WO2019062585A1 - 一种资源调度方法、网络设备以及通信设备 - Google Patents

一种资源调度方法、网络设备以及通信设备 Download PDF

Info

Publication number
WO2019062585A1
WO2019062585A1 PCT/CN2018/106053 CN2018106053W WO2019062585A1 WO 2019062585 A1 WO2019062585 A1 WO 2019062585A1 CN 2018106053 W CN2018106053 W CN 2018106053W WO 2019062585 A1 WO2019062585 A1 WO 2019062585A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
frequency domain
domain resource
scheduling information
resource scheduling
Prior art date
Application number
PCT/CN2018/106053
Other languages
English (en)
French (fr)
Inventor
李华
唐浩
阿布多利•贾瓦德
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18861926.6A priority Critical patent/EP3570611A4/en
Publication of WO2019062585A1 publication Critical patent/WO2019062585A1/zh
Priority to US16/673,973 priority patent/US20200068610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a resource scheduling method, a network device, and a communications device.
  • the Downlink Control Information (DCI) sent by the network device to the terminal includes scheduling information of the data channel, and based on the scheduling information, the network device and the terminal pass the data channel. Data transfer.
  • DCI Downlink Control Information
  • NR New Radio
  • the embodiment of the present application provides a resource scheduling method, a network device, and a communication device, which are used to improve resource scheduling flexibility.
  • the embodiment of the present application provides a resource scheduling method, including: sending, by a network device, first resource scheduling information and second resource scheduling information to a communications device on a first frequency domain resource.
  • the first resource allocation information includes first resource allocation information, where the first resource allocation information is used to indicate the first resource in the first frequency domain resource.
  • the second resource scheduling information includes the identifier information of the second frequency domain resource and the second resource allocation information, where the second resource allocation information is used to indicate the second resource in the second frequency domain resource, and the second resource scheduling information is used to indicate the
  • the first frequency domain resource is switched to the second frequency domain resource; the first frequency domain resource and the second frequency domain resource belong to a frequency domain resource in the carrier.
  • An embodiment of the present application provides a resource scheduling method, where a network device sends first resource scheduling information and second resource scheduling information to a communications device in a first frequency domain resource, to indicate that the communications device is in the first state by using the first resource scheduling information. Scheduling on the first resource in the frequency domain resource, and using the second resource scheduling information to instruct the communication device to switch from the first frequency domain resource to the second frequency domain resource, and communicate with the network device on the second resource.
  • the communications device may adjust the first resource in the current frequency domain of the first frequency domain resource to the first resource of the first frequency domain resource according to the first resource allocation information in the first resource scheduling information, so that the first frequency can be implemented.
  • the resources within the domain resource are flexibly scheduled.
  • the communication device can be configured to switch from the first frequency domain resource to the second frequency domain of the second frequency domain resource according to the second resource allocation information, so that two different frequency domain resources are implemented.
  • Flexible scheduling when the switching between different frequency domain resources is implemented, the resource allocation in the second frequency domain resource may also be implemented, and the frequency domain resource switching in the frequency domain resource is performed in combination with the first implementation of the frequency domain resource switching provided in the conventional technical solution. The ratio is reduced.
  • the first resource scheduling information and the second resource scheduling information meet at least one of the following conditions: the size of the first resource scheduling information and the size of the second resource scheduling information are different; the first resource scheduling information The format of the second resource scheduling information is different.
  • the communication device can distinguish the function of each resource scheduling information according to the size or format of the resource scheduling information.
  • the first resource scheduling information may be used to change resources in the same frequency domain resource to change resources in communication with the network device, and the second resource scheduling information is used to switch from one frequency domain resource to another frequency domain resource.
  • the first resource scheduling information meets at least one of the following conditions: in different transmission modes, the size of the first resource scheduling information is different; in different transmission modes, the format of the first resource scheduling information is different. . In this way, the communication device can determine the function of the first resource scheduling information.
  • the transmission mode corresponding to the second resource scheduling information is a transmit diversity mode or a single port mode.
  • the communication device can determine the functionality of the second resource scheduling information.
  • the second frequency domain resource includes a second uplink frequency domain resource and a second downlink frequency domain resource, and the second uplink frequency domain resource and the second downlink frequency domain resource have the same center frequency, and the second frequency
  • the identifier information of the domain resource includes a first identifier, where the first identifier indicates a second frequency domain resource.
  • the identification information in the second frequency domain resource is set as the identifier of the second uplink frequency domain resource and the second downlink frequency domain resource, so that the communication device can determine to switch from the first frequency domain resource to the second uplink frequency domain resource and
  • the second downlink frequency domain resource communicates with the network device, and the second uplink frequency domain resource and the uplink resource and the downlink resource used for communicating with the network device in the second downlink frequency domain resource are respectively determined by the second resource allocation information.
  • the second uplink frequency domain resource and the second downlink frequency domain resource center frequency point are consistent to avoid the frequency adjustment of the communication device.
  • the second frequency domain resource is at least one of a second uplink frequency domain resource and a second downlink frequency domain resource.
  • the network device may not only use the resource scheduling information to instruct the communication device to switch from the first frequency domain resource to the second uplink frequency domain resource, but also instruct the communication device to switch from the first frequency domain resource to the second downlink frequency.
  • the domain resource or both switches to the second uplink frequency domain resource and the second downlink frequency domain resource.
  • the size of the second resource scheduling information used for scheduling the second uplink frequency domain resource is the same as the size of the second resource scheduling information used for scheduling the second downlink frequency domain resource, so that the communication device can be reduced. The number of blind checks.
  • the first resource allocation information corresponds to the first resource allocation type or the second resource allocation type
  • the second resource allocation information corresponds to the second resource allocation type, where the first resource allocation type and the first resource allocation type The two resource allocation types are different.
  • the second resource allocation information indicates a length of the frequency domain resource start point and the frequency domain resource.
  • the resource scheduling information is used to indicate that the resource information is switched from the first frequency domain resource to the second frequency domain resource, and the resource scheduling information is jointly indicated by the identifier information of the second frequency domain resource and the carrier identification information.
  • the frequency domain resource is switched to the second frequency domain resource, and the carrier identification information is configured by the network device as the communication device.
  • the embodiment of the present application provides a resource scheduling method, including: receiving, by a communications device, first resource scheduling information and second resource scheduling information sent by a network device on a first frequency domain resource.
  • the first resource scheduling information includes first resource allocation information, where the first resource allocation information is used to indicate the first resource in the first frequency domain resource, and the second resource scheduling information includes the second frequency domain resource identification information, and the The second resource allocation information is used to indicate the second resource in the second frequency domain resource, where the second resource scheduling information is used to indicate that the resource is switched from the first frequency domain resource to the second frequency domain resource;
  • the resource and the second frequency domain resource are all frequency domain resources in the carrier;
  • the communication device determines the second frequency domain resource according to the identification information of the second frequency domain resource, and determines the second frequency domain resource according to the second resource allocation information.
  • a second resource that is in communication with the network device.
  • the communications device determines, according to the first resource allocation information, a first resource in the first frequency domain resource for communicating with the network device.
  • the terminal determines, according to the second resource allocation information, the second resource from the second frequency domain resource according to the starting point of the frequency domain resource and the length of the frequency domain resource.
  • the first resource scheduling information and the second resource scheduling information meet the following at least one condition: a size of the first resource scheduling information and a size of the second resource scheduling information are different; a format of the first resource scheduling information The format of the second resource scheduling information is different.
  • the first resource scheduling information meets the following conditions: in different transmission modes, the size of the first resource scheduling information is different; In different transmission modes, the format corresponding to the first resource scheduling information is different.
  • the transmission mode corresponding to the second resource scheduling information is a transmit diversity mode or a single port mode.
  • the second frequency domain resource includes a second uplink frequency domain resource and a second downlink frequency domain resource, and the second uplink frequency domain resource and the second downlink frequency domain resource have the same center frequency, and the second frequency
  • the identifier information of the domain resource includes a first identifier, where the first identifier indicates a second frequency domain resource.
  • the second frequency domain resource is at least one of a second uplink frequency domain resource and a second downlink frequency domain resource.
  • the size of the second resource scheduling information used for scheduling the second uplink frequency domain resource is the same as the size of the second resource scheduling information used for scheduling the second downlink frequency domain resource.
  • the second frequency domain resource includes at least one of a second uplink frequency domain resource and a second downlink frequency domain resource.
  • the resource scheduling information is used to indicate that the resource information is switched from the first frequency domain resource to the second frequency domain resource, and the resource scheduling information is jointly indicated by the identifier information of the second frequency domain resource and the carrier identification information.
  • the frequency domain resource is switched to the second frequency domain resource, and the carrier identification information is configured by the network device as the communication device.
  • the embodiment of the present application further provides a resource scheduling apparatus, where the apparatus can implement the resource scheduling method of the first aspect.
  • the device may be a network device (for example, a base station) or a chip disposed in the network device, and the resource scheduling method may be implemented by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include a processor and a memory.
  • the processor is configured to support the apparatus to perform the respective functions of the various possible implementations of the first aspect described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver.
  • the network device includes: a selecting unit, configured to select a second frequency domain resource from multiple frequency domain resources; and a sending unit, configured to send, to the communications device, the first frequency domain resource a resource scheduling information and a second resource scheduling information, where the first resource scheduling information includes first resource allocation information, the first resource allocation information is used to indicate a first resource in the first frequency domain resource, and the second resource scheduling information includes The second resource allocation information is used to indicate the second resource in the second frequency domain resource, and the second resource allocation information is used to indicate the second resource allocation information. Switching from the first frequency domain resource to the second frequency domain resource; the first frequency domain resource and the second frequency domain resource are all frequency domain resources in the carrier.
  • the first resource scheduling information and the second resource scheduling information meet at least one of the following conditions: the size of the first resource scheduling information and the size of the second resource scheduling information are different; the first resource scheduling information The format of the second resource scheduling information is different.
  • the first resource scheduling information meets at least one of the following conditions: in different transmission modes, the size of the first resource scheduling information is different; in different transmission modes, the format of the first resource scheduling information is different. .
  • the transmission mode corresponding to the second resource scheduling information is a transmit diversity mode or a single port mode.
  • the second frequency domain resource includes a second uplink frequency domain resource and a second downlink frequency domain resource, and the second uplink frequency domain resource and the second downlink frequency domain resource have the same center frequency, and the second frequency
  • the identifier information of the domain resource includes a first identifier, where the first identifier indicates a second frequency domain resource.
  • the second frequency domain resource includes at least one of a second uplink frequency domain resource and a second downlink frequency domain resource.
  • the size of the second resource scheduling information used for scheduling the second uplink frequency domain resource is the same as the size of the second resource scheduling information used for scheduling the second downlink frequency domain resource.
  • the resource scheduling information is used to indicate that the resource information is switched from the first frequency domain resource to the second frequency domain resource, and the resource scheduling information is jointly indicated by the identifier information of the second frequency domain resource and the carrier identification information.
  • the frequency domain resource is switched to the second frequency domain resource, and the carrier identification information is configured by the network device as the communication device.
  • the second frequency domain resource is at least one of a second uplink frequency domain resource and a second downlink frequency domain resource.
  • the second resource allocation information indicates a length of the frequency domain resource start point and the frequency domain resource.
  • the network device includes: at least one processor and a transceiver, wherein at least one processor and a transceiver are coupled, and the processor is configured to perform any one of the first aspect to the first aspect.
  • the method performs processing or control operations on the network device side, and the transceiver is configured to perform related operations of receiving or transmitting on the network device side in any one of the possible implementation manners of the first aspect to the first aspect.
  • the network device may further include a memory, and a bus, wherein the code stores data and data, and the processor and the memory are connected by a bus.
  • the embodiment of the present application further provides a resource scheduling apparatus, where the apparatus can implement the resource scheduling method of the second aspect.
  • the device may be a communication device or a chip disposed in the communication device, which may implement the resource scheduling method by software, hardware, or by executing corresponding software through hardware.
  • the apparatus can include at least one processor and a memory.
  • the processor is configured to support the apparatus to perform the corresponding functions of the second aspect method described above.
  • the memory is for coupling to a processor that holds the programs (instructions) and data necessary for the device.
  • the apparatus can also include a communication interface for supporting communication between the apparatus and other network elements.
  • the communication interface can be a transceiver. Wherein the memory, the processor, and the transceiver are connected by a line, wherein the transceiver is configured to perform the related operations of performing message reception and transmission on the communication device side in the method described in any one of the second aspect to the second aspect, The processing or control operation is performed on the communication device side in the method described in any one of the second aspect to the second aspect.
  • the communications device includes: a receiving unit, configured to receive, by using a first frequency domain resource, first resource scheduling information and second resource scheduling information that are sent by the network device, where the first resource scheduling information includes The first resource allocation information, where the first resource allocation information is used to indicate the first resource in the first frequency domain resource; the second resource scheduling information includes the second resource identification information and the second resource allocation information; a second resource in the second frequency domain resource, where the first frequency domain resource and the second frequency domain resource belong to the resource in the carrier; the determining unit is configured to determine, according to the identifier information of the second frequency domain resource, a second frequency domain resource, and a second resource for communicating with the network device in the second frequency domain resource according to the second resource allocation information; the determining unit is further configured to determine the first frequency domain resource according to the first resource allocation information The first resource used to communicate with the network device.
  • the first resource scheduling information includes The first resource allocation information, where the first resource allocation information is used to indicate the first resource in the first frequency domain resource
  • the second resource scheduling information includes the second resource identification
  • the first resource scheduling information and the second resource scheduling information meet the following at least one condition: a size of the first resource scheduling information and a size of the second resource scheduling information are different; a format of the first resource scheduling information The format of the second resource scheduling information is different.
  • the first resource scheduling information meets at least one of the following conditions: in different transmission modes, the size of the first resource scheduling information is different; in different transmission modes, the format of the first resource scheduling information is different. .
  • the transmission mode corresponding to the second resource scheduling information is a transmit diversity mode or a single port mode.
  • the identifier information of the second frequency domain resource includes a first identifier, where the first identifier is allocated by the network device for the second frequency domain resource.
  • the identifier information of the second frequency domain resource includes a second identifier, where the second identifier is that the network device is the second uplink frequency domain resource and the second downlink frequency domain resource resource included in the second frequency domain resource The center frequency of the second uplink frequency domain resource and the second downlink frequency domain resource are consistent.
  • the receiving unit is further configured to receive, by the network device, a second identifier that is allocated by the second frequency domain resource.
  • the receiving unit is further configured to receive, by the network device, a first identifier that is allocated by the second uplink frequency domain resource and the second downlink frequency domain resource that are included in the second frequency domain resource, where the second uplink frequency The center frequency of the domain resource and the second downlink frequency domain resource are the same.
  • the second frequency domain resource includes a second uplink frequency domain resource and a second downlink frequency domain resource, and the second uplink frequency domain resource and the second downlink frequency domain resource have the same center frequency, and the second frequency
  • the identifier information of the domain resource includes a first identifier, where the first identifier indicates a second frequency domain resource.
  • the first resource allocation information corresponds to the first resource allocation type
  • the second resource allocation information corresponds to the second resource allocation type
  • the terminal determines, according to the second resource allocation information, the second resource from the second frequency domain resource according to the frequency domain resource start point and the length of the frequency domain resource.
  • the second frequency domain resource includes at least one of a second uplink frequency domain resource and a second downlink frequency domain resource.
  • the resource scheduling information is used to indicate that the resource information is switched from the first frequency domain resource to the second frequency domain resource, and the resource scheduling information is jointly indicated by the identifier information of the second frequency domain resource and the carrier identification information.
  • the frequency domain resource is switched to the second frequency domain resource, and the carrier identification information is configured by the network device as the communication device.
  • a computer storage medium wherein instructions are stored in a computer readable storage medium, and when executed on a network device, cause the network device to perform any of the above first aspect or any of the possible aspects of the first aspect The described resource scheduling method.
  • a computer storage medium in a sixth aspect, storing instructions for causing the communication device to perform any of the possible aspects of the second aspect or the second aspect described above when operating on the communication device The described resource scheduling method.
  • a computer program product in a seventh aspect, storing instructions for causing the network device to perform any one of the first aspect or the first aspect of the first aspect when operating on the network device The resource scheduling method described in the paper.
  • a computer program product comprising: instructions stored in a computer program product, when executed on a communication device, causing the communication device to perform any of the possible aspects of the second aspect or the second aspect described above The resource scheduling method described in the paper.
  • the embodiment of the present application provides a communication chip, which is applied to a network device, including: at least one processor, a memory and an interface circuit, and the memory, the interface circuit, and the at least one processor are interconnected by a line, where the at least one memory is The instructions are stored by the processor to perform the resource scheduling method described in any one of the above first aspect to the first aspect.
  • the embodiment of the present application provides a communication chip, which is applied to a communication device, including: at least one processor, a memory and an interface circuit, and the memory, the interface circuit, and the at least one processor are interconnected by a line, where the at least one memory
  • the instructions are stored by the processor to perform the resource scheduling method described in any one of the above second aspect to the second aspect.
  • the embodiment of the present application provides a communication system, including the network device described in any one of the foregoing third to third possible implementation manners, and any one of the fourth to fourth aspects Possible implementations of the communication device described.
  • FIG. 1 is a schematic structural diagram of a system for applying a resource scheduling method and apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of possible locations of frequency resources according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a bandwidth portion included in a system frequency resource according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a frequency domain resource according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first resource allocation type according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a second resource allocation type according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart diagram of a resource scheduling method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of local resource scheduling according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of cross-resource scheduling according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram 1 of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram 2 of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 3 of a network device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram 1 of a communication device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 2 of a communication device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 3 of a communication device according to an embodiment of the present disclosure.
  • At least one means one or more, and "a plurality” means two or more.
  • the character "/” generally indicates that the contextual object is an "or” relationship.
  • “At least one of the following” or a similar expression thereof refers to any combination of these items, including any combination of a single item or a plurality of items.
  • a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, c may be single or multiple .
  • the words “first”, “second”, and the like are used to distinguish the same items or similar items whose functions and functions are substantially the same. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first”, “second” and the like are not necessarily limited.
  • first”, “second” and the like in the embodiments of the present application are only for distinguishing different objects, and the order is not limited.
  • first frequency domain resource and the second frequency domain resource are only used to distinguish different frequency domain resources, and the sequence thereof is not limited.
  • the carrier in the embodiment of the present application includes a carrier in a carrier aggregation (CA) scenario and a component carrier (CC) in the CA.
  • the serving cell in the CA scenario may be a primary serving cell (PCell) or a secondary serving cell (Scell).
  • PCell primary serving cell
  • Scell secondary serving cell
  • the carrier in the non-CA scenario and the CC in the CA scenario may be collectively referred to as a carrier, which is not specifically limited in this embodiment of the present application.
  • a part of a carrier or a serving cell used for uplink transmission may be understood as an uplink resource or an uplink carrier
  • a part of a carrier or a serving cell used for downlink transmission may be understood as a downlink resource or a downlink carrier.
  • a frequency domain resource used for uplink transmission on a carrier can be understood as an uplink resource or an uplink carrier
  • a frequency domain resource used for downlink transmission on a carrier can be understood as a downlink.
  • Resource or downlink carrier can be understood as a downlink carrier.
  • a time domain resource used for uplink transmission on a carrier may be understood as an uplink resource or an uplink carrier; a time domain resource used for downlink transmission on a carrier may be understood as a downlink resource or a downlink carrier.
  • the working bandwidth includes an uplink working bandwidth and a downlink working bandwidth.
  • the uplink working bandwidth is the uplink BWP activated by the terminal, and the downlink working bandwidth, that is, the downlink BWP activated by the terminal, is uniformly described herein, and is not described here.
  • Bandwidth part Part of the frequency domain resource within the carrier or carrier bandwidth allocated by the base station or within the system bandwidth.
  • the size of the BWP is less than or equal to the bandwidth capability of the terminal, that is, the maximum bandwidth supported by the terminal.
  • the BWP is a continuous frequency domain resource.
  • the BWP may include a plurality of consecutive subcarriers.
  • the BWP may include multiple consecutive Physical Resource Blocks (PRBs).
  • PRBs Physical Resource Blocks
  • the terminal can support multiple BWPs, that is, the base station can configure multiple BWPs for the terminal. When multiple BWPs are configured, the BWPs may or may not overlap.
  • the subcarrier spacing of the frequency domain resources included in different BWPs may be the same or different.
  • the subcarrier spacing is a frequency domain length of a resource element (RE), and the value may include 15 kHz, 30 kHz, or 60 kHz.
  • RE resource element
  • FIG. 1 is a schematic diagram of a communication system architecture applied to a resource scheduling method provided by an embodiment of the present application.
  • at least one network device 100 is included (only FIG. 1 is shown in FIG. 1 ).
  • One network device) and one or more communication devices 200 connected to the network device 100 are shown in FIG. 1).
  • the network device 100 may be a device for communicating with the communication device 200, and the network device 100 is configured to provide a wireless access service for the communication device 200.
  • the network device 100 may be a wireless local area network (WLAN).
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved Node B (eNB or eNodeB) in Long Term Evolution (LTE).
  • a relay station or an access point or an in-vehicle device, a wearable device, and a network device in a future 5G network (for example, a 5G base station (NR NodeB, gNB)) or a future evolved public land mobile network (PLMN) Network devices in the network, etc.
  • a future 5G network for example, a 5G base station (NR NodeB, gNB)
  • PLMN public land mobile network
  • the network device 100 provides a service for the cell
  • the communication device 200 communicates with the network device 100 by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell.
  • the cell may be a cell corresponding to the network device 100 (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell. (Micro cell), Pico cell, Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the base station may be referred to as a Node B (NodeB), an evolved Node B (eNodeB), and an Access Point (AP), etc., depending on the wireless communication technology used.
  • NodeB Node B
  • eNodeB evolved Node B
  • AP Access Point
  • the base station can be further divided into a macro base station for providing a macro cell, a micro base station for providing a pico cell, and a femtocell for providing Femto cell) Femto base station, etc.
  • future base stations may use other names.
  • the communication device 200 may be various wireless communication devices or chips and the like having wireless communication functions, and may be, for example, user equipment (UE), terminal equipment, mobile cellular phone, cordless telephone, personal digital assistant (Personal Digital Assistant, PDA), smart phone, laptop, tablet, wireless data card, modem (Modulator demodulator, Modem) or wearable devices such as smart watches.
  • UE user equipment
  • PDA Personal Digital Assistant
  • smart phone laptop, tablet
  • wireless data card modem
  • modem Modem
  • wearable devices such as smart watches.
  • IOT Internet of Things
  • the communication unit obtains a wireless communication function so that it can access the wireless communication network and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, and therefore belong to the category of wireless communication devices.
  • the communication device may also be referred to as a mobile station, a mobile device, a mobile terminal, or a wireless terminal.
  • a handheld device having wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal in a future 5G network, or a terminal in a future evolved PLMN network.
  • the communication system shown in FIG. 1 is for example only, and is not intended to limit the technical solutions of the embodiments of the present application. It should be understood by those skilled in the art that in a specific implementation process, the communication system may also include other devices, such as but not limited to a Base Station Controller (BSC), and the communication device and the network device may also be configured according to specific needs. quantity.
  • BSC Base Station Controller
  • a base station and a UE may perform air communication using air interface resources, and the air interface resources include frequency domain resources (which may also be referred to as frequency resources).
  • the frequency domain resources can be located in the set frequency range.
  • the frequency range can also be referred to as a band or a frequency band.
  • the center point of the frequency domain resource may be referred to as a center frequency point, and the width of the frequency domain resource may be referred to as a bandwidth (BW).
  • FIG. 2 is a schematic diagram of possible locations of frequency domain resources.
  • the frequency domain resource may be part or all of the resources in the frequency band, the bandwidth of the frequency domain resource is W, and the frequency of the central frequency point is F.
  • the frequency of the boundary point of the frequency domain resource is FW/2 and F+W/2, respectively, and can also be described as: the frequency of the highest frequency point in the frequency domain resource is F+W/2, and the lowest frequency in the frequency domain resource The frequency of the point is FW/2.
  • the bandwidth of the frequency domain resource is less than or equal to the bandwidth of the frequency domain resource.
  • the frequency domain resources used for downlink communication and the frequency domain resources used for uplink communication may be the same or different.
  • the base station When the base station and the UE use the frequency domain resource for wireless communication, the base station manages the system frequency resource, and allocates the frequency domain resource to the UE from the system frequency resource, so that the base station and the UE can use the allocated frequency domain resource for communication.
  • the system frequency resource may be described as a frequency resource that the base station can manage and allocate, and may also be described as a frequency resource that can be used for performing communication between the base station and the UE.
  • the width of the system frequency resource may be referred to as the bandwidth of the system frequency resource, and may also be referred to as the system bandwidth or the carrier bandwidth or the transmission bandwidth.
  • a possible design for the base station to allocate the frequency domain resources to the UE is that the base station configures a bandwidth part (BWP) for the UE from the system frequency resources, and the base station schedules the UE in the bandwidth part of the configuration. It can also be described that the base station configures the bandwidth part for the UE from the system frequency resources, so that the base station can allocate some or all resources in the configured bandwidth part to the UE for communication between the base station and the UE.
  • the bandwidth part is included in the system frequency resource, and may be a continuous or discontinuous part of the system frequency resource, or may be all resources in the system frequency resource.
  • the bandwidth portion may also be referred to as a frequency domain resource, a frequency resource portion, a partial frequency resource, a carrier bandwidth portion, or other name. When the bandwidth portion is a contiguous resource in the system frequency resource, the bandwidth portion may also be referred to as a subband, a narrowband, or other name.
  • FIG. 3 is a schematic structural diagram of a bandwidth portion included in a system frequency resource.
  • the system frequency resource includes a bandwidth part 0, a bandwidth part 1 and a bandwidth part 2, which are three different. Bandwidth part.
  • the system frequency resource can include any integer number of bandwidth portions.
  • the existing communication system proposes a system bandwidth with a large bandwidth design to provide more system resources. This can provide a higher data transfer rate.
  • the bandwidth supported by the terminal may be smaller than the system bandwidth in consideration of the cost of the terminal and the traffic volume of the terminal. The greater the bandwidth supported by the terminal, the stronger the processing capability of the terminal, the higher the data transmission rate of the terminal, and the higher the design cost of the terminal.
  • the bandwidth supported by the terminal may also be referred to as the bandwidth capability or the terminal bandwidth capability of the terminal.
  • the system bandwidth may be up to 400 MHz, and the bandwidth capability of the terminal may be 20 MHz, 50 MHz, or 100 MHz.
  • the base station can configure a bandwidth portion for the terminal from the system frequency resource, and the bandwidth of the bandwidth portion is less than or equal to the bandwidth capability of the terminal.
  • the base station may allocate some or all of the resources in the bandwidth portion configured for the terminal to the terminal for performing communication between the base station and the terminal.
  • the parameter includes at least one of a subcarrier spacing and a cyclic prefix (CP).
  • CP cyclic prefix
  • 3GPP third generation partnership project in the process of researching and developing standards for wireless communication systems, the English name of this parameter can also be called numerology.
  • the base station may configure multiple bandwidth parts in the system frequency resource, and independently configure a numerology for each of the multiple bandwidth parts, for supporting multiple service types in the system frequency resource and / or communication scenarios.
  • the numerology frame structure of the different bandwidth parts may be the same or different, and is not limited in this embodiment.
  • the base station can determine the numerology A for performing communication based on the service type and/or the communication scenario corresponding to the communication, so that the corresponding bandwidth portion can be configured for the terminal based on the numerology A.
  • the base station may allocate some or all of the resources in the bandwidth portion configured for the terminal to the terminal for performing communication between the base station and the terminal.
  • the base station can configure a bandwidth portion for the terminal based on the traffic volume of the terminal, and is used to save power consumption of the terminal.
  • the terminal can receive the control information only in the smaller bandwidth portion, and can reduce the task amount of the radio frequency processing of the terminal and the task amount of the baseband processing, thereby reducing the power consumption of the terminal;
  • the traffic is small, and the base station can configure a bandwidth portion with a smaller bandwidth for the terminal, which can reduce the workload of the radio processing of the terminal and the task amount of the baseband processing, thereby reducing the power consumption of the terminal.
  • the base station can configure a bandwidth portion with a larger bandwidth for the terminal, thereby providing a higher data transmission rate.
  • the base station may allocate some or all of the resources in the bandwidth portion configured for the terminal to the terminal for performing communication between the base station and the terminal.
  • resources available for data transmission include a plurality of resource cells, and one resource cell corresponds to One subcarrier, one physical resource block (PRB) has X1 resource cells, and can also be described as one PRB including X1 subcarriers, and X1 is an integer greater than 1.
  • OFDM orthogonal frequency division multiplexing
  • X1 is 12.
  • the resources that can be used for data transmission may be some or all of the resources in the system resources, and may be part or all of the resources in the bandwidth part.
  • the bandwidth of resources available for data transmission can be described as X2 PRBs, and X2 is an integer greater than or equal to 1.
  • the PRBs in the resources that can be used for data transmission can be sequentially numbered from 0 to X2-1 based on the direction of frequency increase, and the number values of the respective PRBs are obtained.
  • the term "number value" may also describe "identity" or "index”.
  • one PRB may include X3 symbols, and X3 is an integer greater than or equal to 1.
  • X3 is 7 or 14.
  • FIG. 4 is a schematic diagram showing the possible bandwidth of resources that can be used for data transmission. As shown in FIG. 4, it can be used for data transmission.
  • the bandwidth of the resource includes a total of X2 PRBs from PRB 0 to PRB X2-1.
  • the number of the sub-carriers in the corresponding PRBs may be the same or different, which is not limited in this embodiment of the present application.
  • the bandwidth of the PRB of the frequency domain resource is determined according to the subcarrier spacing and the number of subcarriers in the PRB.
  • the bandwidth of the PRB of the frequency domain resource is 180 kHz.
  • the subcarrier spacing is configured to be 60 kHz, and there are 12 subcarriers in one PRB.
  • the bandwidth of the PRB of the frequency domain resource is 720 kHz.
  • the first resource allocation type (including the first uplink resource allocation type and/or the first downlink resource allocation type) in the embodiment of the present application (that is, the resource allocation type 0, that is, the uplink resource allocation type 0 and/or the downlink resource allocation type) 0)
  • the corresponding first resource allocation information may be an RBG-based resource allocation manner using a bitmap (Bitmap).
  • the second resource allocation type (including the second uplink resource allocation type and/or the second downlink resource allocation type) (ie, the resource allocation type 1 and the uplink resource allocation type 1 and/or the downlink resource allocation type 1)
  • the resource allocation information may be a resource allocation manner that uses the starting point and length of the frequency domain resource.
  • the resource allocation granularity may be a resource block (RB) or a resource block group (RBG).
  • the second resource allocation information may adopt a resource allocation manner based on a frequency domain resource starting point and a length indicated by a resource indication value (RIV).
  • RIV resource indication value
  • the resource allocation types supported under the CP-OFDM waveform are uplink resource allocation type 0 and uplink resource allocation type 1, in Discrete Fourier Transform (DFT)-spread (Spread,
  • DFT Discrete Fourier Transform
  • Spread The resource allocation type supported under the S)-OFDM waveform has an uplink resource allocation type of 0. Therefore, the first resource allocation information in the embodiment of the present application may also adopt the second resource allocation information corresponding to the second resource allocation type, that is, the first resource allocation information may also adopt the resource allocation manner of the frequency domain resource starting point and the length. .
  • the uplink or downlink resource allocation type 0 is a resource allocation type of the RBG-based Bitmap.
  • the resource allocation information may be used to indicate an RB or a resource block group (RBG) allocated by the base station (eg, gNB) to the UE.
  • RBG resource block group
  • the RB may be a physical resource block (PRB) or a virtual resource block (VRB).
  • the first resource allocation type (including the first uplink resource allocation type and the first downlink resource allocation type), that is, the resource allocation type 0, that is, one of the uplink resource allocation type 0 and the downlink resource allocation type 0
  • the size of an RBG is F1 RBs and F1 is an integer greater than or equal to 1
  • the number of the RBGs in the frequency domain resource is Where F2 is the number of RBs included in the frequency domain resource.
  • a Y1_1 bit bitmap and Y1_2 padding bits are included.
  • Y1_1 is an integer greater than or equal to 1
  • Y1_2 is an integer greater than or equal to 0, and the padding bit can be filled with a pre-configured value.
  • one information bit can also be described as one information bit.
  • One bit in the Y1_1 bit map corresponds to one RBG in the frequency domain resource, and the one bit may also be referred to as an information bit.
  • the resource allocated by the gNB for the UE includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the gNB is allocated for the UE.
  • the resource does not include the RBG corresponding to the bit.
  • t1 and t2 can be integers.
  • t1 is 1.
  • any RBG in the frequency domain resource can be allocated to the UE for data transmission by using the value of each bit in the bitmap, thereby providing flexible resource configuration for continuous and non-contiguous resources. distribution.
  • FIG. 5 shows a schematic diagram of a possible first resource allocation type: the bandwidth of the BWP is 12 RB/PRB, and if the size of the RBG is 1 RB, there are 6 RBGs.
  • a 6-bit bitmap is used to indicate a corresponding resource allocation in the BWP.
  • the resource allocation bitmap shown in FIG. 5 is 101100, where the shaded RB indicates that the base station is a terminal in the frequency domain resource as shown in FIG. The assigned frequency domain resource.
  • the second resource allocation information includes Y2_1 bit RIV and Y2_2 padding bits.
  • Y2_1 is an integer greater than or equal to 1
  • Y2_2 is an integer greater than or equal to zero.
  • the information indicated by the RIV includes an index of the starting RB or RBG allocated by the gNB in the frequency domain resource for the UE and the number of consecutively allocated RBs or RBGs.
  • FIG. 6 shows a schematic diagram of a second resource allocation type.
  • the bandwidth of the BWP is 12 RB/PRB
  • the starting point is the 4th RB (for example, RB3)
  • the starting point is RB3.
  • the starting length is 6 RBs
  • the final bit length is:
  • N RB represents the number of RBs in the BWP.
  • the starting point is the fourth RB (for example, RB3), and the length is 6 RBs from the starting point RB3.
  • the specific RB number may also be the RBG. number.
  • the specific calculation of the bitmap is as follows:
  • the length of the bitmap is calculated by the formula (1) to be 7. According to the formula (2), the corresponding value in the bitmap is 63, and the conversion to binary is: 111111, and the left side of the 7bit is 0111111.
  • FIG. 7 is a schematic diagram of interaction of a resource scheduling method according to an embodiment of the present application. As shown in Figure 7, it includes:
  • the base station sends the first resource scheduling information and the second resource scheduling information to the terminal on the first frequency domain resource, where the first resource scheduling information includes the first resource allocation information, where the first resource allocation information is used to indicate the first
  • the second resource allocation information includes second resource allocation information, where the second resource allocation information is used to indicate the second resource in the second frequency domain resource.
  • the second resource allocation information in the embodiment of the present application indicates the start of the frequency domain resource and the length of the frequency domain resource.
  • the base station may separately send the second resource scheduling information to the terminal on the first frequency domain resource, or may also be in the first frequency domain resource.
  • the first resource scheduling information is separately sent to the terminal.
  • the first resource scheduling information in the embodiment of the present application is used to support the terminal to perform scheduling on the same BWP.
  • the base station may instruct the terminal to adjust the subsequent scheduling from the transmission resource currently communicating with the base station in the first frequency domain resource to the transmission resource re-determined in the first frequency domain resource according to the first resource allocation information or still based on The current transmission resource is communicating.
  • the base station and the terminal communicate on a transmission resource (for example, a data channel) of the first frequency domain resource, and when the transmission resource cannot meet the communication requirement, the base station may send the first resource scheduling information to the terminal. Instructing the terminal to adjust from the transmission resource to communicate with the base station on other transmission resources within the first frequency domain resource.
  • a transmission resource for example, a data channel
  • the second resource scheduling information in the embodiment of the present application is used to support the terminal to perform cross-frequency domain resource scheduling, that is, to instruct the terminal to switch from the first frequency domain resource to the second frequency domain resource.
  • the second resource scheduling information includes identifier information of the first frequency domain resource or the second frequency domain resource.
  • the current scheduling period of the base station and the terminal sends the second resource scheduling information to the terminal on the first frequency domain resource of the Slot0, where the second resource scheduling information is used to indicate to the terminal that the base station is in the Slot1.
  • a second resource is allocated to the terminal in the second frequency domain resource.
  • the second resource scheduling information in the embodiment of the present application may also be used to indicate the allocation information of the terminal in the first frequency domain resource, and the frequency domain resource switching is not required at this time.
  • the second resource allocation information indicates the first frequency domain resource, and does not indicate the second frequency domain resource.
  • the base station may be used as a type of backoff of the first resource scheduling information, that is, when the terminal cannot correctly receive the first resource scheduling information, or when the channel condition becomes worse.
  • the base station may send the second resource scheduling information to the terminal, thereby improving the reliability of the information transmission.
  • the identifier information in the second resource scheduling information may be predefined (such as all 0s) or identifier information indicating the first frequency domain resource.
  • the terminal may distinguish, by the identifier information, whether the base station uses the second resource scheduling information to be the scheduled first frequency domain resource or the second frequency domain resource.
  • the second resource scheduling information may be used as scheduling information for cross-frequency domain resource scheduling.
  • the first frequency domain resource and the second frequency domain resource in the embodiment of the present application belong to a frequency domain resource in the carrier, that is, the bandwidth of the first frequency domain resource and the second frequency domain resource are less than or equal to each other.
  • the bandwidth of the carrier is not limited to the carrier.
  • the first frequency domain resource and the second frequency domain resource may be frequency domain resources that belong to the same carrier.
  • the first frequency domain resource and the second frequency domain resource may be frequency domain resources belonging to carrier 1.
  • the base station may instruct the terminal to perform cross-frequency domain resource scheduling on different frequency domain resources within one carrier by transmitting second resource scheduling information to the terminal.
  • the second resource scheduling information may not carry the indication information of the carrier, so that the terminal does not carry the indication information of the carrier in determining the second resource scheduling information. To determine that cross-resource scheduling is performed within the same carrier.
  • first frequency domain resource and the second frequency domain resource may also be frequency domain resources that belong to different carriers.
  • the first frequency domain resource is a frequency domain resource in the carrier 1
  • the second frequency domain resource is a frequency domain resource in the carrier 2.
  • the base station may send the second resource scheduling information to the terminal.
  • the terminal is instructed to switch from the first frequency domain resource of the current carrier (for example, carrier 1) to the second frequency domain resource of another carrier (for example, carrier 2), that is, to implement switching of frequency domain resources between different carriers.
  • the second resource scheduling information may further carry the identifier information of the carrier where the second frequency domain resource is located, where the identifier information of the carrier may be a carrier
  • the index or the number of the identifier of the carrier may be pre-configured by the terminal and the base station, or the identifier information of the carrier is configured by the base station, and then sent to the terminal, which is not limited in this embodiment.
  • the first resource scheduling information and the second resource scheduling information in the embodiment of the present application may be DCI.
  • the DCI is information carried in a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the PDCCH is mainly used for: (1) The base station sends the downlink resource scheduling information to the terminal, so that the terminal receives the physical downlink shared channel (PDSCH). (2) The base station sends uplink resource scheduling information to the terminal, so that the terminal sends a physical uplink shared channel (PUSCH). (3) Sending a non-periodic channel quality indicator (CQI) report request and the like.
  • Different formats of DCI have different functions, such as different formats of uplink DCI and downlink DCI. For example, the format of DCI is different in different transmission modes.
  • the first resource scheduling information is predefined as the DCI of the first format, and may also be referred to as the DCI of the normal format.
  • the second resource scheduling information is predefined as the DCI of the second format. It can also be called DCI of the fallback format, or DCI, also known as a compact format.
  • DCI in a fallback format is that the DCI of the fallback format is used for transitions in different transmission modes.
  • the UE needs to blindly check two DCI formats: DCI format 1A and DCI format 2, where DCI 1A adopts a transmit diversity mode. This is because the transmission mode is semi-statically configured, and the channel is dynamically changed at any time.
  • the base station transmits by closed-loop space division multiplexing, and when the channel conditions are not good, the base station can also
  • the DCI1A is used to send information to the UE, and adopts a transmit diversity or a single-port transmission mode.
  • the two transmission modes have higher reliability than the closed-loop space division multiplexing.
  • the first resource scheduling information and the second resource scheduling information meet at least one of the following conditions:
  • the size of the first resource scheduling information is different from the size of the second resource scheduling information, and the format of the first resource scheduling information and the format of the second resource scheduling information are different.
  • the difference between the size of the first resource scheduling information and the size of the second resource scheduling information means that the number of bits included in the first resource scheduling information and the second resource scheduling information is different.
  • the format of the first resource scheduling information and the format of the second resource scheduling information are different: the format corresponding to the first resource scheduling information is different from the format corresponding to the second resource scheduling information.
  • the formats of the first resource scheduling information and the second resource scheduling information are also different.
  • the size of the first resource scheduling information and the second resource scheduling information may be the same or different, and the embodiment of the present application Not limited.
  • one of the first resource scheduling information and the second resource scheduling information may be referenced in another format.
  • the resource scheduling information is implemented by filling in 0.
  • the resource scheduling information of the two different formats needs to include the identification information, so that the terminal distinguishes whether it is the first resource scheduling information or the second resource scheduling information by using the identification information. For example, it may be identified by carrying 1 bit of information, where the bit is 0 to identify the first resource scheduling information, and the bit is 1 to identify the second resource scheduling information.
  • the terminal may determine, according to the size of the first resource scheduling information and the size of the second resource scheduling information, whether the resource scheduling information received at the current time is the DCI of the first format or the first format. Two format DCI.
  • the terminal may determine, according to the identification information in each resource scheduling information, whether the resource scheduling information received at the current time is the DCI of the first format or the DCI of the second format.
  • the first resource scheduling information meets at least one of the following conditions: in different transmission modes, the size of the first resource scheduling information is different; and in different transmission modes, the format corresponding to the first resource scheduling information different.
  • the transmission mode refers to different multi-antenna transmission schemes used by the base station and the terminal when communicating.
  • the multi-antenna transmission can be implemented in different ways by the transmitter and/or the receiver to achieve different purposes:
  • transmission diversity The use of multiple antennas at the transmitter and/or receiver can be used to provide additional diversity against the fading of the wireless channel.
  • transmission diversity the channels experienced by different antennas should have low cross-correlation, which means that the spacing between antennas needs to be large enough (spatial diversity), or different antenna polarization directions need to be used (polarization diversity) , polarization diversity).
  • Transmission diversity is mainly used to reduce channel fading.
  • the transmitter and/or receiver may use multiple antennas in a particular manner to "form" a complete beam. For example, the overall antenna gain in the direction of the target receiver/transmitter can be maximized, or a particular dominant interfering signal can be suppressed.
  • This "beamforming" can be achieved based on high or low fading correlation between the antennas. Beamforming is mainly used to improve the coverage of a cell.
  • Simultaneous use of multiple antennas at the transmitter and receiver can be used to establish multiple parallel transmission channels, which can provide very high bandwidth utilization without degrading the associated power efficiency. In other words, a very high data rate can be provided over a limited bandwidth without a significant reduction in coverage.
  • This is often referred to as "spatial multiplexing,” sometimes referred to as MIMO (Multi-Input Multi-Output).
  • Space division multiplexing is mainly used to increase the data transmission rate, and the data is divided into multiple streams, which are simultaneously transmitted.
  • TM mode Transmission Mode
  • LTE can support 9 TM modes. They differ in the different special structures of the antenna mapping, as well as the different reference signals (cell-specific reference signals or UE-specific reference signals) used in demodulation, and the different CSI feedback types that are relied upon.
  • the size of the first resource scheduling information in the transmission mode A is Nbit
  • the size of the first resource scheduling information in the transmission mode B is M bits, where M and N are different integers greater than or equal to 1.
  • the format corresponding to the first resource scheduling information is the first format
  • the first resource scheduling information is transmitted in the transmission mode B
  • the first resource scheduling information is used.
  • the corresponding format is the second format.
  • Each of the transmission modes corresponds to the DCI of the two formats, and the DCI1A is the format of the second resource scheduling information in the embodiment of the present application.
  • the DCI format of the first resource scheduling information described in the foregoing embodiment may be used as the DCI format of the first resource scheduling information in the embodiment of the present application, and different transmission modes correspond to different first resource scheduling information.
  • the transmission mode corresponding to the second resource scheduling information is a transmit diversity mode or a single port mode.
  • the transmit diversity mode means that multiple antennas can be used at the transmitter to provide additional diversity to counter the fading of the wireless channel, which can improve the reliability of the transmission.
  • the single port approach also has high robustness.
  • the second resource scheduling information is used in the transmit diversity mode or the single port mode, which can improve the reliability of the indication information in the cross-frequency domain resource scheduling and improve the success rate of the handover.
  • the DCI of the fallback format also provides an alternative way for the transmission of the first resource scheduling information.
  • the first resource scheduling information in the embodiment of the present application does not need to include the identifier information of the frequency domain resource, for example, the first resource scheduling information does not include the identifier information of the first frequency domain resource, where This is because it is necessary to utilize the second resource scheduling information to support cross-frequency domain resource scheduling.
  • the first resource scheduling information when the cross-frequency resource scheduling is performed, the first resource scheduling information may be used.
  • the traditional first resource scheduling information needs to include the identification information of the frequency domain resource, and the first resource scheduling information is usually The first resource allocation type is used to allocate the frequency domain resources.
  • the number of bits occupied by the resource scheduling information carried in the DCI is usually from the frequency domain resource (as shown in Table 2, taking the frequency domain resource as the BWP as an example).
  • the size of the decision is as shown in Table 2.
  • Table 2 shows the method of indicating the resource allocation with the corresponding scheduling information of the first resource allocation type.
  • the cross-frequency resource scheduling and the local frequency domain resource scheduling are usually adopted. Resource allocation information of the same size.
  • the maximum possible resource allocation bit number is generally used as the size of the resource allocation information.
  • the first resource allocation type is usually The maximum number of resource allocation bits is used as the size of the resource allocation information corresponding to the first resource allocation type. For example, the maximum value shown in Table 2 is 35 bits.
  • the BWPs can be dynamically switched, that is, switch from one BWP to another.
  • a typical scenario is the bandwidth backoff scenario as described above, as shown in FIG.
  • the second resource scheduling information may be sent to the terminal in the control information area of the first frequency domain resource of slot 0.
  • the first frequency domain resource is a BWP with a smaller bandwidth.
  • the BWP with the smaller bandwidth shown in Table 2 above includes 28 RBs.
  • the BWP allocates resources to the base station.
  • the actual bit size occupied by the terminal is 14 bits, and when the terminal is to switch from the first frequency domain resource to the second frequency domain resource, the bandwidth of the second frequency domain resource is greater than the bandwidth of the first frequency domain resource, for example,
  • the BWP corresponding to the second-frequency domain resource may include 275 RBs.
  • the first resource scheduling information is not used to perform the switching of the frequency domain resource, and does not need to include the corresponding frequency domain resource identification information.
  • the second resource scheduling information is used to perform the frequency domain resource switching.
  • the second resource allocation type is generally used for resource allocation.
  • the second resource allocation type has the feature of requiring fewer bits to allocate resources when the bandwidth is larger, thereby reducing the number of bits to be padded and reducing resource waste.
  • the base station may send the first to the terminal in the control information area of the first frequency domain resource (for example, a physical downlink control channel (PDCCH) or a control resource set (CORESET).
  • the first frequency domain resource for example, a physical downlink control channel (PDCCH) or a control resource set (CORESET).
  • PDCCH physical downlink control channel
  • CORESET control resource set
  • the second resource scheduling information may be the DCI of the second format.
  • the first resource allocation type (which may be the first uplink resource allocation type and/or the first downlink resource allocation type) in the embodiment of the present application (that is, the resource allocation type 0, that is, the uplink resource allocation type 0 and/or the downlink resource allocation
  • the resource allocation information corresponding to type 0) may be an RBG-based resource allocation manner using Bitmap.
  • the resource allocation information corresponding to the second resource allocation type (including the second uplink resource allocation type and the second downlink resource allocation type), that is, the resource allocation type 1 and the uplink resource allocation type 1 and/or the downlink resource allocation type 1 may be
  • the resource allocation granularity is a resource block (RB) or a resource block group (RBG), which is a resource allocation mode based on the RIV indicating the start and length of the frequency domain resource.
  • the resource allocation types supported under the CP-OFDM waveform are uplink resource allocation type 0 and uplink resource allocation type 1
  • the resource allocation types supported under the DFT-S-OFDM waveform have uplink resource allocation types. 0.
  • the uplink or downlink resource allocation type 0 is a resource allocation type of the RBG-based bitmap.
  • the resource allocation information may be used to indicate an RB or a resource block group (RBG) allocated by the base station (eg, gNB) to the UE.
  • RBG resource block group
  • the RB may be a physical resource block (PRB) or a virtual resource block (VRB).
  • one PRB corresponds to one virtual resource block (VRB).
  • the VRB may include a centralized VRB or a distributed VRB.
  • the centralized VRB and PRB are directly mapped.
  • Distributed VRBs and PRBs are mapped by certain rules.
  • the mapping method may be a mapping method in the LTE standard protocol.
  • the first resource allocation type (including the first uplink resource allocation type and the first downlink resource allocation type), that is, the resource allocation type 0, that is, one of the uplink resource allocation type 0 and the downlink resource allocation type 0
  • the size of an RBG is F1 RBs and F1 is an integer greater than or equal to 1
  • the number of the RBGs in the frequency domain resource is Where F2 is the number of RBs included in the frequency domain resource.
  • a Y1_1 bit bitmap and Y1_2 padding bits are included.
  • Y1_1 is an integer greater than or equal to 1
  • Y1_2 is an integer greater than or equal to 0, and the padding bit can be filled with a pre-configured value.
  • one information bit can also be described as one information bit.
  • One bit in the Y1_1 bit map corresponds to one RBG in the frequency domain resource, and the one bit may also be referred to as an information bit.
  • the resource allocated by the gNB for the terminal includes the RBG corresponding to the bit; when the value of the bit is t2 or not t1, the gNB is allocated for the UE.
  • the resource does not include the RBG corresponding to the bit.
  • t1 and t2 can be integers.
  • t1 is 1.
  • any RBG in the frequency domain resource can be allocated to the UE for data transmission by using the value of each bit in the bitmap, thereby providing flexible resource configuration for continuous and non-contiguous resources. distribution.
  • the resource allocation field includes a Y2_1 bit resource indication value (RIV) and Y2_2 padding bits.
  • Y2_1 is an integer greater than or equal to 1
  • Y2_2 is an integer greater than or equal to zero.
  • the information indicated by the RIV includes the index of the initial RB or RBGG allocated by the gNB in the frequency domain resource for the UE and the number of consecutively allocated RBs or RBGs.
  • the terminal receives the first resource scheduling information and the second resource scheduling information sent by the base station on the first frequency domain resource.
  • the first frequency domain resource is one or more frequency domain resources for communication between the base station and the terminal in the current scheduling period.
  • the terminal may determine whether the first resource scheduling information or the second resource scheduling information is received on the first frequency domain resource by using a blind detection manner. There are both the first resource scheduling information and the second resource scheduling information.
  • An example of the blind detection is: when the base station and the terminal transmit DCI through the PDCCH, the base station configures a search space of the PDCCH for the terminal, where the search space of the PDCCH may also be referred to as a candidate resource location of the PDCCH or a PDCCH candidate resource location, and a PDCCH candidate resource.
  • the location includes N resource locations that may be used to transmit the PDCCH, and N is an integer greater than or equal to one.
  • the base station may select one resource location from the PDCCH candidate resource locations. For example, the base station selects one resource location from the candidate resource locations according to the channel quality, and transmits one PDCCH to the terminal at the selected resource location.
  • the UE monitors the search space of the PDCCH, and detects the PDCCH in the search space, that is, detects the PDCCH at the PDCCH candidate resource location.
  • the UE considers that the gNB has any resource location in the N resource locations, because the UE does not know which resource location of the N resource locations the PDCCH sends the PDCCH before receiving the PDCCH, or does not know whether the gNB sends the PDCCH to the UE.
  • the PDCCH may be transmitted, and therefore, the UE detects the PDCCH at the above N resource locations. In order to detect one PDCCH, the UE detects at least one time and detects up to N times.
  • the terminal does not know the first resource scheduling information sent by the base station on the first frequency domain resource, or the second resource scheduling information, and still has the first resource scheduling information and the second resource scheduling. information. Therefore, the terminal can only determine which resource scheduling information is by blind detection.
  • the base station can configure whether the first resource scheduling information and the second resource scheduling information need to be detected blindly.
  • One possible implementation manner is: configuring a corresponding transmission mode, where the second resource scheduling information is a fallback function. Used to schedule the first frequency domain resource.
  • the second resource scheduling information may not include the identifier information of the frequency domain resource, or may include the identifier information of the first frequency domain resource, or may be configured to perform the first instruction when carrying some information in a predefined manner.
  • Frequency domain resources may not include the identifier information of the frequency domain resource, or may include the identifier information of the first frequency domain resource, or may be configured to perform the first instruction when carrying some information in a predefined manner.
  • the terminal needs to detect the DCI format in the corresponding transmission mode.
  • the terminal needs to detect the The resource scheduling information and the second resource scheduling information, the second resource scheduling information needs to include the identification information of the frequency domain resource, and is used to indicate the second frequency domain resource.
  • a possible implementation manner is that the terminal determines whether the second frequency domain resource scheduling information includes the identifier information of the frequency domain resource according to whether the terminal supports dynamic switching of the frequency domain resource.
  • the corresponding identification information exists only when the indication information is received, and is used to indicate the identifier of the second frequency domain resource.
  • the corresponding second resource scheduling information is used as the fallback format of the first resource scheduling information, and the indication information may not be carried.
  • the terminal determines, according to the identifier information of the second frequency domain resource, the second frequency domain resource, and determines, according to the second resource allocation information, that the second frequency domain resource is used to perform with the network device.
  • the second resource of communication is not limited to the identifier information of the second frequency domain resource, the second frequency domain resource, and determines, according to the second resource allocation information, that the second frequency domain resource is used to perform with the network device.
  • the second frequency domain resource allocated by the terminal to the base station includes 12 RBs, for example, RB0-RB11 shown in FIG. 6, and second resource allocation information corresponding to the second resource allocation type.
  • the RIV indication is used, and the specific resource allocation information includes: the starting point of the resource block is RB3, and the length is 6.
  • the terminal can determine the RB3 in the second frequency domain resource.
  • RB8 is used for data transmission with the base station (for example, the terminal may transmit data to the base station on RB3-RB6 or receive data transmitted by the base station on RB3-RB6).
  • the terminal determines the second resource from the second frequency domain resource based on the resource starting point and the resource length.
  • the terminal determines, according to the first resource allocation information, the first resource in the first frequency domain resource for communicating with the base station.
  • the base station before transmitting the first resource scheduling information, allocates the transmission resources for the terminal to RGB0, RGB2, and RGB3, and the current period base station and the terminal perform scheduling on RGB0, then the terminal receives the first After a resource allocation information, if the transmission resource indicated by the first resource allocation information is RGB2, the terminal can adjust from RGB0 to transmit with the base station in RGB2.
  • the embodiment of the application further includes: the base station selecting the second frequency domain resource from the multiple frequency domain resources.
  • the base station has configured multiple frequency domain resources for the terminal.
  • the base station may configure multiple frequency domain resources, multiple frequency domains, for the terminal from the system frequency resource.
  • the resource is a frequency domain resource in a carrier, and the multiple frequency domain resources may belong to a frequency domain resource in the same carrier, or may be a frequency domain resource in different carriers, when the multiple frequency domain resources are located in the same carrier.
  • the bandwidth of each frequency domain resource is smaller than the bandwidth of the carrier in which the frequency domain resource is located. When multiple frequency domain resources are located in different carriers, the bandwidth of each frequency domain resource is less than or equal to the bandwidth of the carrier where the frequency is located.
  • Each of the frequency domain resources may or may not overlap in the frequency domain, which is not limited in this embodiment of the present application.
  • one PRB corresponds to one virtual resource block (VRB).
  • the VRB may include a centralized VRB or a distributed VRB.
  • the centralized VRB and PRB are directly mapped.
  • Distributed VRBs and PRBs are mapped by certain rules.
  • the mapping method may be a mapping method in the LTE standard protocol.
  • the allocated resources are contiguous in the frequency domain.
  • resources may be allocated to the entire frequency domain bandwidth, that is, the VRB to PRB mapping may be supported.
  • a VRB to PRB mapping manner is divided into two steps:
  • Step 1 interleaving: mapping successive VRB pairs to non-contiguous PRB pairs;
  • Step 2 Frequency hopping between the same VRB number in the slot.
  • step one Calculate the number of VRBs that can be used for distributed mapping within the system bandwidth according to the following formula.
  • N gap,1 ,N gap,2 is determined according to the BWP bandwidth , and a possible correspondence between N gap,1 ,N gap,2 and BWP bandwidth is as shown in Table 3 below:
  • the number of interleaved VRBs may be less than the total number of VRBs, the interleaved VRBs are interleaved.
  • the number of elements filled with null is Then, the VRB number is read in a column-by-column manner, and the null element is ignored, so that the interleaved VRB order is obtained, and the serial number of the interleaved VRB sequence corresponds to the PRB number, that is, the j-th VRB (VRB k) corresponding to the interleaving corresponds to The PRB is PRB j.
  • a VRB is mapped to a different PRB slot between the two slots, wherein the PRB of the even slot (slot 0) is the PRB obtained in step 1, and the odd slot (slot 1)
  • the corresponding PRB is the number of the PBR obtained in step 1 and is offset within the interleaved unit of the VRB.
  • the resource allocation type 2 determines a continuous VRB, in the distributed mapping, the continuous VRBs are mapped on the non-contiguous PRBs, and therefore, the PRB resources allocated to the terminals are discontinuous.
  • the base station may configure multiple frequency domain resources for the terminal by using configuration information of multiple frequency domain resources.
  • the configuration information may be configured through signaling, and the signaling may be high layer signaling, for example, radio resource control (Radio Resource). Control, RRC), Media Access Control (MAC), Control Element (CE), Downlink Control Information (DCI), etc., which are not limited in this embodiment of the present application.
  • Radio Resource Radio Resource
  • Control RRC
  • Media Access Control MAC
  • CE Control Element
  • DCI Downlink Control Information
  • the configuration information can also be predefined.
  • the base station may select at least one frequency domain resource from the multiple frequency domain resources configured for the terminal as the second frequency domain resource. In this way, the base station can communicate with the terminal in two or more frequency domain resources.
  • the base station configures six frequency domain resources for the terminal, for example, frequency domain resource 0, frequency domain resource 1, frequency domain resource 2, frequency domain resource 3, frequency domain resource 4, and frequency domain resource 5, then the terminal may The frequency domain resource 0 is selected as the second frequency domain resource from the above six frequency domain resources; the terminal may also select the frequency domain resource 1 and the frequency domain resource 2 as the second frequency domain resource from the six frequency domain resources; The frequency domain resource 0, the frequency domain resource 1, and the frequency domain resource 2 may be selected as the second frequency domain resource from the foregoing six frequency domain resources, which is not limited in this embodiment.
  • the base station selects one or more The frequency domain resource may be determined according to the channel quality fed back by the terminal, or may be other standards, which is not limited in this embodiment.
  • the base station when the base station selects the second frequency domain resource according to the channel quality fed back by the terminal, the base station may select the second frequency domain resource with good channel quality to the terminal.
  • the identifier information of the second frequency domain resource in the embodiment of the present application is used to identify the second frequency domain resource, and the identifier information of the second frequency domain resource may be an index of the second frequency domain resource, or a second For the location of the frequency domain resource, the identifier information of the second frequency domain resource is taken as an example, and the identifier information of the second frequency domain resource allocated by the base station is introduced.
  • the embodiment of the present application further includes: the base station allocates identification information to each of the plurality of frequency domain resources configured by the terminal.
  • the base station allocates identification information to each of the plurality of frequency domain resources configured by the terminal, and may send the identifier information to the terminal when the base station configures multiple frequency domain resources for the terminal, or may send the terminal to the terminal.
  • the process of sending the first resource scheduling information and the second resource scheduling information (that is, the process performed by the base station to perform the foregoing step S101) is sent to the terminal, and may be sent to the terminal by using other methods, such as a predefined manner. Limited.
  • the base station provides the identifier information for each frequency domain resource in the multiple frequency domain resources configured by the base station in the following manner:
  • Manner 1 The base station allocates a first identifier to each of the plurality of frequency domain resources configured by the terminal.
  • the base station may use the number of each frequency domain resource as the first identifier of each frequency domain resource, and the number of each frequency domain resource may be associated with the number of frequency domain resources configured by the base station for the terminal.
  • the base station configures four frequency domain resources (for example, frequency domain resource 0, frequency domain resource 1, frequency domain resource 2, and frequency domain resource 3) for the terminal, and the base station uses 2 bits to identify the frequency domain resource: for example, the base station
  • the frequency domain resource 0 can be identified by using 00
  • the base station can identify the frequency domain resource 1 by using 01
  • the base station can use 10 to identify the frequency domain resource 2
  • the base station can use 11 to identify the frequency domain resource 3. Therefore, it is assumed that the base station sends the resource scheduling information to the terminal in the frequency domain resource 0, and the identifier information carried in the resource scheduling information is 01, or the identifier field of the resource scheduling information is 01, indicating that the frequency domain resource 0 needs to be switched to the frequency.
  • Domain resource 1 the base station uses 2 bits to identify the frequency domain resource: for example, the base station The frequency domain resource 0 can be identified by using 00
  • the base station can identify the frequency domain resource 1 by using 01
  • the base station can use 10 to identify the frequency domain resource 2
  • the frequency domain resources that the base station usually configures for the terminal include the uplink frequency domain resource and the downlink frequency domain resource. Therefore, the base station in the embodiment of the present application is configured for each of the multiple frequency domain resources configured by the terminal.
  • the frequency domain resource allocation identification information can be implemented in the following manner:
  • the base station may allocate a second identifier to the uplink frequency domain resource and the downlink frequency domain resource of one frequency domain resource.
  • the terminal receives the second identifier, the terminal can not only switch the uplink frequency domain resources, but also switch the downlink frequency domain resources.
  • the base station configures or pre-defines the association relationship between the downlink (DL) frequency domain resources and the uplink (Up Link, UL) frequency domain resources, and each DL frequency domain resource corresponds to one UL frequency domain resource.
  • Each association is associated with a second identity.
  • the second identifier may be a number of a pair between each DL frequency domain resource and an UL frequency domain resource, for example: 00- ⁇ DL frequency domain resource 0, UL frequency domain resource 0 ⁇ , 01- ⁇ DL frequency Domain resource 1, UL frequency domain resource 1 ⁇ , 10- ⁇ DL frequency domain resource 2, UL frequency domain resource 2 ⁇ , 11- ⁇ DL frequency domain resource 3, UL frequency domain resource 3 ⁇ .
  • the base station may further determine an association relationship between the uplink frequency domain resource and the downlink frequency domain resource by using the following manner:
  • the base station may associate the uplink frequency domain resource with the same center frequency point with the downlink frequency domain resource or as a frequency domain resource pair, so that after receiving the second identifier from the second resource scheduling information, the terminal may directly access the first frequency domain.
  • Switching the resource to the second uplink frequency domain resource and switching to the second downlink frequency domain resource, so as to avoid adjusting the second uplink frequency domain resource and the second after switching to the second uplink frequency domain resource and the second downlink frequency domain resource The frequency of downlink frequency domain resources.
  • the base station configures only two frequency domain resources in the terminal:
  • the base station configures the frequency domain resource 0 and the frequency domain resource 1 for the terminal. Therefore, the second resource scheduling information in the embodiment of the present application is used to indicate that the terminal switches from the first frequency domain resource to the second frequency domain resource, and may also be implemented in the following manner:
  • the base station may carry a bit indication in the second resource scheduling information, and when the bit is the first indicator, instruct the terminal to switch from the current frequency domain resource (for example, frequency domain resource 0) to Another frequency domain resource (frequency domain resource 1).
  • the first indicator in the embodiment of the present application may be 0 or 1, which is not limited in this embodiment of the present application.
  • the bit When the bit is the second indicator, the bit may be carried in the first resource scheduling information, so that when determining that the second indicator exists in the first resource scheduling information, the terminal determines the current frequency domain resource (frequency) In the domain resource 0), data transmission is performed with the base station (for example, transmitting data or receiving data). This is because when the base station configures only two frequency domain resources for the terminal, the base station needs to perform data transmission with the terminal through one of the two frequency domain resources (for example, frequency domain resource 0). At this time, the terminal also determines. The resource scheduling information sent by the base station is received on the frequency domain resource 0.
  • the base station when the base station receives the resource scheduling information sent by the base station in the frequency domain resource 0, the base station can determine the slave frequency domain according to the 1-bit indication carried in the resource scheduling information. Switching to the frequency domain resource 1 in the resource 0, and communicating with the base station in the frequency domain resource 1 by the frequency domain resource determined by the second resource allocation information, or determining by the first resource allocation information in the frequency domain resource 0 The frequency domain resources and the base station perform data transmission.
  • the second resource scheduling information is jointly indicated by the identifier information of the second frequency domain resource and the carrier identification information, and the first frequency domain resource is switched to the second frequency domain resource, where the carrier identification information is Terminal configuration.
  • the carrier identification information is used to identify a carrier.
  • the first frequency domain resource and the second frequency domain resource may be frequency domain resources in the same carrier, then the first frequency domain resource is switched to the second frequency domain resource.
  • the first frequency domain resource and the second frequency domain resource may be frequency domain resources in different carriers.
  • the first frequency domain resource is a frequency domain resource located in carrier 1.
  • the second frequency domain resource is a frequency domain resource located in the carrier 2, and then switching from the first frequency domain resource to the second frequency domain resource needs to be implemented in two carriers. Therefore, in an actual process, the base station can use the resource.
  • the scheduling information is jointly indicated by the identifier information of the second frequency domain resource and the carrier identification information to indicate that the first frequency domain resource is switched to the second frequency domain resource, so that the base station can not only indicate to the terminal the frequency domain resource that needs to be switched (for example, the second
  • the identifier of the frequency domain resource may also indicate the identifier of the carrier where the frequency domain resource to which the terminal needs to switch.
  • the first frequency domain resource is corresponding to the first resource allocation type, and the first resource allocation type is different from the second resource allocation type.
  • the first resource allocation type may be TPYE0.
  • the second resource allocation type can be TYPE2.
  • the method provided by the embodiment of the present application further includes: determining, by the terminal, at least the identifier information that the base station allocates for the second frequency domain resource.
  • the determining, by the terminal in the embodiment of the present application, at least the identifier information that is allocated by the base station to the second frequency domain resource may be implemented by:
  • Manner 1 The terminal receives a first identifier allocated by the base station for each of the plurality of frequency domain resources to determine identity information of the second frequency domain resource.
  • the terminal receives, by the base station, a first identifier that is allocated to each of the plurality of frequency domain resources, to determine that the identifier information of the second frequency domain resource may be used by the terminal to receive multiple frequency domain resource configurations configured by the base station for the terminal. Executed in.
  • the terminal in the embodiment of the present application receives the first identifier allocated by the base station for each of the plurality of frequency domain resources, and the identifier information of the second frequency domain resource may be specifically implemented by:
  • the terminal determines that the identifier of the identifier information of the second frequency domain resource carried in the resource scheduling information is 01, the terminal determines, from the plurality of frequency domain resources, the identifier corresponding to the identifier 01. Two-frequency domain resources.
  • the terminal in the embodiment of the present application receives the first identifier allocated by the base station for each of the plurality of frequency domain resources, and the identifier information of the second frequency domain resource may be specifically implemented by:
  • the terminal determines to switch from the current frequency domain resource (that is, the frequency domain resource that receives the resource scheduling information, for example, the first frequency domain resource) to another frequency.
  • the domain resource for example, switching to the second frequency domain resource
  • the implementation is applicable to a scenario in which the base station configures two frequency domain resources for the terminal (for example, the base station only configures the first frequency domain resource and the second frequency for the terminal). In the context of the domain resource).
  • the second frequency domain resource in the embodiment of the present application may be at least one of the second uplink frequency domain resource and the second downlink frequency domain resource, that is, the second frequency domain resource may be the first
  • the second uplink frequency domain resource may also be the second downlink frequency domain resource, or may be the second uplink frequency domain resource and the second downlink frequency domain resource.
  • the base station can implement the joint scheduling of the uplink frequency domain resource and the downlink frequency domain resource.
  • the second resource allocation information corresponding to the second resource allocation type in the second frequency domain resource is also applicable to the second uplink frequency domain.
  • the resource and the second downlink frequency domain resource that is, the terminal determines the frequency domain resource for performing uplink communication from the second uplink frequency domain resource according to the second resource allocation information, and the second downlink frequency domain resource according to the second resource allocation information Determine the frequency domain resources for downlink communication.
  • the second resource scheduling information that supports the uplink frequency domain resource scheduling and the second resource scheduling information that supports the downlink frequency domain resource scheduling may be the same in the NR. That is, the second resource scheduling information supporting the uplink frequency domain resource scheduling is the same as the payload of the second resource scheduling information supporting the downlink frequency domain resource scheduling.
  • the base station in this embodiment of the present application may also The mapping mode used by the second resource allocation information of the terminal is indicated. Specifically, the base station may indicate the mapping mode used by the second resource allocation information to the terminal by:
  • One mode is: the terminal and the base station negotiate or the base station pre-configures the second resource allocation information corresponding to the second resource allocation type to adopt a distributed VRB mapping mode.
  • the terminal receives the second resource.
  • the scheduling information is determined, if the DCI format of the second resource scheduling information is determined to be a fallback format for the frequency domain resource switching, the terminal determines the second resource allocation information corresponding to the second resource allocation type in the second frequency domain resource.
  • the distributed VRB mapping mode is adopted, which can increase frequency domain diversity and improve the reliability of data transmission. Compared with LTE, the base station does not need to further instruct the terminal second resource allocation information to use centralized or distributed VRB mapping, which reduces signaling overhead.
  • the other method is: the terminal and the base station negotiate or the base station is pre-configured by the terminal. If the resource scheduling information received by the terminal includes the identifier information of the second frequency domain resource, the terminal determines the second corresponding to the second resource allocation type.
  • the resource allocation information is in a distributed VRB mapping manner. Specifically, the identifier information of the second frequency domain resource in the second resource scheduling information is configured by high layer signaling, and the high layer signaling may be used to indicate that the frequency domain resource is supported.
  • the second resource allocation information corresponding to the second frequency domain resource adopts a distributed VRB mapping manner. Compared with LTE, the base station does not need to further indicate whether the second resource allocation information used by the second frequency domain resource of the terminal is a centralized VRB mapping or a distributed VRB mapping.
  • the method provided by the embodiment of the present application is also applicable to: when the base station sends the first resource scheduling information and the second resource scheduling information to the terminal, or after the base station sends an indication information to the terminal, the indication information.
  • the method for indicating that the second resource allocation information adopts a distributed VRB mapping manner.
  • the indication information may be carried in the second resource scheduling information, and may be sent to the terminal in other forms, which is not limited in this embodiment of the present application.
  • the implementation manner described in the foregoing embodiment is further applicable to the base station instructing the terminal to switch from the first uplink frequency domain resource to the second uplink frequency domain resource.
  • different uplink transmission waveforms usually have different types of resource allocations.
  • the uplink transmission waveform generally includes a CP-OFDM waveform and a DFT-S-OFDM waveform, wherein the resource allocation types supported by the CP-OFDM waveform are: a first resource allocation type and a second resource allocation type, and a DFT-S-OFDM waveform
  • the supported resource allocation type is: the second resource allocation type.
  • the content of the first resource scheduling information is the same as the content of the first resource scheduling information
  • the third resource scheduling information is used to schedule the first frequency domain resource, and does not need to include the identification information of the frequency domain resource.
  • the difference between the first resource scheduling information and the second resource scheduling information is that the resource allocation type used by the third resource allocation information of the third resource scheduling information is different from the first resource allocation information, and one possible mode is
  • the first resource allocation information is a first resource allocation type
  • the third resource allocation information is a second resource allocation type.
  • the first resource scheduling information and the third resource scheduling information are not simultaneously sent.
  • the method provided by the embodiment of the present application further includes:
  • the base station sends a first message to the terminal, where the first message is used to instruct the terminal to blindly detect the second resource scheduling information and the first resource scheduling information.
  • the first message is used to instruct the terminal to blindly detect the second resource scheduling information and the third resource scheduling information.
  • the base station sends a second message to the terminal, where the second message is used to instruct the terminal to blindly check the first resource scheduling information and the second Resource scheduling information.
  • the base station may not send a message, and when the terminal determines that the waveform is a DFT-S-OFDM waveform, the first resource scheduling information is adopted by default.
  • the method provided by the embodiment of the present application further includes:
  • the terminal receives the first message sent by the base station.
  • the terminal blindly detects the second resource scheduling information and the first resource scheduling information according to the first message, or the first message is used to instruct the terminal to blindly detect the second resource scheduling information and the third resource scheduling information.
  • the terminal receives the second message sent by the base station.
  • the terminal blindly detects the first resource scheduling information and the second resource scheduling information according to the second message.
  • the base station and the terminal can also negotiate with each other: when the uplink transmission waveform is a discrete Fourier transform extended orthogonal frequency division multiplexing DFT-S-OFDM waveform, the terminal blindly detects the first resource scheduling information and the second Resource scheduling information. Or adopt the first resource scheduling information.
  • the uplink transmission waveform is a CP-OFDM cyclic prefix orthogonal frequency division multiplexing waveform
  • the terminal blindly detects the second resource scheduling information and the first resource scheduling information, or the first message is used to instruct the terminal to blindly detect the second resource scheduling.
  • Information and third resource scheduling information In this case, steps S105-S108 can be omitted.
  • the DCI of the first format adopts the first resource allocation type
  • the DCI of the second format adopts the second resource allocation type
  • the second mode that supports the switching of the frequency domain resources is adopted.
  • the DCI of the format corresponds to the second resource allocation type, or the DCI of the second resource allocation type is used to indicate the frequency domain resource switching, so that when the resource allocation for the same frequency domain resource is performed, the number of occupied bits becomes smaller. This reduces the number of bits filled. Saves system overhead.
  • An embodiment of the present application provides a resource scheduling method, by selecting one frequency domain resource from a plurality of frequency domain resources as a second frequency domain resource, and then the network device sends resource scheduling information to the communication device in the first frequency domain resource,
  • the resource scheduling information is used to instruct the communication device to switch from the first frequency domain resource to the second frequency domain resource, so that after receiving the resource scheduling information, the communication device can determine the cross-frequency domain resource scheduling according to the identification information of the second frequency domain resource.
  • the destination frequency domain resource to be switched to (for example, the second frequency domain resource) and the resource allocation information corresponding to the first resource allocation type in the second frequency domain resource may be used to determine the second frequency domain resource for use with the network device
  • the frequency domain resource for data transmission can not only realize the scheduling of the cross-frequency domain resources, but also realize the resource allocation in the second frequency domain resource while realizing the cross-frequency domain resource scheduling, and the first implementation provided in the traditional technical solution.
  • the switching of the frequency domain resource reduces the delay compared to the resource allocation in the frequency domain resource.
  • the embodiment of the present application passes Resource scheduling information carried in resource allocation information corresponding to the second frequency domain resource, so that in the time-frequency resource scheduling to avoid cross-bit wasted.
  • each network element such as a network device, a communication device, etc.
  • each network element includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the embodiments of the present application.
  • the embodiments of the present application may divide the function modules of the network device, the communication device, and the like according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 10 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device includes: a transmitting unit 101.
  • the sending unit 101 is configured to support the network device to perform step S101, S105 or S106 in the foregoing embodiment.
  • the network device provided by the embodiment of the present application further includes: the selecting unit 102 is configured to select the first of the plurality of frequency domain resources.
  • All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the sending unit 101 in the embodiment of the present application may be a transmitter of a network device, and the transmitter may be integrated with a receiver of the network device to be used as a transceiver, and the specific transceiver may also be used.
  • the allocation unit 103 and the selection unit 102 can be integrated on the processor of the network device.
  • FIG. 11 shows a possible logical structure diagram of the network device involved in the above embodiment.
  • the network device includes a processing module 112 and a communication module 113.
  • the processing module 112 is configured to perform control and management on network device actions.
  • the processing module 112 is configured to support the network device to perform steps S105 and S106 in the foregoing embodiment.
  • the communication module 113 is configured to support the network device to perform step S101 in the foregoing embodiment. . And/or other processes for the techniques described herein.
  • the network device may further include a storage module 111 for storing program codes and data of the network device.
  • the processing module 112 may be a processor or a controller, such as a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, Hardware components or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application.
  • the processor may also be a combination of computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication module 113 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 111 can be a memory.
  • the network device involved in the embodiment of the present application may be the device shown in FIG.
  • the communication interface 130, the processor 120, and the memory 140 are mutually connected by a bus 110; the bus 110 may be a PCI bus or an EISA bus or the like.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the memory 140 is used to store program codes and data of the network device.
  • the communication interface 130 is configured to support the network device to communicate with other devices (for example, the communication device), and the processor 120 is configured to support the network device to execute the program code and data stored in the memory 140 to implement a resource scheduling method provided by the embodiment of the present application. .
  • FIG. 13 shows a possible structural diagram of the communication device involved in the above embodiment.
  • the communication device includes a receiving unit 201 and a determining unit 202.
  • the receiving unit 201 is configured to support the communication device to perform steps S102, S107 and S108 in the above embodiment;
  • the determining unit 202 is configured to support the communication device to perform steps S103 and S104 in the above embodiment. And/or other processes for the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the receiving unit 201 in the embodiment of the present application may be a receiver of a communication device, and the receiver may be integrated with a transmitter of the communication device as a transceiver, and the specific transceiver may also be used.
  • the determination unit 201 can be integrated on the processor of the communication device.
  • FIG. 14 shows a possible logical structure diagram of the communication device involved in the above embodiment.
  • the communication device includes a processing module 212 and a communication module 213.
  • the processing module 212 is configured to perform control management on the communication device action.
  • the processing module 212 is configured to support the communication device to perform steps S103 and S104 in the foregoing embodiment.
  • the communication module 213 is configured to support the communication device to perform step S102 in the foregoing embodiment. , S107 and S108. And/or other processes for the techniques described herein.
  • the communication device can also include a storage module 211 for storing program codes and data of the communication device.
  • the processing module 212 can be a processor or a controller, for example, a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, Hardware components or any combination thereof. It is possible to implement or perform various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the present application.
  • the processor may also be a combination of computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication module 213 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 211 can be a memory.
  • the processing module 212 is the processor 220
  • the communication module 213 is the communication interface 130 or the transceiver
  • the storage module 211 is the memory 240
  • the communication device according to the embodiment of the present application may be the device shown in FIG.
  • the communication interface 230, the processor 220, and the memory 240 are connected to each other through a bus 210.
  • the bus 210 may be a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the memory 240 is used to store program codes and data of the communication device.
  • the communication interface 230 is configured to support the communication device to communicate with other devices (for example, a network device), and the processor 220 is configured to support the communication device to execute the program code and data stored in the memory 240 to implement a resource scheduling method provided by the embodiments of the present application. .
  • a computer storage medium where instructions are stored in a computer readable storage medium, and when executed on a network device, cause the network device to perform the resource scheduling method described in steps S101, S105, and S106 in the embodiment. .
  • a computer storage medium wherein instructions are stored in a computer readable storage medium, and when executed on a communication device, cause the communication device to perform steps S102, S103, S104, S107, and S108 in the above embodiment The resource scheduling method described.
  • a computer program product includes instructions for storing instructions in a computer program product that, when run on a network device, cause the network device to perform the resources described in steps S101, S105, S106 of the above-described embodiments Scheduling method.
  • a computer program product comprising instructions stored in a computer program product, such that when executed on a communication device, causing the communication device to perform steps S102, S103, S104, S107, and S108 in the above-described embodiments And the resource scheduling method described in step S104.
  • the embodiment of the present application provides a communication system, including the network device as described in any one of FIG. 10, FIG. 11, and FIG. 12, and the communication device as described in any of FIG. 13, FIG. 14, and FIG.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种资源调度方法、网络设备以及通信设备,涉及通信领域,用以提升资源调度的灵活性,包括网络设备在第一频域资源上向通信设备发送第一资源调度信息和第二资源调度信息,其中,第一资源调度信息包括第一资源分配信息,该第一资源分配信息用于指示第一频域资源内的第一资源,第二资源调度信息包括第二频域资源的标识信息,和第二资源分配信息,该第二资源分配信息用于指示第二频域资源内的第二资源,该第二资源调度信息用于指示从所述第一频域资源切换到所述第二频域资源;第一频域资源和所述第二频域资源均属于载波内的资源,本申请实施例可以适用于跨资源调度场景中。

Description

一种资源调度方法、网络设备以及通信设备
本申请要求于2017年09月30日提交中国专利局、申请号为201710943984.0、申请名称为“一种资源调度方法、网络设备以及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请实施例中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种资源调度方法、网络设备以及通信设备。
背景技术
在长期演进(Long Term Evolution,LTE)中,网络设备向终端发送的下行链路控制信息(Downlink Control Information,DCI)中包括数据信道的调度信息,基于该调度信息,网络设备和终端通过数据信道进行数据传输。在新空口(New Radio,NR)中,资源调度设计同样是重点研究的课题。
发明内容
本申请实施例提供一种资源调度方法、网络设备以及通信设备,用以提升资源调度的灵活性。
为达到上述目的,本申请实施例所采用的技术方案如下:
第一方面,本申请实施例提供一种资源调度方法,包括:网络设备在第一频域资源上向通信设备发送第一资源调度信息和第二资源调度信息。其中,第一资源调度信息包括第一资源分配信息,该第一资源分配信息用于指示第一频域资源内的第一资源。第二资源调度信息包括第二频域资源的标识信息和第二资源分配信息,该第二资源分配信息用于指示第二频域资源内的第二资源,第二资源调度信息用于指示从第一频域资源切换到第二频域资源;第一频域资源和第二频域资源属于载波内的频域资源。
本申请实施例提供一种资源调度方法,网络设备通过在第一频域资源中向通信设备发送第一资源调度信息和第二资源调度信息,以使用第一资源调度信息指示通信设备在第一频域资源中的第一资源上调度,以及使用第二资源调度信息指示通信设备从第一频域资源切换到第二频域资源,并在第二资源上与网络设备进行通信。一方面,通信设备可以根据第一资源调度信息中的第一资源分配信息,从第一频域资源的当前频域中调整到第一频域资源的第一资源上,这样可以实现第一频域资源内的资源灵活调度。另一方面,使得通信设备可以根据第二资源分配信息,从第一频域资源上切换至第二频域资源的第二频域上进行调度,这样实现了两个不同的频域资源之间的灵活调度。此外,在实现不同频域资源之间切换时,还可以实现第二频域资源内的资源分配,与传统技术方案中提供的先实现频域资源的切换再进行频域资源内的资源分配相比降低了时延。
一种可能的实现方式中,第一资源调度信息与第二资源调度信息满足以下条件中的至少一种:第一资源调度信息的大小和第二资源调度信息的大小不同;第一资源调度信息的格式和第二资源调度信息的格式不同。这样通信设备便可以根据资源调度信息大小或者格式来区分每个资源调度信息的功能。例如,第一资源调度信息可以用于 通过调整同一个频域资源内的资源以改变与网络设备通信的资源,第二资源调度信息用于从一个频域资源切换到另一个频域资源。
一种可能的实现方式中,第一资源调度信息满足以下至少一个条件:在不同传输方式下,第一资源调度信息对应的大小不同;在不同传输方式下,第一资源调度信息对应的格式不同。这样通信设备便可以确定第一资源调度信息的功能。
一种可能的实现方式中,第二资源调度信息对应的传输方式为发送分集方式或单端口方式。这样通信设备便可以确定第二资源调度信息的功能。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源,第二上行频域资源和第二下行频域资源的中心频点一致,第二频域资源的标识信息包括第一标识,第一标识指示第二频域资源。通过在第二频域资源的标识信息设为第二上行频域资源和第二下行频域资源的标识,这样通信设备便可以确定从第一频域资源切换到第二上行频域资源和第二下行频域资源上与网络设备通信,此外还可以通过第二资源分配信息分别确定第二上行频域资源和第二下行频域资源内的用于与网络设备通信的上行资源和下行资源。此外,第二上行频域资源和第二下行频域资源中心频点一致可以避免通信设备作频点调整。
一种可能的实现方式中,第二频域资源为第二上行频域资源和第二下行频域资源中的至少一项。在这种实现方式中,网络设备不仅可以利用资源调度信息指示通信设备从第一频域资源切换到第二上行频域资源,还可以指示通信设备从第一频域资源切换到第二下行频域资源或者,同时切换到第二上行频域资源和第二下行频域资源。
一种可能的实现方式中,第二资源调度信息用于调度第二上行频域资源时的大小与第二资源调度信息用于调度第二下行频域资源的大小相同,这样可以降低通信设备的盲检次数。
一种可能的实现方式中,第一资源分配信息与第一资源分配类型或与第二资源分配类型对应,第二资源分配信息与第二资源分配类型对应,其中,第一资源分配类型和第二资源分配类型不同。
一种可能的实现方式中,第二资源分配信息指示频域资源起点和频域资源的长度。
一种可能的实现方式中,资源调度信息用于指示从第一频域资源切换到第二频域资源,包括:资源调度信息通过第二频域资源的标识信息与载波标识信息联合指示第一频域资源切换到第二频域资源,该载波标识信息为网络设备为通信设备配置的。
第二方面,本申请实施例提供一种资源调度方法,包括:通信设备在第一频域资源上接收网络设备发送的第一资源调度信息和第二资源调度信息。其中,第一资源调度信息包括第一资源分配信息,第一资源分配信息用于指示第一频域资源内的第一资源;第二资源调度信息包括第二频域资源的标识信息,和第二资源分配信息,第二资源分配信息用于指示第二频域资源内的第二资源,第二资源调度信息用于指示从第一频域资源切换到第二频域资源;第一频域资源和第二频域资源均属于载波内的频域资源;通信设备根据第二频域资源的标识信息,确定第二频域资源,以及根据第二资源分配信息确定第二频域资源中用于与网络设备进行通信的第二资源;通信设备根据第一资源分配信息,确定第一频域资源中用于与网络设备进行通信的第一资源。
一种可能的实现方式中,终端根据第二资源分配信息基于频域资源起点和频域资 源的长度的方式从第二频域资源中确定第二资源。
一种可能的实现方式中,第一资源调度信息与第二资源调度信息满足以下至少一个条件:第一资源调度信息的大小和第二资源调度信息的大小不同;第一资源调度信息的格式和第二资源调度信息的格式不同。
一种可能的实现方式中,在第二方面的第二种可能的实现方式中,第一资源调度信息满足以下至少一个条件:在不同传输方式下,第一资源调度信息对应的大小不同;在不同传输方式下,第一资源调度信息对应的格式不同。
一种可能的实现方式中,第二资源调度信息对应的传输方式为发送分集方式或单端口方式。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源,第二上行频域资源和第二下行频域资源的中心频点一致,第二频域资源的标识信息包括第一标识,第一标识指示第二频域资源。
一种可能的实现方式中,第二频域资源为第二上行频域资源和第二下行频域资源中的至少一项。
一种可能的实现方式中,第二资源调度信息用于调度第二上行频域资源时的大小与第二资源调度信息用于调度第二下行频域资源的大小相同。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源中的至少一项。
一种可能的实现方式中,资源调度信息用于指示从第一频域资源切换到第二频域资源,包括:资源调度信息通过第二频域资源的标识信息与载波标识信息联合指示第一频域资源切换到第二频域资源,该载波标识信息为网络设备为通信设备配置的。
相应的,第三方面,本申请实施例还提供了一种资源调度装置,该装置可以实现第一方面的资源调度方法。例如,该装置可以是网络设备(例如,基站),或者为设置在网络设备内的芯片,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述资源调度方法。
一种可能的实现方式中,该装置可以包括处理器和存储器。该处理器被配置为支持该装置执行上述第一方面的各种可能的实现方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。
一种可能的实现方式中,该网络设备,包括:选择单元,用于从多个频域资源中选择第二频域资源;发送单元,用于在第一频域资源上向通信设备发送第一资源调度信息和第二资源调度信息;其中,第一资源调度信息包括第一资源分配信息,第一资源分配信息用于指示第一频域资源内的第一资源;第二资源调度信息包括第二频域资源的标识信息,和第二资源分配类型对应的第二资源分配信息,第二资源分配信息用于指示第二频域资源内的第二资源,第二资源调度信息用于指示从第一频域资源切换到第二频域资源;第一频域资源和第二频域资源均属于载波内的频域资源。
一种可能的实现方式中,第一资源调度信息与第二资源调度信息满足以下条件中的至少一种:第一资源调度信息的大小和第二资源调度信息的大小不同;第一资源调度信息的格式和第二资源调度信息的格式不同。
一种可能的实现方式中,第一资源调度信息满足以下至少一个条件:在不同传输方式下,第一资源调度信息对应的大小不同;在不同传输方式下,第一资源调度信息对应的格式不同。
一种可能的实现方式中,第二资源调度信息对应的传输方式为发送分集方式或单端口方式。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源,第二上行频域资源和第二下行频域资源的中心频点一致,第二频域资源的标识信息包括第一标识,第一标识指示第二频域资源。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源中的至少一项。
一种可能的实现方式中,第二资源调度信息用于调度第二上行频域资源时的大小与第二资源调度信息用于调度第二下行频域资源的大小相同。
一种可能的实现方式中,资源调度信息用于指示从第一频域资源切换到第二频域资源,包括:资源调度信息通过第二频域资源的标识信息与载波标识信息联合指示第一频域资源切换到第二频域资源,该载波标识信息为网络设备为通信设备配置的。
一种可能的实现方式中,第二频域资源为第二上行频域资源和第二下行频域资源中的至少一项。
一种可能的实现方式中,第二资源分配信息指示频域资源起点和频域资源的长度。一种可能的实现方式中,该网络设备,包括:至少一个处理器和收发器,其中,至少一个处理器和收发器耦合,处理器用于执行第一方面至第一方面的任意一种可能的方法中在网络设备侧执行处理或者控制的操作,收发器用于执行第一方面至第一方面的任意一种可能的实现方式中在网络设备侧执行接收或者发送的相关操作。
可选的,该网络设备还可以包括存储器,和总线,其中存储器中存储代码和数据,处理器与存储器通过总线连接。
相应的,第四方面,本申请实施例还提供了一种资源调度装置,该装置可以实现第二方面的资源调度方法。例如,该装置可以是通信设备,或者为设置在通信设备内的芯片,其可以通过软件、硬件、或者通过硬件执行相应的软件实现上述资源调度方法。
一种可能的实现方式中,该装置可以包括至少一个处理器和存储器。该处理器被配置为支持该装置执行上述第二方面方法中相应的功能。存储器用于与处理器耦合,其保存该装置必要的程序(指令)和数据。另外该装置还可以包括通信接口,用于支持该装置与其他网元之间的通信。该通信接口可以是收发器。其中,存储器、处理器以及收发器通过线路连接,其中,收发器用于执行第二方面至第二方面的任一项所描述的方法中在通信设备侧执行消息接收和发送的相关操作,处理器用于执行第二方面至第二方面的任一项所描述的方法中在通信设备侧执行处理或者控制的操作。
一种可能的实现方式中,该通信设备,包括:接收单元,用于在第一频域资源上接收网络设备发送的第一资源调度信息和第二资源调度信息,该第一资源调度信息包括第一资源分配信息,第一资源分配信息用于指示第一频域资源内的第一资源;第二资源调度信息包括第二资源的标识信息以及第二资源分配信息;第二资源分配信息用 于指示第二频域资源内的第二资源,其中,第一频域资源和第二频域资源均属于载波内的资源;确定单元,用于根据第二频域资源的标识信息,确定第二频域资源,以及根据第二资源分配信息确定第二频域资源中用于与网络设备进行通信的第二资源;确定单元,还用于根据第一资源分配信息,确定第一频域资源中用于与网络设备进行通信的第一资源。
一种可能的实现方式中,第一资源调度信息与第二资源调度信息满足以下至少一个条件:第一资源调度信息的大小和第二资源调度信息的大小不同;第一资源调度信息的格式和第二资源调度信息的格式不同。
一种可能的实现方式中,第一资源调度信息满足以下至少一个条件:在不同传输方式下,第一资源调度信息对应的大小不同;在不同传输方式下,第一资源调度信息对应的格式不同。
一种可能的实现方式中,第二资源调度信息对应的传输方式为发送分集方式或单端口方式。
一种可能的实现方式中,第二频域资源的标识信息包括第一标识,该第一标识为网络设备为第二频域资源分配的。
一种可能的实现方式中,第二频域资源的标识信息包括第二标识,该第二标识为网络设备为第二频域资源包括的第二上行频域资源和第二下行频域资源分配的,第二上行频域资源和第二下行频域资源的中心频点一致。
一种可能的实现方式中,接收单元,还用于接收网络设备至少为第二频域资源分配的第二标识。
一种可能的实现方式中,接收单元,还用于接收网络设备至少为第二频域资源包括的第二上行频域资源和第二下行频域资源分配的第一标识,该第二上行频域资源和第二下行频域资源的中心频点一致。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源,第二上行频域资源和第二下行频域资源的中心频点一致,第二频域资源的标识信息包括第一标识,第一标识指示第二频域资源。
一种可能的实现方式中,第一资源分配信息与第一资源分配类型对应,第二资源分配信息与第二资源分配类型对应。
一种可能的实现方式中,终端根据第二资源分配信息基于频域资源起点和频域资源的长度的方式从第二频域资源中确定第二资源。
一种可能的实现方式中,第二频域资源包括第二上行频域资源和第二下行频域资源中的至少一项。
一种可能的实现方式中,资源调度信息用于指示从第一频域资源切换到第二频域资源,包括:资源调度信息通过第二频域资源的标识信息与载波标识信息联合指示第一频域资源切换到第二频域资源,该载波标识信息为网络设备为通信设备配置的。
第五方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当其在网络设备上运行时,使得网络设备执行上述第一方面或第一方面的任意一种可能的设计中所描述的资源调度方法。
第六方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当其 在通信设备上运行时,使得通信设备执行上述第二方面或第二方面的任意一种可能的设计中所描述的资源调度方法。
第七方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当其在网络设备上运行时,使得网络设备执行上述第一方面或第一方面的任意一种可能的设计中所描述的资源调度方法。
第八方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当其在通信设备上运行时,使得通信设备执行上述第二方面或第二方面的任意一种可能的设计中所描述的资源调度方法。
第九方面,本申请实施例提供一种通信芯片,应用于网络设备中,包括:至少一个处理器,存储器和接口电路,存储器、接口电路和至少一个处理器通过线路互联,该至少一个存储器中存储有指令;指令被处理器执行,以执行上述第一方面至第一方面的任一项所描述的资源调度方法。
第十方面,本申请实施例提供一种通信芯片,应用于通信设备中,包括:至少一个处理器,存储器和接口电路,存储器、接口电路和至少一个处理器通过线路互联,该至少一个存储器中存储有指令;指令被处理器执行,以执行上述第二方面至第二方面的任一项所描述的资源调度方法。
第十一方面,本申请实施例提供一种通信系统,包括上述第三方面至第三方面的任意一种可能的实现方式所描述的网络设备,以及第四方面至第四方面的任意一种可能的实现方式所描述的通信设备。
附图说明
图1为本申请实施例提供的一种资源调度方法及装置所应用的系统架构示意图;
图2为本申请实施例提供的频率资源可能的位置示意图;
图3为本申请实施例提供的系统频率资源包括的带宽部分的结构示意图;
图4为本申请实施例提供的一种频域资源的示意图;
图5为本申请实施例提供的一种第一资源分配类型的示意图;
图6为本申请实施例提供的一种第二资源分配类型的示意图;
图7为本申请实施例提供的一种资源调度方法的流程示意图;
图8为本申请实施例提供的一种本地资源调度的示意图;
图9为本申请实施例提供的一种跨资源调度的示意图;
图10为本申请实施例提供的一种网络设备的结构示意图一;
图11为本申请实施例提供的一种网络设备的结构示意图二;
图12为本申请实施例提供的一种网络设备的结构示意图三;
图13为本申请实施例提供的一种通信设备的结构示意图一;
图14为本申请实施例提供的一种通信设备的结构示意图二;
图15为本申请实施例提供的一种通信设备的结构示意图三。
具体实施方式
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使 用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中“的(英文:of)”,相应的“(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中的术语“第一”、“第二”等仅是为了区分不同的对象,并不对其顺序进行限定。例如,第一频域资源和第二频域资源仅仅是为了区分不同的频域资源,并不对其先后顺序进行限定。
为了方便理解本申请实施例的技术方案,首先给出本申请实施例相关技术的简要介绍如下。
载波:本申请实施例中的载波包括非载波聚合(carrier aggregation,CA)场景下的载波和CA下的成员载波(component carrier,CC)。其中,CA场景下的CC可以为主CC或辅CC,CA场景下的服务小区可以为主服务小区(primary serving cell,PCell)或辅服务小区(secondary serving cell,Scell)。为了方便描述,在本申请实施例的某些场景下,可以将非CA场景下的载波和CA场景下的CC统称为载波,本申请实施例对此不作具体限定。此外,载波或服务小区用于上行传输的部分可以理解为上行资源或上行载波,载波或服务小区用于下行传输的部分可以理解为下行资源或下行载波。例如,在频分双工(frequency division duplex,FDD)系统中,载波上用于上行传输的频域资源可以理解为上行资源或上行载波;载波上用于下行传输的频域资源可以理解为下行资源或下行载波。或者,例如,在TDD系统中,载波上用于上行传输的时域资源可以理解为上行资源或上行载波;载波上用于下行传输的时域资源可以理解为下行资源或下行载波。
工作带宽:即终端激活的(active)带宽部分(Bandwidth Part,BWP)。其中,工作带宽分包括上行工作带宽和下行工作带宽。上行工作带宽即终端激活的上行BWP,下行工作带宽即终端激活的下行BWP,在此进行统一说明,以下不再赘述。
带宽部分:基站分配给终端的载波或载波带宽内或系统带宽内的部分频域资源。BWP的大小小于或等于终端的带宽能力,即终端支持的最大带宽。且BWP是连续的频域资源,例如,BWP可以包括连续的多个子载波,再如,BWP可以包括多个连续的物理资源块(Physical Resource Block,PRB)。终端可以支持多个BWP,即基站可 以为终端配置多个BWP,当配置多个BWP时,BWP之间可以重叠,也可以不重叠。此外,不同BWP包括的频域资源的子载波间隔可以相同,也可以不同。
其中,子载波间隔为资源单元(resource element,RE)的频域长度,取值可以包括15KHz、30KHz、或60KHz等。
如图1所示,图1示出了本申请实施例提供的资源调度的方法应用的一种通信系统架构示意图,如图1所示,包括至少一个网络设备100(图1中仅示出了一个网络设备)和与网络设备100连接的一个或多个通信设备200(图1中仅示出了两个通信设备)。
其中,网络设备100可以是用于与通信设备200通信的设备,该网络设备100用于为通信设备200提供无线接入服务,网络设备100可以是无线局域网(Wireless Local Area Network,WLAN)中的接入点(access point,AP),全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备(例如,5G基站(NR NodeB,gNB))或者未来演进的公用陆地移动网(public land mobile network,PLMN)网络中的网络设备等。
另外,在本申请实施例中,网络设备100为小区提供服务,通信设备200通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备100进行通信。该小区可以是网络设备100(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小和发射功率低的特点,适用于提供高速率的数据传输服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
通信设备200可以是具备无线通信功能的各种无线通信设备或者芯片等,例如,可以是用户设备(user equipment,UE)、终端设备、移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,通信设备还可以称为移动台、移动设备、移动终端、无线终端。具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理 设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。
应注意,图1所示的通信系统仅用于举例,并非用于限制本申请实施例的技术方案。本领域的技术人员应当明白,在具体实现过程中,通信系统还可能包括其他设备,例如但不限于基站控制器(Base Station Controller,BSC),同时也可根据具体需要来配置通信设备和网络设备的数量。
在无线通信系统中,基站和UE可以利用空口资源进行无线通信,空口资源包括频域资源(又可以称为频率资源)。频域资源可以位于设置的频率范围。频率范围还可以称为频带(band)或频段。在频域,频域资源的中心点可以称为中心频点,频域资源的宽度可以称为带宽(bandwidth,BW)。示例性地,图2所示为频域资源可能的位置示意图。如图2中所示,频域资源可以为频带内的部分或全部资源,频域资源的带宽为W,中心频点的频率为F。其中,频域资源的边界点的频率分别为F-W/2和F+W/2,还可以描述为:频域资源中最高频点的频率为F+W/2,频域资源中最低频点的频率为F-W/2,如图2所示,频域资源的带宽小于或等于该频域资源所在的带宽。
在无线通信系统中,用于进行下行通信的频域资源和用于进行上行通信的频域资源可以相同,也可以不相同。
基站和UE利用频域资源进行无线通信时,基站管理系统频率资源,从系统频率资源中为UE分配频域资源,使得基站和UE可以利用该分配的频域资源进行通信。其中,系统频率资源可以为描述为基站可以管理和分配的频率资源,还可以描述为可以用于进行基站和UE间的通信的频率资源。在频域,系统频率资源的宽度可以称为系统频率资源的带宽,还可以称为系统带宽或载波带宽或传输带宽。
基站为UE分配频域资源的一种可能的设计为:基站从系统频率资源中为UE配置带宽部分(Bandwidth Part,BWP),基站在该配置的带宽部分中对UE进行调度。还可以描述为,基站从系统频率资源中为UE配置带宽部分,从而可以使基站将该配置的带宽部分中的部分或全部资源分配给UE,用于进行基站和UE间的通信。其中,带宽部分包括于系统频率资源中,可以是系统频率资源中连续的或者不连续的部分资源,也可以是系统频率资源中的全部资源。带宽部分还可以称为频域资源、频率资源部分、部分频率资源、载波带宽部分或者其它名称。当带宽部分为系统频率资源中的一段连续资源时,带宽部分还可以称为子带、窄带或者其它名称。
示例性地,图3所示为系统频率资源包括的带宽部分的可能的结构示意图,如图3中所示,系统频率资源中包括带宽部分0、带宽部分1和带宽部分2共3个不同的带宽部分。实际应用中,系统频率资源可以包括任意整数个带宽部分。
本申请实施例提供的资源调度方法可以适用于如下场景:
场景一:大带宽场景
在通信系统中,随着终端业务量的增加和终端数量的增加,系统业务量显著增加,因此,现有通信系统中提出了系统带宽为大带宽的设计,用于提供较多的系统资源,从而可以提供较高的数据传输速率。在系统带宽为大带宽的通信系统中,考虑到终端的成本以及终端的业务量,终端支持的带宽可能小于系统带宽。其中,终端支持的带宽越大,终端的处理能力越强,终端的数据传输速率可能越高,终端的设计成本可能 越高。终端支持的带宽还可以称为终端的带宽能力或终端带宽能力。示例性地,在5G系统中,系统带宽最大可能为400MHz,终端的带宽能力可能为20MHz、50MHz或100MHz等。
在系统带宽为大带宽的通信系统中,由于终端的带宽能力小于系统带宽,基站可以从系统频率资源中为终端配置带宽部分,该带宽部分的带宽小于等于终端的带宽能力。当终端和基站进行通信时,基站可以将为终端配置的带宽部分中的部分或全部资源分配给终端,用于进行基站和终端间的通信。
场景二:多系统参数场景
在无线通信系统中,例如5G系统中,为了支持更多的业务类型和/或通信场景,提出了支持多种参数的设计。对于不同的业务类型和/或通信场景,可以独立设置参数。该参数包括子载波间隔和循环前缀(cyclic prefix,CP)中至少一个。第三代合作伙伴计划(third generation partnership project,3GPP)在研究和制定无线通信系统的标准的过程中,该参数的英文名称还可以称为numerology。
在一种可能的配置中,基站可以在系统频率资源中配置多个带宽部分,为该多个带宽部分中的每个带宽部分独立配置numerology,用于在系统频率资源中支持多种业务类型和/或通信场景。其中,不同带宽部分的numerology帧结构可以相同,也可以不相同,本申请实施例不做限制。
当终端和基站进行通信时,基站可以基于该通信对应的业务类型和/或通信场景确定用于进行通信的numerology A,从而可以基于numerology A为终端配置相应的带宽部分。当终端和基站进行通信时,基站可以将为终端配置的带宽部分中的部分或全部资源分配给终端,用于进行基站和终端间的通信。
场景三:带宽回退
当终端和基站进行通信时,基站可以基于终端的业务量为终端配置带宽部分,用于节省终端的功耗。
示例性地,如果终端没有业务,终端可以只在较小的带宽部分中接收控制信息,可以降低终端的射频处理的任务量和基带处理的任务量,从而可以减少终端的功耗;如果终端的业务量较少,基站可以为终端配置带宽较小的带宽部分,可以降低终端的射频处理的任务量和基带处理的任务量,从而可以减少终端的功耗。如果终端的业务量较多,基站可以为终端配置带宽较大的带宽部分,从而可以提供更高的数据传输速率。当终端和基站进行通信时,基站可以将为终端配置的带宽部分中的部分或全部资源分配给终端,用于进行基站和终端间的通信。
在无线通信系统中,例如在基于正交频分复用(orthogonal frequency division multiplexing,OFDM)的通信系统中,在频域,可用于进行数据传输的资源包括若干个资源格,一个资源格对应于一个子载波,一个物理资源块(physical resource block,PRB)中有X1个资源格,还可以描述为一个PRB包括X1个子载波,X1为大于1的整数。
示例性地,X1为12。可用于进行数据传输的资源可以为系统资源中的部分或全部资源,也可以为带宽部分的部分或全部资源,本申请实施例不做限制。可用于进行数据传输的资源的带宽可以被描述为X2个PRB,X2为大于等于1的整数。对于可 用于进行数据传输的资源中的PRB,可以基于频率增长的方向从0至X2-1为各PRB依次进行编号,得到各PRB的编号值。术语“编号值”也可以描述“标识”或“索引”。在时域,一个PRB可以包括X3个符号,X3为大于等于1的整数。示例性地,X3为7或14。以一个PRB频域包括12个资源格时域包括7个符号为例,图4所示为可用于进行数据传输的资源的带宽可能的结构示意图,如图4中所示,可用于进行数据传输的资源的带宽包括PRB 0至PRB X2-1共X2个PRB。
对于不同的子载波间隔,可以设置其对应的PRB中的子载波个数相同或不相同,本申请实施例对此不作限制。在本申请实施例中,对于一个频域资源,该频域资源的PRB的带宽是根据子载波间隔和该PRB中的子载波个数确定的。示例性地,对于一个频域资源,配置其子载波间隔为15kHz,一个PRB中有12个子载波,则,该频域资源的PRB的带宽为180kHz。再示例性地,对于一个频域资源,配置其子载波间隔为60kHz,一个PRB中有12个子载波,则,该频域资源的PRB的带宽为720kHz。
本申请实施例中的第一资源分配类型(包括第一上行资源分配类型和/或第一下行资源分配类型)(即资源分配类型0,即上行资源分配类型0和/或下行资源分配类型0)对应的第一资源分配信息可以为基于RBG的采用位图(Bitmap)的资源分配方式。
第二资源分配类型(包括第二上行资源分配类型和/或第二下行资源分配类型)(即资源分配类型1,又包括上行资源分配类型1和/或下行资源分配类型1)对应的第二资源分配信息可以为采用频域资源起点和长度的资源分配方式。例如,其资源分配粒度可以为资源块(resource block,RB)或资源块组(resource block group,RBG)。
作为一种可能的实现方式,第二资源分配信息可以采用基于资源指示值(resource indication value,RIV)指示的频域资源起点和长度的资源分配方式。
此外,对于上行频域资源来说,在CP-OFDM波形下支持的资源分配类型有上行资源分配类型0和上行资源分配类型1,在离散傅立叶变换(Discrete Fourier Transform,DFT)-扩展(Spread,S)-OFDM波形下支持的资源分配类型有上行资源分配类型0。因此,本申请实施例中的第一资源分配信息还可以采用与第二资源分配类型对应的第二资源分配信息,也即第一资源分配信息还可以采用频域资源起点和长度的资源分配方式。
其中,上行或下行资源分配类型0为基于RBG的Bitmap的资源分配类型。该资源分配信息可以用于指示基站(例如,gNB)为UE分配的RB或资源块组(resource block group,RBG)。RBG中有至少一个RB,RBG中的RB的个数还可以称为RBG的大小、RBG大小、RBG尺寸或者其它名称。RB可以为物理资源块(physical resource block,PRB),也可以为虚拟资源块(virtual resource block,VRB)。
在本申请实施例中,第一资源分配类型(包括第一上行资源分配类型和第一下行资源分配类型)(即资源分配类型0,即上行资源分配类型0和下行资源分配类型0的一种可能的实现中,对于一个频域资源,如果一个RBG的大小为F1个RB,F1为大于等于1的整数,则,该频域资源中的该RBG的个数为
Figure PCTCN2018106053-appb-000001
其中F2为该频域资源包括的RB个数。
需要说明的是,如果F2 mod F1大于0,则对于该频域资源,
Figure PCTCN2018106053-appb-000002
个该RBG的大小为F1,1个该RBG的大小为
Figure PCTCN2018106053-appb-000003
在该第一资源分配类型中,包括Y1_1位比特图和Y1_2个填充位。其中,Y1_1为大于等于1的整数,Y1_2为大于等于0的整数,填充位可以被填充预先配置的值。在本申请实施例中,一个信息位还可以描述为一位信息位。Y1_1位比特图中的一个比特对应于该频域资源中的一个RBG,该一个比特还可以称为一个信息位。对于Y1_1位比特图中的一个比特,当该比特的值为t1时,gNB为UE分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,gNB为UE分配的资源不包括该比特对应的RBG。其中,t1和t2可以为整数。示例性地,t1为1。使用第一种资源分配,可以通过比特图中各比特的取值,将频域资源中的任意RBG分配给UE进行数据传输,从而可以提供灵活的资源配置,用于连续的和非连续的资源分配。
如图5所示,图5示出了一个可能的第一资源分配类型的示意图:BWP的带宽为12个RB/PRB,其中,假设RBG的大小为1个RB,则共有6个RBG,可以采用6bit的比特图来表示该BWP内对应的资源分配情况,如图5中所示的资源分配比特图为101100,其中阴影部分的RB表示基站在如图5所示的频域资源中为终端分配的频域资源。
第二资源分配类型(包括第二上行资源分配类型和/或第二下行资源分配类型)(即资源分配类型1,又包括上行资源分配类型1和/或下行资源分配类型1)的一种可能的实现中,在该第二资源分配类型中,第二资源分配信息包括Y2_1位RIV和Y2_2个填充位。其中,Y2_1为大于等于1的整数,Y2_2为大于等于0的整数。RIV指示的信息包括gNB在频域资源为UE分配的起始RB或RBG的索引和连续地分配的RB或RBG的个数。
如图6所示,图6示出了第二资源分配类型的示意图,在图6中以BWP的带宽为12个RB/PRB,起始点为第4个RB(例如RB3),从起始点RB3开始长度为6个RB,最终的bit长度为:
Figure PCTCN2018106053-appb-000004
其中N RB表示BWP中的RB个数。需要注意,上述为了介绍第二资源分配信息,因此以起始点为第4个RB(例如RB3),从起始点RB3开始长度为6个RB为例,具体的RB个数也可以为RBG的个数。比特图的具体计算方式如下:
假设起点为a,长度为l,计算的值为:
Figure PCTCN2018106053-appb-000005
通过公式(1)计算出比特图的长度为7,根据公式(2),比特图中对应的值为63,转换为2进制为:111111,放置在7bit的右边为0111111。
需要注意,上述为一种举例,本申请实施例不局限于上述方法中的表格和数值。
在本文中,下述将以网络设备为基站,通信设备为终端为例介绍本申请实施例提供的一种资源调度方法,以及相应的网络设备和通信设备的具体结构,下面就对本申请实施例提供的技术方案进行详细描述。
如图7所示,图7是本申请实施例提供的资源调度方法的交互示意图。如图7所示,包括:
S101、基站在第一频域资源上向终端发送第一资源调度信息和第二资源调度信息,该第一资源调度信息包括第一资源分配信息,其中,第一资源分配信息用于指示第一资源分配内的第一资源,该第二资源调度信息包括第二资源分配信息,该第二资源分配信息用于指示第二频域资源内的第二资源。
可选的,本申请实施例中的第二资源分配信息指示频域资源起点和频域资源的长度。
可选的,作为本申请实施例的一种实现方式,本申请实施例中基站可以在第一频域资源上向终端单独发送第二资源调度信息,或者,也可以在第一频域资源上向终端单独发送第一资源调度信息。
作为一种可能的实现方式,本申请实施例中的第一资源调度信息用于支持终端在同一个BWP上进行调度。例如,基站可以指示终端将后续的调度从第一频域资源中与基站当前进行通信的传输资源上调整至根据第一资源分配信息在第一频域资源内重新确定的传输资源上或仍旧基于当前的传输资源进行通信。
示例性的,如图8所示,基站和终端在第一频域资源的传输资源(例如数据信道)上通信,当传输资源无法满足通信需求时,基站可以通过向终端发送第一资源调度信息指示终端从传输资源上调整至在第一频域资源内的其他传输资源上与基站通信。
作为一种可能的实现方式,本申请实施例中的第二资源调度信息用于支持终端执行跨频域资源调度,也即指示终端从第一频域资源切换至第二频域资源。
可选的,第二资源调度信息包括第一频域资源或第二频域资源的标识信息。
示例性的,如图9所示,基站和终端当前调度周期在Slot0的第一频域资源上向终端发送第二资源调度信息,该第二资源调度信息用于向终端指示基站在Slot1的第二频域资源中为终端分配了第二资源。
作为一种可能的实现方式,本申请实施例中的第二资源调度信息也可以用于指示终端在第一频域资源的分配信息,此时不需要进行频域资源的切换。此时,第二资源分配信息指示第一频域资源,不指示第二频域资源。当基站通过第二资源调度信息调度第一频域资源的时候,可以作为第一资源调度信息的一种回退,即当终端无法正确接收第一资源调度信息时,或者信道条件变差的时候,基站可以向终端发送第二资源调度信息,从而提高信息传输的可靠性。此时,第二资源调度信息中的标识信息可以为预定义的(比如都是0),或者是指示第一频域资源的标识信息。终端可以通过该标识信息来区别基站通过第二资源调度信息是调度的第一频域资源还是第二频域资源。
当基站调度第二频域资源的时候,第二资源调度信息可以作为一种跨频域资源调度的调度信息。
可选的,本申请实施例中的第一频域资源和第二频域资源属于载波内的频域资源,也即该第一频域资源和第二频域资源的带宽小于或等于各自所在的载波的带宽。
作为本申请实施例可以应用的一个场景:该第一频域资源和第二频域资源可以为属于同一个载波内的频域资源。
示例性的,载波1包括多个频域资源时,该第一频域资源和第二频域资源可以为属于载波1内的频域资源。在这种情况下,基站可以通过向终端发送第二资源调度信息,指示终端在一个载波内的不同频域资源上执行跨频域资源调度。此外,在第一频 域资源和第二频域资源属于同一个载波时,第二资源调度信息中可以不携带载波的指示信息,这样终端在确定第二资源调度信息中未携带载波的指示信息,便可以确定是在同一个载波内执行跨资源调度。
作为本申请实施例可以应用的另一个场景:该第一频域资源和第二频域资源也可以为属于不同载波内的频域资源。
又一示例,第一频域资源为载波1内的频域资源,第二频域资源为载波2内的频域资源,在这种情况下,基站可以通过向终端发送第二资源调度信息,指示终端从当前所在载波(例如,载波1)的第一频域资源上切换到另一个载波(例如,载波2)的第二频域资源,即实现不同载波之间频域资源的切换。
此外,在第一频域资源和第二频域资源属于不同的载波时,第二资源调度信息中还可以携带第二频域资源所在的载波的标识信息,该载波的标识信息可以为载波的索引或者编号,该载波的标识信息可以由终端和基站之间预配置或者由基站配置好载波的标识信息之后发送给终端,本申请实施例对此不进行限定。
可选的,本申请实施例中的第一资源调度信息和第二资源调度信息可以为DCI。其中,DCI为物理下行控制信道(Physical Downlink Control Channel,PDCCH)中携带的信息。
PDCCH主要用于:(1)基站向终端发送下行资源调度信息,以便终端接收下行共享物理信道(physical downlink shared channel,PDSCH)。(2)基站向终端发送上行资源调度信息,以便终端发送物理上行共享信道(physical uplink shared channel,PUSCH)。(3)发送非周期性信道质量指示(channel quality indicator,CQI)上报请求等等。不同格式的DCI的功能不同,比如上行DCI和下行DCI的格式不同,比如不同传输模式下,DCI的格式也不同。
本申请实施例中预定义第一资源调度信息为第一格式的DCI,也可以称为正常格式(Normal Format)的DCI;本申请实施例中预定义第二资源调度信息为第二格式的DCI,也可以称为回退格式(fallback format)的DCI,或者也称为一种紧凑格式(compact format)的DCI。
一种回退格式的DCI的例子为:回退格式的DCI用于不同的发送模式的转变。例如,对下行传输而言,当支持闭环空分复用模式Mode 4的时候,UE需要盲检两种DCI的格式:DCI format 1A和DCI format 2,其中DCI 1A采用发送分集模式。这是考虑到传输模式为半静态配置的,而信道是随时动态变化的,当信道条件较好,基站采用闭环空分复用的方式发送,而当信道条件不太好的时候,基站也可以通过DCI1A来向UE发送信息,采用发送分集或者单端口发送模式,这两种发送方式相比闭环空分复用的方式,具有较高的可靠性。
作为一种可能的实现方式,第一资源调度信息和第二资源调度信息满足以下至少一个条件:
第一资源调度信息的大小和第二资源调度信息的大小不同,和第一资源调度信息的格式和第二资源调度信息的格式不同。
其中,第一资源调度信息的大小和第二资源调度信息的大小不同是指:第一资源调度信息和第二资源调度信息所包含的bit数不同。
第一资源调度信息的格式和第二资源调度信息的格式不同是指:第一资源调度信息对应的格式和第二资源调度信息对应的格式不同。
可选的,当第一资源调度信息的大小和第二资源调度信息的大小不同时,第一资源调度信息和第二资源调度信息的格式也不同。
可选的,当第一资源调度信息的格式和第二资源调度信息的格式不同时,第一资源调度信息和第二资源调度信息的大小可以相同,也可以不相同,本申请实施例对此不进行限定。
为了实现第一资源调度信息和第二资源调度信息的大小相同,可以将第一资源调度信息和第二资源调度信息中的一个资源调度信息bit数较多的为参考,在另外一种格式的资源调度信息中通过填0来实现。通过保持不同格式的资源调度信息的大小相同,这样有利于降低终端盲检的复杂度。此时,两种不同格式的资源调度信息中需要包含识别信息,使终端通过该识别信息,来区分是第一资源调度信息,还是第二资源调度信息。例如,可以通过携带1bit的信息来标识,该bit为0标识第一资源调度信息,该bit为1标识第二资源调度信息。
因此,如果两个资源调度信息的大小不同,对于终端而言可以根据第一资源调度信息的大小和第二资源调度信息的大小确定当前时刻接收到的资源调度信息是第一格式的DCI还是第二格式的DCI。
如果两个资源调度信息的大小相同,对于终端而言可以根据每个资源调度信息中的识别信息来确定当前时刻接收到的资源调度信息是第一格式的DCI还是第二格式的DCI。
可选的,第一资源调度信息满足以下至少一个条件:在不同传输方式下,所述第一资源调度信息对应的大小不同;和在不同传输方式下,所述第一资源调度信息对应的格式不同。
传输方式是指基站和终端在进行通信时,所采用的不同的多天线的传输方案,一般而言,在发射机和/或接收机按照不同的方式来使用多天线传输可以实现不同的目的:
(1)在发射机和/或接收机使用多天线可用来提供额外的分集以对抗无线信道的衰落(“传输分集”,transmit diversity)。这种情况下,不同天线所经历的信道应该拥有低的互相关性,这意味着天线间的间距需要足够大(空间分集,spatial diversity),或需要使用不同的天线极化方向(极化分集,polarization diversity)。传输分集主要用于降低信道衰落。
(2)发射机和/或接收机可以按照某种特定的方式来使用多天线以“形成”一个完整的波束。例如,可以最大化目标接收机/发射机方向上的整体天线增益,或抑制特定的主要干扰信号。这种“波束赋形(beamforming)”可基于天线间高或低的衰落相关性来实现。波束赋形主要用于提高小区的覆盖(coverage)。
(3)在发射机和接收机上同时使用多天线可用来建立多个并行的传输信道,这样可以提供非常高的带宽利用率而不会降低相关功率有效性。换句话说,可以在有限的带宽上提供很高的数据速率而不会大比例地降低覆盖。这通常被称为“空分复用(spatial multiplexing)”,有时也称为MIMO(Multi-Input Multi-Output)。空分复用主要用于提高数据传输速率,数据被分为多个流,这些流同时发送。
不同的多天线传输方案对应不同的传输方式(Transmission Mode,简称为TM模式),以LTE为例,可支持9种TM模式。它们的区别在于天线映射的不同特殊结构,以及解调时所使用的不同参考信号(小区特定的参考信号或UE特定的参考信号),以及所依赖的不同CSI反馈类型。
示例性的,第一资源调度信息在传输方式A下的大小为Nbit,第一资源调度信息在传输方式B下的大小为M比特,其中M和N为大于或等于1的不同整数。
示例性的,当第一资源调度信息在传输方式A下传输时,第一资源调度信息对应的格式为第一格式,当第一资源调度信息在传输方式B下传输时,第一资源调度信息对应的格式为第二格式。
一种可能的例子如下表1所示:
表1 传输方式与DCI格式对应关系
Figure PCTCN2018106053-appb-000006
其中每一种传输方式对应两个格式的DCI,DCI1A即为本申请实施例中第二资源调度信息的格式。上述表1中除了DCI1A之外的DCI格式即可作为本申请实施例所述的第一资源调度信息的DCI格式,不同的传输方式,对应不同的第一资源调度信息。
可选的,本申请实施例中,第二资源调度信息对应的传输方式为发送分集方式或单端口方式。
其中,发送分集方式是指在发射机使用多天线可用来提供额外的分集以对抗无线信道的衰落,这样可以提高传输的可靠性。单端口方式也具有较高的鲁棒性。本申请实施例中通过将第二资源调度信息采用发送分集方式或单端口方式,一方面可以提高跨频域资源调度时指示信息的可靠性,提高切换的成功率,另一方面,作为一种回退格式的DCI,也为第一资源调度信息的传输提供了备选的方式。
可选的,基于本地频域资源调度,本申请实施例中的第一资源调度信息无需包括频域资源的标识信息,例如,第一资源调度信息不包括第一频域资源的标识信息,这是由于考虑到需要利用第二资源调度信息来支持跨频域资源调度。
传统技术方案中,在进行跨频域资源调度时,可以通过第一资源调度信息来实现,通常在传统的第一资源调度信息中需要包括频域资源的标识信息,而第一资源调度信息通常会采用第一资源分配类型来进行频域资源的分配,此时,DCI中携带的资源调度信息所占的比特数通常由频域资源(如表2所示,以频域资源为BWP为例)的大 小决定,如表2所示,表2给出的是以第一资源分配类型的对应的调度信息来指示资源分配的方法,跨频域资源调度和本地频域资源调度通常情况下采用相同大小的资源分配信息。以下表2为例,在15kHz子载波间隔的条件下,一般会采用最大可能的资源分配比特数的大小作为资源分配信息的大小,这里根据表2的最后一列,那么该第一资源分配类型通常会将最大的资源分配比特数作为该第一资源分配类型对应的资源分配信息的大小,例如表2中所示的最大值为35bits。
表2 BWP的大小与各自实际占用的比特数之间的关系
Figure PCTCN2018106053-appb-000007
但是,在实际过程中,BWP之间是可以动态切换的,也即从一个BWP切换到另一个BWP,一种典型的场景就是如前所述的带宽回退场景,如图9所示,基站可以在时隙0的第一频域资源的控制信息区域中向终端发送第二资源调度信息。此时,第一频域资源为一个带宽较小的BWP,比如,可以为上表2中所示的该带宽较小的BWP包括28个RB,此时,该BWP在基站为其分配的资源中所占用的实际的bit大小为14bit,而当终端要从第一频域资源切换到第二频域资源时,该第二频域资源的带宽大于第一频域资源的带宽,例如,第二频域资源对应的BWP可以包括275个RB,此时,由于第一资源分配类型对应的资源分配信息的大小为35bit,则传统技术方案中,当使用第一资源调度信息在调度第一频域资源的时候,就需要填充34-14=20bit的信息,会有极大的资源浪费。
综上所述,在本申请实施例中,第一资源调度信息不用于执行频域资源的切换,不需要包含对应的频域资源标识信息。本申请实施例中,采用第二资源调度信息来执行频域资源的切换,考虑到第二资源调度信息为一种回退格式的DCI,一般采用第二资源分配类型来进行资源分配。第二资源分配类型和第一资源分配类型相比,在带宽较大的情况下,具有需要的分配资源的bit数较少的特点,从而可以减少填充的比特数,降低资源的浪费。
具体的,步骤S101中基站可以在第一频域资源的控制信息区域(例如,物理下行控制信道(physical downlink control channel,PDCCH)或者控制资源集合(Control Resource Set,CORESET))向终端发送第一资源调度信息和第二资源调度信息。具体的,可以参见图9所示。
可以理解的是,当本申请实施例中基站利用第二资源调度信息指示终端从第一频域资源切换到第二频域资源时,该第二资源调度信息可以为第二格式的DCI。
本申请实施例中的第一资源分配类型(可以为第一上行资源分配类型和/或第一下行资源分配类型)(即资源分配类型0,即上行资源分配类型0和/或下行资源分配类 型0)对应的资源分配信息可以为基于RBG的采用Bitmap的资源分配方式。
第二资源分配类型(包括第二上行资源分配类型和第二下行资源分配类型)(即资源分配类型1,可以为上行资源分配类型1和/或下行资源分配类型1)对应的资源分配信息可以为基于RIV指示频域资源起点和长度的资源分配方式,其资源分配粒度为资源块(resource block,RB)或资源块组(resource block group,RBG)。对于上行频域资源来说,在CP-OFDM波形下支持的资源分配类型有上行资源分配类型0和上行资源分配类型1,在DFT-S-OFDM波形下支持的资源分配类型有上行资源分配类型0。
其中,上行或下行资源分配类型0为基于RBG的bitmap的资源分配类型。该资源分配信息可以用于指示基站(例如,gNB)为UE分配的RB或资源块组(resource block group,RBG)。RBG中有至少一个RB,RBG中的RB的个数还可以称为RBG的大小、RBG大小、RBG尺寸或者其它名称。RB可以为物理资源块(physical resource block,PRB),也可以为虚拟资源块(virtual resource block,VRB)。
可用于进行数据传输的频域资源中,一个PRB对应一个虚拟资源块(Virtual Resource Block,VRB)。VRB可以包括集中式VRB或者分布式VRB。集中式VRB和PRB直接映射,还可以描述为索引为n VRB的VRB对应的PRB的索引为n PRB,其中n PRB=n VRB。分布式VRB和PRB通过一定的规则进行映射。其中,示例性地,该映射方法可以为LTE标准协议中的映射方法。
在本申请实施例中,第一资源分配类型(包括第一上行资源分配类型和第一下行资源分配类型)(即资源分配类型0,即上行资源分配类型0和下行资源分配类型0的一种可能的实现中,对于一个频域资源,如果一个RBG的大小为F1个RB,F1为大于等于1的整数,则,该频域资源中的该RBG的个数为
Figure PCTCN2018106053-appb-000008
其中F2为该频域资源包括的RB个数。
需要说明的是,如果F2mod F1大于0,则对于该频域资源,
Figure PCTCN2018106053-appb-000009
个该RBG的大小为F1,1个该RBG的大小为
Figure PCTCN2018106053-appb-000010
在该资源分配类型中,包括Y1_1位比特图和Y1_2个填充位。其中,Y1_1为大于等于1的整数,Y1_2为大于等于0的整数,填充位可以被填充预先配置的值。在本申请实施例中,一个信息位还可以描述为一位信息位。Y1_1位比特图中的一个比特对应于该频域资源中的一个RBG,该一个比特还可以称为一个信息位。对于Y1_1位比特图中的一个比特,当该比特的值为t1时,gNB为终端分配的资源包括该比特对应的RBG;当该比特的值为t2或者不为t1时,gNB为UE分配的资源不包括该比特对应的RBG。其中,t1和t2可以为整数。示例性地,t1为1。使用第一种资源分配,可以通过比特图中各比特的取值,将频域资源中的任意RBG分配给UE进行数据传输,从而可以提供灵活的资源配置,用于连续的和非连续的资源分配。
第二资源分配类型(包括第二上行资源分配类型和第二下行资源分配类型)(即资源分配类型1,又包括上行资源分配类型1和下行资源分配类型1)的一种可能的实现中,在该资源分配类型中,资源分配域包括Y2_1位资源指示值(resource indication value,RIV)和Y2_2个填充位。其中,Y2_1为大于等于1的整数,Y2_2为大于等于0的整数。RIV指示的信息包括gNB在频域资源为UE分配的起始RB或RBGG的索 引和连续地分配的RB或RBG的个数。
S102、终端在第一频域资源上接收基站发送的第一资源调度信息和第二资源调度信息。
可以理解的是,第一频域资源为当前调度周期,基站和终端之间进行通信的一个或多个频域资源。
当第一资源调度信息和第二资源调度信息为DCI时,终端可以通过盲检的方式来确定是在第一频域资源上接收到的是第一资源调度信息,还是第二资源调度信息,还是既有第一资源调度信息,又有第二资源调度信息。
盲检测的一个例子为:基站和终端间通过PDCCH传输DCI时,基站为终端配置PDCCH的搜索空间,其中,PDCCH的搜索空间也可以称为PDCCH的候选资源位置或PDCCH候选资源位置,PDCCH候选资源位置包括可能用于传输PDCCH的N个资源位置,N为大于等于1的整数。基站可以从PDCCH候选资源位置中选择一个资源位置,示例性地,基站根据信道质量从候选资源位置中选择一个资源位置,在该选择的资源位置向终端发送一个PDCCH。UE监控PDCCH的搜索空间,在搜索空间中检测PDCCH,即在PDCCH候选资源位置检测PDCCH。由于UE在接收PDCCH之前不知道gNB在上述N个资源位置中的哪个资源位置发送PDCCH,或者不知道gNB是否向UE发送PDCCH,UE认为gNB在上述N个资源位置中的任一个资源位置都有可能发送PDCCH,因此,UE在上述N个资源位置检测PDCCH。为了检测一个PDCCH,UE最少检测1次,最多检测N次。
在本申请实施例中,由于终端并不知道基站在第一频域资源上发送的第一资源调度信息,还是第二资源调度信息,还是既有第一资源调度信息,又有第二资源调度信息。所以,终端只能通过盲检测的方式来确定到底是哪个资源调度信息。
当然,基站可以向终端配置是否需要盲检测第一资源调度信息和第二资源调度信息,一种可能的实现方式为,通过配置对应的传输模式,此时,第二资源调度信息为回退功能,用于调度第一频域资源。
此时,第二资源调度信息可以不包含有频域资源的标识信息,或者可以包含有第一频域资源的标识信息,或者通过预定义的方式使得当携带某种信息时,指示调度第一频域资源。
如果基站为终端配置了对应的传输模式,则终端需要检测对应传输模式下的DCI格式。
如果基站向终端发送了支持频域资源动态切换的指示信息,即为终端配置了带宽自适应模式,或者基站为终端配置了多个BWP,即支持频域资源的动态切换,则终端需要检测第一资源调度信息和第二资源调度信息,第二资源调度信息需要包含有频域资源的标识信息,用于指示第二频域资源。
其中,一种可能的实现方式为,终端根据是否支持频域资源动态切换的指示信息,确定第二频域资源调度信息是否包含有频域资源的标识信息。只有收到该指示信息时,对应的标识信息才存在,用于指示第二频域资源的标识。在没有收到该指示信息时,对应的第二资源调度信息作为第一资源调度信息的回退格式,可以不携带该指示信息。
S103、终端根据所述第二频域资源的标识信息,确定所述第二频域资源,以及根 据所述第二资源分配信息确定所述第二频域资源中用于与所述网络设备进行通信的第二资源。
示例性的,如图6所示,终端为基站分配的第二频域资源包括12个RB,例如,图6中所示的RB0-RB11,而第二资源分配类型对应的第二资源分配信息采用RIV指示,具体的该第二资源分配信息包括:资源块的起点为RB3,长度为6,那么终端在收到该第二资源调度信息之后,便可以确定第二频域资源中的RB3-RB8用于与基站进行数据传输(例如,终端可以在RB3-RB6上向基站发送数据或者在RB3-RB6上接收基站发送的数据)。
可选的,当第二资源分配信息采用资源起始点和资源长度的指示方式时,终端基于资源起始点和资源长度从第二频域资源中确定第二资源。
S104、终端根据第一资源分配信息,确定第一频域资源中用于与基站进行通信的所述第一资源。
示例性的,如图5所示,基站在发送第一资源调度信息之前,为终端分配的传输资源为RGB0、RGB2和RGB3,当前周期基站和终端在RGB0上进行调度,那么终端在接收到第一资源分配信息后,若该第一资源分配信息指示的传输资源为RGB2,那么终端便可以从RGB0调整为在RGB2内与基站进行传输。
可选的,作为一种可能的实现方式,本申请实施例在步骤S101之前,还包括:基站从多个频域资源中选择第二频域资源。
可以理解的是,在本申请实施例基站执行S101之前,基站已为终端配置了多个频域资源,具体的,基站可以从系统频率资源中为终端配置多个频域资源,多个频域资源为载波内的频域资源,该多个频域资源可以属于同一个载波内的频域资源,也可以为不同载波内的频域资源,当该多个频域资源位于同一个载波内时,每个频域资源的带宽均小于其所在的载波的带宽,当多个频域资源位于不同载波内时,每个频域资源的带宽小于或等于各自所在的载波的带宽。
本申请实施例对此不进行限定。每个频域资源在频域上可以重叠,也可以不重叠,本申请实施例对此不进行限定。
可选的,可用于进行数据传输的频域资源中,一个PRB对应一个虚拟资源块(Virtual Resource Block,VRB)。VRB可以包括集中式VRB或者分布式VRB。集中式VRB和PRB直接映射,还可以描述为索引为n VRB的VRB对应的PRB的索引为n PRB,其中n PRB=n VRB。分布式VRB和PRB通过一定的规则进行映射。其中,示例性地,该映射方法可以为LTE标准协议中的映射方法。
在第二资源分配类型中,分配的资源在频域上是连续的,为了提高传输的可靠性,可以考虑将资源分布到整个的频域带宽上,也就是可以支持VRB到PRB的映射。
本申请实施例中一种VRB到PRB的映射方式分为两个步骤:
步骤一:交织(interleaving):将连续的VRB pair映射到非连续的PRB pair上;
步骤二:同一VRB number在slot间的跳频。
对于步骤一:根据以下公式计算系统带宽内所有可以用于分布式映射的VRB数量。
Figure PCTCN2018106053-appb-000011
若N gap=N gap,1
Figure PCTCN2018106053-appb-000012
若N gap=N gap,2
其中,N gap,1,N gap,2根据BWP带宽确定,N gap,1,N gap,2与BWP带宽的一种可能的对应关系,如下表3所示:
表3 N gap,1,N gap,2与BWP带宽的对应关系
Figure PCTCN2018106053-appb-000013
步骤一中,基站可通过信令向终端指示N gap=N gap,1或N gap=N gap,2。当可交织的VRB数可能小于总VRB数时,对可交织的VRB进行交织。
确定可交织的VRB之后,将可交织的VRB分为一个或多个交织单元,具体的,当
Figure PCTCN2018106053-appb-000014
将一个交织单元内的VRB编号逐行写入交织矩阵,交织矩阵为4列
Figure PCTCN2018106053-appb-000015
P行,其中P是RBG大小。若无法充填满整个矩阵,则充填空白元素(null),null元素位于最后的最后N null/2行的第2列和第4列。填充为null的元素个数为
Figure PCTCN2018106053-appb-000016
随后再以逐列的方式读取VRB编号,并且忽略null元素,从而得到交织后的VRB顺序,而交织后的VRB序列的序号对应PRB号,即交织后的第j个VRB(VRB k)对应的PRB为PRB j。
对于步骤二的slot间跳频,是指在两个slot间,一个VRB映射到不同的PRB的slot上,其中,偶数slot(slot 0)的PRB为步骤一得到的PRB,奇数slot(slot 1)对应的PRB为步骤一得到的PBR的编号在VRB的交织单元内偏移
Figure PCTCN2018106053-appb-000017
虽然资源分配类型2确定的是连续的VRB,但是分布式映射时,连续的VRB映射在了非连续的PRB上,因此,分配给终端的PRB资源是不连续的。
可选的,基站可以通过携带多个频域资源的配置信息为终端配置多个频域资源,该配置信息可以通过信令配置,信令可以是高层信令,例如,无线资源控制(Radio Resource Control,RRC)信令,媒体介入控制(Media Access Control,MAC)-控制元素(Control Element,CE),下行链路控制信息(Downlink Control Information,DCI)等,本申请实施例对此不进行限定,当然,该配置信息也可以是预定义的。
可选的,在基站执行步骤S101时,基站可以从为终端配置的多个频域资源中选择至少一个频域资源作为第二频域资源。这样基站可以与终端在两个或两个以上的频域资源中进行通信。
示例性的,基站为终端配置了6个频域资源,例如,频域资源0、频域资源1、频 域资源2、频域资源3、频域资源4以及频域资源5,那么终端可以从上述6个频域资源中选择频域资源0作为第二频域资源;终端也可以从上述6个频域资源中选择频域资源1和频域资源2作为第二频域资源;终端也可以从上述6个频域资源中选择频域资源0、频域资源1、频域资源2作为第二频域资源,本申请实施例对此不进行限定,具体的,基站选择一个还是多个频域资源可以根据终端反馈的信道质量,也可以是其他的标准来确定,本申请实施例不做限定。
示例性的,当基站根据终端反馈的信道质量来选择第二频域资源时,基站可以选择信道质量好的第二频域资源给终端。
其中,本申请实施例中第二频域资源的标识信息用于识别第二频域资源,该第二频域资源的标识信息可以为第二频域资源的索引(index),或者为第二频域资源的位置,下述将以第二频域资源的标识信息为第二频域资源的索引为例,介绍基站分配第二频域资源的标识信息。
作为一种可能的实现方式,本申请实施例在步骤S101之前,还包括:基站为终端配置的多个频域资源中每个频域资源分配标识信息。
本申请实施例中基站为终端配置的多个频域资源中每个频域资源分配标识信息的过程:可以在基站为终端配置多个频域资源的时候发送给终端,也可以在基站向终端发送第一资源调度信息和第二资源调度信息的过程(即基站执行上述步骤S101的过程)中发送给终端,也可以是通过预定义等其他的方式发送给终端,本申请实施例对此不进行限定。
在一种可能的实现方式,本申请实施例提供的基站为终端配置的多个频域资源中每个频域资源分配标识信息可以通过以下方式实现:
方式一、基站为终端配置的多个频域资源中的每个频域资源分配一个第一标识。
示例性的,基站可以将每个频域资源的编号作为每个频域资源各自的第一标识,每个频域资源的编号可以与基站为终端配置的频域资源的数量关联。
例如,基站为终端配置了4个频域资源(例如,频域资源0、频域资源1、频域资源2以及频域资源3),则基站并采用2bit来标识频域资源:例如,基站可以使用00标识频域资源0,基站可以使用01标识频域资源1,基站可以使用10标识频域资源2,基站可以使用11标识频域资源3。这样假设基站在频域资源0中向终端发送资源调度信息,该资源调度信息中携带的标识信息为01,或者该资源调度信息的标识域为01,则表示需要从频域资源0切换到频域资源1。
在另一种可能的实现方式中,基站通常为终端配置的频域资源包括上行频域资源和下行频域资源,因此,本申请实施例中的基站为终端配置的多个频域资源中每个频域资源分配标识信息可以通过以下方式实现:
方式二、基站可以为一个频域资源的上行频域资源和下行频域资源分配第二标识。这样终端在接收到第二标识时,不仅可以实现上行频域资源的切换,还可以实现下行频域资源的切换。
在具体实施过程中,基站配置或预定义下行(Down Link,DL)频域资源和上行(Up Link,UL)频域资源之间的关联关系,每一个DL频域资源对应一个UL频域资源,每一个关联关系与一个第二标识关联。
示例性的,该第二标识可以为每个DL频域资源与UL频域资源之间配对的编号,例如:00-{DL频域资源0,UL频域资源0},01-{DL频域资源1,UL频域资源1},10-{DL频域资源2,UL频域资源2},11-{DL频域资源3,UL频域资源3}。
作为一种可能的实现方式,本申请实施例中基站还可以通过以下方式确定上行频域资源和下行频域资源之间的关联关系:
基站可以将中心频点一致的上行频域资源和下行频域资源关联或者作为一个频域资源对,这样终端在从第二资源调度信息中接收到第二标识后,可以直接从第一频域资源切换到第二上行频域资源以及切换到第二下行频域资源,从而可以避免在切换到第二上行频域资源和第二下行频域资源之后,调整第二上行频域资源和第二下行频域资源的频点。
在本申请实施例提供的方法应用于如下场景中时,即基站仅为终端配置两个频域资源的场景中:
例如,基站为终端配置频域资源0以及频域资源1。因此,本申请实施例中的第二资源调度信息用于指示终端从第一频域资源切换至第二频域资源,还可以通过以下方式实现:
在进行资源调度的过程中,基站可以在第二资源调度信息中携带一个bit指示,当该bit为第一指示符时指示终端从当前所在的频域资源(例如,频域资源0)切换到另一个频域资源(频域资源1)。
可选的,本申请实施例中的第一指示符可以为0或者1,本申请实施例对此不进行限定。
当该bit为第二指示符时,该bit可以携带在第一资源调度信息中,这样终端在确定第一资源调度信息中存在第二指示符时,便确定在当前所在的频域资源(频域资源0)中与基站进行数据传输(例如,发送数据或者接收数据)。这是由于当基站为终端仅配置两个频域资源时,基站需要通过两个频域资源中的一个频域资源(例如,频域资源0)与终端进行数据传输,此时,终端也确定在频域资源0上接收基站发送的资源调度信息,因此当基站在频域资源0中接收到基站发送的资源调度信息时,便可以根据资源调度信息中携带的1bit指示来确定是从频域资源0中切换到频域资源1中,并在频域资源1中通过由第二资源分配信息确定的频域资源与基站进行通信,还是在频域资源0中通过由第一资源分配信息确定的频域资源与基站进行数据传输。
在另一种可能的实现方式中,第二资源调度信息通过第二频域资源的标识信息与载波标识信息联合指示第一频域资源切换到第二频域资源,该载波标识信息为基站为终端配置的。
具体的,该载波标识信息用于识别载波。
需要说明的是,由于在实际过程中,一方面,第一频域资源和第二频域资源可以为同一个载波内的频域资源,那么从第一频域资源切换至第二频域资源均是在一个载波内实现的,另一方面,第一频域资源和第二频域资源可以为不同载波内的频域资源,例如,第一频域资源为位于载波1内的频域资源,第二频域资源为位于载波2内的频域资源,那么从第一频域资源切换到第二频域资源则需要在两个载波内实现,因此,在实际过程中,基站可以利用资源调度信息通过第二频域资源的标识信息与载波标识 信息联合指示第一频域资源切换到第二频域资源,这样基站不仅可以向终端指示所需要切换到的频域资源(例如,第二频域资源)的标识,还可以指示终端所需要切换到的频域资源所在的载波的标识。
作为一种可能的实现方式,本申请实施例中第一频域资源与第一资源分配类型对应,第一资源分配类型与第二资源分配类型不同,例如,第一资源分配类型可以为TPYE0,第二资源分配类型可以为TYPE2。
作为本申请实施例实现的另一种实施例,在终端执行步骤S103之前,本申请实施例提供的方法还包括:终端至少确定基站为第二频域资源分配的标识信息。
可选的,一方面,本申请实施例中的终端至少确定基站为第二频域资源分配的标识信息具体可以通过以下方式实现:
方式一、终端接收基站为多个频域资源中每个频域资源分配的第一标识,以确定第二频域资源的标识信息。
可选的,终端接收基站为多个频域资源中每个频域资源分配的第一标识,以确定第二频域资源的标识信息可以在终端接收基站为终端配置的多个频域资源过程中执行。
另一方面,本申请实施例中的终端接收基站为多个频域资源中每个频域资源分配的第一标识,以确定第二频域资源的标识信息具体可以通过以下方式实现:
终端接收基站为多个频域资源中每个频域资源包括的上行频域资源和下行频域资源分配的第二标识,以确定第二频域资源包括的第二上行频域资源和第二下行频域资源的标识信息。
示例性的,如上述实施例中的描述,若终端确定资源调度信息中携带的第二频域资源的标识信息的标识为01,则终端从多个频域资源中确定与标识01对应的第二频域资源。
另一方面,本申请实施例中的终端接收基站为多个频域资源中每个频域资源分配的第一标识,以确定第二频域资源的标识信息具体可以通过以下方式实现:
终端确定第二资源调度信息中携带的1个bit指示为1时,则终端确定从当前频域资源(即接收资源调度信息的频域资源,例如第一频域资源)中切换到另一个频域资源中(例如,切换至第二频域资源中),该实现方式适用于基站为终端配置了两个频域资源的场景(例如,基站仅为终端配置第一频域资源和第二频域资源的场景)中。
作为一种可能的实现方式,本申请实施例中的第二频域资源可以为第二上行频域资源和第二下行频域资源中的至少一项,也即第二频域资源可以为第二上行频域资源,也可以为第二下行频域资源,或者也可以为第二上行频域资源和第二下行频域资源。这样基站可以实现上行频域资源和下行频域资源的联合调度,此外,可以理解的是第二频域资源内与第二资源分配类型对应的第二资源分配信息同样适用于第二上行频域资源和第二下行频域资源,也即终端根据第二资源分配信息从第二上行频域资源中确定进行上行通信的频域资源,以及根据第二资源分配信息从第二下行频域资源中确定进行下行通信的频域资源。
可选的,本申请实施例中为了降低终端的盲检次数,在NR中可以设置支持上行频域资源调度的第二资源调度信息和支持下行频域资源调度的第二资源调度信息的大小相同,即支持上行频域资源调度的第二资源调度信息和支持下行频域资源调度的第 二资源调度信息的payload相同。
鉴于频域资源在切换过程中,信道状态信息(Channel State Information,CSI)的信息可能不准确或不可用,因此为了增加频域分集以及提高数据传输的可靠性,本申请实施例中基站还可以指示终端第二资源分配信息所使用的映射方式,具体的,基站可以通过如下方式向终端指示第二资源分配信息所使用的映射方式:
一种方式为:终端和基站之间协商或者基站为终端预配置第二资源分配类型对应的第二资源分配信息采用分布式的VRB映射方式,在这种情况下,终端在接收到第二资源调度信息时,若确定该第二资源调度信息的DCI格式为用于频域资源切换的回退格式时,则终端确定第二频域资源内与第二资源分配类型对应的第二资源分配信息采用分布式的VRB映射方式,这样可以增加频域分集,提高数据传输的可靠性。与LTE相比,基站无需要进一步指示终端第二资源分配信息使用集中式还是分布式的VRB映射,降低了信令开销。
另一种方式为:终端和基站之间协商或者基站为终端预配置,若终端接收到的资源调度信息中包括第二频域资源的标识信息时,终端确定第二资源分配类型对应的第二资源分配信息采用分布式的VRB映射方式,具体的,第二资源调度信息中的第二频域资源的标识信息是由高层信令配置的,该高层信令可以用于指示支持频域资源的切换,当高层配置了该第二频域资源的标识信息,则第二频域资源对应的第二资源分配信息采用分布式的VRB映射方式。与LTE相比,基站无需进一步指示终端第二频域资源所使用的第二资源分配信息采用的是集中式VRB映射还是分布式的VRB映射。
当然,可以理解的是,本申请实施例提供的方法同样适用于:在基站向终端发送第一资源调度信息和第二资源调度信息时或者之后,基站向终端再发送一个指示信息,该指示信息用于指示第二资源分配信息采用分布式的VRB映射方式。该指示信息可以携带在第二资源调度信息中,也可以以其他形式发送给终端,本申请实施例对此不进行限定。
作为本申请实施例另一种实施例,可以理解的是,上述实施例中所描述的实现方式还适用于基站指示终端从第一上行频域资源切换至第二上行频域资源。而对于上行频域资源而言,不同的上行传输波形通常所支持的资源分配类型也会存在差异。例如,上行传输波形通常包括CP-OFDM波形和DFT-S-OFDM波形,其中,CP-OFDM波形支持的资源分配类型为:第一资源分配类型和第二资源分配类型,DFT-S-OFDM波形支持的资源分配类型为:第二资源分配类型。
鉴于上行传输波形的不同,除了上述定义的第一资源调度信息,以及第二资源调度信息之外,仍然需要增加第三资源调度信息。和第一资源调度信息的内容相同,所述第三资源调度信息用于调度第一频域资源,且无需包括频域资源的标识信息。第一资源调度信息和第二资源调度信息的区别在于:第三资源调度信息的第三资源分配信息所采用的资源分配类型,与第一资源分配信息的分配类型不同,一种可能的方式为,第一资源分配信息为第一资源分配类型,第三资源分配信息为第二资源分配类型。
需要注意的是,第一资源调度信息和第三资源调度信息不会同时发送。
因此,在基站向终端发送第一资源调度信息或第三资源调度信息、和第二资源调度信息中的至少一项时,本申请实施例提供的方法还包括:
S105、当上行传输波形为CP-OFDM循环前缀正交频分复用波形,基站向终端发送第一消息,该第一消息用于指示终端盲检第二资源调度信息和第一资源调度信息,或者,该第一消息用于指示终端盲检第二资源调度信息和第三资源调度信息。
S106、当上行传输波形为离散傅立叶变换扩展正交频分复用DFT-S-OFDM波形时,基站向终端发送第二消息,第二消息用于指示终端盲检第一资源调度信息和第二资源调度信息。或者,基站也可以不发送消息,终端确定波形为DFT-S-OFDM波形时,默认采用第一资源调度信息。
因此,在基站向终端发送第一资源调度信息、第二资源调度信息和第三资源调度信息中的至少一项时,本申请实施例提供的方法还包括:
S107、终端接收基站发送的第一消息。
S108、终端根据该第一消息盲检第二资源调度信息和第一资源调度信息,或者,该第一消息用于指示终端盲检第二资源调度信息和第三资源调度信息。
或者、S109、终端接收基站发送的第二消息。
S109、终端根据该第二消息盲检第一资源调度信息和第二资源调度信息。
可以理解的是,基站和终端之间也可以双方协商:即当上行传输波形为离散傅立叶变换扩展正交频分复用DFT-S-OFDM波形时,终端盲检第一资源调度信息和第二资源调度信息。或者采用第一资源调度信息。当上行传输波形为CP-OFDM循环前缀正交频分复用波形时,终端盲检第二资源调度信息和第一资源调度信息,或者,该第一消息用于指示终端盲检第二资源调度信息和第三资源调度信息。在这种情况下步骤S105-S108可以省略。
可以理解的是,本申请实施例在实施过程中,将第一格式的DCI采用第一资源分配类型,将第二格式的DCI采用第二资源分配类型,通过将支持频域资源切换的第二格式的DCI与第二资源分配类型对应,或者,将采用第二资源分配类型的DCI用于指示频域资源切换,使得在对同样的频域资源进行资源分配时,占用的比特数变少,从而降低了填充的bit数。节省了系统开销。
本申请实施例提供一种资源调度方法,通过从多个频域资源中选择一个频域资源作为第二频域资源,然后网络设备通过在第一频域资源中向通信设备发送资源调度信息,以用资源调度信息指示通信设备从第一频域资源切换到第二频域资源,这样通信设备在接收到资源调度信息之后便可以根据第二频域资源的标识信息,确定跨频域资源调度时需要切换到的目的频域资源(例如,第二频域资源)以及可以根据第二频域资源内与第一资源分配类型对应的资源分配信息确定第二频域资源中用于与网络设备进行数据传输的频域资源,这样不仅可以实现跨频域资源的调度,还可以在实现跨频域资源调度的同时实现第二频域资源内的资源分配,与传统技术方案中提供的先实现频域资源的切换再进行频域资源内的资源分配相比降低了时延,此外,本申请实施例中通过在资源调度信息中携带第二频域资源对应的资源分配信息,这样使得在跨频域资源调度时可以避免比特浪费的问题。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备、通信设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合 本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对网络设备、通信设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备包括:发送单元101。其中,发送单元101用于支持网络设备执行上述实施例中的步骤S101、S105或S106;此外,本申请实施例提供的网络设备还包括:选择单元102用于从多个频域资源中选择第二频域资源,以及分配单元103,该分配单元103用于支持网络设备为多个频域资源中每个频域资源分配标识信息。和/或用于本文所描述的技术的其它过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请实施例中的发送单元101可以为网络设备的发送器,该发送器通常可以和网络设备的接收器集成在一起用作收发器,具体的收发器还可以称为通信接口,分配单元103和选择单元102可以集成在网络设备的处理器上。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的网络设备的一种可能的逻辑结构示意图。网络设备包括:处理模块112和通信模块113。处理模块112用于对网络设备动作进行控制管理,例如,处理模块112用于支持网络设备执行上述实施例中的步骤S105、S106;通信模块113用于支持网络设备执行上述实施例中的步骤S101。和/或用于本文所描述的技术的其他过程。网络设备还可以包括存储模块111,用于存储网络设备的程序代码和数据。
其中,处理模块112可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块113可以是收发器、收发电路或通信接口等。存储模块111可以是存储器。
当处理模块112为处理器120,通信模块113为通信接口130或收发器时,存储模块111为存储器140时,本申请实施例所涉及的网络设备可以为图12所示的设备。
其中,通信接口130、处理器120以及存储器140通过总线110相互连接;总线110可以是PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器140用于存储网络设备的程序代码和数据。通信接口130用于支持网络 设备与其他设备(例如,通信设备)通信,处理器120用于支持网络设备执行存储器140中存储的程序代码和数据以实现本申请实施例提供的一种资源调度方法。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的通信设备的一种可能的结构示意图。通信设备包括:接收单元201和确定单元202。其中,接收单元201用于支持通信设备执行上述实施例中的步骤S102、S107和S108;确定单元202用于支持通信设备执行上述实施例中的步骤S103和S104。和/或用于本文所描述的技术的其它过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用硬件实现的基础上,本申请实施例中的接收单元201可以为通信设备的接收器,该接收器通常可以和通信设备的发送器集成在一起用作收发器,具体的收发器还可以称为通信接口,确定单元201可以集成在通信设备的处理器上。
在采用集成的单元的情况下,图14示出了上述实施例中所涉及的通信设备的一种可能的逻辑结构示意图。通信设备包括:处理模块212和通信模块213。处理模块212用于对通信设备动作进行控制管理,例如,处理模块212用于支持通信设备执行上述实施例中的步骤S103和S104;通信模块213用于支持通信设备执行上述实施例中的步骤S102、S107和S108。和/或用于本文所描述的技术的其他过程。通信设备还可以包括存储模块211,用于存储通信设备的程序代码和数据。
其中,处理模块212可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块213可以是收发器、收发电路或通信接口等。存储模块211可以是存储器。
当处理模块212为处理器220,通信模块213为通信接口130或收发器时,存储模块211为存储器240时,本申请实施例所涉及的通信设备可以为图15所示的设备。
其中,通信接口230、处理器220以及存储器240通过总线210相互连接;总线210可以是PCI总线或EISA总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器240用于存储通信设备的程序代码和数据。通信接口230用于支持通信设备与其他设备(例如,网络设备)通信,处理器220用于支持通信设备执行存储器240中存储的程序代码和数据以实现本申请实施例提供的一种资源调度方法。
又一方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当其在网络设备上运行时,使得网络设备执行实施例中的步骤S101、S105、S106所描述的资源调度方法。
再一方面,提供一种计算机存储介质,计算机可读存储介质中存储有指令,当其在通信设备上运行时,使得通信设备执行上述实施例中的步骤S102、S103、S104、S107和S108所描述的资源调度方法。
另一方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令, 当其在网络设备上运行时,使得网络设备执行上述实施例中的步骤S101、S105、S106所描述的资源调度方法。
再一方面,提供一种包含指令的计算机程序产品,计算机程序产品中存储有指令,当其在通信设备上运行时,使得通信设备执行上述实施例中的步骤S102、S103、S104、S107和S108以及步骤S104所描述的资源调度方法。
此外,本申请实施例提供一种通信系统,包括如图10、图11以及图12任一项所描述的网络设备,以及如图13、图14以及图15任一项所描述的通信设备。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请实施例进行了描述,然而,在实施所要求保护的本申请实施例过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (22)

  1. 一种资源调度方法,其特征在于,包括:
    网络设备在第一频域资源上向通信设备发送第一资源调度信息和第二资源调度信息;
    其中,所述第一资源调度信息包括第一资源分配信息,所述第一资源分配信息用于指示所述第一频域资源内的第一资源;
    所述第二资源调度信息包括第二频域资源的标识信息和第二资源分配信息,所述第二资源分配信息用于指示所述第二频域资源内的第二资源,所述第二资源调度信息用于指示从所述第一频域资源切换到所述第二频域资源;
    所述第一频域资源和所述第二频域资源均属于载波内的频域资源。
  2. 根据权利要求1所述的一种资源调度方法,其特征在于,所述第一资源调度信息与所述第二资源调度信息满足以下条件中的至少一种:
    所述第一资源调度信息的大小和所述第二资源调度信息的大小不同;
    所述第一资源调度信息的格式和所述第二资源调度信息的格式不同。
  3. 根据权利要求1或2所述的一种资源调度方法,其特征在于,所述第一资源调度信息满足以下至少一个条件:
    在不同传输方式下,所述第一资源调度信息对应的大小不同;
    在不同传输方式下,所述第一资源调度信息对应的格式不同。
  4. 根据权利要求1-3任一项所述的一种资源调度方法,其特征在于,所述第二资源调度信息对应的传输方式为发送分集方式或单端口方式。
  5. 根据权利要求1-4任一项所述的一种资源调度方法,其特征在于,所述第二频域资源包括第二上行频域资源和第二下行频域资源,所述第二上行频域资源和所述第二下行频域资源的中心频点一致,所述第二频域资源的标识信息包括第一标识,所述第一标识指示所述第二频域资源。
  6. 根据权利要求1-4任一项所述的一种资源调度方法,其特征在于,所述第二频域资源包括第二上行频域资源和第二下行频域资源中的至少一项。
  7. 根据权利要求6所述的一种资源调度方法,其特征在于,所述第二资源调度信息用于调度所述第二上行频域资源时的大小与所述第二资源调度信息用于调度所述第二下行频域资源的大小相同。
  8. 根据权利要求1-7任一项所述的一种资源调度方法,其特征在于,所述第二资源分配信息指示所述第二频域资源的频域资源起点和所述第二频域资源的长度。
  9. 一种资源调度方法,其特征在于,包括:
    通信设备在第一频域资源上接收网络设备发送的第一资源调度信息和第二资源调度信息,其中,所述第一资源调度信息包括第一资源分配信息,所述第一资源分配信息用于指示所述第一频域资源内的第一资源;所述第二资源调度信息包括第二频域资源的标识信息和第二资源分配信息,所述第二资源分配信息用于指示所述第二频域资源内的第二资源,所述第二资源调度信息用于指示从所述第一频域资源切换到所述第二频域资源;所述第一频域资源和所述第二频域资源均属于载波内的频域资源;
    所述通信设备根据所述第二频域资源的标识信息,确定所述第二频域资源,以及 根据所述第二资源分配信息确定所述第二频域资源中用于与所述网络设备进行通信的所述第二资源;
    所述通信设备根据所述第一资源分配信息,确定所述第一频域资源中用于与所述网络设备进行通信的所述第一资源。
  10. 根据权利要求9所述的一种资源调度方法,其特征在于,所述第一资源调度信息与所述第二资源调度信息满足以下至少一个条件:
    所述第一资源调度信息的大小和所述第二资源调度信息的大小不同;
    所述第一资源调度信息的格式和所述第二资源调度信息的格式不同。
  11. 根据权利要求9或10所述的一种资源调度方法,其特征在于,所述第一资源调度信息满足以下至少一个条件:
    在不同传输方式下,所述第一资源调度信息对应的大小不同;
    在不同传输方式下,所述第一资源调度信息对应的格式不同。
  12. 根据权利要求9-11任一项所述的一种资源调度方法,其特征在于,所述第二资源调度信息对应的传输方式为发送分集方式或单端口方式。
  13. 根据权利要求9-12任一项所述的一种资源调度方法,其特征在于,所述第二频域资源包括第二上行频域资源和第二下行频域资源,所述第二上行频域资源和第二下行频域资源的中心频点一致,所述第二频域资源的标识信息包括第一标识,所述第一标识指示所述第二频域资源。
  14. 根据权利要求9-12任一项所述的一种资源调度方法,其特征在于,所述第二频域资源为第二上行频域资源和第二下行频域资源中的至少一项。
  15. 根据权利要求14所述的一种资源调度方法,其特征在于,所述第二资源调度信息用于调度所述第二上行频域资源时的大小与所述第二资源调度信息用于调度所述第二下行频域资源的大小相同。
  16. 根据权利要求9-15任一项所述的一种资源调度方法,其特征在于,所述通信设备根据第二资源分配信息指示的频域资源起点和频域资源长度确定所述第二频域资源中的所述第二资源。
  17. 一种网络设备,其特征在于,包括:存储器、处理器、总线和通信接口,存储器中存储有指令,处理器与存储器通过总线连接,所述处理器运行存储器中的代码使得所述网络设备执行如权利要求1-8任一项所述的一种资源调度方法。
  18. 一种通信设备,其特征在于,包括:存储器、处理器、总线和通信接口,存储器中存储有指令,处理器与存储器通过总线连接,其中,所述通信接口用于执行如权利要求9-16任一项所述的一种资源调度方法中,在所述通信设备中进行消息收发的操作;
    所述处理器运行所述存储器中的指令以执行如权利要求9-16任一项所述的一种资源调度方法中,在所述通信设备中进行处理或控制的操作。
  19. 一种计算机可读存储介质,其特征在于,应用于网络设备中,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求1-8任一项所述的一种资源调度方法。
  20. 一种计算机可读存储介质,其特征在于,应用于通信设备中,所述计算机可 读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求9-16任一项所述的一种资源调度方法。
  21. 一种计算机程序产品,其特征在于,应用于网络设备中,当该程序在计算设备上运行时,使得计算机执行上述权利要求1-8任一项所述的一种资源调度方法。
  22. 一种计算机程序产品,其特征在于,应用于通信设备中,当该程序在计算设备上运行时,使得计算机执行上述权利要求9-16任一项所述的一种资源调度方法。
PCT/CN2018/106053 2017-09-30 2018-09-17 一种资源调度方法、网络设备以及通信设备 WO2019062585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18861926.6A EP3570611A4 (en) 2017-09-30 2018-09-17 RESOURCE PLANNING METHOD, NETWORK DEVICE, AND TERMINAL DEVICE
US16/673,973 US20200068610A1 (en) 2017-09-30 2019-11-05 Resource scheduling method, network device, and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710943984.0 2017-09-30
CN201710943984.0A CN109600845A (zh) 2017-09-30 2017-09-30 一种资源调度方法、网络设备以及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,973 Continuation US20200068610A1 (en) 2017-09-30 2019-11-05 Resource scheduling method, network device, and communications device

Publications (1)

Publication Number Publication Date
WO2019062585A1 true WO2019062585A1 (zh) 2019-04-04

Family

ID=65900915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106053 WO2019062585A1 (zh) 2017-09-30 2018-09-17 一种资源调度方法、网络设备以及通信设备

Country Status (4)

Country Link
US (1) US20200068610A1 (zh)
EP (1) EP3570611A4 (zh)
CN (1) CN109600845A (zh)
WO (1) WO2019062585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526596A (zh) * 2020-05-11 2020-08-11 北京邮电大学 一种wlan网络和移动网络的联合资源调度方法及装置
WO2022151506A1 (zh) * 2021-01-18 2022-07-21 华为技术有限公司 一种bwp的确定方法及装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095256A1 (en) * 2017-11-17 2019-05-23 Panasonic Intellectual Property Corporation Of America Base station, user equipment and wireless communication method
CN111865541B (zh) * 2019-04-30 2023-11-21 华为技术有限公司 一种调度切换方法及装置
EP3979742A4 (en) 2019-07-05 2022-07-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. BWP SWITCHING PROCEDURE AND TERMINAL
CN110572169A (zh) * 2019-09-10 2019-12-13 展讯通信(上海)有限公司 相邻信道干扰降低方法和终端
CN111615201B (zh) * 2020-04-15 2024-02-06 北京云智软通信息技术有限公司 Coreset资源分配和指示方法及设备
CN113630873A (zh) * 2020-05-08 2021-11-09 维沃移动通信有限公司 频域资源分配方法及设备
WO2022077191A1 (zh) * 2020-10-12 2022-04-21 Oppo广东移动通信有限公司 资源调度方法、终端设备和网络设备
WO2022088105A1 (zh) * 2020-10-30 2022-05-05 华为技术有限公司 一种通信方法、装置及计算机可读存储介质
CN112804757B (zh) * 2020-12-30 2023-05-02 联想未来通信科技(重庆)有限公司 一种频域资源分配类型的切换方法、装置及可读存储介质
CN112968757B (zh) * 2021-01-29 2022-12-16 海能达通信股份有限公司 Pdcch资源的分配方法、解调方法及相关装置
CN114938544A (zh) * 2022-04-28 2022-08-23 华为技术有限公司 资源调度方法和通信装置以及通信设备
CN117460053A (zh) * 2022-07-15 2024-01-26 大唐移动通信设备有限公司 频域资源分配方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296503A (zh) * 2007-04-26 2008-10-29 华为技术有限公司 一种实现资源切换的方法、系统、基站和用户终端
CN102550107A (zh) * 2009-09-17 2012-07-04 高通股份有限公司 用于在无线通信系统中控制资源之间的切换和/或传输资源改变信息的方法和装置
CN102958184A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 下行控制信道传输方法、装置和系统
US9161319B2 (en) * 2010-11-09 2015-10-13 Samsung Electronics Co., Ltd. Resource allocation method and apparatus for wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296503A (zh) * 2007-04-26 2008-10-29 华为技术有限公司 一种实现资源切换的方法、系统、基站和用户终端
CN102550107A (zh) * 2009-09-17 2012-07-04 高通股份有限公司 用于在无线通信系统中控制资源之间的切换和/或传输资源改变信息的方法和装置
US9161319B2 (en) * 2010-11-09 2015-10-13 Samsung Electronics Co., Ltd. Resource allocation method and apparatus for wireless communication system
CN102958184A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 下行控制信道传输方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3570611A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526596A (zh) * 2020-05-11 2020-08-11 北京邮电大学 一种wlan网络和移动网络的联合资源调度方法及装置
CN111526596B (zh) * 2020-05-11 2022-06-28 北京邮电大学 一种wlan网络和移动网络的联合资源调度方法及装置
WO2022151506A1 (zh) * 2021-01-18 2022-07-21 华为技术有限公司 一种bwp的确定方法及装置

Also Published As

Publication number Publication date
CN109600845A (zh) 2019-04-09
EP3570611A1 (en) 2019-11-20
EP3570611A4 (en) 2020-03-25
US20200068610A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
CN106664702B (zh) 一种数据传输方法、装置及系统
US11924141B2 (en) Communication method, network device, and terminal device
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
EP4184969A1 (en) Physical downlink control channel enhancement method, communication device, and system
KR102354668B1 (ko) 다운링크 제어 정보를 송신하기 위한 방법 및 장치, 및 블라인드 검출 횟수를 획득하기 위한 방법 및 장치
CN109831827B (zh) 数据传输方法、终端和基站
US20200404699A1 (en) Control channel position determining method, device, and processor-readable storage medium
CN104205689A (zh) 增强物理下行链路控制信道(ePDCCH)小区间干扰协调(ICIC)
JP2018525932A (ja) 無線フレーム構成
US9883491B2 (en) Aperiodic channel state information (CSI) reporting for carrier aggregation
CN111756508B (zh) 一种通信方法及装置
CN110769508A (zh) 信号传输方法、装置、终端设备、网络设备及系统
CN115104277A (zh) 用于无线通信中的多分量载波物理下行链路共享信道调度的方法和装置
WO2019129253A1 (zh) 一种通信方法及装置
WO2019029306A1 (zh) 传输下行控制信息的方法、装置和系统
EP3879901B1 (en) Srs transmission method and apparatus
CN114451017B (zh) 一种激活和释放非动态调度传输的方法及装置
CN117460007A (zh) 一种小区状态切换方法及装置
WO2023030205A1 (zh) 资源指示方法和通信装置
US20220264534A1 (en) Methods and Apparatus for Resource Reservation in Long Term Evolution - Machine Type Communications
TWI652921B (zh) 用戶設備及虛擬載波的操作方法
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
CN116170861A (zh) 无线通信方法及相关设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018861926

Country of ref document: EP

Effective date: 20190812

NENP Non-entry into the national phase

Ref country code: DE