WO2019062578A1 - 基于椭圆形微带结构的双工器 - Google Patents

基于椭圆形微带结构的双工器 Download PDF

Info

Publication number
WO2019062578A1
WO2019062578A1 PCT/CN2018/105990 CN2018105990W WO2019062578A1 WO 2019062578 A1 WO2019062578 A1 WO 2019062578A1 CN 2018105990 W CN2018105990 W CN 2018105990W WO 2019062578 A1 WO2019062578 A1 WO 2019062578A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
elliptical
output
microstrip
dielectric plate
Prior art date
Application number
PCT/CN2018/105990
Other languages
English (en)
French (fr)
Inventor
王世伟
郭建珲
林景裕
Original Assignee
深圳大学
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 华南理工大学 filed Critical 深圳大学
Publication of WO2019062578A1 publication Critical patent/WO2019062578A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the invention relates to a duplexer, in particular to a duplexer based on an elliptical microstrip structure, and belongs to the field of wireless communication.
  • the microwave filter is an indispensable device for the transmitting end and the receiving end of the modern communication system. It separates the signal, allowing the useful signal to pass through as much as possible without attenuation, and suppressing the passage of the useless signal with as much attenuation as possible.
  • the planar microstrip filter has high application value due to its high frequency selectivity, low insertion loss, large power capacity, stable performance, small size and easy integration.
  • Many researchers have studied the multi-mode passband of planar filters. By adjusting the coupling between resonators, the split multimode is changed to generate transmission zeros, which further improves the bandpass performance.
  • a duplexer based on an elliptical microstrip structure is provided.
  • the object of the present invention is to provide a duplexer based on an elliptical microstrip structure, which can realize three working states, has the advantages of small volume, simple structure, easy processing, good performance, and the like, and can be satisfactorily satisfied. Communication system requirements.
  • a duplexer based on an elliptical microstrip structure comprising a dielectric plate having an elliptical microstrip structure and three input/output microstrip lines on the front side, the three input/output microstrip lines being rectangular inputs / Output microstrip lines, and respectively connected to the elliptical microstrip structure, the back side of the dielectric plate is a ground plate.
  • the dielectric board has a chamfered portion, and the three input/output microstrip lines are a first input/output microstrip line, a second input/output microstrip line, and a third input/output microstrip line, respectively.
  • the first end of the first input/output microstrip line is located at a first edge of the front side of the dielectric board, the second end is connected to the elliptical microstrip structure, and the first end of the second input/output microstrip line is located at the front side of the dielectric board At a second edge perpendicular to the first edge, the second end is coupled to the elliptical microstrip structure, the first end of the third input/output microstrip line is located at the chamfered portion, and the second end is elliptical With structural connections.
  • the chamfered portion of the dielectric plate is located at an upper right position of the dielectric plate, the first edge of the front surface of the dielectric plate is at a left edge of the front surface of the dielectric plate, and the second edge of the front surface of the dielectric plate is a dielectric plate At the lower edge of the front.
  • the chamfered portion of the dielectric plate is located at a lower right position of the dielectric plate, the first edge of the front surface of the dielectric plate is at a left edge of the front surface of the dielectric plate, and the second edge of the front surface of the dielectric plate is a medium At the upper edge of the front of the board.
  • the chamfered portion of the dielectric plate is located at an upper left position of the dielectric plate, the first edge of the front surface of the dielectric plate is at a right edge of the front surface of the dielectric plate, and the second edge of the front surface of the dielectric plate is a dielectric plate At the lower edge of the front.
  • the chamfered portion of the dielectric plate is located at a lower left position of the dielectric plate, the first edge of the front surface of the dielectric plate is at a right edge of the front surface of the dielectric plate, and the second edge of the front surface of the dielectric plate is a dielectric plate At the upper edge of the front.
  • the elliptical microstrip structure has a slit.
  • the three input/output microstrip lines each use a microstrip line having a characteristic impedance of 50 ohms.
  • the invention has an elliptical microstrip structure and three input/output microstrip lines on the front side of the dielectric plate, and the elliptical microstrip structure can produce the effect of multi-mode filtering by changing the long axis and the short axis of the elliptical microstrip structure and
  • the port positions of the three input/output microstrip lines control the resonant frequency of the mode, and the three input/output microstrip lines are designed as a rectangular structure, and one of the three input/output microstrip lines can select one of the input/output microstrip line inputs.
  • the other two input/output microstrip line outputs can realize three working states by combination, and have the advantages of small size, simple structure, easy processing, and wide application range.
  • FIG. 1 is a top plan view of a duplexer based on an elliptical microstrip structure according to Embodiment 1 of the present invention.
  • FIG. 2 is a side elevational view of a duplexer based on an elliptical microstrip structure according to Embodiment 1 of the present invention.
  • Embodiment 3 is an electromagnetic simulation graph of a frequency response of a duplexer based on an elliptical microstrip structure according to Embodiment 1 of the present invention.
  • FIG. 4 is a top plan view of a duplexer based on an elliptical microstrip structure according to Embodiment 2 of the present invention.
  • the embodiment provides a duplexer based on an elliptical microstrip structure
  • the duplexer includes a dielectric plate 1, and the upper right position of the dielectric plate 1 has a chamfered portion 2
  • the front side is provided with an elliptical microstrip structure 3 and three input/output microstrip lines
  • the back side is a grounding plate 4
  • the grounding plate 4 is made of a metal material, and the metal material may be aluminum, iron, tin, copper, silver, gold, and Any of platinum, or may be an alloy of any of aluminum, iron, tin, copper, silver, gold, and platinum.
  • the elliptical microstrip structure 3 can produce the effect of multimode filtering by controlling the resonant frequency of the mode by changing the long and short axes of the elliptical microstrip structure 3 and the port positions of the three input/output microstrip lines.
  • the three input/output microstrip lines adopt a microstrip line having a characteristic impedance of 50 ohms, and the three input/output microstrip lines are all rectangular structures having a first end and a second end opposite to the first end, respectively An input/output microstrip line 5, a second input/output microstrip line 6, and a third input/output microstrip line 7.
  • the first end of the first input/output microstrip line 5 is located at the left edge of the front side of the dielectric panel 1, as the first input/output port Port1, and the second end is opposite to the left of the elliptical microstrip structure 3.
  • second input/output microstrip line 6 is located at the lower edge of the front side of the dielectric board 1, as a second input/output port Port2, and the second end is connected to the lower side of the elliptical microstrip structure 3, the third input / The first end of the output microstrip line 7 is located at the position of the chamfered portion 2, as the third input/output port Port3, and the second end is connected to the upper right side of the elliptical microstrip structure 3, as can be seen from FIG.
  • the distance between the two long sides of an input/output microstrip line 5 remains unchanged, and the distance between the two long sides of the portion of the second input/output microstrip line 6 near the left side of the elliptical microstrip structure 3 gradually As the size becomes larger, the distance between the two long sides of the portion of the third input/output microstrip line 7 near the upper right side of the elliptical microstrip structure 3 gradually becomes larger.
  • S11 represents the return loss of the first input/output port Port1
  • S22 represents the return loss of the second input/output port Port2
  • S33 represents the return loss of the third input/output port Port3
  • S12 represents the transmission coefficient of the first input/output port Port1 to the second input/output port Port2
  • S13 represents the first input/output port Port1 to the third input/output port.
  • S23 represents the transmission coefficient of the second input/output port Port2 to the third input/output port Port3, from the first input/output port Port1, the second input/output port Port2, and the third input/output port Port3
  • the input, through the elliptical microstrip structure 3, can produce two resonant modes.
  • the main feature of this embodiment is that, as shown in FIG. 4, the elliptical microstrip structure 3 is provided with a slit 8, two first input/output microstrip lines 5 and three third input/output microstrip lines 6.
  • the distance between the long sides remains unchanged, and the distance between the two long sides of the portion of the third input/output microstrip line 7 near the upper right side of the elliptical microstrip structure 3 gradually becomes larger.
  • the rest are the same as in the first embodiment.
  • the main feature of this embodiment is that the lower right position of the dielectric plate 1 has a chamfered portion 2, and the first end of the first input/output microstrip line 5 is located at the left edge of the front surface of the dielectric panel 1, and the second end is The right side of the elliptical microstrip structure 3 is connected, the second input/output microstrip line 6 is located at the upper edge of the front side of the dielectric plate 1, and the second end is connected to the upper side of the elliptical microstrip structure 3, the third input/output The first end of the microstrip line 7 is located at the position of the chamfered portion 2, and the second end is connected to the lower right side of the elliptical microstrip structure 3. The rest are the same as in Embodiment 1 or 2.
  • the main feature of this embodiment is that the upper left position of the dielectric plate 1 has a chamfered portion 2, and the first end of the first input/output microstrip line 5 is located at the right edge of the front side of the dielectric panel 1, the second end and the ellipse
  • the right side of the microstrip structure 3 is connected
  • the second input/output microstrip line 6 is located at the lower edge of the front side of the dielectric board 1, and the second end is connected to the lower side of the elliptical microstrip structure 3,
  • the first end of the strip line 7 is located at the position of the chamfered portion 2, and the second end is connected to the upper left side of the elliptical microstrip structure 3.
  • the rest are the same as in Embodiment 1 or 2.
  • the main feature of this embodiment is that the lower left position of the dielectric plate 1 has a chamfered portion 2, and the first end of the first input/output microstrip line 5 is located at the right edge of the front side of the dielectric panel 1, the second end and the ellipse
  • the right side of the microstrip structure 3 is connected
  • the second input/output microstrip line 6 is located at the upper edge of the front side of the dielectric board 1, and the second end is connected to the upper side of the elliptical microstrip structure 3, and the third input/output micro
  • the first end of the strip line 7 is located at the position of the chamfered portion 2, and the second end is connected to the lower left side of the elliptical microstrip structure 3.
  • the rest are the same as in Embodiment 1 or 2.
  • the present invention provides an elliptical microstrip structure and three input/output microstrip lines on the front side of the dielectric plate, and the elliptical microstrip structure can produce multimode filtering effects by changing the length of the elliptical microstrip structure.
  • the axis and the short axis and the port positions of the three input/output microstrip lines control the resonant frequency of the mode, and the three input/output microstrip lines are designed as a rectangular structure, and one of the three input/output microstrip lines can be selected as one input/output.
  • the microstrip line input and the other two input/output microstrip line outputs can realize three working states by combination, and have the advantages of small volume, simple structure, easy processing, and wide application range.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种基于椭圆形微带结构的双工器,包括介质板,所述介质板的正面设有椭圆形微带结构和三条输入/输出微带线,所述三条输入/输出微带线均为矩形输入/输出微带线,并分别与椭圆形微带结构连接,所述介质板的背面为接地板。本发明的椭圆形微带结构可以产生多模滤波的效果,通过改变椭圆形微带结构的长轴和短轴以及三条输入/输出微带线的端口位置来控制模式的谐振频率,将三条输入/输出微带线设计为矩形结构,三条输入/输出微带线中可以选择其中一条输入/输出微带线输入,另外两条输入/输出微带线输出,通过组合能够实现三种工作状态,具有体积小、结构简单、易加工的优点,应用范围广。

Description

基于椭圆形微带结构的双工器 技术领域
本发明涉及一种双工器,尤其是一种基于椭圆形微带结构的双工器,属于无线通信领域。
背景技术
微波滤波器是现代通信系统中发射端和接收端必不可少的器件,它对信号起分离作用,让有用的信号尽可能无衰减的通过,对无用的信号尽可能大的衰减抑制其通过。随着无线通信技术的发展,信号间的频带越来越窄,这就对滤波器的规格和可靠性提出了更高的要求。平面微带滤波器具有高的频率选择性、低插损、功率容量大、性能稳定,小尺寸,易于集成等优点而具有很高的应用价值。许多学者对平面滤波器产生多模的通带进行了研究,通过调节谐振器之间的耦合来改变分离多模,产生传输零点,进一步提高带通性能。
为了减小滤波器的尺寸,学者提出了许多类型的滤波器,比如U形发夹谐振器滤波器,开环谐振器滤波器和折叠开路谐振器滤波器。1972年,Wolff首次提出了双模谐振器。越来越多的学者利用双模微带谐振器来减小滤波器的尺寸。在后续学者的探索研究中,利用非谐振模的概念,对平面滤波器在传输特性上的多模及传输零点进行了实现。在平面微带双工器领域,除了采用T型结实现双通道之外,还可以采用多模谐振器实现双工的效果。2006年,Ruey-Beei Wu等设计的微带双工器,输入端产生两个谐振模式,在两个输出端将这两个模式分离。
技术问题
提供一种基于椭圆形微带结构的双工器。
技术解决方案
本发明的目的是提供一种基于椭圆形微带结构的双工器,该双工器可以实现三种工作状态,具有体积小,结构简单、加工容易、性能好等优点,能够很好地满足通信系统的要求。
本发明的目的可以通过采取如下技术方案达到:
基于椭圆形微带结构的双工器,包括介质板,所述介质板的正面设有椭圆形微带结构和三条输入/输出微带线,所述三条输入/输出微带线均为矩形输入/输出微带线,并分别与椭圆形微带结构连接,所述介质板的背面为接地板。
进一步的,所述介质板具有切角部,所述三条输入/输出微带线分别为第一输入/输出微带线、第二输入/输出微带线和第三输入/输出微带线,第一输入/输出微带线的第一端位于介质板正面的第一边缘处,第二端与椭圆形微带结构连接,第二输入/输出微带线的第一端位于介质板正面的与第一边缘处相垂直的第二边缘处,第二端与椭圆形微带结构连接,第三输入/输出微带线的第一端位于切角部所在位置,第二端与椭圆形微带结构连接。
进一步的,所述介质板的切角部位于介质板的右上位置,所述介质板正面的第一边缘处为介质板正面的左边缘处,所述介质板正面的第二边缘处为介质板正面的下边缘处。
进一步的,所述介质板的切角部位于介质板的右下位置,所述介质板正面的第一边缘处为介质板正面的左边缘处,所述介质板正面的第二边缘处为介质板正面的上边缘处。
进一步的,所述介质板的切角部位于介质板的左上位置,所述介质板正面的第一边缘处为介质板正面的右边缘处,所述介质板正面的第二边缘处为介质板正面的下边缘处。
进一步的,所述介质板的切角部位于介质板的左下位置,所述介质板正面的第一边缘处为介质板正面的右边缘处,所述介质板正面的第二边缘处为介质板正面的上边缘处。
进一步的,所述椭圆形微带结构上开有缝隙。
进一步的,所述三条输入/输出微带线均采用特性阻抗为50欧姆的微带线。
有益效果
本发明在介质板的正面设置了椭圆形微带结构和三条输入/输出微带线,椭圆形微带结构可以产生多模滤波的效果,通过改变椭圆形微带结构的长轴和短轴以及三条输入/输出微带线的端口位置来控制模式的谐振频率,将三条输入/输出微带线设计为矩形结构,三条输入/输出微带线中可以选择其中一条输入/输出微带线输入,另外两条输入/输出微带线输出,通过组合能够实现三种工作状态,具有体积小、结构简单、易加工的优点,应用范围广。
附图说明
图1为本发明实施例1基于椭圆形微带结构的双工器俯视结构图。
图2为本发明实施例1基于椭圆形微带结构的双工器侧视结构图。
图3为本发明实施例1基于椭圆形微带结构的双工器频率响应的电磁仿真曲线图。
图4为本发明实施例2基于椭圆形微带结构的双工器俯视结构图。
其中,1-介质板,2-切角部,3-椭圆形微带结构,4-接地板,5-第一输入/输出微带线,6-第二输入/输出微带线,7-第三输入/输出微带线,,8-缝隙。
本发明的最佳实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
如图1和图2所示,本实施例提供了一种基于椭圆形微带结构的双工器,该双工器包括介质板1,所述介质板1的右上位置具有切角部2,其正面设有椭圆形微带结构3和三条输入/输出微带线,背面为接地板4,接地板4采用金属材料制成,金属材料可以为铝、铁、锡、铜、银、金和铂的任意一种,或可以为铝、铁、锡、铜、银、金和铂任意一种的合金。
所述椭圆形微带结构3可以产生多模滤波的效果,通过改变椭圆形微带结构3的长轴和短轴以及三条输入/输出微带线的端口位置来控制模式的谐振频率。
所述三条输入/输出微带线采用特性阻抗为50欧姆的微带线,三条输入/输出微带线均为矩形结构,具有第一端以及与第一端相反的第二端,分别为第一输入/输出微带线5、第二输入/输出微带线6和第三输入/输出微带线7。
在本实施例中,第一输入/输出微带线5的第一端位于介质板1正面的左边缘处,作为第一输入/输出端口Port1,第二端与椭圆形微带结构3的左侧连接,第二输入/输出微带线6位于介质板1正面的下边缘处,作为第二输入/输出端口Port2,第二端与椭圆形微带结构3的下侧连接,第三输入/输出微带线7的第一端位于切角部2所在位置,作为第三输入/输出端口Port3,第二端与椭圆形微带结构3的右上侧连接,从图1中可以看到,第一输入/输出微带线5的两条长边之间距离保持不变,第二输入/输出微带线6在靠近椭圆形微带结构3左侧的部分的两条长边之间距离逐渐变大,第三输入/输出微带线7在靠近椭圆形微带结构3右上侧的部分的两条长边之间距离逐渐变大。
本实施例的双工器具有如下三种工作状态:
1)当能量从第二输入/输出端口Port1输入时,依次经过第一输入/输出微带线5和椭圆形微带结构3后,分离成两个频率的能量,其中一个频率的能量通过第二输入/输出微带线6由第二输入/输出端口Port2输出,另一个频率的能量通过第三输入/输出微带线7由第三输入/输出端口Port3输出。
2)当能量从第二输入/输出端口Port2输入时,依次经过第二输入/输出微带线6和椭圆形微带结构3后,分离成两个频率的能量,其中一个频率的能量通过第一输入/输出微带线5由第一输入/输出端口Port1输出,另一个频率的能量通过第三输入/输出微带线7由第三输入/输出端口Port3输出。
3)当能量从第三输入/输出端口Port3输入时,依次经过第三输入/输出微带线7和椭圆形微带结构3后,分离成两个频率的能量,其中一个频率的能量通过第一输入/输出微带线5由第一输入/输出端口Port1输出,另一个频率的能量通过第二输入/输出微带线6由第二输入/输出端口Port2输出。
本实施例的双工器频率响应的电磁仿真曲线如图3所示,图中S11表示第一输入/输出端口Port1的回波损耗;S22表示第二输入/输出端口Port2的回波损耗,S33表示第三输入/输出端口Port3的回波损耗,S12表示第一输入/输出端口Port1到第二输入/输出端口Port2的传输系数,S13表示第一输入/输出端口Port1到第三输入/输出端口Port3的传输系数,S23表示第二输入/输出端口Port2到第三输入/输出端口Port3的传输系数,从第一输入/输出端口Port1、第二输入/输出端口Port2和第三输入/输出端口Port3输入,通过椭圆形微带结构3都可以产生两个谐振模式。
实施例2:
本实施例的主要特点是:如图4所示,所述椭圆形微带结构3上开有缝隙8,第一输入/输出微带线5和第三输入/输出微带线6的两条长边之间距离保持不变,第三输入/输出微带线7在靠近椭圆形微带结构3右上侧的部分的两条长边之间距离逐渐变大。其余同实施例1。
实施例3:
本实施例的主要特点是:所述介质板1的右下位置具有切角部2,第一输入/输出微带线5的第一端位于介质板1正面的左边缘处,第二端与椭圆形微带结构3的右侧连接,第二输入/输出微带线6位于介质板1正面的上边缘处,第二端与椭圆形微带结构3的上侧连接,第三输入/输出微带线7的第一端位于切角部2所在位置,第二端与椭圆形微带结构3的右下侧连接。其余同实施例1或2。
实施例4:
本实施例的主要特点是:所述介质板1的左上位置具有切角部2,第一输入/输出微带线5的第一端位于介质板1正面的右边缘处,第二端与椭圆形微带结构3的右侧连接,第二输入/输出微带线6位于介质板1正面的下边缘处,第二端与椭圆形微带结构3的下侧连接,第三输入/输出微带线7的第一端位于切角部2所在位置,第二端与椭圆形微带结构3的左上侧连接。其余同实施例1或2。
实施例5:
本实施例的主要特点是:所述介质板1的左下位置具有切角部2,第一输入/输出微带线5的第一端位于介质板1正面的右边缘处,第二端与椭圆形微带结构3的右侧连接,第二输入/输出微带线6位于介质板1正面的上边缘处,第二端与椭圆形微带结构3的上侧连接,第三输入/输出微带线7的第一端位于切角部2所在位置,第二端与椭圆形微带结构3的左下侧连接。其余同实施例1或2。
综上所述,本发明在介质板的正面设置了椭圆形微带结构和三条输入/输出微带线,椭圆形微带结构可以产生多模滤波的效果,通过改变椭圆形微带结构的长轴和短轴以及三条输入/输出微带线的端口位置来控制模式的谐振频率,将三条输入/输出微带线设计为矩形结构,三条输入/输出微带线中可以选择其中一条输入/输出微带线输入,另外两条输入/输出微带线输出,通过组合能够实现三种工作状态,具有体积小、结构简单、易加工的优点,应用范围广。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (8)

  1. 基于椭圆形微带结构的双工器,其特征在于:包括介质板,所述介质板的正面设有椭圆形微带结构和三条输入/输出微带线,所述三条输入/输出微带线均为矩形输入/输出微带线,并分别与椭圆形微带结构连接,所述介质板的背面为接地板。
  2. 根据权利要求1所述的基于椭圆形微带结构的双工器,其特征在于:所述介质板具有切角部,所述三条输入/输出微带线分别为第一输入/输出微带线、第二输入/输出微带线和第三输入/输出微带线,第一输入/输出微带线的第一端位于介质板正面的第一边缘处,第二端与椭圆形微带结构连接,第二输入/输出微带线的第一端位于介质板正面的与第一边缘处相垂直的第二边缘处,第二端与椭圆形微带结构连接,第三输入/输出微带线的第一端位于切角部所在位置,第二端与椭圆形微带结构连接。
  3. 根据权利要求2所述的基于椭圆形微带结构的双工器,其特征在于:所述介质板的切角部位于介质板的右上位置,所述介质板正面的第一边缘处为介质板正面的左边缘处,所述介质板正面的第二边缘处为介质板正面的下边缘处。
  4. 根据权利要求2所述的基于椭圆形微带结构的双工器,其特征在于:所述介质板的切角部位于介质板的右下位置,所述介质板正面的第一边缘处为介质板正面的左边缘处,所述介质板正面的第二边缘处为介质板正面的上边缘处。
  5. 根据权利要求2所述的基于椭圆形微带结构的双工器,其特征在于:所述介质板的切角部位于介质板的左上位置,所述介质板正面的第一边缘处为介质板正面的右边缘处,所述介质板正面的第二边缘处为介质板正面的下边缘处。
  6. 根据权利要求2所述的基于椭圆形微带结构的双工器,其特征在于:所述介质板的切角部位于介质板的左下位置,所述介质板正面的第一边缘处为介质板正面的右边缘处,所述介质板正面的第二边缘处为介质板正面的上边缘处。
  7. 根据权利要求1-6任一项所述的基于椭圆形微带结构的双工器,其特征在于:所述椭圆形微带结构上开有缝隙。
  8. 根据权利要求1-6任一项所述的基于椭圆形微带结构的双工器,其特征在于:所述三条输入/输出微带线均采用特性阻抗为50欧姆的微带线。
PCT/CN2018/105990 2017-09-27 2018-09-17 基于椭圆形微带结构的双工器 WO2019062578A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710891844.3 2017-09-27
CN201710891844.3A CN107768788B (zh) 2017-09-27 2017-09-27 基于椭圆形微带结构的双工器

Publications (1)

Publication Number Publication Date
WO2019062578A1 true WO2019062578A1 (zh) 2019-04-04

Family

ID=61266655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105990 WO2019062578A1 (zh) 2017-09-27 2018-09-17 基于椭圆形微带结构的双工器

Country Status (2)

Country Link
CN (1) CN107768788B (zh)
WO (1) WO2019062578A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768788B (zh) * 2017-09-27 2021-01-19 华南理工大学 基于椭圆形微带结构的双工器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204167446U (zh) * 2014-10-30 2015-02-18 成都信息工程学院 槽线扰动的集成波导双模滤波器
CN106602200A (zh) * 2016-12-02 2017-04-26 南京理工大学 一种微带功分滤波器
KR20170075196A (ko) * 2015-12-23 2017-07-03 조선대학교산학협력단 단일 스위치 제어 마이크로스트립 재구성 듀플렉서 장치
CN107768788A (zh) * 2017-09-27 2018-03-06 华南理工大学 基于椭圆形微带结构的双工器
CN207368192U (zh) * 2017-09-27 2018-05-15 华南理工大学 基于椭圆形微带结构的双工器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795637A (zh) * 2015-04-10 2015-07-22 中国电子科技集团公司第三十八研究所 一种矩形缝隙加载薄单层介质宽带微带贴片天线
CN205488511U (zh) * 2016-01-18 2016-08-17 苏州博恩希普新材料科技有限公司 一种小型介质陶瓷天线基片
CN205376755U (zh) * 2016-01-18 2016-07-06 苏州博恩希普新材料科技有限公司 一种新型天线基片
CN106711568A (zh) * 2016-11-24 2017-05-24 南京邮电大学 一种基于基片集成技术的平面魔t

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204167446U (zh) * 2014-10-30 2015-02-18 成都信息工程学院 槽线扰动的集成波导双模滤波器
KR20170075196A (ko) * 2015-12-23 2017-07-03 조선대학교산학협력단 단일 스위치 제어 마이크로스트립 재구성 듀플렉서 장치
CN106602200A (zh) * 2016-12-02 2017-04-26 南京理工大学 一种微带功分滤波器
CN107768788A (zh) * 2017-09-27 2018-03-06 华南理工大学 基于椭圆形微带结构的双工器
CN207368192U (zh) * 2017-09-27 2018-05-15 华南理工大学 基于椭圆形微带结构的双工器

Also Published As

Publication number Publication date
CN107768788A (zh) 2018-03-06
CN107768788B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
CN103633400B (zh) 一种基于电磁混合耦合的微带双工器
CN103811833B (zh) 应用于超宽带频道和窄带频道的高隔离槽线双工器
CN108183293A (zh) 平面微带双工器
WO2018233227A1 (zh) 加载三枝节耦合微带线的宽带带通滤波器
CN109273807A (zh) 一种新型的高性能宽带四功分滤波器
CN109066039A (zh) 一种新型的微带功分双工器
CN104409809B (zh) 基于平行耦合线的可切换带通‑带阻滤波器
CN107256995A (zh) 一种微带双通带带通滤波器
CN107768782B (zh) 基于矩形微带结构的双工器
CN106816675A (zh) 腔体式带阻滤波器及射频器件
WO2019062578A1 (zh) 基于椭圆形微带结构的双工器
WO2018233228A1 (zh) 具有加载三枝节耦合微带线结构的信号发射装置
CN106532201A (zh) 基于环形谐振器的小型化宽阻带双模平衡带通滤波器
CN106602189B (zh) 一种环形金属谐振腔波导滤波器
CN114725643B (zh) 太赫兹双模折叠多工器
US10673111B2 (en) Filtering unit and filter
CN104409811B (zh) 一种可切换的平面带通‑带阻滤波器
CN108232380B (zh) 一种高集成双模矩形谐振器单层平面双工器
CN113708030B (zh) 基于多模缝隙线谐振器的平衡超宽带带通滤波器
CN108565532B (zh) 一种高集成双模矩形谐振器双层平面双工器
CN106058391B (zh) 一种基于新型匹配网络的平面cq双工器
CN108682926A (zh) 一种高选择性双通带功分滤波器
CN207303306U (zh) 基于矩形微带结构的双工器
CN207368192U (zh) 基于椭圆形微带结构的双工器
CN203883094U (zh) 一种基于电磁混合耦合的微带双工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18862780

Country of ref document: EP

Kind code of ref document: A1