby causing the power supply circuit of the LED straight tube lamp (including at least the first The mounting detection terminal TE1, the transistor M32, the resistor R34, and the second mounting detecting terminal TE2) are turned on.
  • the collector terminal and the emitter terminal of the transistor M31 are grounded, so that the voltage of the capacitor C31 is discharged to the ground via the resistor R32.
  • the output of the pulse generating unit 3322 is reduced from the first high level voltage to the first low level voltage (the first low level voltage of the first time, first The high level voltage and the second first low level voltage constitute a first pulse signal).
  • the current flowing through the capacitor in the LED power supply loop (for example, the filter capacitor of the filter circuit) through the transient response flows through the transistor M32 and the resistor R34, and forms on the resistor R34.
  • a voltage signal is provided to the input terminal IN2 such that the detecting unit 3324 can compare the voltage signal with a reference voltage.
  • the detecting unit 3324 determines that the voltage signal is greater than or equal to the reference voltage, the detecting unit 3324 outputs a third high level voltage to the detection result latching unit 3323.
  • the detecting unit 3324 determines that the voltage signal on the resistor R34 is smaller than the reference voltage, the detecting unit 3324 outputs a third low level voltage to the detection result latching unit 3323.
  • the detection result latch unit 3323 latches the third high level voltage/third low level voltage provided by the detecting unit 3324, and then performs a logical operation on the latched signal and the signal provided by the pulse generating unit 3322. And determining, according to the result of the OR logic operation, that the output control signal is the second high level voltage or the second low level voltage.
  • the detection result latch unit 3323 latches the third high level voltage outputted by the detecting unit 3324, thereby maintaining the output second.
  • the high level voltage is applied to the base terminal of the transistor M32, thereby further maintaining the power supply circuit of the transistor M32 and the LED straight tube lamp. Since the detection result latch unit 3323 outputs and maintains the second high level voltage, the transistor M31 is also maintained to be grounded, so that the voltage of the capacitor C31 cannot rise enough to trigger the pulse generating unit 3322.
  • both the detecting unit 3324 and the pulse generating unit 3322 provide a low level voltage, and therefore, after the logical operation, the detection result latch unit 3323 outputs and The second low level voltage is maintained to the base terminal of transistor M32, which in turn causes transistor M32 to remain off and the power supply loop of the LED straight tube lamp to remain open.
  • the control signal on the output terminal OT is maintained at the second low level voltage at this time, the transistor M31 is also maintained in the off state, and the to-be-driven voltage VCC is charged to the capacitor C31 via the resistor R31 to repeat the next time ( Pulse) detection.
  • the detection mode described in this embodiment may be defined as the driving voltage VCC has been supplied to the installation detecting module 3000c, but the detecting unit 3324 has not determined that the voltage signal on the resistor R34 is greater than or equal to the reference voltage. period.
  • the control signal outputted by the detection result latch unit 3323 repeatedly turns on and off the transistor M31, so that the discharge path is periodically turned on and off.
  • Capacitor C31 reacts to the on/off of transistor M31, while periodically charging and discharging. Therefore, the detection result latch unit 3323 outputs a control signal having a periodic pulse waveform in the detection mode.
  • the detection unit 3324 determines that the voltage signal on the resistor R34 is greater than or equal to the reference voltage, or the driving voltage VCC is stopped, it can be regarded as the end of the detecting mode (it has been determined that the correct installation or the LED tube has been removed). At this time, the detection result latch unit 3323 outputs a control signal maintained at the second high level voltage or the second low level voltage.
  • the integrated control module 3320 of the present embodiment may be formed by integrating the circuit components of the detection pulse generation module 3210, the detection result latch circuit 3220, and the detection determination circuit 3230.
  • the integrated circuit components constitute the pulse generation assisting circuit 3310 and the detection determining auxiliary circuit 3330 of the present embodiment, respectively.
  • the function/circuit architecture of the pulse generation unit 3322 in the integrated control module 3320 in conjunction with the pulse generation assistance circuit 3310 can be identical to the detection pulse generation module 3210 of the second preferred embodiment, and the detection result latch unit in the integrated control module 3320.
  • the function/circuit architecture of the 3323 can be identical to the detection result latching module 3220 of the second preferred embodiment, and the function/circuit architecture of the detecting unit 3324 in conjunction with the detection determining auxiliary circuit 3330 in the integrated control module 3320 can be equivalent to the detection determining circuit. 3230.
  • FIG. 22A is a circuit block diagram of a mounting detection module according to a fourth embodiment of the present invention.
  • the installation detecting module of this embodiment may be, for example, a three-terminal switching device 3000d including a power terminal VP1, a first switching terminal SP1, and a second switching terminal SP2.
  • the power supply terminal VP1 of the three-terminal switching device 3000d is adapted to receive the driving voltage VCC, and the first switching terminal SP1 is adapted to connect one of the first mounting detecting end TE1 and the second mounting detecting end TE2 (the figure is illustrated as Connecting the first mounting detecting end TE1, but not limited to this), and the second switching end SP2 is adapted to connect the other one of the first mounting detecting end TE1 and the second mounting detecting end TE2 (the figure is shown as a connection Second, install the detection terminal TE2, but not limited to this).
  • the three-terminal switching device 3000d includes a signal processing unit 3420, a signal generating unit 3410, a signal collecting unit 3430, and a switching unit 3200.
  • the three-terminal switching device 3000d may further include an internal power detecting unit 3440.
  • the signal processing unit 3420 can output a control signal having a pulse waveform in the detection mode according to the signal provided by the signal generating unit 3410 and the signal acquisition unit 3430, and the output is maintained at a high voltage level or a low voltage level after the detection mode.
  • the control signal controls the conduction state of the switching unit 3200 to determine whether to turn on the power supply loop of the LED straight tube lamp.
  • the signal generating unit 3410 may generate a pulse signal to the signal processing unit 3420 upon receiving the driving voltage VCC.
  • the pulse signal generated by the signal generating unit 3410 may be generated according to a reference signal received from the outside or generated independently by itself, and the present invention does not limit this.
  • the "external” as described herein is relative to the signal generating unit 3410, that is, as long as it is a reference signal generated by the signal generating unit 3410, whether it is generated by other circuits in the three-terminal switching device 3000d, or by three
  • the external circuit of the terminal switching device 3000d is generated and belongs to the externally received reference signal as described herein.
  • the signal collecting unit 3430 can be used to sample the electrical signal on the power circuit of the LED straight tube lamp, and detect the installation state of the LED straight tube lamp according to the sampled signal, and then transmit the detection result signal indicating the detection result to the signal processing unit 3420. Process it.
  • the three-terminal switching device 3000d can be implemented by using an integrated circuit, that is, the three-terminal switching device can be a three-terminal switching control chip, which can be applied to any type of double-ended power input. In the LED straight tube lamp, it provides the function of protection against electric shock.
  • the three-terminal switching device 3000d may not include only three pins/connecting ends, but three of the plurality of pins are configured in the above manner, which are all in this embodiment. The scope of protection.
  • the signal processing unit 3420, the signal generating unit 3410, the signal collecting unit 3430, the switching unit 3200, and the internal power detecting unit 3440 can be implemented by the circuit architecture of FIG. 22B to FIG. 22F, respectively (but not limited thereto).
  • 22B to FIG. 22F are schematic diagrams showing the circuit architecture of the mounting detection module according to the fourth embodiment of the present invention. The modules/units are described below.
  • FIG. 22B is a schematic diagram of a circuit architecture of a signal processing unit for mounting a detection module according to a fourth embodiment of the present invention.
  • the signal processing unit 3420 includes a driver DRV, an OR gate OG, and a D-type flip-flop DFF.
  • the driver DRV has an input end and an output end, and the output end of the driver DRV is used to connect the switch unit 3200 via the path 3421, thereby providing a control signal to the switch unit 3200.
  • the OR gate OG has a first input, a second input, and an output.
  • the first input of the OR gate OG is coupled to the signal generating unit 3410 via path 3411, and the output of the OR gate OG is coupled to the input of the driver DRV.
  • the D-type flip-flop DFF has a data input terminal (D), a frequency input terminal (CK), and an output terminal (Q).
  • the data input terminal of the D-type flip-flop DFF receives the driving voltage VCC, the frequency input end of the D-type flip-flop DFF is connected to the signal acquisition unit 3430 via the path 3431, and the output end of the D-type flip-flop is coupled to the second input of the OR gate OG. end.
  • FIG. 22C is a circuit schematic diagram of a signal generating unit of the mounting detection module according to the fourth embodiment of the present invention.
  • the signal generating unit 3410 includes resistors R41 and R42, a capacitor C41, a switch M41, and a comparator CP41.
  • One end of the resistor R41 receives the driving voltage VCC, and the resistor R41, the resistor R42 and the capacitor C41 are connected in series between the driving voltage VCC and the ground.
  • Switch M41 is connected in parallel with capacitor C41.
  • the comparator CP41 has a first input, a second input, and an output.
  • the first input end of the comparator CP41 is coupled to the connection end of the resistors R41 and R42, the second input end of the comparator CP41 receives a reference voltage Vref1, and the output end of the comparator CP41 is coupled to the control end of the switch M41.
  • FIG. 22D is a circuit schematic diagram of a signal acquisition unit of the installation detection module according to the fourth embodiment of the present invention.
  • the signal acquisition unit 3430 includes an OR gate OG and comparators CP42 and CP43.
  • the OR gate OG has a first input, a second input, and an output, and the output of the OR gate OG is coupled to the signal processing unit 3420 via path 3431.
  • the first input of the comparator CP42 is connected to one end of the switch unit 3200 via a path 2962 (ie, the power loop of the LED straight tube lamp), and the second input of the comparator CP42 receives a first reference voltage (eg, 1.25V, But not limited to this, and the output of the comparator CP42 is coupled to the first input of the OR gate OG.
  • the first input of the comparator CP43 receives a second reference voltage (eg, 0.15V, but is not limited thereto), the second input of the comparator CP43 is coupled to the first input of the comparator CP42, and the comparator CP43 The output is coupled to the second input of the OR gate OG.
  • FIG. 22E is a schematic diagram of a circuit structure of a switch unit for mounting a detection module according to a fourth embodiment of the present invention.
  • the switching unit 3200 includes a transistor M42 having a gate terminal, a ⁇ terminal, and a source terminal.
  • the gate terminal of the transistor M42 is connected to the signal processing unit 3420 via the path 3421
  • the ⁇ terminal of the transistor M42 is connected to the first switching terminal SP1 via the path 3201
  • the source terminal of the transistor M42 is connected to the second switching terminal SP2 via the path 3202
  • FIG. 22F is a circuit block diagram of an internal power detecting unit of the mounting detecting module according to the fourth embodiment of the present invention.
  • the internal power detecting unit 3440 includes a clamp circuit 3442, a reference voltage generating circuit 3443, a voltage adjusting circuit 3444, and a Schmitt trigger STRG.
  • the clamp circuit 3442 and the voltage adjustment circuit 3444 are respectively coupled to the power supply terminal VP1 to receive the driving voltage VCC, thereby performing voltage clamping and voltage adjustment operations on the driving voltage VCC.
  • the reference voltage generating circuit 3443 is coupled to the voltage adjusting circuit for generating a reference voltage to the voltage adjusting circuit 3444.
  • the Schmitt trigger STRG has an input end and an output end, the input end of which is coupled to the clamp circuit 3442 and the voltage adjustment circuit 3444, and the output end thereof outputs a drive voltage for indicating whether the drive voltage VCC is normally supplied with a power supply confirmation signal. Wherein, if the driving voltage VCC is in a normal supply state, the Schmitt trigger STRG outputs an enabled (eg, high level) power supply confirmation signal, so that the driving voltage VCC is supplied to each component in the three-terminal switching device 3000d/ Circuit.
  • an enabled (eg, high level) power supply confirmation signal so that the driving voltage VCC is supplied to each component in the three-terminal switching device 3000d/ Circuit.
  • the Schmitt trigger STRG outputs an disabled (eg, low level) power supply confirmation signal to prevent the components/circuits in the three-terminal switching device 3000d from operating abnormally.
  • the driving voltage is broken under VCC.
  • the driving voltage VCC is supplied to the three-terminal switching device 3000d via the power terminal VP1.
  • the driving voltage VCC charges the capacitor C41 via the resistors R41 and R42.
  • the comparator CP41 switches to output the high level voltage to the first input of the OR gate OG and the control terminal of the switch M41.
  • the switch M41 is turned on in response to the high level voltage, so that the capacitor C41 starts to discharge to the ground.
  • the comparator CP41 outputs an output signal having a pulse form.
  • the OR gate OG outputs an output high-level voltage to turn on the crystal M42 so that the current flows in the power supply loop of the LED straight tube lamp.
  • a voltage signal corresponding to the current magnitude is established on the path 3202.
  • the comparator CP42 samples this voltage signal and compares it with a first reference voltage (eg 1.25V).
  • the comparator CP42 When the sampled voltage signal is greater than the first reference voltage (eg, 1.25V), the comparator CP42 outputs a high level voltage.
  • the OR gate OG will react to the high level voltage output by the comparator CP42 to generate another high level voltage to the frequency input of the D flip-flop DFF.
  • the D-type flip-flop DFF maintains the output high-level voltage based on the output of the OR gate OG.
  • the driver DRV reacts with a high level voltage on the input to generate an enable control signal to turn on transistor M42.
  • the transistor M42 can be Maintain the state of conduction.
  • the comparator CP42 When the sampled voltage signal is less than the first reference voltage (eg, 1.25V), the comparator CP42 outputs a low level voltage.
  • the OR gate OG will react to the low level voltage output by the comparator CP42 to generate another low level voltage to the frequency input terminal of the D-type flip-flop DFF.
  • the D-type flip-flop DFF maintains the output low level voltage based on the output of the OR gate OG.
  • the output of the comparator CP41 is pulled down to the low level voltage (ie, at the end of the pulse period), since both inputs of the OR gate OG are maintained at The low-level voltage causes the output terminal to also output a low-level voltage, so the driver DRV reacts to the received low-level voltage to generate a disable control signal to turn off the transistor M42, so that the power supply loop of the LED straight tube lamp is turned off. .
  • the operation of the signal processing unit 3420 of the present embodiment is similar to the detection result latch circuit 3220 of the second preferred embodiment described above, and the operation of the signal generating unit 3410 is similar to the detection pulse of the foregoing second preferred embodiment.
  • the generating module 3210, the signal collecting unit 3430 operates similarly to the detecting determining circuit 3230 of the second preferred embodiment described above, and the switching unit 3200d operates similarly to the switching circuit 3200b of the second preferred embodiment described above.
  • FIG. 23A is a circuit block diagram of a mounting detection module according to a fifth embodiment of the present invention.
  • the mounting detection module 3000e includes a detection pulse generation module 3510, a control circuit 3520, a detection determination circuit 3530, a switch circuit 3200e, and a detection path circuit 3560.
  • the detection decision circuit 3530 is coupled to the detection path circuit 3560 via the path 3561 to detect the signal on the detection path circuit 3560.
  • the detection determination circuit 3530 is coupled to the control circuit 3520 via the path 3531 to transmit the detection result signal to the control circuit 3520 via the path 3531.
  • the detection pulse generation module 3510 is coupled to the detection path circuit 3560 via the path 3511, and generates a pulse signal to notify the detection path circuit 3560 to turn on the detection path or perform a timing of detecting the action.
  • the control circuit 3520 latches the detection result according to the detection result signal, and is coupled to the switch circuit 3200e via the path 3521 to transmit or reflect the detection result to the switch circuit 3200e.
  • the switch circuit 3200e determines to turn on or off between the first mounting detecting end TE1 and the second mounting detecting end TE2 based on the detection result.
  • the detection path circuit 3560 is coupled to the power supply circuit of the power module via the first detection connection DE1 and the second detection connection DE2.
  • the configuration of the detection pulse generation module 3510 can refer to the detection pulse generation module 3110 of FIG. 19B or the detection pulse generation module 3210 of FIG. 20B.
  • the path 3511 of the present embodiment can be compared to the pulse signal output terminal 3111, that is, the OR gate OG1 permeable path 3511 is connected to the detection. Path circuit 3560.
  • the detection pulse generation module 3510 is also connected to the output of the control circuit 3520 through the path 3521, so the path 3521 of the present embodiment can be aligned to the path 3321.
  • Control circuit 3520 can be implemented using a control chip or any circuit having signal processing capabilities. When the control circuit 3520 determines that the user does not touch the lamp according to the detection result signal, the control circuit 3520 controls the switching state of the switch circuit 3200e so that the external power source can be normally provided to the rear when the lamp is properly mounted on the lamp socket. The LED module at the end. At this time, the control circuit 3520 turns off the detection path. Conversely, when the control circuit 3520 determines that the user is in contact with the lamp according to the detection result signal, the control circuit 3520 maintains the switch circuit 3200e in the off state because the user is at risk of electric shock.
  • the configuration of the detection determination circuit 3530 can be referred to the detection determination circuit 3130 of FIG. 19C or the detection determination circuit 3230 of FIG. 20C.
  • the resistor R14 can be omitted.
  • the path 3561 of this embodiment can be compared to the switch coupling end 3201, that is, the positive input terminal of the comparator CP11 is connected to the detection path circuit 3560.
  • the path 3531 of this embodiment can be aligned to the detection result terminal 3131, that is, the output of the comparator CP11 is connected to the control circuit 3520. Referring to FIG.
  • the resistor R24 can be omitted.
  • the path 3561 of the present embodiment can be aligned to the path 3201, that is, the anode of the diode D21 is connected to the detection path circuit 3560.
  • the path 3531 of this embodiment can be aligned to the path 3331, that is, the outputs of the comparators CP21 and CP22 are connected to the control circuit 3520.
  • the configuration of the switch circuit 3200e can be referred to the switch circuit 3200a of FIG. 19E or the switch circuit 3200b of FIG. 20E. Since the architecture of the two switching circuits is similar, the description is represented by the switching circuit 3200a of Fig. 19E. Referring to FIG. 19E, when the architecture of the switching circuit 3200a is applied as the switching circuit 3200e, the path 3521 of the present embodiment can be aligned to the path detection result latching end 3121, and the switch coupling end 3201 is not connected to the detection determining circuit 3130. Instead, it is directly connected to the second mounting detection terminal TE2.
  • the configuration of the detection path circuit 3560 can be as shown in FIG. 23B, FIG. 23C or FIG. 23D, and FIG. 23B, FIG. 23C and FIG. 23D are circuit diagrams of the detection path circuit according to different embodiments of the present invention.
  • FIG. 23B is a schematic diagram of the circuit structure of the detection path circuit according to the first embodiment of the present invention.
  • the detection path circuit 3560a includes a transistor M51 and resistors R51 and R52.
  • the transistor M51 has a base, a collector and an emitter, and the emitter is connected to the detection pulse generation module 3510 via a path 3511.
  • the first end of the resistor R52 is connected to the emitter of the transistor M51, and the second end thereof is connected to the ground GND as the second detecting connection DE2, that is, the resistor R52 is connected in series between the emitter of the transistor M51 and the ground GND.
  • the first end of the resistor R51 is connected to the first mounting detecting end 2521 as a first detecting connection end DE1, and the first mounting detecting end TE1 is connected to the second rectifying output end 512 as an example, that is, a resistor.
  • R51 is connected in series between the collector of the transistor M51 and the first rectified output terminal 511.
  • the detection path of the embodiment is equivalent to being disposed between the rectified output terminal and the ground terminal GND.
  • the transistor M51 when the transistor M51 receives the pulse signal supplied from the detection pulse generation block 3510 (detection mode), it is turned on during the pulse period.
  • a detection path via resistor R51, transistor M51 and resistor R52
  • the level of the voltage signal is determined according to the voltage division of the resistors R51 and R52.
  • the equivalent resistance of the human body is equivalently connected in series between the second detecting connection terminal DE2 and the grounding terminal GND, that is, in series with the resistors R51 and R52.
  • the level of the voltage signal is determined according to the resistances R51 and R52 and the equivalent resistance of the human body.
  • the transistor M51 is maintained in the off state, so that the power module can be normal. Operates to power the LED modules.
  • FIG. 23C is a schematic diagram of a circuit structure of a detection path circuit according to a second embodiment of the present invention.
  • the detection path circuit 3560b of the present embodiment includes a transistor M52 and resistors R53 and R54, and its configuration and operation are substantially the same as those of the detection path circuit 3560a of the foregoing embodiment.
  • the main difference is that the detection path circuit 3560b of the present embodiment is disposed at the A rectified output 511 is coupled between the second rectified output 512. That is, the first end of the resistor R53 (the first detecting connection terminal DE1) is connected to the first rectifying output terminal 511, and the second end of the resistor R54 (the second detecting connection terminal DE2) is connected to the second rectifying output terminal. 512.
  • the transistor M52 when the transistor M52 receives the pulse signal supplied from the detection pulse generation block 3510 (detection mode), it is turned on during the pulse period. In the case where at least one end of the lamp tube is mounted to the lamp holder, a detection path from the first rectified output terminal 511 to the second rectified output terminal 512 (via resistor R53, transistor M52 and resistor R54) reacts with the turned-on transistor M52. It is then turned on and a voltage signal is established at node X of the detection path. When the user does not touch the lamp/lamp and is correctly mounted to the lamp holder, the level of the voltage signal is determined according to the voltage division of the resistors R53 and R54.
  • the second detection terminal DE2 is electrically connected to the ground GND. level.
  • the equivalent resistance of the human body is equivalent to being connected in series between the second end of the resistor R54/the second detecting connection DE2 and the ground GND, that is, in series with the resistors R53 and R54.
  • the level of the voltage signal is determined according to the resistances R51 and R52 and the equivalent resistance of the human body.
  • the transistor M52 in addition to the transistor M52 being briefly turned on in the detection mode, in the case where the control circuit 3520 determines that the lamp has been properly mounted to the lamp holder, the transistor M52 is maintained in the off state, so that the power module can be normal. Operates to power the LED modules.
  • FIG. 23D is a schematic diagram of a circuit architecture of a detection path circuit according to a third embodiment of the present invention.
  • the configuration and operation of the detection path circuit 3560c of the present embodiment is substantially the same as that of the foregoing embodiment, and the main difference is that the detection path circuit 3560c of the present embodiment further includes a current limiting element D51 disposed on the power supply circuit.
  • the current limiting component D51 is exemplified by a diode disposed at the input end of the first rectifying output terminal 511 and the filter circuit 520 (ie, the connection end of the capacitor 725 and the inductor 726) (hereinafter referred to as a diode D51).
  • the circuit 520 is illustrated as a ⁇ -type filter circuit, but the present invention is not limited thereto.
  • the addition of the diode D51 can limit the current direction on the main power circuit, so as to prevent the capacitor 725 after charging from discharging the detection path in reverse when the transistor M51 is turned on, thereby affecting the accuracy of the anti-shock detection.
  • the configuration of the diode D51 is only an embodiment of the current limiting element. In other applications, any electronic component that can be disposed on the power supply loop and that acts to limit the current direction can be implemented. The present invention is not limited thereto.
  • the embodiment can detect whether the user has a risk of electric shock by turning on the detection path and detecting the voltage signal on the detection path.
  • the detection path of the present embodiment is additionally established instead of using the power supply loop as the detection path (that is, the power supply loop and the detection path are at least partially non-overlapping). Since the electronic components on the additionally established detection path are less than the electronic components on the power supply circuit, the voltage signal on the additionally established detection path can more accurately reflect the user's touch state.
  • circuit/module described in this embodiment may be partially or completely integrated into the configuration of the chip, as shown in the foregoing FIG. 21A to FIG. 22F, and thus will not be further described herein.
  • FIG. 24A is a circuit block diagram of a mounting detection module according to a sixth embodiment of the present invention.
  • the mounting detection module 3000f includes a detection pulse generation module 3610, a control circuit 3620, a detection determination circuit 3630, a switch circuit 3200f, and a detection path circuit 3660.
  • the connection relationship between the detection pulse generation module 3610, the control circuit 3620, the detection determination circuit 3630, and the switch circuit 3200f is the same as that of the above-described embodiment of FIG. 23A, and is connected to each other through corresponding paths 3611, 3621, 3631, and 3661. Repeat it again.
  • the 23A is the configuration and operation of the detection path circuit 3660.
  • the first detection connection terminal DE1 of the detection path circuit 3660 of the embodiment is coupled to the low-level end of the filter circuit 520, and the second detection connection terminal DE2 is coupled to the second rectification output terminal 512.
  • the detection path circuit 3660 is connected between the low-level end of the filter circuit 520 and the second rectified output terminal 512 of the rectifier circuit 510, that is, the low-level end of the filter circuit 520 is connected to the path through the detection path circuit 3660. Second rectified output 512.
  • FIG. 24B and FIG. 24C are schematic diagrams showing the circuit architecture of the installation detection module according to different embodiments of the present invention.
  • FIG. 24B is a schematic diagram of the circuit structure of the mounting detection module according to the fifth embodiment of the present invention.
  • the filter circuit 520 is an example of a ⁇ -type filter architecture including capacitors 725, 727 and an inductor 726 (the present invention is not limited thereto), that is, the inductor 726 is serially connected to the first rectified output terminal 511 and Between the first filter output terminals 521, the first ends of the capacitors 725, 727 correspond to the two ends of the connection inductor 726, and the second ends of the capacitors 725, 727 are connected together, wherein the second ends of the capacitors 725, 727 are low. Level end.
  • the mounting detection module includes a detection pulse generation module 3610, a control circuit 3620, a detection determination circuit 3630, a switch circuit 3200f, and a detection path circuit 3660.
  • the detection path circuit 3660 includes a transistor M61 and a resistor R61. The gate of the transistor M61 is coupled to the detection pulse generation module 3610, the source is coupled to the first end of the resistor R61, and the drain is coupled to the second end of the capacitors 725, 727. The second end of the resistor R61 is connected to the second rectifying output end 512 and the first mounting detecting end TE1 as the second detecting connection end 3292.
  • the detection determination circuit 3170 is coupled to the first end of the resistor R61 to detect the magnitude of the current flowing through the detection loop.
  • the detection loop can be equivalently composed of capacitors 725 and 727, inductor 726, transistor M61, and resistor R61.
  • the transistor M61 when the transistor M61 receives the pulse signal supplied from the detection pulse generation block 3610 (detection mode), it is turned on during the pulse period. In the case where at least one end of the lamp tube is mounted to the lamp holder, the current path from the first rectified output terminal 511 via the detection path to the second rectified output terminal 512 is reflected in the turned-on transistor M61 and is turned on, and is in the resistor. A voltage signal is established on the first end of R61. When the user does not touch the lamp/lamp and is properly mounted to the socket, the level of the voltage signal is determined according to the equivalent impedance of the filter circuit 520 and the voltage division of the resistor R61.
  • the equivalent resistance of the human body is equivalent to being connected in series between the second detecting connection end and the ground end.
  • the level of the voltage signal is determined according to the equivalent impedance of the filter circuit 520, the resistance R61, and the equivalent resistance of the human body.
  • the transistor M61 will switch to the on state in the case where the control circuit 3620 determines that the lamp tube has been correctly mounted to the lamp holder, except that the detection mode is short-circuited, so that the power module can be normally operated. The operation is to supply power to the LED module.
  • FIG. 24C is a schematic diagram of a circuit structure of a mounting detection module according to a sixth embodiment of the present invention.
  • the mounting detection module of this embodiment includes a detection pulse generation circuit 3610, a control circuit 3620, a detection determination circuit 3630, a switch circuit 3200f, and a detection path circuit 3660.
  • the configuration and operation of the mounting and detecting module of the present embodiment are substantially the same as those of the foregoing embodiment of FIG. 24B.
  • the main difference is that the detecting path circuit 3660 of the embodiment is disposed at the second end of the capacitor 725 and the second rectifying output 512.
  • the second end of the capacitor 727 is directly connected to the second mounting detection terminal TE2 / the second filtering output terminal 522.
  • the current size flowing through the detection path circuit 3660 is much smaller than that flowing through the detection path circuit 3560.
  • the transistor M61/3395 in the detection path circuit 3660 can be implemented by using a smaller-sized component, which can effectively reduce the cost; in addition, the resistor R61 can be designed as a relatively small resistance, and the detection path is when the human body resistance is equivalently connected to the lamp. The equivalent impedance change on the upper part will be more obvious, which makes the detection result less susceptible to the offset of other component parameters.
  • the signal transmission design of the control circuit 3620 and the detection determination circuit 3170 can more easily conform to the signal format requirements of the drive controller, thereby reducing the difficulty in integrating the installation of the detection module and the drive circuit. (The subsequent examples in this section will be further explained).
  • FIG. 25A is a circuit block diagram of a mounting detection module according to a seventh embodiment of the present invention.
  • the power module of this embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an installation detection module 3000g.
  • the mounting detection module 3000g includes a detection controller 3100g, a switching circuit 3200g, and a bias circuit 3300g.
  • the detection controller 3100g includes a control module 3710, a startup circuit 3770, and a detection period determination circuit 3780.
  • the configuration and operation of the rectifying circuit 510, the filtering circuit 520, and the driving circuit 530 can be referred to the description of the related embodiments, and details are not described herein again.
  • the switch circuit 3200g is serially connected to the power supply circuit/power supply circuit of the power supply module (the figure is connected between the rectifier circuit 510 and the filter circuit 520 as an example), and is controlled by the control module 3710. Switch the conduction state.
  • the control module 3710 emits a control signal in the detection mode to briefly turn on the switch circuit 3200g, thereby detecting whether an additional impedance is connected to the power module during the period in which the switch circuit 3200g is turned on (ie, during the period in which the power supply circuit/power supply circuit is turned on).
  • the control module 3710 can effect a short-on conduction of the switching circuit 3200g by transmitting a control signal having a pulse form.
  • the specific duration of the brief conduction period can be adjusted according to the impedance of the set detection path.
  • the circuit configuration example of the control module 3710 and the switch circuit 3200g and related control actions can be referred to other embodiments related to the installation of the detection module.
  • the bias circuit 3300 is coupled to the power supply loop to generate a drive voltage VCC based on the rectified signal (ie, the bus voltage).
  • the drive voltage VCC is provided to the control module 3710 to cause the control module 3710 to be activated and operational in response to the drive voltage.
  • the startup circuit 3770 is connected to the control module 3710, and is configured to determine whether to affect the operating state of the control module 3710 according to the output signal of the detection period determining circuit 3780. For example, when the detection period determining circuit 3780 outputs an enable signal, the startup circuit 3770 controls the control module 3710 to stop operating in response to the enable signal; when the detection period determination circuit 3780 outputs an disable signal, the startup circuit 3780 The control module 3710 is maintained in a normal operating state (ie, does not affect the operational state of the control module 3710) in response to the disable signal.
  • the startup circuit 3780 can implement the operation of stopping the control of the control module 3710 by bypassing the driving voltage VCC or providing a low-level startup signal to the enabling pin of the control module 3710. The present invention does not limit.
  • the detection period determining circuit 3780 is configured to sample the electrical signal on the detection path/power supply loop, thereby counting the working duration of the control module 3710, and outputting a signal indicating the counting result to the starting circuit 3770, so that the starting circuit 3770 determines based on the signal indicating the counting result.
  • the control module 3710 When the rectifier circuit 510 receives an external power source through the pins 501 and 502, the bias circuit 3300g generates a driving voltage VCC according to the rectified bus voltage.
  • the control module 3710 is activated in response to the drive voltage VCC and enters the detection mode. In the detection mode, the control module 3710 periodically sends a control signal having a pulse waveform to the switch circuit 3200g, so that the switch circuit 3200g is periodically turned on and then turned off. Under the operation of the detection mode, the current waveform on the power supply loop will be similar to the current waveform (i.e., a plurality of spaced current pulses Idp) within the detection time interval Tw of FIG. 41D.
  • the detection period determining circuit 3780 starts counting the operation time of the control module 3710 in the detection mode upon receiving the bus voltage on the power supply circuit, and outputs a signal indicating the counting result to the startup circuit 3770.
  • the startup circuit 3770 does not affect the operating state of the control module 3710.
  • the control module 3710 decides to maintain the detection mode or enter the working mode according to the detection result of itself. If the control module 3710 determines to enter the operational mode, the control module 3710 controls the switch circuit 3200g to remain in the on state and shields other signals from affecting its operational state. In other words, in the operating mode, regardless of which signal is output by the startup circuit 3770, the operating state of the control module 3710 is not affected.
  • the startup circuit 3770 will control the control module 3710 to stop operating in response to the output of the determination period decision circuit 3780. At this point, control module 3710 no longer issues a pulse and maintains switch circuit 3200g in an off state until control module 3710 resets. As seen in comparison with FIG. 41D, the set time period is the detection time interval Tw.
  • the installation detecting module 3000g can achieve the current waveform of FIG. 41D to FIG. 41F by setting the pulse interval and the reset period of the control signal, thereby ensuring that the electric power in the detection mode is still within a reasonable safety range. Avoid detecting currents that cause harm to humans.
  • the starting circuit 3770 and the detection period determining circuit 3780 can be regarded as a delay control circuit as a whole, and the function is to delay the set length of time after the LED straight tube lamp is powered on.
  • a specific path is turned on to exercise control of the target circuit (eg, control module 3710). Through the setting selection of the specific path, the delay control circuit can realize the circuit action such as the delay conduction of the power circuit or the delay shutdown of the detection module in the LED straight tube lamp.
  • FIG. 25B is a schematic diagram of a circuit structure of a mounting detection module according to a seventh embodiment of the present invention.
  • the power module of this embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an installation detection module 3000h.
  • the mounting detection module 3000h includes a detection controller 3100h, a switching circuit 3200h, and a bias circuit 3300h.
  • the detection controller 3100h includes a control module 3810, a startup circuit 3870, and a detection period determination circuit 3880.
  • the configuration and operation of the rectifier circuit 510, the filter circuit 520, and the driving circuit 530 can be referred to the description of the related embodiments.
  • the configuration and operation of the control module 3810 and the switch circuit 3200h can be referred to the description of the embodiment of FIG. 25A. Narration.
  • the bias circuit 3300h includes a resistor R71, a capacitor C71, and a Zener diode ZD1.
  • the first end of the resistor R71 is connected to the rectified output (ie, connected to the bus bar).
  • the capacitor C71 and the Zener diode ZD1 are connected in parallel with each other, and the first end is commonly connected to the second end of the resistor R71.
  • the power input terminal of the control module 3810 is connected to a common node of the resistor R71, the capacitor C71, and the Zener diode ZD1 (ie, the bias node of the bias circuit 3300h) to receive the driving voltage VCC on the common node.
  • the startup circuit 3870 includes a Zener diode ZD2, a transistor M71, and a capacitor C72.
  • the anode of Zener diode ZD2 is connected to the control terminal of transistor M71.
  • the first end of the transistor M71 is connected to the control module 3810, and the second end of the transistor M71 is connected to the ground GND.
  • a capacitor C72 is connected between the first end and the second end of the transistor M71.
  • the detection period determining circuit 3880 includes a resistor R72, a diode D71, and a capacitor C73.
  • the first end of the resistor R72 is coupled to the bias node of the bias circuit 3300, and the second end of the resistor R72 is coupled to the cathode of the Zener diode ZD2.
  • the anode of the diode D71 is connected to the second end of the resistor R72, and the cathode of the diode D71 is connected to the first end of the resistor R72.
  • the first end of the capacitor C73 is connected to the second end of the resistor R72 and the anode of the diode D71, and the second end of the capacitor C73 is connected to the ground GND.
  • the rectifier circuit 510 receives an external power source through the pins 501 and 502, the rectified bus voltage charges the capacitor C71, thereby establishing a driving voltage VCC at the bias node.
  • Control module 3810 is activated in response to drive voltage VCCVCC and enters a detection mode. In the detection mode, first, in the first signal cycle, the control module 3810 sends a control signal with a pulse waveform to the switch circuit 3200h, so that the switch circuit 3200h is turned on and then turned off.
  • the capacitor C73 is charged in response to the driving voltage VCC on the bias node, so that the voltage across the capacitor C73 gradually rises.
  • the amount of rise across the capacitor C73 has not reached the threshold level of the transistor M71, so the transistor M71 is maintained in the off state, so that the enable signal Ven is maintained at a high level.
  • the capacitor C73 is substantially maintained at a level or a slow discharge, wherein the level change caused by the discharge of the capacitor C73 during the off period of the switch is less than that caused by the charging during the on-time of the switch. Level change.
  • the voltage across the capacitor C73 during the off period of the switch will be less than or equal to the highest level during the on-time of the switch, and the lowest level will not be lower than its initial level at the charging start point, so the transistor M71 is in the first signal period.
  • the middle will remain in the off state, so that the start signal Ven is maintained at a high level.
  • the control module 3810 is maintained in an activated state in response to a high level enable signal Ven. In the startup state, the control module 3810 determines whether the LED straight tube lamp is correctly installed according to the signal on the detection path (ie, determines whether there is additional impedance access.
  • the installation detection mechanism of this part is the same as the foregoing embodiment, No longer.
  • control module 3810 determines that the LED straight tube lamp has not been properly mounted to the socket, control module 3810 maintains the detection mode and continues to output a control signal having a pulsed waveform to control switching circuit 3200h.
  • the start-up circuit 3870 and the detection period determining circuit 3880 continue to operate in a manner similar to the first signal period described above, that is, the capacitor C73 is charged during the on period of each signal period, so that the capacitor C73 The voltage across the step is stepped up in response to the pulse width and pulse period.
  • the control module 3810 is turned off in response to the low level enable signal Ven.
  • the switch circuit 3200h is maintained in an off state regardless of whether or not an external power source is connected.
  • control module 3810 determines that the LED straight tube lamp has been properly seated on the lamp socket, control module 3810 enters an operational mode and issues a control signal to maintain switch circuit 3200h in an on state. In the operational mode, the control module 3810 does not change the output control signal in response to the enable signal Ven. In other words, even if the enable signal Ven is pulled down to a low level, the control module 3810 does not turn off the switch circuit 3200h again.
  • the measured current waveform on the power supply loop is as shown in FIG. 41D, in which the capacitor C73 is charged from the initial level to the threshold level of the transistor M71. It can correspond to the detection time interval Tw.
  • the control module 3810 continues to pulse before the capacitor C73 is charged to the threshold level of the transistor M71 to intermittently conduct current on the power supply loop, and the voltage across the capacitor C73 exceeds the threshold voltage. After the flat, the pulse is stopped to avoid the electric power on the power circuit rising enough to harm the human body.
  • the detection period determining circuit 3880 of the present embodiment is equivalent to the pulse-on period of the count control signal, and sends a signal to control the start-up circuit 3870 when the set value is reached during the pulse-on period, thereby enabling the start-up circuit 3870 Circuit 3870 affects the operation of control module 3910 to mask the pulse output.
  • the length of the detection time interval Tw (ie, the time required for the capacitor C73 to reach the threshold voltage of the transistor M71 across the voltage) is mainly controlled by adjusting the capacitance value of the capacitor C73.
  • the components such as the resistor R72, the diode D71, the Zener diode ZD2, and the capacitor C72 are mainly the functions of the auxiliary start circuit 3870 and the detection period determining circuit 3880 to provide voltage regulation, voltage limiting, current limiting or protection.
  • FIG. 25C is a schematic diagram of a circuit structure of an installation detection module according to an eighth embodiment of the present invention.
  • the power module of this embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an installation detection module 3000i.
  • the installation detection module 3000i includes a detection controller 3100i, a switch circuit 3200i, and a bias circuit 3300i, wherein the detection controller 3100i includes a control module 3910, a startup circuit 3970, and a detection period decision circuit 3980.
  • the configuration and operation of the rectifier circuit 510, the filter circuit 520, and the driving circuit 530 reference may be made to the description of the related embodiments.
  • the configuration and operation of the control module 3910 and the switch circuit 3200i may refer to the description of the foregoing embodiment of FIG. 25A. Narration.
  • the bias circuit 3300i includes a resistor R81, a capacitor C81, and a Zener diode ZD3.
  • the first end of the resistor R81 is connected to the rectified output (ie, connected to the bus bar).
  • the capacitor C81 and the Zener diode ZD3 are connected in parallel with each other, and the first end is commonly connected to the second end of the resistor R81.
  • the power input terminal of the control module 3910 is connected to a common node of the resistor R81, the capacitor C81, and the Zener diode ZD3 (ie, the bias node of the bias circuit 3300) to receive the driving voltage VCC on the common node.
  • the startup circuit 3970 includes a Zener diode ZD4, a resistor R82, a transistor M81, and a resistor R83.
  • the anode of Zener diode ZD2 is connected to the control terminal of transistor M81.
  • the first end of the resistor R82 is connected to the anode of the Zener diode ZD4 and the control terminal of the transistor M81, and the second end of the resistor R82 is connected to the ground GND.
  • the first end of the transistor M81 is connected to the bias node of the bias circuit 3300 through a resistor R83, and the second end of the transistor M81 is connected to the ground GND.
  • the detection period decision circuit 3980 includes a diode D81, resistors R84 and R85, a capacitor C82, and a Zener diode 3775.
  • the anode of the diode D81 is connected to one end of the switching circuit 3200i, which can be regarded as the detection node of the detection period determining circuit 3980.
  • the first end of the resistor R84 is coupled to the cathode of the diode D81, and the second end of the resistor R84 is coupled to the cathode of the Zener diode ZD4.
  • the first end of the resistor R85 is connected to the second end of the resistor R84, and the second end of the resistor R85 is connected to the ground GND.
  • the capacitor C82 and the Zener diode ZD5 are respectively connected in parallel with the resistor R85.
  • the cathode and the anode of the Zener diode ZD5 are respectively connected to the first end and the second end of the resistor R85.
  • the rectifier circuit 510 receives an external power source through the pins 501 and 502, the rectified bus voltage charges the capacitor C81, thereby establishing a driving voltage VCC at the bias node.
  • the control module 3910 is activated in response to the drive voltage VCC and enters the detection mode. In the detection mode, first in the first signal cycle, the control module 3910 sends a control signal with a pulse waveform to the switch circuit 3200i, so that the switch circuit 3200i is turned on and turned off.
  • the anode of the diode D81 is equivalent to ground, so the capacitor C82 is not charged.
  • the voltage across capacitor C82 will remain at the initial level during the on period of switching circuit 3200i, and transistor M81 will remain in the off state, thus not affecting the operation of control module 3910.
  • the disconnected power supply circuit causes the level on the sense node to rise in response to the external power supply, wherein the level applied to the capacitor C82 is equal to the divided voltage of the resistors R84 and R85.
  • the capacitor C82 is charged in response to the voltage division of the resistors R84 and R85, and the voltage across the capacitor C82 gradually rises.
  • the amount of rise across the capacitor C82 has not reached the threshold level of the transistor M81, so the transistor M81 is maintained in the off state, so that the driving voltage VCC remains unchanged. Since the transistor M81 is maintained in the off state in the first signal period, whether the switching circuit 3200i is turned on or off, the driving voltage VCC is not affected. Therefore, the control module 3910 is maintained in the activated state in response to the driving voltage VCC.
  • control module 3910 determines whether the LED straight tube lamp is correctly installed according to the signal on the detection path (ie, determines whether there is additional impedance access.
  • the installation detection mechanism of this part is the same as the foregoing embodiment, No longer.
  • control module 3910 determines that the LED straight tube lamp has not been properly mounted to the socket, the control module 3910 maintains the detection mode and continuously outputs a control signal having a pulse waveform to control the switching circuit 3200i.
  • the start-up circuit 3970 and the detection period determining circuit 3980 continue to operate in a manner similar to the first signal period described above, that is, the capacitor C82 is charged during the off period of each signal period, so that the capacitor C82 The cross voltage gradually rises in response to the pulse width and the pulse period.
  • the transistor M81 When the voltage across the capacitor C82 exceeds the threshold level of the transistor M81, the transistor M81 is turned on so that the bias node is short-circuited to the ground GND, thereby causing the driving voltage VCC to be pulled down to the ground level/low level. At this time, the control module 3910 is turned off in response to the driving voltage VCC of the low level. In the case where the control module 3910 is turned off, the switch circuit 3200i is maintained in an off state regardless of whether or not an external power source is connected.
  • control module 3910 determines that the LED straight tube lamp has been properly mounted on the lamp socket, control module 3910 enters an operational mode and issues a control signal to maintain switch circuit 3200i in an on state. In the working mode, since the switching circuit 3200i is continuously turned on, the transistor M81 is maintained in the off state, so that the driving voltage VCC is not affected, and the control module 3910 can be normally operated.
  • the measured current waveform on the power supply loop is as shown in FIG. 41D, in which the capacitor C82 is charged from the initial level to the threshold level of the transistor M81. It can correspond to the detection time interval Tw.
  • the control module 3910 continues to pulse before the capacitor C82 is charged to the threshold level of the transistor M81 to intermittently conduct current on the power supply loop, and the voltage across the capacitor C82 exceeds the threshold voltage. After the flat, the pulse is stopped to avoid the electric power on the power circuit rising enough to harm the human body.
  • the detection period determining circuit 3980 of the present embodiment is equivalent to the pulse cut-off period of the count control signal, and sends a signal to control the start-up circuit 3970 when the set value is reached during the pulse-off period, thereby causing the start-up circuit 3970
  • the operation of control module 3910 is affected to mask the pulse output.
  • the length of the detection time interval Tw (ie, the time required for the capacitor C82 to reach the threshold voltage of the transistor M81) is mainly by adjusting the capacitance value of the capacitor C82 and the resistors R84, R85, and R82.
  • the magnitude of the resistance value is controlled.
  • the components such as the diode D81, the Zener diodes ZD4 and ZD5, and the resistor R83 are functions of the auxiliary start circuit 3970 and the detection period determining circuit 3980 to provide voltage regulation, voltage limiting, current limiting, or protection.
  • FIG. 25D is a schematic diagram of a circuit structure of a mounting detection module according to a ninth embodiment of the present invention.
  • the power module of this embodiment includes a rectifier circuit 510, a filter circuit 520, a drive circuit 530, and an installation detection module 3000j.
  • the installation detection module 3000j includes a detection controller 3100j, a switch circuit 3200j, and a bias circuit 3300j.
  • the detection controller 3100j includes a control module 3910, a startup circuit 3970, and a detection period decision circuit 3980.
  • the configuration and operation of the mounting detection module 3000j is substantially the same as the mounting detection module 3000i of the foregoing embodiment of FIG. 25C.
  • the detection period determining circuit 3980 of the present embodiment includes a diode D81 and a resistor.
  • capacitor C82 and Zener diode ZD5 resistors R86, R87 and R88 and diode D82 are included.
  • the resistor R86 is connected in series between the diode D81 and the resistor R84.
  • a first end of the resistor R87 is coupled to the first end of the resistor R84, and a second end of the resistor R87 is coupled to the cathode of the Zener diode ZD4.
  • the resistor R88 and the capacitor C82 are connected in parallel with each other.
  • the anode of the diode D82 is connected to the first end of the capacitor C82 and the cathode of the Zener diode ZD4, and the cathode of the diode D82 is connected to the second end of the resistor R84 and the first end of the resistor R85.
  • the circuit for charging capacitor C82 is changed from resistors R84 and R85 to resistors R87 and R88, that is, capacitor C82 is charged based on the divided voltages of resistors R87 and R88.
  • the voltage on the detection node first generates a first-order partial pressure on the first end of the resistor R84 based on the voltage division of the resistors R86, R84, and R85, and then the first-order partial pressure is based on the voltage division of the resistors R87 and R88.
  • a second order partial pressure is produced at the first end of capacitor C82.
  • the charging rate of capacitor C82 can be controlled by adjusting the resistance values of resistors R84, R85, R86, R87, and R88, not just by adjusting the value of the capacitor. As a result, the size of the capacitor C82 can be effectively reduced. On the other hand, since the resistor R85 is no longer required as a component on the charging circuit, an element having a small resistance value can be selected, so that the discharge rate of the capacitor C82 can be increased, thereby shortening the circuit reset time of the determining circuit 3980 during the detection period. .
  • FIG. 26A is a circuit block diagram of a mounting detection module according to an eighth embodiment of the present invention.
  • the installation detection module 3000k is an architecture configured to continuously detect signals on the power supply loop, wherein the installation detection module 3000k includes a control circuit 3020, a detection determination circuit 3030, and a current limiting circuit/switch circuit 3200k.
  • the control circuit 3020 is configured to control the current limiting circuit 3200k according to the detection result generated by the detection determining circuit 3030, so that the current limiting circuit 3200k determines whether or not to perform the current limiting operation in response to the control of the control circuit 3020.
  • the control circuit 3020 presets the control current limiting circuit 3180 not to perform the current limiting operation, that is, the current preset on the power supply circuit is not limited by the current limiting circuit 3200k. Therefore, in the preset state, the rectified and filtered power source can be supplied to the LED module 50 via the power supply loop as long as there is external power supply access.
  • the detection determination circuit 3030 is activated/enabled by an external power source and begins to continuously detect signals on a particular node in the power supply loop and transmits the detection result signal to the control circuit 3020.
  • the control circuit 3020 determines whether a human touch situation occurs based on one or more of the level, waveform, frequency, and other signal characteristics of the detection result signal.
  • the current limiting circuit 3180 is controlled to perform a current limiting operation, so that the current on the power supply circuit is limited to be lower than a specific current value to avoid an electric shock situation.
  • the specific node may be located on the input side or the output side of the rectifier circuit 510, the filter circuit 520, the driving circuit 530 or the LED module 50, and the present invention is not limited thereto.
  • FIG. 26B is a circuit block diagram of a mounting detection module according to a ninth embodiment of the present invention.
  • the installation detection module 3000L of the present embodiment is substantially the same as the installation detection module 3000k of the foregoing embodiment. The main difference between the two is that the installation detection module 3000L is configured to continuously detect signals on the detection path.
  • the installation detection module 3000L includes a control circuit 3020, a detection determination circuit 3030, a current limiting circuit 3200L, and a detection path circuit 3060.
  • the operation of the control circuit 3020, the detection determination circuit 3030, and the current limiting circuit 3200L can be referred to the description of the above embodiment. The details are not repeated here.
  • the detection path circuit 3060 can be disposed on the input side or the output side of the rectifier circuit 510, the filter circuit 520, the driving circuit 530 or the LED module 50, and the present invention is not limited thereto.
  • an embodiment in which the detection path circuit 3060 is disposed on the input side of the rectifier circuit 510 can be described with reference to the embodiments of FIGS. 27-28B and 34A-34C.
  • the detection path circuit 3060 can utilize passive components (such as resistors, capacitors, inductors, etc.) or active components (such as transistors, step-controlled rectifiers), etc., which can react to changes in impedance in response to human touch.
  • the circuit is configured to implement.
  • the power modules of FIGS. 26A and 26B described above are applications and configurations under continuous detection settings, which can be used alone as a mechanism for mounting detection, or can be used together with pulse detection settings as an installation detection/electric shock protection. mechanism.
  • the lamp can apply a pulse detection setting in an unlit state and apply a continuous detection setting after the lamp is illuminated.
  • the switching of the pulse detection setting and the continuous detection setting may be determined based on the current on the power supply loop, for example, when the current on the power supply loop is less than a specific value (eg, 5MIU), the installation detection The module selects to enable the pulse detection setting, and when the current on the power circuit is greater than a certain value, the installation detection module switches to enable the continuous detection setting.
  • the installation detection module is preset to enable the pulse detection setting, so that each time the lamp is energized or receives an external power supply, the installation detection module first detects the lamp with the pulse detection setting. The tube is correctly installed and protected against electric shock.
  • the installation detection module switches to detect the lamp is accidentally touched by the continuous detection setting to detect the risk of electric shock. .
  • the installation detection module will be reset to the pulse detection setting again.
  • the installation detection module is built in the LED straight tube lamp (as shown in Figure 17A) or externally on the lamp holder (as shown in Figure 17B), the designer
  • the above-mentioned pulse detection setting and continuous detection setting can be selectively applied to the LED straight tube lamp illumination system according to the demand.
  • the installation detection module can perform the operation of the installation detection and the anti-shock protection according to the description of the above embodiment.
  • the mounting detecting module further includes a bias circuit for generating a driving voltage.
  • the drive voltage is the power supply required to operate the various circuits in the mounting detection module.
  • 19A, 20A, 21A, 22A, 23A, 24A, 28A, 30A, 34A, and 35A illustrate teaching installation detection modules including, for example, detection pulse generation modules 3110, 3210 and 3510, pulse generation assistance circuit 3310, and signal generation unit 3410, etc.
  • the pulse generation mechanism for generating a pulse signal but the pulse generation means of the present invention is not limited thereto.
  • the installation detection module can utilize the frequency signals already present by the power module to replace the functions of the pulse generation mechanism of the previous embodiment.
  • a driver circuit such as a DC-to-DC converter
  • the function of the pulse generation mechanism can be implemented by using the reference frequency of the reference lighting control signal, so that the hardware circuits such as the detection pulse generation modules 3110, 3210 and 3510, the pulse generation auxiliary circuit 3310, and the signal generation unit 3410 can be omitted.
  • the installation detection module can share the circuit architecture with other parts of the power module, thereby implementing the function of generating a pulse signal.
  • the pulse duty ratio generated by the pulse generating means of the embodiment of the present invention may be any value in a range of more than 0 (normally closed) to less than or equal to 1, and the specific setting depends on the actual installation detection mechanism. .
  • the mounting detection module transmits the power supply circuit/detection path through the temporary conduction and detects the power supply circuit/detection path during the conduction period.
  • the way of the signal is to judge whether the lamp is correctly installed without causing the risk of electric shock, and when it is determined that the lamp is correctly mounted on the lamp holder (the pins at both ends are correctly connected to the socket of the lamp socket),
  • the flow means switches to a closed/disabled state (eg, switching the switching circuit to conduction) so that the LED module can be normally illuminated.
  • the current limiting means will be preset to the activated/enabled state (for example, the switching circuit is preset to be off), and before confirming that there is no risk of electric shock (ie, the lamp has been properly installed), The power supply circuit is maintained in the off/restricted state (ie, the LED module cannot be illuminated at this time), and the current limiting means is switched to the off/disable state after determining that the lamp is properly installed.
  • a pulse detection setting the duty ratio is set to be greater than zero and less than one).
  • the installation detection action is performed during the enable period of each pulse after the external power source is connected (ie, the LED module has not been illuminated at this time), and the specific anti-shock means is This is achieved by “not limiting the flow when it is determined that the lamp is properly installed.”
  • the mounting detection module can detect the signal on the power supply loop/detection path in real time/continuously as a basis for judging the equivalent impedance and determining the equivalent impedance.
  • the current limiting means is switched to the on/enabled state (for example, the switching circuit is switched off), thereby de-energizing the lamp.
  • the current limiting means will be preset to the state of being turned off/disable (for example, the switching circuit is preset to be turned on), so that the power supply circuit is maintained to be turned on before the risk of electric shock is confirmed.
  • the risk of electric shock is as long as the external power supply is connected to either end of the lamp, as shown in FIG. 23, regardless of whether the installer is installing or disassembling the lamp, as long as the hand touches the lamp.
  • the conductive part exposes the installer to the risk of electric shock.
  • the installation detecting module can be set according to the pulse detection or in the case that the lamp has external power access.
  • the continuous detection setting is used to comprehensively detect and protect the installation situation and the electric shock situation, so that the safety of the lamp can be further improved.
  • the pulse generating means can also be regarded as a path enabling means for presetting a turn-on signal to turn on the power supply loop/detection path.
  • the circuit structures of the detection pulse generation modules 3110, 3210 and 3510, the pulse generation auxiliary circuit 3310, and the signal generation unit 3410 of the foregoing embodiment can be modified correspondingly to provide a fixed voltage circuit architecture. .
  • the current limiting circuit/switching circuit 3200, 3200a-3200L switching logic can be correspondingly modified to be preset to be turned on, and turned off when it is determined that there is a risk of electric shock (which can be realized by adjusting the logic gate of the detection result latch circuit).
  • the circuit architecture for generating pulses may be omitted by adjusting the settings of the detection determination circuit and the detection path circuit.
  • the mounting detection module 3000a of the first preferred embodiment may include only the detection result latch circuit 3120, the detection determination circuit 3130, and the current limiting circuit 3200a.
  • the installation detection module of the second preferred embodiment may only include the detection result.
  • the latch circuit 3220, the detection decision circuit 3230, and the switch circuit 3200b can be deduced by other preferred embodiments. Further, under the architecture provided with the additional detection path, if the continuous detection setting is employed, the detection pulse generation module 3510 may be omitted, and the detection path circuit 3560 may be set to be maintained in an on state (eg, omitting the transistor M51).
  • FIG. 27 is a circuit block diagram of a power module according to an eleventh embodiment of the present invention.
  • the LED straight tube lamp 1200 is, for example, directly receiving an external driving signal provided by the external power grid 508, wherein the external driving signal is supplied to the LED straight tube lamp 1200 through the live line (L) and the neutral line (N). Both ends are connected to pins 501, 502.
  • the LED straight tube lamp 1200 may further include pins 503, 504. Under the structure that the LED straight tube lamp 1200 includes four pins 501-504, the two pins on the same side lamp head (such as 501 and 503, or 502 and 504) can be electrically connected or mutually connected according to design requirements.
  • the electric shock detection module 4000 is disposed in the lamp tube and includes a detection control circuit 4100 and a current limiting circuit 4200.
  • the electric shock detection module 4000 may also be referred to as an installation detection module 4000 (described below by the installation detection module 3000).
  • the current limiting circuit 4200 is coupled to the rectifier circuit 510 via the first mounting detection terminal TE1, and coupled to the filter circuit 520 via the second mounting detection terminal TE2, that is, connected in series to the power supply loop of the LED straight tube lamp 1200.
  • the detection control circuit 4100 detects a signal at the input of the rectifier circuit 510 (ie, a signal provided by the external power grid 508) in the detection mode, and determines whether to prohibit current from flowing through the LED straight tube lamp 1200 based on the detection result.
  • the detection control circuit 4100 detects a small current signal and judges that the signal flows excessively high impedance.
  • the current limiting circuit 4200 will install the first mounting detection terminal TE1 and The current path cutoff between the second mounting detection terminals TE2 causes the LED straight tube lamp 1200 to stop operating (ie, the LED straight tube lamp 1200 is not illuminated).
  • the detection control circuit 4100 determines that the LED straight tube lamp 1200 is correctly mounted on the socket, and the current limiting circuit 4200 maintains the conduction between the first mounting detecting end TE1 and the second mounting detecting end TE2 to make the LED straight tube lamp 1200 normal. Operation (ie, the LED tube light 1200 can be illuminated normally). In other words, when the detection control circuit 4100 samples from the input terminal of the rectifier circuit 510 and the detected current is higher than the installation set current (or current value), the detection control circuit 4100 determines that the LED straight tube lamp 1200 is correctly mounted on the socket.
  • the current limiting circuit 4200 is turned on to operate the LED straight tube lamp 1200 in an on state; when the detection control circuit 4100 samples from the input end of the rectifying circuit 510 and the detected current is lower than the installation set current (or current) When the value is), the detection control circuit 4100 determines that the LED straight tube lamp 1200 is not properly mounted on the socket and causes the current limiting circuit 4200 to be turned off, so that the LED straight tube lamp 1200 enters a non-conduction state or causes the LED straight tube lamp 1200 to
  • the rms current on the power supply loop is limited to less than 5 mA (5 MIU based on the verification standard).
  • the mounting detection module 4000 determines whether to turn on or off based on the detected impedance, causing the LED tube lamp 1200 to operate in conduction or into a non-conducting/restricting current state.
  • the installation detecting module 4000 can determine whether the user touches the lamp by detecting the voltage/current change on the power circuit.
  • the above anti-shock function can be realized.
  • the installation detecting module 4000 can detect whether the lamp is correctly installed and whether the user accidentally touches the lamp if the lamp is not properly installed by detecting an electrical signal (including voltage or current).
  • the conductive part of the tube Compared with the embodiment of FIG. 18, since the detection control circuit 4100 of the present embodiment detects the signal through the sampling bridge, it is less susceptible to misjudgment due to other circuits in the power module.
  • the detection control circuit 4100 determines whether the LED straight tube lamp 1200 is correctly mounted to the socket or has an abnormal impedance access step as shown in FIG. 42A, including: turning the detection path on for a period of time After being turned off (step S101); sampling the electrical signal on the detection path during the period in which the detection path is on (step S102); determining whether the sampled electrical signal conforms to the preset signal characteristic (step S103); when the step S103 is determined to be When the control current limiting circuit 4200 operates in the first configuration (step S104); and when the determination in step S103 is negative, the control current limiting circuit 4200 operates in the second configuration (step S105), and then returns to step S101.
  • the detection path may be connected to a current path between the input side and the ground of the rectifier circuit 510.
  • the detection control circuit 4100 turns on the period length, the interval, the trigger time, and the like of the detection path, and can be referred to the description of the related embodiment.
  • step S101 turning on the detection path for a period of time can be realized by a pulsed switching control means.
  • the sampled electrical signal may be a voltage signal, a current signal, a frequency signal, or a phase signal, etc., which may represent a change in impedance of the detection path.
  • the action of determining whether the sampled electrical signal conforms to the preset signal characteristic may be, for example, comparing the relative relationship between the sampled electrical signal and a predetermined signal.
  • the detecting controller 4100 determines that the electrical signal conforms to the preset signal characteristic, and may be in a state corresponding to determining that the LED straight tube lamp is correctly installed/no abnormal impedance access, and the detecting controller 7100 determines that the electrical signal does not comply with the pre-
  • the signal characteristic may be a state corresponding to the determination that the LED straight tube lamp is incorrectly installed/having abnormal impedance access.
  • the first configuration and the second configuration are two different circuit configurations, and the configuration position and type of the visual current limiting circuit 3200 are determined.
  • the current limiting circuit 4200 is a switching circuit/current limiting circuit that is independent of the driving circuit and serially connected to the power supply circuit
  • the first configuration may be a conduction configuration (not limited to a flow group) State)
  • the second configuration can be a cutoff configuration (current limiting configuration).
  • FIG. 28A is a circuit block diagram of a mounting detection module according to a tenth embodiment of the present invention.
  • the mounting detection module 4000a includes a detection pulse generation module 4110, a control circuit 4120, a detection determination circuit 4130, a detection path circuit 3560, and a switch circuit 4200a.
  • the detection decision circuit 4130 is coupled to the detection path circuit 4160 via the path 4161 to detect the signal on the detection path circuit 4160.
  • the detection determination circuit 4130 is simultaneously coupled to the control circuit 4120 via the path 4131 to transmit the detection result signal to the control circuit 4120 via the path 4131.
  • the detection pulse generation module 4110 is coupled to the detection path circuit 4160 via the path 4111, and generates a pulse signal to notify the detection path circuit 4160 to turn on the detection path or perform a timing point of the detection action.
  • the control circuit 4120 latches the detection result according to the detection result signal, and is coupled to the switch circuit 4200a via the path 41121 to transmit or reflect the detection result to the switch circuit 4200a.
  • the switch circuit 4200a determines to turn on or off between the first mounting detecting end TE1 and the second mounting detecting end TE2 based on the detection result.
  • the detection path circuit 4160 is coupled to the power supply circuit of the power module via the first detection connection DE1 and the second detection connection DE2.
  • the detection path circuit 4160 has a first detection connection terminal DE1, a second detection connection end DE2, and a third detection connection end DE3, wherein the first detection connection end DE1 and the second detection connection end DE2 are electrically connected and rectified.
  • the two inputs of circuit 510 are used to receive/sample external drive signals from first pin 501 and second pin 502.
  • the detection path circuit 6160 rectifies the received/sampled external drive signal and is controlled by the detection pulse generation module to determine whether to cause the rectified external drive signal to circulate on a detection path. In other words, the detection path circuit 6160 determines whether to turn on the detection path in response to the control of the detection pulse generation module 6110.
  • FIGS. 23B to 23D For details of the operation of the circuit circuit using the pulse signal to turn on the detection path and detect whether there is an abnormal external impedance access, reference may be made to the description of FIGS. 23B to 23D, and the detailed description thereof will not be repeated here.
  • FIG. 28B is a schematic diagram showing the circuit structure of the mounting detection module according to the tenth embodiment of the present invention.
  • the configuration and operation of the detection path circuit 3560 of the present embodiment is substantially the same as that of the foregoing embodiment, and the main difference is that the detection path circuit 3560 of the present embodiment further includes current limiting elements 3097 and 3098.
  • the current limiting element 3097 is exemplified by a diode disposed between the first rectifying input end (ie) and the first end of the resistor R51 (hereinafter referred to as a diode 3097), and the current limiting element 3098 is disposed at A diode between the second rectification input 502 and the first end of the resistor R51 is exemplified (hereinafter, diode 3098).
  • the anode of the diode 3097 is coupled to the first rectifying input end (ie, the end of the rectifying circuit 510 connected to the first pin 501), and the cathode of the diode 3097 is coupled to the first end of the resistor R51.
  • the anode of the diode 3098 is coupled to the second rectification input (ie, the end of the rectifier circuit 510 and the second pin 502 is connected), and the cathode of the diode 3098 is coupled to the second end of the resistor R51.
  • the external drive signal/AC signal received by the first pin 501 and the second pin 502 is supplied to the first end of the resistor R51 via the diodes 3097 and 3098.
  • the diode 3097 is forward biased to conduct, and the diode 3098 is reverse biased and turned off, so that the detection path circuit 3560 is equivalent to the first rectification input and the second rectification.
  • a detection path is established between the output 512 (in the present embodiment and the second filtered output 522). During the negative half-wave of the external drive signal, diode 3097 is reverse biased and turned off, and diode 3098 is forward biased to conduct, such that sense path circuit 3560 is equivalent to the second rectified input and the second rectified output. A detection path is established between the ends 512.
  • the diodes 3097 and 3098 of the present embodiment act to limit the direction of the power supply of the alternating current signal such that the first end of the resistor R51 receives a positive level signal during either the positive half or the negative half of the alternating current signal.
  • the voltage signal on the node X is not affected by the phase change of the AC signal, resulting in an error in the detection result.
  • the detection path established by the detection path circuit 3560 of the present embodiment is not directly connected to the power supply circuit of the power module, but is transmitted through the diodes 3097 and 3098 at the rectification input terminal. An independent detection path is established between the rectified outputs.
  • the detection path circuit 3560 Since the detection path circuit 3560 is not directly connected to the power supply circuit and is only turned on in the detection mode, the current used to drive the LED module on the power supply circuit in the case where the LED straight tube lamp is normally installed and the power module is operating normally. It does not flow through the detection path circuit 3560. Since the detection path circuit 3560 does not have to withstand the large current of the power module under normal operation, the component specification on the detection path circuit 3560 is relatively flexible, and at the same time, the power loss caused by the detection path circuit 3560 is low. Moreover, compared to the embodiment in which the detection path is directly connected to the power supply loop (as shown in FIG. 20B to FIG. 20D), since the detection path circuit 3560 of the present embodiment is not directly connected to the filter circuit 520 in the power supply loop. Therefore, in the circuit design, there is no need to worry about the problem that the filter capacitor will reversely charge the detection path, and the circuit design is simpler.
  • FIG. 29 is a circuit block diagram of a power module according to a twelfth embodiment of the present invention.
  • the LED straight tube lamp 1300 is, for example, directly receiving an external driving signal provided by the external power grid 508, wherein the external driving signal is supplied to the LED straight tube lamp 1200 through the live line (L) and the neutral line (N). Both ends are connected to pins 501, 502.
  • the LED straight tube lamp 1300 may further include pins 503, 504. Under the structure that the LED straight tube lamp 1300 includes four pins 501-504, the two pins on the same side lamp head (such as 501 and 503, or 502 and 504) can be electrically connected or mutually connected according to design requirements.
  • the electric shock detection module 5000 is disposed in the lamp tube and includes a detection control circuit 5100 and a current limiting circuit 5200.
  • the electric shock detection module 5000 may also be referred to as an installation detection module (described below by the installation detection module 5000).
  • the current limiting circuit 5200 is provided in combination with the driving circuit 530, and may be, for example, the driving circuit itself or a bias adjusting circuit for controlling the driving circuit to be disabled/enabled (further described in the following embodiments).
  • the detection control circuit 5100 is electrically connected to the power supply circuit through the first detection connection terminal DE1 and the second detection connection terminal DE2, so as to sample and detect the signal on the power supply circuit in the detection mode, and control the current limiting circuit 5200 according to the detection result to determine Whether current is prohibited from flowing through the LED straight tube lamp 1300.
  • the detection control circuit 5100 detects a small current signal and determines that the signal flows excessively high impedance.
  • the current limiting circuit 5200 disables the driving circuit 530, so that The LED straight tube lamp 1300 is stopped (ie, the LED straight tube lamp 1200 is not illuminated).
  • the detection control circuit 5100 determines that the LED straight tube lamp 1300 is correctly mounted on the lamp holder, and the current limiting circuit 4200 enables the driving circuit 530 to enable the LED straight tube lamp 1300 to operate normally (ie, the LED straight tube lamp 1300 can be Is lit normally). In other words, when the detection control circuit 5100 samples from the power supply circuit and the detected current is higher than the installation set current (or current value), the detection control circuit 5100 determines that the LED straight tube lamp 1300 is correctly mounted on the socket and controls the current limiting circuit.
  • the drive circuit is enabled; when the detection control circuit 5100 samples from the power supply circuit and the detected current is lower than the installation set current (or current value), the detection control circuit 5100 determines that the LED straight tube lamp 1300 is not properly mounted on the lamp holder.
  • the control current limiting circuit disables the driving circuit to make the LED straight tube lamp 1300 enter a non-conducting state or limit the current effective value of the LED straight tube lamp 1200 to less than 5 mA (based on the verification standard) For 5MIU).
  • the mounting detection module 5000 determines to be turned on or off based on the detected impedance, so that the LED straight tube lamp 1300 operates in a normal driving or disabled driving state. Thereby, the problem that the user can get an electric shock due to accidental contact with the conductive portion of the LED straight tube lamp 1200 when the LED straight tube lamp 1300 is not properly mounted on the lamp holder can be avoided.
  • the installation detecting module 5000 can determine whether the user touches the lamp by detecting the voltage/current change on the power circuit.
  • the above anti-shock function can be realized.
  • the installation detecting module 5000 can detect whether the lamp is correctly installed and whether the user accidentally touches the lamp if the lamp is not properly installed by detecting an electrical signal (including voltage or current).
  • the conductive part of the tube Compared with the embodiment of FIG.
  • the current limiting circuit 5200 of the embodiment implements the current limiting/anti-shock effect by controlling the driving circuit 530, it is not necessary to serially connect an additional switching circuit to the power circuit. Make electric shock protection. Since the switching power connected in series on the power supply circuit usually needs to withstand a large current, the size of the selected transistor is severely limited. Therefore, omitting the switching circuit connected in series on the power supply circuit can greatly reduce the overall cost of installing the detection module.
  • the detection control circuit 5100 determines whether the LED straight tube lamp 1300 is correctly mounted to the socket or has an abnormal impedance access step as shown in FIG. 42A, including: turning the detection path on for a period of time After being turned off (step S101); sampling the electrical signal on the detection path during the period in which the detection path is on (step S102); determining whether the sampled electrical signal conforms to the preset signal characteristic (step S103); when the step S103 is determined to be When the control current limiting circuit 5200 operates in the first configuration (step S104); and when the determination in step S103 is negative, the control current limiting circuit 5200 operates in the second configuration (step S105), and then returns to step S101.
  • the detection path may be a current path connected to the output side of the rectifier circuit 510.
  • the detection control circuit 4100 turns on the period length, the interval, the trigger time, and the like of the detection path, and can be referred to the description of the related embodiment.
  • step S101 turning on the detection path for a period of time can be realized by a pulsed switching control means.
  • the sampled electrical signal may be a voltage signal, a current signal, a frequency signal, or a phase signal, etc., which may represent a change in impedance of the detection path.
  • the action of determining whether the sampled electrical signal conforms to the preset signal characteristic may be, for example, comparing the relative relationship between the sampled electrical signal and a predetermined signal.
  • the detecting controller 5100 determines that the electrical signal conforms to the preset signal characteristic may be a state corresponding to determining that the LED straight tube lamp is correctly installed/no abnormal impedance access, and the detecting controller 7100 determines that the electrical signal does not comply with the pre-
  • the signal characteristic may be a state corresponding to the determination that the LED straight tube lamp is incorrectly installed/having abnormal impedance access.
  • the first configuration and the second configuration are two different circuit configurations, and the configuration position and type of the visual current limiting circuit 3200 are determined.
  • the first configuration may be a cutoff configuration (normal bias configuration).
  • the second configuration can be a conduction configuration (adjusting the bias configuration).
  • the first configuration may be a drive control configuration (ie, only the drive circuit controller controls the switching of the power switch, the detection controller 7100 does not Affecting the control of the power switch), and the second configuration may be a cutoff configuration.
  • FIG. 30A is a circuit block diagram of a mounting detection module according to an eleventh embodiment of the present invention.
  • the mounting detection module includes a detection pulse generation module 5110, a control circuit 5120, a detection determination circuit 5130, and a detection path circuit 5160.
  • the detection pulse generation module 5110 is electrically coupled to the detection path circuit 5160 via a path 5111 for generating a control signal including at least one pulse.
  • the detection path circuit 5160 is connected to the power supply circuit of the power supply module via the first detection connection terminal DE1 and the second detection connection terminal DE2, and conducts the detection path during the pulse in response to the control signal.
  • the detection determination circuit 5130 is connected to the detection path circuit 5160 via the path 5161, thereby determining the installation state between the LED straight tube lamp and the lamp holder according to the signal characteristics on the detection path, and issuing a corresponding detection result signal according to the detection result.
  • the detection result signal is supplied to the control circuit 5120 of the back end via the path 5131.
  • the control circuit 5120 is coupled to the drive circuit 530 via path 5121, wherein the drive circuit 530 adjusts its operational state with reference to the installation status signal issued by the control circuit 5120.
  • the detection pulse generating module 5110 first activates in response to the added external power source, thereby generating a pulse to briefly turn on the detection path detection circuit 5160. path.
  • the detection determination circuit 5130 samples the signal on the detection path and determines whether the LED straight tube lamp is correctly mounted on the lamp holder or whether there is a human body touching the LED straight tube lamp to cause leakage.
  • the detection determination circuit 5130 transmits a corresponding detection result signal to the control circuit 5120 according to the detection result.
  • control circuit 5120 When the control circuit 5120 receives the detection result signal that the indicator tube has been properly installed, the control circuit 5120 issues a corresponding installation status signal to control the normal startup of the drive circuit 530 and performs power conversion to provide power to the back end LED module. Conversely, when the control circuit 5120 receives the detection result signal that the indicator tube is not properly installed, the control circuit 5120 issues a corresponding installation status signal to control the driving circuit 530 not to start/stop, thereby causing the current flowing through the power circuit. Can be limited to below the safe value.
  • the configuration and operation of the detection pulse generation module 5110, the detection determination circuit 5130, and the detection path circuit 5160 in this embodiment can be referred to the description of other embodiments.
  • the main difference between this embodiment and the foregoing embodiment is that the control circuit 5120 is mainly used to control the start-up of the driving circuit 530 at the back end, so that when the electric shock risk is determined/not correctly installed, the driving circuit can be directly stopped.
  • the operation of the 530 achieves the effect of limiting leakage current.
  • the driving circuit 530 or its internal power switch can be regarded as the current limiting circuit 5200a, so that the switching circuit originally disposed on the power supply circuit (such as 3200, 3200a) is compared with the embodiment of FIG. 18 to FIG.
  • the control circuit 5120 can implement the startup control of the driving circuit 530 by giving an installation state signal conforming to the voltage format of the driving controller to the startup pin of the driving controller, There is no need to make substantial changes to the design of the drive circuit 530, which is advantageous for commercial design.
  • the detection pulse generation module 5110, the detection path circuit 5160, the detection determination circuit 5130, and the control circuit 5120 can be implemented by the circuit architecture of FIGS. 30B to 30F, respectively (but not limited thereto), wherein FIG. 30B to FIG. 30F is a schematic diagram showing the circuit structure of the mounting detection module according to the eleventh embodiment of the present invention. The modules/units are described below.
  • FIG. 30B is a schematic diagram showing the circuit structure of the detection pulse generation module of the installation detection module according to the eleventh embodiment of the present invention.
  • the detection pulse generation module 5110 includes resistors Ra1 and Ra2, a capacitor Ca1, and a pulse generation circuit 5112.
  • the first end of the resistor Ra1 is connected to the rectifier circuit 510 via the first rectified output 511.
  • the first end of the resistor Ra2 is connected to the second end of the resistor Ra1, and the second end of the resistor Ra2 is connected to the rectifying circuit 510 via the second rectifying output 512.
  • the capacitor Ca1 and the resistor Ra2 are connected in parallel with each other.
  • the input terminal of the pulse generating circuit 5112 is connected to the connection end of the resistor Ra2 and Ca1, and the output terminal thereof is connected to the detection path circuit 5160 to provide a control signal having a pulse DP.
  • the resistors Ra1 and Ra2 form a voltage dividing resistor string for sampling the bus voltage, wherein the pulse generating circuit 5112 can determine the time point of the pulse generation according to the bus voltage information, and output the pulse according to the set pulse width. DP.
  • the pulse generation circuit 5112 can pulsing after a period of time after the bus voltage overvoltage zero point, in order to avoid the misjudgment problem that may occur in the anti-shock detection at the voltage zero point.
  • the pulse waveform and the spacing of the pulse generation circuit 5112 reference may be made to the description of the foregoing embodiment, and details are not described herein again.
  • FIG. 30C is a circuit schematic diagram of a detection path circuit of a mounting detection module according to an eleventh embodiment of the present invention.
  • the detection path circuit 5160 includes a resistor Ra3, a transistor Ma1, and a diode Da1.
  • the first end of the resistor Ra3 is connected to the first rectified output terminal 511.
  • the transistor Ma1 may be a MOSFET or a BJT, the first end of which is connected to the second end of the resistor Ra3, the second end of which is connected to the second rectified output terminal 512, and the control end thereof receives the control signal Sc.
  • the anode of the diode Da1 is connected to the first end of the resistor Ra3 and the first rectified output terminal 511, and the cathode of the diode Da1 is connected to the input end of the filter circuit 530 at the rear end.
  • the diode Da1 is connected to the capacitor 725. The connection to the inductor 726.
  • the resistor Ra3 and the transistor Ma1 constitute a detection path, wherein the detection path is turned on when the transistor Ma1 is turned on by the control signal Sc.
  • the detection voltage Vdet changes due to a current flowing through the detection path, and the variation width of the detection voltage Vdet is determined by the equivalent impedance of the detection path.
  • FIG. 30D is a schematic diagram showing the circuit structure of the detection and determination circuit of the installation detection module according to the eleventh embodiment of the present invention.
  • the detection determination circuit 5130 includes a sampling circuit 5132 and a comparison circuit 5133.
  • the sampling circuit 5132 samples the detection voltage Vdet according to the set time point, and generates sampling signals Ssp_t1-Ssp_tn corresponding to the detection voltage Vdet at different time points.
  • the comparison circuit 5133 is connected to the sampling circuit 5132 to receive the sampling signals Ssp_t1-Ssp_tn, wherein the comparison circuit 5133 may select some or all of the sampling signals Ssp_t1-Ssp_tn to compare with each other, or compare the sampling signals Ssp_t1-Ssp_tn with a pre- The signals are compared for comparison, and then the comparison result Scp is sequentially output to the decision circuit.
  • the comparison circuit 5133 can output a corresponding comparison result according to the sampling signal comparison of each two adjacent time points, but the present invention is not limited thereto.
  • the first detecting connection terminal DE1 (same as the first rectifying output terminal 511) and the second detecting connection of the detecting path circuit 5160 are connected.
  • the terminal DE2 (same as the second rectified output terminal 512) can be equivalently connected directly to the external power grid, so that regardless of whether the detection path is turned on, the voltage waveform of the detection voltage Vdet changes with the phase of the external driving signal, and has a complete string. Wave form.
  • the sampling circuit 5132 generates sampling signals Ssp_t1-Ssp_tn having the same or approximate levels.
  • the first detection connection terminal DE1 can be equivalently electrically connected to the outside through an external impedance (ie, body impedance).
  • an external impedance ie, body impedance.
  • the power grid therefore, when the detection path is turned on, the detection voltage Vdet is reduced by the external impedance and the voltage division of the impedance on the detection path.
  • the detection path is not turned on, since there is no conduction current path in the power module, no voltage drop occurs on the first detection connection terminal DE1, so the voltage waveform of the detection voltage Vdet is still in the form of a complete sine wave. .
  • FIG. 30E FIG.
  • the comparison circuit 5133 can compare some or all of the sampling signals Ssp_t1-Ssp_tn with each other, or compare the sampling signals Ssp_t1-Ssp_tn with a preset signal, thereby generating an effective corresponding to the installation state. Compare the results to Scp.
  • the comparison circuit 5133 may generate a comparison result Scp of the first logic level when the levels of the comparison signals Ssp_t1 and Ssp_t2 are the same or similar, and generate a comparison result Scp of the first logic level when the level difference of the comparison signals Ssp_t1 and Ssp_t2 reaches a set value.
  • the comparison result Scp of the first logic level is a comparison result that meets the correct installation condition
  • the comparison result Scp of the second logic level is a comparison result that does not meet the correct installation condition.
  • the determination circuit 5134 receives the comparison result Scp, and issues a corresponding detection result signal Sdr according to the comparison result Scp.
  • the determination circuit 5134 can be designed to determine that the comparison result Scp meets the correct installation condition, and the comparison result Scp When the number of consecutive occurrences exceeds a certain number of times, the detection result signal Sdr corresponding to the correct installation is issued to avoid the occurrence of a false positive to further reduce the risk of electric shock.
  • FIG. 30F is a schematic diagram of a circuit structure of a control circuit for mounting a detection module according to an eleventh embodiment of the present invention.
  • the input end of the control circuit 5120 receives the detection result signal Sdr, and the output end thereof is electrically connected to the controller 633 of the driving circuit 630.
  • the configuration of the driving circuit 630 can be referred to the description of the embodiment of FIG. 13B, and details are not described herein again.
  • the control circuit 5120 When the control circuit 5120 receives the detection result signal Sdr indicating that the LED straight tube lamp has been correctly installed (without human body resistance connection), the control circuit 5120 issues a corresponding mounting state signal Sidm to the controller 633 of the driving circuit 630. At this time, the controller 633 is activated in response to the installation state signal Sidm, and controls the switching switch 635 to operate, thereby generating a driving signal to drive the LED module.
  • the control circuit 5120 receives the detection result signal Sdr indicating that the LED straight tube lamp is not properly installed (having a human body resistance connection)
  • the control circuit 5120 issues a corresponding mounting state signal Sidm to the controller 633 of the driving circuit 630. At this time, the controller 633 will not start in response to the installation status signal Sidm.
  • FIG. 30G is a schematic diagram of a circuit structure of a mounting detection module according to a twelfth embodiment of the present invention.
  • the mounting detection module 5000c of the present embodiment is substantially the same as the foregoing embodiment of FIGS. 30B-30F, and includes a detection pulse generation module 5110, a control circuit 5120, a detection determination circuit 5130, and a detection path circuit 5160.
  • the driving circuit 1030 of this embodiment is exemplified by the power conversion circuit architecture of FIG. 13B, and includes a controller 1033, a diode 1034, a transistor 1035, an inductor 1036, a capacitor 1037, and a resistor 1038.
  • the detection path circuit 5160 of the present embodiment is exemplified by a configuration similar to the embodiment of FIG. 24B, and includes a transistor Ma1 and a resistor Ra1.
  • the drain of the transistor Ma1 is coupled to the second end of the capacitor 725, 727, and the source is coupled to the first end of the resistor Ra1.
  • the second end of the resistor Rb1 is coupled to the first ground GND1.
  • the first grounding terminal GND1 and the second grounding terminal GND2 of the LED module 50 may be the same grounding terminal or two electrically independent grounding ends, and the present invention is not limited thereto.
  • the detection pulse generation module 5210 is coupled to the gate of the transistor Ma1 and is used to control the conduction state of the transistor Ma1.
  • the detection determining circuit 5130 is coupled to the first end of the resistor Rb1 and the control circuit 5120, wherein the detection determining circuit 5130 samples the electrical signal on the first end of the resistor Ra1, and compares the sampled electrical signal with a reference signal to generate The detection result signal of whether the indicator tube is correctly installed; then the control circuit 5120 generates an installation status signal according to the detection result signal and transmits it to the controller 1033.
  • the details and characteristics of the operation of the detection pulse generation module 5110, the control circuit 5120, the detection determination circuit 5130, and the detection path circuit 5160 can be described in the foregoing embodiments, and the detailed description thereof will not be repeated.
  • FIG. 31A is a circuit block diagram of a mounting detection module according to a twelfth embodiment of the present invention.
  • the mounting detection module 5000A includes a detection pulse generation module 5110, a detection determination circuit 5130, a detection path circuit 5160, and a current limiting circuit 5200A.
  • a detection pulse generation module 5110 the detection determination circuit 5130, and the detection path circuit 5160, please refer to the description of the embodiment of FIGS. 30A-30E, and the detailed description thereof will not be repeated here.
  • the current limiting circuit 5200A of the present embodiment is implemented by a bias adjustment circuit (described below by the bias adjustment circuit 5200A).
  • the detection result signal Sdr of the detection determination circuit 5130 is given to the bias adjustment circuit 5200A, wherein the bias adjustment circuit 5200A is connected to the drive circuit 530 via the path 5201, and is used to influence/adjust the bias voltage of the drive circuit 530, thereby controlling the drive circuit.
  • the operating status of the 530 is implemented by a bias adjustment circuit (described below by the bias adjustment circuit 5200A).
  • FIG. 31B is a schematic diagram of a circuit structure of a bias adjustment circuit according to an embodiment of the present invention.
  • the bias adjustment circuit 5200A includes a transistor Ma2, the first end of which is connected to the connection end of the resistor Rbias and the capacitor Cbias and the power input end of the controller 633, the second end of which is connected to the second filter output end 522, and the control end thereof receives the comparison. Result signal Sdr.
  • the resistor Rbias and the capacitor Cbias are external bias circuits of the driver circuit 630, which are used to provide the power required for the controller 633 to operate.
  • the detection determination circuit 5130 determines that the LED straight tube lamp has been properly mounted (without human body resistance connection)
  • the detection determination circuit 5130 issues a disable comparison result signal Sdr to the transistor Ma2.
  • the transistor Ma2 is turned off in response to the disable comparison result signal Sdr, so the controller 633 can normally obtain the operating power supply and control the operation of the changeover switch 635, thereby generating a drive signal to drive the LED module.
  • the detection determination circuit 5130 determines that the LED straight tube lamp is not properly mounted (there is a human body resistance connection)
  • the detection determination circuit 5130 issues an enable comparison result signal Sdr to the transistor Ma2.
  • the transistor Ma2 is turned on in response to the enable comparison result signal Sdr, so that the power input terminal of the controller 633 is short-circuited to the ground terminal, thereby making the controller 633 unable to be activated. It is worth mentioning that in the case where the transistor Ma2 is turned on, although an additional leakage path may be established through the transistor Ma2, the input power used by the controller 633 is generally relatively small (compared to the lamp). The overall power supply is seen), so there is a slight leakage current that does not cause damage to the human body, and can meet the requirements of safety regulations at the same time.
  • FIG. 32A is a circuit block diagram of a mounting detection module according to a thirteenth embodiment of the present invention.
  • the mounting detection module of this embodiment can be considered to include a detection circuit 5000b and a drive circuit 1030.
  • the connection relationship between the rectifier circuit 510, the filter circuit 520, the driving circuit 1030, and the LED module 50 is as described in the foregoing embodiment of FIG. 9A, and details are not described herein again.
  • the detecting circuit 5000b of the embodiment has an input end and an output end, and an input end thereof is coupled to the power circuit of the LED straight tube lamp, and an output end thereof is coupled to the driving circuit 1030.
  • the driver circuit 530 is preset to enter an installation detection mode.
  • the driving circuit 1130 provides a lighting control signal having a narrow pulse (eg, a pulse width of less than 1 ms) to drive a power switch (not shown) such that the driving current generated by the driving circuit 1130 in the mounting detection mode is generated. Less than 5MIU or 5 mA.
  • the detection circuit 5000b detects an electrical signal on the power supply loop, and generates an installation state signal Sidm back to the drive circuit 1130 according to the detected result.
  • the driving circuit 1130 determines whether to enter the normal driving mode according to the received installation state signal Sidm. If the driving circuit 1030 determines to maintain the installation detection mode, the driving circuit 1130 outputs a lighting control signal having a narrow pulse according to a set frequency to briefly turn on the power switch, so that the detecting circuit 5000b can detect the power on the power circuit. The signal, and at the same time, causes the current on the power loop to be less than 5 MIU throughout the installation detection mode. On the other hand, if the driving circuit 1130 determines to enter the normal driving mode, the driving circuit 1030 will generate a lighting control signal with a variable pulse width according to at least one or a combination of information such as an input voltage, an output voltage, and an output current.
  • FIG. 32B is a schematic diagram of the circuit architecture of the driving circuit with the electric shock detecting function according to the first embodiment of the present invention.
  • the driving circuit 1130 of the present embodiment includes a controller 1133 and a conversion circuit 1134, wherein the controller 1133 includes a signal receiving unit 1137, a sawtooth wave generating unit 1138, and a comparing unit CUd, and the converting circuit 1134 includes a switching circuit (also referred to as a power switch). 1135 and the energy storage circuit 1136.
  • the input end of the signal receiving unit 1137 receives the feedback signal Vfb and the mounting state signal Sidm, and the output end of the signal receiving unit 1137 is coupled to the first input end of the comparing unit CUd.
  • the output of the sawtooth generating unit 1038 is coupled to the second input of the comparing unit CUd.
  • the output of the comparison unit CUd is coupled to the control terminal of the switch circuit 1035.
  • the signal receiving unit 1137 can be, for example, a circuit composed of an error amplifier that can be used to receive a voltage, current feedback signal Vfb associated with the power module, and the mounting state provided by the detection circuit 5000b. Signal Sidm.
  • the signal receiving unit 1137 selects to output a preset voltage Vp or a feedback signal Vfb to the first input terminal of the comparison unit CUd according to the installation state signal Sidm.
  • the sawtooth wave generating unit 1038 is configured to generate a sawtooth wave signal Ssw to the second input end of the comparing unit CUd, wherein the sawtooth wave signal Ssw has at least one of a rising edge and a falling edge of the signal waveform of each of its periods The slope is not infinite.
  • the sawtooth wave generating unit 1138 of the embodiment may generate the sawtooth wave signal Ssw at a fixed operating frequency regardless of the mode in which the driving circuit 1030 operates, or may operate according to different operating frequencies in different operating modes.
  • the sawtooth wave signal Ssw is generated (that is, the sawtooth wave generating unit 1138 can change its operating frequency according to the installation state signal Sidm), and the present invention is not limited thereto.
  • the comparison unit CUd compares the signal levels on the first input terminal and the second input terminal, and outputs a high level lighting control when the signal level on the first input terminal is greater than the signal level on the second input terminal
  • the signal Slc when the signal level at the first input is not greater than the signal level at the second input, outputs a low level lighting control signal Slc.
  • the comparison unit CUd outputs a high level during a period in which the signal level of the sawtooth wave signal Ssw is greater than the signal level of the preset voltage Vp or the feedback signal Vfb, thereby generating the lighting control signal Slc having a pulse form.
  • FIG. 41C is a schematic diagram of signal timing of the power module of the third embodiment of the present invention.
  • the drive circuit 1130 When the LED straight tube lamp is energized (the two ends are mounted to the lamp holder, or one end is mounted to the other end of the lamp holder and is accidentally touched by the user), the drive circuit 1130 is activated and presetly enters the installation detection mode DTM. The bottom portion is described by the operation in the first period T1.
  • the signal receiving unit 1137 outputs the preset voltage Vp to the first input terminal of the comparison unit CUd, and the sawtooth wave generating unit 1138 also starts to generate the sawtooth wave.
  • the signal Ssw is to the second input of the comparison unit CUd.
  • the signal level of the sawtooth wave SW gradually rises from the initial level after the time point ts at which the driving circuit 1130 is activated, and gradually falls to the peak level after reaching the peak level. Starting level.
  • the comparison unit CUd Before the signal level of the sawtooth wave SW rises to the preset voltage Vp, the comparison unit CUd outputs a low-level lighting control signal Slc; after the signal level of the sawtooth wave SW rises above the preset voltage Vp, it drops again The comparison unit CUd pulls up the lighting control signal Slc to a high level during a period before returning to the preset voltage Vp; and after the signal level of the sawtooth wave SW falls below the preset voltage Vp again, the comparison unit CUd will again pull the lighting control signal Slc to a low level.
  • the comparison unit CUd can generate a pulse DP based on the sawtooth wave SW1 and the preset voltage Vp, wherein the pulse period DPW of the pulse DP is the signal level of the sawtooth wave SW higher than the preset voltage Vp. Period.
  • the lighting control signal Slc with the pulse DP is transmitted to the control terminal of the switching circuit 1135, so that the switching circuit 1035 is turned on during the pulse DPW, thereby storing the energy storage unit 1136 and generating a drive on the power supply circuit.
  • Current Since the generation of the drive current causes a change in the signal characteristics such as the signal level/waveform/frequency of the power supply circuit, the detection circuit 5000b detects the level change SP of the sampling signal Ssp. The detecting circuit 5000b further determines whether the level change SP exceeds a reference voltage Vref.
  • the detecting circuit 5000b In the first period T1, since the level change SP has not exceeded the reference voltage Vref, the detecting circuit 5000b outputs the corresponding mounting state signal Sidm to the signal receiving unit 1037, so that the signal receiving unit 1137 continues to be maintained in the mounting detection mode DTM, and The preset voltage Vp is continuously output to the comparison unit CUd.
  • the second period T2 since the level change of the sampling signal Ssp is similar to the first period T1, the overall circuit operation is the same as that in the first period T1, and thus the description will not be repeated.
  • the LED straight tube lamp is judged to have not been properly installed.
  • the driving circuit 1130 since the conduction time of the switching circuit 1035 is relatively short, the current value of the driving current does not cause harm to the human body ( Less than 5mA/MIU, down to 0).
  • the detecting circuit 5000b determines that the level change of the sampling signal Ssp exceeds the reference voltage Vref, and thus issues a corresponding mounting state signal Sidm to the signal receiving unit 1137, thereby indicating that the LED straight tube lamp has been properly installed. To the lamp holder.
  • the driving circuit 1130 enters the normal driving mode DRM from the mounting detecting mode DTM after the end of the third period T3.
  • the signal receiving unit 1037 may generate a corresponding signal to the comparison unit CUd according to the feedback signal Vfb received from the outside, so that the comparison unit CUd can be based on the input voltage, the output voltage,
  • the pulse width of the lighting control signal Slc is dynamically adjusted by driving current and the like, so that the LED module can be illuminated and maintained at the set brightness.
  • the detecting circuit 5000b can be stopped or continuously operated, but the signal receiving unit 1037 ignores the installation state signal Sidm, and the present invention is not limited thereto.
  • the detecting circuit 5000b is activated in response to the formation of the current path, and for a short period of time.
  • the electrical signal of the power supply circuit is internally detected, and an installation state signal Sidm is returned to the driving circuit 1130 according to the detection result.
  • the driving circuit 1130 determines whether to start to perform the power conversion operation according to the received installation state signal Sidm.
  • the driving circuit 1030 When the detecting circuit 5000b outputs the mounting state signal Sidm that the indicator tube has been correctly mounted, the driving circuit 1030 is activated in response to the mounting state signal Sidm, and generates a driving signal to drive the power switch, thereby converting the received power source into an output to the LED.
  • the output power of the module in this case, the detection circuit 5000b switches to an operation mode that does not affect the power conversion operation after the output status signal Sidm of the output indicator tube is correctly installed.
  • the driving circuit 1130 is maintained in the closed state until receiving the mounting state signal Sidm that the indicator tube is correctly installed; in this case, The detection circuit 5000b will continue to detect the electrical signal on the power circuit in the original detection mode until it is detected that the lamp has been properly installed.
  • FIG. 33A is a circuit block diagram of a mounting detection module according to a fourteenth embodiment of the present invention.
  • the power module of this embodiment includes a rectifier circuit 510, a filter circuit 520, a mounting detection module 5000d, and a driving circuit 1230.
  • the configuration of the rectifier circuit 510 and the filter circuit 520 is similar to that described in the previous embodiment.
  • the installation detection module includes a detection trigger circuit 5310, and the detection trigger circuit 5310 is disposed on the power supply loop (here, the latter stage of the filter circuit 520 is taken as an example, but the invention is not limited thereto), and the driving circuit is The power supply terminal or voltage detection terminal of the 1230 is coupled.
  • the output of the driving circuit 1230 is coupled to the LED module 630.
  • the detection trigger circuit 5310 is activated when an external power source is applied to the power module to adjust the electrical signal supplied to the power terminal or voltage detecting terminal of the driver circuit 1230 to an electrical signal having a first waveform characteristic.
  • the driving circuit 1230 receives the electrical signal having the first waveform characteristic, it enters the detection mode, thereby outputting a narrow pulse conforming to the detection requirement to drive the power switch, and then detecting the current flowing through the power switch or the LED module 50. Determine if the lamp is properly installed on the lamp holder.
  • the driving circuit 1230 will change the driving mode under normal operation to drive the power switch, so that the driving circuit 1230 can provide a stable output power to illuminate the LED module 630; at this time, the detecting trigger circuit 5310 will Turning off, the power supplied to the driving circuit 1230 is not affected, that is, the electrical signal supplied to the power supply terminal or the voltage detecting terminal of the driving circuit does not have the first waveform characteristic. If it is determined that the lamp is not properly installed, the drive circuit 1230 will continue to drive the power switch with a narrow pulse until it is determined that the lamp has been properly installed. The signal timing of this portion is similar to that shown in Fig. 41C, and can be referred to the corresponding paragraph.
  • FIG. 33B is a schematic diagram of a circuit structure of a driving circuit with an electric shock detecting function according to a second embodiment of the present invention
  • FIG. 33C is an integrated control of an embodiment of the present invention.
  • the driving circuit 1230 includes an integrated controller 1233, an inductor 1236, a diode 1234, an inductor 1237, and a resistor 1238.
  • the integrated controller 1233 includes a plurality of signal receiving terminals, such as a power terminal P_VIN, a voltage detecting terminal P_VSEN, and a current.
  • the first end of the inductor 1236 is commonly coupled to the anode of the diode 1234 to the drive terminal P_DRN of the integrated controller 1233.
  • a resistor 1238 is coupled to the current sense terminal I_SEN of the integrated controller 1233.
  • the detection trigger circuit 5310 can be, for example, a switching circuit that is connected to the voltage detecting terminal V_SEN of the integrated controller 1233.
  • the power module further includes a plurality of auxiliary circuits disposed outside the integrated controller 1233, such as resistors Rb1 and Rb2 connected to the output of the filter circuit 520.
  • auxiliary circuits disposed outside the integrated controller 1233, such as resistors Rb1 and Rb2 connected to the output of the filter circuit 520.
  • Other external auxiliary circuits not shown may be included in the power module, but this part does not affect the description of the overall circuit operation.
  • the integrated controller 1233 includes a pulse control unit PCU, a power switch unit 1235, a current control unit CCU, a gain amplifying unit Gm, a bias unit BU, a detection trigger unit DTU, a switching unit SWU, and comparison units CU1 and CU2.
  • the pulse control unit PCU is used to generate a pulse signal to control the power switching unit 1235.
  • the power switch unit 1235 is connected to the inductor 1236 and the diode 1234 via the driving terminal P_DRN, and is switched in response to the control of the pulse signal, so that the inductor 1236 can repeatedly charge and discharge in the normal operation mode to provide a stable output current to the LED module 50. .
  • the current control unit CCU receives the voltage detection signal VSEN through the voltage detection terminal P_VSEN and receives a current detection signal (indicated by ISEN) indicating the magnitude of the current ISEN flowing through the resistor 1238 through the current detection terminal P_ISEN, wherein the current control unit CCU is in the normal operation mode
  • the real-time operating state of the LED module 50 is known based on the voltage detection signal VSEN and the current detection signal ISEN, and an output adjustment signal is generated according to the operating state.
  • the output adjustment signal is processed by the gain amplifying unit Gm to be supplied to the pulse control unit PCU, thereby serving as a reference for generating a pulse signal by the pulse control unit PCU.
  • the bias unit BU receives the signal filtered by the filter circuit 520 from the power module, and generates a stable driving voltage VCC and a reference voltage V REF for use by each unit in the integrated controller 1233.
  • the detecting trigger unit DTU is connected to the detecting trigger circuit 5310 and the resistors Rb1 and Rb2 through the voltage detecting terminal P_VSEN, and is configured to detect whether the signal characteristic of the voltage detecting signal VSEN received from the voltage detecting terminal P_VSEN conforms to the first waveform characteristic, and according to the detection result A detection result signal is output to the pulse control unit PCU.
  • the switching unit SWU is connected to the first end of the resistor 1238 through the current detecting terminal P_ISEN, which selectively supplies the current detecting signal I SEN to the comparing unit CU1 or CU2 according to the detection result of the detecting trigger unit DTU.
  • the comparison unit CU1 is mainly used for overcurrent protection, which compares the received current detection signal ISEN with an overcurrent reference signal V OCP and outputs the result of the comparison to the pulse control unit PCU.
  • the comparison unit CU2 is mainly used as an anti-shock protection, which compares the received current detection signal ISEN with an installation reference signal V IDM and outputs the result of the comparison to the pulse control unit PCU.
  • the detection trigger circuit 5310 when the LED straight tube lamp is energized, the detection trigger circuit 5310 is first activated, and the voltage detection signal VSEN supplied to the voltage detecting terminal P_VSEN is affected/adjusted by means such as switching, so that the voltage detection is performed.
  • Signal VSEN has a particular first waveform characteristic.
  • the detection trigger circuit 5310 taking the detection trigger circuit 5310 as a switch, the detection trigger circuit 5310 can continuously switch the conduction state for several times at a preset time interval during startup, so that the voltage detection signal VSEN will respond to the switch switching.
  • the voltage waveform oscillates.
  • the integrated controller 1233 is preset to not start when receiving power, that is, the pulse control unit PCU does not immediately output a pulse signal to drive the power switching unit 1235 to illuminate the LED module 50. Rather, the detection trigger unit DTU first determines whether the waveform characteristic conforms to the set first waveform characteristic according to the voltage detection signal VSEN, and transmits the determination result to the pulse control unit PCU.
  • the integrated controller 1233 When the pulse control unit PCU receives a signal indicating that the voltage detection signal VSEN conforms to the first waveform characteristic from the detection trigger unit DTU, the integrated controller 1233 enters the installation detection mode. In the installation detection mode, the pulse control unit PCU outputs a narrow pulse to drive the power switching unit 1235, so that the current on the power supply circuit is limited to a current value (such as 5MIU) that does not cause a risk of human electric shock, in the detection mode.
  • a current value such as 5MIU
  • the switching unit SWU switches to the circuit configuration for transmitting the current sensing signal ISEN to the comparison unit CU2, so that the comparison unit CU2 can compare the current sensing signal ISEN with the mounting reference signal V IDM .
  • the second end of the resistor 1238 is equivalent to being connected to the ground GND1 via the body resistance Rbody, and in the case of the series connection of the resistor, the equivalent resistance value is increased, so that the current detection signal
  • the ISEN pulse control unit PCU can know whether the LED straight tube lamp has been correctly mounted to the socket according to the comparison result of the comparison unit CU2.
  • the integrated controller 1233 will remain in the installation detection mode, that is, the pulse control unit PCU will continue to output.
  • the narrow pulse is used to drive the power switching unit 1235, and it is judged based on the current sensing signal ISEN whether the LED straight tube lamp is properly mounted. If the pulse control unit PCU determines that the LED straight tube lamp has been correctly mounted to the socket based on the comparison result of the comparison unit CU2, the integrated controller 1233 enters the normal operation mode.
  • the detection trigger circuit 5310 stops functioning, that is, the detection trigger circuit 5310 no longer affects/adjusts the voltage detection signal VSEN.
  • the voltage detection signal VSEN is determined only by the voltage division of the resistors Rb1 and Rb2.
  • the detection trigger unit DTU may be disabled, or the pulse control unit PCU no longer refers to the signal of the detection trigger unit DTU output.
  • the pulse control unit PCU mainly uses the signal output by the current control unit CCU and the gain amplifying unit Gm as a basis for adjusting the pulse width, so that the pulse control unit PCU outputs a pulse signal corresponding to the rated power to drive the power switching unit 1235, thereby providing stable Current is supplied to the LED module 50.
  • the switching unit SWU switches to a circuit configuration for transmitting the current sensing signal ISEN to the comparison unit CU1, so that the comparison unit CU1 can compare the current sensing signal ISEN with the overcurrent protection signal V OCP , thereby enabling the pulse control unit
  • the PCU can adjust the output pulse signal in the event of an overcurrent condition to avoid circuit damage.
  • the function of the overcurrent protection is optional in the integrated controller 1233.
  • the integrated controller 1233 may not include the comparison unit CU1. Under this configuration, the switching unit SWU may be omitted at the same time, so that the current detection signal ISEN may be directly provided to the input terminal of the comparison unit CU2.
  • FIG. 33D is a schematic diagram of a circuit structure of a driving circuit with an electric shock detecting function according to a third embodiment of the present invention.
  • the driving circuit 1330 of this embodiment is substantially the same as the foregoing embodiment of FIG. 33B, and includes an integrated controller 1333, a diode 1334, an inductor 1336, a capacitor 1337, and a resistor 1338. The difference is only that the driving circuit 1330 of the embodiment increases the transistor Mp.
  • the parallel resistor array Rpa includes a plurality of resistors connected in parallel with each other, and the resistance value thereof can be set corresponding to the resistor 1238, wherein the second end of the parallel resistor array Rpa is connected to the ground terminal GND1.
  • the integrated controller 1333 sends a corresponding signal to the gate of the transistor Mp via the detection control terminal according to the current working mode, so that the transistor Mp is turned on in the installation detection mode and reflected on the received signal. And it is reflected in the normal operation mode reflected on the received signal.
  • the parallel resistance array Rpa can be equivalently connected in parallel with the resistor 1338, so that the equivalent resistance value is lowered, thereby matching with the human body resistance. In this way, when the straight tube lamp is not properly installed and the body resistance is connected to the power circuit, the adjustment of the equivalent resistance value can make the current change of the detection current signal ISEN more obvious when the body resistance is added, thereby improving the installation detection. Correctness.
  • FIG. 34 is a circuit block diagram of a power module according to a thirteenth embodiment of the present invention.
  • the LED straight tube lamp 1400 is, for example, directly receiving an external driving signal provided by the external power grid 508, wherein the external driving signal is supplied to the LED straight tube lamp 1200 through the live line (L) and the neutral line (N). Both ends are connected to pins 501, 502.
  • the LED straight tube lamp 1400 may further include pins 503, 504. Under the structure that the LED straight tube lamp 1400 includes four pins 501-504, the two pins on the same side lamp head (such as 501 and 503, or 502 and 504) can be electrically connected or mutually connected according to design requirements.
  • the electric shock detection module 6000 is disposed in the lamp tube and includes a detection control circuit 6100 and a current limiting circuit 6200.
  • the electric shock detection module 6000 may also be referred to as an installation detection module 6000 (described below by the installation detection module 6000).
  • the current limiting circuit 6200 is provided in combination with the driving circuit 530, and may be, for example, a bias adjusting circuit for controlling the driving circuit to be disabled/enabled, or a power switch of the driving circuit itself (refer to the description of the related embodiment).
  • the detection control circuit 6100 detects the signal at the input end of the rectifier circuit 510 (ie, the signal provided by the external power grid 508) in the detection mode, and controls the current limiting circuit 6200 according to the detection result to determine whether to prohibit the current from flowing through the LED straight tube. Light 1400.
  • the detection control circuit 6100 detects a small current signal and judges that the signal flows excessively high impedance. At this time, the current limiting circuit 6200 disables the driving circuit to make the LED The straight tube lamp 1400 is stopped (ie, the LED tube light 1400 is not illuminated).
  • the detection control circuit 6100 determines that the LED straight tube lamp 1400 is correctly mounted on the socket, and the current limiting circuit 6200 enables the driving circuit to enable the LED straight tube lamp 1400 to operate normally (ie, the LED tube light 1400 can be Normally lit). In other words, when the detection control circuit 6100 samples from the input terminal of the rectifier circuit 510 and the detected current is higher than the installation set current (or current value), the detection control circuit 6100 determines that the LED straight tube lamp 1400 is correctly mounted on the socket.
  • the control current limiting circuit enables the driving circuit; when the detection control circuit 6100 samples from the input terminal of the rectifier circuit 510 and the detected current is lower than the installation set current (or current value), the detection control circuit 6100 determines the LED straight tube
  • the lamp 1400 is not properly mounted on the lamp holder and the current limiting circuit is disabled to disable the driving circuit, so that the LED straight tube lamp 1400 enters a non-conducting state or the current effective value of the LED straight tube lamp 1400 is limited.
  • the mounting detection module 6000 determines whether to turn on or off based on the detected impedance, causing the LED straight tube lamp 1400 to operate to conduct or enter a non-conducting/limiting current state.
  • the installation detecting module 6000 can determine whether the user touches the lamp by detecting the voltage/current change on the power circuit.
  • the above anti-shock function can be realized.
  • the installation detection module 6000 can detect whether the lamp is correctly installed and whether the user accidentally touches the lamp if the lamp is not properly installed by detecting an electrical signal (including voltage or current).
  • the conductive part of the tube Compared with the embodiment of FIG. 18 and FIG.
  • the detection control circuit 6100 of the present embodiment detects the signal through the sampling bridge, it is less susceptible to misjudgment due to other circuits in the power module, and There is a beneficial effect that the switching circuit connected in series on the power supply circuit can be omitted.
  • the detection control circuit 6100 determines whether the LED straight tube lamp 1400 is correctly mounted to the socket or has an abnormal impedance access step as shown in FIG. 42A, including: turning the detection path on for a period of time After being turned off (step S101); sampling the electrical signal on the detection path during the period in which the detection path is on (step S102); determining whether the sampled electrical signal conforms to the preset signal characteristic (step S103); when the step S103 is determined to be When the control current limiting circuit 5200 operates in the first configuration (step S104); and when the determination in step S103 is negative, the control current limiting circuit 5200 operates in the second configuration (step S105), and then returns to step S101.
  • the detection path may be a current path connected between the input side and the ground end of the rectifier circuit 510.
  • the detection control circuit 6100 turns on the period length, the interval, the trigger time, and the like of the detection path, and can be referred to the description of the related embodiment.
  • step S101 turning on the detection path for a period of time can be realized by a pulsed switching control means.
  • the sampled electrical signal may be a signal such as a voltage signal, a current signal, a frequency signal, or a phase signal that can express an impedance change of the detection path.
  • the action of determining whether the sampled electrical signal conforms to the preset signal characteristic may be, for example, comparing the relative relationship between the sampled electrical signal and a predetermined signal.
  • the detecting controller 5100 determines that the electrical signal conforms to the preset signal characteristic may be a state corresponding to determining that the LED straight tube lamp is correctly installed/no abnormal impedance access, and the detecting controller 7100 determines that the electrical signal does not comply with the pre-
  • the signal characteristic may be a state corresponding to the determination that the LED straight tube lamp is incorrectly installed/having abnormal impedance access.
  • the first configuration and the second configuration are two different circuit configurations, and the configuration position and type of the visual current limiting circuit 6200 are determined.
  • the first configuration may be a cutoff configuration (normal bias configuration).
  • the second configuration can be a conduction configuration (adjusting the bias configuration).
  • the first configuration may be a drive control configuration (ie, only the drive circuit controller controls the switching of the power switch, and the detection control circuit 6100 does not Affecting the control of the power switch), and the second configuration may be a cutoff configuration.
  • FIG. 35A is a circuit block diagram of a mounting detection module according to a fifteenth embodiment of the present invention.
  • the mounting detection module 6000a includes a detection pulse generation module 6110, a control circuit 6120, a detection determination circuit 6130, and a detection path circuit 6160.
  • the detection decision circuit 6130 is coupled to the detection path circuit 6160 via the path 6161 to detect the signal on the detection path circuit 6160.
  • the detection determination circuit 6130 is simultaneously coupled to the control circuit 6120 via the path 6131 to transmit the detection result signal to the control circuit 6120 via the path 6131.
  • the detection pulse generation module 6110 is coupled to the detection path circuit 6160 via the path 6111, and generates a pulse signal to notify the detection path circuit 6160 to turn on the detection path or perform a timing point of the detection action.
  • the control circuit 6120 is coupled to the driving circuit 1430 via the path 6121 to control the operation of the driving circuit 1430 according to the detection result signal.
  • the detection path circuit 6160 has a first detection connection terminal DE1, a second detection connection end DE2, and a third detection connection end De3, wherein the first detection connection end DE1 and the second detection connection end DE2 are electrically connected and rectified.
  • the two inputs of circuit 510 are used to receive/sample external drive signals from first pin 501 and second pin 502.
  • the detection path circuit 6160 rectifies the received/sampled external drive signal, and is controlled by the detection pulse generation module 6110 to determine whether to cause the rectified external drive signal to circulate on a detection path. In other words, the detection path circuit 6160 determines whether to turn on the detection path in response to the control of the detection pulse generation module 6110.
  • the detection path circuit 6160 turns on the detection path based on the pulse signal and detects whether there is an abnormal external impedance access or the like.
  • the operation of the circuit can be referred to the description of FIGS. 23B to 23D, and the detailed description thereof will not be repeated here. Further, regarding the detection pulse generation module and the detection determination circuit, reference may be made to other descriptions of the detection pulse generation module and the detection determination circuit embodiment, and the description thereof will not be repeated here.
  • the detection pulse generation module 6110 first activates in response to the added external power source, thereby generating a pulse to briefly turn on the detection path formed by the detection path circuit 6160. .
  • the detection determination circuit 6130 samples the signal on the detection path and determines whether the LED straight tube lamp is correctly mounted on the lamp holder or whether the human body is in contact with the LED straight tube lamp to cause leakage.
  • the detection determination circuit 7130 transmits a corresponding detection result signal to the control circuit 6120 according to the detection result.
  • control circuit 6120 can be a circuit for issuing a control signal to a drive controller in the drive circuit 1430.
  • the control circuit 6120 when the control circuit 6120 receives the detection result signal that the indicator tube has been correctly installed, the control circuit 6120 further sends a corresponding control signal to the driving circuit 1430, so that the driving circuit 1430 is responsive to the control signal. A normal power conversion is performed to provide power to the back end LED module.
  • the control circuit 6120 sends a corresponding control signal to the driving circuit 1430, so that the driving circuit 1430 stops the power conversion in response to the control signal.
  • the current flowing through the power circuit can be limited to a safe value.
  • control circuit 6120 can be a bias adjustment circuit (described below with a bias adjustment circuit 6120) that can control the operational state of the drive circuit 1430 by affecting/adjusting the bias voltage of the drive circuit 1430.
  • the bias adjustment circuit 6120 when the bias adjustment circuit 6120 receives the detection result signal that the indicator tube has been correctly installed, the bias adjustment circuit 6120 does not adjust the bias voltage of the driving circuit 1430, so that the driving circuit 1430 can normally receive the signal.
  • the bias power supply is turned on and power conversion is performed to provide power to the back end LED module.
  • the bias adjustment circuit 6120 when the bias adjustment circuit 6120 receives the detection result signal that the indicator tube is not properly installed, the bias adjustment circuit 6120 is activated to adjust the bias power supplied to the driving circuit 1430, wherein the adjusted bias power supply This may not be sufficient to cause the drive circuit 1430 to start or normally perform a power conversion, thereby allowing the current flowing through the power supply circuit to be limited to a safe value.
  • the switching circuits (such as 3200, 3200a-L, 4200, 4200a) originally disposed on the power supply circuit can be omitted. Since the switching circuit originally disposed on the power supply circuit needs to carry a large current, there are strict considerations in the selection and design of the transistor specifications. Therefore, the design of the embodiment can significantly reduce the installation detection module by omitting the switching circuit. Overall design cost. On the other hand, since the control circuit 6120 of the present embodiment controls the operation of the driving circuit 1430 by adjusting the bias state of the driving circuit 1430, it is not necessary to change the design of the driving circuit 1430, which is more advantageous for commercialization. the design of.
  • the detection pulse generation module 6110 and the detection path circuit 6160 can be implemented (but not limited to) by the circuit architectures of FIGS. 35B and 35C, respectively, and other portions (detection determination circuit 6130 and control circuit 6120)
  • FIGS. 35B and 35C are schematic diagrams showing the circuit architecture of the mounting detection module of the thirteenth embodiment of the present invention. The modules/units are described below.
  • FIG. 35B is a circuit diagram of a detection pulse generation module of the installation detection module according to the fifteenth embodiment of the present invention.
  • the detection pulse generation module 6110 includes resistors Rd1 and Rd2, a capacitor Cd1, and a pulse generation circuit 6112.
  • the configuration of this embodiment is substantially the same as the detection pulse generation module 5110 of the previous embodiment, and the main difference between the two is that the first end of the resistor Rd1 of the present embodiment is the first rectification connected to the rectifier circuit 510 through the diodes Dd1 and Dd2.
  • the input represented by the first pin 501
  • the second rectified input represented by the second pin 502
  • FIG. 35C is a circuit schematic diagram of a detection path circuit of a mounting detection module according to a fifteenth embodiment of the present invention.
  • the detection path circuit 6160 includes a resistor Rd3, a transistor Md1, and diodes Dd1 and Dd2.
  • the configuration of this embodiment is substantially the same as the detection path circuit 5160 of the foregoing embodiment.
  • the main difference between the two is that the detection path circuit 6160 of the present embodiment is provided with diodes Dd1 and Dd2, wherein the first end of the resistor Rd3 is through the diode Dd1.
  • Dd2 Connected to the first rectified input terminal (represented by the first pin 501) and the second rectified input terminal (represented by the second pin 502) of the rectifier circuit 510, and Dd2 is connected between the rectification input terminal and the rectified output terminal. Independent of the detection path of the power circuit.
  • the specific configuration and function of the diodes Dd1 and Dd2 are described in the foregoing embodiment of FIG. 28B, and details are not described herein again.
  • the power module of the ninth preferred embodiment integrates the circuit and function for detecting and preventing electric shock into the driving circuit, compared to the foregoing power module including the mounting detecting module (2520).
  • the drive circuit becomes a drive circuit with anti-shock and installation detection functions.
  • the power module of the first exemplary embodiment only needs to provide a detecting circuit 5000c for detecting an electrical signal of the power circuit, and can be used with the function of the driving circuit 1030 to realize the installation detection and prevention of the LED straight tube lamp.
  • the electric shock action that is, by adjusting the control mode of the drive circuit 1030, the detection pulse generation module, the detection result latch circuit and the switch circuit in the installation detection module can be realized by the hardware structure of the existing drive circuit 1030, Additional circuit components need to be added.
  • the effective circuit design can be effectively reduced.
  • the design cost of the overall power module due to the reduction of circuit components, the layout of the power module can be more spaced and the power consumption is lower, which helps the input power source to be used more for illuminating the LED module, thereby improving the light. It also reduces the heat caused by the power module.
  • the configuration and action mechanism of the detection circuit 5000c of the second exemplary embodiment is similar to the detection pulse generation module, the detection path circuit, and the detection determination circuit in the installation detection module, and the detection result latch circuit and the switch in the original detection module are installed.
  • the circuit part is replaced by the existing controller and power switch of the drive circuit.
  • the mounting state signal Sidm can be easily designed to be compatible with the signal format of the controller 1133 through a specific detection path circuit (5260) configuration, thereby reducing the circuit complexity. Underneath, the larger the size, the difficulty of circuit design.
  • the second exemplary embodiment is illustrated in a configuration similar to the detection path circuit 3660 of FIG. 24B, the present invention is not limited thereto.
  • the detection path circuitry may also utilize the configuration of the other embodiments described above to effect sampling/monitoring of transient electrical signals.
  • FIG. 36A is a circuit block diagram of a mounting detection module according to a sixteenth embodiment of the present invention.
  • the circuit related to the detection installation state and used to perform the switch control may be collectively referred to or integrated as the detection controller 7100; the circuit for influencing the current on the power supply circuit in response to the control of the detection controller 7100 may be It is collectively referred to or integrated as a current limiting circuit 7200.
  • the foregoing embodiments are not specifically specified, those skilled in the art should understand that any circuit including an active device needs a corresponding driving voltage VCC to work, and therefore there will be a part in the mounting detection mode 7000.
  • the component/line is used as a drive voltage.
  • the circuit for generating the driving voltage VCC is collectively referred to or integrated as a bias circuit 7300 (such as the bias circuit of FIGS. 25A-25C).
  • the detection controller 7100 is similar to the foregoing detection control circuit 2100, and is used for performing installation state detection/impedance detection, thereby determining whether the LED straight tube lamp is correctly mounted on the lamp socket, or It is said that it is judged whether there is abnormal impedance access (for example, human body impedance), and the detection controller 7100 controls the current limiting circuit 7200 according to the result of the judgment.
  • the detection controller 7100 determines that the LED straight tube lamp is not properly installed/having abnormal impedance access, the detection controller 7100 controls the current limiting circuit 7200 to be disconnected to avoid an electric shock hazard caused by excessive current on the power supply circuit.
  • the current limiting circuit 7200 is similar to the current limiting circuit 2200 described above, and is used for controlling the normal current circulation of the power supply circuit when determining that the LED straight tube lamp is correctly installed/no abnormal impedance access, and determining that the incorrect installation/abnormal impedance is present.
  • the current that controls the power circuit when connected is less than the circuit below the safe electric shock value.
  • the circuit configuration upper limit stream circuit 7200 may be a switch circuit that is independent of the drive circuit and serially connected to the power supply circuit (such as the switch circuit 3200a of FIG. 19A, the switch circuit 3200b of FIG. 20A, the switch circuit 3200c of FIG. 21A, and the switch of FIG. 22A).
  • the biasing circuit 7300 is used to provide the driving voltage VCC required for the operation of the detecting controller 7100. For a specific embodiment, reference may be made to FIGS. 36B and 37B, which will be described later.
  • the detection controller 7100 can be regarded as the detection control means used in the installation detection module of the present case, and the current limiting circuit 7200 can be regarded as the installation detection of the present case.
  • the current limiting means used in the module wherein the current limiting means can correspond to any of the possible circuit implementation types of the current limiting circuit/switching circuit, and the detecting control means can correspond to the mounting detecting module except the switching means Part or all of the external circuit.
  • FIG. 42C is a flow chart showing the steps of the control method of the mounting detection module according to the second embodiment of the present invention.
  • the detection controller 7100 continuously detects the bus voltage after entering the operation mode DRM (step S301), and determines whether the bus voltage continues to be lower than the third level during the second period (step S302), wherein the second period may be, for example, It is 200 ms to 700 ms, preferably 300 ms or 600 ms, and the third level may be, for example, 80 V to 120 V, preferably 90 V or 115 V.
  • the detection controller 7100 determines whether the bus voltage is continuously below 115V for more than 600ms.
  • step S302 If the installation detecting module determines YES in step S302, the representative external driving signal is stopped, that is, the LED straight tube lamp is powered off. At this time, the detection controller 7100 re-controls the current limiting circuit 7200 to switch to the second configuration (step S303), and performs reset (step S304). Conversely, if the detection controller 7100 determines "NO" in step S302, it can be considered that the external drive signal is normally supplied to the LED straight tube lamp. At this time, the detecting controller 7100 returns to step S301 to continuously detect the bus voltage and judge whether the LED straight tube lamp is powered off.
  • FIG. 36B is a schematic diagram showing the circuit structure of the bias circuit of the first embodiment of the present invention.
  • the bias circuit 7300a includes a rectifier circuit 7310, resistors Re1 and Re2, and a capacitor Ce1.
  • the rectifier circuit 7310 is a full-wave rectifier bridge, but the invention is not limited thereto.
  • the input terminal of the rectifier circuit 7310 receives the external drive signal Sed and rectifies the external drive signal Sed to output a DC rectified signal at the output.
  • the resistors Re1 and Re2 are connected in series between the output terminals of the rectifier circuit 7310, and the capacitors Ce1 and Re2 are connected in parallel, wherein the rectified signal is converted into the driving voltage VCC after the voltage division of the resistors Re1 and Re2 and the voltage regulation of the capacitor Ce1. It is output from both ends of the capacitor Ce1 (ie, the node PN and the ground).
  • the rectifier circuit 7310 can be replaced by the existing rectifier circuit of the power module, and the resistors Re1 and Re2
  • the capacitor Ce1 can be directly connected to the power supply circuit to utilize the rectified bus voltage (ie, the rectified voltage) on the power supply circuit as a power supply source.
  • the rectifying circuit 7310 is independent of the power module setting, thereby converting the alternating current signal into an internal circuit for mounting the detecting module.
  • the DC drive voltage VCC used.
  • FIG. 36C is a schematic diagram showing the circuit structure of the bias circuit of the second embodiment of the present invention.
  • the bias circuit 7300b includes a rectifier circuit 7610, a resistor Re3, a Zener diode ZD1, and a capacitor Ce2.
  • This embodiment is substantially the same as the foregoing embodiment of FIG. 36B.
  • the main difference between the two is that the Zener diode ZD1 is used instead of the resistor Re2 of FIG. 36B, so that the driving voltage VCC can be made more stable.
  • FIG. 37 is a circuit block diagram of a detection pulse generation module according to an embodiment of the present invention.
  • the detection pulse generation module 7110 of the present embodiment includes a pulse start circuit 7112 and a pulse width decision circuit 7113.
  • the pulse start circuit 7112 is for receiving the external drive signal Sed, and determines the time point at which the pulse generation module 7110 emits a pulse according to the external drive signal Sed.
  • the pulse width determining circuit 7113 is coupled to the output end of the pulse starting circuit 7112 for setting the pulse width, and emits a pulse signal DP corresponding to the set pulse width at the time indicated by the pulse starting circuit 7112.
  • the detection pulse generation module 7110 may further include an output buffer circuit 7114.
  • the output end of the output buffer circuit 7114 is coupled to the output end of the pulse width determining circuit 7113 for adjusting the output signal waveform (such as voltage and current) of the pulse width determining circuit 7113, so that the output can conform to the operation of the back end circuit.
  • the pulse signal DP required.
  • the timing at which the pulse is emitted is based on the time point at which the driving voltage VCC is received, and thus the bias circuit that generates the driving voltage VCC can be regarded as the detection pulse generation module.
  • 3110 pulse start circuit the pulse width of the pulse signal emitted by the detection pulse generation module 3110 is mainly determined by the charge and discharge time of the RC charge and discharge circuit composed of the capacitors C11, C12 and C13 and the resistors R11, R12 and R13, so the capacitor C11, C12 and C13 and resistors R11, R12 and R13 can be regarded as pulse width determining circuits of the detection pulse generating module 3110.
  • the buffers BF1 and BF2 are output buffer circuits of the detection pulse generation module 3110.
  • the time point at which the pulse is emitted is related to the time point at which the driving voltage VCC is received and the charging and discharging time of the RC circuit composed of the resistor R21 and the capacitor C21, thereby generating the driving.
  • the bias circuit of the voltage VCC, the resistor R21 and the capacitor C21 can be regarded as a pulse start circuit of the detection pulse generation module 3210.
  • the pulse width of the pulse signal emitted by the detection pulse generation module 3210 is mainly determined by the forward threshold voltage and the negative threshold voltage of the Schmitt trigger STRG and the switching delay time of the transistor M21, so Schmidt The flip-flop STRG and the transistor M21 can be regarded as a pulse width determining circuit of the detection pulse generating block 3210.
  • the pulse activation circuit of the detection pulse generation module 3110, 3210 can implement the control of the pulse start time point by adding a comparator, as shown in FIG. 38A.
  • 38A is a schematic diagram of a circuit architecture of a detection pulse generation module according to a first embodiment of the present invention.
  • the detection pulse generation module 7110a includes a comparator (referred to as a comparator 7112a underneath) and a pulse width determination circuit 7113a as a pulse start circuit 7112a.
  • the first input of the comparator 7112a receives the external drive signal Sed
  • the second input receives the reference level Vps
  • the output is coupled to one end of the resistor Rf1 (this end corresponds to the drive voltage VCC input of FIG.
  • the comparator 3241 receives the external drive signal Sed and is not limited to being implemented by directly feeding the external drive signal Sed to the first input of the comparator 3241.
  • the external driving signal Sed can be converted into a status signal related to the external driving signal by signal processing means such as rectification and/or voltage division, and the comparator 3241 can know when receiving the status signal.
  • the state of the external drive signal is equivalent to receiving the external drive signal Sed or performing a subsequent signal comparison operation based on the external drive signal Sed.
  • the pulse width determining circuit 7113a includes resistors Rf1 - Rf3, a Schmitt trigger STRG, a transistor Mf1, a capacitor Cf1, and a Zener diode ZD1, wherein the configuration of the above components is similar to the configuration of FIG. 20B, so the circuit connection description can be referred to the above implementation. example.
  • the RC circuit composed of the resistor Rf1 and the capacitor Cf1 starts charging when the level of the external driving signal Sed exceeds the reference level Vps, thereby controlling the generation timing of the pulse signal DP.
  • the specific signal timing is shown in Figure 39A.
  • FIG. 39A is a schematic diagram of signal timing of the detection pulse generation module according to the first embodiment of the present invention.
  • the comparator 3241 as the pulse start circuit outputs a high level signal to one end of the resistor Rf1 when the level of the external drive signal Sed is higher than the reference level Vps, so that the capacitor Cf1 starts charging.
  • the voltage Vcp on the capacitor Cf1 gradually rises with time.
  • the output of the Schmitt trigger STRG outputs a high level signal, thereby turning on the transistor Mf1.
  • the capacitor Cf1 starts to discharge to the ground through the resistor Rf2 and the transistor Mf1, so that the voltage Vcp gradually decreases with time.
  • the output of the Schmitt trigger STRG is switched from the output high level signal to the output low level signal, thereby generating a pulse waveform DP1, wherein the pulse
  • the pulse width DPW of DP1 is determined by the forward threshold voltage Vsch1, the reverse threshold voltage Vsch2, and the switching delay time of the transistor Mf1.
  • the Schmitt trigger STRG will again be based on the above
  • the pulse waveform DP2 is generated by operation, and the subsequent operations can be analogized.
  • the pulse enable circuit 7112 can issue a pulse generation indication when the external drive signal Sed reaches a certain level, thereby determining the generation time point of the pulse signal, as shown in FIG. 38B.
  • 38B is a schematic diagram of a circuit architecture of a detection pulse generation module according to a second embodiment of the present invention.
  • the detection pulse generation module 7110b includes a pulse activation circuit 7112b and a pulse width determination circuit 7113b.
  • the pulse start circuit 7112b includes a comparator CPf1 and a signal edge trigger circuit SETC.
  • the first input of the comparator CPf1 receives the external drive signal Sed, the second input receives the reference level Vps, and the output is coupled to the input of the signal edge transmit circuit SETC.
  • the signal edge trigger circuit SETC may be, for example, a rising edge trigger circuit or a falling edge trigger circuit, which can detect the time point at which the comparator CPf1 outputs the transition state, and accordingly generates a pulse to generate a pulse width decision circuit 7113b indicating to the back end.
  • the pulse width determining circuit 7113b may be any pulse generating circuit capable of generating a set pulse width at a specific time point according to the pulse generation instruction, for example, the circuit of the foregoing FIG. 19B, FIG.
  • the present invention is not limited thereto. It should be noted that although the first input end of the comparator CPf1 directly receives the external driving signal Sed, the present invention is not limited thereto. In some embodiments, the first input of comparator CPf1 may also receive an externally driven signal Sed that has been signal processed (eg, rectified, filtered, divided, etc.) as a reference. In other words, the pulse enable circuit 7112b can be based on any associated signal that can indicate the level or phase state of the external drive signal as a reference for the point in time at which the pulse is generated.
  • an externally driven signal Sed that has been signal processed (eg, rectified, filtered, divided, etc.) as a reference.
  • the pulse enable circuit 7112b can be based on any associated signal that can indicate the level or phase state of the external drive signal as a reference for the point in time at which the pulse is generated.
  • the specific signal timing of the detection pulse generation module 7110 can be as shown in FIG. 39B or FIG. 39C.
  • 39B is a schematic diagram of signal timing of the detection pulse generation module according to the second embodiment of the present invention, which illustrates a signal waveform of a rising edge triggering
  • FIG. 39C is a detection pulse generation module of the third embodiment of the present invention.
  • the comparator CPf1 outputs a high-level signal when the level of the external driving signal Sed rises above the reference level Vps, and drives the signal Sed externally. The high level signal output is maintained while the level is higher than the reference level Vps.
  • the comparator CPf1 When the level of the external drive signal Sed gradually decreases from the peak value to the reference level Vps, the comparator CPf1 outputs the low level signal again. Thus, the output of the comparator CPf1 produces an output voltage Vcp having a pulse waveform.
  • the signal edge trigger circuit SETC will trigger the coincidence signal output in response to the rising edge of the output voltage Vcp, so that the pulse width determining circuit 7113b at the back end is near the rising edge of the output voltage Vcp according to the enable signal and the set pulse width DPW. A pulse signal DP is generated.
  • the detection pulse generation module 3610 can change the pulse generation time point of the pulse signal DP correspondingly by adjusting the setting of the reference level Vps, so that the pulse signal DP is only when the external drive signal Sed reaches a certain level or phase. Trigger pulse output. In this way, the misjudgment problem that may occur when the pulse signal DP described in the previous embodiment is generated near the zero point of the external driving signal Sed can be avoided.
  • the reference level Vps may be adjusted correspondingly based on the magnitude of the bus voltage, thereby enabling the detection pulse generation module to generate pulse signals at different points in time in response to different grid voltages (eg, 120V and 277V). .
  • the signal level on the detection path can be limited to the corresponding range, thereby improving the accuracy of the mounting detection/impedance detection.
  • the reference level Vps can include a first reference level corresponding to a first grid voltage (eg, 120V) and a second reference level corresponding to a second grid voltage (eg, 277V).
  • the pulse starting circuit 7112b determines the timing at which the pulse signal is generated based on the first reference level; when the detection pulse generating module 7110 receives the external When the drive signal is the second grid voltage, the pulse activation circuit 7112b determines the timing at which the pulse signal is generated based on the second reference level.
  • the operation of the embodiment is substantially the same as that described in the foregoing embodiment of FIG. 39B.
  • the main difference between the two is that the signal edge trigger circuit SETC of the present embodiment is responsive to the output voltage Vcp.
  • the falling edge triggers the enable signal output, so the pulse width decision circuit 7113b generates the pulse signal DP near the falling edge of the output voltage Vcp.
  • the reference level Vps may include a first reference level corresponding to a first grid voltage (eg, 120V) and a second reference level corresponding to a second grid voltage (eg, 277V), wherein the first The reference level is, for example, 115V, and the second reference level is, for example, 200V.
  • the pulse starting circuit 7112b when the external driving signal Sed received by the detecting pulse generating module 7110 is the first grid voltage, the pulse starting circuit 7112b outputs the pulse signal DP at 115 V of the falling edge of the external driving signal Sed; when the detecting pulse generating module When the received external drive signal Sed is the second grid voltage, the pulse start circuit 7112b outputs the pulse signal DP at 200 V of the falling edge of the external drive signal Sed.
  • the decision mechanism for collocation signal edge triggering can also be implemented by the pulse activation circuit 7112.
  • the pulse start circuit 7112 can be designed to start timing after detecting the rising/falling edge of the output voltage Vcp, and after the predetermined time is reached (which can be set by itself), the pulse width determination of the enable signal to the back end is triggered.
  • Circuit 7113 the pulse start circuit 7112 may activate the pulse width decision circuit 7113 in advance when detecting the rising edge of the output voltage Vcp, and re-trigger the enable signal to the pulse width decision circuit 7113 when detecting the falling edge of the output voltage Vcp.
  • the pulse signal DP is output so that the pulse width decision circuit 7113 can react quickly to generate the pulse signal DP at a precise time point.
  • FIG. 39D is a schematic diagram of signal timing of the detection pulse generation module according to the fourth embodiment of the present invention.
  • This embodiment is substantially the same as the operation of the foregoing FIGS. 39B and 39C.
  • the main difference between the present embodiment and the foregoing embodiment is that the present embodiment starts counting a delay period when detecting that the level of the external driving signal Sed exceeds the reference level Vps. DLY, and a pulse (DP1) is generated after the delay period DLY. Then, the detection pulse generation module generates a pulse (DP2) again according to the set time interval TIV, and subsequent operations can be similar.
  • FIG. 40 is a circuit block diagram of a power module according to a fourteenth embodiment of the present invention.
  • the mounting detection module 8000 of the present embodiment is disposed outside the LED straight tube lamp 1500, and the current limiting circuit 8200 is located on the power supply path of the external power grid 508, for example, disposed in the socket.
  • the current limiting circuit 8200 is serially connected to the power circuit of the LED straight tube lamp 500 via the corresponding pin 501, so that the detection control circuit 8100 can borrow It is determined whether the LED straight tube lamp 1500 is correctly mounted to the lamp holder and/or whether the user has an electric shock risk, and the electric shock risk is determined/not correctly installed, by the mounting detection method described in the embodiment of FIGS. 17A to 39D described above.
  • the current limiting circuit 8200 is caused to limit the supply of power to the LED straight tube lamp 1500 by the external power grid 508.
  • the current limiting circuits 4200 and 4200a mentioned in the above embodiments are all embodiments of current limiting means, and the function is to apply current on the power circuit when enabled (eg, the switching circuit is turned off). Limit to less than a certain value (eg 5MIU).
  • the current limiting means can be implemented by an architecture generally similar to a switching circuit.
  • the switching circuit can utilize an electronic switch, an electromagnetic switch, a relay, a triac, a thyristor, a tunable impedance component (variable resistor, variable capacitor) , variable inductance, etc.) to implement.
  • the concept of using the switching circuit to implement current limiting has been specifically disclosed in the present case, and the scope of the present invention is also equivalent to the equal range of various embodiments of the above switching circuit.
  • the installation detection module disclosed in the second preferred embodiment of the present invention can be designed not only as a distributed circuit but also as an LED.
  • part of the circuit components may be integrated into an integrated circuit (such as the third preferred embodiment), or all circuit components may be integrated into an integrated circuit (such as the fourth preferred embodiment). Saves on the cost and size of the circuit that installs the test module.
  • the installation of the inspection module through modular/integrated settings allows the installation inspection module to be easily integrated into different types of LED straight tube lamp designs to improve design compatibility.
  • the integrated installation detection module is under the application of the LED straight tube lamp, because the circuit area inside the lamp tube is significantly reduced, so that the light-emitting area of the LED straight tube lamp can be obviously improved, thereby improving the illumination of the LED straight tube lamp. Characteristic performance. Moreover, since the integrated design can reduce the operating current of the integrated component (by about 50%) and increase the circuit operating efficiency, the saved power can be used to supply the LED module for illumination use, so that the LED The luminous efficiency of the straight tube lamp can be further improved.
  • the installation detection module of the above embodiment may also be referred to as a detection module/circuit, a leakage detection module/circuit, a leakage protection module/circuit or an impedance detection module/circuit, etc.
  • the detection result latch module may also be referred to as The detection result storage module/circuit, the control module/circuit, and the like
  • the detection controller may be a circuit including a detection pulse generation module, a detection result latching module, and a detection determination circuit, and the present invention is not limited thereto.
  • the detection pulse generation module of the above embodiment may also be referred to as a detection trigger circuit in some embodiments.
  • Figs. 17A to 42C teach the concept of implementing electric shock protection by means of electronic control and detection. Compared with the technique of using the mechanical structure to prevent electric shock, since the electronic control and detection method does not have the problem of mechanical fatigue, the use of the electronic signal for the protection against electric shock of the lamp can be better. Reliability and service life.
  • the mounting detection module does not substantially change the characteristics and state of the LED tube light itself in terms of driving and lighting.
  • the characteristics of the driving and the illuminating are, for example, the characteristics of the power supply phase, the output current, and the like, which affect the luminance and output power of the LED straight tube lamp in the lighting state.
  • the operation of the installation detection module is only related to the leakage protection operation of the LED straight tube lamp in the unlit state, and the LED direct tube lamp point is adjusted with the DC power conversion circuit, the power factor correction circuit and the dimming circuit.
  • the circuit of the bright state characteristic is different.
  • the external driving signal may be a low frequency AC signal (for example: provided by a commercial power supply) or a DC signal (for example, a battery provided or an external driving power source), and may be driven by a double-ended power supply. Enter the LED straight tube light.
  • a dual-ended power supply it may be supported to receive an external drive signal using only one of the ends as a single-ended power supply.
  • the power module of the LED straight tube lamp can omit the rectifier circuit.
  • the first rectifying unit and the second rectifying unit in the double rectifying circuit are respectively coupled to the pins of the lamp caps disposed at the two ends of the LED straight tube lamps.
  • the dual rectifier unit is suitable for the drive architecture of a double-ended power supply. Moreover, when at least one rectifying unit is disposed, it can be applied to a driving environment of a low frequency alternating current signal, a high frequency alternating current signal, or a direct current signal.
  • the double rectifying unit may be a combination of a double half-wave rectifying circuit, a double full-wave rectifying circuit or a half-wave rectifying circuit and a full-wave rectifying circuit.
  • the pin design of the LED straight tube lamp it can be a double-ended single pin (two pins in total) and two double-ended pins (four pins in total).
  • double-ended single-pin architecture it can be applied to the rectifier circuit design of a single rectifier circuit.
  • dual-ended dual-pin architecture it can be applied to the rectifier circuit design of the dual rectifier circuit, and use any pin on either end or any single-ended dual pin to receive the external drive signal.
  • a single capacitor or a ⁇ -type filter circuit may be provided to filter out high-frequency components in the rectified signal, and a low-ripple DC signal is provided as a filtered signal.
  • the filter circuit may also include an LC filter circuit to present a high impedance to a particular frequency to meet current magnitude specifications for a particular frequency.
  • the filter circuit may further comprise a filtering unit coupled between the pin and the rectifier circuit to reduce electromagnetic interference caused by the circuit of the LED lamp. When the DC signal is used as an external driving signal, the power module of the LED straight tube lamp can omit the filtering circuit.
  • an additional protection circuit can be added to protect the LED module.
  • the protection circuit can detect the current or/and voltage of the LED module to activate the corresponding overcurrent or overvoltage protection.
  • the energy storage unit may be a battery or a super capacitor in parallel with the LED module.
  • the auxiliary power supply module is suitable for use in power module designs that include drive circuits.
  • the LED module may comprise a plurality of strings of LED components (ie, a single LED chip, or a plurality of LED chips of different color LED chips) connected in parallel with each other, and the LED components in each LED component string may be They are connected to each other to form a mesh connection.
  • LED components ie, a single LED chip, or a plurality of LED chips of different color LED chips
  • the above features can be arbitrarily arranged and combined, and used for the improvement of the LED straight tube lamp.

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种电源模块,适用于为LED直管灯供电。所述电源模块包括安装检测模块,安装检测模块包含检测控制器、开关电路及偏压电路。检测控制器会在检测模式发出控制信号短暂导通开关电路,藉以在开关导通期间检测是否有额外阻抗连接至电源模块的检测路径上。所述安装检测模块通过检测所述电源模块中的整流电路的输入侧上的信号作为判断所述LED直管灯是否正确安装的基础。

Description

一种发光二极管直管灯及发光二极管照明系统 技术领域
本实用新型涉及照明器具领域,具体涉及一种发光二极管(LED)直管灯及发光二极管(LED)照明系统包含光源、电源模块以及灯头。
背景技术
LED照明技术正快速发展而取代了传统的白炽灯及荧光灯。相较于充填有惰性气体及水银的荧光灯而言,LED直管灯无须充填水银。因此,在各种由像是传统荧光灯泡及灯管等照明选项所主宰的家用或工作场所用的照明系统中,LED直管灯无意外地逐渐成为人们高度期待的照明选项。LED直管灯的优点包含提升的耐用性及寿命以及较低耗能。因此,考虑所有因素后,LED直管灯将会是可节省成本的照明选项。
已知LED直管灯一般包括灯管、设于灯管内且带有光源的电路板,以及设于灯管两端的灯头,灯头内设有电源,光源与电源之间通过电路板进行电气连接。然而,现有的LED直管灯仍有以下几类质量问题需解决,例如电路板一般为刚性板,当灯管破裂后,尤其在局部破裂的时候,整根LED直管灯仍旧处于直管的状态,使用者会误认为灯管还能使用,从而去自行安装,容易导致发生漏电而触电事故。申请人已于先前的案件,例如:CN105465640U中,提出了对应的结构改善方式。
再者,现有的LED直管灯的电路设计,对于符合相关的认证规范并未能提供适当的解决方案。举例来说,日光灯内部并无电子组件,对于符合照明设备的UL认证、EMI的规范上相当简单。然而,LED直管灯具有相当多的电子组件于灯内,重要的是考虑各电子组件间的布局所造成的影响,而不易符合UL认证、EMI的规范。
再来,LED驱动所用的驱动信号为直流信号,然而日光灯的驱动信号为市电的低频、低压交流信号或电子镇流器的高频、高压交流信号,甚至应用于紧急照明时,紧急照明的电池为直流信号。不同驱动信号间的电压、频率范围落差大,并非简单进行整流即可兼容。
目前市面上的发光二极管(即LED直管灯)灯管取代现行的照明装置即取代荧光灯管的方式主要有两种。
一为镇流器相容型发光二极管灯管(T-LED lamp),在不改变原有照明装置的线路的基础上,直接用发光二极管灯管替换传统的荧光灯管。另一为镇流旁路型(Ballast by-pass)发光二极管灯管,电路上省掉传统的镇流器,而直接将市电接到发光二极管灯管。后者适用于新装 修的环境,采用新的驱动电路及发光二极管灯管。其中,镇流器相容型LED灯管一般可称为“Type-A”型LED灯管,并且具有内置灯管驱动的镇流旁路型LED灯管一般可称为“Type-B”型LED灯管。
在现有的技术下,因为Type-B型发光二极管灯管所对应的灯座是直接接入市电信号而并未先通过镇流器,当LED直管灯为双端电源时,LED直管灯的双端的其中之一若已插入灯座而另一端尚未插入灯座,使用者可能会在触摸到未插入灯座端的金属或可导电的部分时,发生触电的风险。
许多知名国际照明大厂也因受限于上述技术问题而对于以双端电源驱动的Type-B型LED灯管技术无法有进一步的推进。以美国奇异照明公司(GE Lighting)为例,在其所公开的名为“Considering LED tubes”的文宣(2014年7月8日校阅)以及名为“Dollars&Sense:Type B LED Tubes”的文宣中(2016年10月21日校阅),奇异照明公司一再提及了Type-B型LED灯管具有触电风险等缺陷无法被克服,因此不就Type-B型的灯管做进一步的产品商业化与销售考量。
此外,当LED直管灯采用双端进电时(例如8呎42W可双端进电的LED灯),其两端灯头(的至少各一接脚)之间须沿着灯管内的灯板(例如可挠式电路软板)布设一导线(称为Line或Neutral)用于接收外部驱动电压。此导线Line有别于在灯管内(1)与LED单元的正负极连接的LED+线及LED-线以及(2)接地线(Ground)。但是因为此导线Line走过灯板,且和LED+线靠的很近导致这两根线之间存在着的寄生电容(例如大约200PF),故此导线Line容易产生或受到电磁干扰(EMI)的影响,导致电源的传导变得很差。
有鉴于上述问题,以下提出本实用新型及其实施例。
发明内容
在此摘要描述关于「本实用新型」的许多实施例。然而所述词汇「本实用新型」仅仅用来描述在此说明书中揭露的某些实施例(不管是否已在权利要求项中),而不是所有可能的实施例的完整描述。以下被描述为「本实用新型」的各个特征或方面的某些实施例可以不同方式合并以形成一LED直管灯或其中一部分。
本实用新型提供一种新的LED直管灯及安装检测模块,以及其各个方面(与特征),以解决上述问题。
本实用新型提出一种双端进电的Type-B型LED直管灯,所述LED直管灯还具有灯管和两灯头,所述两灯头分别设置在所述灯管两侧,所述两灯头其中之一具有第一接脚和第三接 脚,并且所述两灯头其中之另一具有第二接脚和第四接脚,其特征在于所述LED直管灯包括LED模块及电源模块,其中电源模块包括整流电路、滤波电路、驱动电路以及安装检测模块。电源模块通过所述第一至第四接脚其中之二耦接外部电网以接收所述外部电网提供的外部驱动信号,并且用以产生所述点亮驱动信号并提供给所述LED模块。整流电路用以对所述外部驱动信号进行整流并产生整流后信号。滤波电路接收所述整流后信号并产生滤波后信号。驱动电路依据所述滤波后信号进行电源转换,藉以产生所述点亮驱动信号,其中所述整流电路、所述滤波电路以及所述驱动电路通过电源回路连接并供电给所述LED模块。所述驱动电路从所述第一至至第四接脚其中未耦接所述外部电网的接脚接收调光信号,并且基于所述调光信号调整所述点亮驱动信号的亮度和色温其中之一。
在一些实施例中,所述LED直管灯通过所述第一接脚和所述第二接脚接收所述外部驱动信号,通过所述第四接脚接收所述调光信号,并且通过所述第二接脚和所述第三接脚接收辅助电源。
在一些实施例中,所述安装检测模块包括检测脉冲发生模块、检测路径电路、检测判定电路以及控制电路。检测脉冲发生模块用以产生具有脉冲的控制信号。检测路径电路连接所述检测脉冲发生模块,并且反应于所述控制信号而导通检测路径。检测判定电路连接所述检测路径电路,用以取样检测路径上的电信号,并且产生指示是否有触电风险的检测结果信号。控制电路连接所述检测判定电路及所述电源模块的驱动电路,用以根据所述检测结果信号调整所述驱动电路的偏压状态。
在一些实施例中,所述检测路径建立在所述整流电路的输入端和接地端之间。
在一些实施例中,在检测阶段下,所述检测路径电路在所述外部驱动信号的正半波期间内建立第一检测路径并且在所述外部驱动信号的负半波期间内建立不同于所述第一检测路径的第二检测路径。
在一些实施例中,所述电源模块更包括应急控制模块,其用以判断所述电源模块接收的外部驱动信号是否为直流信号。当所述应急控制模块判定所述外部驱动信号为直流信号时,所述应急控制模块输出第一状态信号给所述控制电路,使所述控制电路控制所述开关电路维持在导通状态;以及当所述应急控制模块判定所述外部驱动信号为非直流信号时,所述应急控制模块输出第二状态信号给所述控制电路,使所述控制电路基于所述检测脉冲发生模块及所述检测判定电路的输出来控制所述开关电路的导通或关断。
附图说明
图1A是本实用新型第一实施例的LED直管灯的灯板与电源模块在灯管内部的平面剖视图;
图1B是本实用新型第二实施例的LED直管灯的灯板与电源模块在灯管内部的平面剖视图;
图1C是本实用新型第三实施例的LED直管灯的灯板与电源模块在灯管内部的平面剖视图;
图2是本实用新型一实施例的LED直管灯的灯板的平面剖视图;
图3是本实用新型一实施例的LED直管灯的灯板的立体图;
图4是本实用新型一实施例的LED直管灯的灯板和电源模块的印刷电路板的立体图;
图5A至图5C是本实用新型一实施例的灯板与电源的焊接过程的局部示意图;
图5D是本实用新型一实施例的LED直管灯的灯板的局部示意图;
图5E是本实用新型一实施例的LED直管灯的灯板和电源模块的电路板连接的平面剖视图;
图5F是本实用新型一实施例的LED直管灯的光源焊盘的局部结构示意图;
图5G是本实用新型一实施例的LED直管灯的电源焊盘的局部结构示意图;
图6A是本实用新型第一实施例的LED直管灯的灯板和电源模块的立体结构示意图;
图6B是本实用新型第二实施例的LED直管灯的灯板和电源模块的立体结构示意图;
图7是本实用新型一实施例的LED直管灯的内部导线示意图;
图8A是本实用新型第一实施例的LED直管灯照明系统的电路方块示意图;
图8B是本实用新型第二实施例的LED直管灯照明系统的电路方块示意图;
图8C是本实用新型第三实施例的LED直管灯照明系统的电路方块示意图;
图8D是本实用新型第四实施例的LED直管灯照明系统的电路方块示意图;
图8E是本实用新型第五实施例的LED直管灯照明系统的电路方块示意图;
图9A是本实用新型第一实施例的电源模块的电路方块示意图;
图9B是本实用新型第二实施例的电源模块的电路方块示意图;
图9C是本实用新型第三实施例的电源模块的电路方块示意图;
图10A是本实用新型第一实施例的LED模块的电路架构示意图;
图10B是本实用新型第二实施例的LED模块的电路架构示意图;
图10C是本实用新型第一实施例的LED模块的走线示意图;
图10D是本实用新型第二实施例的LED模块的走线示意图;
图10E是本实用新型第三实施例的LED模块的走线示意图;
图10F是本实用新型第四实施例的LED模块的走线示意图;
图10G是本实用新型第五实施例的LED模块的走线示意图;
图10H是本实用新型第六实施例的LED模块的走线示意图;
图10I是本实用新型第七实施例的LED模块的走线示意图;
图11A是本实用新型第一实施例的整流电路的电路架构示意图;
图11B是本实用新型第二实施例的整流电路的电路架构示意图;
图11C是本实用新型第三实施例的整流电路的电路架构示意图;
图11D是本实用新型第四实施例的整流电路的电路架构示意图;
图11E是本实用新型第五实施例的整流电路的电路架构示意图;
图11F是本实用新型第六实施例的整流电路的电路架构示意图;
图12A是本实用新型第一实施例的滤波电路的电路方块示意图;
图12B是本实用新型第一实施例的滤波单元的电路架构示意图;
图12C是本实用新型第二实施例的滤波单元的电路架构示意图;
图12D是本实用新型第二实施例的滤波电路的电路方块示意图;
图12E是本实用新型一实施例的滤波单元及负压消除单元的电路架构示意图;
图13A是本实用新型第一实施例的驱动电路的电路方块示意图;
图13B是本实用新型第一实施例的驱动电路的电路架构示意图;
图13C是本实用新型第二实施例的驱动电路的电路架构示意图;
图13D是本实用新型第三实施例的驱动电路的电路架构示意图;
图13E是本实用新型第四实施例的驱动电路的电路架构示意图;
图14A是本实用新型第一实施例的驱动电路的信号波形示意图;
图14B是本实用新型第二实施例的驱动电路的信号波形示意图;
图14C是本实用新型第三实施例的驱动电路的信号波形示意图;
图14D是本实用新型第四实施例的驱动电路的信号波形示意图;
图15A是本实用新型第四实施例的电源模块的电路方块示意图;
图15B是本实用新型第五实施例的电源模块的电路方块示意图;
图15C是本实用新型一实施例的过压保护电路的电路架构示意图;
图16A是本实用新型第六实施例的电源模块的电路方块示意图;
图16B是本实用新型第七实施例的电源模块的电路方块示意图;
图16C是本实用新型一实施例的辅助供电模块的电路架构示意图;
图16D是本实用新型第八实施例的电源模块的电路方块示意图;
图16E是本实用新型第一实施例的辅助供电模块的电路方块示意图;
图16F是本实用新型第九实施例的电源模块的电路方块示意图;
图16G是本实用新型第二实施例的辅助供电模块的电路方块示意图;
图16H是本实用新型第三实施例的辅助供电模块的电路方块示意图;
图16I是本实用新型第一实施例的辅助供电模块的配置示意图;
图16J是本实用新型第二实施例的辅助供电模块的配置示意图;
图16K是本实用新型第六实施例的LED直管灯照明系统的电路方块示意图;
图16L是本实用新型第七实施例的LED直管灯照明系统的电路方块示意图;
图16M是本实用新型第八实施例的LED直管灯照明系统的电路方块示意图;
图16N是本实用新型第一实施例的辅助供电模块的电路架构示意图;
图16O是本实用新型第二实施例的辅助供电模块的电路架构示意图;
图16P是本实用新型一实施例的辅助供电模块处于正常状态时的信号时序图;
图16Q是本实用新型一实施例的辅助供电模块处于异常状态时的信号时序图;
图17A是本实用新型第九实施例的LED直管灯照明系统的电路方块示意图;
图17B是本实用新型第十实施例的LED直管灯照明系统的电路方块示意图;
图18是本实用新型第十实施例的电源模块的电路方块示意图;
图19A是本实用新型第一实施例的安装检测模块的电路方块示意图;
图19B至图19E是是本实用新型第一实施例的安装检测模块的电路架构示意图;
图20A是本实用新型第二实施例的安装检测模块的电路方块示意图;
图20B至图20E是本实用新型第二实施例的安装检测模块的电路架构示意图;
图21A是本实用新型第三实施例的安装检测模块的电路方块示意图;
图21B至图21E是本实用新型第三实施例的安装检测模块的电路架构示意图;
图22A是本实用新型第四实施例的安装检测模块的电路方块示意图;
图22B至图22F是本实用新型第四实施例的安装检测模块的电路架构示意图;
图22B是根据本实用新型第四实施例的安装检测模块的信号处理单元的电路架构示意图;
图22C是根据本实用新型第四实施例的安装检测模块的信号产生单元的电路架构示意 图;
图22D是根据本实用新型第四实施例的安装检测模块的信号采集单元的电路架构示意图;
图22E是根据本实用新型第四实施例的安装检测模块的开关单元的电路架构示意图;
图22F是根据本实用新型第四实施例的安装检测模块的内部电源检测单元的电路方块示意图;
图23A是本实用新型第五实施例的安装检测模块的电路方块示意图;
图23B是本实用新型第一实施例的检测路径电路的电路架构示意图;
图23C是本实用新型第二实施例的检测路径电路的电路架构示意图;
图23D是本实用新型第三实施例的检测路径电路的电路架构示意图;
图24A是本实用新型第六实施例的安装检测模块的电路方块示意图;
图24B是本实用新型第五实施例的安装检测模块的电路架构示意图;
图24C是本实用新型第六实施例的安装检测模块的电路架构示意图;
图25A是本实用新型第七实施例的安装检测模块的电路方块示意图;
图25B是本实用新型第七实施例的安装检测模块的电路架构示意图;
图25C是本实用新型第八实施例的安装检测模块的电路架构示意图;
图25D是本实用新型第九实施例的安装检测模块的电路架构示意图;
图26A是本实用新型第八实施例的安装检测模块的电路方块示意图;
图26B是本实用新型第九实施例的安装检测模块的电路方块示意图;
图27是本实用新型第十一实施例的电源模块的电路方块示意图;
图28A是本实用新型第十实施例的安装检测模块的电路方块示意图;
图28B是本实用新型第十实施例的安装检测模块的电路架构示意图;
图29是本实用新型第十二实施例的电源模块的电路方块示意图;
图30A是本实用新型第十一实施例的安装检测模块的电路方块示意图;
图30B至图30F是本实用新型第十一实施例的安装检测模块的电路架构示意图;
图30G是本实用新型第十二实施例的安装检测模块的电路架构示意图;
图31A是本实用新型第十二实施例的安装检测模块的电路方块示意图;
图31B是根据本实用新型一实施例的偏压调整电路的电路架构示意图;
图32A是本实用新型第十三实施例的安装检测模块的电路方块示意图;
图32B是本实用新型第一实施例的具有触电检测功能的驱动电路的电路架构示意图;
图33A是本实用新型第十四实施例的安装检测模块的电路方块示意图;
图33B是本实用新型第二实施例的具有触电检测功能的驱动电路的电路架构示意图;
图33C是本实用新型一实施例的集成控制器的电路方块示意图;
图33D是本实用新型第三实施例的具有触电检测功能的驱动电路的电路架构示意图;
图34是本实用新型第十三实施例的电源模块的电路方块示意图;
图35A是本实用新型第十五实施例的安装检测模块的电路方块示意图;
图35B和图35C是本实用新型第十三实施例的安装检测模块的电路架构示意图;
图35B是根据本实用新型第十五实施例的安装检测模块的检测脉冲发生模块的电路架构示意图;
图35C是根据本实用新型第十五实施例的安装检测模块的检测路径电路的电路架构示意图;
图36A是本实用新型第十六实施例的安装检测模块的电路方块示意图;
图36B是本实用新型第一实施例的偏压电路的电路架构示意图;
图36C是本实用新型第二实施例的偏压电路的电路架构示意图;
图37是本实用新型一实施例的检测脉冲发生模块的电路方块示意图;
图38A是本实用新型第一实施例的检测脉冲发生模块的电路架构示意图;
图38B是本实用新型第二实施例的检测脉冲发生模块的电路架构示意图;
图39A是本实用新型第一实施例的检测脉冲发生模块的信号时序示意图;
图39B是本实用新型第二实施例的检测脉冲发生模块的信号时序示意图;
图39C是本实用新型第三实施例的检测脉冲发生模块的信号时序示意图;
图39D是本实用新型第四实施例的检测脉冲发生模块的信号时序示意图;
图40是本实用新型第十四实施例的电源模块的电路方块示意图;
图41A是本实用新型第一实施例的电源模块的信号时序示意图;
图41B是本实用新型第二实施例的电源模块的信号时序示意图;
图41C是本实用新型第三实施例的电源模块的信号时序示意图;
图41D是本实用新型第一实施例的检测电流的波形示意图;
图41E是本实用新型第二实施例的检测电流的波形示意图;
图41F是本实用新型第三实施例的检测电流的波形示意图;
图42A是本实用新型第一实施例的触电检测方法的步骤流程图;
图42B是本实用新型第一实施例的安装检测模块的控制方法的步骤流程图;以及
图42C是本实用新型第二实施例的安装检测模块的控制方法的步骤流程图。
具体实施方式
本实用新型提出了一种新的LED直管灯,以解决背景技术中提到的问题以及上述问题。为使本实用新型的上述目的、特征和优点能够更为明显易懂,下面结合附图对本实用新型的具体实施例做详细的说明。下列本实用新型各实施例的叙述仅是为了说明而为例示,并不表示为本实用新型的全部实施例或将本实用新型限制于特定实施例。另外,相同的元件编号可用以代表相同、相应或近似的元件,并非仅限定于代表相同的元件。
另外需先说明的是,本文为了明确说明本揭露的各个发明特点而以多个实施例的方式分就各实施例说明如下。但并非是指各个实施例仅能单独实施。熟习本领域的技术人员可依据需求自行将可行的实施范例搭配在一起设计,或是将不同实施例中可带换的组件/模块依设计需求自行带换。换言之,本案所教示的实施方式不仅限于下列实施例所述的态样,更包含有在可行的情况下,各个实施例/组件/模块之间的带换与排列组合,于此合先叙明。
申请人虽已于先前的案件,例如:CN105465640U中,提出了利用可挠性电路板来达成降低漏电事故的改善方式,部分实施例可与本申请案利用电路方式相结合将有更显著的效果。
请参照图1A,图1A是本实用新型第一实施例的LED直管灯的灯板与电源模块在灯管内部的平面剖视图。LED直管灯包括灯板2以及电源5,其中电源5可为模块化型态,也就是说电源5可为整合于一体的电源模块。电源5可以是一体整合的单一单元(例如,电源5的所有元件皆设于一个本体内)且设置于灯管一端的一个灯头内。或者,电源5可以是两个分离的部件(例如,电源5的元件被区分为两个部分)且分别设置于两个灯头中。
在本实施例中,电源5是绘示为整合成一个模块为例(底下称电源模块5),并且所述电源模块5是平行于灯管的轴向cyd配置在灯头之中。更具体的说,所述灯管的轴向cyd是指灯管的轴心线所指向的方向,其会与灯头的端壁垂直。电源模块5平行于灯管的轴向cyd系指配置有电子元件的电源模块电路板与轴向cyd平行,亦即电路板的法线正交于轴向cyd。其中,电源模块5在不同的实施例中可被设置轴向cyd通过的位置、轴向cyd上侧或下侧(相对于图式而言),本实用新型不以此为限。
请参照图1B,图1B是本实用新型第二实施例的LED直管灯的灯板与电源模块在灯管内部的平面剖视图。本实施例与前述图1A实施例的主要差异在于电源模块5是垂直于灯管的轴向cyd配置在灯头中,亦即会与灯头的端壁平行。在本实施例中,虽然图式是绘示电源模块5上的电子元件是配置在朝向灯管内部的一侧,但本实用新型不仅限于此。在另一范例实 施例中,电子元件也可以配置在靠近灯头端壁的一侧。在此配置底下,由于灯头上可设置有开口,因此可以提高电子元件的散热效果。
除此之外,由于垂直配置电源模块5可以使得灯头内的可用容置空间增加,因此电源模块5可以进一步地分拆成多个电路板的配置,如图1C所示,其中,图1C是本实用新型第三实施例的LED直管灯的灯板与电源模块在灯管内部的平面剖视图。本实施例与前述图1B实施例的主要差异在于电源5是以两个电源模块5a与5b所构成,所述两电源模块5a与5b皆是垂直于轴向cyd配置在灯头中,并且电源模块5a与5b是朝向灯头端壁并沿轴向cyd依序排列。更具体的说,电源模块5a与5b分别具有独立的电路板,并且电路板上各自配置对应的电子组件,其中两电路板可透过各种电性连接手段连接在一起,使得整体的电源电路拓扑类似于前述的图1A或图1B实施例。藉由图1C的配置,灯头内的容置空间可以更有效的被利用,使得电源模块5a与5b的电路布局空间更大。在一范例实施例中,可能产生较多热能的电子元件(如电容、电感)可以被选择布设在靠近灯头端壁一侧的电源模块5b上,进而透过灯头上的开口增加电子元件的散热效果。另一方面,为了可使电源模块5a与5b垂直设置在圆柱状的灯头内,电源模块5a与5b的电路板可以采用八角形的结构,以最大化可布局面积。
就电源模块5a与5b之间的连接方式而言,分开的电源模块5a与5b之间可以透过公插与母插连接,或者通过导线打线连接,导线的外层可以包裹绝缘套管作为电性绝缘保护。此外,电源模块5a与5b之间亦可通过铆钉钉接、锡膏黏接、焊接或是以导线捆绑的方式来直接连接在一起。
请参照图2,图2是本实用新型一实施例的LED直管灯的灯板的平面剖视图。作为灯板2的可挠式电路软板包括一层具有导电效果的线路层2a,LED光源202设于线路层2a上,通过线路层2a与电源电气连通。在此说明书中具导电效果的所述线路层又可称为导电层。参照图2,本实施例中,可挠式电路软板还可以包括一层介电层2b,与线路层2a迭置,介电层2b与线路层2a的面积相等或者略小于介电层,线路层2a在与介电层2b相背的表面用于设置LED光源202。线路层2a电性连接至电源5(请参见图1)用以让直流电流通过。介电层2b在与线路层2a相背的表面则通过粘接剂片4粘接于灯管1的内周面上。其中,线路层2a可以是金属层,或者布有导线(例如铜线)的电源层。
在其他实施例中,线路层2a和介电层2b的外表面可以各包覆一电路保护层,所述电路保护层可以是一种油墨材料,具有阻焊和增加反射的功能。或者,可挠式电路软板可以是一层结构,即只由一层线路层2a组成,然后在线路层2a的表面包覆一层上述油墨材料的电路 保护层,保护层上可设有开口,使得光源能够与线路层电性连接。不论是一层线路层2a结构或二层结构(一层线路层2a和一层介电层2b)都可以搭配电路保护层。电路保护层也可以在可挠式电路软板的一侧表面设置,例如仅在具有LED光源202之一侧设置电路保护层。需要注意的是,可挠式电路软板为一层线路层结构2a或为二层结构(一层线路层2a和一层介电层2b),明显比一般的三层柔性基板(二层线路层中夹一层介电层)更具可挠性与易弯曲性,因此,可与具有特殊造型的灯管1搭配(例如:非直管灯),而将可挠式电路软板紧贴于灯管1管壁上。此外,可挠式电路软板紧贴于灯管管壁为较佳的配置,且可挠式电路软板的层数越少,则散热效果越好,并且材料成本越低,更环保,柔韧效果也有机会提升。
当然,本实用新型的可挠式电路软板并不仅限于一层或二层电路板,在其他实施例中,可挠式电路软板包括多层线路层2a与多层介电层2b,介电层2b与线路层2a会依序交错迭置且设于线路层2a与LED光源202相背的一侧,LED光源202设于多层线路层2a的最上一层,通过线路层2a的最上一层与电源电气连通。在其他实施例中,作为灯板2的可挠式电路软板的轴向投影长度大于灯管的长度。
请参见图3,图3是本实用新型一实施例的LED直管灯的灯板的立体图。在一实施例中,作为灯板2的可挠式电路软板由上而下依序包括一第一线路层2a,一介电层2b及一第二线路层2c,第二线路层2c的厚度大于第一线路层2a的厚度,灯板2的轴向投影长度大于灯管1的长度,其中在灯板2未设有LED光源202且突出于灯管1的末端区域上,第一线路层2a及第二线路层2c分别透过二个贯穿孔203及204电气连通,但贯穿孔203及204彼此不连通以避免短路。
藉此方式,由于第二线路层2c厚度较大,可起到支撑第一线路层2a及介电层2b的效果,同时让灯板2贴附于灯管1的内管壁上时不易产生偏移或变形,以提升制造良率。此外,第一线路层2a及第二线路层2c电气相连通,使得第一线路层2a上的电路布局可以延伸至第二线路层2c,让灯板2上的电路布局更为多元。再者,原本的电路布局走线从单层变成双层,灯板2上的线路层单层面积,亦即宽度方向上的尺寸,可以进一步减缩,让批次进行固晶的灯板数量可以增加,提升生产率。
进一步地,灯板2上设有LED光源202且突出于灯管1的末端区域上的第一线路层2a及第二线路层2c,亦可直接被利用来实现电源模块的电路布局,而让电源模块直接配置在可挠式电路软板上得以实现。
如果灯板2沿灯管1轴向的两端不固定在灯管1的内周面上,如果采用导线连接,在后续搬动过程中,由于两端自由,在后续的搬动过程中容易发生晃动,因而有可能使得导线发 生断裂。因此灯板2与电源5的连接方式优先选择为焊接。
图4是本实用新型一实施例的LED直管灯的灯板和电源模块的印刷电路板的立体图。如图4所示,具体作法可以是将电源5的输出端留出电源焊盘a,并在电源焊盘a上留锡、以使得焊盘上的锡的厚度增加,方便焊接,相应的,在灯板2的端部上也留出光源焊盘b,并将电源5输出端的电源焊盘a与灯板2的光源焊盘b焊接在一起。将焊盘所在的平面定义为正面,则灯板2与电源5的连接方式以两者正面的焊盘对接最为稳固,但是在焊接时焊接压头典型而言压在灯板2的背面,隔着灯板2来对焊锡加热,比较容易出现可靠度的问题。如果在某些实施例中,将灯板2正面的光源焊盘b中间开出孔洞,再将其正面朝上叠加在电源5正面的电源焊盘a上来焊接,则焊接压头可以直接对焊锡加热熔解,对实务操作上较为容易实现。
如图4所示,上述实施例中,作为灯板2的可挠式电路软板大部分固定在灯管1的内周面上,只有在两端是不固定在灯管1(请参见图3)的内周面上,不固定在灯管1内周面上的灯板2形成一自由部21(请参见图1A-1C及3),而灯板2固定在灯管1的内周面上的部分形成一固定部22。自由部21具有上述的光源焊盘b,其一端与电源5焊接在一起,其另一端一体的延伸连接至固定部22,并且自由部21两端之间的部分不与灯管1的内周面贴合(即,自由部21的中段呈悬空的状态)。在装配时,自由部21和电源5焊接的一端会带动自由部21向灯管1内部收缩。值得注意的是,当作为灯板2的可挠式电路软板如图3所示具有二层线路层2a及2c夹一介电层2b的结构时,前述灯板2未设有LED光源202且突出于灯管1的末端区域可作为自由部21,而让自由部21实现二层线路层的连通及电源模块的电路布局。
此外,在LED直管灯的接脚设计中,可以是双端各单接脚(共两个接脚)、也可以是双端各双接脚(共四个接脚)的架构。所以在从LED直管灯的双端进电的情形中,可以使用双端各至少一接脚来接收外部驱动信号。此双端各一接脚之间设置的导线典型地被称为火线(一般标示为“L”)和零线/中性线(一般标示为“N”),且可用于信号的输入及传送。
请参照图5A至图5C,图5A至图5C是本实用新型一实施例的灯板与电源的焊接过程的局部示意图,其绘示灯板2与电源5的电源电路板420之间连接结构与连接方式。在本实施例中,灯板2与前述图4具有相同的结构,自由部为灯板2的相对两端的用来连接电源电路板420的部份,固定部为灯板2贴附于灯管内周面的部分。灯板2为可挠性电路板,且灯板2包括层叠的电路层200a与电路保护层200c。其中,电路层200a远离电路保护层200c的一面定义为第一面2001,电路保护层200c远离电路层200a的一面定义为第二面2002,也就是说,第一面2001与第二面2002为灯板2上相对的两面。多个LED光源202设于第一面2001 上且电性连接电路层200a的电路。电路保护层200c为聚酰亚胺层(Polyimide,PI),其不易导热,但具有保护电路的效果。灯板2的第一面2001具有焊盘b,焊盘b上用于放置焊锡g,且灯板2的焊接端具有缺口f。电源电路板420包括电源电路层420a,且电源电路板420定义有相对的第一面421与第二面422,第二面422位于电源电路板420具有电源电路层420a的一侧。在电源电路板420的第一面421与第二面422分别形成有彼此对应的焊盘a,焊盘a上可形成有焊锡g。作为进一步的焊接稳定优化以及自动化加工方面优化,本实施例将灯板2放置于电源电路板420的下方(参照图5A的方向),也就是说,灯板2的第一面2001会连接至电源电路板420的第二面422。
如图5B与图5C所示,在进行灯板2与电源电路板420的焊接时,先将灯板2的电路保护层200C的放置于支撑台42上(灯板2的第二面2002接触支撑台42),让电源电路板420的第二面422的焊盘a与灯板2的第一面2001的焊盘b直接充分接触,再以焊接压头41压于灯板2与电源电路板420的焊接处。此时,焊接压头41的热量会通过电源电路板420的第一面421的焊盘a直接传到灯板2的第一面2001的焊盘b,而且焊接压头41的热量不会被导热性相对较差的电路保护层200c影响,进一步提高了灯板2与电源电路板420的焊盘a与焊盘b相接处在焊接时的效率与稳定性。同时,灯板2的第一面2001的焊盘b与电源电路板420的第二面422的焊盘a是相接触焊接,电源电路板520的第一面521的焊盘a则与焊接压头41相连接。如图5C所示,电源电路板420和灯板2通过焊锡g而被完全焊接为一体,在图5C中的虚拟线M和N之间为电源电路板420、灯板2与焊锡g的主要连接部份,从上至下顺序依次为电源电路板420的第一面421的焊盘a、电源电路层420a、电源电路板420的第二面422的焊盘a、灯板2的电路层200a、灯板2的电路保护层200c。依此顺序形成的电源电路板420和灯板2结合结构,更稳定牢固。
在不同实施例中,电路层200a的第一面2001上还可再设有另一层电路保护层(PI层),也就是电路层200a会夹于两层电路保护层之间,使得电路层200a的第一面2001也可被电路保护层保护,而仅露出部分电路层200a(设有焊盘b的部份)用来与电源电路板420的焊盘a相接。此时,LED光源202的底部一部分会接触电路层200a的第一面2001上的电路保护层,且另一部分则会接触电路层200a。
除此之外,采用图5A至图5C的设计方案,电源电路板420的焊盘a上的圆孔h在放置焊锡后,在自动化焊接程序中,当焊接压头41自动向下压到电源电路板420时,焊锡会因为此压力而被推进圆孔h内,很好的满足了自动化加工需要。
请参见图5D,图5D是本实用新型一实施例的LED直管灯的灯板的局部示意图,其绘示 灯板的自由部配置有镂空孔k的绝缘片的结构。大多用于灯板2上具有2个以上的焊盘场合。该绝缘片210的宽度与灯板2的宽度大致相同;绝缘片210的长度为焊盘长度的1倍-50倍,较佳的,缘片的长度为焊盘长度的10倍;绝缘片210的厚度为灯板2厚度的0.5倍~5倍,较佳的,绝缘片210的厚度为灯板2厚度相同;绝缘片210的镂空形状与焊盘的形状大致相同,镂空的面积稍大于焊盘的面积(较佳的,镂空的面积介于焊盘的面积的101%~200%)。绝缘片210整体大致呈长条状或椭圆状。这样的设计具有如下的好处;①、在焊接时,围住熔融的锡膏,使其不向四周扩散,降低在焊盘焊接,焊盘间短路的风险;②、灯板2在与电源的电路板焊接区域的油墨可能被损坏,其下覆盖的导线存在裸露的风险,在该区域增配置绝缘片210来降低短路的风险,提高焊接的信赖性;③;灯板2上配置有L或N线,采用该方案的直管灯在通电时灯板2上流经有强电(经过布局N线),在某些场合,灯板2与短电路板焊接区域强电的电压超过300V的高压,这时覆盖在灯板2表面的油墨会被高压击穿,这样导致油墨下的导电层与电源的短电路板短路。这时通过在该区域增配置绝缘部件(绝缘片210)来降低短路的风险,提高直管灯的信赖性。
接下来结合图5D及5E来描述灯板2与电源5的电路板连接,图5E是本实用新型一实施例的LED直管灯的灯板和电源模块的电路板连接的平面剖视图,其绘示焊垫b41部分偏移出焊盘b11的示意图。如图5E所示,灯板2的自由部配置有3个焊盘b10、b11、b12(该焊盘在y方向呈2排配置,b10一排、b11与b12一排),相应的在电源(图未示)的电路板配置对应的3个焊盘;焊接时,灯板2的焊盘与电源的电路板焊盘,可能沿y方向的偏移,这时匹配连接焊盘b11或b12的配置在电源的短电路板的对应焊盘(也称焊垫)发生偏移。焊盘b41(也称焊垫b41)的偏出的部分压在焊盘b11、b12间。
因该区域配置有流经强电的导电层,其涂布的油墨,在某些情况下,该油墨被高压击穿,导致该导电层与电源的短电路板的焊盘短接。
在一些实施例中,灯板2上的焊盘b10电性连接火线或中性线、焊盘b11对应第一驱动输出端、b12对应第二驱动输出端。在某些实施例中,焊盘b10电性连接火线或中性线、焊盘b11对应第二驱动输出端、b12对应第一驱动输出端。在一些实施例中,焊盘b10对应第一驱动输出端、焊盘b11对应第二驱动输出端、b12电性连接火线或中性线。在一些实施例中,焊盘b10对应第一驱动输出端、焊盘b12对应第二驱动输出端、b11对应火线或中性线。
请参见图5F,图5F是本实用新型一实施例的LED直管灯的光源焊盘的局部结构示意图,其中,图5F是绘示灯板2端部焊盘的配置。在本实施例中,灯板2上的焊盘b1与b2适于与电源电路板的电源焊盘焊接在一起。其中,本实施例的焊盘配置可适用于双端单接脚的进电 方式,亦即同一侧的焊盘会接收相同极性的外部驱动信号。
具体来说,本实施例的焊盘b1与b2会透过S型的保险丝FS连接在一起,其中保险丝FS可例如是以细导线来构成,其阻抗相当低,因此可以视为焊盘b1与b2短路在一起。在正确的应用情境下,焊盘b1与b2会对应接收相同极性的外部驱动信号。而通过所述配置,即使焊盘b1与b2错接到相反极性的外部驱动信号,保险丝FS也会反应于通过的大电流而熔断,从而避免灯管损毁。此外,在保险丝FS熔断后,会形成焊盘b2空接并且焊盘b1仍连接至灯板2的配置,因此灯板2仍能透过焊盘b1接收外部驱动信号而继续使用。
另一方面,在一范例实施例中,焊盘b1与b2的走线与焊盘本体的厚度至少达到0.4mm,实际厚度可依据本领域技术人员的了解,在可实施的情形下选用厚度大于0.4mm的任一厚度。经验证后,在焊盘b1与b2的走线与焊盘本体的厚度至少达到0.4mm的配置底下,当灯板2透过焊盘b1与b2和电源电路板对接并置入灯管中时,即使焊盘b1与b2处的铜箔折断,其周边多附加上的铜箔也可以将灯板2与电源电路板的电路连接起来,使得灯管可正常工作。
请参见图5G,图5G是本实用新型一实施例的LED直管灯的电源焊盘的局部结构示意图。在本实施例中,电源电路板上可具有例如为3个焊盘a1、a2及a3的配置,并且所述电源电路板可例如为印刷电路板,但本实用新型不以此为限。每一焊盘a1、a2及a3上设置有复数个穿孔hp。在电源电路板与灯板2焊接过程中,焊接物质(如焊锡)会填满所述穿孔hp至少其中之一,使得电源电路板上的焊盘a1、a2及a3(底下称电源焊盘)与灯板2上的焊盘(如b1、b2,底下称光源焊盘)相互电性连接,其中所述灯板2可例如为可挠式电路软板。
由于穿孔hp使得焊锡与电源焊盘a1、a2及a3之间的接触面积增加,因此电源焊盘a1、a2及a3与光源焊盘之间的黏贴力进一步增强。除此之外,穿孔hp的设置还可以提高散热面积,使得灯管的热特性可以被提升。在本实施例中,穿孔hp的个数可以根据焊盘a1、a2及a3的尺寸而选择为7个或9个。若选择以7个穿孔hp的配置来实施,穿孔hp的排列可以是其中6个穿孔hp排列在一圆周上,剩下一个则配置在圆心上。若选择以9个穿孔hp的配置来实施,所述穿孔hp可以采3x3的数组排列配置。上述配置选择可以较佳地增加接触面积并且提高散热效果。
请参照图6A和图6B,图6A和图6B是本实用新型不同实施例的LED直管灯的灯板和电源模块的立体结构示意图。在其它的实施方式中,上述透过焊接方式固定的灯板2和电源5可以用搭载有电源模块5的电路板组合件25取代。电路板组合件25具有一长电路板251和一短电路板253,长电路板251和短电路板253彼此贴合透过黏接方式固定,短电路板253位于长电路板251周缘附近。短电路板253上具有电源模块25,整体构成电源。短电路板253 材质较长电路板251硬,以达到支撑电源模块5的作用。
长电路板251可以为上述作为灯板2的可挠式电路软板或柔性基板,且具有图2所示的线路层2a。灯板2的线路层2a和电源模块5电连接的方式可依实际使用情况有不同的电连接方式。如图6A所示,电源模块5和长电路板251上将与电源模块5电性连接的线路层2a皆位于短电路板253的同一侧,电源模块5直接与长电路板251电气连接。如图6B所示,电源模块5和长电路板251上将与电源模块5电性连接的线路层2a系分别位于短电路板253的两侧,电源模块5穿透过短电路板253和灯板2的线路层2a电气连接。其中,电源模块5位于左侧短电路板253上的电子组件可以称为电源模块5a,并且电源模块5位于右侧短电路板253上的电子组件可以称为电源模块5b。
图7是本实用新型一实施例的LED直管灯的内部导线示意图。请参见图7,本揭露的LED直管灯在实施例中可包括灯管、灯头(未显示于图3B)、灯板2(或称长电路板251)、短电路板253、以及电感526。所述灯管两端各有至少一接脚,用于接收外部驱动信号。在LED直管灯的接脚设计中,可以是双端各单接脚(共两个接脚)、也可以是双端各双接脚(共四个接脚)的架构。所以在从LED直管灯的双端进电的情形中,可以使用双端各至少一接脚来接收外部驱动信号。此双端各一接脚之间设置的导线典型地被称为火线(一般标示为“L”)和零线/中性线(一般标示为“N”),且可用于信号的输入及传送。
所述灯头设置在所述灯管两端,且如图7所示在灯管左侧及右侧的所述短电路板253(的至少部分电子组件)可分别在所述两端的灯头内。所述灯板2设置在所述灯管内,并且包含LED模块,而所述LED模块包含LED单元632。电源模块5a和5b分别通过对应的所述短电路板253与所述灯板2电连接,此电连接(例如透过焊盘)可包含通过信号端子(L)连接所述灯板2两端的对应接脚通过驱动输出端531和532分别用于连接所述LED单元632的正负极,以及通过接地端子连接灯板2的参考地,所述参考地会通过接地端子连接至接地端GND,因此所述参考地的电平可被定义为大地电平。而所述电感526是串接在所述灯管两端的短电路板253的所述第四端点之间.在实施例中,电感526可包含例如工字电感(choke inductor or Dual-Inline-Package inductor)。
更具体的说,因为在双端进电的直管灯设计中,特别是长尺寸(如八尺)的直管灯,可能在两端灯头内各设置部分电源电路(电源模块a和b),所以会需要沿着灯板2设置延伸的信号导线LL和接地导线GL。所述信号导线LL通常会与灯板2上的正极导线很接近,故两者间可能会产生寄生电容。经过正极导线的高频干扰会透过所述寄生电容而反映到信号导线LL上,进而产生可被检测到的电磁干扰(EMI)效应。
因此,在本实施例中,透过在所述接地导线GL上串接电感526的配置,可以利用电感526在高频时具有高阻抗的特性来阻断高频干扰的信号回路,进而消除正极导线上的高频干扰,从而避免寄生电容反映到信号导线LL上的EMI效应。换言之,电感526的功能是消除或减少所述正极导线LL所引起的EMI效应或受到EMI的影响,故提升了灯管中电源信号传输(包含经过信号导线LL、正极导线、以及负极导线)以及LED直管灯的质量。
请参见图8A,图8A是本实用新型第一实施例的LED直管灯照明系统的电路方块示意图。交流电源508(或称外部电网508)是用以提供交流电源信号。交流电源508可以为市电,电压范围100-277V,频率为50或60Hz。LED直管灯500接收交流电源508提供的交流电源信号作为外部驱动信号,而被驱动发光。在本实施例中,LED直管灯500为单端电源的驱动架构,灯管的同一端灯头具有第一接脚501、第二接脚502,用以接收外部驱动信号。本实施例的第一接脚501、第二接脚502用于接收外部驱动信号;换言之,在LED直管灯安装至灯座上时,LED直管灯500内的电源模块(未绘示)会通过所述第一接脚501和第二接脚502耦接(即,电连接、或直接或间接连接)至交流电源508以接收交流电源信号。
除了上述的单端电源的应用外,本实用新型的LED直管灯500也可以应用至双端单接脚的电路结构以及双端双接脚的电路结构。其中,双端单接脚的电路结构请参见图8B,图8B是本实用新型第二实施例的LED直管灯照明系统的电路方块示意图。相较于图8A所示,本实施例的第一接脚501、第二接脚502分别置于LED直管灯500的灯管相对的双端灯头以从灯管两端接收外部驱动信号形成双端进电的配置,其余的电路连接及功能则与图8A所示电路相同。
双端双接脚的电路结构请参见图8C至图8E,图8C至图8E是本实用新型第三至第五实施例的LED直管灯照明系统的电路方块示意图。相较于图8A与8B所示,本实施例更包括第三接脚503与第四接脚504。灯管的一端灯头具有第一接脚501、第三接脚503,另一端灯头具有第二接脚502、第四接脚504。第一接脚501、第二接脚502、第三接脚503及第四接脚504可用于接收外部驱动信号,以驱动LED直管灯500内的LED组件(未绘出)发光。
在双端双接脚的电路结构下,无论是单端的进电方式(如图8C)、双端单接脚的进电方式(如图8D)或是双端双接脚的进电方式(如图8E),都可以透过调整电源模块的配置来实现灯管的供电。其中,在双端单接脚的进电方式下(即,将不同极性的外部驱动信号分别给到两端灯头接脚上,或可视为将交流电源508的火线和中性线分别耦接至两端灯头接脚上),于一范例实施例中,如图8D所示,双端灯头可以分别有一个接脚为空接/浮接,例如图8D的 第三接脚503与第四接脚504可为空接/浮接的状态,使灯管透过第一接脚501与第二接脚502接收外部驱动信号,藉以令灯管内部的电源模块进行后续的整流与滤波动作。于另一范例实施例中,如图8E所示,双端灯头的接脚可以分别通过灯管外部或灯管内部的线路短路在一起,例如第一接脚501与同一侧灯头上的第三接脚503短路在一起,并且第二接脚502与同一侧灯头上的第四接脚504短路在一起,如此便可同样利用第一接脚501与第二接脚502来接收正极性或负极性的外部驱动信号,并且利用第三接脚503与第四接脚504接收相反极性的外部驱动信号,藉以令灯管内部的电源模块进行后续的整流与滤波动作。
接着,请参见图9A,图9A是本实用新型第一实施例的电源模块的电路方块示意图。本实施例的LED灯的电源模块5与LED模块50耦接,并包含整流电路510(可称为第一整流电路510)、滤波电路520以及驱动电路530。整流电路510耦接第一接脚501和第二接脚502,以接收外部驱动信号,并对外部驱动信号进行整流,然后由第一整流输出端511、第二整流输出端512输出整流后信号。在此的外部驱动信号可以是图8A至图8E中由交流电源508所提供的交流电源信号,甚至也可以为直流信号而不影响LED灯的操作。滤波电路520与所述整流电路510耦接,用以对整流后信号进行滤波;即滤波电路520耦接第一整流输出端511、第二整流输出端512以接收整流后信号,并对整流后信号进行滤波,然后由第一滤波输出端521、第二滤波输出端522输出滤波后信号。驱动电路530与滤波电路520和LED模块50耦接,以接收滤波后信号并产生驱动信号以驱动后端的LED模块50发光,其中驱动电路530可例如为直流对直流转换电路,用以将接收到的滤波后信号转换为驱动信号,并通过第一驱动输出端531和第二驱动输出端532输出;即驱动电路530耦接第一滤波输出端521、第二滤波输出端522以接收滤波后信号,然后驱动LED模块50内的LED组件(未绘出)发光。此部分请详见之后实施例的说明。LED模块50耦接第一驱动输出端531及第二驱动输出端532,以接收驱动信号而发光,较佳为LED模块50的电流稳定于一设定电流值。LED模块50的具体配置可参见后续图10A至图10I的说明。
请参见图9B,图9B是本实用新型第二实施例的电源模块的电路方块示意图。本实施例的LED灯的电源模块5与LED模块50耦接,并包含整流电路510、滤波电路520、驱动电路530以及整流电路50(可称为第二整流电路540),可以应用至图8C的单端电源架构或图8D与8E的双端电源架构。整流电路510耦接第一接脚501、第二接脚502,用以接收并整流第一接脚501、第二接脚502所传递的外部驱动信号;第二整流电路540耦接第三接脚503、第四接脚504,用以接收并整流第三接脚503、第四接脚504所传递的外部驱动信号。也就是说,LED灯的电源模块5可以包含第一整流电路510及第二整流电路540共同于第一整流输 出端511、第二整流输出端512输出整流后信号。滤波电路520耦接第一整流输出端511、第二整流输出端512以接收整流后信号,并对整流后信号进行滤波,然后由第一滤波输出端521、第二滤波输出端522输出滤波后信号。驱动电路530耦接第一滤波输出端521、第二滤波输出端522以接收滤波后信号,然后驱动LED模块50内的LED组件(未绘出)发光。
请参见图9C,图9C是本实用新型第三实施例的电源模块的电路方块示意图。LED灯的电源模块主要包含整流电路510、滤波电路520以及驱动电路530,其同样可以应用至图8A或8C的单端电源架构或图8B、8D或8E的双端电源架构。本实施例与前述图9B实施例的差异在于整流电路510可以具有三个输入端以分别耦接第一接脚501、第二接脚502及第三接脚503,并且可针对从各接脚501~503接到的信号进行整流,其中第四接脚504可为浮接或与第三接脚503短路,因此本实施例可以省略第二整流电路540的配置。其余电路运作与图9B大致相同,故于此不重复赘述。
值得注意的是,在本实施例中,第一整流输出端511、第二整流输出端512及第一滤波输出端521、第二滤波输出端522的数量均为二,而实际应用时则根据整流电路510、滤波电路520、驱动电路530以及LED模块50各电路间信号传递的需求增加或减少,即各电路间耦接端点可以为一个或以上。
图9A至图9C所示的LED直管灯的电源模块以及以下LED直管灯的电源模块的各实施例,除适用于图8A至图8E所示的LED直管灯外,对于包含两接脚用以传递电力的发光电路架构,例如:球泡灯、PAL灯、插管节能灯(PLS灯、PLD灯、PLT灯、PLL灯等)等各种不同的照明灯的灯座规格均适用。针对球泡灯的实施方式本实施例可与CN105465630A或CN105465663结构上的实现方式一起搭配使用。
当本实用新型的LED直管灯500应用至双端至少单接脚的通电结构,可进行改装然后安装于包含灯管驱动电路或镇流器505(例如电子镇流器或电感镇流器)的灯座,且适用于旁通镇流器505而改由交流电源508(例如市电)来供电。
请参见图10A,图10A是本实用新型第一实施例的LED模块的电路架构示意图。LED模块50的正端耦接第一驱动输出端531,负端耦接第二驱动输出端532。LED模块50包含至少一个LED单元632。LED单元632为两个以上时彼此并联。每一个LED单元的正端耦接LED模块50的正端,以耦接第一滤波输出端521;每一个LED单元的负端耦接LED模块50的负端,以耦接第二滤波输出端522。LED单元632包含至少一个LED组件631,即前述实施例中的LED光源202。当LED组件631为复数时,LED组件631串联成一串,第一个LED组件631的正端耦接所属LED单元632的正端,第一个LED组件631的负端耦接下一 个(第二个)LED组件631。而最后一个LED组件631的正端耦接前一个LED组件631的负端,最后一个LED组件631的负端耦接所属LED单元632的负端。在本实施例中,标注为S531的电流检测信号代表LED模块50的流经电流大小,其可作为检测、控制LED模块50之用。
请参见图10B,图10B是本实用新型第二实施例的LED模块的电路架构示意图。LED模块50的正端耦接第一驱动输出端531,负端耦接第二驱动输出端532。本实施例的LED模块50包含至少二个LED单元732,而且每一个LED单元732的正端耦接LED模块50的正端,以及负端耦接LED模块50的负端。LED单元732包含至少二个LED组件731,在所属的LED单元732内的LED组件731的连接方式如同图10A所描述般,LED组件731的负极与下一个LED组件731的正极耦接,而第一个LED组件731的正极耦接所属LED单元732的正极,以及最后一个LED组件731的负极耦接所属LED单元732的负极。再者,本实施例中的LED单元732之间也彼此连接。每一个LED单元732的第n个LED组件731的正极彼此连接,负极也彼此连接。因此,本实施例的LED模块50的LED组件间的连接为网状连接。本实施例的电流检测信号S531同样地可代表LED模块50的流经电流大小,以作为检测、控制LED模块50之用。另外,实际应用上,LED单元732所包含的LED组件731的数量较佳为15-25个,更佳为18-22个。
请参见图10C,图10C是本实用新型第一实施例的LED模块的走线示意图。本实施例的LED组件831的连接关系同图10B所示,在此以三个LED单元为例进行说明。正极导线834与负极导线835接收驱动信号,以提供电力至各LED组件831,举例来说:正极导线834耦接前述滤波电路520的第一滤波输出端521,负极导线835耦接前述滤波电路520的第二滤波输出端522,以接收滤波后信号。为方便说明,图中将每一个LED单元中的第n个划分成同一LED组832。
正极导线834连接最左侧三个LED单元中的第一个LED组件831,即如图所示最左侧LED组832中的三个LED组件的(左侧)正极,而负极导线835连接三个LED单元中的最后一个LED组件831,即如图所示最右侧LED组832中的三个LED组件的(右侧)负极。每一个LED单元的第一个LED组件831的负极,最后一个LED组件831的正极以及其他LED组件831的正极及负极则透过连接导线839连接。
换句话说,最左侧LED组832的三个LED组件831的正极透过正极导线834彼此连接,其负极透过最左侧连接导线839彼此连接。左二LED组832的三个LED组件831的正极透过最左侧连接导线839彼此连接,其负极透过左二的连接导线839彼此连接。由于最左侧LED组832的三个LED组件831的负极及左二LED组832的三个LED组件831的正极均透过最 左侧连接导线839彼此连接,故每一个LED单元的第一个LED组件的负极与第二个LED组件的正极彼此连接。依此类推从而形成如图10B所示的网状连接。
值得注意的是,连接导线839中与LED组件831的正极连接部分的宽度836小于与LED组件831的负极连接部分的宽度837。使负极连接部分的面积大于正极连接部分的面积。另外,宽度837小于连接导线839中同时连接邻近两个LED组件831中其中之一的正极及另一的负极的部分的宽度838,使同时与正极与负极部分的面积大于仅与负极连接部分的面积及正极连接部分的面积。因此,这样的走线架构有助于LED组件的散热。
另外,正极导线834还可包含有正极引线834a,负极导线835还可包含有负极引线835a,使LED模块的两端均具有正极及负极连接点。这样的走线架构可使LED灯的电源模块的其他电路,例如:滤波电路520、第一整流电路510及第二整流电路540由任一端或同时两端的正极及负极连接点耦接到LED模块,增加实际电路的配置安排的弹性。
请参见图10D,图10D是本实用新型第二实施例的LED模块的走线示意图。本实施例的LED组件931的连接关系同图10A所示,在此以三个LED单元且每个LED单元包含7个LED组件为例进行说明。正极导线934与负极导线935接收驱动信号,以提供电力至各LED组件931,举例来说:正极导线934耦接前述滤波电路520的第一滤波输出端521,负极导线935耦接前述滤波电路520的第二滤波输出端522,以接收滤波后信号。为方便说明,图中将每一个LED单元中七个LED组件划分成同一LED组932。
正极导线934连接每一LED组932中第一个(最左侧)LED组件931的(左侧)正极。负极导线935连接每一LED组932中最后一个(最右侧)LED组件931的(右侧)负极。在每一LED组932中,邻近两个LED组件931中左方的LED组件931的负极透过连接导线939连接右方LED组件931的正极。藉此,LED组932的LED组件串联成一串。
值得注意的是,连接导线939用以连接相邻两个LED组件931的其中之一的负极及另一的正极。负极导线935用以连接各LED组的最后一个(最右侧)的LED组件931的负极。正极导线934用以连接各LED组的第一个(最左侧)的LED组件931的正极。因此,其宽度及供LED组件的散热面积依上述顺序由大至小。也就是说,连接导线939的宽度938最大,负极导线935连接LED组件931负极的宽度937次之,而正极导线934连接LED组件931正极的宽度936最小。因此,这样的走线架构有助于LED组件的散热。
另外,正极导线934还可包含有正极引线934a,负极导线935还可包含有负极引线935a,使LED模块的两端均具有正极及负极连接点。这样的走线架构可使LED灯的电源模块的其他电路,例如:滤波电路520、第一整流电路510及第二整流电路540由任一端或同时两端 的正极及负极连接点耦接到LED模块,增加实际电路的配置安排的弹性。
再者,图10C及10D中所示的走线可以可挠式电路板来实现。举例来说,可挠式电路板具有单层线路层,以蚀刻方式形成图10C中的正极导线834、正极引线834a、负极导线835、负极引线835a及连接导线839,以及图10D中的正极导线934、正极引线934a、负极导线935、负极引线935a及连接导线939。
请参见图10E,图10E是本实用新型第三实施例的LED模块的走线示意图。本实施例的LED组件1031的连接关系同图12B所示。其中,本实施例有关于正极导线与负极导线(未绘示)的配置及与其他电路的连接关系与前述图10D大致相同,两者间的差异在于本实施例将图10C所示的以横向配置LED组件831(即,各LED组件831是将其正极与负极沿着导线延伸方向排列配置)改为以纵向配置LED组件1031(即,各LED组件1031的正极与负极的连线方向与导线延伸方向垂直),并且基于LED组件1031的配置方向而对应调整连接导线1039的配置。
更具体的说,以连接导线1039_2为例说明,连接导线1039_2包括宽度1037较窄的第一长边部、宽度1038较宽的第二长边部以及连接两长边部的转折部。连接导线1039_2可以设置为直角z型的形状,亦即每一长边部与转折部的连接处均呈直角。其中,连接导线1039_2的第一长边部会与相邻的连接导线1039_3的第二长边部对应配置;类似地,连接导线1039_2的第二长边部会与相邻的连接导线1039_1的第一长边部对应配置。由上述配置可知,连接导线1039会延长边部的延伸方向排列,并且每一连接导线1039的第一长边部会与相邻的连接导线1039的第二长边部对应配置;类似地,每一连接导线1039的第二长边部会与相邻的连接导线1039的第一长边部对应配置,进而使得各连接导线1039整体形成具有一致宽度的配置。其他连接导线1039的配置可参照上述连接导线1039_2的说明。
就LED组件1031与连接导线1039的相对配置而言,同样以连接导线1039_2来说明,在本实施例中,部分的LED组件1031(例如右侧四个LED组件1031)的正极是连接至连接导线1039_2的第一长边部,并且通过第一长边部彼此相互连接;而此部分LED组件1031的负极则是连接至相邻连接导线1039_3的第二长边部,并且通过第二长边部彼此互相连接。另一方面,另一部分的LED组件1031(例如左侧四个LED组件1031)的正极是连接至连接导线1039_1的第一长边部,并且负极是连接至连接导线1039_2的第二长边部。
换句话说,左侧四个LED组件1031的正极透过连接导线1039_1彼此连接,其负极透过连接导线1039_2彼此连接。右侧四个LED组件831的正极透过连接导线1039_2彼此连接,其负极透过连接导线1039_3彼此连接。由于左侧四个LED组件1031的负极透过连接导线 1039_2与右侧四个LED组件1031的正极连接,左侧四个LED组件1031可模拟为LED模块其中四个LED单元的第一个LED组件,并且右侧四个LED组件1031可模拟LED为LED模块其中四个LED单元的第二个LED组件,依此类推从而形成如图10B所示的网状连接。
值得注意的是,相较于图10C来看,本实施例将LED组件1031改为纵向配置,其可增加LED组件1031之间的间隙,并且使得连接导线的走线扩宽,进而避免在灯管整修时线路容易被刺破的风险,并且可同时避免LED组件1031颗数较多而需紧密排列时,灯珠间铜箔覆盖面积不足而使锡珠造成短路的问题。
另一方面,透过使正极连接部分的第一长边部的宽度1037小于与负极连接部分的第二长边部的宽度1038的配置,可以令LED组件1031于负极连接部分的面积大于正极连接部分的面积。因此,这样的走线架构有助于LED组件的散热。
请参见图10F,图10F是本实用新型第四实施例的LED模块的走线示意图。本实施例与前述图10E实施例大致相同,两者差异仅在于本实施例的连接导线1139是以非直角的Z型走线来实施。换言之,在本实施例中,转折部形成斜向走线,使得连接导线1139的每一长边部与转折部的连接处为非直角。在本实施例的配置底下,除了纵向配置LED组件1131可实现增加LED组件1031之间的间隙,并且使得连接导线的走线扩宽的效果之外,本实施例斜向配置连接导线的方式可以避免LED组件贴装时由于焊盘不平导致LED组件移位、偏移等问题。类似地,本实施例的连接导线1139同样可以配置为使正极连接部分的长边部宽度1137小于与负极连接部分的长边部宽度1138,进而同样实现增进散热特性的效果。
具体而言,在使用可挠性电路板做为灯板的应用下,垂直走线(如图10C至10E的配置)会在导线转折处产生规律性的白油凹陷区,使得连接导线上之LED组件焊盘上锡处相对处于凸起位置。由于上锡处并非平坦表面,故在LED组件贴装时可能会因为表面不平整而使LED组件无法贴附至预定的位置上。因此,本实施例透过将垂直走线调整为斜向走线的配置,可以令走线整体的铜箔强度均匀,而不会在特定位置出现凸起或不平坦的情形,进而令LED组件1131可以更容易贴附在导线上,提高灯管配装时的可靠度。除此之外,由于本实施例中每一个LED单元在灯板上只会走一次斜线基板,因此可以使得整体灯板的强度大幅提高,从而防止灯板弯曲,也可缩短灯板长度。
另外,在一范例实施例中,还可以透过在LED组件1131的焊盘周边覆盖铜箔,藉以抵消LED组件1131贴装时的偏移量,避免产生锡珠造成短路的情形。
请参见图10G,图10G是本实用新型第五实施例的LED模块的走线示意图。本实施例与图10C大致相同,两者间的差异之处主要在于本实施例的连接导线1239与连接导线1239之 间的对应处(非LED组件1231之焊盘处)走线改为斜向走线。其中,实施例透过将垂直走线调整为斜向走线的配置,可以令走在线整体的铜箔强度均匀,而不会在特定位置出现凸起或不平坦的情形,进而令LED组件1131可以更容易贴附在导线上,提高灯管配装时的可靠度。
除此之外,在本实施例的配置下,还可统一将色温点CTP设置在LED组件1231之间,如图10H所示,图10H是本实用新型第六实施例的LED模块的走线示意图。透过统一将色温点CTP设置在LED组件的配置,使得在导线1234和1239拼接构成LED模块之后,各导线1234和1239上对应位置的色温点CTP可以在同一条在线。如此一来,在上锡时,整个LED模块可以仅用数条胶带(如图所示,若每条导线设置3个色温点,则仅需3条胶带)即可遮挡住LED模块上的所有色温点,藉以提高装配流程的顺畅度,并且节省装配时间。
请参见图10I,图10I是本实用新型第七实施例的LED模块的走线示意图。本实施例系将图10C的LED模块的走线由单层线路层改为双层线路层,主要是将正极引线834a及负极引线835a改至第二层线路层。说明如下。
请同时参见图3,可挠式电路板具有双层线路层,包括一第一线路层2a,介电层2b及第二线路层2c。第一线路层2a及第二线路层2c间以介电层2b进行电性隔离。可挠式电路板的第一线路层2a以蚀刻方式形成图10I中的正极导线834、负极导线835及连接导线839,以电连接所述多个LED组件831,例如:电连接所述多个LED组件成网状连接的LED组832,第二线路层2c以蚀刻方式正极引线834a、负极引线835a,以电连接所述滤波电路(的滤波输出端)。而且在可挠式电路板的第一线路层2a的正极导线834、负极导线835具有层连接点834b及835b。第二线路层2的正极引线834a、负极引线835a具有层连接点834c及835c。层连接点834b及835b与层连接点834c及835c位置相对,用以电性连接正极导线834及正极引线834a,以及负极导线835及负极引线835a。较佳的做法系将第一层线路层的层连接点834b及835b的位置同下方个藉电层形成开口至裸露出层连接点834c及835c,然后用焊锡焊接,使正极导线834及正极引线834a,以及负极导线835及负极引线835a彼此电性连接。
同样地,图10D所示的LED模块的走线也可以将正极引线934a及负极引线935a改至第二层线路层,而形成双层线路层的走线结构。
值得注意的是,具有双层导电层或线路层的可挠式电路板的第二导电层的厚度较佳为相较于第一导电层的厚度厚,藉此可以降低在正极引线及负极引线上的线损(压降)。再者,具有双层导电层的可挠式电路板相较于单层导电层的可挠式电路板,由于将两端的正极引线、负极引线移至第二层,可以缩小可挠式电路板的宽度。在相同的治具上,较窄的基板的排放数量多于较宽的基板,因此可以提高LED模块的生产效率。而且具有双层导电层的可挠式电 路板相对上也较容易维持形状,以增加生产的可靠性,例如:LED组件的焊接时焊接位置的准确性。
作为上述方案的变形,本实用新型还提供一种LED直管灯,该LED直管灯的电源模块的至少部分电子组件设置在灯板上:即利用PEC(印刷电子电路,PEC:Printed Electronic Circuits),技术将至少部分电子组件印刷或嵌入在灯板上。
本实用新型的一个实施例中,将电源模块的电子组件全部设置在灯板上。其制作过程如下:基板准备(可挠性印刷电路板准备)→喷印金属纳米油墨→喷印无源组件/有源器件(电源模块)→烘干/烧结→喷印层间连接凸块→喷涂绝缘油墨→喷印金属纳米油墨→喷印无源组件及有源器件(依次类推形成所包含的多层板)→喷涂表面焊接盘→喷涂阻焊剂焊接LED组件。
上述的本实施例中,若将电源模块的电子组件全部设置在灯板上时,只需在灯板的两端通过焊接导线连接LED直管灯的接脚,实现接脚与灯板的电气连接。这样就不用再为电源模块设置基板,进而可进一步的优化灯头的设计。较佳的,电源模块设置在灯板的两端,这样尽量减少其工作产生的热对LED组件的影响。本实施例因减少焊接,提高电源模块的整体信赖性。
若将部分电子组件印刷在灯板上(如电阻,电容)时,而将大的器件如:电感,电解电容等电子组件设置在灯头内。灯板的制作过程同上。这样通过将部分电子组件,设置在灯板上,合理的布局电源模块,来优化灯头的设计。
作为上述的方案变形,也可通过嵌入的方式来实现将电源模块的电子组件设置在灯板上。即:以嵌入的方式在可挠性灯板上嵌入电子组件。较佳的,可采用含电阻型/电容型的覆铜箔板(CCL)或丝网印刷相关的油墨等方法实现;或采用喷墨打印技术实现嵌入无源组件的方法,即以喷墨打印机直接把作为无源组件的导电油墨及相关功能油墨喷印到灯板内设定的位置上。然后,经过UV光处理或烘干/烧结处理,形成埋嵌无源组件的灯板。嵌入在灯板上电子组件包括电阻、电容和电感;在其它的实施例中,有源组件也适用。通过这样的设计来合理的布局电源模块进而达到优化灯头的设计(由于部分采用嵌入式电阻和电容,本实施例节约了宝贵的印刷电路板表面空间,缩小了印刷电路板的尺寸并减少了其重量和厚度。同时由于消除了这些电阻和电容的焊接点(焊接点是印刷电路板上最容易引入故障的部分),电源模块的可靠性也得到了提高。同时将减短印刷电路板上导线的长度并且允许更紧凑的器件布局,因而提高电气性能)。
以下说明嵌入式电容、电阻的制造方法。
通常使用嵌入式电容的方法,采用一种叫做分布式电容或平面电容的概念。在铜层的基础上压上非常薄的绝缘层。一般以电源层/地层的形式成对出现。非常薄的绝缘层使电源层与地层之间的距离非常小。这样的电容量也可以通过传统的金属化孔实现。基本上来说,这样的方法在电路板上建立了一个大的平行的板极电容。
一些高电容量的产品,有些是分布式电容型的,另外一些是分立嵌入式的。通过在绝缘层中填充钛酸钡(一种具有高介电常数的材料)来获得更高的电容量。
通常制造嵌入式电阻的方法是使用电阻粘剂。它是掺杂有传导性碳或石墨的树脂,以此为填充剂,丝网印刷至指定处,然后经过处理后层压入电路板内部。电阻由金属化孔或微过孔连接至电路板上的其他电子组件。另一种方法为Ohmega-Ply法:它是双金属层结构——铜层与一个薄的镍合金层构成了电阻器元素,它们形成层状的相对于底层的电阻器。然后通过对铜层和镍合金层的蚀刻,形成具有铜端子的各种镍电阻。这些电阻器被层压至电路板的内层中。
在本实用新型的一个实施例中,将导线直接印刷在玻璃管的内壁(设置成线状),LED组件直接贴该内壁,以经过这些导线彼此电性连接。较佳的,采用LED组件的芯片形式直接贴在该内壁的导线上(在导线的两端设置连接点,通过连接点LED组件与电源模块连接),贴附后,在该芯片上点滴荧光粉(使LED直管灯工作时产生白光,也可是其它颜色的光)。
本实用新型的LED组件的发光效率为80lm/W以上,较佳为120lm/W以上,更佳为160lm/W以上。LED组件可以是单色LED芯片的光经荧光粉而混成白色光,其光谱的主要波长为430-460nm以及550-560nm,或者430-460nm、540-560nm以及620-640nm。
附带一提的是,所述图10A至图10I的实施例的LED模块50的连接方式不仅限于直管灯的实施态样,其可适用于各类型的AC电源供电的LED灯具(即,无镇流器LED灯具)中,例如LED灯泡、LED灯丝灯或一体化LED灯具中,本实用新型不以此为限。
另外,如上所述,电源模块的电子组件可设置在灯板上或灯头内的电路板上。为了增加电源模块的优点,其中某些电容在实施例中会采用贴片电容(例如陶瓷贴片电容),其被设置在灯板上或灯头内的电路板上。但是这样设置的贴片电容在使用中由于压电效应会发出明显的噪声,影响客户使用时的舒适性。为了解决这个问题,在本揭露的LED直管灯中,可通过在贴片电容正下方钻合适的孔或槽,这能够改变贴片电容与承载贴片电容的电路板在压电效应下构成的振动系统以至于明显降低所发出的噪音。此孔或槽的边缘或周缘的形状可以近于例如圆形,椭圆形或矩形,且位于灯板中的导电层或灯头内的电路板中,且在贴片电容的下方。
请参见图11A,图11A是本实用新型第一实施例的整流电路的电路架构示意图。整流电路610为桥式整流电路,包含第一整流二极管611、第二整流二极管612、第三整流二极管613及第四整流二极管614,用以对所接收的信号进行全波整流。第一整流二极管611的阳极耦接第二整流输出端512,阴极耦接第二接脚502。第二整流二极管612的阳极耦接第二整流输出端512,阴极耦接第一接脚501。第三整流二极管613的阳极耦接第二接脚502,阴极耦接第一整流输出端511。整流二极管614的阳极耦接第一接脚501,阴极耦接第一整流输出端511。
当第一接脚501、第二接脚502接收的信号为交流信号时,整流电路610的操作描述如下。当交流信号处于正半波时,交流信号依序经第一接脚501、整流二极管614和第一整流输出端511后流入,并依序经第二整流输出端512、第一整流二极管611和第二接脚502后流出。当交流信号处于负半波时,交流信号依序经第二接脚502、第三整流二极管613和第一整流输出端511后流入,并依序经第二整流输出端512、第二整流二极管612和接脚501后流出。因此,不论交流信号处于正半波或负半波,整流电路610的整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。依据上述操作说明,整流电路610输出的整流后信号为全波整流信号。
当第一接脚501、第二接脚502耦接直流电源而接收直流信号时,整流电路610的操作描述如下。当第一接脚501耦接直流电源的正端而第二接脚502耦接直流电源的负端时,直流信号依序经第一接脚501、整流二极管614和第一整流输出端511后流入,并依序经第二整流输出端512、第一整流二极管611和第二接脚502后流出。当第一接脚501耦接直流电源的负端而第二接脚502耦接直流电源的正端时,交流信号依序经第二接脚502、第三整流二极管613和第一整流输出端511后流入,并依序经第二整流输出端512、第二整流二极管612和第一接脚501后流出。同样地,不论直流信号如何透过第一接脚501、第二接脚502输入,整流电路610的整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。
因此,在本实施例的整流电路610不论所接收的信号为交流信号或直流信号,均可正确输出整流后信号。
请参见图11B,图11B是本实用新型第二实施例的整流电路的电路架构示意图。整流电路710包含第一整流二极管711及第二整流二极管712,用以对所接收的信号进行半波整流。第一整流二极管711的阳极耦接第二接脚502,阴极耦接第一整流输出端511。第二整流二极管712的阳极耦接第一整流输出端511,阴极耦接第一接脚501。第二整流输出端512视实际 应用而可以省略或者接地。
接着说明整流电路710的操作如下。
当交流信号处于正半波时,交流信号在第一接脚501输入的信号电平高于在第二接脚502输入的信号电平。此时,第一整流二极管711及第二整流二极管712均处于逆偏的截止状态,整流电路710停止输出整流后信号。当交流信号处于负半波时,交流信号在第一接脚501输入的信号电平低于在第二接脚502输入的信号电平。此时,第一整流二极管711及第二整流二极管712均处于顺偏的导通状态,交流信号经由第一整流二极管711、第一整流输出端511而流入,并由第二整流输出端512或LED灯的另一电路或接地端流出。依据上述操作说明,整流电路710输出的整流后信号为半波整流信号。
其中,图11A与图11B所示的整流电路的第一接脚501及第二接脚502变更为第三接脚503及第四接脚504时,即可作为图9B所示的第二整流电路540。更具体的说,在一范例实施例中,将图11A所示的全波/全桥整流电路610应用在图9B的双端输入的灯管时,第一整流电路510与第二整流电路540的配置可如图11C所示。
请参见图11C,图11C是本实用新型第三实施例的整流电路的电路架构示意图。整流电路840的架构与整流电路810的架构相同,皆为桥式整流电路。整流电路810包括第一至第四整流二极管611-614,其配置如前述图10A实施例所述。整流电路840包含第五整流二极管641、第六整流二极管642、第七整流二极管643及第八整流二极管644,用以对所接收的信号进行全波整流。第五整流二极管641的阳极耦接第二整流输出端512,阴极耦接第四接脚504。第六整流二极管642的阳极耦接第二整流输出端512,阴极耦接第三接脚503。第三整流二极管613的阳极耦接第二接脚502,阴极耦接第一整流输出端511。整流二极管614的阳极耦接第三接脚503,阴极耦接第一整流输出端511。
在本实施例中,整流电路840与810是对应的配置,两者差异仅在于整流电路810(在此可比对为图9B的第一整流电路510)的输入端是耦接第一接脚501与第二接脚502,而整流电路840(在此可比对为图9B的第二整流电路540)的输入端是耦接第三接脚503与第四接脚504。换言之,本实施例是采用两个全波整流电路的架构来实现双端双接脚的电路结构。
更进一步的说,在图10C实施例的整流电路中,虽然是以双端双接脚的配置来实现,但除了双端双接脚进电的供电方式外,无论是单端进电或是双端单接脚的进电方式都可以透过本实施例的电路结构来对LED直管灯进行供电。具体运作说明如下:
在单端进电的情况下,外部驱动信号可施加于第一接脚501与第二接脚502上,或是施加于第三接脚503与第四接脚504上。在外部驱动信号施加于第一接脚501与第二接脚502 上时,整流电路810会依据图10A实施例所述的运作方式对外部驱动信号进行全波整流,而整流电路840则不会运作。相反地,在外部驱动信号施加于第三接脚503与第四接脚504上时,整流电路840会依据图10A实施例所述的运作方式对外部驱动信号进行全波整流,而整流电路810则不会运作。
在双端单接脚进电的情况下,外部驱动信号可施加于第一接脚501与第四接脚504,或是施加于第二接脚502与第三接脚503。在外部驱动信号施加于第一接脚501与第四接脚504,且外部驱动信号为交流信号时,在交流信号处于正半波的期间,交流信号依序经第一接脚501、第四整流二极管614和第一整流输出端511后流入,并依序经第二整流输出端512、第五整流二极管641和第四接脚504后流出。在交流信号处于负半波的期间,交流信号依序经第四接脚504、第七整流二极管643和第一整流输出端511后流入,并依序经第二整流输出端512、第二整流二极管612和第一接脚501后流出。因此,不论交流信号处于正半波或负半波,整流后信号的阳极均位于第一整流输出端511,负极均位于第二整流输出端512。依据上述操作说明,整流电路810中的第二整流二极管612与第四整流二极管614搭配整流电路840中的第五整流二极管641与第七整流二极管643对交流信号进行全波整流,并且输出的整流后信号为全波整流信号。
另一方面,在外部驱动信号施加于第二接脚502与第三接脚503,且外部驱动信号为交流信号时,在交流信号处于正半波的期间,交流信号依序经第三接脚503、第八整流二极管644和第一整流输出端511后流入,并依序经第二整流输出端512、第一整流二极管611和第二接脚502后流出。在交流信号处于负半波的期间,交流信号依序经第二接脚502、第三整流二极管613和第一整流输出端511后流入,并依序经第二整流输出端512、第六整流二极管642和第三接脚503后流出。因此,不论交流信号处于正半波或负半波,整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。依据上述操作说明,整流电路810中的第一整流二极管611与第三整流二极管613搭配整流电路840中的第六整流二极管642与第八整流二极管644对交流信号进行全波整流,并且输出的整流后信号为全波整流信号。
在双端双接脚进电的情况下,整流电路810与840个别的运作可参照上述图11A实施例的说明,于此不再赘述。其中,整流电路810与840所产生的整流后信号会在第一整流输出端511与第二整流输出端512叠加后输出给后端的电路。
在一范例实施例中,整流电路510的配置可如图11D所示。请参见图11D,图11D是本实用新型第四实施例的整流电路的电路架构示意图。整流电路910包括第一至第四整流二极 管911-914,其配置如前述图11A实施例所述。在本实施例中,整流电路910更包括第五整流二极管915及第六整流二极管916。第五整流二极管915的阳极耦接第二整流输出端512,阴极耦接第三接脚503。第六整流二极管916的阳极耦接第三接脚503,阴极耦接第一整流输出端511。第四接脚504于此为浮接状态。
更具体的说,本实施例的整流电路510可视为有三组桥臂(bridge arm)单元的整流电路,每组桥臂单元可提供一个输入信号接收端。举例来说,第一整流二极管911与第三整流二极管913组成第一桥臂单元,其对应接收第二接脚502上的信号;第二整流二极管912与第四整流二极管914组成第二桥臂单元,其对应接收第一接脚501上的信号;以及第五整流二极管915与第六整流二极管916组成第三桥臂单元,其对应接收第三接脚503上的信号。其中,三组桥臂单元只要其中两个接收到极性相反的交流信号就可以进行全波整流。基此,在图11E实施例的整流电路的配置下,同样可兼容单端进电、双端单接脚进电以及双端双接脚进电的供电方式。具体运作说明如下:
在单端进电的情况下,外部驱动信号施加于第一接脚501与第二接脚502上,此时第一至第四整流二极管911-914的运作如前述图11A实施例所述,而第五整流二极管915与第六整流二极管916不运作。
在双端单接脚进电的情况下,外部驱动信号可施加于第一接脚501与第三接脚503,或是施加于第二接脚502与第三接脚503。在外部驱动信号施加于第一接脚501与第三接脚503,且外部驱动信号为交流信号时,在交流信号处于正半波的期间,交流信号依序经第一接脚501、第四整流二极管914和第一整流输出端511后流入,并依序经第二整流输出端512、第五整流二极管915和第三接脚503后流出。在交流信号处于负半波的期间,交流信号依序经第三接脚503、第六整流二极管916和第一整流输出端511后流入,并依序经第二整流输出端512、第二整流二极管912和第一接脚501后流出。因此,不论交流信号处于正半波或负半波,整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。依据上述操作说明,整流电路910中的第二整流二极管912、第四整流二极管914、第五整流二极管915与第六整流二极管916对交流信号进行全波整流,并且输出的整流后信号为全波整流信号。
另一方面,在外部驱动信号施加于第二接脚502与第三接脚503,且外部驱动信号为交流信号时,在交流信号处于正半波的期间,交流信号依序经第三接脚503、第六整流二极管916和第一整流输出端511后流入,并依序经第二整流输出端512、第一整流二极管911和第二接脚502后流出。在交流信号处于负半波的期间,交流信号依序经第二接脚502、第三整流二极管913和第一整流输出端511后流入,并依序经第二整流输出端512、第五整流二极 管915和第三接脚503后流出。因此,不论交流信号处于正半波或负半波,整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。依据上述操作说明,整流电路910中的第一整流二极管911、第三整流二极管913、第五整流二极管915及第六整流二极管916对交流信号进行全波整流,并且输出的整流后信号为全波整流信号。
在双端双接脚进电的情况下,第一至第四整流二极管911~914的运作可参照上述图11A实施例的说明,于此不再赘述。此外,若第三接脚503的信号极性与第一接脚501相同,则第五整流二极管915与第六整流二极管916的运作类似于第二整流二极管912与第四整流二极管914(即,第一桥臂单元)。另一方面,若第三接脚503的信号极性与第二接脚502相同,则第五整流二极管915与第六整流二极管916的运作类似于第一整流二极管911与第三整流二极管913(即,第二桥臂单元)。
请参见图11E,图11E是本实用新型第五实施例的整流电路的电路架构示意图。图11E与图11D大致相同,两者差异在于图11E的第一整流电路610的输入端更耦接端点转换电路941。其中,本实施例的端点转换电路941包括保险丝947与948。保险丝947一端耦接第一接脚501,另一端耦接至第二整流二极管912与第四整流二极管914的共节点(即,第一桥臂单元的输入端)。保险丝948一端耦接第二接脚502,另一端耦接至第一整流二极管911与第三整流二极管913的共节点(即,第二桥臂单元的输入端)。藉此,当第一接脚501及第二接脚502任一流经的电流高于保险丝947及948的额定电流时,保险丝947及948就会对应地熔断而开路,藉此达到过流保护的功能。除此之外,在保险丝947及948仅有其中之一熔断的情况下(例如过流情形仅发生短暂时间即消除),本实施例的整流电路还可在过流情形消除后,继续基于双端单接脚的供电模式而持续运作。
请参见图11F,图11F是本实用新型第六实施例的整流电路的电路架构示意图。图11F与图11D大致相同,两者差异在于图11F的两个接脚503与504通过细导线917连接在一起。相较于前述图11D或11E实施例而言,当采用双端单接脚进电时,不论外部驱动信号是施加在第三接脚503或第四接脚504,本实施例的整流电路皆可正常运作。此外,当第三接脚503与第四接脚504错误接入单端进电的灯座时,本实施例的细导线917可以可靠地熔断,因此在灯管插回正确灯座时,应用此整流电路的直管灯仍能维持正常的整流工作。
由上述可知,图11C至图11F实施例的整流电路可以兼容单端进电、双端单接脚进电以及双端双接脚进电的情境,进而提高整体LED直管灯的应用环境兼容性。除此之外,考虑到实际电路布局情形来看,图11D至11F的实施例在灯管内部的电路配置仅需设置三个焊盘来连接至对应的灯头接脚,对于整体制程良率的提升有显著的贡献。
请参见图12A,图12A是本实用新型第一实施例的滤波电路的电路方块示意图。图中绘出第一整流电路510仅用以表示连接关系,并非滤波电路520包含第一整流电路510。滤波电路520包含滤波单元523,耦接第一整流输出端511及第二整流输出端512,以接收整流电路所输出的整流后信号,并滤除整流后信号中的纹波后输出滤波后信号。因此,滤波后信号的波形较整流后信号的波形更平滑。滤波电路520也可更包含滤波单元524,耦接于整流电路及对应接脚之间,例如:第一整流电路510与第一接脚501、第一整流电路510与第二接脚502、第二整流电路540与第三接脚503及第二整流电路540与第四接脚504,用以对特定频率进行滤波,以滤除外部驱动信号的特定频率。在本实施例,滤波单元524耦接于第一接脚501与第一整流电路510之间。滤波电路520也可更包含滤波单元525,耦接于第一接脚501与第二接脚502其中之一与第一整流电路510其中之一的二极管之间或第三接脚503与第四接脚504其中之一与第二整流电路540其中之一的二极管,用以降低或滤除电磁干扰(EMI)。在本实施例,滤波单元525耦接于第一接脚501与第一整流电路510其中之一的二极管(未绘出)之间。由于滤波单元524及525可视实际应用情况增加或省略,故图中以虚线表示之。
请参见图12B,图12B是本实用新型第一实施例的滤波单元的电路架构示意图。滤波单元623包含一电容625。电容625的一端耦接第一整流输出端511及第一滤波输出端521,另一端耦接第二整流输出端512及第二滤波输出端522,以对由第一整流输出端511及第二整流输出512输出的整流后信号进行低通滤波,以滤除整流后信号中的高频成分而形成滤波后信号,然后由第一滤波输出端521及第二滤波输出端522输出。
请参见图12C,图12C是本实用新型第二实施例的滤波单元的电路架构示意图。滤波单元723为π型滤波电路,包含电容725、电感726以及电容727。电容725的一端耦接第一整流输出端511并同时经过电感726耦接第一滤波输出端521,另一端耦接第二整流输出端512及第二滤波输出端522。电感726耦接于第一整流输出端511及第一滤波输出端521之间。电容727的一端经过电感726耦接第一整流输出端511并同时耦接第一滤波输出端521,另一端耦接第二整流输出端512及第二滤波输出端522。
等效上来看,滤波单元723较图12B所示的滤波单元623多了电感726及电容727。而且电感726与电容727也同电容725般,具有低通滤波作用。故,本实施例的滤波单元723相较于图12B所示的滤波单元623,具有更佳的高频滤除能力,所输出的滤波后信号的波形更为平滑。
上述实施例中的电感726的感值较佳为选自10nH-10mH的范围。电容625、725、727 的容值较佳为选自100pF-1uF的范围。
请参见图12D,图12D是本实用新型第二实施例的滤波电路的电路方块示意图。本实施例与图12A大致相同,其差异在于本实施例更包括负压消除单元528。负压消除单元528耦接滤波单元523,其用以消除滤波单元523发生谐振时所可能产生的负压,进而避免后级的驱动电路中的芯片或控制器损毁。具体而言,滤波单元523本身通常是利用电阻、电容或电感的组合所形成的电路,其中由于电容和电感的特性会使滤波单元5在特定频率下,呈现纯电阻性质(即,谐振点)。在谐振点下滤波单元523接收的信号会被放大后输出,因此会再滤波单元523的输出端观察到信号振荡的现象。当振荡幅度过大以致于波谷电平低于地电平时,滤波输出端521和522上会产生负压,此负压会被施加到后级的电路中,并且造成后级电路损毁的风险。
在本实施例中,负压消除单元528可在所述负压产生时导通一释能回路,藉以令负压所造成的逆向电流可通过释能回路释放并回到母线上,进而避免逆向电流流入后级电路。请参见图12E,图12E是本实用新型一实施例的滤波单元及负压消除单元的电路架构示意图。在本实施例中,所述负压消除单元可以通过二极管728来实现,但本实用新型不仅限于此。在滤波单元723未发生谐振的情形下,第一滤波输出端521会相对第二滤波输出端522具有高电平,因此二极管728会被截止而不会有电流流通。在滤波单元723发生谐振并产生负压的情形下,第二滤波输出端522会相对第一滤波输出端521具有高电平,此时二极管728会受到顺向偏压而导通,使得逆向电流会被疏导回第一滤波输出端521。
请参见图13A,图13A是本实用新型第一实施例的驱动电路的电路方块示意图。驱动电路530包含控制器533及转换电路534,以电流源的模式进行电力转换,以驱动LED模块发光。转换电路534包含开关电路(也可称为功率开关)535以及储能电路536。转换电路534耦接第一滤波输出端521及第二滤波输出端522,接收滤波后信号,并根据控制器533的控制,转换成驱动信号而由第一驱动输出端531及第二驱动输出端532输出,以驱动LED模块。在控制器533的控制下,转换电路534所输出的驱动信号为稳定电流,而使LED模块稳定发光。
底下搭配圖14A至图14D的信号波形来进一步说明驱动电路530的运作。其中,图14A至图14D是本实用新型不同实施例的驱动电路的信号波形示意图。图14A与图14B是绘示驱动电路530操作在连续导通模式(Continuous-Conduction Mode,CCM)的信号波形与控制情境,并且图14C与图14D是绘示驱动电路530操作在不连续导通模式(Discontinuous-Conduction Mode,DCM)的信号波形与控制情境。在信号波形图中,横轴的t代表时间,纵轴则是代表电压或电流值(视信号类型而定)。
本实施例的控制器533会根据接收到的电流检测信号Sdet来调整所输出的点亮控制信号Slc的占空比(Duty Cycle),使得开关电路535反应于点亮控制信号Slc而导通或截止。储能电路536会根据开关电路535导通/截止的状态而反覆充/放能,进而令LED模块50接收到的驱动电流ILED可以被稳定地维持在一预设电流值Ipred上。点亮控制信号Slc会具有固定的信号周期Tlc与信号振幅,而每个信号周期Tlc内的脉冲致能期间(如Ton1、Ton2、Ton3,或称脉冲宽度)的长度则会根据控制需求而调整。其中,点亮控制信号Slc的占空比即是脉冲致能期间与信号周期Tlc的比例。举例来说,若脉冲致能期间Ton1为信号周期Tlc的40%,即表示点亮控制信号在第一个信号周期Tlc下的占空比为0.4。
此外,所述电流检测信号Sdet可例如是代表流经LED模块50的电流大小的信号,或是代表流经开关电路535的电流大小的信号,本实用新型不以此为限。
请先同时参照图13A与图14A,图14A绘示在驱动电流ILED小于预设电流值Ipred的情况下,驱动电路530在多个信号周期Tlc下的信号波形变化。具体而言,在第一个信号周期Tlc中,开关电路535会反应于高电压准位的点亮控制信号Slc而在脉冲致能期间Ton1内导通。此时,转换电路534除了会根据从第一滤波输出端521及第二滤波输出端522接收到的输入电源产生驱动电流ILED提供给LED模块50之外,还会经由导通的开关电路535对储能电路536充电,使得流经储能电路536的电流IL逐渐上升。换言之,在脉冲致能期间Ton1内,储能电路536会反应于从第一滤波输出端521及第二滤波输出端522接收到的输入电源而储能。
接著,在脉冲致能期间Ton1结束后,开关电路535会反应于低电压准位的点亮控制信号Slc截止。在开关电路535截止的期间内,第一滤波输出端521及第二滤波输出端522上的输入电源不会被提供至LED模块50,而是由储能电路536进行放电以产生驱动电流ILED提供给LED模块50,其中储能电路536会因为释放电能而使电流IL逐渐降低。因此,即使当点亮控制信号Slc位于低电压准位(即,禁能期间)时,驱动电路530还是会基于储能电路536的释能而持续供电给LED模块50。换言之,无论开关电路535导通与否,驱动电路530都会持续地提供稳定的驱动电流ILED给LED模块50,并且所述驱动电流ILED在第一个信号周期Tlc内电流值的约为I1。
在第一个信号周期Tlc内,控制器533会根据电流检测信号Sdet判定驱动电流ILED的电流值I1小于预设电流值Ipred,因此在进入第二个信号周期Tlc时将点亮控制信号Slc的脉冲致能期间调整为Ton2,其中脉冲致能期间Ton2为脉冲致能期间Ton1加上单位期间Tu1。
在第二个信号周期Tlc内,开关电路535与储能电路536的运作与前一信号周期Tlc类 似。两者间的主要差异在于,由于脉冲致能期间Ton2较脉冲致能期间Ton1长,所以储能电路536会有更长的充电时间,并且放电时间亦相对较短,使得驱动电路530在第二个信号周期Tlc内所提供的驱动电流ILED的平均值会提高至更接近预设电流值Ipred的电流值I2。
类似地,由于此时驱动电流ILED的电流值I2仍小于预设电流值Ipred,因此在第三个信号周期Tlc内,控制器533会进一步的将点亮控制信号Slc的脉冲致能期间调整为Ton3,其中脉冲致能期间Ton3为脉冲致能期间Ton2加上单位期间t1,等于脉冲致能期间Ton1加上期间Tu2(相当于两个单位期间Tu1)。在第三个信号周期Tlc内,开关电路535与储能电路536的运作与前两信号周期Tlc类似。由于脉冲致能期间Ton3更进一步延长,因此使得驱动电流ILED的电流值上升至I3,并且大致上达到预设电流值Ipred。其后,由于驱动电流ILED的电流值I3已达到预设电流值Ipred,因此控制器533会维持相同的占空比,使得驱动电流ILED可被持续维持在预设电流值Ipred。
请再同时参照图13A与图14B,图14B绘示在驱动电流ILED大于预设电流值Ipred的情况下,驱动电路530在多个信号周期Tlc下的信号波形变化。具体而言,在第一个信号周期Tlc中,开关电路535会反应于高电压准位的点亮控制信号Slc而在脉冲致能期间Ton1内导通。此时,转换电路534除了会根据从第一滤波输出端521及第二滤波输出端522接收到的输入电源产生驱动电流ILED提供给LED模块50之外,还会经由导通的开关电路535对储能电路536充电,使得流经储能电路536的电流IL逐渐上升。换言之,在脉冲致能期间Ton1内,储能电路536会反应于从第一滤波输出端521及第二滤波输出端522接收到的输入电源而储能。
接著,在脉冲致能期间Ton1结束后,开关电路535会反应于低电压准位的点亮控制信号Slc截止。在开关电路535截止的期间内,第一滤波输出端521及第二滤波输出端522上的输入电源不会被提供至LED模块50,而是由储能电路536进行放电以产生驱动电流ILED提供给LED模块50,其中储能电路536会因为释放电能而使电流IL逐渐降低。因此,即使当点亮控制信号Slc位于低电压准位(即,禁能期间)时,驱动电路530还是会基于储能电路536的释能而持续供电给LED模块50。换言之,无论开关电路535导通与否,驱动电路530都会持续地提供稳定的驱动电流ILED给LED模块50,并且所述驱动电流ILED在第一个信号周期Tlc内电流值的约为I4。
在第一个信号周期Tlc内,控制器533会根据电流检测信号Sdet判定驱动电流ILED的电流值I4大于预设电流值Ipred,因此在进入第二个信号周期Tlc时将点亮控制信号Slc的脉冲致能期间调整为Ton2,其中脉冲致能期间Ton2为脉冲致能期间Ton1減去单位期间Tu1。
在第二个信号周期Tlc内,开关电路535与储能电路536的运作与前一信号周期Tlc类似。两者间的主要差异在于,由于脉冲致能期间Ton2较脉冲致能期间Ton1短,所以储能电路536会有較短的充电时间,并且放电时间亦相对较長,使得驱动电路530在第二个信号周期Tlc内所提供的驱动电流ILED的平均值会降低至更接近预设电流值Ipred的电流值I5。
类似地,由于此时驱动电流ILED的电流值I5仍大于预设电流值Ipred,因此在第三个信号周期Tpwm内,控制器533会进一步的将点亮控制信号Slc的脉冲致能期间调整为Ton3,其中脉冲致能期间Ton3为脉冲致能期间Ton2减去单位期间Tu1,等于脉冲致能期间Ton1减去期间Tu2(相当于两个单位期间Tu1)。在第三个信号周期Tlc内,开关电路535与储能电路536的运作与前两信号周期Tlc类似。由于脉冲致能期间Ton3更进一步缩短,因此使得驱动电流ILED的电流值降至I6,并且大致上达到预设电流值Ipred。其后,由于驱动电流ILED的电流值I6已达到预设电流值Ipred,因此控制器533会维持相同的占空比,使得驱动电流ILED可被持续维持在预设电流值Ipred。
由上述可知,驱动电路530会步阶式的调整点亮控制信号Slc的脉冲宽度,以使驱动电流ILED在低于或高于预设电流值Ipred时被逐步地调整至趋近于预设电流值Ipred,进而实现定电流输出。
此外,在本实施例中,驱动电路530是以操作在连续导通模式为例,亦即储能电路536在开关电路535截止期间内不会放电至电流IL为零。藉由操作在连续导通模式的驱动电路530为LED模块50供电,可以使提供给LED模块50的电源较为稳定,不易产生涟波。
接下来说明驱动电路530操作在不连续导通模式下的控制情境。请先参见图13A与图14C,其中,图14C的信号波形与驱动电路530运作大致上与图14A相同。图14C与图14A的主要差异在于本实施例的驱动电路530因操作在不连续导通模式下,因此储能电路536会在点亮控制信号Slc的脉冲禁能期间内放电至电流IL等于零,并且再于下个信号周期Tlc的开始再重新进行充电。除此之外的运作叙述皆可参照上述图14A实施例,于此不再赘述。
请接着参照图13A与图14D,其中,图14D的信号波形与驱动电路530运作大致上与图14B相同。图14D与图14B的主要差异在于本实施例的驱动电路530因操作在不连续导通模式下,因此储能电路536会在点亮控制信号Slc的脉冲禁能期间内放电至电流IL等于零,并且再于下个信号周期Tlc的开始再重新进行充电。除此之外的运作叙述皆可参照上述图14B实施例,于此不再赘述。
藉由操作在不连续导通模式的驱动电路530为LED模块50供电,可以使驱动电路530的电源损耗较低,从而具有较高的转换效率。
附带一提,所述驱动电路530虽然以单级式直流转直流转换电路作为范例,但本实用新型不以此为限。举例来说,所述驱动电路530亦可为由主动式功率因数校正电路搭配直流转直流转换电路所组成的双级式驱动电路。换言之,任何可以用于LED光源驱动的电源转换电路架构皆可应用于此。
此外,上述有关于电源转换的运作说明不仅限于应用在驱动交流输入的LED直管灯中,其可适用于各类型的AC电源供电的LED灯具(即,无镇流器LED灯具)中,例如LED灯泡、LED灯丝灯或一体化LED灯具中,本实用新型不以此为限。
请参见图13B,图13B是本实用新型第一实施例的驱动电路的电路架构示意图。在本实施例,驱动电路630为降压直流转直流转换电路,包含控制器633及转换电路,而转换电路包含电感636、续流二极管634、电容637以及切换开关635。驱动电路630耦接第一滤波输出端521及第二滤波输出端522,以将接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端531及第二驱动输出端532之间的LED模块。
在本实施例中,切换开关635为金氧半场效晶体管,具有控制端、第一端及第二端。切换开关635的第一端耦接续流二极管634的阳极,第二端耦接第二滤波输出端522,控制端耦接控制器633以接受控制器633的控制使第一端及第二端之间为导通或截止。第一驱动输出端531耦接第一滤波输出端521,第二驱动输出端532耦接电感636的一端,而电感636的另一端耦接切换开关635的第一端。电容637的耦接于第一驱动输出端531及第二驱动输出端532之间,以稳定第一驱动输出端531及第二驱动输出端532之间的电压差。续流二极管634的负端耦接第一驱动输出端531。
接下来说明驱动电路630的运作。
控制器633根据电流检测信号S535或/及S531决定切换开关635的导通及截止时间,也就是控制切换开关635的占空比(Duty Cycle)来调节驱动信号的大小。电流检测信号S535系代表流经切换开关635的电流大小。电流检测信号S531系代表流经耦接于第一驱动输出端531及第二驱动输出端532之间的LED模块的电流大小。根据电流检测信号S531及S535的任一,控制器633可以得到转换电路所转换的电力大小的信息。当切换开关635导通时,滤波后信号的电流由第一滤波输出端521流入,并经过电容637及第一驱动输出端531到LED模块、电感636、切换开关635后由第二滤波输出端522流出。此时,电容637及电感636进行储能。当切换开关635截止时,电感636及电容637释放所储存的能量,电流经续流二极管634续流到第一驱动输出端531使LED模块仍持续发光。值得注意的是,电容637非必要组件而可以省略,故在图中以虚线表示。在一些应用环境,可以藉由电感会阻抗电流的改 变的特性来达到稳定LED模块电流的效果而省略电容637。检测检测检测检测
再从另一角度来看,驱动电路630使得流经LED模块电流维持不变,因此对于部分LED模块而言(例如:白色、红色、蓝色、绿色等LED模块),色温随着电流大小而改变的情形即可改善,亦即,LED模块能在不同的亮度下维持色温不变。而扮演储能电路的电感636在切换开关635截止时释放所储存的能量,一方面使得LED模块保持持续发光,另一方面也使得LED模块上的电流电压不会骤降至最低值,而当切换开关635再次导通时,电流电压就不需从最低值往返到最大值,藉此,避免LED模块断续发光而提高LED模块的整体亮度并降低最低导通周期以及提高驱动频率。
请参见图13C,图13C是本实用新型第二实施例的驱动电路的电路架构示意图。在本实施例,驱动电路730为升压直流转直流转换电路,包含控制器733及转换电路,而转换电路包含电感736、续流二极管734、电容737以及切换开关735。驱动电路730将由第一滤波输出端521及第二滤波输出端522所接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端531及第二驱动输出端532之间的LED模块。
电感736的一端耦接第一滤波输出端521,另一端耦接滤流二极管734的阳极及切换开关735的第一端。切换开关735的第二端耦接第二滤波输出端522及第二驱动输出端532。续流二极管734的阴极耦接第一驱动输出端531。电容737耦接于第一驱动输出端531及第二驱动输出端532之间。
控制器733耦接切换开关735的控制端,根据电流检测信号S531或/及电流检测信号S535来控制切换开关735的导通与截止。当切换开关735导通时,电流由第一滤波输出端521流入,并流经电感736、切换开关735后由第二滤波输出端522流出。此时,流经电感736的电流随时间增加,电感736处于储能状态。同时,电容737处于释能状态,以持续驱动LED模块发光。当切换开关735截止时,电感736处于释能状态,电感736的电流随时间减少。电感736的电流经续流二极管734续流流向电容737以及LED模块。此时,电容737处于储能状态。
值得注意的是,电容737为可省略的组件,以虚线表示。在电容737省略的情况,切换开关735导通时,电感736的电流不流经LED模块而使LED模块不发光;切换开关735截止时,电感736的电流经续流二极管734流经LED模块而使LED模块发光。藉由控制LED模块的发光时间及流经的电流大小,可以达到LED模块的平均亮度稳定于设定值上,而达到相同的稳定发光的作用。检测检测检测
为了要检测流经切换开关735的电流大小,切换开关735与第二滤波输出端522之间会 配置有一检测电阻(未绘示)。当切换开关735导通时,流过检测电阻的电流会在检测电阻两端造成电压差,因此检测电阻上的电压即可作为电流检测信号S535被回传给控制器733作为控制的依据。然而,在LED直管灯通电瞬间或遭受到雷击时,切换开关735的回路上容易产生大电流(可能达到10A以上)而使检测电阻与控制器733损毁。因此,在一些实施例中,驱动电路730可更包含一钳位组件,其可与检测电阻连接,用以在流经检测电阻的电流或电流检测电阻两端的电压差超过一预设值时,对检测电阻的回路进行钳位操作,藉以限制流经检测电阻的电流。在一些实施例中,所述钳位组件可例如是多个二极管,所述多个二极管相互串联,以形成一二极管串,所述二极管串与检测电阻相互并联。在此配置底下,当切换开关735的回路上产生大电流时,并联于检测电阻的二极管串会快速导通,使得检测电阻的两端可被限制在特定电平上。举例来说,若二极管串是由5个二极管所组成,由于单一二极管的导通电压约为0.7V,因此二极管串可将检测电阻的跨压钳位在3.5V左右。
再从另一角度来看,驱动电路730使得流经LED模块电流维持不变,因此对于部分LED模块而言(例如:白色、红色、蓝色、绿色等LED模块),色温随着电流大小而改变的情形即可改善,亦即,LED模块能在不同的亮度下维持色温不变。而扮演储能电路的电感736在切换开关735截止时释放所储存的能量,一方面使得LED模块持续发光,另一方面也使得LED模块上的电流电压不会骤降至最低值,而当切换开关735再次导通时,电流电压就不需从最低值往返到最大值,藉此,避免LED模块断续发光而提高LED模块的整体亮度并降低最低导通周期以及提高驱动频率。
请参见图13D,图13D是本实用新型第三实施例的驱动电路的电路架构示意图。在本实施例,驱动电路830为降压直流转直流转换电路,包含控制器833及转换电路,而转换电路包含电感836、续流二极管834、电容837以及切换开关835。驱动电路830耦接第一滤波输出端521及第二滤波输出端522,以将接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端531及第二驱动输出端532之间的LED模块。
切换开关835的第一端耦接第一滤波输出端521,第二端耦接续流二极管834的阴极,而控制端耦接控制器833以接收控制器833的点亮控制信号而使第一端与第二端之间的状态为导通或截止。续流二极管834的阳极耦接第二滤波输出端522。电感836的一端与切换开关835的第二端耦接,另一端耦接第一驱动输出端531。第二驱动输出端532耦接续流二极管834的阳极。电容837耦接于第一驱动输出端531及第二驱动输出端532之间,以稳定第一驱动输出端531及第二驱动输出端532之间的电压。
控制器833根据电流检测信号S531或/及电流检测信号S535来控制切换开关835的导通 与截止。当切换开关835导通时,电流由第一滤波输出端521流入,经切换开关835、电感836并经过电容837及第一驱动输出端531、LED模块及第二驱动输出端532后由第二滤波输出端522流出。此时,流经电感836的电流以及电容837的电压随时间增加,电感836及电容837处于储能状态。当切换开关835截止时,电感836处于释能状态,电感836的电流随时间减少。此时,电感836的电流经第一驱动输出端531、LED模块及第二驱动输出端532、续流二极管834再回到电感836而形成续流。
值得注意的是,电容837为可省略组件,图式中以虚线表示。当电容837省略时,不论切换开关835为导通或截止,电感836的电流均可以流过第一驱动输出端531及第二驱动输出端532以驱动LED模块持续发光。检测检测检测
再从另一角度来看,驱动电路830使得流经LED模块电流维持不变,因此对于部分LED模块而言(例如:白色、红色、蓝色、绿色等LED模块),色温随着电流大小而改变的情形即可改善,亦即,LED模块能在不同的亮度下维持色温不变。而扮演储能电路的电感836在切换开关835截止时释放所储存的能量,一方面使得LED模块保持持续发光,另一方面也使得LED模块上的电流电压不会骤降至最低值,而当切换开关835再次导通时,电流电压就不需从最低值往返到最大值,藉此,避免LED模块断续发光而提高LED模块的整体亮度并降低最低导通周期以及提高驱动频率。
请参见图13E,图13E是本实用新型第四实施例的驱动电路的电路架构示意图。在本实施例,驱动电路930为降压直流转直流转换电路,包含控制器933及转换电路,而转换电路包含电感936、续流二极管934、电容937以及切换开关935。驱动电路930耦接第一滤波输出端521及第二滤波输出端522,以将接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端531及第二驱动输出端532之间的LED模块。
电感936的一端耦接第一滤波输出端521及第二驱动输出端532,另一端耦接切换开关935的第一端。切换开关935的第二端耦接第二滤波输出端522,而切换开关935的控制端耦接控制器933以根据控制器933的点亮控制信号而为导通或截止。续流二极管934的阳极耦接电感936与切换开关935的连接点,阴极耦接第一驱动输出端531。电容937耦接第一驱动输出端531及第二驱动输出端532,以稳定耦接于第一驱动输出端531及第二驱动输出端532之间的LED模块的驱动。
控制器933根据电流检测信号S531或/及电流检测信号S535来控制切换开关935的导通与截止。当切换开关935导通时,电流由第一滤波输出端521流入,并流经电感936、切换开关935后由第二滤波输出端522流出。此时,流经电感936的电流随时间增加,电感936 处于储能状态;电容937的电压随时间减少,电容937处于释能状态,以维持LED模块发光。当切换开关935截止时,电感936处于释能状态,电感936的电流随时间减少。此时,电感936的电流经续流二极管934、第一驱动输出端531、LED模块及第二驱动输出端532再回到电感936而形成续流。此时,电容937处于储能状态,电容937的电压随时间增加。
值得注意的是,电容937为可省略组件,图式中以虚线表示。当电容937省略时,切换开关935导通时,电感936的电流并未流经第一驱动输出端531及第二驱动输出端532而使LED模块不发光。切换开关935截止时,电感936的电流经续流二极管934而流经LED模块而使LED模块发光。藉由控制LED模块的发光时间及流经的电流大小,可以达到LED模块的平均亮度稳定于设定值上,而达到相同的稳定发光的作用。检测检测检测
再从另一角度来看,驱动电路930使得流经LED模块电流维持不变,因此对于部分LED模块而言(例如:白色、红色、蓝色、绿色等LED模块),色温随着电流大小而改变的情形即可改善,亦即,LED模块能在不同的亮度下维持色温不变。而扮演储能电路的电感936在切换开关935截止时释放所储存的能量,一方面使得LED模块持续发光,另一方面也使得LED模块上的电流电压不会骤降至最低值,而当切换开关935再次导通时,电流电压就不需从最低值往返到最大值,藉此,避免LED模块断续发光而提高LED模块的整体亮度并降低最低导通周期以及提高驱动频率。
配合图6A及图6B,短电路板253被区分成与长电路板251两端连接的第一短电路板及第二短电路板,而且电源模块中的电子组件被分别设置于的短电路板253的第一短电路板及第二短电路板上。第一短电路板及第二短电路板的长度尺寸可以约略一致,也可以不一致。一般,第一短电路板(图6的短电路板253的右侧电路板及图7的短电路板253的左侧电路板)的长度尺寸为第二短电路板的长度尺寸的30%-80%。更佳的第一短电路板的长度尺寸为第二短电路板的长度尺寸的1/3-2/3。在本实施中,第一短电路板的长度尺寸大致为第二短电路板的尺寸的一半。第二短电路板的尺寸介于15mm~65mm(具体视应用场合而定)。第一短电路板设置于LED直管灯的一端的灯头中,以及所述第二短电路板设置于LED直管灯的相对的另一端的灯头中。
举例来说,驱动电路的电容(例如:图13B至图13E中的电容637、737、837、937)实际应用上可以是两个或以上的电容并联而成。电源模块中驱动电路的电容至少部分或全部设置于短电路板253的第一短电路板上。即,整流电路、滤波电路、驱动电路的电感、控制器、切换开关、二极管等均设置于短电路板253的第二短电路板上。而电感、控制器、切换开关等为电子组件中温度较高的组件,与部分或全部电容设置于不同的电路板上,可使电容(尤其 是电解电容)避免因温度较高的组件对电容的寿命造成影响,提高电容信赖性。进一步,还可因电容与整流电路及滤波电路在空间上分离,解决EMI问题。
在一实施例中,驱动电路中温度较高的组件设置在灯管的一侧(可称为灯管的第一侧),并且其馀组件设置在灯管的另一侧(可称为灯管的第二侧)。在多灯管的灯具系统中,所述灯管是以交错式的排列方式与灯座连接,亦即其中任一灯管的第一侧会与其他相邻灯管的第二侧邻接。如此配置方式可以使得温度较高的组件平均的配置在灯具系统中,进而避免热量集中在灯具中的特定位置,使LED整体的发光效能受到影响。
本实用新型的驱动电路的转换效率为80%以上,较佳为90%以上,更佳为92%以上。因此,在未包含驱动电路时,本实用新型的LED灯的发光效率较佳为120lm/W以上,更佳为160lm/W以上;而在包含驱动电路与LED组件结合后的发光效率较佳为120lm/W*90%=108lm/W以上,更佳为160lm/W*92%=147.2lm/W以上。
另外,考虑LED直管灯的扩散层的透光率为85%以上,因此,本实用新型的LED直管灯的发光效率较佳为108lm/W*85%=91.8lm/W以上,更佳为147.2lm/W*85%=125.12lm/W。
请参见图15A,图15A是本实用新型第四实施例的电源模块的电路方块示意图。相较于图9A所示实施例,本实施例的电源模块5包含第一整流电路510、滤波电路520、驱动电路530及LED模块50,且更增加过压保护电路550。过压保护电路550耦接第一滤波输出端521及第二滤波输出端522,以检测滤波后信号,并于滤波后信号的准位高于设定过压值时,箝制滤波后信号的准位。因此,过压保护电路550可以保护LED模块50的组件不因过高压而毁损。
请参见图15B,图15B是本实用新型第五实施例的电源模块的电路方块示意图。本实施例的电源模块5和图15A的电源模块5大致相同,两者间的差异主要在于本实施例的过压保护电路550是设置在驱动电路530和LED模块50之间,即过压保护电路550耦接第一驱动输出端531及第二驱动输出端532,以检测驱动信号,并于驱动信号的准位高于设定过压值时,箝制驱动信号的电平。因此,过压保护电路550可以保护LED模块50的组件不因过高压而毁损。
请参见图15C,图15C是本实用新型一实施例的过压保护电路的电路架构示意图。过压保护电路650包含稳压二极管652,例如:齐纳二极管(Zener Diode),耦接第一滤波输出端521及第二滤波输出端522(如图15A实施例),或耦接第一驱动输出端531及第二驱动输出端532(如图15B实施例)。以稳压二极管652设置于第一滤波输出端521及第二滤波输出端 522之间为例,稳压二极管652于第一滤波输出端521及第二滤波输出端522的电压差(即,滤波后信号的电平)达到崩溃电压时导通,使电压差箝制在崩溃电压上。崩溃电压较佳为在40-100V的范围内,更佳为55-75V的范围。
请参见图16A,图16A是本实用新型第六实施例的电源模块的电路方块示意图。相较于图8C所示实施例,本实施例的电源模块5包含第一整流电路510、滤波电路520及驱动电路530,且更增加辅助供电模块560,其中所述电源模块5也可以包含LED模块50的部份组件。辅助供电模块560耦接于第一滤波输出端521与第二滤波输出端522之间。辅助供电模块560检测第一滤波输出端521与第二滤波输出端522上的滤波后信号,并根据检测结果决定是否提供辅助电力到第一滤波输出端521与第二滤波输出端522。当滤波后信号停止提供或交流准位不足时,即当LED模块50的驱动电压低于一辅助电压时,辅助供电模块560提供辅助电力,使LED模块50可以持续发光。辅助电压根据辅助供电模块560提供的辅助电源电压而决定。
请参见图16B,图16B是本实用新型第七实施例的电源模块的电路方块示意图。相较于图16A所示实施例,本实施例的电源模块5包含第一整流电路510、滤波电路520、驱动电路530及辅助供电模块560。辅助供电模块560耦接第一驱动输出端531及第二驱动输出端532之间。辅助供电模块560检测第一驱动输出端531及第二驱动输出端532的驱动信号,并根据检测结果决定是否提供辅助电力到第一驱动输出端531及第二驱动输出端532。当驱动信号停止提供或交流准位不足时,辅助供电模块560提供辅助电力,使LED模块50可以持续发光。
在另一范例实施例中,LED模块50可以仅接收辅助供电模块560所提供的辅助电源作为工作电源,而外部驱动信号则是用以作为辅助供电模块560充电之用。由于本实施例是仅采用辅助供电模块960所提供的辅助电力来点亮LED模块50,亦即不论外部驱动信号为市电所提供或是由镇流器所提供,皆是先对辅助供电模块960的储能单元进行充电,再统一由储能单元对后端供电。藉此,应用本实施例的电源模块架构的LED直管灯可以兼容市电所提供的外部驱动信号。
从结构的角度来看,由于上述的辅助供电模块560是连接在滤波电路520的输出端(第一滤波输出端521及第二滤波输出端522)或驱动电路530的输出端(第一驱动输出端531及第二驱动输出端532)之间,因此在一范例实施例中,其电路可以放置在灯管中(例如是邻近于LED模块50的位置),藉以避免过长的走线造成电源传输损耗。在另一范例实施例中,辅助供电模块560的电路也可以是放置在灯头中,使得辅助供电模块560在充放电时所产生的热能较 不易影响LED模块的运作与发光效能。
请参见图16C,图16C是本实用新型一实施例的辅助供电模块的电路架构示意图。本实施例的辅助供电模块660可应用于上述辅助供电模块560的配置中。辅助供电模块660包含储能单元663以及电压检测电路664。辅助供电模块660具有辅助电源正端661及辅助电源负端662以分别耦接第一滤波输出端521与第二滤波输出端522,或分别耦接第一驱动输出端531及第二驱动输出端532。电压检测电路664检测辅助电源正端661及辅助电源负端662上信号的准位,以决定是否将储能单元663的电力透过辅助电源正端661及辅助电源负端662向外释放。
在本实施例中,储能单元663为电池或超级电容。电压检测电路664更于辅助电源正端661及辅助电源负端662的信号的准位高于储能单元663的电压时,以辅助电源正端661及辅助电源负端662上的信号对储能单元663充电。当辅助电源正端661及辅助电源负端662的信号准位低于储能单元663的电压时,储能单元663经辅助电源正端661及辅助电源负端662对外部放电。
电压检测电路664包含二极管665、双载子接面晶体管666及电阻667。二极管665的阳极耦接储能单元663的正极,阴极耦接辅助电源正端661。储能单元663的负极耦接辅助电源负端662。双载子接面晶体管666的集极耦接辅助电源正端661,射极耦接储能单元663的正极。电阻667一端耦接辅助电源正端661,另一端耦接双载子接面晶体管666的基极。电阻667于双载子接面晶体管666的集极高于射极一个导通电压时,使双载子接面晶体管666导通。当驱动LED直管灯的电源正常时,滤波后信号经第一滤波输出端521与第二滤波输出端522及导通的双载子接面晶体管666对储能单元663充电,或驱动信号经第一驱动输出端531与第二驱动输出端532及导通的双载子接面晶体管666对储能单元663充电,直至双载子接面晶体管666的集极-射击的差等于或小于导通电压为止。当滤波后信号或驱动信号停止提供或准位突然下降时,储能单元663通过二极管665提供电力至LED模块50以维持发光。
值得注意的是,储能单元663充电时所储存的最高电压将至少低于施加于辅助电源正端661与辅助电源负端662的电压一个双载子接面晶体管666的导通电压。储能单元663放电时由辅助电源正端661与辅助电源负端662输出的电压低于储能单元663的电压一个二极管665的阈值电压。因此,当辅助供电模块开始供电时,所提供的电压将较低(约等于二极管665的阈值电压与双载子接面晶体管666的导通电压的总和)。在图14B所示的实施例中,辅助供电模块供电时电压降低会使LED模块50的亮度明显下降。如此,当辅助供电模块应用于紧急照明系统或常亮照明系统时,用户可以知道主照明电源,例如:市电,异常,而可以进行 必要的防范措施。
图16A至图16C实施例的配置除了可应用在单一灯管的应急电源供应之外,其可以应用在多灯管的灯具架构之下。以具有4根平行排列的LED直管灯的灯具为例,在一范例实施例中,所述4根LED直管灯可以是其中一个包含有辅助供电模块。当外部驱动信号异常时,包含有辅助供电模块的LED直管灯会持续被点亮,而其他LED直管灯会熄灭。考虑到光照的均匀性,设置有辅助供电模块的LED直管灯可以是配置在灯具的中间位置。
在另一范例实施例中,所述4根LED直管灯可以是其中多个包含有辅助供电模块。当外部驱动信号异常时,包含有辅助供电模块的LED直管灯可以全部同时被辅助电力点亮。如此一来,即使在应急的情况下,灯具整体仍可提供一定的亮度。考虑到光照的均匀性,若是以设置2根LED直管灯包含有辅助供电模块为例,此两根LED直管灯可以是与未设置有辅助供电模块的LED直管灯交错排列配置。
在又一范例实施例中,所述4根LED直管灯可以是其中多个包含有辅助供电模块。当外部驱动信号异常时,其中部分LED直管灯会先被辅助电力点亮,并且经过一段时间后(例如是),另一部分LED直管灯再被辅助电力点亮。如此一来,本实施例可透过与其他灯管协调提供辅助电力顺序的方式,使得LED直管灯在应急状态下的照明时间得以被延长。
其中,所述与其他灯管协调提供辅助电力顺序的实施例可以透过设定不同灯管中的辅助供电模块的启动时间,或是透过在各灯管内设置控制器的方式来沟通辅助供电模块之间的运作状态,本实用新型不对此加以限制。
请参见图16D,图16D是本实用新型第八实施例的电源模块的电路方块示意图。本实施例的电源模块5包含整流电路510、滤波电路520、驱动电路530及辅助供电模块760。相较于图16B所示实施例,本实施例的辅助供电模块760是连接在第一接脚501与第二接脚502之间,藉以接收外部驱动信号,并且基于外部驱动信号来进行充放电的动作。
具体而言,在一实施例中,辅助供电模块760的运作可类似于离线式不断电系统(Off-line UPS)。在供电正常时,外部电网/外部驱动信号会直接供电至整流电路510并且同时为辅助供电模块760充电;一旦市电供电品质不稳或断电,辅助供电模块760会切断外部电网与整流电路510之间的回路,并且改为由辅助供电模块760供电至整流电路510,直至电网供电恢复正常。换言之,本实施例的辅助供电模块760可例如是以备援式的方式运作,仅在电网断电时才会介入供电。于此,辅助供电模块760所供应的电源可为交流电或直流电。
在一范例实施例中,辅助供电模块760例如包含储能单元以及电压检测电路,电压检测电路会检测外部驱动信号,并根据检测结果决定是否令储能单元提供辅助电力到整流电路510 的输入端。当外部驱动信号停止提供或交流准位不足时,辅助供电模块760的储能单元提供辅助电力,使LED模块50可以基于辅助储能单元所提供的辅助电力而持续发光。在实际应用中,所述用以提供辅助电力的储能单元可以利用电池或超级电容等储能组件来实施,但本实用新型不以此为限。
在另一范例实施例中,如图16E所示,图16E是本实用新型第一实施例的辅助供电模块的电路方块示意图。辅助供电模块760例如包含充电单元761与辅助供电单元762,充电单元761的输入端连接至外部电网508,并且充电单元761的输出端连接至辅助供电单元762的输入端。辅助供电单元762的输出端连接至外部电网508与整流电路510之间的供电回路。系统中更包括开关单元763,分别连接至外部电网508、辅助供电单元762的输出端以及整流电路510的输入端,其中开关单元763会根据外部电网508的供电状态而选择性的导通外部电网508与整流电路510之间的回路,或是辅助供电模块760与整流电路510之间的回路。具体而言,当外部电网508供电正常时,外部电网508所供应的电力会作为外部驱动信号Sed通过开关单元763提供至整流电路510的输入端。此时,充电单元761会基于外部电网508所供应的电力对辅助供电单元762充电,并且辅助供电单元762会响应于在供电回路上正常传输的外部驱动信号Sed而不对后端的整流电路510放电。当外部电网508供电发生异常或断电时,辅助供电单元762开始通过开关单元763放电以提供辅助电力作为外部驱动信号Sed给整流电路510。
请参照图16F,图16F是本实用新型第九实施例的电源模块的电路方块示意图。本实施例的电源模块5包含整流电路510、滤波电路520、驱动电路530及辅助供电模块860。相较于图16D所示实施例,本实施例的辅助供电模块860的输入端Pi1与Pi2会接收外部驱动信号,并且基于外部驱动信号来进行充放电的动作,再将所产生的辅助电源从输出端Po1与Po2提供给后端的整流电路510。从LED直管灯结构的角度来看,LED直管灯的第一接脚(如501)与第二接脚(如502)可以是辅助供电模块860的输入端Pi1与Pi2或是输出端Po1与Po2。若第一接脚501与第二接脚502为辅助供电模块860的输入端Pi1与Pi2,即表示辅助供电模块860设置在LED直管灯的内部;若第一接脚501与第二接脚502为辅助供电模块860的输出端Po1与Po2,即表示辅助供电模块860设置在LED直管灯的外部。后续实施例会对辅助供电模块的具体结构配置做进一步说明。
在一实施例中,辅助供电模块860的运作类似于在线式不断电系统(On-line UPS),外部电网/外部驱动信号不会直接供电给整流电路510,而是会透过辅助供电模块860进行供电。换言之,在本实施例中,外部电网会与LED直管灯会相互隔离,并且辅助供电模块860在 LED直管灯启动/用电的过程中是全程介入的,进而使得提供给整流电路510的电源不受到外部电网供电不稳定的影响。
图16G是本实用新型第二实施例的辅助供电模块的电路方块示意图,其绘示在线式操作的辅助供电模块860的范例配置。如图16G所示,辅助供电模块860包括充电单元861以及辅助供电单元862。充电单元861的输入端连接至外部电网508,并且充电单元861的输出端连接至辅助供电单元862的第一输入端。辅助供电单元862的第二输入端连接至外部电网508,并且其输出端连接至整流电路510。具体而言,当外部电网508供电正常时,辅助供电单元862会基于外部电网508所提供的电力进行电源转换,并且据以产生外部驱动信号Sed给后端的整流电路510;在此期间内,充电单元861同时会对辅助供电单元862中的储能单元进行充电。当外部电网508供电发生异常或断电时,辅助供电单元862会基于本身的储能单元所提供的电力进行电源转换,并且据以产生外部驱动信号Sed给后端的整流电路510。在此附带一提的是,本文所述的电源转换动作可以是整流、滤波、升压及降压等电路运作的其中之一或其合理组合,本实用新型不以此为限。
在另一实施例中,辅助供电模块860的运作类似于在线互动式不断电系统(Line-Interactive UPS),其基本运作类似于离线式不断电系统,但差异在于于在线互动式的运作底下,辅助供电模块860会随时监控外部电网的供电情况,并且其本身具备升压和减压补偿电路,以在外部电网供电情况不理想时,即时校正,进而减少切换利用电池进行供电的频率。
图16H是本实用新型第三实施例的辅助供电模块的电路方块示意图,其绘示在线互动式操作的辅助供电模块860的范例配置。如图16H所示,辅助供电模块860例如包含充电单元861、辅助供电单元862以及开关单元863。充电单元861的输入端连接至外部电网508,并且充电单元861的输出端连接至辅助供电单元862的输入端。开关单元863分别连接至外部电网508、辅助供电单元862的输出端以及整流电路510的输入端,其中开关单元863会根据外部电网508的供电状态而选择性的导通外部电网508与整流电路510之间的回路,或是辅助供电单元862与整流电路510之间的回路。具体而言,当外部电网508供电正常时,开关单元863会导通外部电网508与整流电路510之间的回路,并且断开辅助供电单元862与整流电路510之间的回路,使得外部电网508所供应的电力作为外部驱动信号Sed通过开关单元863提供至整流电路510的输入端。此时,充电单元861会基于外部电网508所供应的电力对辅助供电单元862充电。当外部电网508供电发生异常或断电时,开关单元863会切换为导通辅助供电单元862与整流电路510之间的回路,使得辅助供电单元862开始放电以提供辅助电力作为外部驱动信号Sed给整流电路510。
在上述实施例中,所述辅助供电单元762/862所提供的辅助电力可为交流电或直流电。当提供的电力为交流电时,辅助供电单元762/862例如包括一储能单元与一直流转交流转换器(DC-AC converter);当提供的电力为直流电时,辅助供电单元762/862例如包括一储能单元与一直流转直流转换器(DC-DC converter),或仅包括储能单元,本实用新型不以此为限。所述储能单元可例如为若干储能电池组合的电池模块。所述直流转直流转换器可例如为升压型、降压型或降升压型直流转直流转换电路。其中,辅助供电模块760/860更包括电压检测电路(未绘示)。电压检测电路可用来检测外部电网508的工作状态,并且根据检测结果发出信号来控制开关单元763/863或辅助供电单元862,藉以决定LED直管灯工作在普通照明模式(即,通过外部电网508供电)或应急模式(即,通过辅助供电模块760/860供电)。其中,所述开关单元863/863可以利用三端开关或互补切换的两开关来实现。若采用互补切换的两开关实施,则所述两开关可分别串接在外部电网508的供电回路上以及辅助供电模块760/860的供电回路上;并且控制方式为其中之一开关导通时,其中另一开关截止。
在一范例实施例中,所述开关单元763/863可采用继电器来实施。该继电器类似于2种模式的选择开关,若工作于普通照明模式(即市电作为外部驱动信号),通电后,该继电器通电吸合,这时LED直管灯的电源模块不与辅助供电模块760/860电性连接;若市电异常,该继电器的电磁吸力消失,恢复至初始的位置这时LED直管灯的电源模块通过继电器与辅助供电模块电性连接760/860,使辅助供电模块工作。
从整体照明系统的角度来看,应用在普通照明场合时,辅助供电模块760/860不工作,由市电给提供电力;并由市电给辅助供电模块中的电池模块充电。应用在应急场合时,电池模块通过升压型直流转直流转换电路将电池模块的电压升压至LED模块50工作时所需电压,LED模块50发光。通常升压后电压为升压前电池模块电压的4-10倍(较佳的选用4~6倍);LED模块50工作时所需电压介于40-80V(较佳的介于55-75V,本案中选用60V)。
在本实施例中,选用单颗呈圆柱形的电池;该电池采用金属壳封装,可降低电池内电解液泄漏的风险。在本实施例中,电池采用模块化的设计,采用2颗电池单元串连接然后封装构成一个电池模块,其中多个所述电池模块可顺次的电性连接(可为串连或并连)并设置在灯具内,这样便于后期的对其维护;若有部分电池模块损坏,可及时替换损坏的电池模块,而无需替换所有电池模块。电池模块可设置成圆柱体状,其内径稍大于电池单元的外径,这样电池单元顺次放入电池模块,在电池模块的两端形成正极端及负极端。在一实施例中,多个串连的电池模块的电压低于36V。在其他的实施例中,电池模块可设置成长方体状,长方体的宽度略大于电池的外径,这样电池牢固的夹在电池模块内,该模块上设有采用卡扣式可插 拔结构,或其它能容易插拔拼装的结构。
在本实施例中,所述充电单元761/861可例如为管理电池模块的BMS模块(电池管理系统),主要就是为了智能化管理及维护各个电池模块,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
该BMS模块预设可外接的接口,定期检测时通过连接该接口读取电池模块内的电池的信息。若检测出电池模块有异常时替换相应的电池模块。
在其他的实施例中,电池模块内的电池数量可多颗,如3颗,4颗,30颗等,这时电池模块内的电池间可采样串联接,串并联的混连接,具体视应用的场合;若采用锂电池时,单颗锂电池的电压3.7V左右,电池数量可适当减少以使得电池系统的电压低于36V。
本实施例中的继电器,选用电磁式继电器,其主要由铁芯、线圈、衔铁、触点簧片等组成的。其工作原理:只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力恢复至初始的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。
在一范例实施例中,LED模块被外部驱动信号点亮的亮度与被辅助电力点亮的亮度不同。藉此,使用者可在观察到灯管亮度改变时,发现可能有外部电源供电异常的问题发生,从而尽速排除问题。换言之,本实施例的辅助供电模块760/860可藉由在外部驱动信号发生异常时,提供功率与外部驱动信号不同的辅助电力给LED模块使用,从而令LED模块具有不同的亮度,以作为外部驱动信号是否正常供给的指示。举例来说,在本实施例中,当LED模块是根据外部驱动信号点亮时,其亮度可例如为1600-2000流明;当LED模块是根据辅助供电模块760/860所提供的辅助电力点亮时,其亮度可例如为200-250流明。从辅助供电模块760/860的角度来看,为了让LED模块在点亮时具有200-250流明的亮度,辅助供电模块760/860的输出功率可以例如为1瓦至5瓦,但本实用新型不以此为限。此外,辅助供电模块760/860中的储能组件的电容量可例如为1.5瓦小时至7.5瓦小时以上,藉以使LED模块可基于辅助电力而在亮度200-250流明下持续点亮超过90分钟,但本实用新型同样不以此为限。
从结构的角度来看,如图16I所示,图16I是本实用新型第一实施例的辅助供电模块的配置示意图。在本实施例中,所述的辅助供电模块760/860(为使说明简要,图式上仅标示 760,底下也以辅助供电模块760进行叙述)除了可如前述实施例配置在灯管1中之外,其还可以配置在灯头3中。于此配置底下,辅助供电模块760可以从灯头3内部连接至对应的第一接脚501与第二接脚502,藉以接收提供至第一接脚501与第二接脚502上的外部驱动信号。相较于将辅助供电模块760置于灯管1中的配置而言,由于本实施例的辅助供电模块760是配置在灯管1两侧的灯头3内,因此会距离灯管1内的LED模块较远,使得辅助供电模块760在充放电时所产生的热能较不易影响LED模块的运作与发光效能。除此之外,辅助供电模块760与LED直管灯的电源模块可以配置在同一侧灯头中,或分别置于两侧灯头中。其中,若将辅助供电模块760与电源模块置于不同灯头中可以使整体电路布局有更大的空间。
在另一实施例中,所述辅助供电模块760亦可设置在与LED直管灯相对应的灯座中,如图16J所示,图16J是本实用新型第二实施例的辅助供电模块的配置示意图。灯座1_LH包括基座101_LH以及连接插座102_LH,其中基座101_LH内装配有电源线路,并且适于锁合/贴合至墙面或天花板等固定物件上。连接插座102_LH上具有与LED直管灯上的接脚(如第一接脚501与第二接脚502)相对应的插槽,其中插槽会与对应的电源线路相互电性连接。在本实施例中,连接插座102_LH可以是与基座101_LH一体成形,或是可拆卸地装设至基座101_LH上,本实用新型不以此为限。
当LED直管灯装上灯座1_LH时,两端灯头3上的接脚会分别插设至对应的连接插座102_LH的插槽内,藉以与对应的电源线路电性连接,以令外部驱动信号可被提供至对应的接脚上。在本实施例中,辅助供电模块760是设置在连接插座102_LH中,并且连接电源线路以接收外部驱动信号。以左侧灯头3的配置为例,当第一接脚501与第二接脚502插设至左侧连接插座102_LH的插槽时,辅助供电模块760会通过插槽电性连接第一接脚501与第二接脚502,进而实现如图16D的连接配置。
相较于将辅助供电模块760置于灯头3中的实施例而言,由于连接插座102_LH可设计为可拆卸的配置,因此在一范例实施例中,连接插座102_LH与辅助供电模块760可以被整合为一个模块化的配置,以便在辅助供电模块760发生故障或寿命用尽时,透过更换模块化的连接插座102_LH即可换上新的辅助供电模块760来继续使用,而不需要替换整个LED直管灯。换言之,本实施例的配置除了具有可以降低辅助供电模块760所产生的热能对LED模块影响的优点之外,更可以透过模块化的设计而使辅助供电模块760的更换更为简便,而不需因辅助供电模块760发生问题即更换整支LED直管灯,使LED直管灯的耐用性提高。除此之外,在一范例实施例中,辅助供电模块760也可以设置在灯座1_LH的基座101_LH中、或者设置在灯座1_LH的外部,本实用新型不以此为限。
总的来说,辅助供电模块760可分为(1)整合在LED直管灯内部,以及(2)独立于LED直管灯外部等两种配置方式。在辅助供电模块760独立于LED直管灯外部的配置范例中,若为离线式的辅助电源供电方式,则辅助供电模块760与外部电网的电源可以经由不同的接脚给到LED直管灯,或是以至少共用一根接脚的方式给到LED直管灯。另一方面,若为在线式或在线互动式的辅助电源供电方式,则外部电网的电力信号不会直接给到LED直管灯的接脚上,而是会先给到辅助供电模块760,再由辅助供电模块760会通过LED直管灯的接脚将信号给到LED直管灯内部的电源模块。底下就独立于LED直管灯外部的辅助供电模块(简称独立辅助供电模块)与LED直管灯的整体配置做进一步说明。
请参见图16K,图16K是本实用新型第六实施例的LED直管灯照明系统的电路方块示意图。LED直管灯照明系统包含LED直管灯600以及辅助供电模块960。本实施例的LED直管灯600包含整流电路510与540、滤波电路520、驱动电路530及LED模块(未绘示)。整流电路510与540可以分别是图11A所绘示的全波整流电路610或是图11B所绘示的半波整流电路710,其中整流电路510的两输入端分别连接第一接脚501与第二接脚502,并且整流电路540的两输入端分别连接第三接脚503与第四接脚504。
在本实施例中,LED直管灯600是以双端进电的配置作为范例,外部电网508是连接至LED直管灯600两侧灯头上的接脚501与503,并且辅助供电模块960是连接至LED直管灯600两侧灯头上的接脚502与504。亦即,外部电网508与辅助供电模块960是通过不同的接脚供电给LED直管灯600使用。于此附带一提的是,本实施例虽绘示为双端进电的配置为例,但本实用新型不以此为限。在另一实施例中,外部电网508也可以通过同一侧灯头上的第一接脚501与第二接脚502供电(即,单端进电的配置)。此时,辅助供电模块960可通过另一侧灯头上的第三接脚503与第四接脚504供电。换言之,无论在单端进电或双端进电的配置底下,透过选择对应的整流电路配置,即可利用LED直管灯600中原先未被使用的接脚(如502与504)作为接收辅助电源的介面,进而在LED直管灯600中实现应急照明功能的整合。
请参见图16L,图16L是本实用新型第七实施例的LED直管灯照明系统的电路方块示意图。LED直管灯照明系统包含LED直管灯700以及辅助供电模块1060。本实施例的LED直管灯700包含整流电路510、滤波电路520、驱动电路530及LED模块(未绘示)。整流电路510可例如是如图11D至图11F其中之一所示的具有三个桥臂的整流电路910,其中整流电路510具有三个输入信号接收端P1、P2及P3。输入信号接收端P1连接至第一接脚501,输入信号接收端P2连接至第二接脚502,并且适于通过第二接脚502连接辅助供电模块1060,并且输入信号接收端P3适于通过第三接脚503连接至辅助供电模块1060。
在本实施例中,LED直管灯700同样是以双端进电的配置作为范例,外部电网508是连接至LED直管灯700两侧灯头上的接脚501与503。与前述实施例不同的是,本实施例的辅助供电模块1060除了会连接至第二接脚502外,还会与外部电网508共用第三接脚503。在此配置底下,外部电网508所提供的电源是通过第一接脚501与第三接脚503给到整流电路510的信号接收端P1与P3,并且辅助供电模块1060所提供的电源是通过第二接脚502与第三接脚503给到整流电路510的信号接收端P2与P3。更具体的说,若外部电网508耦接到第一接脚501与第二接脚502的线路分别为火线(L)与中性线(N)时,则辅助供电模块1060是与外部电网508共用中性线(N),而火线则为各自独立。换句话说,信号接收端P3为外部电网508与辅助供电模块1060的共享端。
就运作上来说,当外部电网508可正常供电时,整流电路510可透过信号接收端P1与P3所对应的桥臂进行全波整流,藉以供电给LED模块使用。在外部电网508供电异常时,整流电路510可透过信号接收端P2与P3接收辅助供电模块1060所提供的辅助电源,藉以供电给LED模块使用。其中,整流电路510的二极管单向导通特性会将外部驱动信号与辅助电源的输入隔离,使得两者不会互相影响,且同样可达到在外部电网508发生异常时提供辅助电源的效果。在实际应用中,整流电路510可以选用快速恢复二极管来实施,藉以因应应急电源输出电流的高频特性。
除此之外,由于本实施例透过共用第三接脚503的方式来接收辅助供电模块1060所提供的辅助电源,因此LED直管灯700还会有一根未被使用的第四接脚(未绘示)可以作为其他控制功能的信号输入介面。所述其他控制功能可以例如是调光功能、通信功能、感测功能等,本实用新型不以此为限。底下列举LED直管灯700进一步整合调光控制功能的实施范例来进行说明。
请参见图16M,图16M是本实用新型第八实施例的LED直管灯照明系统的电路方块示意图。本实施例的LED直管灯800包含整流电路510、滤波电路520、驱动电路530及LED模块50。本实施例的LED直管灯照明系统配置大致上与前述图16L实施例相同,两者差异在于本实施例的LED直管灯照明系统更包含耦接LED直管灯800的第四接脚504的调光控制电路570,其中调光控制电路570会通过第四接脚504耦接驱动电路530,藉以调控驱动电路530提供给LED模块50的驱动电流,使得LED模块50的亮度及/或色温可随之变化。
举例来说,调光控制电路570可以例如是由可变阻抗元件与信号转换电路所组成的电路模块,使用者可以通过调控可变阻抗元件的阻抗,使得调光控制电路570产生具有相应准位的调光信号,所述调光信号在经信号转换电路转换为符合驱动电路530格式的信号型态后, 被传递给驱动电路530,使得驱动电路530可基于此调光信号来调整输出给LED模块50的驱动电流大小。其中,若欲调整LED模块50的亮度,可以通过调整驱动信号的频率或参考准位来实现;若欲调整LED模块50的色温,则可通过调整LED模块50中的红色LED单元的亮度来实现,但本实用新型不以此为限。
另外应注意的是,所述的辅助供电模块960、1060在硬件配置上也可以参照图16I与16J的配置,并且可获得相同的有益效果。
图16D至图16M实施例的配置除了可应用在单一灯管的应急电源供应之外,其同样可以应用在多灯管并联的架构之下来提供应急的辅助电力。具体而言,在多个LED直管灯并联的架构下,各LED直管灯的对应接脚会相互并接,藉以接收相同的外部驱动信号。举例来说,各LED直管灯的第一接脚501会相互并接,并且各LED直管灯的第二接脚会相互并接,以此类推。在此配置底下,辅助供电模块760可以等效为连接至并联的每一LED直管灯的接脚上。因此,只要辅助供电模块760的输出功率足够点亮所有并联的LED直管灯,即可在外部电源发生异常时(即,外部驱动信号无法正常供应),提供辅助电力来点亮所有并联的LED直管灯作为应急照明。在实际应用中,若是以4支LED直管灯并联的架构为例,辅助供电模块760可设计为具有电容量为1.5瓦小时至7.5瓦小时与输出功率为1瓦至5瓦的储能单元。在此规格底下,当辅助供电模块760提供辅助电力来点亮LED模块时,灯具整体至少可具有200-250流明的亮度,并且可持续点亮90分钟。
在多灯管的灯具架构之下,类似于图16A至图16C实施例所述,本实施例可以在灯具的其中一根灯管中设置辅助供电模块,或是在灯具的多根灯管中设置辅助供电模块,其中针对光均匀性考虑的灯管配置方式同样适用于本实施例中。本实施例与前述图16A至图16C实施例应用在多灯管的灯具架构下的主要差异在于即使本实施例只有单一灯管设置有辅助供电模块,其仍可透过辅助供电模块对其他灯管供电。
在此应注意的是,虽然此处的说明是以4支LED直管灯并联架构为例来说明,但本领域技术人员在参酌上述的说明后,应可了解如何在2支、3支、或大于4支的LED直管灯并联架构下,选用合适的储能单元来实施,故只要是辅助供电模块760可同时供电给多支并联的LED直管灯的其中之一或多个,以令对应的LED直管灯可反应于辅助电力而具有特定亮度的实施态样,皆属于本实施例所描述的范围。
在另一范例实施例中,图16D至16M的辅助供电模块560、660、760、960、1060可进一步依据一点灯信号来决定是否提供辅助电力给LED直管灯使用。具体而言,所述点灯信号可以是反应灯开关切换状态的一指示信号。举例来说,所述点灯信号的准位会根据灯开关的 切换而被调整为第一准位(例如为高逻辑电平)或与第一准位不同的第二准位(例如为低逻辑电平)。当使用者将灯开关切换至点亮的位置时,所述点灯信号会被调整至第一准位;当用户将灯开关切换至关闭的位置时,所述点灯信号会被调整至第二准位。换言之,当点灯信号为第一准位时,即指示灯开关被切换至点亮的位置;当点灯信号为第二准位时,即指示灯开关被切换至关闭的位置。其中,点灯信号的产生可以藉由一检测灯开关切换状态的电路来实现。
在又一范例实施例中,辅助供电模块560、660、760、860、960、1060可更包括一点灯判断电路,其用以接收点灯信号,并且根据点灯信号的准位与电压检测电路的检测结果来决定是否令储能单元供电给后端使用。具体而言,基于点灯信号的准位与电压检测电路的检测结果可能有下列三种状态:(1)点灯信号为第一准位且外部驱动信号正常提供;(2)点灯信号为第一准位且外部驱动信号停止提供或交流准位不足;以及(3)点灯信号为第二准位且外部驱动信号停止提供。其中,状态(1)为使用者开启灯开关且外部电源供电正常的情况、状态(2)为使用者开启灯开关但外部供电发生异常、状态(3)为使用者关闭灯开关使得外部电源被停止提供。
在本范例实施例中,状态(1)与状态(3)皆属于正常的状态,即使用者开灯时外部电源正常提供以及使用者关灯时外部电源停止提供。因此,在状态(1)与状态(3)之下,辅助供电模块不会对后端提供辅助电力。更具体的说,点灯判断电路会根据状态(1)与状态(3)的判断结果,令储能单元不对后端供电。其中,在状态(1)下是由外部驱动信号直接输入至整流电路510,并且外部驱动信号对储能单元充电;在状态(3)下是外部驱动信号停止提供,因此不对储能单元充电。
在状态(2)下,其表示使用者开灯时外部电源并未正常供电至LED直管灯,故此时点灯判断电路会根据状态(2)的判断结果,令储能单元对后端供电,使得LED模块50基于储能单元所提供的辅助电力发光。
基此,在所述点灯判断电路的应用底下,LED模块50可以有三段不同的亮度变化。第一段是外部电源正常供电时,LED模块50具有第一亮度(例如1600-2200流明),第二段是外部电源未正常供电而改以辅助电力供电时,LED模块50具有第二亮度(例如200-250流明),第三段是使用者自行关闭电源,使得外部电源未被提供至LED直管灯,此时LED模块50具有第三亮度(不点亮LED模块)。
更具体的说,搭配图16C实施例来看,所述点灯判断电路可例如为串接在辅助电源正端661与辅助电源负端662之间的开关电路(未绘示),所述开关电路的控制端接收点灯信号。其中,当点灯信号为第一准位时,所述开关电路会反应于点灯信号而导通,进而在外部驱动信 号正常供应时,经辅助电源正端661与辅助电源负端662对储能单元663充电(状态1);或者在外部驱动信号停止提供或交流准位不足时,令储能单元663经辅助电源正端661与辅助电源负端662提供辅助电力给后端的LED模块50或LED模块50使用(状态2)。另一方面,当点灯信号为第二准位时,所述开关电路会反应于点灯信号而截止,此时即便外部驱动信号停止提供或交流准位不足,储能单元663也不会对后端提供辅助电力。
在上述辅助供电模块的应用中,若将辅助供电单元(如762与862)的电路设计成开环控制,即辅助供电单元的输出电压无反馈信号,若负载开路时,会导致该辅助供电模块的输出电压一直上升,进而烧毁。为了解决所述问题,本揭露提出多个带有开路保护的辅助供电模块的电路实施例,如图16N与图16O所示。
图16N是本实用新型第一实施例的辅助供电模块的电路架构示意图。请参照图16N,在本实施例中,辅助供电模块1160包括充电单元1161和辅助供电单元1162,其中辅助供电单元1162包括提供电压Vcc的储能单元1163、变压器、采样模块1164以及芯片控制模块1165。在辅助供电模块1160中,搭配图16E来看,变压器包含有原边绕组组件L1,副边绕组组件L2。副边绕组组件L2一端电性连接开关单元763进而电性连接LED直管灯500的一端(整流电路510的输入端),副边绕组组件L2的另一端电性连接LED直管灯500的另一端。采样模块1164包含有绕组L3,绕组L3与副边绕组组件L2缠绕在副边侧;通过绕组L3采样副边绕组组件L2的电压,若采样的电压超过设定的阈值时,反馈至芯片控制模块,通过芯片控制模块调整与原边绕组组件L1电连接的切换开关M1的开关频率。进而控制副边侧输出的电压,从而实现开路保护的目的。
具体而言,所述变压器具有原边侧单元、副边侧单元,该原边侧单元包含有储能单元1163、原边绕组组件L1及切换开关M1。储能单元1163的正极电性连接原边绕组组件L1的同名端(即,打点端),并且储能单元1163的负极电性连接至接地端。原边绕组组件L1的异名端电性连接至切换开关M1(以MOS为例)的漏极。切换开关M1的栅极电性连接至芯片控制模块1165,并且切换开关M1的源极连接至接地端。副边侧单元包含有,副边绕组组件L2、二极管D2以及电容C1。副边绕组组件L2的异名端电性连接二极管D1的阳极,副边绕组组件L2的同名端电性连接电容C1的一端。二极管D1的阴极电性连接电容C1的另一端。电容C1的两端构成辅助电源输出端V1,V2(相当于图16K中的辅助供电模块960的两端或图16L、16M中的辅助供电模块1060的两端)。
采样模块1164包含有第三绕组组件L3、二极管D2,电容C2及电阻R1。第三绕组组件L3的异名端电性连接二极管D2的阳极,第三绕组组件L3的同名端电性连接电容C2与电阻 R1的一端。二极管D2的阴极电性连接电容C2与电阻R1的另一端(即A端)。电容C2与电阻R1通过A端电性连接芯片控制模块1165。
芯片控制模块1165包含有芯片1166、二极管D3、电容C3-C5以及电阻R2-R4。芯片1166的接地端(GT)接地;芯片1166的输出端(OUT)电性连接切换开关M1的栅极;芯片1166的触发端(TRIG)电性连接电阻R2的一端(B端),芯片1166的放电端(DIS)电性连接电阻R2的另一端;芯片1166的复位端(RST)与控制端(CV)端分别电性连接电容C3与C4后接地;芯片1166的放电端(DIS)经由电阻R2电性连接电容C5后接地。芯片1166的供电端(VC端)接收电压Vcc并电性连接电阻R3的一端;电阻R3的另一端电性连接B端。二极管D3的阳极电性连接A端,二极管D3的阴极电性连接电阻R4的一端,电阻R4的另一端电性连接B端。
接下来描述,上述实施例的动作;若辅助供电模块1160工作在正常状态,这时辅助供电模块1160的输出端V1m3V2间的输出电压较低,通常低于某值(如低于100V,本实施中,V1,V2间电压60V-80V)。这时采样模块1164中的A点的采样对地电压低,电阻R4上流过微小的电流(可忽略)。若辅助供电模块1160异常时,这时辅助供电模块1160的节点V1与V2之间的电压较高(如超过300V),这时采样模块1164中的A点的采样电压高,电阻R4上流过较大的电流;由于流过该较大的电流使得电容C5的放电时间变长,但电容C5的充电时间未变;相当于调整开关的占空比;进而使切换开关M1的截止时间延长。对变压器的输出侧而言,输出能量变小,输出电压不再升高,从而达到了开路保护的目的。
上述方案中,芯片1166的触发端(TRIG)电性连接电阻R2支路进而电性连接放电端DIS端,B端的电压处于1/3Vcc-2/3Vcc之间时触发DIS端。若辅助供电模块1160工作在正常状态(即输出的电压未超过设定的阈值),A端的电压能小于1/3Vcc;若辅助供电模块1160异常时,A点的电压能达到甚至超过1/2Vcc。
上述方案中,在辅助供电模块1160处于正常状态时,芯片1166芯片的DIS端触发时(按照其预定的逻辑)正常放电;其波形如图16P所示,其中图16P为辅助供电模块1160处于正常状态时芯片1166中的放电端DIS充放电及输出端OUT的时序图。在芯片1166的放电端DIS被触发时(即,电容C5处于放电阶段),芯片的输出端OUT会输出低电平的信号,以及在芯片1166的放电端DIS未被触发时(即,电容C5处于充电阶段),芯片1166的输出端OUT会输出高电平。藉此,芯片1166即可通过输出端OUT所输出的信号的高/低电平而控制切换开关M1的导通/截止。
在辅助供电模块1160处于处于异常时其波形如图16Q所示,其中图14Q为辅助供电模 块1160处于异常状态时芯片1166中的放电端充DIS放电及输出端的时序图。从时序可看出无论辅助供电模块1160是否处于正常状态,电容C5充电所需的时间一致;在处于异常时,由于有电流经B端流入放电端DIS,这样相当于延长了电容C5的放电时间,因此使得输出能量变小,并且令输出电压不再升高,从而达到了开路保护的目的。
上述方案中,芯片控制模块1165可选用具有时间调整功能的芯片(如555定时芯片);进而控制切换开关M1的截止时间。上述方案只需要简单的电阻、电容、即可实现延时作用。无需复杂的控制算法。上述方案中电压Vcc的电压范围介于4.5V-16V。
通过上述的方案使得辅助供电模块1160的开路电压限定在一定的值以下(如300V以下,具体的值可通行选取合适的参数决定)。
需要说明的是上述方案中,电路拓扑中显示的电子元器件,如电阻、电容、二极管、切换开关等为该组件的等效图,在实际使用中可由多个按照一定的规则连接而成。
图16O是本实用新型第二实施例的辅助供电模块的电路架构示意图。请参照图16O,辅助供电模块1260包括充电单元1261和辅助供电单元1262,其中辅助供电单元1262包括提供电压Vcc的储能单元1263、变压器、采样模块1264以及芯片控制模块1265。图16O实施例与图16N所示的实施例区别在于,本实施例的采样模块1264是采用光耦传感器来实施。
变压器包含有原边绕组组件L1及副边绕组组件L2。原边绕组组件L1与切换开关M1的配置与前述实施例相同。副边绕组组件L2的同名端电性连接二极管D1的阳极,并且副边绕组组件L2的异名端电性连接电容C1的一端。二极管D1的阴极电性连接电容C1的另一端。电容C1的两端即为辅助电源输出端V1与V2。
采样模块1264包含有光电耦合器PD,光电耦合器PD中的光电二极管的阳极侧电性连接二极管D1的阴极及电容C1的一端,光电二极管的阴极侧电性连接电阻R4的一侧,电阻R4的另一侧电性连接钳压组件Rcv的一端,钳压组件Rcv的另一端电性连接电容C1的另一端。光电耦合器PD中的三极管的集极、射极分别电性连接电阻R3的两端。
芯片控制模块1265包含有芯片1266、电容C3-C5以及电阻R2和R3。芯片1266的供电端(VC端)电性连接电压Vcc及光电耦合器PD中的三极管的集极;芯片1266的放电端(DIS端)电性连接电阻R2的一端,电阻R2的另一端电性连接光电耦合器PD中的三极管的射极;芯片1266的取样端(THRS端)电性连接光电耦合器PD中的三极管的射极及经电容C5电性接地;芯片1266的接地端(GT端)电性接地;芯片1266的复位端(RST)经电容C3电性接地;芯片1266的定电压端(CV端)经电容C4电性接地;芯片1266的触发端(TRIG)电性连接取样端(THRS端);芯片1266的输出端(OUT)电性连接切换开关M1的栅极。
接下来描述,上述实施例的动作,在正常工作时,辅助电源输出端(V1,V2)输出的电压低于钳压组件Rcv的钳位电压,流过电阻R4的电流I1很小,可忽略;流经光电耦合器PD中的三极管集电极与发射极的电流I2很小。
若负载开路,辅助电源输出端(V1,V2)输出的电压上升,超过钳压组件Rcv的阈值时,钳压组件Rcv导通,这样流过限流电阻R4的电流增加I1,使得光电耦合器PD二极管发光,流经光电耦合器PD中的三极管集电极与发射极的电流I2成比例的增加,电流I2补偿了电容C5通过电阻R2的放电电流,使得电容C5的放电时间加长,这样相应的加长了开关的关断时间(即开关占空比变小),输出能量变小,副边侧输出能量相应的变小,输出电压不再升高,从而实现开路保护。
上述方案中,钳压组件Rcv为压敏电阻、TVS(Transient Voltage Suppressor二极管,又称为瞬态抑制二极管)、稳压二极管。钳压组件Rcv的触发阈值选取100V-400V,较佳的选取150V-350V。本实施例中选取300V。
上述方案中,电阻R4主要其限流作用,其阻值选取20K欧姆-1M欧姆,较佳的选取20K欧姆-500KM欧姆,本实施例中选取50K欧姆。上述方案中,电阻R3主要其限流作用,其阻值选取1K欧姆-100K欧姆,较佳的选取5K欧姆-50KM欧姆,本实施例中选取6K欧姆。上述方案中,电容C5,其容值选取1nF-1000nF,较佳的选取1nF-100nF,本实施例中选取2.2nF。上述方案中,电容C4,其容值选取1nF-1pF,较佳的选取5nF-50nF,本实施例中选取10nF。上述方案中,电容C1,其容值选取1uF-100uF,较佳的选取1uF-10uF,本实施例中选取4.7uF。
图16N与图16O方案中,辅助供电模块1160/1260中包含的储能单元1263可是电池或超级电容。在上述方案中,辅助供电模块1160/1260的直流电源可通过BMS(电池管理系统)进行管理,在普通照明模式下进行充电。或直接省略BMS,在普通照明模式对直流电源进行充电。通过选取合适的元器件参数,是以较小的电流进行充电(不超过300mA的电流)。
采用图16N或16O实施例的辅助供电模块1160/1260,其电路拓扑简单,且无需专用集成芯片。使用较少的组件实现开路保护。提高镇流器的信赖性。另外该方案的应急镇流器,其电路拓扑为输出隔离型。降低漏电流的隐患。
总的来说,上述图16N与图16O方案的原理在于,利用检测模块,采样输出端的电压(电流)信息,若检测的信息超过设定的阈值时,通过延长控制芯片放电端的放电时间,延长开关的关断时间,来调整开关的占空比(对控制芯片而言,其放电端(DIS)及/或取样端(THRS)的工作电压介于1/3Vcc-2/3Vcc,工作电容C5的充电时间未变,放电时间变长),对变压器的输出侧而言,输出能量变小,输出电压不在升高,从而达到了开路保护的目的。
图16P与图16Q绘示芯片的输出端OUT在初始输出高电平的情况下,输出端OUT与放电端DIS触发的时序图。其中,图16P是本实用新型一实施例的辅助供电模块处于正常状态时的信号时序图;图16Q是本实用新型一实施例的辅助供电模块处于异常状态时的信号时序图(如:负载开路)。芯片1266的输出端OUT初始输出高电平,这时未触发放电端DIS(即,电容C5充电);当放电端DIS被触发时(即,电容C5放电),输出端OUT始输出低电平。芯片1266通过输出端OUT的信号控制切换开关M1的导通/截止。
图17A是本实用新型第九实施例的LED直管灯照明系统的电路方块示意图。请参见图17A,相较先前实施例所述的LED直管灯500、600、700或800,本实施例的LED直管灯900的电源模块5除了包含整流电路(如510)、滤波电路(如520)、驱动电路(如530)之外,更增加了触电检测模块2000,其中,触电检测模块2000包含检测控制电路2100(或称检测控制器)以及限流电路2200。
在本实施例中,检测控制电路2100是用以进行LED直管灯900的安装状态检测/阻抗检测,藉以根据检测结果产生相应的控制信号的电路配置,其中所述检测结果会指示LED直管灯900是否正确安装至灯座上,或可说是指示是否有异常的外部阻抗接入(例如人体阻抗)。限流电路2200是用以响应所述控制信号所指示的检测结果而决定是否限制电流在LED直管灯900上流通,其中在限流电路2200接收到指示LED直管灯900为正确安装/无异常阻抗接入的控制信号时,限流电路2200会使电源模块5可正常供电给LED模块50使用(即,控制LED直管灯900的电源回路的电流正常流通),并且在限流电路2200接收到指示LED直管灯900为不正确安装/有异常的外部阻抗接入的控制信号时,限流电路2200会将LED直管灯上限流至小于触电安全值以下,所述触电安全值例如为5MIU(有效值)或7.07MIU(峰值)。
所述电源回路是指电源模块5向LED模块50传输电流的路径。所述安装状态检测/阻抗检测例如是检测控制电路2100通过检测LED直管灯900的电气特性(例如电压、电流),以获取LED直管灯900的安装状态信息/等效阻抗信息的电路操作。更进一步的说,在一些实施例中,检测控制电路2100还可以通过控制电源回路的电流连续性或是建立额外检测路径等方式来进行电气特性检测,进而避免检测时的触电风险。底下会以图18至图41F说明检测控制电路进行电气特性检测的具体电路实施例。
图17B是本实用新型第十实施例的LED直管灯照明系统的电路方块示意图。请参见图17B,相较于图17A实施例,本实施例的触电检测模块2000设置在LED直管灯1000外部,并且位在外部电网508的供电路径上,例如是设置在灯座中。其中,当LED直管灯1000的接脚电性连接至外部电网508时,触电检测模块2000会经由对应的接脚串接至LED直管灯 1000的电源回路,使得触电检测模块2000可以藉由上述图17A实施例所述的安装检测/阻抗檢測方式来判断LED直管灯1000是否正确安装至灯座上及/或使用者是否有触电风险。在本实施例中,触电检测模块2000的配置与前述图17A实施例相同,于此不再重复赘述。
在另一实施例中,图17A与17B实施例的架构可以整合在一起。举例来说,可在LED直管灯照明系统设置多个触电检测模块2000,其中至少有一个触电检测模块2000设置在LED直管灯内部,并且至少有另一个安装检测模块设置在LED直管灯外部(例如灯座中),通过灯头上的接脚电性连接LED直管灯的电源回路,进而令防触电保护的效果得以进一步提升。
应注意的是,于此所述的触电检测模块2000是应用在LED直管灯的电源模块中的一种电路配置,其可以利用分立电路或集成电路来实现,本揭露不以此为限。此外,触电检测模块2000的命名仅是为了表彰其主要作用,但并非用以限定其范围。换言之,只要是任一种电路配置,其可执行本揭露所主张的电路操作,或是具有本揭露所主张的电子元件配置及连接关系,即属于是本揭露的触电检测模块2000所主张的范围。在本揭露中,触电检测模块2000根据描述方式不同,也可以被命名为检测电路、安装检测模块/电路、防触电模块/电路、防触电检测模块/电路、阻抗检测模块/电路、或直接表述为一种电路配置,本揭露不以此为限。此外,在图17A和17B中,仅是以示意的方式绘示LED直管灯900/1000和外部电网508之间的连接关系,并非限定外部驱动信号是从单端输入LED直管灯900/1000,合先叙明。
底下先就图17A实施例架构下(即,触电检测模块2000设置于LED直管灯1100内部)的多个不同电路配置进行说明。
请参见图18,图18是本实用新型第十实施例的电源模块的电路方块示意图。检测在本实施例中,LED直管灯1100例如是直接接收外部电网508所提供的外部驱动信号,其中所述外部驱动信号通过火线(L)与中性线(N)给到LED直管灯1100的两端接脚501、502上。在实际应用中,LED直管灯1100可更包括接脚503、504。在LED直管灯1100包含有4根接脚501-504的结构底下,依设计需求同侧灯头上的两接脚(如501与503,或502与504)可以电性连接在一起或是相互电性独立,本实用新型不以此为限。触电检测模块3000设置于灯管内并包括检测控制电路3100以及限流电路3200,所述触电检测模块3000亦可称为安装检测模块3000(底下以安装检测模块进行描述3000)。限流电路3200经第一安装检测端TE1耦接整流电路510,以及经第二安装检测端TE2耦接滤波电路520,亦即串接在LED直管灯1100的电源回路上。检测控制电路3100会在检测模式下检测流经第一安装检测端TE1及第二安装检测端TE2的信号(即,流经电源回路的信号),并根据检测结果决定是否禁止外部驱动信号(即,外部电网508所提供的信号)流过LED直管灯1100。当LED直管灯1100尚未正确安 装于灯座时,检测控制电路3100会检测到较小的电流信号而判断信号流过过高的阻抗,此时限流电路3200会将第一安装检测端TE1和第二安装检测端TE2之间的电流路径截止使LED直管灯1100停止操作(即,使LED直管灯1100不被点亮)。若否,检测控制电路3100判断LED直管灯正确安装于灯座上,限流电路3200会维持第一安装检测端TE1和第二安装检测端TE2之间导通使LED直管灯1100正常操作(即,使LED直管灯1100可被正常点亮)。换言之,当流经所述第一安装检测端TE1以及所述第二安装检测端TE2的电流高于或等于安装设定电流(或一电流值)时,安装检测模块3000判断LED直管灯1100正确安装于灯座上而使限流电路3200导通,使LED直管灯1100操作于一导通状态;当流经所述第一安装检测端TE1以及所述第二安装检测端TE2的一电流低于所述安装设定电流(或电流值)时,安装检测模块3000判断LED直管灯1100未正确安装于灯座上而使限流电路3200截止,使LED直管灯1100进入一不导通状态或是令LED直管灯1100的电源回路上的电流有效值被限缩至小于5mA(基于验证标准则为5MIU)。换句话说,安装检测模块3000基于检测到的阻抗判断导通或截止,使LED直管灯1100操作于导通或进入不导通/限制电流状态。藉此,可以避免使用者在LED直管灯1100尚未正确安装于灯座时因误触LED直管灯1100导电部分而触电的问题。
更具体的说,因为当人体接触灯管时,人体的阻抗会导致电源回路上的等效阻抗改变,安装检测模块3000可藉由检测电源回路上的电压/电流变化来判断用户是否接触灯管,即可实现上述的防触电功能。换言之,在本实用新型实施例中,安装检测模块3000可以透过检测电信号(包括电压或电流)来判断灯管是否被正确安装以及使用者是否在灯管未正确安装的情况下误触灯管的导电部分。更进一步的说,相较于一般的LED电源模块,在一些实施例中,配置有安装检测模块3000的电源模块本身就会有防止电击的效果,因此无须如一般电源电路设计般,在整流电路510的输入端(即,火线与中性线之间)设置安规电容(即,X电容)。从等效电路的角度来看,即表示在配置有安装检测模块3000的电源模块中,其整流电路510的输入端之间的等效电容值可例如小于47nF。在本实施中,所述电源回路是指在LED直管灯1100中的电流路径,也就是从接收第一极性/相电源(例如L线)的接脚经过电源线路与电路元件到达LED模块,再经由LED模块至接收第二极性/相电源(例如N线)的接脚所形成的路径。搭配双端进电的灯管结构来看,所述电源回路是形成在灯管相对两侧的灯头上的接脚501和502之间,而非在同侧灯头的两接脚501和503(或502和504)之间。
应说明的是,限流电路3200设置在整流电路510与滤波电路520之间仅是本实用新型的一实施范例。在其他实施例中,限流电路3200仅需设置在可以控制电源回路导通与截止的位 置即可实现安装检测模块3000的防触电效果。举例来说,限流电路3200可设置在滤波电路520与驱动电路530之间,或设置在驱动电路530与LED模块(50)之间,本实用新型不以此为限。
从电路操作的角度来看,检测控制电路3100在检测模式下判断LED直管灯1100是否正确安装至灯座上/是否有异常的阻抗接入的步骤如图42A所示,图42A是本实用新型第一实施例的触电检测方法的步骤流程图,所述触电检测方法包括:使检测路径导通一段期间后关断(步骤S101);在检测路径导通的期间取样检测路径上的电信号(步骤S102);判断取样到的电信号是否符合预设信号特征(步骤S103);当步骤S103判定为是时,控制限流电路3200操作在第一组态(步骤S104);以及当步骤S103判定为否时,控制限流电路3200操作在第二组态(步骤S105),并且接著回到步骤S101。
在本实施例中,所述检测路径可以是电源回路或连接在整流电路510的输出侧的独立电流路径,其具体配置可以参考下述图19A至26B实施例的说明。另外,检测控制电路3100导通检测路径的期间长度、间隔、触发时间等设置,同样可参考下述实施例的说明。
在步骤S101中,使检测路径导通一段期间可以通过脉冲式的开关控制手段来实现。
在步骤S102中,取样的电信号可以是电压信号、电流信号、频率信号或相位信号等可以表现检测路径的阻抗变化的信号。
在步骤S103中,判断取样到的电信号是否符合预设信号特征的动作可例如是比较取样的电信号与一预设信号的相对关系。在本实施例中,检测控制器7100判定电信号符合预设信号特征可以是对应至判定LED直管灯为正确安装/无异常阻抗接入的状态,并且检测控制器7100判定电信号不符合预设信号特征可以是对应至判定LED直管灯为不正确安装/有异常阻抗接入的状态。
在步骤S104与S105中,所述第一组态及第二组态为两相异的电路组态,并且可视限流电路3200的配置位置及类型而定。举例来说,在限流电路3200为独立于驱动电路并串接在电源回路上的开关电路/限流电路的实施例下,所述第一组态可以是导通组态(不限流组态),并且所述第二组态可以是截止组态(限流组态)。
上述各步骤的详细操作及电路范例可参考安装检测模块的各个实施例。
请参见图19A,图19A是本实用新型第一实施例的安装检测模块的电路方块示意图。安装检测模块3000a包含检测脉冲(pulse)发生模块3110、检测结果锁存电路3120、检测判定电路3130以及限流电路3200。所述检测脉冲发生模块3110、检测结果锁存电路3120及检测判定电路3130构成检测控制电路3100。检测判定电路3130(经开关耦接端3201以及限流电路 3200)耦接第一安装检测端TE1以及耦接第二安装检测端TE2,以检测第一安装检测端TE1以及第二安装检测端TE2之间的信号。检测判定电路3130同时经检测结果端3131耦接检测结果锁存电路3120,以将检测结果信号经检测结果端3131传送至检测结果锁存电路3120。检测脉冲发生模块3110通过脉冲信号输出端3111耦接检测结果锁存电路3120,并产生脉冲信号以通知检测结果锁存电路3120锁存检测结果的时机点。检测结果锁存电路3120根据检测结果信号(或检测结果信号及脉冲信号)锁存检测结果,经检测结果锁存端3121耦接限流电路3200,以将检测结果传送或反映至限流电路3200。限流电路3200根据检测结果,决定使第一安装检测端TE1以及第二安装检测端TE2之间导通或截止。在本实施例中,所述限流电路3200也可以是开关电路3200(底下以开关电路3200描述)。
在一些实施例中,安装检测模块3000a更包含一应急控制模块3140。所述应急控制模块3140是用于判断外部驱动信号是否为辅助供电模块所提供的直流信号,使得检测结果锁存电路3120可根据判断结果而调整对开关电路3200的控制方式,藉以在LED直管灯应用于具有辅助供电模块的环境时,避免因辅助电源的输入而造成安装检测模块误动作的情况,本实施例中有关于与前述实施例相同的部分于此不再重复赘述。
具体而言,应急控制模块3140通过路径3141连接检测结果锁存电路3120,其中应急控制模块3140会检测电源模块中的,并且据以判断LED直管灯当前所接收到的外部驱动信号是否为直流信号。若应急控制模块3140判定外部驱动信号为直流信号,则应急控制模块3140会输出指示应急状态的第一状态信号给检测结果锁存电路3120;反之,若应急控制模块3140判定外部驱动信号为非直流信号,则应急控制模块3140会输出指示非应急状态的第二状态信号给检测结果锁存电路3120。当检测结果锁存电路3120接收到第一状态信号时,无论检测脉冲发生模块3110及检测判定电路3130的输出为何,检测结果锁存电路3120皆会将限流电路3200维持在导通的状态(此状态可视为应急模式)。当检测结果锁存电路3120接收到第二状态信号时,检测结果锁存电路3120会依照原有的机制工作,即基于脉冲信号与检测结果信号来控制限流电路3200的导通或关断。
底下搭配图42B以进一步说明带有应急控制模块3140的安装检测模块的具体工作机制。图42B是本实用新型第一实施例的安装检测模块的控制方法的步骤流程图。请同时参照图19A和图42B,在LED直管灯的电源模块接收到外部驱动信号时,应急控制模块3140会先检测母线电压(步骤S201),并且判断母线电压在第一期间内是否持续高于第一电平(步骤S202),其中所述第一期间可例如是75ms,并且所述第一电平可以是100V-140V之间的任一电平,例如110V或120V。换句话说,在步骤S202的一实施例中,应急控制模块3140会判 断母线电压是否持续高于110V或120V超过75ms。
若应急控制模块3140在步骤S202中判定为是,则代表当前所接收的外部驱动信号为直流信号。此时安装检测模块3000a进入应急模式,并且使检测结果锁存电路3120控制开关电路3200操作在第一组态(步骤S203),其中所述第一组态可例如为导通组态。相反的,若应急控制模块3140在步骤S202中判定为否,则代表当前所接收的外部驱动信号为交流信号。此时安装检测模块3000a进入检测模式,使检测结果锁存电路3120通过输出脉冲信号给开关电路3200来判断LED直管灯的安装状态。安装检测模块3000a在检测模式下的具体运作可参照相关实施例的说明。
另一方面,在应急模式下,应急控制模块3140除了会使开关电路3200维持在第一组态之外,其会进一步的判断母线电压是否上升至大于第二电平(步骤S204)。若应急控制模块3140判定母线电压未上升至大于第二电平,代表目前仍处于应急模式下,因此会使得开关电路3200持续维持在第一组态。若应急控制模块3140判定母线电压从第一电平上升至大于第二电平,代表电源模块目前接收到的外部驱动信号已经从直流信号切换为交流信号,亦即外部电网已恢复供电,此时应急控制模块3140会使安装检测模块3000a进入检测模式。在一些实施例中,所述第二电平可为大于第一电平但小于277V的任一电平,例如第一电平为110V时,第二电平为120V。换句话说,在步骤S204的一实施例中,应急控制模块3140会判断母线电压是否出现大于120V的上升沿,并且在判定为是时,进入检测模式。
在一范例实施例中,安装检测模块3000a中的检测脉冲发生模块3110、检测判定电路3130、检测结果锁存电路3120以及开关电路3200可分别以图19B至图19E的电路架构来实现(但不仅限于此),其中图19B至图19E是是本实用新型第一实施例的安装检测模块的电路架构示意图。底下分就各模块/单元进行说明。
请参见图19B,图19B是根据本实用新型第一实施例的安装检测模块的检测脉冲发生模块的电路架构示意图。检测脉冲发生模块3110包含电容C11(或称第一电容器)、C12(或称第二电容器)及C13(或称第三电容器)、电阻R11(或称第一电阻器)、R12(或称第二电阻器)及R13(或称第三电阻器)、缓冲器(buffer)BF1(或称第一缓冲器)及BF2(或称第二缓冲器)、反向器INV、二极管D11(或称为第一二极管)以及或门(OR gate)OG1(或称为第一或门)。在使用或操作中,电容C11及电阻R11串联于一驱动电压(例如称为VCC,且经常被订为一高准位)及参考电位(在此以地的电位为其实施例)之间,其连接点耦接缓冲器BF1的输入端。电阻R12耦接于一驱动电压(可称为VCC)及反向器INV的输入端。电阻R13耦接于缓冲器BF2的输入端及一参考电位(在此以地的电位为其实施例)之间。二极管的正端接地,负端也耦接缓冲器BF2 的输入端。电容C12的一端及C13的一端共同耦接缓冲器BF1的输出端,电容C12的另一端接反向器INV的输入端,而电容C13的另一端则耦接缓冲器BF2的输入端。反向器INV的输出端及缓冲器BF2的输出端耦接或门OG1的输入端。须注意的是,在本案此说明书中,电位之“高准位”与“低准位”都是相对于在电路中另一电位或某参考电位而言的,且又可分别作为“逻辑高准位”与“逻辑低准位”。
底下搭配图41A所绘示的信号时序来一并说明,其中图41A是本实用新型第一实施例的电源模块的信号时序示意图。当LED直管灯的一端灯头插入灯座而另一端灯头电性接触人体或LED直管灯的双端灯头均插入灯座时(时间点ts),LED直管灯通电。此时,安装检测模块进入检测模式DTM。电容C11与电阻R11的连接点准位一开始为高(等于驱动电压VCC),于后随时间逐渐下降,最后降至零。缓冲器BF1的输入端耦接电容C11与电阻R11的连接点,因此一开始即输出高准位信号,并于电容C11与电阻R11的连接点准位降至低逻辑判断准位时,转成低准位信号。也就是,缓冲器BF1产生一输入脉冲信号,之后持续维持低准位(停止输出所述输入脉冲信号)。所述输入脉冲信号之脉冲宽度等于一(最初的设定)时间周期,而所述时间周期由电容C11的容值以及电阻R11的阻值来决定。
接着说明缓冲器BF1产生脉冲信号的设定时间周期的操作。由于电容C12与电阻R12的一端均等于驱动电压VCC,因此电容C12与电阻R12的连接端也为高准位。另外,电阻R13的一端接地,电容C13的一端接收缓冲器BF1的脉冲信号。所以电容C13与电阻R13的连接端在一开始高准位,而后随时间逐渐降至零(同时间电容储存了等于或接近驱动电压VCC的电压)。因此,反向器INV输出低准位信号,而缓冲器BF2则输出高准位信号,而使或门OG1于脉冲信号输出端3111输出高准位信号(第一脉冲信号DP1)。此时,检测结果锁存电路3120根据检测结果信号及脉冲信号第一次锁存检测结果。当电容C13与电阻R13的连接端的准位降至低逻辑判断准位时,缓冲器BF2转为输出低准位信号,而使或门OG1于脉冲信号输出端3111输出低准位信号(停止输出第一脉冲信号DP1)。或门OG1所输出的脉冲信号的脉宽由电容C13的容值以及电阻R13的阻值来决定。
接着,由于电容C13储存有接近驱动电压VCC的电压,因此于缓冲器BF1的输出由高准位转为低准位的瞬间,电容C13与电阻R13的连接端的准位会低于零,并经由二极管D11对电容快速充电而使连接端的准位拉回零。因此,缓冲器BF2仍维持输出低准位信号。
另一方面,于缓冲器BF1的输出由高准位转为低准位的瞬间,电容C12的一端的准位由驱动电压VCC瞬间降低零,使电容C12与电阻R12的连接端为低准位。反向器INV的输出信号转为高准位,而使或门输出高准位(第二脉冲信号DP2)。此时,检测结果锁存电路3120 根据检测结果信号及脉冲信号第二次锁存检测结果。接着,电阻R12对电容C12充电,使电容C12与电阻R12的连接端的准位随时间逐渐上升而至等于驱动电压VCC。当容C12与电阻R12的连接端的准位上升至高逻辑判断准位时,反向器INV再度输出低准位,而使或门OG1停止输出第二脉冲信号DP2。第二脉冲信号的脉宽由电容C12的容值与电阻R12的阻值所决定。
如上所述,检测脉冲发生模块3110于检测模式会产生两个高准位的脉冲信号-第一脉冲信号DP1及第二脉冲信号DP2,由脉冲信号输出端3111输出,而且第一脉冲信号及第二脉冲信号之间间隔一设定时间间隔TIV,在采用如图所示的模拟电路实现检测脉冲发生模块的实施例中,所述设定时间间隔TIV主要由电容C11的容值以及电阻R11的阻值来决定。在其他采用数字电路实现的检测脉冲发生模块的实施例中,所述设定时间间隔TIV的调整可以通过设定数字电路的频率/周期或其他可调参数来实现。
而于检测模式DTM后进入工作模式DRM,检测脉冲发生模块3110不再产生脉冲信号DP1/DP2,而维持脉冲信号输出端3111为低准位。请参见图19C,图19C是根据本实用新型第一实施例的安装检测模块的检测判定电路的电路架构示意图。检测判定电路3130包含比较器CP11(或称第一比较器)以及电阻R14(或称第四电阻器)。比较器CP11的反相端接收参考准位信号Vref,非反相端经电阻R14接地并同时耦接开关耦接端3201。请同时参见图18,由第一安装检测端TE1流入限流电路3200的信号会经由开关耦接端3201输出而流过电阻R14。当流经电阻R14的电流过大(即,高于或等于安装设定电流,例如:电流值2A)而使电阻R14上的准位高于参考准位信号Vref的准位时(可对应于所述两灯头正确插入所述灯座),比较器CP11产生高准位的检测结果信号并由检测结果端3131输出。例如,当LED直管灯正确安装于灯座时,比较器CP11会于检测结果端3131输出高准位的检测结果信号Sdr。当流经电阻R14的电流不足使使电阻R14上的准位高于参考准位信号Vref的准位时(可对应于只有其中之一灯头正确插入所述灯座),比较器CP11产生低准位的检测结果信号Sdr并由检测结果端3131输出。例如,当LED直管灯未正确安装于灯座时,或者一端安装于灯座而另一端经人体接地时,电流将过小而使比较器CP11于检测结果端3131输出低准位的检测结果信号Sdr。
请参见图19D,图19D是根据本实用新型第一实施例的安装检测模块的检测结果锁存电路的电路架构示意图。检测结果锁存电路32120包含D型触发器(D Flip-flop)DFF(或称第一D型触发器)、电阻R15(或称第五电阻器)以及或门OG2(或称第二或门)。D型触发器DFF的时脉输入端(CLK)耦接检测结果端3131,输入端D耦接驱动电压VCC。当检测结果端3131输出低准位的检测结果信号Sdr时,D型触发器DFF于输出端Q输出低准位信号;当检测结果 端3131输出高准位的检测结果信号时,D型触发器DFF于输出端Q输出高准位信号。电阻R15耦接于D型触发器DFF的输出端Q及参考电位(例如地的电位)之间。当或门OG2接收脉冲信号输出端3111输出的第一脉冲信号DP1或第二脉冲信号DP2,或D型触发器DFF于输出端Q输出的高准位信号时,于检测结果锁存端3121输出高准位的检测结果锁存信号。由于检测脉冲发生模块3110仅于检测模式DTS输出第一脉冲信号DP1或第二脉冲信号DP2时,主导或门OG2输出高准位检测结果锁存信号,而其余时间(包含检测模式DTM之后的工作模式DRM)由D型触发器DFF主导检测结果锁存信号为高准位或低准位。因此,当检测结果端3131未出现过高准位的检测结果信号Sdr时,D型触发器DFF于输出端Q维持低准位信号,而使检测结果锁存端3121于工作模式DRM也维持低准位的检测结果锁存信号。反之,当检测结果端3131一旦出现过高准位的检测结果信号Sdr时,D型触发器DFF会锁存而于输出端Q维持高准位信号。如此,检测结果锁存端3121进入工作模式DRM时也维持高准位的检测结果锁存信号。
请参见图19E,图19E是根据本实用新型第一实施例的安装检测模块的开关电路的电路架构示意图。开关电路3200a可包含一晶体管(transistor),例如一双载子接面晶体管M11(或称第一晶体管)作为一功率晶体管(power transistor)。功率晶体管能处理高电流及功率,特别的被用于开关电路中。双载子接面晶体管M11的集极耦接第一安装检测端TE1,基极耦接检测结果锁存端3121,而射极开关耦接端3201。当检测脉冲发生模块3110产生第一脉冲信号DP1或第二脉冲信号DP2时,双载子接面晶体管M11将短暂导通,使检测判定电路3130进行检测,以决定检测结果锁存信号为高准位或低准位。当检测结果锁存电路3120于检测结果锁存端3121输出高准位的检测结果锁存信号时,表示LED直管灯已被正确安装在灯座上,因此双载子接面晶体管M11将导通而使第一安装检测端TE1以及第二安装检测端TE2之间导通(即,导通电源回路)。此时电源模块中的驱动电路(未绘示)会基于电源回路上的电压而被启动并开始运作,进而产生点亮控制信号Slc来切换功率开关(未绘示),使得驱动电流可被产生并点亮LED模块。相反地,当检测结果锁存电路3120于检测结果锁存端3121输出低准位的检测结果锁存信号时,双载子接面晶体管M11将截止而使第一安装检测端TE1以及第二安装检测端TE2之间截止。此时电源模块中的驱动电路不会被启动,因此点亮控制信号Slc不会被产生。
由于外部驱动信号Sed为交流信号,为了避免检测判定电路3130检测时,外部驱动信号的准位刚好在零点附近而造成检测错误。因此,检测脉冲发生模块3110产生第一脉冲信号DP1及第二脉冲信号DP2以使检测判定电路3130检测两次,以避免单次检测时外部驱动信 号的准位刚好在零点附近的问题。较佳为,第一脉冲信号DP1及第二脉冲信号DP2的产生时间差并非为所述外部驱动信号Sed的周期T一半的整数倍数,即并非对应所述外部驱动信号Sed的180度相位差的整数倍数。如此,第一脉冲信号DP1及第二脉冲信号DP2其中之一产生时,若不幸外部驱动信号Sed在零点附近,另一产生时即可避免外部驱动信号Sed也在零点附近。
上述第一脉冲信号及第二脉冲信号的产生时间差,即设定时间间隔TIV可以以公式表示如下:
TIV=(X+Y)(T/2);
其中,T为外部驱动信号的周期,X为大于等于零的整数,0<Y<1。
Y较佳的范围为在0.05-0.95之间,更佳为0.15-0.85之间。
所属领域的普通技术人员根据上述实施例的说明可以了解,所述产生两个脉冲信号来进行安装检测的架构仅是检测脉冲发生模块的一实施范例。在实际的应用中,检测脉冲发生模块可被配置为产生一个或两个以上的脉冲信号来进行安装检测,本实用新型不以此为限。
再者,为了避免安装检测模块进入检测模式DTM时,驱动电压VCC的准位太低会造成安装检测模块的电路逻辑判断错误开始上升。在第一脉冲信号DP1的产生可以设定在驱动电压VCC到达或高于一预定准位时产生,使驱动电压VCC达到足够的准位后检测判定电路3130才进行,以避免准位不足所造成安装检测模块的电路逻辑判断错误。
根据上述说明可知,当LED直管灯的一端灯头插入灯座而另一端灯头为浮接或电性接触人体时,因阻抗大而使检测判定电路输出低准位的检测结果信号Sdr。检测结果锁存电路根据检测脉冲发生模块的脉冲信号DP1/DP2对低准位的检测结果信号Sdr进行锁存成低准位的检测结果锁存信号,而于工作模式DRM时也维持检测结果。如此,可使开关电路维持截止而避免持续通电。如此也可避免人体触电的可能,从而能够满足安规的要求。而当LED直管灯的两端灯头正确插入灯座时(时间点td),因LED直管灯本身电路的阻抗小而使检测判定电路输出高准位的检测结果信号Sdr。检测结果锁存电路根据检测脉冲发生模块的脉冲信号DP1/DP2对高准位的检测结果信号Sdr进行锁存成高准位的检测结果锁存信号,而于工作模式DRM时也维持检测结果。如此,可使开关电路维持导通而持续通电,使LED直管灯于工作模式DRM时正常操作。
换句话说,在一些实施例中,当所述LED直管灯的一端所述灯头插入所述灯座而另一端所述灯头为浮接或电性接触人体时,所述检测判定电路输入低准位的所述检测结果信号Sdr到所述检测结果锁存电路,然后所述检测脉冲发生模块输出一低准位信号到所述检测结果锁 存电路,使所述检测结果锁存电路输出低准位的一检测结果锁存信号以使所述开关电路截止,其中所述开关电路的截止使所述第一安装检测端以及第二安装检测端之间截止,亦即使所述LED直管灯进入一不导通状态。
而在一些实施例中,当所述LED直管灯的所述两灯头正确插入所述灯座时,所述检测判定电路输入高准位的所述检测结果信号到所述检测结果锁存电路,使所述检测结果锁存电路输出高准位的一检测结果锁存信号以使所述开关电路导通,其中所述开关电路的导通使所述第一安装检测端以及第二安装检测端之间导通,亦即使所述LED直管灯操作于一导通状态。
依据上述,就使用者安装的过程而言,在本实施例所述的LED直管灯被安装通电后(无论是正确安装的通电或是不正确安装的通电),由于LED直管灯内部的安装检测模块都会先进行脉冲产生动作以检测LED直管灯的安装状态,并且在确认LED直管灯已被正确安装后才会导通电源回路以给出足以点亮LED模块的驱动电流,因此至少在第一次脉冲被产生之前,LED直管灯都不会被点亮(即,电源回路不会被导通,或是电源回路上的电流被限制在小于5mA/MIU)。在实际应用中,LED直管灯被安装通电后至第一次脉冲产生所需的时间大致上会大于或等于100毫秒(ms)。换言之,本实施例的LED直管灯在安装通电后至少会在100ms内不会被点亮。此外,在一实施例中,由于安装检测模块会在LED直管灯被正确安装之前持续发出脉冲来检测安装状态,因此若LED直管灯在一个脉冲产生后未被点亮(即,未被判定正确安装),则LED直管灯至少会间隔前述的设定时间间隔TIV才会有可能被点亮(即,下一个脉冲产生后)。换言之,若本实施例的LED直管灯在安装通电后的100ms未被点亮,则在100ms+TIV的期间内也不会被点亮。应注意的是,在此所述的“LED直管灯通电”是指外部电源(如市电)被施加在直管灯上,并且LED直管灯的电源回路电性连接至大地电平(ground level),进而在电源回路上产生电压差。其中,LED直管灯正确安装的通电即是指外部电源施加在LED直管灯上,并且LED直管灯是透过灯具的接地线路电性连接至大地电平;而LED直管灯不正确安装即是指外部电源施加在LED直管灯上,但是LED直管灯并非仅透过灯具的接地线路电性连接至大地电平,而是透过人体或其他阻抗物体连接至大地电平,亦即在未正确安装状态下,会有非预期的阻抗物体串联在电流路径上。
值得注意的是,检测脉冲发生模块产生的脉冲信号DP1/DP2的脉宽在1us至1ms之间,其作用仅在LED直管灯通电瞬间时,利用这个脉冲信号使开关电路导通短暂的时间。这样可以产生一个脉冲电流,流过检测判定电路进行检测判断。因产生的是短时间的脉冲而长时间导通非,并不会引发触电危险。再者,检测结果锁存电路于工作模式DRM时也维持检测结果,不再因电路状态改变而改变先前锁存的检测结果,而避免检测结果变化而造成的问题。 而安装检测模块(即开关电路、检测脉冲发生模块、检测结果锁存电路以及检测判定电路)可以集成到芯片中,这样可以嵌入到电路中,可以节省安装检测模块的电路成本和体积。在一实施例中,所述脉冲信号DP1/DP2的脉宽可进一步的在10us至1ms之间;在另一实施例中,所述脉冲信号DP1/DP2的脉宽可进一步的在15us至30us之间;在另一实施例中,脉冲信号DP1/DP2的脉宽可进一步的在200us至400us之间;在另一实施例中,所述脉冲信号DP1/DP2的脉宽可为20us、35us或45us的正负15%内;在另一实施例中,所述脉冲信号DP1/DP2的脉宽可为300us的正负15%内。
在一实施例的定义中,所述的脉冲/脉冲信号是指在连续的信号时间过程中短暂出现的剧烈电压或电流的信号变化,亦即信号在短时间内突变,并且随后又迅速返回其初始值。因此,所述脉冲信号可能是从低准位变换为高准位一段期间后再回到低准位的电压或电流信号,或者是从高准位变换为低准位的电压或电流信号,本实用新型不以此为限。于此所述的“短暂出现的信号变化”所对应到的期间是指不足以使整体LED直管灯运作状态改变并且不会致使人体发生触电危害的期间长度。例如:在利用脉冲信号DP1/DP2导通开关电路3200/3200a时,开关电路3200/3200a的导通期间会足够短以致于使LED模块不会被点亮,并且使电源回路上的有效电流不会大于限流设定值(5MIU)。于此所述的“剧烈信号变化”是指所述信号变化足以使接收该脉冲信号的电子元件反应于该脉冲信号而发生操作状态的改变。例如:开关电路3200/3200a接收到脉冲信号DP1/DP2时,限流电路3200/3200a会反应于脉冲信号DP1/DP2的准位切换而导通或截止。
另外附带一提的是,虽然上述的检测脉冲发生模块3110是以产生两个脉冲信号DP1与DP2作为范例来进行说明,但本实用新型的检测脉冲发生模块3110不仅限于此。所述检测脉冲发生模块3110可以是用以产生单一脉冲的电路或是可独立产生多个脉冲的电路。
在检测脉冲发生模块3110产生单一脉冲的实施方式下,可以利用RC电路搭配主动元件/有源元件的简单电路配置来实现单一脉冲输出。举例来说,在一范例实施例中,检测脉冲发生模块3110a可以仅包括电容C11、电阻R11以及缓冲器BF1。在此配置底下,检测脉冲发生模块3110a仅会产生单一脉冲信号DP1。
在检测脉冲发生模块3110产生多个脉冲的实施方式下,检测脉冲发生模块3110a可以更包括一复位电路(未绘示),所述复位电路可以在第一脉冲信号及/或第二脉冲信号产生之后,重置电路的工作状态,使得检测脉冲发生模块3110a在一段时间后可以再次产生第一脉冲信号及/或第二脉冲信号。亦即,透过复位电路的作用,可以使检测脉冲发生模块3110a依据固定或随机的设定时间间隔TIV产生多个脉冲信号。所述依据固定的设定时间间隔TIV产生多 个脉冲信号也可例如是固定每间隔20毫秒至2秒产生一个脉冲信号(即20ms≤TIV≤2s),在一些实施例中,所述设定时间间隔TIV可为500ms到2s之间;在一些实施例中,所述设定时间间隔TIV可为75ms的正负15%内;在一些实施例中,所述设定时间间隔TIV可为45ms的正负15%内;在一些实施例中,所述设定时间间隔TIV可为30ms的正负15%内。所述依据随机的设定时间间隔TIV产生多个脉冲信号可例如是每个相邻脉冲信号之间的设定时间间隔TIV系选自于0.5秒至2秒的区间内的一乱数设定值。
更具体的说,检测脉冲发生模块3110发出脉冲信号以进行安装检测的时点及频率可以考量检测模式下检测电流对人体的影响而做相应的设定。一般而言,只要通过人体的电流大小及持续时间符合规范,即便有电流通过接触者也不会有被电击的感受,且不会造成人身安全的危害。其中,电流大小与持续时间对人体的危害大致上呈负相关,亦即在通过电流不危害人体安全的前提下,通过电流越大则通电持续时间需越短;反之,若通过电流较小,则可持续通电较长时间也不会造成人体危害。换言之,实际上人体是否会受到触电危害是看每单位时间施加在人体上的电流量(或称电功率),而并非单看流通人体的电流量。
在一些实施例中,检测脉冲发生模块3110可以配置为仅在特定时间区间内发出脉冲信号来进行安装检测,并且在超出所述时间区间后即停止发出脉冲信号以避免检测电流造成人体危害。如图41D所示,图41D是本实用新型第一实施例的检测电流的波形示意图,其中图式的横轴为时间(标示为t),纵轴为电流值(标示为I)。在检测模式内,检测脉冲模块3110会在检测时间区间内发出脉冲信号(脉冲信号的脉宽及设定时间间隔可参照其他相关实施例),使得检测路径/电源回路被导通。由于检测路径/电源回路被导通,检测电流Iin(可通过量测电源模块的输入电流得到)会响应于脉冲信号的脉冲发生时点而产生相应的电流脉冲Idp,其中检测判定电路3130即是通过检测这些电流脉冲Idp的电流值来判断LED直管灯是否已被正确安装至灯座上。在检测时间区间Tw之后,检测脉冲发生模块3110停止发出脉冲信号,使得检测路径/电源回路被截止。从较大的时间维度来看,检测脉冲发生模块3110会在检测时间区间Tw内产生一个脉冲群DPg,并且藉由这个脉冲群DPg的检测来判定LED直管灯是否已被正确安装在灯座上。换言之,在本实施例中,检测脉冲发生模块3110仅会在检测时间区间Tw内发出脉冲信号,其中所述检测时间区间Tw可以设定为0.5秒至2秒并包含0.5秒至2秒之间的任一小数两位的数值点,例如0.51、0.52、0.53、…、0.6、0.61、0.62、…1.97、1.98、1.99、2,但本实用新型不以此为限。值得一提的是,透过适当的选取检测时间区间Tw可以达到使整个脉冲群DPg的检测动作不会产生足以危害人体的电功率,进而达到防触电的效果。
在电路设计上,令检测脉冲发生模块3110仅在检测时间区间Tw内发出检测信号可利用多种不同的电路实施方式。举例来说,在一范例实施例中,检测脉冲发生模块3110可以使用脉冲产生电路(如图19B、20B)搭配计时电路(未绘示)来实现,所述计时电路可在计数一定期间后输出信号通知脉冲产生电路停止产生脉冲。在另一范例实施例中,检测脉冲发生模块3110可以使用脉冲产生电路(如图19B、20B)搭配信号屏蔽电路(未绘示)来实现,其中信号屏蔽电路可在预定时间后透过将脉冲产生电路的输出拉地等方式来屏蔽脉冲产生电路输出的脉冲信号。在此配置底下,信号屏蔽电路可以利用简单电路(例如RC电路)来实现,并且无须更动原先脉冲产生电路的设计。
在一些实施例中,检测脉冲发生模块3110可以配置为每次发出脉冲信号都至少间隔一大于等于特定安全值的设定时间间隔才会再发出下一个脉冲信号,藉以避免检测电流造成人体危害。如图41E所示,图41E是本实用新型第二实施例的检测电流的波形示意图。在检测模式内,检测脉冲发生模块3110会以大于特定安全值(例如1秒)的设定时间间隔TIV发出脉冲信号(脉冲信号的脉宽设定可参照其他相关实施例),使得检测路径/电源回路被导通。由于检测路径/电源回路被导通,检测电流Iin(可通过量测电源模块的输入电流得到)会响应于脉冲信号的脉冲发生时点而产生相应的电流脉冲Idp,其中检测判定电路3130即是通过检测这些电流脉冲Idp的电流值来判断LED直管灯是否已被正确安装至灯座上。
在一些实施例中,检测脉冲发生模块3110可以配置为每间隔一大于等于特定安全值的设定时间间隔发出一个脉冲群来进行安装检测,藉以避免检测电流造成人体危害。如图41F所示,图41F是本实用新型第三实施例的检测电流的波形示意图。在检测模式内,检测脉冲发生模块3110会先在第一个检测时间区间Tw内发出多个脉冲信号(脉冲信号的脉宽及设定时间间隔可参照其他相关实施例),使得检测路径/电源回路被导通。此时检测电流Iin会响应于脉冲信号的脉冲发生时点而产生多个相应的电流脉冲Idp,在第一个检测时间区间Tw内的电流脉冲Idp构成第一脉冲群DPg1。在第一个检测时间区间Tw结束后,检测脉冲发生模块3110会暂停输出脉冲信号一段设定时间间隔TIVs(例如为大于等于1秒),并且在进入下一个检测时间区间Tw后才再次发出脉冲信号。类似于第一个检测时间区间Tw的操作,第二个检测时间区间Tw及第三个检测时间区间Tw内的检测电流Iin会分别构成第二脉冲群DPg2及第三脉冲群DPg3,其中检测判定电路3130即是通过检测这些脉冲群DPg1、DPg2、DPg3的电流值来判断LED直管灯是否已被正确安装至灯座上。
于此需说明的是,在实际应用中,电流脉冲Idp的电流大小会与检测路径/电源回路上的阻抗相关。因此在设计检测脉冲发生模块3110时,可以根据检测路径/电源回路的选用与设 置来对应设计输出脉冲信号的格式。
请参见图20A,图20A是本实用新型第二实施例的安装检测模块的电路方块示意图。安装检测模块3000b包含一检测脉冲发生模块3210、一检测结果锁存电路3220、一检测判定电路3230以及一开关电路3200。底下搭配图41B所绘示的信号时序来一并说明,其中图41B是本实用新型第二实施例的电源模块的信号时序示意图。其中,检测脉冲发生模块3210电性连接检测结果锁存电路3220,用以产生包含有至少一脉冲信号DP的控制信号Sc。检测结果锁存电路3220电性连接开关电路3200,用以接收并输出检测脉冲发生模块3210所输出的控制信号Sc。开关电路3200分别电性连接LED直管灯电源回路的一端与检测判定电路3230,用以接收检测结果锁存电路3220所输出的控制信号Sc并在脉冲信号DP期间导通,使得LED直管灯电源回路导通。检测判定电路3230分别电性连接开关电路3200、LED直管灯电源回路的另一端以及检测结果锁存电路3220,用以在开关电路3200与LED电源回路导通时,检测电源回路上的取样信号Ssp以判断LED直管灯与灯座的安装状态。换言之,本实施例的电源回路是用作为安装检测模块的检测路径(前述图19A实施例亦属类似配置)。其中,检测判定电路3230更将检测结果传送至检测结果锁存电路3220以实行进一步控制;另外,检测脉冲发生模块3210更电性连接检测结果锁存电路3220的输出,藉以控制截止脉冲信号DP的时间。其细部电路架构及整体电路运作的说明将先后描述于下。
在一些实施例中,检测脉冲发生模块3210经由检测结果锁存电路3220产生一控制信号Sc,以使开关电路3200在脉冲期间操作在导通状态。同时,LED直管灯位于安装检测端TE1与TE2之间的电源回路也会同时导通。检测判定电路3230检测在电源回路上的一取样信号,并且基于检测到的信号通知检测结果锁存电路3220锁存检测信号的时间点。举例来说,检测判定电路3230可例如是可产生用以控制闩锁电路的输出准位的电路,其中闩锁电路的输出准位会与LED直管灯的导通/截止状态相互对应。检测结果锁存电路3220依据取样信号Ssp(或取样信号Ssp与脉冲信号DP)储存检测结果,并且将检测结果传送或提供开关电路3200。开关电路3200接收到由检测结果锁存电路3220所传送的检测结果后,即会依据检测结果来控制安装检测端TE1与TE2之间的导通状态。
在一些实施例中,安装检测模块3000b更包含一应急控制模块3240。所述应急控制模块3240的配置和运作与前述实施例的应急控制模块3140近似,因此可参考上述说明,于此不再赘述。
在一些实施例中,安装检测模块3000b中的检测脉冲发生模块3210、检测判定电路3230、检测结果锁存电路3220以及开关电路3200可分别以图20B至图20E的电路架构来实现(但不 仅限于此),其中图20B至图20E是本实用新型第二实施例的安装检测模块的电路架构示意图。底下分就各模块/单元进行说明。
请参见图20B,图20B是根据本实用新型第二实施例的安装检测模块的检测脉冲发生模块的电路架构示意图。检测脉冲发生模块3210包含:一电阻R21(第六电阻),一端连接一驱动电压;一电容C21(第四电容),一端连接电阻R21的另一端,且电容C21的另一端接地;一施密特触发器STRG,具有一输入端与一输出端,该输入端连接电阻R21与电容C21的连接端,该输出端连接检测结果锁存电路3220;一电阻R22(第七电阻),一端连接电阻R21与电容C21的连接端;一晶体管M21(第二晶体管),具有一基极端、一集极端与一射极端,该集极端连接电阻R22的另一端,该射极端接地;以及一电阻R23(第八电阻),一端连接晶体管M21的基极端,且电阻R23的另一端连接检测结果锁存电路3220与开关电路3200。检测脉冲发生模块3210更包含一齐纳二极管ZD1,具有一阳极端与一阴极端,该阳极端连接电容C21的另一端接地,该阴极端连接电容C21与电阻R21连接的一端。本实施例与前述图19B实施例的检测脉冲发生模块的电路皆仅是范例,实际上检测脉冲发生电路的具体运作是基于图36A实施例所配置的功能模块来执行,此部分会于图36A的实施例再进一步详述。
请参见图20C,图20C是根据本实用新型第二实施例的安装检测模块的检测判定电路的电路架构示意图。检测判定电路3230包括:一电阻R24(第九电阻),一端连接晶体管M22的射极端,且电阻R24的另一端连接LED电源回路的另一端(例如:第二安装检测端TE2);一二极管D21(第二二极管),具有一阳极端与一阴极端,该阳极端连接电阻R24的一端;一比较器CP21(第二比较器),具有一第一输入端、一第二输入端与一输出端,该第一输入端连接一设定信号(例如:参考电压Vref,在本实施例为1.3V,然不限于此),该第二输入端连接二极管D21的阴极端,且比较器CP21的输出端连接D型触发器DFF的频率输入端;一比较器CP22(第三比较器),具有一第一输入端、一第二输入端与一输出端,该第一输入端连接二极管D21的阴极端,该第二输入端连接另一设定信号(例如:另一参考电压Vref,在本实施例为0.3V,然不限于此),且比较器的输出端连接D型触发器DFF的频率输入端;一电阻R25(第十电阻),一端连接该驱动电压;一电阻R26(第十一电阻),一端连接电阻R25的另一端与比较器CP21的第二输入端,且电阻R26的另一端接地;以及一电容C22(第五电容),与电阻R26并联。在某些实施例中,上述二极管D21、比较器CP22、电阻R25、电阻R26以及电容C22可以被省略,当二极管D21被省略时,比较器CP21的第二输入端就直接连接电阻R24的一端。在某些实施例中,基于功率因素考虑,电阻R24可以是两电阻并联,其等效电阻值包括0.1奥姆-5奥姆。
请参见图20D,图20D是根据本实用新型第二实施例的安装检测模块的检测结果锁存电路的电路架构示意图。检测结果锁存电路3220包含:一D型触发器DFF(第二D型触发器),具有一数据输入端、一频率输入端与一输出端,该数据输入端连接该驱动电压,该频率输入端连接检测判定电路3230;以及一或门OG(第三或门),具有一第一输入端、一第二输入端与一输出端,该第一输入端连接施密特触发器STRG的输出端,该第二输入端连接D型触发器DFF的输出端,且或门OG的输出端连接电阻R23的另一端与开关电路3200。
请参见图20E,图20E是根据本实用新型第二实施例的安装检测模块的开关电路的电路架构示意图。开关电路3200包括:一晶体管M22(第三晶体管),具有一基极端、一集极端与一射极端,该基极端连接或门OG的输出端,该集极端连接LED电源回路的一端(例如:第一安装检测端TE1),该射极端连接检测判定电路3230。其中,晶体管M22亦可置换成其他电子式开关的等效组件,例如:MOSFET等。
值得注意的是,上述安装检测模块的部分电路可以积体化成一集成电路,进而节省安装检测模块的电路成本和体积。例如:整合检测脉冲发生模块3210的施密特触发器STRG、检测结果锁存电路3220以及检测判定电路3230的两比较器CP21、CP22于一集成电路,然本实用新型不限于此。
底下将再就安装检测模块的整体电路运作加以说明。首先要说明的是,本实用新型利用电容电压不会发生突变的原理;LED直管灯电源回路中的电容在电源回路导通前,其两端电压为零且瞬态响应呈现短路状态;以及当电源回路在LED直管灯正确安装于灯座时,其瞬态响应限流电阻较小且响应峰值电流较大,当电源回路在LED直管灯未正确安装于灯座时,其瞬态响应限流电阻较大且响应峰值电流较小等原理加以实施,并且使LED直管灯的漏电流小于5MIU。以下将就LED直管灯在正常工作时(即LED直管灯两端灯头均正确安装于灯座内)与换灯测试时(即LED直管灯一端灯头安装于灯座内而另一端灯头接触人体)一实施例的电流量比较:
Figure PCTCN2018107773-appb-000001
Figure PCTCN2018107773-appb-000002
其中,在分母部分,Rfuse为LED直管灯的保险丝阻值(10奥姆),而500奥姆为模拟人体的导电特性在瞬态响应的阻值;而在分子部分,取电压均方根值90V~305V的最大电压值(305*1.414)以及最小电压差值50V。从以上实施例可以得知,LED直管灯若两端灯头均正确安装于灯座内,其正常工作时的最小瞬态电流为5A;但当LED直管灯一端灯头安装于灯座内而另一端灯头接触人体时,其最大瞬态电流却只有845mA。因此,本实用新型利用可通过瞬态响应流过LED电源回路中的电容(例如:滤波电路的滤波电容)的电流以检测LED直管灯与灯座的安装状态,亦即检测LED直管灯是否正确安装于灯座内,并且在LED直管灯尚未正确安装于灯座内时,更提供一保护机制以避免使用者因误触LED直管灯导电部分而触电的问题。上述的实施例仅用以说明本实用新型而并非用以限制本实用新型的实施。
接着,请再次参见图20A,当LED直管灯换装于灯座时,检测脉冲发生模块3210在一段时间后(此段时间决定脉冲周期),其输出从一第一低准位电压上升至一第一高准位电压,并经由一路径3311输出此第一高准位电压至检测结果锁存电路3220。检测结果锁存电路3220接收此第一高准位电压后,经由一路径3321同时输出一第二高准位电压至开关电路3200与检测脉冲发生模块3210。当开关电路3200接收此第二高准位电压后,开关电路3200导通使得LED直管灯的一电源回路(至少包括第一安装检测端TE1、开关电路3200、路径3201、检测判定电路3230与第二安装检测端TE2)导通;而在此同时,检测脉冲发生模块3210在接收由检测结果锁存电路3220所回传的第二高准位电压后的一段时间(此段时间决定脉冲宽度),其输出从第一高准位电压降回第一低准位电压(第一次的第一低准位电压、第一高准位电压与第二次的第一低准位电压构成一第一脉冲信号DP1)。而检测判定电路3230在LED直管灯的电源回路导通时,检测其回路上的一第一取样信号SP1(例如:电压信号),当此第一取样信号SP1大于及/或等于一设定信号(例如:一参考电压Vref)时,根据上述本实用新型的应用原理,表示LED直管灯正确安装于灯座内,因此检测判定电路3230经由一路径3331输出一第三高准位电压(第一高准位信号)至检测结果锁存电路3220。检测结果锁存电路3220接收此第三高准位电压进而输出并维持一第二高准位电压(第二高准位信号)至开关电路3200,开关电路3200接收此第二高准位电压进而维持导通以使LED直管灯的电源回路维持导通,其间检测脉冲发生模块3210不再产生脉冲输出。
当此第一取样信号SP1小于此设定信号时,根据上述本实用新型的应用原理,表示LED直管灯尚未正确安装于灯座内,因此检测判定电路3230输出一第三低准位电压(第一低准位信号)至检测结果锁存电路3220。检测结果锁存电路3220接收此第三低准位电压进而输出并维持第二低准位电压(第二低准位信号)至开关电路3200,开关电路3200接收此第二低准位电压进而维持截止以使LED直管灯的电源回路维持开路。在此情况下,避免使用者在LED直管灯尚未正确安装于灯座内时因误触LED直管灯导电部分而触电的问题。
当上述LED直管灯的电源回路维持开路一段时间后(即脉冲周期时间),检测脉冲发生模块3210的输出再次从第一低准位电压上升至第一高准位电压,并经由路径3311输出至检测结果锁存电路3220。检测结果锁存电路3220接收此第一高准位电压后,经由路径3321同时输出一第二高准位电压至开关电路3200与检测脉冲发生模块3210。当开关电路3200接收此第二高准位电压后,开关电路3200再次导通使得LED直管灯的电源回路(至少包括第一安装检测端TE1、开关电路3200、路径3201、检测判定电路3230与第二安装检测端TE2)也再次导通;在此同时,检测脉冲发生模块3210在接收由检测结果锁存电路3220所回传的第二高准位电压后的一段时间(此段时间决定脉冲宽度),其输出从第一高准位电压降回一第一低准位电压(第三次的第一低准位电压、第二次的第一高准位电压与第四次的第一低准位电压构成一第二脉冲信号DP2)。而检测判定电路3230在LED直管灯的电源回路再次导通时,也再次检测其回路上的一第二取样信号SP2(例如:电压信号),当此第二取样信号SP2大于及/或等于设定信号(例如:一参考电压Vref)时,根据上述本实用新型的应用原理,表示LED直管灯正确安装于灯座内,因此检测判定电路3230经由路径3331输出一第三高准位电压(第一高准位信号)至检测结果锁存电路3220。检测结果锁存电路3220接收此第三高准位电压进而输出并维持一第二高准位电压(第二高准位信号)至开关电路3200,开关电路3200接收此第二高准位电压进而维持导通以使LED直管灯的电源回路维持导通,其间检测脉冲发生模块3210不再产生脉波输出。
当此第二取样信号SP2小于此设定信号时,根据上述本实用新型的应用原理,表示LED直管灯仍未正确安装于灯座内,因此检测判定电路3230输出一第三低准位电压(第一低准位信号)至检测结果锁存电路3220。检测结果锁存电路3220接收此第三低准位电压进而输出并维持一第二低准位电压(第二低准位信号)至开关电路3200,开关电路3200接收此第二低准位电压进而维持截止以使LED直管灯的电源回路维持开路。
在图41B的范例中,因为基于第一脉冲信号DP1所产生的第一取样信号SP1与基于第二脉冲信号DP2所产生的第二取样信号SP2皆小于参考电压Vref,因此在此段期间内开关电路 3200会被维持在截止状态,并且使驱动电路(未绘示)不会被启动。直到第三脉冲信号DP3产生后,由于检测判定电路3230会根据高于参考电压Vref的第三取样信号SP3产生LED直管灯已被正确安装的检测结果,使得开关电路3200会被检测结果锁存电路3220所输出的高准位电压维持在导通状态以使电源回路维持导通。此时电源模块中的驱动电路会基于电源回路上的电压而被启动并开始运作,进而产生点亮控制信号Slc来切换功率开关(未绘示),使得驱动电流可被产生并点亮LED模块。
接着,请同时参见图20B至图20E,当LED直管灯换装于灯座时,一驱动电压经由电阻R21对电容C21进行充电,而当电容C21的电压上升到足以触发施密特触发器STRG时,施密特触发器STRG从初始的一第一低准位电压变成一第一高准位电压输出到或门OG的一输入端。或门OG在接收来自施密特触发器STRG所输出的第一高准位电压后,或门OG输出一第二高准位电压到晶体管M22的基极端以及电阻R23。当晶体管M22的基极端接收来自或门OG所输出的第二高准位电压后,晶体管M22的集极端与射极端导通,进而使得LED直管灯的电源回路(至少包括第一安装检测端TE1、晶体管M22、电阻R24与第二安装检测端TE2)导通;而在此同时,晶体管M21的基极端经由电阻R23接收或门OG所输出的第二高准位电压后,晶体管M21的集极端与射极端导通接地,使得电容C21的电压经由电阻R22对地放电,当电容C21的电压不足以触发施密特触发器STRG时,施密特触发器STRG的输出从第一高准位电压降回第一低准位电压(第一次的第一低准位电压、第一高准位电压与第二次的第一低准位电压构成一第一脉冲信号)。而当LED直管灯的电源回路导通时,通过瞬态响应流过LED电源回路中的电容(例如:滤波电路的滤波电容)的电流流经晶体管M22与电阻R24,并在电阻R24上形成一电压信号,此电压信号经由比较器CP21与一参考电压(在本实施例为1.3V,然不限于此)进行比较,当此电压信号大于及/或等于此参考电压时,比较器CP21输出一第三高准位电压到D型触发器DFF的频率输入端CLK,同时由于D型触发器DFF的数据输入端D连接驱动电压,因此D型触发器DFF的输出端Q输出一高准位电压到或门OG的另一输入端,使得或门OG输出并维持第二高准位电压至晶体管M22的基极端,进而使得晶体管M22以及LED直管灯的电源回路维持导通。由于或门OG输出并维持第二高准位电压,因此晶体管M21亦维持导通接地,进而使得电容C21的电压无法上升到足以触发施密特触发器STRG。
而当电阻R24上的电压信号小于参考电压时,比较器CP21输出一第三低准位电压到D型触发器DFF的频率输入端CLK,同时由于D型触发器DFF的初始输出值为零,因此D型触发器DFF的输出端Q输出一低准位电压到或门OG的另一输入端,并且由于或门OG的一 端所连接的施密特触发器STRG亦恢复输出第一低准位电压,因此或门OG输出并维持第二低准位电压至晶体管M22的基极端,进而使得晶体管M22维持截止以及LED直管灯的电源回路维持开路。然而,由于或门OG输出并维持第二低准位电压,因此晶体管M21亦维持在截止状态,待驱动电压再经由电阻R21对电容C21进行充电以重复进行下一次(脉冲)检测。
值得注意的是,脉冲周期是由电阻R21的电阻值与电容C21的电容值所决定,在某些实施例中,脉冲信号的设定时间间隔(TIV)为3ms-500ms,更进一步,脉冲信号的时间间隔为20ms-50ms;在某些实施例中,脉冲信号的设定时间间隔(TIV)为500ms-2000ms。脉冲宽度是由电阻R22的电阻值与电容C21的电容值所决定,在某些实施例中,脉冲信号的宽度包括1us-100us,更进一步,脉冲信号的宽度包括10us-20us。其中,本实施例有关于脉冲信号的产生机制及对应的检测电流状态可参照前述图41D至41F的实施例说明,于此不再重复赘述。
齐纳二极管ZD1提供保护功能,但其可省略;电阻R24基于功率因素考虑,可以是两电阻并联,其等效电阻值包括0.1奥姆-5奥姆;电阻R25与R26提供分压确保输入电压高于比较器CP22的参考电压(在本实施例为0.3V,然不限于此);电容C22提供稳压及滤波功能;二极管D21确保信号传送的单向性。另外,在此要强调的是,本实用新型所揭露的安装检测模块可适用于其他双端进电的LED照明设备,例如:具有双端电源供电架构的LED灯以及包含直接利用市电或利用镇流器所输出的信号作为外部驱动电压的LED灯等,本实用新型并不限制安装检测模块的应用范围。
请参见图21A,图21A是本实用新型第三实施例的安装检测模块的电路方块示意图。安装检测模块3000c可包含一脉冲发生辅助电路3310、一集成控制模块3320、一开关电路3200以及一检测判定辅助电路3330。本实施例的安装检测模块的整体运作与第二较佳实施例的安装检测模块的类似,因此可参考图41B所绘示的信号时序。其中,集成控制模块3320至少包括两输入端IN1、IN2以及输出端OT等三个脚位。脉冲发生辅助电路3310电性连接集成控制模块3320的输入端IN1与输出端OT,用以辅助集成控制模块3320产生一控制信号。检测判定辅助电路3330电性连接集成控制模块3320的输入端IN2与开关电路3200,其可用以在开关电路3200与LED电源回路导通时,回传关联于电源回路上的取样信号至集成控制模块3320的输入端IN2,使得集成控制模块3320可基于此取样信号来判断LED直管灯与灯座的安装状态。开关电路3200分别电性连接LED直管灯电源回路的一端与检测判定辅助电路3330,用以接收集成控制模块3320所输出的控制信号,并在控制信号的致能期间(即,脉冲期间)内导通,使得LED直管灯电源回路导通。
更具体的说,集成控制模块3320可用以依据输入端IN1上所接收到的信号,在一段检测 模式内藉输出端OT输出具有至少一脉冲的控制信号来短暂地导通开关电路3200。在此段检测模式内,集成控制模块3320可根据输入端IN2上的信号检测LED直管灯是否被正确安装至灯座中并且将检测结果锁存,以作为在检测模式结束后是否导通开关电路3200的依据(即,决定是否正常供电至LED模块)。第三较佳实施例的细部电路架构及整体电路运作的说明将先后描述于下。
在一范例实施例中,安装检测模块3000c中的集成控制模块3320、脉冲发生辅助电路3310、检测判定辅助电路3330以及开关电路3200可分别以图21B至图21E的电路架构来实现(但不仅限于此),其中图21B至图21E是本实用新型第三实施例的安装检测模块的电路架构示意图。底下分就各模块/单元进行说明。
请参见图21B,图21B是根据本实用新型第三实施例的安装检测模块的集成控制模块的内部电路方块示意图。集成控制模块3320包括脉冲产生单元3322、检测结果锁存单元3323以及检测单元3324。脉冲产生单元3322会从输入端IN1接收脉冲发生辅助电路3310所提供的信号,并且据以产生至少一脉冲信号,而产生的脉冲信号会被提供给检测结果锁存单元3323。在本实施例中,脉冲产生单元3322可例如以施密特触发器(未绘示,可参考图20B的施密特触发器STRG)来实施,其输入端耦接集成控制模块3320的输入端IN1,且其输出端耦接集成控制模块3320的输出端OT。但本实用新型的脉冲产生单元3322不仅限于使用施密特触发器的电路架构来实施。任何可以实现产生至少一脉冲信号功能的模拟/数字电路架构皆可应用于此。
检测结果锁存单元3323耦接脉冲产生单元3322与检测单元3324。在检测模式内,检测结果锁存单元3323会将脉冲产生单元3322所产生的脉冲信号作为控制信号提供至输出端OT。另一方面,检测结果锁存单元3323还会将检测单元3324所提供的检测结果信号锁存,并且在检测模式后提供至输出端OT,藉以根据LED直管灯的安装状态是否正确来决定是否导通开关电路3200。在本实施例中,检测结果锁存单元3323可例如以D型触发器搭配或门的电路架构(未绘示,可参考图20D的D型触发器DFF与或门OG)来实施。其中,D型触发器具有一数据输入端、一频率输入端与一输出端。该数据输入端连接驱动电压VCC,该频率输入端连接检测单元3324。或门具有一第一输入端、一第二输入端与一输出端,该第一输入端连接脉冲产生单元3322,该第二输入端连接D型触发器的输出端,且或门的输出端连接输出端OT。但本实用新型的检测结果锁存单元3323不仅限于使用D型触发器与或门的电路架构来实施。任何可以实现锁存并输出控制信号以控制开关电路3200切换的功能的模拟/数字电路架构皆可应用于此。
检测单元3324耦接检测结果锁存单元3323。检测单元3324会从输入端IN2接收检测判定辅助电路3330锁提供的信号,并且据以产生指示LED直管灯是否被正确安装的检测结果信号,而产生的检测结果信号会被提供给检测结果锁存单元3323。在本实施例中,检测单元3324可例如以比较器(未绘示,可参考图20C的比较器CP21)来实施。其中,比较器具有一第一输入端、一第二输入端与一输出端,该第一输入端连接一设定信号,该第二输入端连接输入端IN2,且比较器CP21的输出端连接检测结果锁存单元3323。但本实用新型的检测单元3324不仅限于使用比较器的电路架构来实施。任何可以实现根据输入端IN2上的信号判断LED直管灯是否被正确安装的模拟/数字电路架构皆可应用于此。
请参见图21C,图21C是根据本实用新型第三实施例的安装检测模块的脉冲发生辅助电路的电路架构示意图。脉冲发生辅助电路3310包含电阻R31、R32及R33、电容C31以及晶体管M31。电阻R31的一端连接一驱动电压(如VCC)。电容C31的一端电阻R31的另一端,且电容C31的另一端接地。电阻R32的一端连接电阻R31与电容C31的连接端。晶体管M31具有一基极端、一集极端与一射极端。该集极端连接电阻R32的另一端,并且该射极端接地。电阻R33的一端连接晶体管M31的基极端,且电阻R33的另一端经由路径3311连接至集成控制模块3310的输出端OT与开关电路3200的控制端。脉冲发生辅助电路3310更包含一齐纳二极管ZD1,其具有一阳极端与一阴极端,该阳极端连接电容C31的另一端并且接地,该阴极端连接电容3323与电阻R31连接的一端。
请参见图21D,图21D是根据本实用新型第三实施例的安装检测模块的检测判定辅助电路的电路架构示意图。检测判定辅助电路3330包含电阻R34、R35及R36、电容C32以及二极管D31。电阻R34的一端连接开关电路3200的一端,且电阻R34的另一端连接LED电源回路的另一端(例如:第二安装检测端TE2)。电阻R35的一端连接该驱动电压(如VCC)。电阻R36的一端连接电阻R35的另一端,并经由路径3331连接至集成控制模块3320的输入端IN2,且电阻R36的另一端接地。电容C32与电阻R36并联。二极管D31具有一阳极端与一阴极端,该阳极端连接电阻R34的一端,且该阴极端连接电阻R35与R36的连接端。在某些实施例中,上述电阻R35、电阻R36、电容C32以及二极管D31可以被省略,当二极管D31被省略时,电阻R34的一端直接经由路径3331连接至集成控制模块3320的输入端IN2。在某些实施例中,基于功率因素考虑,电阻R34可以是两电阻并联,其等效电阻值包括0.1奥姆~5奥姆。
请参见图21E,图21E是根据本实用新型第三实施例的安装检测模块的开关电路的电路架构示意图。开关电路3200c包括晶体管M32,其具有一基极端、一集极端与一射极端。晶 体管M32的基极端经由路径3321连接至集成控制模块3320的输出端OT,晶体管M32的集极端连接LED电源回路的一端(例如:第一安装检测端TE1),并且晶体管M32的射极端连接检测判定辅助电路3330。其中,晶体管M32亦可置换成其他电子式开关的等效组件,例如:MOSFET等。
在此欲先说明的是,本实施例的安装检测模块所利用的安装检测原理是与前述第二较佳实施例相同,都是基于电容电压不会发生突变的原理,LED直管灯电源回路中的电容在电源回路导通前,其两端电压为零且瞬态响应呈现短路状态;以及当电源回路在LED直管灯正确安装于灯座时,其瞬态响应限流电阻较小且响应峰值电流较大,当电源回路在LED直管灯未正确安装于灯座时,其瞬态响应限流电阻较大且响应峰值电流较小等原理加以实施,并且使LED直管灯的漏电流小于5MIU。换言之,就是透过检测响应峰值电流的方式来判断LED直管灯是否正确地安装于灯座内。因此关于在正常工作及换灯测试下的瞬态电流部分可参照前述实施例的说明,于此不再重复赘述。底下将仅就安装检测模块的整体电路运作加以说明。
请再次参见图21A,当LED直管灯换装于灯座时,LED直管灯在有一端进电的情况下会使得驱动电压VCC被提供给安装检测模块3000c中的模块/电路。脉冲发生辅助电路3310会反应于驱动电压VCC而进行充电动作。在一段时间后(此段时间决定脉冲周期),其输出电压(于此称第一输出电压)从一第一低准位电压上升至超过一顺向阈值电压(电压值可依据电路设计而定义),并经由一路径3311输出至集成控制模块3320的输入端IN1。集成控制模块3320从输入端IN1接收第一输出电压后,经由一路径3321输出一致能的控制信号(例如为一高准位电压)至开关电路3200与脉冲发生辅助电路3310。当开关电路3200接收此致能的控制信号后,开关电路3200导通使得LED直管灯的一电源回路(至少包括第一安装检测端TE1、开关电路3200、路径3201、检测判定辅助电路3330与第二安装检测端TE2)导通;而在此同时,脉冲发生辅助电路3310会反应于致能的控制信号而导通放电路径以进行放电动作,并且在接收由集成控制模块3320所回传的致能的控制信号后的一段时间(此段时间决定脉冲宽度),第一输出电压从超过顺向阈值电压的电压准位逐渐降回第一低准位电压。其中,在第一输出电压下降至低于一逆向阈值电压(电压值可依据电路设计而定义)时,集成控制模块3320会反应于第一输出电压而将致能的控制信号下拉至禁能准位(即,输出禁能的控制信号,其中禁能的控制信号例如为一低准位电压),从而使得控制信号具有脉冲形式的信号波形(即,由控制信号中的第一次的低准位电压、高准位电压与第二次的低准位电压构成一第一脉冲信号)。而检测判定辅助电路3330在LED直管灯的电源回路导通时,检测其回路上的一第一取样信号(例如:电压信号),并且将第一取样信号经由输入端IN2提供给集成控制模块3320。当集成控制 模块3320判定此第一取样信号大于或等于一设定信号(例如:一参考电压)时,根据上述本实用新型的应用原理,表示LED直管灯正确安装于灯座内,因此集成控制模块3320会输出并维持致能的控制信号至开关电路3200,开关电路3200接收此致能的控制信号进而维持导通以使LED直管灯的电源回路维持导通,其间集成控制模块3320不再产生脉冲输出。
相反地,当集成控制电路3320判定此第一取样信号小于此设定信号时,根据上述本实用新型的应用原理,表示LED直管灯尚未正确安装于灯座内,因此集成控制电路会输出并维持禁能的控制信号至开关电路3200,开关电路3200接收此禁能的控制信号进而维持截止以使LED直管灯的电源回路维持开路。
由于脉冲发生辅助电路3310的放电路径被截止,使得脉冲发生辅助电路3310重新进行充电动作。因此,当上述LED直管灯的电源回路维持开路一段时间后(即脉冲周期时间),脉冲发生辅助电路3310的第一输出电压再次从第一低准位电压上升至超过顺向阈值电压,并经由路径3311输出至集成控制模块3320的输入端IN1。集成控制模块3320从输入端IN1接收第一输出电压后,会再次将控制信号从禁能准位上拉至致能准位(即,输出致能的控制信号),并且将致能的控制信号提供至开关电路3200与脉冲发生辅助电路3310。当开关电路3200接收此致能的控制信号后,开关电路3200导通使得LED直管灯的电源回路(至少包括第一安装检测端TE1、开关电路3200、路径3201、检测判定辅助电路3330与第二安装检测端TE2)也再次导通。在此同时,脉冲发生辅助电路3310会再次反应于致能的控制信号而导通放电路径并进行放电动作,并且在接收由集成控制模块3320所回传的致能的控制信号后的一段时间(此段时间决定脉冲宽度),第一输出电压从超过顺向阈值电压的电压准位再次逐渐降回第一低准位电压。其中,在第一输出电压下降至低于逆向阈值电压时,集成控制模块3320会反应于第一输出电压而将致能的控制信号下拉至禁能准位,从而使得控制信号具有脉冲形式的信号波形(即,由控制信号中的第三次的低准位电压、第二次的高准位电压与第四次的低准位电压构成一第二脉冲信号)。而检测判定辅助电路3330在LED直管灯的电源回路再次导通时,也再次检测其回路上的一第二取样信号(例如:电压信号),并且将第二取样信号经由输入端IN2提供给集成控制模块3320。当此第二取样信号大于及/或等于设定信号(例如:一参考电压)时,根据上述本实用新型的应用原理,表示LED直管灯正确安装于灯座内,因此集成控制模块3320会输出并维持致能的控制信号至开关电路3200,开关电路3200接收此致能的控制信号进而维持导通以使LED直管灯的电源回路维持导通,其间集成控制模块3320不再产生脉波输出。
当集成控制模块3320判定此第二取样信号小于此设定信号时,根据上述本实用新型的应 用原理,表示LED直管灯仍未正确安装于灯座内,因此集成控制电路会输出并维持禁能的控制信号至开关电路3200,开关电路3200接收此禁能的控制信号进而维持截止以使LED直管灯的电源回路维持开路。在此情况下,避免使用者在LED直管灯尚未正确安装于灯座内时因误触LED直管灯导电部分而触电的问题。
底下更具体说明本实施例的安装检测模块的内部电路/模块运作。请同时参见图21B至图21E,当LED直管灯换装于灯座时,一驱动电压VCC经由电阻R21对电容C21进行充电,而当电容C31的电压上升到足以触发脉冲产生单元3322时(即,超过顺向阈值电压),脉冲产生单元3322的输出会从初始的一第一低准位电压变成一第一高准位电压输出到检测结果锁存单元3323。检测结果锁存单元3323在接收来自脉冲产生单元3322所输出的第一高准位电压后,检测结果锁存单元3323会经由输出端OT输出一第二高准位电压到晶体管M32的基极端以及电阻R33。当晶体管M32的基极端接收来自检测结果锁存单元3323所输出的第二高准位电压后,晶体管M32的集极端与射极端导通,进而使得LED直管灯的电源回路(至少包括第一安装检测端TE1、晶体管M32、电阻R34与第二安装检测端TE2)导通。
而在此同时,晶体管M31的基极端经由电阻R33接收输出端OT上的第二高准位电压后,晶体管M31的集极端与射极端导通接地,使得电容C31的电压经由电阻R32对地放电,当电容C31的电压不足以触发脉冲产生单元3322时,脉冲产生单元3322的输出从第一高准位电压降回第一低准位电压(第一次的第一低准位电压、第一高准位电压与第二次的第一低准位电压构成一第一脉冲信号)。而当LED直管灯的电源回路导通时,通过瞬态响应流过LED电源回路中的电容(例如:滤波电路的滤波电容)的电流流经晶体管M32与电阻R34,并在电阻R34上形成一电压信号,此电压信号被提供至输入端IN2,使得检测单元3324可将此电压信号与一参考电压进行比较。
当检测单元3324判定此电压信号大于或等于此参考电压时,检测单元3324输出一第三高准位电压到检测结果锁存单元3323。而当检测单元3324判定电阻R34上的电压信号小于参考电压时,检测单元3324输出一第三低准位电压到检测结果锁存单元3323。
其中,检测结果锁存单元3323会锁存检测单元3324所提供的第三高准位电压/第三低准位电压,再将锁存的信号与脉冲产生单元3322所提供的信号进行或逻辑运算,并且根据或逻辑运算的结果决定输出的控制信号为第二高准位电压或第二低准位电压。
更具体地说,当检测单元3324判断电阻R34上的电压信号大于或等于参考电压时,检测结果锁存单元3323会锁存检测单元3324所输出的第三高准位电压,藉以维持输出第二高准位电压至晶体管M32的基极端,进而使得晶体管M32以及LED直管灯的电源回路维持导 通。由于检测结果锁存单元3323会输出并维持第二高准位电压,因此晶体管M31亦维持导通接地,进而使得电容C31的电压无法上升到足以触发脉冲产生单元3322。当检测单元3324判断电阻R34上的电压信号小于参考电压时,检测单元3324与脉冲产生单元3322所提供的皆是低准位电压,因此经过或逻辑运算后,检测结果锁存单元3323会输出并维持第二低准位电压至晶体管M32的基极端,进而使得晶体管M32维持截止以及LED直管灯的电源回路维持开路。然而,由于输出端OT上的控制信号此时是维持在第二低准位电压,因此晶体管M31亦维持在截止状态,待驱动电压VCC再经由电阻R31对电容C31进行充电以重复进行下一次(脉冲)检测。
于此附带一提的是,在本实施例所述的检测模式可以定义为驱动电压VCC已被提供至安装检测模块3000c,但检测单元3324尚未判定电阻R34上的电压信号大于或等于参考电压的期间。于检测模式内,由于检测结果锁存单元3323所输出的控制信号会反复地使晶体管M31导通与截止,使得放电路径周期性的被导通与截止。电容C31会反应于晶体管M31的导通/截止,而周期性的充电与放电。因此,检测结果锁存单元3323会在检测模式内输出具有周期性脉冲波形的控制信号。而当检测单元3324判定电阻R34上的电压信号大于或等于参考电压,或是驱动电压VCC被停止提供时,可视为检测模式结束(已判定正确安装,或是LED灯管已被拔除)。此时检测结果锁存单元3323会输出维持在第二高准位电压或第二低准位电压的控制信号。
另一方面,比对图20A来看,本实施例的集成控制模块3320可以是将检测脉冲发生模块3210、检测结果锁存电路3220以及检测判定电路3230的部分电路组件集成化所构成,而未被集成化的电路组件则分别构成本实施例的脉冲发生辅助电路3310与检测判定辅助电路3330。换言之,集成控制模块3320中的脉冲产生单元3322搭配脉冲发生辅助电路3310的功能/电路架构可等同于第二较佳实施例的检测脉冲发生模块3210,集成控制模块3320中的检测结果锁存单元3323的功能/电路架构可等同于第二较佳实施例的检测结果锁存模块3220,以及集成控制模块3320中的检测单元3324搭配检测判定辅助电路3330的功能/电路架构可等同于检测判定电路3230。
请参见图22A,图22A是本实用新型第四实施例的安装检测模块的电路方块示意图。本实施例的安装检测模块可例如为包含有电源端VP1、第一切换端SP1以及第二切换端SP2的一三端开关器件3000d。其中,三端开关器件3000d的电源端VP1适于接收驱动电压VCC,第一切换端SP1适于连接第一安装检测端TE1与第二安装检测端TE2其中之一(于图式是绘示为连接第一安装检测端TE1,但不仅限于此),并且第二切换端SP2适于连接第一安装检测 端TE1与第二安装检测端TE2其中之另一(于图式是绘示为连接第二安装检测端TE2,但不仅限于此)。
三端开关器件3000d包含有信号处理单元3420、信号产生单元3410、信号采集单元3430以及开关单元3200。另外,三端开关器件3000d可更包括内部电源检测单元3440。信号处理单元3420可根据信号产生单元3410与信号采集单元3430所提供的信号,而在检测模式输出具有脉冲波形的控制信号,并且在检测模式后输出维持在高电压准位或低电压准位的控制信号,以控制开关单元3200的导通状态,藉以决定是否导通LED直管灯的电源回路。信号产生单元3410可在接收到驱动电压VCC时,产生脉冲信号给信号处理单元3420。其中,信号产生单元3410所产生的脉冲信号可以是根据从外部接收的一参考信号所产生,或者由其本身独立产生,本实用新型不对此加以限制。于此所述的"外部"是相对于信号产生单元3410而言,亦即只要是非由信号产生单元3410所产生的参考信号,无论是三端开关器件3000d内其他电路所产生,或是由三端开关器件3000d的外部电路所产生,皆属于此处所述的从外部接收的参考信号。信号采集单元3430可用以取样LED直管灯的电源回路上的电信号,并且根据取样到的信号来检测LED直管灯的安装状态,再将指示检测结果的检测结果信号传给信号处理单元3420进行处理。
在一范例实施例中,所述三端开关器件3000d可利用集成电路来实现,亦即所述三端开关器件可以是一个三端的开关控制芯片,其可应用在任何类型的双端进电的LED直管灯中,藉以提供防触电保护的功能。另外应注意的是,所述三端开关器件3000d可不限制仅包含有三个脚位/连接端,而是在多个脚位中其中有三个脚位是以上述方式配置,皆属于本实施例所欲保护的范围。
在一范例实施例中,信号处理单元3420、信号产生单元3410、信号采集单元3430、开关单元3200以及内部电源检测单元3440可分别以图22B至图22F的电路架构来实现(但不仅限于此),其中图22B至图22F是本实用新型第四实施例的安装检测模块的电路架构示意图。底下分就各模块/单元进行说明。
请参见图22B,图22B是根据本实用新型第四实施例的安装检测模块的信号处理单元的电路架构示意图。信号处理单元3420包括驱动器DRV、或门OG以及D型触发器DFF。驱动器DRV具有输入端与输出端,驱动器DRV的输出端用以经路径3421连接开关单元3200,藉以将控制信号提供给开关单元3200。或门OG具有第一输入端、第二输入端以及输出端。或门OG的第一输入端经路径3411连接信号产生单元3410,并且或门OG的输出端耦接驱动器DRV的输入端。D型触发器DFF具有数据输入端(D)、频率输入端(CK)与输出端(Q)。D 型触发器DFF的数据输入端接收驱动电压VCC,D型触发器DFF的频率输入端经路径3431连接至信号采集单元3430,并且D型触发器的输出端耦接或门OG的第二输入端。
请参见图22C,图22C是根据本实用新型第四实施例的安装检测模块的信号产生单元的电路架构示意图。信号产生单元3410包括电阻R41与R42、电容C41、开关M41以及比较器CP41。电阻R41的一端接收驱动电压VCC,并且电阻R41、电阻R42以及电容C41串接于驱动电压VCC与接地端之间。开关M41与电容C41并联。比较器CP41具有第一输入端、第二输入端以及输出端。比较器CP41的第一输入端耦接电阻R41与R42的连接端,比较器CP41的第二输入端接收一参考电压Vref1,并且比较器CP41的输出端耦接开关M41的控制端。
请参见22D,图22D是根据本实用新型第四实施例的安装检测模块的信号采集单元的电路架构示意图。信号采集单元3430包括或门OG以及比较器CP42与CP43。或门OG具有第一输入端、第二输入端以及输出端,或门OG的输出端经由路径3431连接至信号处理单元3420。比较器CP42的第一输入端经由路径2962连接至开关单元3200的一端(即,LED直管灯的电源回路上),比较器CP42的第二输入端接收一第一参考电压(如1.25V,但不限制于此),并且比较器CP42的输出端耦接或门OG的第一输入端。比较器CP43的第一输入端接收一第二参考电压(如0.15V,但不限制于此),比较器CP43的第二输入端耦接比较器CP42的第一输入端,并且比较器CP43的输出端耦接或门OG的第二输入端。
请参见22E,图22E是根据本实用新型第四实施例的安装检测模块的开关单元的电路架构示意图。开关单元3200包括晶体管M42,其具有闸极端、汲极端与源极端。晶体管M42的闸极端经由路径3421连接至信号处理单元3420,晶体管M42的汲极端经由路径3201连接至第一切换端SP1,并且晶体管M42的源极端经由路径3202连接至第二切换端SP2、比较器CP42的第一输入端以及比较器CP43的第二输入端。
请参见22F,图22F是根据本实用新型第四实施例的安装检测模块的内部电源检测单元的电路方块示意图。内部电源检测单元3440包括箝位电路3442、参考电压产生电路3443、电压调整电路3444以及施密特触发器STRG。箝位电路3442与电压调整电路3444分别耦接电源端VP1,以接收驱动电压VCC,藉以分别对驱动电压VCC进行电压箝位与电压调整的动作。参考电压产生电路3443耦接电压调整电路,用以产生一参考电压给电压调整电路3444。施密特触发器STRG具有输入端与输出端,其输入端耦接箝位电路3442与电压调整电路3444,且其输出端输出驱动电压用以指示驱动电压VCC是否正常供应的一电源确认信号。其中,若驱动电压VCC处于正常供应的状态,施密特触发器STRG会输出致能的(例如高准位)电源确 认信号,使得驱动电压VCC被提供至三端开关器件3000d内的各组件/电路。相反地,若驱动电压VCC处于异常的状态,施密特触发器STRG会输出禁能的(例如低准位)电源确认信号,藉以避免三端开关器件3000d内的各组件/电路因工作在异常的驱动电压VCC下而损毁。
请同时参照图22A至图22F,在本实施例具体电路运作中,当LED直管灯换装于灯座时,驱动电压VCC会经由电源端VP1被提供给三端开关器件3000d。此时,驱动电压VCC会经由电阻R41与R42对电容C41充电。而当电容电压上升至超过参考电压Vref1时,比较器CP41会切换为输出高准位电压给或门OG的第一输入端与开关M41的控制端。其中,开关M41会反应于此高准位电压而导通,使得电容C41开始对地放电。透过此充放电的过程,比较器CP41会输出具有脉冲形式的输出信号。
另一方面,在比较器CP41输出高准位电压的期间,或门OG会对应的输出高准位电压来导通晶体M42,使得电流在LED直管灯的电源回路上流通。其中,当有电流在电源回路流通时,会在路径3202上建立对应电流大小的电压信号。比较器CP42会取样此电压信号并且与第一参考电压(如1.25V)进行比较。
当取样到的电压信号大于第一参考电压(如1.25V)时,比较器CP42会输出高准位电压。或门OG会反应于比较器CP42所输出的高准位电压而产生另一高准位电压至D型触发器DFF的频率输入端。D型触发器DFF会基于或门OG的输出而维持输出高准位电压。驱动器DRV会反应于输入端上的高准位电压而产生致能的控制信号来导通晶体管M42。此时,即使电容C41已经放电至电容电压低于参考电压Vref1,而使比较器CP41的输出下拉至低准位电压,由于D型触发器DFF会维持输出高准位电压,因此晶体管M42可被维持在导通的状态。
当取样到的电压信号小于第一参考电压(如1.25V)时,比较器CP42会输出低准位电压。或门OG会反应于比较器CP42所输出的低准位电压而产生另一低准位电压至D型触发器DFF的频率输入端。D型触发器DFF会基于或门OG的输出而维持输出低准位电压。此时,一旦电容C41放电至电容电压低于参考电压Vref1,而使比较器CP41的输出下拉至低准位电压(即,脉冲期间结束时),由于或门OG的两输入端皆是维持在低准位电压,使得输出端也输出低准位电压,因此驱动器DRV会反应于接收到的低准位电压产生禁能的控制信号来截止晶体管M42,使得LED直管灯的电源回路被关断。
由上述说明可知,本实施例的信号处理单元3420的运作类似于前述第二较佳实施例的检测结果锁存电路3220,信号产生单元3410的运作类似于前述第二较佳实施例的检测脉冲发生模块3210,信号采集单元3430的运作类似于前述第二较佳实施例的检测判定电路3230,以及开关单元3200d的运作类似于前述第二较佳实施例的开关电路3200b。
请参见图23A,图23A是本实用新型第五实施例的安装检测模块的电路方块示意图。安装检测模块3000e包含检测脉冲发生模块3510、控制电路3520、检测判定电路3530、开关电路3200e以及检测路径电路3560。检测判定电路3530经路径3561耦接检测路径电路3560,以检测检测路径电路3560上的信号。检测判定电路3530同时经路径3531耦接控制电路3520,以将检测结果信号经路径3531传送至控制电路3520。检测脉冲发生模块3510通过路径3511耦接检测路径电路3560,并产生脉冲信号以通知检测路径电路3560导通检测路径或执行检测动作的时机点。控制电路3520根据检测结果信号锁存检测结果,经路径3521耦接开关电路3200e,以将检测结果传送或反映至开关电路3200e。开关电路3200e根据检测结果,决定使第一安装检测端TE1以及第二安装检测端TE2之间导通或截止。检测路径电路3560经由第一检测连接端DE1与第二检测连接端DE2耦接至电源模块的电源回路上。
在本实施例中,检测脉冲发生模块3510的配置可以参考图19B的检测脉冲发生模块3110或图20B的检测脉冲发生模块3210。请参照图19B,在应用检测脉冲发生模块3110的架构作为检测脉冲发生模块3510时,本实施例的路径3511可比对为脉冲信号输出端3111,亦即或门OG1可透过路径3511连接至检测路径电路3560。请参照图20B,在应用检测脉冲发生模块3210的架构作为检测脉冲发生模块3510时,本实施例的路径3511可比对为路径3311。此外,检测脉冲发生模块3510还会通过路径3521连接至控制电路3520的输出端,因此本实施例的路径3521可比对为路径3321。
控制电路3520可以利用控制芯片或任何具有信号运算处理能力的电路来实施。当控制电路3520依据检测结果信号判断用户未接触灯管时,控制电路3520会控制开关电路3200e的切换状态,以令外部电源可以在灯管正确安装在灯座上时,正常地被提供给后端的LED模块。此时,控制电路3520会截止检测路径。相反地,当控制电路3520依据检测结果信号判断用户接触灯管时,因为使用者会有触电的风险,因此控制电路3520会将开关电路3200e维持在截止的状态。
检测判定电路3530的配置可以参考图19C的检测判定电路3130或图20C的检测判定电路3230。请参照图19C,在应用检测判定电路3130的架构作为检测判定电路3530时,电阻R14可被省略。本实施例的路径3561可以比对为开关耦接端3201,亦即比较器CP11的正输入端会连接至检测路径电路3560。本实施例的路径3531可以比对为检测结果端3131,亦即比较器CP11的输出端会连接至控制电路3520。请参照图20C,在应用检测判定电路3230的架构作为检测判定电路3530时,电阻R24可被省略。本实施例的路径3561可以比对为路径3201,亦即二极管D21的阳极会连接至检测路径电路3560。本实施例的路径3531可以比对 为路径3331,亦即比较器CP21与CP22的输出端会连接至控制电路3520。
开关电路3200e的配置可以参考图19E的开关电路3200a或图20E的开关电路3200b。由于两开关电路的架构类似,以图19E的开关电路3200a代表说明。请参照图19E,在应用开关电路3200a的架构作为开关电路3200e时,本实施例的路径3521可比对为路径检测结果锁存端3121,并且开关耦接端3201不会连接至检测判定电路3130,而是直接连接至第二安装检测端TE2。
检测路径电路3560的配置可如图23B、图23C或图23D所示,图23B、图23C及图23D为根据本实用新型不同实施例的检测路径电路的电路架构示意图。
请先参照图23B,图23B是本实用新型第一实施例的检测路径电路的电路架构示意图。检测路径电路3560a包括晶体管M51以及电阻R51与R52。晶体管M51具有基极、集极与射极,射极经由路径3511连接检测脉冲发生模块3510。电阻R52的第一端连接晶体管M51的射极,并且其第二端作为第二检测连接端DE2连接至接地端GND,亦即电阻R52串接于晶体管M51的射极与接地端GND之间。电阻R51的第一端作为第一检测连接端DE1连接至第一安装侦测端2521上,并且在此第一安装侦测端TE1是以连接至第二整流输出端512为例,亦即电阻R51串接在晶体管M51的集极与第一整流输出端511之间。就检测路径的配置而言,本实施例的检测路径等效于配置在整流输出端与接地端GND之间。
在本实施例中,当晶体管M51接收到检测脉冲发生模块3510所提供的脉冲信号时(检测模式),其会在脉冲期间内导通。在灯管至少一端安装至灯座的情况下,从第一安装检测端TE1至接地端GND的一检测路径(经过电阻R51、晶体管M51及电阻R52)会反应于导通的晶体管M51而随之导通,并且在检测路径的节点X上建立一电压信号。在使用者没有接触灯管/灯管正确安装至灯座时,所述电压信号的准位是根据电阻R51与R52的分压而决定。在使用者接触灯管时,人体的等效电阻会等效为串接于第二检测连接端DE2与接地端GND之间,亦即与电阻R51、R52串联。此时所述电压信号的准位是根据电阻R51、R52及人体的等效电阻所决定。藉此,透过设置具有合适的电阻值的电阻R51与R52,即可使得节点X上的电压信号可以反应出用户是否触碰灯管的状态,使得检测判定电路3530可根据节点X上的电压信号产生对应的检测结果信号。另外,所述晶体管M51除了会在检测模式短暂导通之外,在控制电路3520判定灯管已被正确安装至灯座的情况下,晶体管M51会维持在截止的状态,使得电源模块可以正常的运作以对LED模块供电。
请参照图23C,图23C是本实用新型第二实施例的检测路径电路的电路架构示意图。本实施例的检测路径电路3560b包括晶体管M52以及电阻R53与R54,其配置与运作大致上和 前述实施例的检测路径电路3560a相同,其主要差异在于本实施例的检测路径电路3560b是设置在第一整流输出端511与第二整流输出端512之间。亦即,电阻R53的第一端(第一检测连接端DE1)会连接至第一整流输出端511,并且电阻R54的第二端(第二检测连接端DE2)会连接至第二整流输出端512。
在本实施例中,当晶体管M52接收到检测脉冲发生模块3510所提供的脉冲信号时(检测模式),其会在脉冲期间内导通。在灯管至少一端安装至灯座的情况下,从第一整流输出端511至第二整流输出端512的一检测路径(经过电阻R53、晶体管M52及电阻R54)会反应于导通的晶体管M52而随之导通,并且在检测路径的节点X上建立一电压信号。在使用者没有接触灯管/灯管正确安装至灯座时,所述电压信号的准位是根据电阻R53与R54的分压而决定,此时第二检测连接端DE2与接地端GND等电平。在使用者接触灯管时,人体的等效电阻会等效为串接于电阻R54的第二端/第二检测连接端DE2与接地端GND之间,亦即与电阻R53、R54串联。此时所述电压信号的准位是根据电阻R51、R52及人体的等效电阻所决定。藉此,透过设置具有合适的电阻值的电阻R51与R52,即可使得节点X上的电压信号可以反应出用户是否触碰灯管的状态,使得检测判定电路可根据节点X上的电压信号产生对应的检测结果信号。另外,所述晶体管M52除了会在检测模式短暂导通之外,在控制电路3520判定灯管已被正确安装至灯座的情况下,晶体管M52会维持在截止的状态,使得电源模块可以正常的运作以对LED模块供电。
请参照图23D,图23D是本实用新型第三实施例的检测路径电路的电路架构示意图。本实施例的检测路径电路3560c的配置与运作大致上和前述实施例相同,其主要差异在于本实施例的检测路径电路3560c还包括有设置在电源回路上的限流元件D51。所述限流元件D51是以设置在第一整流输出端511与滤波电路520的输入端(即,电容725与电感726的连接端)的二极管为例(下称,二极管D51),在此滤波电路520是绘示以π型滤波电路为例,但本实用新型不以此为限。在本实施例中,二极管D51的加入可以限制主电源回路上的电流方向,藉以避免充电后的电容725在晶体管M51导通时逆向对检测路径放电,进而影响防触电检测的准确性。于此应注意的是,所述二极管D51的配置仅是限流元件的一实施例,在其他应用中,只要可以设置在电源回路上并且起到限制电流方向作用的电子元件皆可实施于此,本实用新型不以此为限。
综上所述,本实施例可以透过导通检测路径并检测检测路径上的电压信号以判断用户是否有触电风险。此外,相较于前述实施例而言,本实施例的检测路径是额外建立,而非是利用电源回路作为检测路径(亦即,电源回路与检测路径至少有部分不重叠)。由于额外建立的 检测路径上的电子组件少于电源回路上的电子组件,因此额外建立的检测路径上的电压信号可以较为精确的反应出使用者的触碰状态。
再者,类似于前述实施例所述,本实施例所述的电路/模块也可以部分或全部的集成为芯片的配置,如前述图21A至图22F所示,故于此不再赘述。
请参见图24A,图24A是本实用新型第六实施例的安装检测模块的电路方块示意图。安装检测模块3000f包含检测脉冲发生模块3610、控制电路3620、检测判定电路3630、开关电路3200f以及检测路径电路3660。有关于检测脉冲发生模块3610、控制电路3620、检测判定电路3630及开关电路3200f的连接关系皆与上述图23A实施例相同,是通过相应的路径3611、3621、3631、3661相互连接,于此不再重复赘述。在本实施例中,与前述图23A实施例的主要差异在于检测路径电路3660的配置与操作。本实施例的检测路径电路3660的第一检测连接端DE1耦接滤波电路520的低电平端,并且第二检测连接端DE2耦接第二整流输出端512。换句话说,检测路径电路3660是连接在滤波电路520的低电平端与整流电路510的第二整流输出端512之间,亦即,滤波电路520的低电平端是经由检测路径电路3660连接至第二整流输出端512。
检测路径电路3660的配置可如图24B或图24C所示,图24B与图24C为根据本实用新型不同实施例的安装检测模块的电路架构示意图。
请先参照图24B,图24B是本实用新型第五实施例的安装检测模块的电路架构示意图。在本实施例中,滤波电路520是以包含电容725、727及电感726的π型滤波架构为例(本实用新型不以此为限),即电感726串接在第一整流输出端511及第一滤波输出端521之间,电容725、727的第一端对应连接电感726的两端,并且电容725、727的第二端连接在一起,其中电容725、727的第二端即为低电平端。安装检测模块包括检测脉冲发生模块3610、控制电路3620、检测判定电路3630、开关电路3200f及检测路径电路3660。其中,检测路径电路3660包括晶体管M61及电阻R61。晶体管M61的栅极耦接检测脉冲发生模块3610,源极耦接电阻R61的第一端,并且漏极耦接电容725、727的第二端。电阻R61的第二端作为第二检测连接端3292与第二整流输出端512及第一安装检测端TE1连接。检测判定电路3170耦接电阻R61的第一端,藉以检测流经检测回路的电流大小。在本实施例中,所述检测回路可等效为由电容725及727、电感726、晶体管M61与电阻R61所组成。
在本实施例中,当晶体管M61接收到检测脉冲发生模块3610所提供的脉冲信号时(检测模式),其会在脉冲期间内导通。在灯管至少一端安装至灯座的情况下,从第一整流输出端511经由检测路径至第二整流输出端512的电流路径会反应于导通的晶体管M61而随之导通,并 且在电阻R61的第一端上建立一电压信号。在使用者没有接触灯管/灯管正确安装至灯座时,所述电压信号的电平是根据滤波电路520的等效阻抗与电阻R61的分压而决定。在使用者接触灯管时,人体的等效电阻会等效为串接于第二检测连接端与接地端之间。此时所述电压信号的电平是根据滤波电路520的等效阻抗、电阻R61及人体的等效电阻所决定。藉此,透过设置具有合适的电阻值的电阻R61,即可使得电阻R61的第一端上的电压信号可以反应出用户是否触碰灯管的状态,使得检测判定电路3630可根据电阻R61的第一端上的电压信号产生对应的检测结果信号,并且令控制电路3620可依据此检测结果信号来控制开关电路3200f的导通状态。另外,所述晶体管M61除了会在检测模式短暂导通知外,在控制电路3620判定灯管已被正确安装至灯座的情况下,开关电路3200f会切换至导通的状态,使得电源模块可以正常的运作以对LED模块供电。
请参照图24C,图24C是本实用新型第六实施例的安装检测模块的电路架构示意图。本实施例的安装检测模块包括检测脉冲发生电路3610、控制电路3620、检测判定电路3630、开关电路3200f及检测路径电路3660。本实施例的安装检测模块的配置与运作大致上和前述图24B实施例相同,其主要差异在于本实施例的检测路径电路3660是设置在电容725的第二端与第二整流输出端512之间,而电容727的第二端则是直接接在第二安装检测端TE2/第二滤波输出端522上。
相较于图23A实施例而言,由于滤波电路520的被动元件成为检测路径的一部分,使得流经检测路径电路3660的电流规模(current size)远较流经检测路径电路3560来的小,因此检测路径电路3660中的晶体管M61/3395可以利用较小尺寸的元件来实施,可有效降低成本;此外电阻R61可以设计为一个相对小的电阻,在人体电阻等效连接至灯管时,检测路径上的等效阻抗变化会较为明显,进而使得检测结果较不易受到其他元件参数偏移的影响。再者,由于电流规模较小的缘故,控制电路3620及检测判定电路3170的信号传输设计可更容易的符合驱动控制器的信号格式要求,进而降低了安装检测模块与驱动电路的整合设计困难度(此部分后续实施例会进一步说明)。
请参照图25A,图25A是本实用新型第七实施例的安装检测模块的电路方块示意图。本实施例的电源模块包含整流电路510、滤波电路520、驱动电路530及安装检测模块3000g。安装检测模块3000g包含检测控制器3100g、开关电路3200g及偏压电路3300g,其中检测控制器3100g包含控制模块3710、启动电路3770及检测期间决定电路3780。整流电路510、滤波电路520及驱动电路530的配置及操作可参考相关实施例的说明,于此不再赘述。
在安装检测模块3000g中,开关电路3200g串接在电源模块的供电回路/电源回路上(图式 是以连接在整流电路510与滤波电路520之间为例),并且受控于控制模块3710而切换导通状态。控制模块3710会在检测模式发出控制信号短暂导通开关电路3200g,藉以在开关电路3200g导通的期间(即,供电回路/电源回路导通的期间)检测是否有额外阻抗连接至电源模块的检测路径上(代表有使用者触电风险产生),并且根据检测结果来决定维持在检测模式以使开关电路3200g以不连续的形式短暂导通,或进入工作模式以使开关电路3200g响应于安装状态而维持在导通或截止的状态。所述“短暂导通”所代表的期间长度是指电源回路上的电流通过人体也不会对人体造成伤害的期间长度,例如小于1毫秒,但本实用新型不以此为限。一般而言,控制模块3710可透过发送具有脉冲形式的控制信号来实现使开关电路3200g短暂导通的动作。具体的短暂导通的期间长度设计可依据所设置的检测路径的阻抗大小而调整。控制模块3710及开关电路3200g的电路配置实施范例及相关控制动作可参照其他有关于安装检测模块的实施例。
偏压电路3300连接电源回路以基于整流后信号(即,母线电压)产生驱动电压VCC。驱动电压VCC会被提供给控制模块3710以使控制模块3710响应于驱动电压而启动并运作。
启动电路3770连接控制模块3710,并且用以依据检测期间决定电路3780的输出信号来决定是否影响控制模块3710的工作状态。举例来说,当检测期间决定电路3780输出使能信号时,启动电路3770会响应于所述使能信号而控制控制模块3710停止工作;当检测期间决定电路3780输出禁能信号时,启动电路3780会响应于所述禁能信号而控制控制模块3710维持在正常工作的状态(即,不影响控制模块3710的工作状态)。其中,启动电路3780可以藉由旁路驱动电压VCC或提供低电平的启动信号至控制模块3710的使能脚位的方式来实现控制控制模块3710停止工作的操作,本实用新型不以此为限。
检测期间决定电路3780用以取样检测路径/电源回路上的电信号,藉以计数控制模块3710的工作时长,并且输出指示计数结果的信号给启动电路3770,使得启动电路3770基于指示计数结果的信号决定控制模块3710的工作状态。
底下说明本实施例的安装检测电路3000g的运作。当整流电路510通过接脚501与502接收到外部电源时,偏压电路3300g会依据经整流后的母线电压产生驱动电压VCC。控制模块3710会响应于驱动电压VCC而被启动,并且进入检测模式。在检测模式下,控制模块3710会周期性的发出具有脉冲波形的控制信号给开关电路3200g,使得开关电路3200g周期性的短暂导通后截止。在所述检测模式的操作下,电源回路上的电流波形会类似于图41D在检测时间区间Tw内的电流波形(即,多个具有间隔的电流脉冲Idp)。除此之外,检测期间决定电路3780会在接收到电源回路上的母线电压时开始计数控制模块3710在检测模式下的工作时 长,并且输出指示计数结果的信号给启动电路3770。
在控制模块3710的工作时长尚未达到设定时长的情况下,启动电路3770不会影响控制模块3710的工作状态。此时控制模块3710会根据本身的检测结果决定维持在检测模式或进入工作模式。若是控制模块3710判定进入工作模式,则控制模块3710会控制开关电路3200g维持在导通状态,并且屏蔽其他信号对其工作状态的影响。换言之,在工作模式下,无论启动电路3770输出何种信号都不会影响控制模块3710的工作状态。
在控制模块3710的工作时长已达到设定时长,并且控制模块3710仍处于检测模式的情况下,启动电路3770会响应于检测期间决定电路3780的输出而控制控制模块3710停止工作。此时控制模块3710不再发出脉冲,并且将开关电路3200g维持在截止的状态直到控制模块3710复位。对比图41D来看,所述设定时长即为检测时间区间Tw。
根据上述的工作方式,安装检测模块3000g可以通过设定控制信号的脉冲间隔及复位周期来达到图41D至图41F的电流波形,进而确保检测模式下的电功率仍位在合理的安全范围之内,避免检测电流造成人体危害。
从电路动作的角度来看,启动电路3770及检测期间决定电路3780整体而言可以视为是一种延时控制电路,其作用在于当LED直管灯上电时,延迟一段设定时长后再导通一特定路径以对目标电路(例如:控制模块3710)实行控制。通过特定路径的设置选择,可以所述延时控制电路可以在LED直管灯中实现电源回路的延时导通或是安装检测模块的延时关断等电路动作。
请参照图25B,图25B是本实用新型第七实施例的安装检测模块的电路架构示意图。本实施例的电源模块包含整流电路510、滤波电路520、驱动电路530及安装检测模块3000h。安装检测模块3000h包含检测控制器3100h、开关电路3200h及偏压电路3300h,其中检测控制器3100h包含控制模块3810、启动电路3870及检测期间决定电路3880。整流电路510、滤波电路520及驱动电路530的配置及操作可参考相关实施例的说明;另外,控制模块3810及开关电路3200h的配置及操作可参考上述图25A实施例的说明,于此不再赘述。
在本实施例中,偏压电路3300h包括电阻R71、电容C71及齐纳二极管ZD1。电阻R71的第一端连接整流输出端(即,连接在母线上)。电容C71及齐纳二极管ZD1相互并联,并且第一端共同连接至电阻R71的第二端。控制模块3810的电源输入端连接在电阻R71、电容C71及齐纳二极管ZD1的共节点(即,偏压电路3300h的偏压节点)上,以接收共节点上的驱动电压VCC。
启动电路3870包括齐纳二极管ZD2、晶体管M71及电容C72。齐纳二极管ZD2的阳极 接在晶体管M71的控制端上。晶体管M71的第一端连接控制模块3810,并且晶体管M71的第二端连接接地端GND。电容C72连接在晶体管M71的第一端与第二端之间。
检测期间决定电路3880包括电阻R72、二极管D71及电容C73。电阻R72的第一端连接偏压电路3300的偏压节点,并且电阻R72的第二端连接齐纳二极管ZD2的阴极。二极管D71的阳极连接电阻R72的第二端,并且二极管D71的阴极连接电阻R72的第一端。电容C73的第一端连接电阻R72的第二端及二极管D71的阳极,并且电容C73的第二端连接接地端GND。
底下说明本实施例的安装检测电路3000h的运作。当整流电路510通过接脚501与502接收到外部电源时,经整流后的母线电压会对电容C71充电,进而在偏压节点上建立驱动电压VCC。控制模块3810会响应于驱动电压VCCVCC而被启动,并且进入检测模式。在检测模式下,先以第一个信号周期来看,控制模块3810会发出具有脉冲波形的控制信号给开关电路3200h,使得开关电路3200h短暂导通后截止。
在开关电路3200h导通的期间,电容C73会响应于偏压节点上的驱动电压VCC而被充电,使得电容C73的跨压逐渐上升。在第一个信号周期中,电容C73的跨压的上升量还未达到晶体管M71的门限电平,因此晶体管M71会维持在截止的状态,使得启动信号Ven相应的维持在高电平。接著,在开关电路3200h截止的期间,电容C73会大致地保持电平,或是缓缓的放电,其中电容C73在开关截止期间放电所造成的电平变化会小于在开关导通期间充电所造成的电平变化。换言之,电容C73在开关截止期间的跨压会小于或等于开关导通期间的最高电平,并且最低不会低于其在充电起始点的起始电平,因此晶体管M71在第一个信号周期中会一直维持在截止的状态,使得启动信号Ven维持在高电平。控制模块3810响应于高电平的启动信号Ven而维持在启动状态。在启动状态下,控制模块3810会根据检测路径上的信号来判断LED直管灯是否正确安装(即,判断是否有额外的阻抗接入。此部分的安装检测机制与前述实施例相同,于此不再赘述。
在控制模块3810判定LED直管灯尚未被正确安装至灯座上的情况下,控制模块3810会维持在检测模式并持续输出具有脉冲波形的控制信号来控制开关电路3200h。在后续的各信号周期中,启动电路3870及检测期间决定电路3880会以类似前述第一信号周期的工作方式持续运作,亦即电容C73会在各信号周期的导通期间被充电,使得电容C73的跨压响应于脉冲宽度及脉冲周期而步阶式的上升。当电容C73的跨压超过晶体管M71的门限电平时,晶体管M71会被导通使得启动信号Ven被下拉至接地电平/低电平。此时控制模块3810会响应于低电平的启动信号Ven而被关闭。在控制模块3810被关闭的情况下,无论是否有外部电源接 入,开关电路3200h都会被维持在截止状态。
在控制模块3810判定LED直管灯已被正确安装置灯座上的情况下,控制模块3810会进入工作模式,并且发出控制信号使开关电路3200h维持在导通的状态。在工作模式下,控制模块3810不会响应于启动信号Ven而改变输出的控制信号。换言之,即使启动信号Ven被下拉至低电平,控制模块3810也不会再次把开关电路3200h关断。
从检测模式下的多个信号周期的维度来看,电源回路上量测到的电流波形会如图41D所示,其中电容C73从起始电平充电至晶体管M71的门限电平的期间即可对应至检测时间区间Tw。换言之,在检测模式下,控制模块3810会在电容C73充电至晶体管M71的门限电平之前持续发出脉冲,以间歇的在电源回路上导通电流,并且在电容C73的跨压超过门限电平后停止发出脉冲,藉以避免电源回路上的电功率升高至足以危害人体的程度。
从另一角度来看,本实施例的检测期间决定电路3880等同于会计数控制信号的脉冲导通期间,并且在脉冲导通期间达到设定值时发出信号来控制启动电路3870,进而令启动电路3870影响控制模块3910的运作以屏蔽脉冲输出。
在本实施例的电路架构下,检测时间区间Tw的长度(即,电容C73跨压达到晶体管M71的门限电压所需的时间)主要是通过调整电容C73的电容值大小来控制。电阻R72、二极管D71、齐纳二极管ZD2及电容C72等元件主要是辅助启动电路3870及检测期间决定电路3880的运作,以提供稳压、限压、限流或保护的功能。
请参照图25C,图25C是本实用新型第八实施例的安装检测模块的电路架构示意图。本实施例的电源模块包含整流电路510、滤波电路520、驱动电路530及安装检测模块3000i。安装检测模块3000i包含检测控制器3100i、开关电路3200i及偏压电路3300i,其中检测控制器3100i包含控制模块3910、启动电路3970及检测期间决定电路3980。整流电路510、滤波电路520及驱动电路530的配置及操作可参考相关实施例的说明;另外,控制模块3910及开关电路3200i的配置及操作可参考上述图25A实施例的说明,于此不再赘述。
偏压电路3300i包括电阻R81、电容C81及齐纳二极管ZD3。电阻R81的第一端连接整流输出端(即,连接在母线上)。电容C81及齐纳二极管ZD3相互并联,并且第一端共同连接至电阻R81的第二端。控制模块3910的电源输入端连接在电阻R81、电容C81及齐纳二极管ZD3的共节点(即,偏压电路3300的偏压节点)上,以接收共节点上的驱动电压VCC。
启动电路3970包括齐纳二极管ZD4、电阻R82、晶体管M81及电阻R83。齐纳二极管ZD2的阳极接在晶体管M81的控制端上。电阻R82的第一端连接齐纳二极管ZD4的阳极与晶体管M81的控制端,并且电阻R82的第二端连接接地端GND。晶体管M81的第一端通过 电阻R83连接至偏压电路3300的偏压节点,并且晶体管M81的第二端连接接地端GND。
检测期间决定电路3980包括二极管D81、电阻R84和R85、电容C82及齐纳二极管3775。二极管D81的阳极接在开关电路3200i的一端上,此端可视为检测期间决定电路3980的检测节点。电阻R84的第一端连接二极管D81的阴极,并且电阻R84的第二端连接齐纳二极管ZD4的阴极。电阻R85的第一端连接电阻R84的第二端,并且电阻R85的第二端连接接地端GND。电容C82与齐纳二极管ZD5分别与电阻R85并联,其中齐纳二极管ZD5的阴极与阳极分别连接电阻R85的第一端与第二端。
底下说明本实施例的安装检测电路3000i的运作。当整流电路510通过接脚501与502接收到外部电源时,经整流后的母线电压会对电容C81充电,进而在偏压节点上建立驱动电压VCC。控制模块3910会响应于驱动电压VCC而被启动,并且进入检测模式。在检测模式下,先以第一个信号周期来看,控制模块3910会发出具有脉冲波形的控制信号给开关电路3200i,使得开关电路3200i短暂导通后截止。
在开关电路3200i导通的期间,二极管D81的阳极等效为接地,因此电容C82不会被充电。在第一个信号周期中,电容C82的跨压会在开关电路3200i的导通期间内维持在起始电平,晶体管M81会被维持在截止状态,因此不会影响控制模块3910的运作。接著,在开关电路3200i截止的期间,断开的电源回路会使检测节点上的电平响应于外部电源而上升,其中施加在电容C82上的电平等于电阻R84与R85的分压。因此,在开关电路3200i截止的期间,电容C82会响应于电阻R84与R85的分压而被充电,时得电容C82的跨压逐渐上升。在第一个信号周期中,电容C82的跨压的上升量还未达到晶体管M81的门限电平,因此晶体管M81会维持在截止的状态,使得驱动电压VCC维持不变。由于在第一个信号周期中,不论是开关电路3200i导通的期间或截止的期间,晶体管M81一直维持在截止的状态,使得驱动电压VCC不受到影响。因此控制模块3910响应于驱动电压VCC而维持在启动状态。在启动状态下,控制模块3910会根据检测路径上的信号来判断LED直管灯是否正确安装(即,判断是否有额外的阻抗接入。此部分的安装检测机制与前述实施例相同,于此不再赘述。
在控制模块3910判定LED直管灯尚未被正确安装至灯座上的情况下,控制模块3910会维持在检测模式并持续输出具有脉冲波形的控制信号来控制开关电路3200i。在后续的各信号周期中,启动电路3970及检测期间决定电路3980会以类似前述第一信号周期的工作方式持续运作,亦即电容C82会在各信号周期的截止期间被充电,使得电容C82的跨压响应于脉冲宽度及脉冲周期而逐渐上升。当电容C82的跨压超过晶体管M81的门限电平时,晶体管M81会被导通使得偏压节点被短路至接地端GND,进而使驱动电压VCC被下拉至接地电平/低电 平。此时控制模块3910会响应于低电平的驱动电压VCC而被关闭。在控制模块3910被关闭的情况下,无论是否有外部电源接入,开关电路3200i都会被维持在截止状态。
在控制模块3910判定LED直管灯已被正确安装置灯座上的情况下,控制模块3910会进入工作模式,并且发出控制信号使开关电路3200i维持在导通的状态。在工作模式下,由于开关电路3200i会持续导通,使得晶体管M81会被维持在截止状态,因此不会影响驱动电压VCC,可使控制模块3910正常工作。
从检测模式下的多个信号周期的维度来看,电源回路上量测到的电流波形会如图41D所示,其中电容C82从起始电平充电至晶体管M81的门限电平的期间即可对应至检测时间区间Tw。换言之,在检测模式下,控制模块3910会在电容C82充电至晶体管M81的门限电平之前持续发出脉冲,以间歇的在电源回路上导通电流,并且在电容C82的跨压超过门限电平后停止发出脉冲,藉以避免电源回路上的电功率升高至足以危害人体的程度。
从另一角度来看,本实施例的检测期间决定电路3980等同于会计数控制信号的脉冲截止期间,并且在脉冲截止期间达到设定值时发出信号来控制启动电路3970,进而令启动电路3970影响控制模块3910的运作以屏蔽脉冲输出。
在本实施例的电路架构下,检测时间区间Tw的长度(即,电容C82跨压达到晶体管M81的门限电压所需的时间)主要是通过调整电容C82的电容值大小及电阻R84、R85及R82的电阻值大小来控制。二极管D81、齐纳二极管ZD4与ZD5及电阻R83等元件是辅助启动电路3970及检测期间决定电路3980的运作,以提供稳压、限压、限流或保护的功能。
请参照图25D,图25D是本实用新型第九实施例的安装检测模块的电路架构示意图。本实施例的电源模块包含整流电路510、滤波电路520、驱动电路530及安装检测模块3000j。安装检测模块3000j包含检测控制器3100j、开关电路3200j及偏压电路3300j,其中检测控制器3100j包含控制模块3910、启动电路3970及检测期间决定电路3980。在本实施例中,安装检测模块3000j的配置与运作大致与前述图25C实施例的安装检测模块3000i相同,两者间的主要差异在于本实施例的检测期间决定电路3980除了包括二极管D81、电阻R84与R85、电容C82及齐纳二极管ZD5之外,更包括电阻R86、R87和R88以及二极管D82。其中,电阻R86串接在二极管D81与电阻R84之间。电阻R87的第一端连接电阻R84的第一端,并且电阻R87的第二端连接齐纳二极管ZD4的阴极。电阻R88与电容C82相互并联。二极管D82的阳极连接电容C82的第一端及齐纳二极管ZD4的阴极,并且二极管D82的阴极连接电阻R84的第二端及电阻R85的第一端。
在本实施例的电路架构下,对电容C82充电的回路从电阻R84与R85改为电阻R87与 R88,亦即电容C82是基于电阻R87及R88的分压进行充电。具体地说,检测节点上的电压会先基于电阻R86、R84及R85的分压在电阻R84的第一端上产生一阶分压,接著一阶分压会基于电阻R87与R88的分压而在电容C82的第一端上产生二阶分压。在此配置下,电容C82的充电速率可以透过调整电阻R84、R85、R86、R87及R88的电阻值来控制,而不仅限由调整电容值大小来控制。如此一来,电容C82的尺寸可以有效地被减小。另一方面,由于电阻R85不再需要作为充电回路上的元件,因此可以选用电阻值较小的元件,如此一来便可以加快电容C82的放电速率,进而缩短检测期间决定电路3980的电路复位时间。
请参照图26A,图26A是本实用新型第八实施例的安装检测模块的电路方块示意图。在本实施例中,安装检测模块3000k是被配置为持续检测电源回路上信号的架构,其中安装检测模块3000k包括控制电路3020、检测判定电路3030以及限流电路/开关电路3200k。控制电路3020是用以依据检测判定电路3030所产生的检测结果来控制限流电路3200k,藉以令限流电路3200k反应于控制电路3020的控制而决定是否执行限流操作。其中,控制电路3020会预设控制限流电路3180不执行限流操作,亦即电源回路上的电流预设不受到限流电路3200k的限制。因此,在预设状态下,只要有外部电源接入,经过整流滤波后的电源皆可经由电源回路提供至LED模块50。
更具体的说,检测判定电路3030会被外部电源启动/致能,并且开始持续地检测电源回路中特定节点上的信号,并且将检测结果信号传送给控制电路3020。控制电路3020会根据检测结果信号的电平、波形、频率及其他信号特性的其中一者或多者来判断是否有人员触碰情形发生。当控制电路3020依据检测结果信号判定有人员触碰情形发生时,即会控制限流电路3180执行限流操作,使得电源回路上的电流被限制至低于特定电流值以下,藉以避免触电情形发生。于此应注意的是,所述特定节点可以位在整流电路510、滤波电路520、驱动电路530或LED模块50的输入侧或输出侧,本实用新型不以此为限。
请参照图26B,图26B是本实用新型第九实施例的安装检测模块的电路方块示意图。本实施例的安装检测模块3000L与前述实施例的安装检测模块3000k大致相同,两者主要差异在于安装检测模块3000L是被配置为持续对检测路径上信号进行检测的架构。安装检测模块3000L包括控制电路3020、检测判定电路3030、限流电路3200L及检测路径电路3060,其中有关于控制电路3020、检测判定电路3030以及限流电路3200L的运作可参照上述实施例的说明,于此不再重复赘述。
于此应注意的是,所述检测路径电路3060可以设置在整流电路510、滤波电路520、驱 动电路530或LED模块50的输入侧或输出侧,本实用新型不以此为限。其中,将检测路径电路3060设置在整流电路510的输入侧的实施例可参考图27-28B和图34A-34C的实施例描述。除此之外,检测路径电路3060在实际应用中可以利用被动元件(如电阻、电容、电感等)或主动元件(如晶体管、矽控整流器)等任何可以因应人体触碰而反应出阻抗变化的电路配置来实施。
总的来说,上述图26A与图26B的电源模块属于持续检测设定下的应用与配置,其可单独作为安装检测的机制,或者可与脉冲检测设定搭配一起作为安装检测/触电保护的机制。举例来说,在一范例实施例中,灯管可以在未被点亮的状态下应用脉冲检测设定,并且在灯管被点亮之后改为应用持续检测设定。从电路运作的角度来看,所述脉冲检测设定与持续检测设定的切换可以是基于电源回路上的电流来决定,例如在电源回路上的电流小于特定值(如5MIU)时,安装检测模块是选择启用脉冲检测设定,并且在电源回路上的电流大于特定值时,安装检测模块切换为启用持续检测设定。从灯管安装与运作的角度来看,安装检测模块是预设为启用脉冲检测设定,使得灯管每一次通电或接收到外部电源时,安装检测模块都先以脉冲检测设定来检测灯管是否正确安装并进行防触电保护,一旦判定灯管正确安装至灯座上并点亮后,安装检测模块即切换为以持续检测设定来检测灯管是否被误触导电部分而产生触电风险。另外,若灯管断电则安装检测模块会再次重置为脉冲检测设定。
搭配LED直管灯照明系统的硬件配置来看,不论安装检测模块是内置于LED直管灯内(如图17A所示)或外置在灯座上(如图17B所示),设计者皆可依据需求选择性的将上述的脉冲检测设定与持续检测设定应用于LED直管灯照明系统中。换言之,无论是内置安装检测模块3000或外置安装检测模块3000的配置,安装检测模块皆可依照上述实施例的说明来进行安装检测与防触电保护的运作。
内置安装检测模块与外置安装检测模块的差异在于外置安装检测模块的第一安装检测端与第二安装检测端是连接在外部电网/信号源与LED直管灯的接脚之间(亦即,串接在外部驱动信号的信号线上),并且透过接脚电性连接到LED直管灯的电源回路上。另一方面,虽然在图式中并未直接绘示出,但本领域技术人员应可理解在本案的安装检测模块的实施例中,安装检测模块更包含用以产生驱动电压的偏压电路,其中所述驱动电压是提供给安装检测模块中的各电路运作所需的电源。
图19A、20A、21A、22A、23A、24A、28A、30A、34A和35A实施例教示安装检测模块包括例如检测脉冲发生模块3110、3210与3510、脉冲产生辅助电路3310以及信号产生单元3410等用以产生脉冲信号的脉冲产生机制,但本实用新型的脉冲产生手段不仅限于此。在 一范例实施例中,安装检测模块可以利用电源模块既有的频率信号来取代前述实施例的脉冲产生机制的功能。举例来说,驱动电路(例如直流对直流转换器)为了要产生具有脉冲波形的点亮控制信号,其本身就会有一个参考频率。而所述脉冲产生机制的功能可以利用参考点亮控制信号的参考频率来实施,使得检测脉冲发生模块3110、3210与3510、脉冲产生辅助电路3310以及信号产生单元3410等硬件电路可以被省略。换言之,安装检测模块可以与电源模块中的其他部分共享电路架构,从而实现产生脉冲信号的功能。除此之外,本实用新型实施例的脉冲产生手段所产生的脉冲占空比可以是大于0(常闭)至小于等于1的区间中的任一数值,具体设置视实际安装检测机制而定。
其中,若脉冲产生手段所产生的脉冲信号占空比设定为大于0且小于1时,安装检测模块是透过暂时导通电源回路/检测路径并在导通期间检测电源回路/检测路径上的信号的方式,以在不造成电击危险的前提下判断灯管是否正确安装,并且在判定灯管被正确安装至灯座上时(两端接脚皆正确与灯座插座连接),将限流手段切换为关闭/禁能的状态(例如,使开关电路切换为导通),使得LED模块可以正常被点亮。在此设置底下,所述限流手段会预设为启动/致能的状态(例如,使开关电路预设为截止),进而在确认无触电风险之前(即,灯管已正确安装),令电源回路维持在被截止/限流的状态(即,此时LED模块无法被点亮),并且在判定灯管正确安装之后才会将限流手段切换为关闭/禁能的状态。此类配置可称之为脉冲检测设定(占空比设定为大于0且小于1)。在所述脉冲检测设定下,安装检测动作是在外部电源接入后于每个脉冲的致能期间内进行(即,此时LED模块尚未被点亮),此时具体的防触电手段是透过“当确定灯管正确安装时才不进行限流”来实现。
若脉冲产生手段所产生的脉冲信号占空比为1时,安装检测模块可实时地/持续地检测电源回路/检测路径上的信号,以作为判断等效阻抗的基础,并且在判定等效阻抗变化指示有人员触电风险时,将限流手段切换为开启/致能的状态(例如,使开关电路切换为截止),进而令灯管断电。在此设置底下,所述限流手段会预设为关闭/禁能的状态(例如,使开关电路预设为导通),进而在确认有触电风险之前,令电源回路是维持在被导通/未限流的状态(即,此时LED模块可被点亮),并且在判定真的有触电风险可能存在时才会将限流手段切换为开启/致能的状态。此类配置可称之为持续检测设定(占空比设定为1)。在所述持续检测设定下,安装检测动作是在外部电源接入后,无论灯管是否点亮都会持续的进行,此时具体的防触电手段是透过“当确定有触电风险发生时立即进行限流”来实现。
进一步的说,触电的风险是只要在灯管任一端接入外部电源时即有可能产生,如图23所示,不论安装人员是进行灯管的安装或拆卸,只要是手接触到灯管的导电部分即会使安装人 员暴露在触电的风险。为了避免此类风险,在本实施例中,无论灯管是否处于被点亮的状态,所述安装检测模块皆可在灯管有外部电源接入的情形下,依照所述脉冲检测设定或持续检测设定来对安装情形与触电情形进行全面的检测与保护,使得灯管的使用安全性可进一步提升。
于此附带一提的是,在持续检测设定的应用下,所述脉冲产生手段也可视为一路径致能手段,其是用以预设提供一开启信号来导通电源回路/检测路径。在此应用底下,在一范例实施例中,前述实施例的检测脉冲发生模块3110、3210与3510、脉冲产生辅助电路3310以及信号产生单元3410的电路架构可对应的修改为提供固定电压的电路架构。此外,限流电路/开关电路3200、3200a-3200L切换逻辑可对应的修改为预设为导通,并且在判定有触电风险时截止(可通过调整检测结果锁存电路的逻辑门来实现)。在另一范例实施例中,透过调整检测判定电路与检测路径电路的设置,用以产生脉冲的电路架构可以被省略。举例来说,第一较佳实施例的安装检测模块3000a可以仅包含检测结果锁存电路3120、检测判定电路3130以及限流电路3200a,第二较佳实施例的安装检测模块可以仅包含检测结果锁存电路3220、检测判定电路3230以及开关电路3200b,其他较佳实施例的配置可以此类推。此外,在设置有额外检测路径的架构底下,若采用持续检测设定,则检测脉冲发生模块3510可以被省略,并且检测路径电路3560可以设置为维持在导通状态(例如省略晶体管M51)。
请参见图27,图27是本实用新型第十一实施例的电源模块的电路方块示意图。在本实施例中,LED直管灯1200例如是直接接收外部电网508所提供的外部驱动信号,其中所述外部驱动信号通过火线(L)与中性线(N)给到LED直管灯1200的两端接脚501、502上。在实际应用中,LED直管灯1200可更包括接脚503、504。在LED直管灯1200包含有4根接脚501-504的结构底下,依设计需求同侧灯头上的两接脚(如501与503,或502与504)可以电性连接在一起或是相互电性独立,本实用新型不以此为限。触电检测模块4000设置于灯管内并包括检测控制电路4100以及限流电路4200,所述触电检测模块4000亦可称为安装检测模块4000(底下以安装检测模块进行描述3000)。限流电路4200经第一安装检测端TE1耦接整流电路510,以及经第二安装检测端TE2耦接滤波电路520,亦即串接在LED直管灯1200的电源回路上。检测控制电路4100会在检测模式下检测整流电路510输入端上的信号(即,外部电网508所提供的信号),并根据检测结果决定是否禁止电流流过LED直管灯1200。当LED直管灯1200尚未正确安装于灯座时,检测控制电路4100会检测到较小的电流信号而判断信号流过过高的阻抗,此时限流电路4200会将第一安装检测端TE1和第二安装检测端TE2之间的电流路径截止使LED直管灯1200停止操作(即,使LED直管灯1200不被点亮)。若 否,检测控制电路4100判断LED直管灯1200正确安装于灯座上,限流电路4200会维持第一安装检测端TE1和第二安装检测端TE2之间导通使LED直管灯1200正常操作(即,使LED直管灯1200可被正常点亮)。换言之,当检测控制电路4100从整流电路510的输入端取样并检测到的电流高于安装设定电流(或电流值)时,检测控制电路4100判断LED直管灯1200正确安装于灯座上而使限流电路4200导通,使LED直管灯1200操作于一导通状态;当检测控制电路4100从整流电路510的输入端取样并检测到的电流低于所述安装设定电流(或电流值)时,检测控制电路4100判断LED直管灯1200未正确安装于灯座上而使限流电路4200截止,使LED直管灯1200进入一不导通状态或是令LED直管灯1200的电源回路上的电流有效值被限缩至小于5mA(基于验证标准则为5MIU)。换句话说,安装检测模块4000基于检测到的阻抗判断导通或截止,使LED直管灯1200操作于导通或进入不导通/限制电流状态。藉此,可以避免使用者在LED直管灯1200尚未正确安装于灯座时因误触LED直管灯1200导电部分而触电的问题。
更具体的说,因为当人体接触灯管时,人体的阻抗会导致电源回路上的等效阻抗改变,安装检测模块4000可藉由检测电源回路上的电压/电流变化来判断用户是否接触灯管,即可实现上述的防触电功能。换言之,在本实用新型实施例中,安装检测模块4000可以透过检测电信号(包括电压或电流)来判断灯管是否被正确安装以及使用者是否在灯管未正确安装的情况下误触灯管的导电部分。相较于图18实施例而言,由于本实施例的检测控制电路4100是通过取样桥前信号进行检测,因此较不易受电源模块中的其他电路影响而发生误判的问题。
从电路操作的角度来看,检测控制电路4100判断LED直管灯1200是否正确安装至灯座上/是否有异常的阻抗接入的步骤如图42A所示,包括:使检测路径导通一段期间后关断(步骤S101);在检测路径导通的期间取样检测路径上的电信号(步骤S102);判断取样到的电信号是否符合预设信号特征(步骤S103);当步骤S103判定为是时,控制限流电路4200操作在第一组态(步骤S104);以及当步骤S103判定为否时,控制限流电路4200操作在第二组态(步骤S105),并且接著回到步骤S101。
在本实施例中,所述检测路径可以连接在整流电路510的输入侧与接地端之间的电流路径,其具体配置可以参考图28A和28B实施例的说明。另外,检测控制电路4100导通检测路径的期间长度、间隔、触发时间等设置,可参考相关实施例的说明。
在步骤S101中,使检测路径导通一段期间可以通过脉冲式的开关控制手段来实现。
在步骤S102中,取样的电信号可以是电压信号、电流信号、频率信号或相位信号等可以表现检测路径的阻抗变化的信号。
在步骤S103中,判断取样到的电信号是否符合预设信号特征的动作可例如是比较取样的电信号与一预设信号的相对关系。在本实施例中,检测控制器4100判定电信号符合预设信号特征可以是对应至判定LED直管灯为正确安装/无异常阻抗接入的状态,并且检测控制器7100判定电信号不符合预设信号特征可以是对应至判定LED直管灯为不正确安装/有异常阻抗接入的状态。
在步骤S104与S105中,所述第一组态及第二组态为两相异的电路组态,并且可视限流电路3200的配置位置及类型而定。举例来说,在限流电路4200为独立于驱动电路并串接在电源回路上的开关电路/限流电路的实施例下,所述第一组态可以是导通组态(不限流组态),并且所述第二组态可以是截止组态(限流组态)。
上述各步骤的详细操作及电路范例可参考触电检测模块/安装检测模块的各个实施例。
请参见图28A,图28A是本实用新型第十实施例的安装检测模块的电路方块示意图。安装检测模块4000a包含检测脉冲发生模块4110、控制电路4120、检测判定电路4130、检测路径电路3560以及开关电路4200a。检测判定电路4130经路径4161耦接检测路径电路4160,以检测检测路径电路4160上的信号。检测判定电路4130同时经路径4131耦接控制电路4120,以将检测结果信号经路径4131传送至控制电路4120。检测脉冲发生模块4110通过路径4111耦接检测路径电路4160,并产生脉冲信号以通知检测路径电路4160导通检测路径或执行检测动作的时机点。控制电路4120根据检测结果信号锁存检测结果,经路径4121耦接开关电路4200a,以将检测结果传送或反映至开关电路4200a。开关电路4200a根据检测结果,决定使第一安装检测端TE1以及第二安装检测端TE2之间导通或截止。检测路径电路4160经由第一检测连接端DE1与第二检测连接端DE2耦接至电源模块的电源回路上。有关于检测脉冲发生模块4110、控制电路4120、检测判定电路4130以及开关电路4200a的说明可以参考图23A实施例,于此不再重复赘述。
在本实施例中,检测路径电路4160具有第一检测连接端DE1、第二检测连接端DE2以及第三检测连接端DE3,其中第一检测连接端DE1和第二检测连接端DE2电性连接整流电路510的两输入端,藉以从第一接脚501和第二接脚502上接收/取样外部驱动信号。检测路径电路6160会对接收/取样到的外部驱动信号进行整流,并且受控于检测脉冲发生模块而决定是否使整流后的外部驱动信号在一检测路径上流通。换言之,检测路径电路6160会响应于检测脉冲发生模块6110的控制而决定是否导通所述检测路径。利用脉冲信号导通检测路径并且检测是否有异常的外部阻抗接入等细部电路动作可以参考图23B至23D的说明,于此不再重复赘述。
请参照图28B,图28B是本实用新型第十实施例的安装检测模块的电路架构示意图。本实施例的检测路径电路3560的配置与运作大致上和前述实施例相同,其主要差异在于本实施例的检测路径电路3560还包括限流元件3097与3098。所述限流元件3097是以设置在第一整流输入端(即)与电阻R51的第一端之间的二极管为例(下称,二极管3097),并且所述限流元件3098是以设置在第二整流输入端502与电阻R51的第一端之间的二极管为例(下称,二极管3098)。其中,二极管3097的阳极耦接第一整流输入端(即,整流电路510与第一接脚501连接的一端),并且二极管3097的阴极耦接电阻R51的第一端。二极管3098的阳极耦接第二整流输入端(即,整流电路510与第二接脚502连接的一端),并且二极管3098的阴极耦接电阻R51的第二端。在本实施例中,由第一接脚501与第二接脚502所接收的外部驱动信号/交流信号会经由二极管3097与3098被提供至电阻R51的第一端。在外部驱动信号的正半波期间内,二极管3097受到顺向偏压而导通,并且二极管3098受到逆向偏压而截止,使得检测路径电路3560等效于在第一整流输入端与第二整流输出端512(在本实施例中同第二滤波输出端522)之间建立检测路径。在外部驱动信号的负半波期间,二极管3097受到逆向偏压而截止,并且二极管3098受到顺向偏压而导通,使得检测路径电路3560等效于在第二整流输入端与第二整流输出端512之间建立检测路径。
本实施例的二极管3097与3098起到了限制交流信号的电源方向的作用,使得电阻R51的第一端不论是在交流信号的正半波或负半波期间都是接收到正电平信号(相较于接地电平而言),进而令节点X上的电压信号不会随著交流信号的相位变化所影响,导致检测结果错误。再者,相较于前述实施例而言,由本实施例的检测路径电路3560所建立起的检测路径并非直接连接至电源模块的电源回路上,而是透过二极管3097与3098在整流输入端与整流输出端之间建立起独立的检测路径。由于检测路径电路3560并非直接连接于电源回路上,并且仅有在检测模式会导通,故而在LED直管灯正常安装并且电源模块正常运作的情形下,电源回路上用于驱动LED模块的电流不会流经检测路径电路3560。由于检测路径电路3560无须承受电源模块在正常运作下的大电流,使得检测路径电路3560上的元件规格选择较为有弹性,并且同时令检测路径电路3560所造成的功率损耗较低。再者,相较于直接将检测路径连接至电源回路的实施例而言(如图20B至图20D),由于本实施例的检测路径电路3560并不会直接与电源回路中的滤波电路520连接,因此在电路设计上也不用顾虑滤波电容会逆向对检测路径充电的问题,在电路设计上更为简便。
请参见图29,图29是本实用新型第十二实施例的电源模块的电路方块示意图。在本实施例中,LED直管灯1300例如是直接接收外部电网508所提供的外部驱动信号,其中所述 外部驱动信号通过火线(L)与中性线(N)给到LED直管灯1200的两端接脚501、502上。在实际应用中,LED直管灯1300可更包括接脚503、504。在LED直管灯1300包含有4根接脚501-504的结构底下,依设计需求同侧灯头上的两接脚(如501与503,或502与504)可以电性连接在一起或是相互电性独立,本实用新型不以此为限。触电检测模块5000设置于灯管内并包括检测控制电路5100以及限流电路5200,所述触电检测模块5000亦可称为安装检测模块(底下以安装检测模块5000进行描述)。限流电路5200是与驱动电路530搭配设置,其可例如是驱动电路本身,或为用以控制驱动电路禁/使能的偏压调整电路(后续实施例会进一步说明)。检测控制电路5100通过第一检测连接端DE1和第二检测连接端DE2电性连接电源回路,藉以在检测模式下取样并检测电源回路上的信号,并根据检测结果控制限流电路5200,以决定是否禁止电流流过LED直管灯1300。当LED直管灯1300尚未正确安装于灯座时,检测控制电路5100会检测到较小的电流信号而判断信号流过过高的阻抗,此时限流电路5200会禁能驱动电路530,以使LED直管灯1300停止操作(即,使LED直管灯1200不被点亮)。若否,检测控制电路5100判断LED直管灯1300正确安装于灯座上,限流电路4200会致能驱动电路530,以使LED直管灯1300正常操作(即,使LED直管灯1300可被正常点亮)。换言之,当检测控制电路5100从电源回路取样并检测到的电流高于安装设定电流(或电流值)时,检测控制电路5100判断LED直管灯1300正确安装于灯座上而控制限流电路致能驱动电路;当检测控制电路5100从电源回路取样并检测到的电流低于所述安装设定电流(或电流值)时,检测控制电路5100判断LED直管灯1300未正确安装于灯座上而控制限流电路禁能驱动电路,使LED直管灯1300进入一不导通状态或是令LED直管灯1200的电源回路上的电流有效值被限缩至小于5mA(基于验证标准则为5MIU)。换句话说,安装检测模块5000基于检测到的阻抗判断导通或截止,使LED直管灯1300操作于正常驱动或禁止驱动状态。藉此,可以避免使用者在LED直管灯1300尚未正确安装于灯座时因误触LED直管灯1200导电部分而触电的问题。
更具体的说,因为当人体接触灯管时,人体的阻抗会导致电源回路上的等效阻抗改变,安装检测模块5000可藉由检测电源回路上的电压/电流变化来判断用户是否接触灯管,即可实现上述的防触电功能。换言之,在本实用新型实施例中,安装检测模块5000可以透过检测电信号(包括电压或电流)来判断灯管是否被正确安装以及使用者是否在灯管未正确安装的情况下误触灯管的导电部分。相较于图18或27实施例而言,由于本实施例的限流电路5200是通过控制驱动电路530来实现限流/防触电的效果,因此无须在电源回路上串接额外的开关电 路来做触电保护。由于串接在电源回路上的开关电用通常需要承受大电流,以致于所选用的晶体管尺寸受到严格的限制。因此省略串接在电源回路上的开关电路可以大幅地降低安装检测模块的整体成本。
从电路操作的角度来看,检测控制电路5100判断LED直管灯1300是否正确安装至灯座上/是否有异常的阻抗接入的步骤如图42A所示,包括:使检测路径导通一段期间后关断(步骤S101);在检测路径导通的期间取样检测路径上的电信号(步骤S102);判断取样到的电信号是否符合预设信号特征(步骤S103);当步骤S103判定为是时,控制限流电路5200操作在第一组态(步骤S104);以及当步骤S103判定为否时,控制限流电路5200操作在第二组态(步骤S105),并且接著回到步骤S101。
在本实施例中,所述检测路径可以是连接在整流电路510输出侧的电流路径,其具体配置可以参考下述图30A至32D实施例的说明。另外,检测控制电路4100导通检测路径的期间长度、间隔、触发时间等设置,可参考相关实施例的说明。
在步骤S101中,使检测路径导通一段期间可以通过脉冲式的开关控制手段来实现。
在步骤S102中,取样的电信号可以是电压信号、电流信号、频率信号或相位信号等可以表现检测路径的阻抗变化的信号。
在步骤S103中,判断取样到的电信号是否符合预设信号特征的动作可例如是比较取样的电信号与一预设信号的相对关系。在本实施例中,检测控制器5100判定电信号符合预设信号特征可以是对应至判定LED直管灯为正确安装/无异常阻抗接入的状态,并且检测控制器7100判定电信号不符合预设信号特征可以是对应至判定LED直管灯为不正确安装/有异常阻抗接入的状态。
在步骤S104与S105中,所述第一组态及第二组态为两相异的电路组态,并且可视限流电路3200的配置位置及类型而定。举例来说,在限流电路5200为与驱动电路控制器的电源端或启动端相连的偏压调整电路的实施例下,所述第一组态可以是截止组态(正常偏压组态),并且所述第二组态可以是导通组态(调整偏压组态)。在限流电路5200为驱动电路中的功率开关的实施例下,所述第一组态可以是驱动控制组态(即,仅由驱动电路控制器来控制功率开关的切换,检测控制器7100不影响功率开关的控制),并且所述第二组态可以是截止组态。
上述各步骤的详细操作及电路范例可参考触电检测模块/安装检测模块的各个实施例。
请参见图30A,图30A是本实用新型第十一实施例的安装检测模块的电路方块示意图。安装检测模块包含检测脉冲发生模块5110、控制电路5120、检测判定电路5130以及检测路径电路5160。检测脉冲发生模块5110经由路径5111电性连接检测路径电路5160,用以产生 包含有至少一脉冲的控制信号。检测路径电路5160经由第一检测连接端DE1与第二检测连接端DE2连接至电源模块的电源回路上,并且反应于控制信号而在脉冲期间导通检测路径。检测判定电路5130经由路径5161连接所述检测路径电路5160,藉以根据检测路径上的信号特征来判断LED直管灯与灯座之间的安装状态,并且根据检测结果发出对应的检测结果信号,所述检测结果信号会经由路径5131提供给后端的控制电路5120。控制电路5120经由路径5121连接至驱动电路530,其中驱动电路530会参考控制电路5120所发出的安装状态信号来调整其运作状态。
从安装检测模块5000a的整体运作来看,在LED直管灯通电时,检测脉冲发生模块5110会先反应于加入的外部电源而启动,藉以产生脉冲来短暂导通检测路径电路5160所构成的检测路径。在检测路径导通的期间,检测判定电路5130会取样检测路径上的信号并判断LED直管灯是否正确的被安装在灯座上或是否有人体接触LED直管灯导致漏电。检测判定电路5130会根据检测结果产生对应的检测结果信号传送给控制电路5120。当控制电路5120接收到指示灯管已正确安装的检测结果信号时,控制电路5120发出相应的安装状态信号以控制驱动电路530正常启动,并进行电源转换以提供后端LED模块电力。相反地,当控制电路5120接收到指示灯管未正确安装的检测结果信号时,控制电路5120发出相应的安装状态信号以控制驱动电路530不启动/停止工作,进而令在电源回路上流通的电流可被限制在安全值以下。
具体而言,本实施例有关于检测脉冲发生模块5110、检测判定电路5130以及检测路径电路5160的配置与运作可以参照其他实施例的说明。本实施例与前述实施例的主要差异在于本实施例主要是控制电路5120来控制后端的驱动电路530的启动与否,藉以在判定有触电风险/未正确安装时,能够直接透过停止驱动电路530的运作,进而达到限制漏电流的效果。在此配置底下,驱动电路530或其内部的功率开关可以视为限流电路5200a,因此相较于图18至图28B实施例而言,原先设置在电源回路上的开关电路(如3200、3200a-L)可以被省略。由于原先设置在电源回路上的开关电路需承载大电流,故在晶体管规格的选择与设计上都有较为严格的考量,因此本实施例的设计可以透过省略开关电路而显著的降低安装检测模块整体的设计成本。另一方面,在一些实施例中,由于控制电路5120可以通过将符合驱动控制器的电压格式的安装状态信号给到驱动控制器的启动管脚的方式来实现驱动电路530的启动控制,因此并不需要针对驱动电路530的设计进行大幅更动,有利于商品化的设计。
在一范例实施例中,检测脉冲发生模块5110、检测路径电路5160、检测判定电路5130以及控制电路5120可分别以图30B至图30F的电路架构来实现(但不仅限于此),其中图30B至图30F是本实用新型第十一实施例的安装检测模块的电路架构示意图。底下分就各模块/ 单元进行说明。
请参照图30B,图30B是根据本实用新型第十一实施例的安装检测模块的检测脉冲发生模块的电路架构示意图。检测脉冲发生模块5110包含电阻Ra1与Ra2、电容Ca1及脉冲发生电路5112。电阻Ra1的第一端经由第一整流输出端511连接至整流电路510。电阻Ra2的第一端连接电阻Ra1的第二端,并且电阻Ra2的第二端经由第二整流输出端512连接至整流电路510。电容Ca1与电阻Ra2相互并联。脉冲发生电路5112的输入端连接电阻Ra2与Ca1的连接端,且其输出端连接检测路径电路5160以提供具脉冲DP的控制信号。
在本实施例中,电阻Ra1与Ra2构成一个分压电阻串,用以取样母线电压,其中脉冲发生电路5112可以根据母线电压资讯决定脉冲发生的时间点,并且根据设定的脉冲宽度来输出脉冲DP。举例来说,脉冲发生电路5112可以在母线电压过电压零点后一段时间再发出脉冲,藉以避免在电压零点上进行防触电检测可能产生的误判问题。脉冲发生电路5112发出的脉冲波形及间距可以参照前述实施例的说明,于此不再赘述。
请参照图30C,图30C是根据本实用新型第十一实施例的安装检测模块的检测路径电路的电路架构示意图。检测路径电路5160包含电阻Ra3、晶体管Ma1及二极管Da1。电阻Ra3的第一端连接第一整流输出端511。晶体管Ma1可为MOSFET或BJT,其第一端连接电阻Ra3的第二端,其第二端连接第二整流输出端512,且其控制端接收控制信号Sc。二极管Da1的阳极连接电阻Ra3的第一端及第一整流输出端511,并且二极管Da1的阴极连接后端的滤波电路530的输入端,以π型滤波器为例,则二极管Da1是连接在电容725与电感726的连接端。
在本实施例中,电阻Ra3与晶体管Ma1构成检测路径,其中所述检测路径会在晶体管Ma1被控制信号Sc导通时伴随导通。在检测路径导通的期间内,由于会有电流流经检测路径而造成检测电压Vdet变化,而检测电压Vdet的变化幅度是视检测路径的等效阻抗而决定。以图式上所示的检测电压Vdet取样位置为例(电阻Ra3的第一端),在检测路径导通的期间,当没有人体阻抗连接时(正确安装),检测电压Vdet会等同于整流输出端511上的母线电压;当有人体阻抗连接时(未正确安装),人体阻抗可等效为串接在整流输出端511与接地端之间,因此检测电压Vdet会变成人体电阻与电阻Ra3的分压。藉此,检测电压Vdet即可指示出是否有人体电阻连接在LED直管灯上的状态。
请参照图30D,图30D是根据本实用新型第十一实施例的安装检测模块的检测判定电路的电路架构示意图。检测判定电路5130包含取样电路5132和比较电路5133。在本实施例中,取样电路5132会根据设定的时间点取样检测电压Vdet,并且产生对应不同时间点下的检测 电压Vdet的取样信号Ssp_t1-Ssp_tn。比较电路5133连接取样电路5132以接收取样信号Ssp_t1-Ssp_tn,其中比较电路5133可选取所述取样信号Ssp_t1-Ssp_tn中的部分或全部相互进行比较,或是将所述取样信号Ssp_t1-Ssp_tn与一预设信号进行比较,接著将比较结果Scp依序输出给判定电路。在一范例实施例中,比较电路5133可根据每两个相邻时间点的取样信号比较而输出一对应的比较结果,但本实用新型不以此为限。
具体而言,在LED直管灯正确安装至灯座(或无异常外部阻抗接入)时,检测路径电路5160的第一检测连接端DE1(同第一整流输出端511)和第二检测连接端DE2(同第二整流输出端512)可以等效为直接连接至外部电网,因此无论检测路径是否被导通,检测电压Vdet的电压波形皆会随外部驱动信号的相位改变,具有完整的弦波形式。换言之,在LED正确连接至灯座的情况下,无论检测路径是否导通,取样电路5132会产生具有相同或近似电平的取样信号Ssp_t1-Ssp_tn。
相反地,在LED直管灯未正确安装至灯座(或有异常外部阻抗接入)时,第一检测连接端DE1可被等效为通过外部阻抗(即,人体阻抗)电性连接至外部电网,因此在检测路径导通时,检测电压Vdet即会受到外部阻抗和检测路径上的阻抗的分压而降低。在检测路径未导通的情况下,由于电源模块中没有导通的电流路径,因此第一检测连接端DE1上不会产生压降,故检测电压Vdet的电压波形仍会呈完整的弦波形式。如图30E所示,图30E是根据本实用新型第十一实施例的安装检测模块的信号波形示意图。在LED未正确连接至灯座的情况下,取样电路5132在脉冲期间DPW内取样到的信号电平(如取样信号Ssp_t1)会低于在非脉冲期间DPW取样到的信号电平(如取样信号Ssp_t2)。因此,比较电路5133可通过选取所述取样信号Ssp_t1-Ssp_tn中的部分或全部相互进行比较,或是将所述取样信号Ssp_t1-Ssp_tn与一预设信号进行比较,进而产生有效对应于安装状态的比较结果Scp。例如,比较电路5133可在比较信号Ssp_t1和Ssp_t2的电平相同或近似时,产生第一逻辑电平的比较结果Scp,并且在比较信号Ssp_t1和Ssp_t2的电平差异达到一设定值时,产生第二逻辑电平的比较结果Scp。其中,第一逻辑电平的比较结果Scp为符合正确安装条件的比较结果,第二逻辑电平的比较结果Scp为不符合正确安装条件的比较结果。
判定电路5134接收所述比较结果Scp,并且根据比较结果Scp发出对应的检测结果信号Sdr,在一些实施例中,判定电路5134可以设计为在判定比较结果Scp符合正确安装条件,并且此比较结果Scp连续出现超过一定次数时才发出对应正确安装的检测结果信号Sdr,藉以避免误判的情形发生,以进一步降低触电风险。
请参照图30F,图30F是根据本实用新型第十一实施例的安装检测模块的控制电路的电 路架构示意图。控制电路5120的输入端接收检测结果信号Sdr,并且其输出端电性连接驱动电路630的控制器633,其中驱动电路630的配置可参考图13B实施例的说明,于此不再重复赘述。
当控制电路5120接收到指示LED直管灯已正确安装(无人体电阻连接)的检测结果信号Sdr时,控制电路5120会发出相应的安装状态信号Sidm给驱动电路630的控制器633。此时控制器633会响应于安装状态信号Sidm而启动,并且控制切换开关635运作,进而产生驱动信号来驱动LED模块。当控制电路5120接收到指示LED直管灯未正确安装时(有人体电阻连接)的检测结果信号Sdr时,控制电路5120会发出相应的安装状态信号Sidm给驱动电路630的控制器633。此时控制器633会响应于安装状态信号Sidm而不启动。
请参照图30G,图30G是本实用新型第十二实施例的安装检测模块的电路架构示意图。本实施例的安装检测模块5000c及与前述图30B-30F实施例大致相同,其包括检测脉冲发生模块5110、控制电路5120、检测判定电路5130及检测路径电路5160。本实施例的驱动电路1030是以图13B的电源转换电路架构作为范例,其包括控制器1033、二极管1034、晶体管1035、电感1036、电容1037及电阻1038。
相较于图30B-30F实施例而言,本实施例的检测路径电路5160是以类似图24B实施例的配置作为范例,其包括晶体管Ma1及电阻Ra1。晶体管Ma1的漏极耦接电容725、727的第二端,并且源极耦接至电阻Ra1的第一端。电阻Rb1的第二端耦接至第一接地端GND1。于此附带一提,所述第一接地端GND1和LED模块50的第二接地端GND2可为相同接地端或是两电性独立的接地端,本实用新型不以此为限。
检测脉冲发生模块5210耦接晶体管Ma1的栅极,并且用以控制晶体管Ma1的导通状态。检测判定电路5130耦接电阻Rb1的第一端和控制电路5120,其中检测判定电路5130会取样电阻Ra1第一端上的电信号,并且将取样到的电信号与一参考信号进行比较,藉以产生指示灯管是否正确安装的检测结果信号;接着控制电路5120会根据检测结果信号产生安装状态信号并传输给控制器1033。在本实施例中,有关于检测脉冲发生模块5110、控制电路5120、检测判定电路5130及检测路径电路5160的工作细节及特性可以前述实施例的相关叙述,于此不再重复赘述。
请参见图31A,图31A是本实用新型第十二实施例的安装检测模块的电路方块示意图。安装检测模块5000A包含检测脉冲发生模块5110、检测判定电路5130、检测路径电路5160以及限流电路5200A。有关于检测脉冲发生模块5110、检测判定电路5130以及检测路径电路5160的说明请参照上述图30A-30E实施例的说明,于此不再重复赘述。
本实施例和前述实施例的差异在于,本实施例的限流电路5200A是利用一偏压调整电路来实施(底下以偏压调整电路5200A描述)。检测判定电路5130的检测结果信号Sdr会给到偏压调整电路5200A,其中偏压调整电路5200A经由路径5201接至驱动电路530,并且用以影响/调整驱动电路530的偏压,藉以控制驱动电路530的运作状态。
请参照图31B,图31B是根据本实用新型一实施例的偏压调整电路的电路架构示意图。偏压调整电路5200A包含晶体管Ma2,其第一端连接在电阻Rbias与电容Cbias的连接端以及控制器633的电源输入端,其第二端连接第二滤波输出端522,且其控制端接收比较结果信号Sdr。在本实施例中,电阻Rbias与电容Cbias为驱动电路630的外部偏压电路,其是用以提供控制器633工作所需的电源。
当检测判定电路5130判定LED直管灯已正确安装时(无人体电阻连接),检测判定电路5130会发出禁能的比较结果信号Sdr给晶体管Ma2。此时晶体管Ma2会反应于禁能的比较结果信号Sdr而截止,因此控制器633可以正常的取得工作电源并控制切换开关635运作,进而产生驱动信号来驱动LED模块。当检测判定电路5130判定LED直管灯未正确安装时(有人体电阻连接),检测判定电路5130会发出致能的比较结果信号Sdr给晶体管Ma2。此时晶体管Ma2会反应于致能的比较结果信号Sdr而导通,因此控制器633的电源输入端会被短路到接地端,进而令控制器633无法被启动。值得一提的是,在晶体管Ma2导通的情形下,虽然可能会有一条额外的漏电路径通过晶体管Ma2被建立,但是由于控制器633所使用的输入电源一般相对较小(相较于灯管整体的电源来看),因此即时有些微漏电流也不致于造成人体的损害,并且可同时符合安规的需求。
请参见图32A,图32A是本实用新型第十三实施例的安装检测模块的电路方块示意图。本实施例的安装检测模块可视为包括检测电路5000b和驱动电路1030。整流电路510、滤波电路520、驱动电路1030以及LED模块50之间的连接关系如前述图9A实施例所述,于此不再赘述。本实施例的检测电路5000b具有输入端与输出端,其输入端耦接在LED直管灯的电源回路上,且其输出端耦接驱动电路1030。
具体而言,在一些实施例中,LED直管灯通电后(无论是正确安装或是非正确安装),驱动电路530会预设进入一安装检测模式。在安装检测模式下,驱动电路1130会提供具有窄脉冲(例如脉冲宽度小于1ms)的点亮控制信号来驱动功率开关(未绘示),使得驱动电路1130在安装检测模式下所产生的驱动电流小于5MIU或5mA。另一方面,在安装检测模式下,检测电路5000b会检测电源回路上的电信号,并且依据检测到的结果产生一安装状态信号Sidm回传给驱动电路1130。其中,驱动电路1130会根据接收到的安装状态信号Sidm来决定是否 进入正常驱动模式。若驱动电路1030判定维持在安装检测模式,则驱动电路1130会依据一设定频率输出具有窄脉冲的点亮控制信号来短暂导通功率开关,以使检测电路5000b可检测到电源回路上的电信号,并且同时令电源回路上的电流在整个安装检测模式下皆小于5MIU。反之,若驱动电路1130判定进入正常驱动模式,则驱动电路1030会改为依据输入电压、输出电压及输出电流等资讯至少其一或组合来产生可调变脉宽的点亮控制信号。
底下搭配图32B来说明所述第一范例实施例,图32B是本实用新型第一实施例的具有触电检测功能的驱动电路的电路架构示意图。本实施例的驱动电路1130包含控制器1133以及转换电路1134,其中控制器1133包含信号接收单元1137、锯齿波产生单元1138以及比较单元CUd,并且转换电路1134包含开关电路(也可称为功率开关)1135以及储能电路1136。信号接收单元1137的输入端接收反馈信号Vfb与安装状态信号Sidm,并且信号接收单元1137的输出端耦接比较单元CUd的第一输入端。锯齿波产生单元1038的输出端耦接比较单元CUd的第二输入端。比较单元CUd的输出端耦接至开关电路1035的控制端。开关电路1135与储能电路1036之间的相对配置与实际电路范例如前述图13A-13E所述,于此不再重复赘述。
在控制器1133中,信号接收单元1137可例如是由误差放大器所组成的电路,其可用以接收关连于电源模块中的电压、电流资讯的反馈信号Vfb,以及由检测电路5000b所提供的安装状态信号Sidm。在实施例中,信号接收单元1137会根据安装状态信号Sidm而选择输出一预设电压Vp或反馈信号Vfb至比较单元CUd的第一输入端。锯齿波产生单元1038是用以产生一锯齿波信号Ssw至比较单元CUd的第二输入端,其中所述锯齿波信号Ssw在其每一周期的信号波形中,其上升沿与下降沿至少其一的斜率非为无穷大。此外,本实施例的锯齿波产生单元1138可以是不论驱动电路1030操作在何种模式下皆以一固定的工作频率来产生锯齿波信号Ssw,或是可在不同操作模式下依据不同的工作频率来产生锯齿波信号Ssw(亦即,锯齿波产生单元1138可依据安装状态信号Sidm改变其工作频率),本实用新型不以此为限。比较单元CUd会比较第一输入端与第二输入端上的信号电平,并且在第一输入端上的信号电平大于第二输入端上的信号电平时,输出高电平的点亮控制信号Slc,以及在第一输入端上的信号电平不大于第二输入端上的信号电平时,输出低电平的点亮控制信号Slc。换言之,比较单元CUd会在锯齿波信号Ssw的信号电平大于预设电压Vp或反馈信号Vfb的信号电平的期间输出高电平,进而产生具有脉冲形式的点亮控制信号Slc。
请一并参照图32B与图41C,图41C是本实用新型第三实施例的电源模块的信号时序示意图。当LED直管灯通电后(两端安装至灯座,或者一端安装至灯座另一端被使用者误触),驱动电路1130会被启动,并且预设地进入安装检测模式DTM。底下以第一周期T1内的运作 来进行说明,在安装检测模式下,信号接收单元1137会输出预设电压Vp至比较单元CUd的第一输入端,并且锯齿波产生单元1138也开始产生锯齿波信号Ssw至比较单元CUd的第二输入端。以锯齿波SW的信号电平变化来看,锯齿波SW的信号电平会自驱动电路1130被启动的时间点ts后从起始电平逐渐上升,并且在达到峰值电平后再逐渐下降至起始电平。在锯齿波SW的信号电平上升至预设电压Vp之前,比较单元CUd会输出低电平的点亮控制信号Slc;在锯齿波SW的信号电平上升至超过预设电压Vp之后至再次降回低于预设电压Vp之前的期间内,比较单元CUd会将点亮控制信号Slc上拉至高电平;以及在锯齿波SW的信号电平再次降至低于预设电压Vp之后,比较单元CUd会再次将点亮控制信号Slc下拉至低电平。藉由所述的比较运作,比较单元CUd即可基于锯齿波SW1与预设电压Vp产生脉冲DP,其中所述脉冲DP的脉冲期间DPW即为锯齿波SW的信号电平高于预设电压Vp的期间。
带有脉冲DP的点亮控制信号Slc会被传输到开关电路1135的控制端,使得开关电路1035会在脉冲期间DPW内导通,进而使储能单元1136储能,并且在电源回路上产生驱动电流。由于驱动电流的产生会导致电源回路的信号电平/波形/频率等信号特征发生改变,因此此时检测电路5000b会检测到取样信号Ssp发生电平变化SP。其中,检测电路5000b会进一步判断此电平变化SP是否有超过一参考电压Vref。在第一周期T1中,由于电平变化SP尚未超过参考电压Vref,因此检测电路5000b会输出相应的安装状态信号Sidm给信号接收单元1037,使得信号接收单元1137继续维持在安装检测模式DTM,并且持续输出预设电压Vp给比较单元CUd。在第二周期T2中,由于取样信号Ssp的电平变化与第一周期T1类似,因此整体的电路动作与第一周期T1内的运作相同,故不再重复赘述。
换言之,在第一周期T1与第二周期T2中,LED直管灯会被判断为尚未正确安装。另外附带一提的是,在此状态下,虽然驱动电路1130会在电源回路上产生驱动电流,但是因为开关电路1035的导通时间相对短暂,因此驱动电流的电流值不会对人体造成危害(小于5mA/MIU,可低至0)。
在进入第三周期T3后,检测电路5000b判断取样信号Ssp的电平变化超过了参考电压Vref,因此发出了相应的安装状态信号Sidm给信号接收单元1137,藉以指示LED直管灯已被正确安装至灯座上。当信号接收单元1137接收到指示LED直管灯已被正确安装的安装状态信号Sidm后,驱动电路1130会在第三周期T3结束后从安装检测模式DTM进入正常驱动模式DRM。在正常驱动模式DRM下的第四周期T4中,信号接收单元1037会改为依据从外部接收的反馈信号Vfb来产生对应的信号给比较单元CUd,使得比较单元CUd可以依据输入电压、输出电压、驱动电流等资讯而动态地调整点亮控制信号Slc的脉冲宽度,进而使LED 模块可以被点亮并维持在设定的亮度。在正常驱动模式DRM下,检测电路5000b可以停止运作,或是持续运作但信号接收单元1037忽略安装状态信号Sidm,本实用新型不以此为限。
请再参照图32A,在第二范例实施例中,LED直管灯通电后(无论是正确安装或是非正确安装),检测电路5000b会反映于电流路径的形成而被启动,并且在一个短暂期间内检测电源回路的电信号,并且根据检测结果回传一个安装状态信号Sidm给驱动电路1130。其中,驱动电路1130会根据接收到的安装状态信号Sidm来决定是否启动以进行电源转换运作。在检测电路5000b输出指示灯管已正确安装的安装状态信号Sidm时,驱动电路1030反应于安装状态信号Sidm而启动,并且产生驱动信号来驱动功率开关,进而将接收到的电源转换为输出给LED模块的输出电源;在此情况下,检测电路5000b会在输出指示灯管已正确安装的安装状态信号Sidm后,切换为不影响电源转换运作的操作模态。另一方面,在检测电路5000b输出指示灯管未正确安装的安装状态信号Sidm时,驱动电路1130会维持在关闭的状态,直到接收到指示灯管正确安装的安装状态信号Sidm;在此情况下,检测电路5000b会维持以原先的检测模式继续检测电源回路上的电信号,直到检测到灯管已正确安装。
请参照图33A,图33A是本实用新型第十四实施例的安装检测模块的电路方块示意图。本实施例的电源模块包括整流电路510、滤波电路520、安装检测模块5000d及驱动电路1230。整流电路510及滤波电路520的配置与先前实施例所述类似。安装检测模块包含检测触发电路5310,并且检测触发电路5310是设置在电源回路上(在此是以设置在滤波电路520后级为例,但本实用新型不以此为限),并且与驱动电路1230的电源端或电压检测端耦接。驱动电路1230的输出端耦接LED模块630。
在本实施例中,检测触发电路5310会在外部电源施加到电源模块上时启动,以将提供给驱动电路1230的电源端或电压检测端的电信号调整为具有一第一波形特征的电信号。当驱动电路1230会在接收到具有第一波形特征的电信号时进入检测模式,藉以输出符合检测需求的窄脉冲来驱动功率开关,再藉由检测流经功率开关或LED模块50的电流大小来判断灯管是否已被正确安装至灯座上。若判定灯管已正确安装,则驱动电路1230会改采正常工作下的驱动方式来驱动功率开关,使得驱动电路1230可提供稳定的输出电源来点亮LED模块630;此时检测触发电路5310会关闭,使提供给驱动电路1230的电源不被影响,即此时提供至驱动电路的电源端或电压检测端的电信号不具有第一波形特征。若判定灯管未正确安装,则驱动电路1230会持续以窄脉冲来驱动功率开关,直到判断灯管已被正确安装。此部分的信号时序类似于图41C所示,可参照对应段落叙述。
底下搭配图33B与图33C的具体电路模块来举例说明,图33B是本实用新型第二实施例 的具有触电检测功能的驱动电路的电路架构示意图,图33C是本实用新型一实施例的集成控制器的电路方块示意图。在本实施例中,驱动电路1230包括集成控制器1233、电感1236、二极管1234、电感1237及电阻1238,其中集成控制器1233包括多个信号接收端,例如电源端P_VIN、电压检测端P_VSEN、电流检测端P_ISEN、驱动端P_DRN、补偿端P_COMP及参考接地端P_GND。电感1236的第一端与二极管1234的阳极共同连接至集成控制器1233的驱动端P_DRN。电阻1238连接至集成控制器1233的电流感测端I_SEN。检测触发电路5310于本实施例中可例如是一开关电路,其连接至集成控制器1233的电压检测端V_SEN。除此之外,为了因应集成控制器1233的操作需求,电源模块还包含有多个设置于集成控制器1233外部的辅助电路,例如连接在滤波电路520输出端的电阻Rb1及Rb2。在电源模块中可能还包括有其他未绘示出的外部辅助电路,但此部分不影响整体电路运作的说明。
集成控制器1233包含脉冲控制单元PCU、功率开关单元1235、电流控制单元CCU、增益放大单元Gm、偏压单元BU、检测触发单元DTU、切换单元SWU及比较单元CU1和CU2。脉冲控制单元PCU用以产生脉冲信号以控制功率开关单元1235。功率开关单元1235通过驱动端P_DRN连接电感1236与二极管1234,并且反应于脉冲信号的控制而切换,使得电感1236可在正常工作模式下反复地充放能,以提供稳定的输出电流给LED模块50。电流控制单元CCU通过电压检测端P_VSEN接收电压检测信号VSEN并且通过电流检测端P_ISEN接收指示流经电阻1238的电流ISEN大小的电流检测信号(以ISEN表示),其中电流控制单元CCU在正常工作模式下会根据电压检测信号VSEN与电流检测信号ISEN得知LED模块50的实时工作状态,并且根据工作状态产生一输出调整信号。所述输出调整信号经增益放大单元Gm处理后会被提供至脉冲控制单元PCU,藉以作为脉冲控制单元PCU产生脉冲信号的参考。偏压单元BU会从电源模块上接收经滤波电路520滤波后的信号,并且产生稳定的驱动电压VCC及参考电压V REF给集成控制器1233中的各单元使用。检测触发单元DTU通过电压检测端P_VSEN连接检测触发电路5310与电阻Rb1及Rb2,其用以检测从电压检测端P_VSEN接收到的电压检测信号VSEN的信号特征是否符合第一波形特征,并且根据检测结果输出一检测结果信号至脉冲控制单元PCU。切换单元SWU通过电流检测端P_ISEN连接至电阻1238的第一端,其会根据检测触发单元DTU的检测结果而选择性的将电流检测信号I SEN提供给比较单元CU1或CU2。比较单元CU1主要是作为过流保护之用,其会将接收到的电流检测信号ISEN与一过流参考信号V OCP进行比较,并且将比较的结果输出至脉冲控制单元PCU。比较单元CU2主要是作为防触电保护之用,其会将接收到的电流检测信号ISEN与一安装参考信号V IDM进行比较,并且将比较的结果输出至脉冲控制单元PCU。
具体而言,当LED直管灯通电时,检测触发电路5310会先被启动,并且藉由如开关切换之类的方式来影响/调整提供至电压检测端P_VSEN的电压检测信号VSEN,使得电压检测信号VSEN具有特定的第一波形特征。举例来说,以检测触发电路5310为开关为例,检测触发电路5310可以在启动时以一预设的时间间隔连续短暂切换导通状态数次,使得电压检测信号VSEN会有反应于开关切换的电压波形震荡。集成控制器1233在接收到电源时预设为不启动,即脉冲控制单元PCU不会立即输出脉冲信号来驱动功率开关单元1235以点亮LED模块50。而是检测触发单元DTU会先根据电压检测信号VSEN来判断其波形特征是否符合设定的第一波形特征,并且将判断结果传输至脉冲控制单元PCU。
当脉冲控制单元PCU从检测触发单元DTU接收到指示电压检测信号VSEN符合第一波形特征的信号时,集成控制器1233进入安装检测模式。在安装检测模式下,脉冲控制单元PCU会输出窄脉冲来驱动功率开关单元1235,使得电源回路上的电流被限制在不会造成人体触电风险的电流值之下(如5MIU),在检测模式下的具体脉冲信号设定可参照前述有关安装检测模块的实施例说明。另一方面,在安装检测模式下,切换单元SWU会切换为将电流感测信号ISEN传输至比较单元CU2的电路组态,使得比较单元CU2可以比较电流感测信号ISEN与安装参考信号V IDM。其中,由于在未正确安装的情况下,电阻1238的第二端会等效为经由人体电阻Rbody连接至接地端GND1,而在电阻串联的情况下,等效电阻值会增加,使得电流检测信号ISEN脉冲控制单元PCU可根据比较单元CU2的比较结果得知LED直管灯是否已正确安装至灯座上。因此,若脉冲控制单元PCU根据比较单元CU2的比较结果判定LED直管灯尚未正确安装至灯座上,则集成控制器1233会维持在安装检测模式下运作,亦即脉冲控制单元PCU会继续输出窄脉冲来驱动功率开关单元1235,并且根据电流感测信号ISEN判断LED直管灯是否有被正确安装。若脉冲控制单元PCU根据比较单元CU2的比较结果判定LED直管灯已正确安装至灯座上,则集成控制器1233会进入正常工作模式。
在正常工作模式下,检测触发电路5310会停止作用,亦即检测触发电路5310不再影响/调整电压检测信号VSEN。此时电压检测信号VSEN仅由电阻Rb1与Rb2的分压决定。在集成控制器1233中,检测触发单元DTU可以是被禁能,或是脉冲控制单元PCU不再参考检测触发单元DTU输出的信号。脉冲控制单元PCU主要会根据电流控制单元CCU及增益放大单元Gm所输出的信号作为调整脉冲宽度的依据,使得脉冲控制单元PCU输出对应额定功率的脉冲信号来驱动功率开关单元1235,藉以提供稳定的电流给LED模块50。另一方面,切换单元SWU会切换为将电流感测信号ISEN传输至比较单元CU1的电路组态,使得比较单元CU1可以比较电流感测信号ISEN与过流保护信号V OCP,进而使脉冲控制单元PCU可在发生 过流情形时调整输出的脉冲信号,避免电路损毁。在此应注意的是,所述过流保护的功能在集成控制器1233中是可选的。在其他实施例中,集成控制器1233可以不包含比较单元CU1,在此配置底下,切换单元SWU可以同时省略,使电流检测信号ISEN可直接被提供至比较单元CU2的输入端。
请参照图33D,图33D是本实用新型第三实施例的具有触电检测功能的驱动电路的电路架构示意图。本实施例的驱动电路1330与前述图33B实施例大致相同,其包含集成控制器1333、二极管1334、电感1336、电容1337及电阻1338,其差异仅在于本实施例的驱动电路1330增加了晶体管Mp及并联电阻阵列Rpa的配置,其中晶体管Mp的漏极连接电阻1338的第一端,栅极连接集成控制器1333的一检测控制端,并且源极连接连到并联电阻阵列Rpa的第一端。并联电阻阵列Rpa包括多个相互并联的电阻,其电阻值可对应电阻1238设置,其中并联电阻阵列Rpa的第二端连接接地端GND1。
在本实施例中,集成控制器1333会根据当前的工作模式而经由检测控制端发出对应的信号至晶体管Mp的栅极,使得晶体管Mp在安装检测模式下反映于接收到的信号而导通,并且在正常工作模式下反映于接收到的信号而截止。在晶体管Mp导通的情况下,并联电阻阵列Rpa可等效为与电阻1338并联,使得等效电阻值降低,进而与人体电阻匹配。如此一来,当直管灯未正确安装而造成人体电阻连接到电源回路上时,经过等效电阻值的调整可使得检测电流信号ISEN对于人体电阻加入时的电流变化更加明显,进而提高安装检测的正确性。
请参见图34,图34是本实用新型第十三实施例的电源模块的电路方块示意图。在本实施例中,LED直管灯1400例如是直接接收外部电网508所提供的外部驱动信号,其中所述外部驱动信号通过火线(L)与中性线(N)给到LED直管灯1200的两端接脚501、502上。在实际应用中,LED直管灯1400可更包括接脚503、504。在LED直管灯1400包含有4根接脚501-504的结构底下,依设计需求同侧灯头上的两接脚(如501与503,或502与504)可以电性连接在一起或是相互电性独立,本实用新型不以此为限。触电检测模块6000设置于灯管内并包括检测控制电路6100以及限流电路6200,所述触电检测模块6000亦可称为安装检测模块6000(底下以安装检测模块进行描述6000)。限流电路6200是与驱动电路530搭配设置,其可例如为用以控制驱动电路禁/使能的偏压调整电路,或是驱动电路本身的功率开关(可参考相关实施例的说明)。检测控制电路6100会在检测模式下检测整流电路510输入端上的信号(即,外部电网508所提供的信号),并根据检测结果控制限流电路6200,以决定是否禁止电流流过LED直管灯1400。当LED直管灯1400尚未正确安装于灯座时,检测控制电路6100会检测到较小的电流信号而判断信号流过过高的阻抗,此时限流电路6200会禁能驱动电路, 以使LED直管灯1400停止操作(即,使LED直管灯1400不被点亮)。若否,检测控制电路6100判断LED直管灯1400正确安装于灯座上,限流电路6200会致能驱动电路,以使LED直管灯1400正常操作(即,使LED直管灯1400可被正常点亮)。换言之,当检测控制电路6100从整流电路510的输入端取样并检测到的电流高于安装设定电流(或电流值)时,检测控制电路6100判断LED直管灯1400正确安装于灯座上而控制限流电路致能驱动电路;当检测控制电路6100从整流电路510的输入端取样并检测到的电流低于所述安装设定电流(或电流值)时,检测控制电路6100判断LED直管灯1400未正确安装于灯座上而控制限流电路禁能驱动电路,使LED直管灯1400进入一不导通状态或是令LED直管灯1400的电源回路上的电流有效值被限缩至小于5mA(基于验证标准则为5MIU)。换句话说,安装检测模块6000基于检测到的阻抗判断导通或截止,使LED直管灯1400操作于导通或进入不导通/限制电流状态。藉此,可以避免使用者在LED直管灯1400尚未正确安装于灯座时因误触LED直管灯1400导电部分而触电的问题。
更具体的说,因为当人体接触灯管时,人体的阻抗会导致电源回路上的等效阻抗改变,安装检测模块6000可藉由检测电源回路上的电压/电流变化来判断用户是否接触灯管,即可实现上述的防触电功能。换言之,在本实用新型实施例中,安装检测模块6000可以透过检测电信号(包括电压或电流)来判断灯管是否被正确安装以及使用者是否在灯管未正确安装的情况下误触灯管的导电部分。相较于图18、图29实施例而言,由于本实施例的检测控制电路6100是通过取样桥前信号进行检测,因此较不易受电源模块中的其他电路影响而发生误判的问题,并且具有可省略串接在电源回路上的开关电路的有益效果。
从电路操作的角度来看,检测控制电路6100判断LED直管灯1400是否正确安装至灯座上/是否有异常的阻抗接入的步骤如图42A所示,包括:使检测路径导通一段期间后关断(步骤S101);在检测路径导通的期间取样检测路径上的电信号(步骤S102);判断取样到的电信号是否符合预设信号特征(步骤S103);当步骤S103判定为是时,控制限流电路5200操作在第一组态(步骤S104);以及当步骤S103判定为否时,控制限流电路5200操作在第二组态(步骤S105),并且接著回到步骤S101。
在本实施例中,所述检测路径可以是连接在整流电路510输入侧与接地端之间的电流路径,其具体配置可以参考下述图35A至35C实施例的说明。另外,检测控制电路6100导通检测路径的期间长度、间隔、触发时间等设置,可参考相关实施例的说明。
在步骤S101中,使检测路径导通一段期间可以通过脉冲式的开关控制手段来实现。
在步骤S102中,取样的电信号可以是电压信号、电流信号、频率信号或相位信号等可以 表现检测路径的阻抗变化的信号。
在步骤S103中,判断取样到的电信号是否符合预设信号特征的动作可例如是比较取样的电信号与一预设信号的相对关系。在本实施例中,检测控制器5100判定电信号符合预设信号特征可以是对应至判定LED直管灯为正确安装/无异常阻抗接入的状态,并且检测控制器7100判定电信号不符合预设信号特征可以是对应至判定LED直管灯为不正确安装/有异常阻抗接入的状态。
在步骤S104与S105中,所述第一组态及第二组态为两相异的电路组态,并且可视限流电路6200的配置位置及类型而定。举例来说,在限流电路6200为与驱动电路控制器的电源端或启动端相连的偏压调整电路的实施例下,所述第一组态可以是截止组态(正常偏压组态),并且所述第二组态可以是导通组态(调整偏压组态)。在限流电路6200为驱动电路中的功率开关的实施例下,所述第一组态可以是驱动控制组态(即,仅由驱动电路控制器来控制功率开关的切换,检测控制电路6100不影响功率开关的控制),并且所述第二组态可以是截止组态。
上述各步骤的详细操作及电路范例可参考触电检测模块/安装检测模块的各个实施例。
请参见图35A,图35A是本实用新型第十五实施例的安装检测模块的电路方块示意图。安装检测模块6000a包含检测脉冲发生模块6110、控制电路6120、检测判定电路6130以及检测路径电路6160。检测判定电路6130经路径6161耦接检测路径电路6160,以检测检测路径电路6160上的信号。检测判定电路6130同时经路径6131耦接控制电路6120,以将检测结果信号经路径6131传送至控制电路6120。检测脉冲发生模块6110通过路径6111耦接检测路径电路6160,并产生脉冲信号以通知检测路径电路6160导通检测路径或执行检测动作的时机点。控制电路6120经路径6121耦接驱动电路1430,以根据检测结果信号控制驱动电路1430的运作。
在本实施例中,检测路径电路6160具有第一检测连接端DE1、第二检测连接端DE2以及第三检测连接端De3,其中第一检测连接端DE1和第二检测连接端DE2电性连接整流电路510的两输入端,藉以从第一接脚501和第二接脚502上接收/取样外部驱动信号。检测路径电路6160会对接收/取样到的外部驱动信号进行整流,并且受控于检测脉冲发生模块6110而决定是否使整流后的外部驱动信号在一检测路径上流通。换言之,检测路径电路6160会响应于检测脉冲发生模块6110的控制而决定是否导通所述检测路径。检测路径电路6160基于脉冲信号导通检测路径并且检测是否有异常的外部阻抗接入等电路动作可以参考图23B至23D的说明,于此不再重复赘述。另外有关于检测脉冲发生模块和检测判定电路可以参考本文其他有关于检测脉冲发生模块和检测判定电路实施例的说明,于此同样不再重复赘述。
从安装检测模块的整体运作来看,在LED直管灯通电时,检测脉冲发生模块6110会先反应于加入的外部电源而启动,藉以产生脉冲来短暂导通检测路径电路6160所构成的检测路径。在检测路径导通的期间,检测判定电路6130会取样检测路径上的信号并判断LED直管灯是否正确的被安装在灯座上或是否有人体接触LED直管灯导致漏电。检测判定电路7130会根据检测结果产生对应的检测结果信号传送给控制电路6120。
在一些实施例中,所述控制电路6120可以是用以发出一控制信号给驱动电路1430中的驱动控制器的电路。在此实施例中,当控制电路6120接收到指示灯管已正确安装的检测结果信号时,控制电路6120会进一步的发出相应的控制信号给驱动电路1430,使得驱动电路1430响应于所述控制信号而正常的进行电源转换以提供后端LED模块电力。相反地,当控制电路6120接收到指示灯管未正确安装的检测结果信号时,控制电路6120会发出相应的控制信号给驱动电路1430,使得驱动电路1430响应于所述控制信号而停止进行电源转换,进而令在电源回路上流通的电流可被限制在安全值以下。
在一些实施例中,所述控制电路6120可以是偏压调整电路(底下以偏压调整电路6120描述),其可通过影响/调整驱动电路1430的偏压,藉以控制驱动电路1430的运作状态。在此实施例中,当偏压调整电路6120接收到指示灯管已正确安装的检测结果信号时,偏压调整电路6120不对驱动电路1430的偏压进行调整,使得驱动电路1430可正常的依据接收到的偏压电源而启动,并进行电源转换以提供后端LED模块电力。相反地,当偏压调整电路6120接收到指示灯管未正确安装的检测结果信号时,偏压调整电路6120会启动以调整提供给驱动电路1430的偏压电源,其中经调整后的偏压电源会不足以使驱动电路1430启动或正常地进行电源转换,进而令在电源回路上流通的电流可被限制在安全值以下。
在所述控制电路6120的配置底下,原先设置在电源回路上的开关电路(如3200、3200a-L、4200、4200a)可以被省略。由于原先设置在电源回路上的开关电路需承载大电流,故在晶体管规格的选择与设计上都有较为严格的考量,因此本实施例的设计可以透过省略开关电路而显著的降低安装检测模块整体的设计成本。另一方面,由于本实施例的控制电路6120是透过调整驱动电路1430的偏压状态来控制驱动电路1430的运作,并不需要针对驱动电路1430的设计进行更动,因此更有利于商品化的设计。
在一范例实施例中,检测脉冲发生模块6110和检测路径电路6160可分别以图35B和图35C的电路架构来实现(但不仅限于此),其他部分(检测判定电路6130和控制电路6120)的电路配置可参照相关实施例的叙述,其中图35B和图35C是本实用新型第十三实施例的安装检测模块的电路架构示意图。底下分就各模块/单元进行说明。
请参照图35B,图35B是根据本实用新型第十五实施例的安装检测模块的检测脉冲发生模块的电路架构示意图。检测脉冲发生模块6110包含电阻Rd1与Rd2、电容Cd1及脉冲发生电路6112。本实施例的配置与前述实施例的检测脉冲发生模块5110大致相同,两者间的主要差异在于本实施例的电阻Rd1的第一端是通过二极管Dd1与Dd2连接至整流电路510的第一整流输入端(以第一接脚501表示)与第二整流输入端(以第二接脚502表示)。其中,二极管Dd1与Dd2的具配置与作用可参照前述图28B的实施例说明,于此不再赘述。
请参照图35C,图35C是根据本实用新型第十五实施例的安装检测模块的检测路径电路的电路架构示意图。检测路径电路6160包含电阻Rd3、晶体管Md1、二极管Dd1及Dd2。本实施例的配置与前述实施例的检测路径电路5160大致相同,两者间的主要差异在于本实施例的检测路径电路6160设置了二极管Dd1与Dd2,其中电阻Rd3的第一端是通过二极管Dd1与Dd2连接至整流电路510的第一整流输入端(以第一接脚501表示)与第二整流输入端(以第二接脚502表示),藉以在整流输入端与整流输出端之间建立独立于电源回路的检测路径。二极管Dd1与Dd2的具体配置与作用和前述图28B的实施例说明,于此不再赘述。
总的来说,相较于前述包含有安装检测模块(2520)的电源模块而言,第九较佳实施例所述的电源模块是将安装检测与防触电的电路及功能整合至驱动电路中,使得驱动电路成为具有防触电及安装检测功能的驱动电路。更具体的说,所述第一范例实施例的电源模块仅需设置一用以检测电源回路的电信号的检测电路5000c即可搭配驱动电路1030的作用来实现LED直管灯的安装检测与防触电动作,亦即,透过调整驱动电路1030的控制方式,安装检测模块中的检测脉冲发生模块、检测结果锁存电路及开关电路皆可由既有的驱动电路1030的硬体架构来实现,不需增设额外的电路元件。在所述第一范例实施例中,由于电源模块中不需要有如前述安装检测模块包含检测脉冲发生模块、检测结果锁存电路、检测判定电路及开关电路等的复杂电路设计,因此可有效地降低整体电源模块的设计成本。除此之外,由于电路构件的减少,使得电源模块的布局得以有更大的空间,消耗功率亦较低,此有助于使输入电源更多的用于点亮LED模块中,进而提高光效,同时也让减少电源模块所造成的热。
所述第二范例实施例的检测电路5000c的配置与动作机制类似于安装检测模块中的检测脉冲发生模块、检测路径电路及检测判定电路,而原先安装检测模块中的检测结果锁存电路及开关电路部分则是利用驱动电路既有的控制器与功率开关来取代。在所述第二范例实施例中,透过特定的检测路径电路(5260)配置,安装状态信号Sidm可以轻易地被设计为与控制器1133的信号格式相容,进而在减少电路复杂度的基础底下,更大大降低了电路设计的难度。
于此附带一提的是,虽然在第二范例实施例是以类似图24B的检测路径电路3660的配 置来说明,但本实用新型不以此为限。在其他应用中,所述检测路径电路也可以利用前述其他实施例的配置来实现暂态电信号的取样/监测。
请参照图36A,图36A是本实用新型第十六实施例的安装检测模块的电路方块示意图。在安装检测模块7000中,关连于检测安装状态并且用以执行开关控制的电路可以统称或整合为检测控制器7100;用以响应于检测控制器7100的控制而影响电源回路上电流大小的电路可以统称或整合为限流电路7200。除此之外,虽然前述实施例并未具体指明,但本领域技术人员应可了解任何包含有源器件的电路皆需要对应的驱动电压VCC才能工作,因此在安装侦测模7000中会有部分元件/线路是作为产生驱动电压的用途。在本实施例中,用以产生驱动电压VCC的电路统称或整合为偏压电路7300(如图25A-25C的偏压电路)。
在本实施例的功能模块分配下,检测控制器7100与前述的检测控制电路2100近似,是用以进行安装状态检测/阻抗检测,藉以判断LED直管灯是否正确安装至灯座上,或可说是判断是否有异常的阻抗接入(例如人体阻抗),其中检测控制器7100会根据判断的结果控制限流电路7200。在检测控制器7100判定LED直管灯未正确安装/有异常阻抗接入时,检测控制器7100会控制限流电路7200断开,藉以避免电源回路上的电流过大而造成触电危害。限流电路7200与前述的限流电路2200近似,是用以在判定LED直管灯为正确安装/无异常阻抗接入时控制电源回路的电流正常流通,并且在判定不正确安装/有异常阻抗接入时控制电源回路的电流小于触电安全值以下的电路。在电路配置上限流电路7200可以是独立于驱动电路并串接在电源回路上的开关电路(如图19A的开关电路3200a、图20A的开关电路3200b、图21A的开关电路3200c、图22A的开关单元3200d、图23A的开关电路3200e、图24A的开关电路3200f、图25A的开关电路3200g、图25B的开关电路3200h、图25C的开关电路3200i、图25D的开关电路3200j、图26A的限流电路3200k、图26B的限流电路3200L)、与驱动电路控制器的电源端或启动端相连的偏压调整电路(如图31A的偏压调整电路5200A)或是驱动电路本身(如图30A的驱动电路530)。偏压电路7300是用以提供检测控制器7100工作所需的驱动电压VCC,其具体实施例可参照图36B及37B,此部分容后在述。
参照上述各个实施例可知,从功能的角度来看,检测控制器7100可以视为是本案的安装侦测模块中所使用的检测控制手段,并且限流电路7200可以视为是本案的安装侦测模块中所使用的限流手段,其中限流手段可对应至上述限流电路/开关电路可能的电路实施型态中的任一,并且检测控制手段可对应至安装侦测模块中除了开关手段之外的电路的部分或全部。
底下搭配图42C的步骤流程来进一步描述安装检测模块在进入工作模式(DRM)之后的操 作。请同时参照图28A和42C,图42C是本实用新型第二实施例的安装检测模块的控制方法的步骤流程图。检测控制器7100在进入工作模式DRM后会持续检测母线电压(步骤S301),并且判断母线电压在第二期间内是否持续低于第三电平(步骤S302),其中所述第二期间可例如是200ms-700ms,较佳为300ms或600ms,并且所述第三电平可例如是80V-120V,较佳为90V或115V。换句话说,在步骤S302的一实施例中,检测控制器7100会判断母线电压是否持续低于115V超过600ms。
若安装检测模块在步骤S302中判定为是,则代表外部驱动信号被停止提供,即LED直管灯掉电。此时检测控制器7100会重新控制限流电路7200切换至第二组态(步骤S303),并且进行复位(步骤S304)。相反的,若检测控制器7100在步骤S302中判定为否,则可视为外部驱动信号被正常提供至LED直管灯。此时检测控制器7100会回到步骤S301以持续检测母线电压,并判断LED直管灯是否掉电。
请参照图36B,图36B是本实用新型第一实施例的偏压电路的电路架构示意图。在交流电源输入的应用底下,偏压电路7300a包括整流电路7310、电阻Re1与Re2及电容Ce1。在本实施例中,整流电路7310是以全波整流桥为例,但本实用新型不以此为限。整流电路7310的输入端接收外部驱动信号Sed,并且对外部驱动信号Sed进行整流,以在输出端输出直流的整流后信号。电阻Re1与Re2串接在整流电路7310的输出端之间,并且电容Ce1与电阻Re2相互并联,其中整流后信号经过电阻Re1与Re2的分压及电容Ce1的稳压后,转换为驱动电压VCC从电容Ce1的两端(即,节点PN与接地端)输出。
在内置安装检测模块的实施例中,由于LED直管灯的电源模块中本身就包含有整流电路(如510),因此整流电路7310可以利用电源模块既有的整流电路取代,并且电阻Re1与Re2及电容Ce1可直接连接在电源回路上,藉以利用电源回路上经整流后的母线电压(即,整流后电压)作为供电来源。在外置安装检测模块的实施例中,由于安装检测模块是直接以外部驱动信号Sed作为供电来源,因此整流电路7310会独立于电源模块设置,藉以将交流信号转换为可供安装检测模块的内部电路使用的直流驱动电压VCC。
请参照图36C,图36C是本实用新型第二实施例的偏压电路的电路架构示意图。在本实施例中,偏压电路7300b包括整流电路7610、电阻Re3、齐纳二极管ZD1及电容Ce2。本实施例与前述图36B实施例大致相同,两者间的主要差异在本实施例是以齐纳二极管ZD1来取代图36B的电阻Re2,如此可使驱动电压VCC更稳定。
请参照图37,图37是本实用新型一实施例的检测脉冲发生模块的电路方块示意图。本实施例的检测脉冲发生模块7110包括脉冲启动电路7112及脉宽决定电路7113。脉冲启动电 路7112用以接收外部驱动信号Sed,并且根据外部驱动信号Sed决定检测脉冲发生模块7110发出脉冲的时间点。脉宽决定电路7113耦接脉冲启动电路7112的输出端,用以设定脉冲宽度,并且在脉冲启动电路7112所指示的时间点发出符合设定脉冲宽度的脉冲信号DP。
在一些实施例中,所述检测脉冲发生模块7110还可进一步包括输出缓冲电路7114。所述输出缓冲电路7114的输入端耦接脉宽决定电路7113的输出端,其是用以调整脉宽决定电路7113的输出信号波形(如电压、电流),藉以输出可符合后端电路的运作需求的脉冲信号DP。
以图19B所绘示的检测脉冲发生模块3110为例,其发出脉冲的时间点是根据接收到驱动电压VCC的时间点为准,因此产生驱动电压VCC的偏压电路可以视为检测脉冲发生模块3110的脉冲启动电路。另一方面,检测脉冲发生模块3110所发出的脉冲信号的脉宽主要是由电容C11、C12及C13和电阻R11、R12及R13所组成的RC充放电路的充放电时间决定,因此电容C11、C12及C13和电阻R11、R12及R13可视为检测脉冲发生模块3110的脉宽决定电路。缓冲器BF1与BF2则为检测脉冲发生模块3110的输出缓冲电路。
以图20B所绘示的检测脉冲发生模块3210为例,其发出脉冲的时间点与接收到驱动电压VCC的时间点以及电阻R21与电容C21所组成的RC电路的充放电时间有关,因此产生驱动电压VCC的偏压电路、电阻R21及电容C21可以视为检测脉冲发生模块3210的脉冲启动电路。另一方面,检测脉冲发生模块3210所发出的脉冲信号的脉宽主要是由施密特触发器STRG的顺向阈值电压与负向阈值电压以及晶体管M21的切换延迟时间所决定,因此施密特触发器STRG以及晶体管M21可视为检测脉冲发生模块3210的脉宽决定电路。
在一些范例实施例中,检测脉冲发生模块3110、3210的脉冲启动电路可以透过增设比较器来实现脉冲启动时间点的控制,如图38A所示。图38A是本实用新型第一实施例的检测脉冲发生模块的电路架构示意图。具体而言,检测脉冲发生模块7110a包括作为脉冲启动电路7112a的比较器(底下以比较器7112a称之)及脉宽决定电路7113a。比较器7112a的第一输入端接收外部驱动信号Sed,第二输入端接收参考电平Vps,并且输出端连接至电阻Rf1的一端(此端对应图20B的驱动电压VCC输入端)。在此,比较器3241接收外部驱动信号Sed并不仅限于通过将外部驱动信号Sed直接给到比较器3241的第一输入端的方式来实现。在一些实施例中,外部驱动信号Sed可以通过整流及/或分压等信号处理手段被转换为一关连于外部驱动信号的状态信号,而比较器3241在接收所述状态信号时,即可获知外部驱动信号的状态,等同于接收到外部驱动信号Sed或基于外部驱动信号Sed进行后续的信号比较操作。脉宽决定电路7113a包括电阻Rf1-Rf3、施密特触发器STRG、晶体管Mf1、电容Cf1及齐纳二 极管ZD1,其中上述元件的配置类似于图20B的配置,故电路连接相关说明可参照上述实施例。在此配置底下,由电阻Rf1与电容Cf1组成的RC电路会在外部驱动信号Sed的电平超过参考电平Vps时才开始充电,进而控制脉冲信号DP的产生时间点。具体信号时序如图39A所示。
请一并参照图38A与图39A,图39A是本实用新型第一实施例的检测脉冲发生模块的信号时序示意图。在本实施例中,作为脉冲启动电路的比较器3241会在外部驱动信号Sed的电平高于参考电平Vps时输出高准位信号至电阻Rf1的一端,使得电容Cf1开始充电。此时电容Cf1上的电压Vcp会随时间逐渐上升。当电压Vcp达到施密特触发器STRG的顺向阈值电压Vsch1时,施密特触发器STRG的输出端会输出高准位信号,进而导通晶体管Mf1。在晶体管Mf1导通后,电容Cf1会通过电阻Rf2与晶体管Mf1开始对地放电,使得电压Vcp随时间逐渐下降。当电压Vcp降至施密特触发器STRG的逆向阈值电压Vsch2时,施密特触发器STRG的输出端会从输出高准位信号切换为输出低准位信号,进而产生脉冲波形DP1,其中脉冲DP1的脉宽DPW即是由顺向阈值电压Vsch1、逆向阈值电压Vsch2及晶体管Mf1的切换延迟时间所决定。在经过设定时间间隔TIV后(即,外部驱动信号Sed的电平从降至低于参考电平Vps至再次上升至高于参考电平Vps的期间),施密特触发器STRG会再次依据上述操作而产生脉冲波形DP2,其后的操作可以此类推。
在一些实施例中,脉冲启动电路7112可以在外部驱动信号Sed达到特定电平时来发出脉冲产生指示,藉以决定脉冲信号的产生时间点,如图38B所示。图38B是本实用新型第二实施例的检测脉冲发生模块的电路架构示意图。具体而言,检测脉冲发生模块7110b包括脉冲启动电路7112b及脉宽决定电路7113b。脉冲启动电路7112b包括比较器CPf1以及信号沿触发电路SETC。比较器CPf1的第一输入端接收外部驱动信号Sed,第二输入端接收参考电平Vps,并且输出端连接至信号沿处发电路SETC的输入端。信号沿触发电路SETC可例如是上升沿触发电路或下降沿触发电路,其可检测出比较器CPf1输出转态的时间点,并且据以发出脉冲产生指示给后端的脉宽决定电路7113b。脉宽决定电路7113b可以是任何能根据脉冲产生指示而在特定时间点产生设定具有设定脉宽的脉冲产生电路,例如是前述图19B、图20B的电路,或是555计时器等集成元件,本实用新型不以此为限。于此附带一提的是,虽然在图38B是绘示比较器CPf1的第一输入端直接接收外部驱动信号Sed,但本实用新型不以此为限。在一些实施例中,比较器CPf1的第一输入端也可以接收经信号处理后(例如整流、滤波、分压等)的外部驱动信号Sed作为参考。换句话说,脉冲启动电路7112b可以基于任何可指示外部驱动信号的电平或相位状态的关连信号作为脉冲产生时点的参考。
检测脉冲发生模块7110的具体信号时序可如图39B或图39C所示。其中,图39B是本实用新型第二实施例的检测脉冲发生模块的信号时序示意图,其绘示上升沿触发的信号波形实施例;图39C是本实用新型第三实施例的检测脉冲发生模块的信号时序示意图,其绘示下降沿触发的信号波形实施例。请先一并参照图38B与图39B,在本实施例中,比较器CPf1会在外部驱动信号Sed的电平上升至超过参考电平Vps时输出高准位信号,并且在外部驱动信号Sed的电平高于参考电平Vps的期间维持高准位信号输出。当外部驱动信号Sed的电平从峰值逐渐降至低于参考电平Vps时,比较器CPf1会再次输出低准位信号。如此,比较器CPf1的输出端会产生具有脉冲波形的输出电压Vcp。信号沿触发电路SETC会反应于输出电压Vcp的上升沿而触发一致能信号输出,使得后端的脉宽决定电路7113b根据致能信号与设定的脉宽DPW,而在输出电压Vcp的上升沿附近产生脉冲信号DP。基于上述运作,检测脉冲发生模块3610可藉由调整参考电平Vps的设定来对应的改变脉冲信号DP的脉冲产生时间点,使得脉冲信号DP在外部驱动信号Sed达到特定电平或相位时才触发脉冲输出。如此一来,便可避免先前实施例所述的脉冲信号DP在外部驱动信号Sed零点附近产生时可能带来的误判问题。
在一些实施例中,所述参考电平Vps可以基于母线电压的大小而对应的调整,进而令检测脉冲发生模块可以响应不同的电网电压(例如120V和277V)而在不同的时点产生脉冲信号。藉此,无论接收到的外部驱动信号为哪种电网电压规格,皆可使检测路径上的信号电平被限制在相应的范围之内,进而提高安装检测/阻抗检测的准确性。举例来说,所述参考电平Vps可包含对应第一电网电压(例如120V)的第一参考电平和对应第二电网电压(例如277V)的第二参考电平。当检测脉冲发生模块7110接收到的外部驱动信号Sed为第一电网电压时,脉冲启动电路7112b会基于第一参考电平来决定产生脉冲信号的时点;当检测脉冲发生模块7110接收到的外部驱动信号为第二电网电压时,脉冲启动电路7112b会基于第二参考电平来决定产生脉冲信号的时点。
请再一并参照图38B与图39C,本实施例与前述图39B实施例所述的运作大致相同,两者间的主要差异在于本实施例的信号沿触发电路SETC是反应于输出电压Vcp的下降沿而触发致能信号输出,因此脉宽决定电路7113b会在输出电压Vcp的下降沿附近产生脉冲信号DP。在一些实施例中,所述参考电平Vps可包含对应第一电网电压(例如120V)的第一参考电平和对应第二电网电压(例如277V)的第二参考电平,其中所述第一参考电平例如为115V,并且所述第二参考电平例如为200V。换句话说,当检测脉冲发生模块7110接收到的外部驱动信号Sed为第一电网电压时,脉冲启动电路7112b会在外部驱动信号Sed的下降沿的115V时输出 脉冲信号DP;当检测脉冲发生模块3610接收到的外部驱动信号Sed为第二电网电压时,脉冲启动电路7112b会在外部驱动信号Sed的下降沿的200V时输出脉冲信号DP。
基于上述的教示,本领域技术人员应可了解,搭配信号沿触发的运作,还有许多可能的脉冲产生时间点的决定机制也可藉由所述的脉冲启动电路7112来实施。举例来说,脉冲启动电路7112可以设计为在检测到输出电压Vcp的上升沿/下降沿后开始计时,并且在达到预定时间后(可自行设定)再触发致能信号给后端的脉宽决定电路7113。又例如,脉冲启动电路7112可以在检测到输出电压Vcp的上升沿时,预先激活脉宽决定电路7113,并且在检测到输出电压Vcp的下降沿时再触发致能信号给脉宽决定电路7113来输出脉冲信号DP,使得脉宽决定电路7113可以快速反应,以在精确的时间点下产生脉冲信号DP。
请参照图39D,图39D是本实用新型第四实施例的检测脉冲发生模块的信号时序示意图。本实施例与前述图39B、39C的运作大致相同,本实施例与前述实施例的主要差异在于本实施例是在检测到外部驱动信号Sed的电平超过参考电平Vps时开始计时一段延迟期间DLY,并且在延迟期间DLY后产生脉冲(DP1)。接著检测脉冲发生模块会依照设定时间间隔TIV再次产生脉冲(DP2),后续操作可以此类推。
请参见图40,图40是本实用新型第十四实施例的电源模块的电路方块示意图。相较于图17A实施例,本实施例的安装检测模块8000设置在LED直管灯1500外部,并且限流电路8200是位在外部电网508的供电路径上,例如是设置在灯座中。其中,当LED直管灯1500的接脚电性连接至外部电网508时,限流电路8200会经由对应的接脚501串接至LED直管灯500的电源回路,使得检测控制电路8100可以藉由上述图17A至图39D的实施例所述的安装检测方式来判断LED直管灯1500是否正确安装至灯座上及/或使用者是否有触电风险,并且在判定有触电风险/未正确安装时,使限流电路8200限制外部电网508对LED直管灯1500的供电。
附带一提的是,在本案的描述中,虽然对于各模块/电路有功能性的命名,但本领域的技术人员应可了解,依据不同的电路设计,同一电路组件可视为有不同的功能,并且不同的模块/电路可能可以共享同一电路组件来实现其各别的电路功能。因此本案的功能性命名并非用以限定特定的电路组件仅能含括于特定的模块/电路中,于此合先叙明。
另外应注意的是,上述实施例所提及的限流电路4200、4200a皆是一种限流手段的实施方式,其作用在于被致能时(如开关电路被截止)将电源回路上的电流限制至小于特定值以下(例如5MIU)。本领域技术人员在参照上述实施例内容后,应可了解所述限流手段可以通过一般类似于开关电路的架构来实施。举例来说,所述开关电路可以利用电子式开关、电磁式开 关、继电器、三端双向可控矽(TRIAC)、晶体闸流管(Thyristor)、可调阻抗元件(可变电阻、可变电容、可变电感等)来实施。换言之,本领域技术人员应可了解,在本案已具体公开有关于利用开关电路来实施限流的概念底下,本案所包含的范围同样及于上述开关电路各类实施例的均等范围。
此外,综合第一至第五较佳实施例来看,本领域技术人员应可参酌本文而了解到本案第二较佳实施例所揭示的安装检测模块不仅是可作为分布式的电路设计于LED直管灯中,也可以将部分电路组件整合至一集成电路中(如第三较佳实施例),或是将全部电路组件整合至一集成电路中(如第四较佳实施例),藉以节省安装检测模块的电路成本和体积。此外,透过模块化/集成化的设置安装检测模块,可使得安装检测模块可更易于搭配在不同类型的LED直管灯设计中,进而提高设计兼容性。另一方面,集成化的安装检测模块在LED直管灯的应用底下,因为灯管内部的电路面积显著缩小因此可使得LED直管灯的出光面积明显地提升,进而提高LED直管灯的照明特性表现。再者,由于集成化的设计可以使被集成的组件的工作电流减小(降低约50%),并且使电路工作效率提高,因此节省的功率可被用来供应给LED模块发光使用,使得LED直管灯的发光效率可进一步提升。
举例来说,上述实施例的安装检测模块也可以称做检测模块/电路、漏电检测模块/电路、漏电保护模块/电路或阻抗检测模块/电路等;所述检测结果锁存模块也可以称做检测结果储存模块/电路、控制模块/电路等;所述检测控制器可以是包含有检测脉冲发生模块、检测结果锁存模块及检测判定电路的电路,本实用新型不以此为限。除此之外,上述实施例的检测脉冲发生模块在一些实施例中也可称做检测触发电路。
综上所述,上述图17A至42C实施例教示了利用电子控制与检测的方式来实现防触电保护的概念。相较于利用机械结构作动来进行防触电的技术而言,由于电子式的控制与检测方法不会有机械疲劳的问题存在,因此利用电子信号进行灯管的防触电保护可以具有较佳的可靠度与使用寿命。
应注意的是,在脉冲检测的实施例中,所述安装检测模块在运作时不会实质改变LED直管灯本身有关于驱动及发光方面的特性及状态。所述驱动及发光方面的特性例如是电源相位、输出电流等影响LED直管灯在点亮状态下的发光亮度及输出功率的特性。换言之,所述安装检测模块的运作仅会关联于LED直管灯处于未被点亮状态下的漏电保护运作,与直流电源转换电路、功率因数校正电路及调光电路等调整LED直管灯点亮状态特性的电路皆有所差异。
在电源模块设计中,所述的外部驱动信号可以是低频交流信号(例如:市电所提供)或直流信号(例如:电池所提供或外置驱动电源),且可以双端电源的驱动架构来输入LED直管灯。 在双端电源的一些驱动架构实施例中,可以支持仅使用其中一端以做为单端电源的方式来接收外部驱动信号。
在直流信号作为外部驱动信号时,LED直管灯的电源模块可以省略整流电路。
在电源模块的整流电路设计中,双整流电路中的第一整流单元与第二整流单元分别与配置在LED直管灯的两端灯头的接脚耦接。双整流单元适用于双端电源的驱动架构。而且配置有至少一整流单元时,可以适用于低频交流信号、高频交流信号、或直流信号的驱动环境。
双整流单元可以是双半波整流电路、双全波整流电路或半波整流电路及全波整流电路各一之组合。
在LED直管灯的接脚设计中,可以是双端各单接脚(共两个接脚)、双端各双接脚(共四个接脚)的架构。在双端各单接脚的架构下,可适用于单一整流电路的整流电路设计。在双端各双接脚的架构下,可适用于双整流电路的整流电路设计,且使用双端各任一接脚或任一单端的双接脚来接收外部驱动信号。
在电源模块的滤波电路设计中,可以具有单一电容或π型滤波电路,以滤除整流后信号中的高频成分,而提供低纹波的直流信号为滤波后信号。滤波电路也可以包含LC滤波电路,以对特定频率呈现高阻抗,以符合对特定频率的电流大小规范。再者,滤波电路更可包含耦接于接脚及整流电路之间的滤波单元,以降低LED灯的电路所造成的电磁干扰。在直流信号做为外部驱动信号时,LED直管灯的电源模块可以省略滤波电路。
另外,可以额外增加保护电路来保护LED模块。保护电路可以检测LED模块的电流或/及电压来对应启动对应的过流或过压保护。
在电源模块的辅助供电模块设计中,储能单元可以是电池或超级电容,与LED模块并联。辅助供电模块适用于包含驱动电路的电源模块设计中。
在电源模块的LED模块设计中,LED模块可以包含彼此并联的多串LED组件(即,单一LED芯片,或多个不同颜色LED芯片组成的LED组)串,各LED组件串中的LED组件可以彼此连接而形成网状连接。
也就是说,可以将上述特征作任意的排列组合,并用于LED直管灯的改进。

Claims (10)

  1. 一种双端进电的Type-B型LED直管灯,所述LED直管灯还具有灯管和两灯头,所述两灯头分别设置在所述灯管两侧,所述两灯头其中之一具有第一接脚和第三接脚,并且所述两灯头其中之另一具有第二接脚和第四接脚,其特征在于包括:
    LED模块,响应于点亮驱动信号而发光;
    电源模块,通过所述第一至第四接脚其中之二耦接外部电网以接收所述外部电网提供的外部驱动信号,并且用以产生所述点亮驱动信号并提供给所述LED模块,其中所述电源模块包括:
    整流电路,用以对所述外部驱动信号进行整流并产生整流后信号;
    滤波电路,接收所述整流后信号并产生滤波后信号;
    驱动电路,依据所述滤波后信号进行电源转换,藉以产生所述点亮驱动信号,其中所述整流电路、所述滤波电路以及所述驱动电路通过电源回路连接并供电给所述LED模块;以及
    安装检测模块,用以检测所述LED直管灯的安装状态并且据以在判定所述LED直管灯未正确安装时限制所述电源回路上的电流小于安全值,
    其中,所述驱动电路从所述第一至至第四接脚其中未耦接所述外部电网的接脚接收调光信号,并且基于所述调光信号调整所述点亮驱动信号的亮度和色温其中之一。
  2. 根据权利要求1所述的双端进电的Type-B型LED直管灯,其特征在于所述LED直管灯通过所述第一接脚和所述第二接脚接收所述外部驱动信号,通过所述第四接脚接收所述调光信号,并且通过所述第二接脚和所述第三接脚接收辅助电源。
  3. 根据权利要求1所述的双端进电的Type-B型LED直管灯,其特征在于所述安装检测模块包括:
    检测脉冲发生模块,用以产生具有脉冲的控制信号;
    检测路径电路,连接所述检测脉冲发生模块,并且反应于所述控制信号而导通检测路径;
    检测判定电路,连接所述检测路径电路,用以取样检测路径上的电信号,并且产生指示是否有触电风险的检测结果信号;以及
    控制电路,连接所述检测判定电路及所述电源模块的驱动电路,用以根据所述检测结果信号调整所述驱动电路的偏压状态。
  4. 根据权利要求3所述的双端进电的Type-B型LED直管灯,其特征在于所述检测路径建立在所述整流电路的输入端和接地端之间。
  5. 根据权利要求4所述的双端进电的Type-B型LED直管灯,其特征在于在检测阶段下,所 述检测路径电路在所述外部驱动信号的正半波期间内建立第一检测路径并且在所述外部驱动信号的负半波期间内建立不同于所述第一检测路径的第二检测路径。
  6. 根据权利要求3所述的双端进电的Type-B型LED直管灯,其特征在于所述电源模块更包括:
    应急控制模块,用以判断所述电源模块接收的外部驱动信号是否为直流信号,其中:
    当所述应急控制模块判定所述外部驱动信号为直流信号时,所述应急控制模块输出第一状态信号给所述控制电路,使所述控制电路控制所述开关电路维持在导通状态;以及
    当所述应急控制模块判定所述外部驱动信号为非直流信号时,所述应急控制模块输出第二状态信号给所述控制电路,使所述控制电路基于所述检测脉冲发生模块及所述检测判定电路的输出来控制所述开关电路的导通或关断。
  7. 一种LED照明系统,包括具有驱动电路以及LED模块的LED直管灯,所述LED直管灯还具有灯管和两灯头,所述两灯头分别设置在所述灯管两侧,所述两灯头其中之一具有第一接脚和第三接脚,并且所述两灯头其中之另一具有第二接脚和第四接脚,其特征在于,所述LED直管灯通过所述第一至第四接脚其中之二耦接外部电网以接收所述外部电网提供的电源,并且所述LED直管灯系统还包括:
    调光控制电路,通过未耦接所述外部电网的接脚与所述驱动电路耦接,用于产生调光信号以调控所述驱动电路提供给所述LED模块的驱动电流,使所述LED模块的亮度和/或色温发生变化。
  8. 根据权利要求7所述的LED照明系统,其特征在于,所述LED直管灯通过所述第一接脚和所述第二接脚从所述灯管两侧接收所述外部电网提供的电源,并且所述调光控制电路通过所述第四接脚与所述驱动电路耦接。
  9. 根据权利要求7所述的LED照明系统,其特征在于,
    所述调光控制电路经控制而产生具有第一电平的所述调光信号;
    具有所述第一电平的所述调光信号经信号转换电路转换为符合所述驱动电路的信号格式的信号,并且传递给所述驱动电路;以及
    所述驱动电路根据所述转换后的信号产生相应于所述第一电平的驱动电流。
  10. 根据权利要求8所述的LED照明系统,其特征在于,还包括通过所述第二接脚和所述第三接脚与所述LED直管灯耦接的辅助电源模块,所述辅助电源模块用于在所述外部电网供电发生异常时,提供辅助电力给所述LED直管灯使用。
PCT/CN2018/107773 2017-09-27 2018-09-26 一种发光二极管直管灯及发光二极管照明系统 WO2019062782A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880063107.7A CN111801989B (zh) 2017-09-27 2018-09-26 一种led直管灯及led照明系统

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN201710888946 2017-09-27
CN201710888946.X 2017-09-27
CN201711298908 2017-12-08
CN201711298908.5 2017-12-08
CN201810032366.5 2018-01-12
CN201810032366 2018-01-12
CN201810130074 2018-02-08
CN201810130074.5 2018-02-08
CN201810205729 2018-03-13
CN201810205729.0 2018-03-13
CN201810272726 2018-03-29
CN201810272726.9 2018-03-29
CN201810292824 2018-03-30
CN201810292824.9 2018-03-30
CN201810326908 2018-04-12
CN201810326908.X 2018-04-12
CN201810752429 2018-07-10
CN201810752429.4 2018-07-10
CN201811005720 2018-08-30
CN201811005720.1 2018-08-30
CN201811053085.4 2018-09-10
CN201811053085 2018-09-10

Publications (1)

Publication Number Publication Date
WO2019062782A1 true WO2019062782A1 (zh) 2019-04-04

Family

ID=65900758

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/107773 WO2019062782A1 (zh) 2017-09-27 2018-09-26 一种发光二极管直管灯及发光二极管照明系统
PCT/CN2018/107770 WO2019062781A1 (en) 2017-09-27 2018-09-26 LED TUBE LAMP

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107770 WO2019062781A1 (en) 2017-09-27 2018-09-26 LED TUBE LAMP

Country Status (3)

Country Link
JP (2) JP2020535614A (zh)
CN (1) CN111801989B (zh)
WO (2) WO2019062782A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683514B (zh) * 2019-05-10 2020-01-21 茂達電子股份有限公司 快速暫態電流模式控制電路及方法
CN111836433A (zh) * 2019-04-22 2020-10-27 厦门赢科光电有限公司 一种供电电源的控制电路
CN112563258A (zh) * 2020-12-11 2021-03-26 浙江华晶整流器有限公司 一种光控模块
CN112686808A (zh) * 2020-12-22 2021-04-20 江苏迪盛智能科技有限公司 一种光处理图像螺旋线矫正方法及装置
TWI757667B (zh) * 2019-12-11 2022-03-11 宏碁股份有限公司 升壓轉換器
US20230232516A1 (en) * 2022-01-18 2023-07-20 Paragon Semiconductor Lighting Technology Co., Ltd. Led illumination device for rapidly releasing residual capacitance
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030872A1 (de) * 2021-01-13 2022-07-20 Tridonic GmbH & Co KG Led-treiber mit leiterbahn-schmelzsicherung
DE202021100111U1 (de) * 2021-01-13 2022-04-19 Tridonic Gmbh & Co Kg LED-Treiber mit Leiterbahn-Schmelzsicherung
CN219780447U (zh) * 2021-01-27 2023-09-29 嘉兴山蒲照明电器有限公司 一种led灯
US11616258B2 (en) 2021-06-30 2023-03-28 Enovix Corporation Distributed cell formation systems for lithium containing secondary batteries
US20230006268A1 (en) * 2021-06-30 2023-01-05 Enovix Operations Inc. Distributed cell formation systems and pre-lithiation modules for lithium containing secondary batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868111A (zh) * 2009-04-15 2010-10-20 达瑞光电股份有限公司 可补偿电流的发光模块
CN102014560A (zh) * 2010-11-24 2011-04-13 四川省桑瑞光辉标识系统股份有限公司 一种自适应led照明装置及其控制方法
US20110248646A1 (en) * 2010-04-09 2011-10-13 Everlight Electronics Co., Ltd. Power supply unit, light emitting apparatus and dimming method thereof
CN102595687A (zh) * 2011-01-07 2012-07-18 许秀玉 智能型可调光的节能灯电源供应装置及其方法
CN205584538U (zh) * 2015-02-12 2016-09-14 嘉兴山蒲照明电器有限公司 一种led直管灯
CN106015996A (zh) * 2015-03-25 2016-10-12 嘉兴山蒲照明电器有限公司 一种led直管灯

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737809B2 (en) * 2000-07-31 2004-05-18 Luxim Corporation Plasma lamp with dielectric waveguide
US9277603B2 (en) * 2013-12-19 2016-03-01 Lightel Technologies, Inc. Linear solid-state lighting with frequency sensing free of fire and shock hazards
CN206555763U (zh) * 2015-03-25 2017-10-13 嘉兴山蒲照明电器有限公司 一种led直管灯
CN207124784U (zh) * 2016-01-22 2018-03-20 嘉兴山蒲照明电器有限公司 一种安装侦测模块的电路以及led直管灯
CN206908890U (zh) * 2016-03-09 2018-01-19 嘉兴山蒲照明电器有限公司 一种安装侦测模块的电路以及led直管灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868111A (zh) * 2009-04-15 2010-10-20 达瑞光电股份有限公司 可补偿电流的发光模块
US20110248646A1 (en) * 2010-04-09 2011-10-13 Everlight Electronics Co., Ltd. Power supply unit, light emitting apparatus and dimming method thereof
CN102014560A (zh) * 2010-11-24 2011-04-13 四川省桑瑞光辉标识系统股份有限公司 一种自适应led照明装置及其控制方法
CN102595687A (zh) * 2011-01-07 2012-07-18 许秀玉 智能型可调光的节能灯电源供应装置及其方法
CN205584538U (zh) * 2015-02-12 2016-09-14 嘉兴山蒲照明电器有限公司 一种led直管灯
CN106015996A (zh) * 2015-03-25 2016-10-12 嘉兴山蒲照明电器有限公司 一种led直管灯

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836433A (zh) * 2019-04-22 2020-10-27 厦门赢科光电有限公司 一种供电电源的控制电路
TWI683514B (zh) * 2019-05-10 2020-01-21 茂達電子股份有限公司 快速暫態電流模式控制電路及方法
TWI757667B (zh) * 2019-12-11 2022-03-11 宏碁股份有限公司 升壓轉換器
CN112563258A (zh) * 2020-12-11 2021-03-26 浙江华晶整流器有限公司 一种光控模块
CN112686808A (zh) * 2020-12-22 2021-04-20 江苏迪盛智能科技有限公司 一种光处理图像螺旋线矫正方法及装置
CN112686808B (zh) * 2020-12-22 2023-07-28 江苏迪盛智能科技有限公司 一种光处理图像螺旋线矫正方法及装置
US20230232516A1 (en) * 2022-01-18 2023-07-20 Paragon Semiconductor Lighting Technology Co., Ltd. Led illumination device for rapidly releasing residual capacitance
US11716801B1 (en) * 2022-01-18 2023-08-01 Paragon Semiconductor Lighting Technology Co., Ltd. LED illumination device for rapidly releasing residual capacitance
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Also Published As

Publication number Publication date
JP2020535614A (ja) 2020-12-03
JP3235157U (ja) 2021-12-02
CN111801989B (zh) 2023-07-14
CN111801989A (zh) 2020-10-20
WO2019062781A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2019062782A1 (zh) 一种发光二极管直管灯及发光二极管照明系统
US10605415B2 (en) LED tube lamp
US10337676B2 (en) LED tube lamp
US10281092B2 (en) LED tube lamp
US10571081B2 (en) LED tube lamp and driving method therefor
US11543086B2 (en) LED tube lamp
CN212163776U (zh) 一种侦测模块、电源模块及led直管灯
CN210444530U (zh) 安装侦测模块、电源模块及应用所述模块的led直管灯
US20200256521A1 (en) Led tube lamp
WO2021043269A1 (zh) 一种浪涌防护电路及应用其之电源装置和led照明装置
CN211955768U (zh) 安装检测装置及led直管灯
CN211959612U (zh) 一种led直管灯及其电源模块和一种led照明系统
WO2020088521A1 (zh) 一种led直管灯及其电源模块
CN210298147U (zh) 一种led直管灯及其灯座、灯具、电源电路和检测电路
CN209856808U (zh) 一种led直管灯
WO2022148463A1 (zh) 一种led灯及误用警示模块
CN211481558U (zh) 一种led直管灯、电源模块及其滤波电路与安装侦测模块
CN210112321U (zh) 一种led直管灯照明系统
WO2022161187A1 (zh) 一种led灯
US20240093841A1 (en) LED lamp and misuse warning module thereof
US11754232B2 (en) LED lamp and power source module thereof related applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860816

Country of ref document: EP

Kind code of ref document: A1