WO2019061689A1 - 跨季节蓄冷蓄热系统 - Google Patents

跨季节蓄冷蓄热系统 Download PDF

Info

Publication number
WO2019061689A1
WO2019061689A1 PCT/CN2017/109919 CN2017109919W WO2019061689A1 WO 2019061689 A1 WO2019061689 A1 WO 2019061689A1 CN 2017109919 W CN2017109919 W CN 2017109919W WO 2019061689 A1 WO2019061689 A1 WO 2019061689A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
season
heat
ice
inter
Prior art date
Application number
PCT/CN2017/109919
Other languages
English (en)
French (fr)
Inventor
岳玉亮
齐月松
袁东立
孙鹏程
周辉
Original Assignee
中国建筑股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑股份有限公司 filed Critical 中国建筑股份有限公司
Priority to US16/199,170 priority Critical patent/US10767936B2/en
Publication of WO2019061689A1 publication Critical patent/WO2019061689A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a cross-season cold storage heat storage system, belonging to the technical field of heat pump cooling and heating.
  • the present invention aims to provide a cross-season cold storage heat storage system to solve the problems raised in the above background art.
  • the present invention is convenient to use, easy to operate, has good stability, and high reliability.
  • the present invention provides a cross-season cold storage thermal storage system, and the first one is a static disk controlled ice cross-season cold storage thermal storage system, including a cooling tower, an ice source heat pump, and a cooling heat storage pump.
  • cold storage pump cold storage pump
  • ice source pump inter-season energy storage tank
  • inter-season ice storage coil discharge pump
  • heat release heat exchanger heat release heat exchanger
  • the ice source heat pump includes a condenser and an evaporator
  • the inter-season ice storage coil is disposed in the inter-season energy storage tank
  • the condenser in the ice source heat pump is sequentially connected with the cooling heat storage pump and the cooling tower through the circulation pipeline to form a heat exhausting to the outdoor environment during summer cooling.
  • a circulation loop wherein the condenser in the ice source heat pump is further connected to the cooling heat storage pump and the inter-season energy storage tank through a circulation pipeline to form a circulation loop for storing heat in the summer season to the inter-season energy storage tank.
  • the condenser in the ice source heat pump is also sequentially connected with the air conditioning pump and the hot and cold end of the air conditioner through the circulation pipeline to form a circulation loop for supplying heat to the cold and hot end of the air conditioner in winter, and the evaporator in the ice source heat pump passes through the circulation pipeline
  • the seasonal energy storage tanks are connected in sequence to form a circulation loop for storing cold in the summer storage tank, and the evaporator in the ice source heat pump is sequentially connected to the discharge pump and the heat release heat exchanger through the circulation pipeline.
  • the evaporator of the ice source heat pump is further connected to the ice source pump and the inter-season ice storage coil through a circulation pipeline, and the pipeline is filled with antifreeze , which constitutes a low-temperature heat source in the winter heating cycle
  • the inter-season storage tanks are sequentially connected with the discharge pump and the discharge heat exchanger through the circulation pipeline to form a discharge loop for the summer cooling and the winter heat release.
  • the heat-dissipating heat exchanger is in turn connected with the air-conditioning pump and the hot and cold end of the air conditioner, and constitutes a circulation loop for the cold and hot end of the air conditioner to supply cooling in winter and heat in winter.
  • the ice source heat pump is provided with an evaporator and an evaporator, and the evaporator is sequentially connected with the cold storage pump and the inter-season energy storage tank through the circulation pipeline to form a cold storage to the inter-season energy storage tank during summer cooling.
  • the circulation circuit, the evaporator 1 is also sequentially connected to the discharge pump and the discharge heat exchanger through a circulation pipeline, and constitutes a circulation loop for releasing the cold to the discharge heat exchanger during summer cooling, and the evaporator is also
  • the circulating pipeline is connected with the ice source pump and the inter-season ice storage coil, and the pipeline is filled with antifreeze to form a low-temperature heat source circulation loop during winter heating, and serves as a cold source source for the inter-season cold storage;
  • the ice source heat pump is provided with an evaporator 1 and two evaporators of the evaporator; the evaporator is sequentially connected with the cold storage pump and the inter-season energy storage tank through the circulation pipeline to form a summer season for cooling to a season.
  • a circulating circuit for accumulating the cold storage tank wherein the evaporator 1 is further connected to the discharge pump and the discharge heat exchanger through a circulation pipeline to form a circulation loop for releasing the cooling heat to the discharge heat exchanger during summer cooling,
  • the evaporator 2 is sequentially connected with the ice source pump and the inter-season ice storage coil through the circulation pipeline, and the pipeline is filled with antifreeze to form a low-temperature heat source circulation loop during winter heating, and serves as a cold source source for the inter-season cold storage.
  • the static disk-controlled ice cross-season cold storage heat storage system is provided with a cross-season energy storage tank, or the inter-season cold storage heat storage system is provided with a plurality of inter-season energy storage tanks, and a plurality of inter-seasonal storage tanks The energy storage tanks are arranged in parallel.
  • the outer surface of the inter-season energy storage tank is provided with heat insulation measures such as heat insulating cotton sheets.
  • inter-season ice storage coils are arranged in a staggered storage tank or in other forms in the inter-season energy storage tank.
  • the second type is a dynamic ice-making inter-season cold storage and heat storage system, including a cooling tower, an ice source heat pump, a cooling heat storage pump, a cold storage pump, an ice source pump, an ice slurry pump, an ice making unit, a cross-season energy storage tank, and a discharge energy.
  • a pump, a heat dissipating heat exchanger, an air conditioning pump, and an air conditioning hot and cold end wherein the ice source heat pump includes a condenser and an evaporator, and the condenser in the ice source heat pump is sequentially connected to the cooling heat storage pump and the cooling tower through a circulation pipeline a circulation loop for exhausting heat to the outdoor environment during summer cooling.
  • the condenser in the ice source heat pump is further connected to the cooling heat storage pump and the inter-season energy storage tank through a circulation pipeline to form a summer season for cooling to a season.
  • a circulating circuit for accumulating energy storage tanks in a season; the condenser in the ice source heat pump is also sequentially connected with an air-conditioning pump and an air-conditioning hot and cold end through a circulation pipeline to form a circulation loop for supplying heat to the cold and hot end of the air conditioner in winter.
  • the evaporator in the ice source heat pump is sequentially connected with the cold storage pump and the inter-season energy storage tank through a circulation pipeline to form a circulation loop for storing cold in the summer storage tank, and the evaporator in the ice source heat pump is further Through the circulation line and put The pump and the heat-dissipating heat exchanger are sequentially connected to form a circulation loop for releasing the cooling heat to the heat-dissipating heat exchanger during the summer cooling, and the evaporator of the ice source heat pump is further connected with the ice source pump and the ice-making unit through the circulation pipeline.
  • the pipeline is filled with antifreeze to form a low-temperature heat source circulation loop for heating in winter, and as a source of cold source for cross-season cold storage, the ice making unit is sequentially connected with the slurry pump and the inter-season storage tank through the circulation pipeline.
  • the inter-season energy storage tank is sequentially connected with the discharge pump and the discharge heat exchanger through a circulation pipeline, and constitutes an energy release circulation loop for cooling in summer and exothermic heat in winter, and the discharge heat exchanger passes through the circulation pipeline. It is connected with the air-conditioning pump and the hot and cold end of the air conditioner in sequence, and constitutes a circulation loop for the cold and hot end of the air conditioner in summer and the winter heating.
  • the ice source heat pump is provided with an evaporator and an evaporator, and the evaporator is sequentially connected with the cold storage pump and the inter-season energy storage tank through the circulation pipeline to form an energy storage in the summer season.
  • a circulation loop of the tank cold storage wherein the evaporator 1 is further connected to the discharge pump and the discharge heat exchanger through a circulation pipeline to form a circulation loop for releasing the cold to the discharge heat exchanger during the summer cooling
  • the evaporator Firstly, through the circulation pipeline, the ice source pump and the ice making unit are sequentially connected, and the pipeline is filled with antifreeze to form a low temperature heat source circulation loop during winter heating, and at the same time, as a cold source source for the intersea storage;
  • the ice source heat pump is provided with an evaporator 1 and two evaporators of the evaporator, and the evaporator is sequentially connected with the cold storage pump and the inter-season storage tank through the circulation pipeline to form a summer season for the cold season.
  • a circulating circuit for accumulating the cold storage tank, wherein the evaporator 1 is further connected to the discharge pump and the discharge heat exchanger through a circulation pipeline to form a circulation loop for releasing the cooling heat to the discharge heat exchanger during summer cooling,
  • the evaporator 2 is sequentially connected with the ice source pump and the ice making unit through the circulation pipeline, and the pipeline is filled with antifreeze to form a low temperature heat source circulation loop during winter heating, and serves as a cold source source for the intersea season cold storage.
  • the dynamic ice-making inter-season thermal storage thermal storage system is provided with a cross-season energy storage tank, or the inter-season cold storage thermal storage system is provided with a plurality of inter-season energy storage tanks, and a plurality of inter-season storage tanks The energy slots are arranged in parallel.
  • the air conditioning pump outlet is connected to a discharge heat exchanger, and the air conditioning pump inlet is connected to the hot and cold end of the air conditioner.
  • the outer surface of the inter-season energy storage tank is provided with heat insulation measures such as heat insulating cotton sheets.
  • the beneficial effects of the invention are added according to the invention Hot end, air conditioning pump, ice pump, ice source pump, cold storage pump and cooling heat storage pump.
  • This design realizes inter-seasonal cold storage and heat storage.
  • water is made into ice for summer cooling, and summer heat can be exhausted.
  • the storage is carried out for winter heating, which greatly reduces the operating cost of the project.
  • the invention has reasonable structure, complete functions, strong practicability, good stability and high reliability.
  • the basic breakthrough is to use the water phase to turn into ice in winter.
  • the latent heat coming out is used for heating, which greatly reduces the volume of the energy storage tank.
  • FIG. 1 is a schematic view of a first embodiment of a static disk-controlled ice cross-season cold storage heat storage system.
  • FIG. 2 is a schematic diagram of direct heating of a winter inter-season storage tank in the first embodiment of a static disk-controlled ice cross-season cold storage thermal storage system.
  • FIG. 3 is a schematic diagram of a winter ice source heat pump heating and a cross-season cold storage in a static disk controlled ice cross-season cold storage heat storage system.
  • FIG. 4 is a schematic diagram of a direct cooling of a summer inter-season energy storage tank in a first embodiment of a static disk-controlled ice cross-season cold storage thermal storage system.
  • FIG. 5 is a schematic diagram of a summer ice source heat pump cold storage and cooling system in a static disk controlled ice cross-season cold storage heat storage system.
  • FIG. 6 is a schematic diagram of a summer heat pump cooling and a mid-season heat storage in a static disk-controlled ice-span seasonal cold storage heat storage system.
  • FIG. 7 is a schematic diagram of a second embodiment of a static disk-controlled ice cross-season cold storage heat storage system.
  • FIG. 8 is a schematic diagram of Embodiment 3 of a static disk-controlled ice cross-season cold storage heat storage system.
  • FIG. 9 is a schematic diagram of Embodiment 4 of a static disk-controlled ice cross-season cold storage heat storage system.
  • Fig. 10 is a schematic view showing the first embodiment of the dynamic ice making cross-season cold storage heat storage system.
  • FIG. 11 is a schematic diagram of direct heating of a winter inter-season storage tank in the first embodiment of a dynamic ice-making cross-season cold storage thermal storage system.
  • FIG. 12 is a schematic diagram of a winter heat pump heating and a cross-season cold storage in a dynamic ice-making cross-season cold storage heat storage system.
  • FIG. 13 is a schematic diagram of direct cooling of the summer inter-season storage tank in the first embodiment of the dynamic ice-making cross-season cold storage heat storage system.
  • FIG. 14 is a schematic diagram of a summer ice source heat pump cold storage and cooling system in a dynamic ice-making cross-season cold storage heat storage system.
  • 15 is a schematic diagram of a summer heat pump cooling and a mid-season heat storage in a dynamic ice-making cross-season cold storage heat storage system.
  • 16 is a schematic view of a second embodiment of a dynamic ice-making cross-season cold storage heat storage system.
  • 17 is a schematic view of a third embodiment of a dynamic ice making cross-season cold storage heat storage system.
  • FIG. 18 is a schematic view of a fourth embodiment of a dynamic ice making cross-season cold storage heat storage system.
  • 1-cooling tower 2-ice source heat pump, 21-condenser, 22-evaporator one, 23-evaporator two, 3-cooling heat storage pump, 4-cooling pump, 5-ice source pump, 6- Ice slurry pump, 7-ice unit, 8-span season storage tank, 9-span season ice storage coil, 10-discharge pump, 11-discharge heat exchanger, 12-air conditioner pump, 13-air conditioner Hot end.
  • the first technical solution provided by the present invention is: a static disk control ice cross-season cold storage heat storage system, including a cooling tower 1, an ice source heat pump 2, a cooling heat storage pump 3, a cold storage pump 4, and ice.
  • a source pump 5 a cross-season energy storage tank 8, a cross-season ice storage coil 9, a discharge pump 10, a discharge heat exchanger 11, an air conditioning pump 12, and an air conditioning hot and cold end 13,
  • the ice source heat pump 2 includes a condenser 21 and an evaporator
  • the inter-season ice storage coil 9 is disposed in the inter-season energy storage tank 8, and the condensation in the ice source heat pump 2
  • the device 21 sequentially communicates with the cooling heat storage pump 3 and the cooling tower 1 through a circulation line to form a circulation circuit for discharging heat to the outdoor environment during summer cooling.
  • the condenser 21 of the ice source heat pump 2 also passes through the circulation line and the cooling heat storage pump. 3.
  • the inter-season energy storage tank 8 is connected in sequence to form a circulation loop for the summer storage of the inter-season energy storage tank 8 during the summer cooling, and the condenser 21 of the ice source heat pump 2 also passes through the circulation pipeline and the air-conditioning pump 12
  • the air-conditioning hot and cold end 13 is sequentially connected to form a circulation loop for supplying heat to the cold and hot end 13 of the air conditioner in winter, and the evaporator in the ice source heat pump 2 is sequentially connected with the cold storage pump 4 and the inter-season energy storage tank 8 through the circulation pipeline to form a summer.
  • the cooling circuit for cooling to the inter-season storage tank 8 when cooling, the evaporator in the ice source heat pump 2 is also sequentially connected to the discharge pump 10 and the discharge heat exchanger 11 through the circulation pipeline to form a summer cooling supply.
  • the heat exchanger 11 can be cooled by a circulation loop, and the evaporator of the ice source heat pump 2 is also sequentially connected with the ice source pump 5 and the inter-season ice storage coil 9 through a circulation pipeline, and the pipeline is filled with antifreeze to form a winter heating.
  • the inter-season energy storage tank 8 is sequentially connected with the discharge pump 10 and the discharge heat exchanger 11 through the circulation pipeline to form an energy release circulation loop for summer cooling and winter heat release; the discharge heat exchanger 11 passes through the circulation pipeline again. It is connected with the air-conditioning pump 12 and the air-conditioning hot and cold end 13 in sequence, and constitutes a circulation loop for cooling and hot-sealing end 13 of the air conditioner in summer and heating in winter.
  • a static disk control ice cross-season cold storage heat storage system embodiment 1 is provided, an ice source heat pump 2 is provided with an evaporator one 22, an evaporator two 23 two evaporators, and an evaporator one 22 passes through a circulation line and a cold storage pump. 4.
  • the inter-season energy storage tanks 8 are connected in sequence to form a circulation loop for storing cold in the summer storage tanks in the summer, and the evaporator 22 is also passed through the circulation pipeline and the discharge pump 10 and the discharge heat exchanger 11 in turn.
  • a circulation loop for cooling to the discharge heat exchanger 11 during summer cooling Connected to form a circulation loop for cooling to the discharge heat exchanger 11 during summer cooling, and the evaporator 23 is sequentially connected to the ice source pump 5 and the inter-season ice storage coil 9 through the circulation pipeline, and the pipeline is filled with antifreeze. It constitutes a low-temperature heat source circulation loop for heating in winter and serves as a source of cold source for inter-season storage.
  • a static disk control ice cross-season cold storage heat storage system embodiment 2 an ice source heat pump 2 is provided with an evaporator 22 and an evaporator, an evaporator 22 passes through a circulation pipeline and a cold storage pump 4, and inter-season energy storage.
  • the tanks 8 are sequentially connected to form a circulation loop for cooling to the inter-season storage tanks 8 during summer cooling, and the evaporators 22 are also sequentially connected to the discharge pump 10 and the discharge heat exchanger 11 through the circulation pipelines to form a summer cooling supply.
  • the cooling circuit is cooled to the discharge heat exchanger 11 , and the evaporator 22 is sequentially connected to the ice source pump 5 and the inter-season ice storage coil 9 through the circulation pipeline, and the pipeline is filled with antifreeze to form a winter heating.
  • the low-temperature heat source circulation loop is also used as a source of cold storage for inter-season storage.
  • a cross-season thermal storage system 8 is provided in the inter-season thermal storage system.
  • two inter-season storage tanks 8 are provided in the inter-season cold storage thermal storage system, and two inter-season storage tanks are stored.
  • the energy tanks 8 are arranged in parallel.
  • more cross-season energy storage slots 8 can be connected in parallel.
  • the outer surface of the inter-season energy storage tank 8 may be provided with heat insulation measures such as heat insulating cotton sheets.
  • the inter-season The ice coils 9 are arranged in a serpentine arrangement in the inter-season energy storage tank 8, and in other embodiments, may be arranged in other forms in the inter-season energy storage tanks.
  • the static disk control ice cross-season cold storage heat storage system embodiment in use, the evaporator 22 in the ice source heat pump 2 and the ice source pump 5, the inter-season ice storage coil 9 in turn, the pipeline is filled with antifreeze
  • the agent which constitutes a low-temperature heat source cycle during winter heating, and serves as a source of cold source for inter-seasonal storage, and is called static ice making because the ice is stationary.
  • the ice source heat pump 2 performs cooling while heating, and this cold amount is stored in the inter-season energy storage tank 8 in the form of ice through the inter-season ice storage coil 9.
  • the condenser 21 of the ice source heat pump 2 is in continuous communication with the air-conditioning pump 12 and the air-conditioning hot and cold end 13 , and the ice source heat pump 2 uses the sensible heat and latent heat of the water in the inter-season storage tank 8 as a low-temperature heat source to heat and pass the air conditioner.
  • the pump 12 is delivered to the hot and cold end 13 of the air conditioner.
  • the second technical solution provided by the present invention is: a dynamic ice-making inter-season cold storage heat storage system, including a cooling tower 1, an ice source heat pump 2, a cooling heat storage pump 3, a cold storage pump 4, and an ice source.
  • the ice source heat pump 2 includes condensation
  • the evaporator 21 of the ice source heat pump 2 and the cooling heat storage pump 3 and the cooling tower 1 are sequentially connected to each other to form a circulation circuit for discharging heat to the outdoor environment during summer cooling, and the ice source heat pump 2
  • the condenser 21 is further connected to the cooling heat storage pump 3 and the inter-season energy storage tank 8 through the circulation pipeline to form a circulation loop for storing heat in the summer season to the inter-season energy storage tank 8; the ice source heat pump 2
  • the condenser 21 is further connected to the air-conditioning pump 12 and the air-conditioning hot and cold end 13 through a circulation pipeline to form a circulation loop for supplying heat to the cold and hot end 13 of the air conditioner in winter, and the evaporator in the ice source heat pump 2 passes through the circulation pipeline and the cold storage pump.
  • the inter-season energy storage tanks 8 are connected in sequence to form a cycle of cooling to the inter-season energy storage tank 8 during summer cooling.
  • the evaporator in the ice source heat pump 2 is also sequentially connected to the discharge pump 10 and the discharge heat exchanger 11 through the circulation pipeline, and constitutes a circulation loop for releasing the cold to the discharge heat exchanger 11 during the summer cooling, the ice source
  • the evaporator of the heat pump 2 is also sequentially connected with the ice source pump 5 and the ice making unit 7 through a circulation pipeline, and the pipeline is filled with antifreeze to form a low temperature heat source circulation loop during winter heating, and serves as a source of cold source for intersea storage.
  • the ice making unit 7 is sequentially connected with the ice slurry pump 6 and the inter-season energy storage tank 8 through the circulation pipeline to form a cross-season cold storage circulation loop, and the inter-season energy storage tank 8 passes through the circulation pipeline and the discharge pump 10, and can be exchanged.
  • the heat exchangers 11 are sequentially connected to form an energy release circulation loop for summer cooling and winter heat release, and the discharge heat exchanger 11 is sequentially connected with the air conditioning pump 12 and the air conditioning cold and hot end 13 through the circulation pipeline to form a cold and hot end of the air conditioner. 13 circulation circuit for summer cooling and winter heating.
  • the ice source heat pump 2 is provided with an evaporator one 22, two evaporators 23 and two evaporators, and the evaporator one 22 passes through the circulation pipeline and the cold storage pump 4
  • the inter-season energy storage tanks 8 are sequentially connected to form a circulation loop for storing cold in the summer season when cooling is provided to the inter-season storage tanks 8, and the evaporator 22 is also sequentially connected to the discharge pump 10 and the discharge heat exchanger 11 through the circulation pipelines.
  • the low temperature heat source circulation loop when hot and also serves as a source of cold source for intersea storage.
  • an ice source heat pump 2 is provided with an evaporator 22 and an evaporator, and an evaporator 22 passes through a circulation pipeline and a cold storage pump 4, and a cross-season energy storage tank. 8 sequentially connected to form a circulation loop for cooling to the inter-season storage tank 8 during summer cooling, and the evaporator 22 is also sequentially connected to the discharge pump 10 and the discharge heat exchanger 11 through the circulation pipeline to form a summer cooling supply.
  • the cooling circuit is discharged to the discharge heat exchanger 11, and the evaporator 22 is sequentially connected to the ice source pump 5 and the ice making unit 7 through the circulation pipeline, and the pipeline is filled with antifreeze to form a low temperature heat source during winter heating.
  • the circulation loop is also used as a source of cold storage for inter-season storage.
  • a cross-season thermal storage system 8 is provided in the inter-season thermal storage system.
  • two inter-season storage tanks 8 are provided in the inter-season cold storage thermal storage system, and two inter-season energy storages are provided.
  • the slots 8 are arranged in parallel. Of course, in other embodiments, more cross-season energy storage slots 8 can be connected in parallel.
  • the outer surface of the inter-season energy storage tank 8 may be provided with heat insulation measures such as heat insulating cotton sheets.
  • the specific implementation method of the dynamic ice-making cross-season cold storage heat storage system in use, the water or other brine contained from the inter-season storage tank 8 during the cold storage is liquid before entering the ice making unit 7, and the ice making unit 7 The water is subjected to refrigeration crystallization, and the brine discharged from the ice making unit 7 is a mixed state of ice slurry, water or other brine, and then enters the inter-season energy storage tank 8, which is called dynamic ice making because the ice is flowing.
  • the outlet of the air-conditioning pump 12 is connected with the heat-dissipating heat exchanger 11, and the inlet of the air-conditioning pump 12 is connected with the air-conditioning hot and cold end 13 and the condenser 21
  • the evaporator is provided with a cold source outlet and a heat source inlet
  • a heat source inlet and outlet is arranged at the top of the inter-season energy storage tank 8
  • a cold source inlet and outlet is provided at the bottom of the inter-season energy storage tank 8.
  • the discharge pump 10 extracts the high-temperature hot water stored in the summer from the top of the inter-season storage tank 8 to the heat-dissipating heat exchanger 11, and returns to the bottom of the inter-season storage tank 8 after the temperature is lowered, and the air-conditioning pump 12 will
  • the heat in the heat dissipating heat exchanger 11 is sent to the hot and cold end 13 of the air conditioner, and the indoor heating operation is performed, thereby realizing the function of storing the summer cooling and exhausting heat for the winter heating, and releasing the pump when the cooling is performed.
  • the low-temperature cold water stored in the summer is taken from the bottom of the inter-season energy storage tank 8 and sent to the heat-dissipating heat exchanger 11, and after cooling, returns to the top of the inter-season energy storage tank 8, and the air-conditioning pump 12 will discharge the heat exchanger 11
  • the cold air is sent to the hot and cold end 13 of the air conditioner, and the indoor cooling operation is performed, thereby realizing the energy storage cooling function.
  • the inter-season cold storage thermal storage system can directly use the inter-season energy storage tank 8 for direct heating operation in winter, including two cycles, one cycle is the discharge pump 10, the inter-season storage tank 8 and the heat release heat exchanger 11
  • the exothermic cycle of the composition when the heat is released, the discharge pump 10 extracts the high-temperature hot water stored in the summer from the top of the inter-season energy storage tank 8 to the heat-dissipating heat exchanger 11, and cools down
  • the other cycle is a winter inter-seasonal exothermic heating cycle composed of the air-conditioning pump 12, the heat-dissipating heat exchanger 11 and the air-conditioning hot and cold end 13.
  • the cooling operation of the inter-season cold storage thermal storage system includes two cycles, one cycle is a cooling cycle composed of the discharge pump 10, the inter-season storage tank 8, and the discharge heat exchanger 11, and when the cooling is performed, the discharge pump 10 is discharged.
  • the low-temperature cold water stored in the summer is taken from the bottom of the inter-season energy storage tank 8 and sent to the heat-dissipating heat exchanger 11, and after cooling, returns to the top of the inter-season energy storage tank 8, and the other cycle is the air-conditioning pump 12 and the heat-dissipating heat exchanger. 11 and the summer and winter season of the air conditioning hot and cold end 13 to cool the cooling cycle.
  • the inter-season cold storage and heat storage system realizes the daily cold storage and cooling operation by using the ice source heat pump 2 in the middle of summer, achieving the purpose of cutting the peaks and filling the valley and reducing the running cost.
  • the condenser 21, the cooling heat storage pump 3 and the cooling tower 1 are in turn When the system is cooled, the heat of the ice source heat pump 2 is discharged to the outside through the cooling heat storage pump 3 and the cooling tower 1, the evaporator, the cold storage pump 4, the inter-season storage tank 8, the discharge pump 10, and the discharge heat exchanger.
  • the seasonal storage tank 8 can also be combined with cooling, and the air-conditioning pump 12, the heat-dissipating heat exchanger 11, and the air-conditioning hot and cold end 13 are sequentially connected, and the cooling capacity of the ice source heat pump 2 and the cooling capacity of the inter-season energy storage tank 8 are discharged.
  • the heat exchanger 11 and the air conditioner pump 12 are supplied to the air-conditioning hot and cold end 13.
  • the inter-season cold storage heat storage system realizes cooling by the ice source heat pump 2 at the end of summer, and uses the waste heat generated by the ice source heat pump 2 to perform the inter-season heat storage of the inter-season energy storage tank 8, the condenser 21 and the cooling heat storage pump 3
  • the inter-season energy storage tank 8 is connected in sequence, and the waste heat generated when the ice source heat pump 2 is cooled is stored in a quarter by the cooling heat storage pump 3 and the inter-season energy storage tank 8.
  • the ice source heat pump 2 is a direct cooling condition at this time.
  • the cooling capacity of the ice source heat pump 2 is no longer performed, and the cold quantity of the ice source heat pump 2 is supplied to the air conditioning hot and cold end 13 through the cold storage pump 4, the discharge pump 10, and the discharge heat exchanger 11, the air conditioner pump 12, and the heat release heat exchanger 11
  • the air conditioning hot and cold end 13 is sequentially connected, and the cooling capacity of the ice source heat pump 2 and the cooling capacity of the intersea storage tank 8 are supplied to the air conditioning hot and cold end 13 through the discharge heat exchanger 11 and the air conditioning pump 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种跨季节蓄冷蓄热系统,包括冰源热泵(2)、制冰机组(7)、跨季蓄能槽(8)、放能换热器(11)、空调泵(12)以及冷却蓄热泵(3),冰源热泵(2)中的冷凝器(21)通过循环管路与冷却蓄热泵(3)、冷却塔(1)依次连通,冰源热泵(2)中的冷凝器(21)还通过循环管路与冷却蓄热泵(3)、跨季蓄能槽(8)依次连通,冰源热泵(2)中的冷凝器(21)还通过循环管路与空调泵(12)、空调冷热末端(13)依次连通,组成冬季给空调冷热末端(13)供热的循环回路。此系统实现了跨季节蓄冷蓄热,冬季将水制成冰,用于夏季制冷,同时可以将夏季制冷排热进行蓄存供冬季供热使用,大大降低项目的运行费用。

Description

跨季节蓄冷蓄热系统 技术领域
本发明涉及一种跨季节蓄冷蓄热系统,属于热泵供冷供热技术领域。
背景技术
目前,在国内、国外跨季节蓄能是热门课题。有着巨大的节能潜力。但是,从目前的研究成果及实际应用看,基本原理基本上是利用春、夏、秋季的太阳能进行蓄热,供冬季使用。没有原理上的突破。针对中国、美国、欧洲等中纬度地区,夏季炎热,冬季寒冷,既需要空调,又需要供暖。现有的跨季蓄热技术仅仅能满足冬季供热的需求,适合于高纬度,高寒地区。
随着人民生活水平的提高,国内供热需求的区域不断扩大,目前秦岭、淮河以南的建筑也大规模需要进行供热。北方地区,冬季污染、雾霾越来越严重,各个省、市均提出了煤改电、煤改气计划安排,但这些改造往往需要政府大量的配套补贴才能实施。
现有技术中无法对夏季制冷排热、冬季制热排冷进行跨季节储存,造成能源的损耗,且运行成本高,所以急需要跨季节蓄冷蓄热系统来解决上述出现的问题。
发明内容
针对现有技术存在的不足,本发明目的是提供一种跨季节蓄冷蓄热系统,以解决上述背景技术中提出的问题,本发明使用方便,便于操作,稳定性好,可靠性高。
为了实现上述目的,本发明提供的跨季节蓄冷蓄热系统,有两种实现方案,其中第一种是静态盘管制冰跨季节蓄冷蓄热系统,包括有冷却塔、冰源热泵、冷却蓄热泵、蓄冷泵、冰源泵、跨季蓄能槽、跨季蓄冰盘管、放能泵、放能换热器、空调泵和空调冷热末端,其中冰源热泵包括有冷凝器和蒸发器,跨季蓄冰盘管设置在跨季蓄能槽内,所述冰源热泵中的冷凝器通过循环管路与冷却蓄热泵、冷却塔依次连通,组成夏季供冷时向室外环境排热的循环回路,所述冰源热泵中的冷凝器还通过循环管路与冷却蓄热泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽跨季蓄热的循环回路,所述冰源热泵中的冷凝器还通过循环管路与空调泵、空调冷热末端依次连通,组成冬季给空调冷热末端供热的循环回路,所述冰源热泵中的蒸发器通过循环管路与蓄冷泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽蓄冷的循环回路,所述冰源热泵中的蒸发器还通过循环管路与放能泵、放能换热器依次连通,组成夏季供冷时向放能换热器放冷的循环回路;所述冰源热泵的蒸发器还通过循环管路与冰源泵、跨季蓄冰盘管依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回 路,同时作为跨季蓄冷的冷源来源,所述跨季蓄能槽通过循环管路与放能泵、放能换热器依次连通,组成夏季放冷、冬季放热的放能循环回路,所述放能换热器又与空调泵、空调冷热末端依次连通,组成给空调冷热末端夏季供冷、冬季供热的循环回路。
进一步地,所述冰源热泵中设有蒸发器一一个蒸发器,蒸发器一通过循环管路与蓄冷泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽蓄冷的循环回路,所述蒸发器一还通过循环管路与放能泵、放能换热器依次连通,组成夏季供冷时向放能换热器放冷的循环回路,所述蒸发器一还通过循环管路与冰源泵、跨季蓄冰盘管依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源;
或者所述冰源热泵中设有蒸发器一、蒸发器二两个蒸发器;所述蒸发器一通过循环管路与蓄冷泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽蓄冷的循环回路,所述蒸发器一还通过循环管路与放能泵、放能换热器依次连通,组成夏季供冷时向放能换热器放冷的循环回路,所述蒸发器二通过循环管路与冰源泵、跨季蓄冰盘管依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
进一步地,所述静态盘管制冰跨季节蓄冷蓄热系统中设有一个跨季蓄能槽,或者所述跨季节蓄冷蓄热系统中设有多个跨季蓄能槽,并且多个跨季蓄能槽之间并联设置。
进一步地,所述跨季蓄能槽的外表面设有隔热棉板等隔热保温措施。
进一步地,所述跨季蓄冰盘管蛇形排布在跨季蓄能槽内,或以其他形式排布在跨季蓄能槽内。
第二种是动态制冰跨季节蓄冷蓄热系统,包括有冷却塔、冰源热泵、冷却蓄热泵、蓄冷泵、冰源泵、冰浆泵、制冰机组、跨季蓄能槽、放能泵、放能换热器、空调泵和空调冷热末端,其中冰源热泵包括有冷凝器和蒸发器,所述冰源热泵中的冷凝器通过循环管路与冷却蓄热泵、冷却塔依次连通,组成夏季供冷时向室外环境排热的循环回路,所述冰源热泵中的冷凝器还通过循环管路与冷却蓄热泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽跨季蓄热的循环回路;所述冰源热泵中的冷凝器还通过循环管路与空调泵、空调冷热末端依次连通,组成冬季给空调冷热末端供热的循环回路,所述冰源热泵中的蒸发器通过循环管路与蓄冷泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽蓄冷的循环回路,所述冰源热泵中的蒸发器还通过循环管路与放能泵、放能换热器依次连通,组成夏季供冷时向放能换热器放冷的循环回路,所述冰源热泵的蒸发器还通过循环管路与冰源泵、制冰机组依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源,所述制冰机组通过循环管路与冰浆泵、跨季蓄能槽依次连通,组成跨季蓄冷循环回路, 所述跨季蓄能槽通过循环管路与放能泵、放能换热器依次连通,组成夏季放冷、冬季放热的放能循环回路,所述放能换热器又通过循环管路与空调泵、空调冷热末端依次连通,组成给空调冷热末端夏季供冷、冬季供热的循环回路。
进一步地,所述冰源热泵中设有蒸发器一一个蒸发器,所述蒸发器一通过循环管路与蓄冷泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽蓄冷的循环回路,所述蒸发器一还通过循环管路与放能泵、放能换热器依次连通,组成夏季供冷时向放能换热器放冷的循环回路,所述蒸发器一还通过循环管路与冰源泵、制冰机组依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源;
或者所述冰源热泵中设有蒸发器一、蒸发器二两个蒸发器,所述蒸发器一通过循环管路与蓄冷泵、跨季蓄能槽依次连通,组成夏季供冷时向跨季蓄能槽蓄冷的循环回路,所述蒸发器一还通过循环管路与放能泵、放能换热器依次连通,组成夏季供冷时向放能换热器放冷的循环回路,所述蒸发器二通过循环管路与冰源泵、制冰机组依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
进一步地,所述动态制冰跨季节蓄冷蓄热系统中设有一个跨季蓄能槽,或者所述跨季节蓄冷蓄热系统中设有多个跨季蓄能槽,并且多个跨季蓄能槽之间并联设置。
进一步地,所述空调泵出口与放能换热器连接,所述空调泵进口与空调冷热末端连接。
进一步地,所述跨季蓄能槽的外表面设有隔热棉板等隔热保温措施。
本发明的有益效果:本发明的跨季节蓄冷蓄热系统,因本发明添加了冷却塔、冰源热泵、制冰机组、跨季蓄能槽、放能泵、放能换热器、空调冷热末端、空调泵、冰浆泵、冰源泵、蓄冷泵以及冷却蓄热泵,该设计实现了跨季节蓄冷蓄热,冬季将水制成冰,用于夏季制冷,同时可以将夏季制冷排热进行蓄存供冬季供热使用,大大降低项目的运行费用,本发明结构合理,功能齐全,实用性强,稳定性好,可靠性高,其基本突破是冬季利用水相变为冰,而放出来的潜热,用于供暖,大大减小了蓄能槽的体积。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是静态盘管制冰跨季节蓄冷蓄热系统实施例一的示意图。
图2是静态盘管制冰跨季节蓄冷蓄热系统实施例一冬季跨季蓄能槽直接供热的示意图。
图3是静态盘管制冰跨季节蓄冷蓄热系统实施例一冬季冰源热泵供热并跨季蓄冷的示意图。
图4是静态盘管制冰跨季节蓄冷蓄热系统实施例一夏季跨季蓄能槽直接供冷的示意图。
图5是静态盘管制冰跨季节蓄冷蓄热系统实施例一夏季冰源热泵蓄冷供冷的示意图。
图6是静态盘管制冰跨季节蓄冷蓄热系统实施例一夏季热泵供冷并跨季蓄热的示意图。
图7是静态盘管制冰跨季节蓄冷蓄热系统实施例二的示意图。
图8是静态盘管制冰跨季节蓄冷蓄热系统实施例三的示意图。
图9是静态盘管制冰跨季节蓄冷蓄热系统实施例四的示意图。
图10是动态制冰跨季节蓄冷蓄热系统实施例一的示意图。
图11是动态制冰跨季节蓄冷蓄热系统实施例一冬季跨季蓄能槽直接供热的示意图。
图12是动态制冰跨季节蓄冷蓄热系统实施例一冬季热泵供热并跨季蓄冷的示意图。
图13是动态制冰跨季节蓄冷蓄热系统实施例一夏季跨季蓄能槽直接供冷的示意图。
图14是动态制冰跨季节蓄冷蓄热系统实施例一夏季冰源热泵蓄冷供冷的示意图。
图15是动态制冰跨季节蓄冷蓄热系统实施例一夏季热泵供冷并跨季蓄热的示意图。
图16是动态制冰跨季节蓄冷蓄热系统实施例二的示意图。
图17是动态制冰跨季节蓄冷蓄热系统实施例三的示意图。
图18是动态制冰跨季节蓄冷蓄热系统实施例四的示意图。
图中:1-冷却塔、2-冰源热泵、21-冷凝器、22-蒸发器一、23-蒸发器二、3-冷却蓄热泵、4-蓄冷泵、5-冰源泵、6-冰浆泵、7-制冰机组、8-跨季蓄能槽、9-跨季蓄冰盘管、10-放能泵、11-放能换热器、12-空调泵、13-空调冷热末端。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
请参阅图1-图9,本发明提供的第一种技术方案:静态盘管制冰跨季节蓄冷蓄热系统,包括有冷却塔1、冰源热泵2、冷却蓄热泵3、蓄冷泵4、冰源泵5、跨季蓄能槽8、跨季蓄冰盘管9、放能泵10、放能换热器11、空调泵12和空调冷热末端13,其中冰源热泵2包括有冷凝器21和蒸发器,跨季蓄冰盘管9设置在跨季蓄能槽8内,冰源热泵2中的冷凝 器21通过循环管路与冷却蓄热泵3、冷却塔1依次连通,组成夏季供冷时向室外环境排热的循环回路,冰源热泵2中的冷凝器21还通过循环管路与冷却蓄热泵3、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8跨季蓄热的循环回路,冰源热泵2中的冷凝器21还通过循环管路与空调泵12、空调冷热末端13依次连通,组成冬季给空调冷热末端13供热的循环回路,冰源热泵2中的蒸发器通过循环管路与蓄冷泵4、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8蓄冷的循环回路,冰源热泵2中的蒸发器还通过循环管路与放能泵10、放能换热器11依次连通,组成夏季供冷时向放能换热器11放冷的循环回路,冰源热泵2的蒸发器还通过循环管路与冰源泵5、跨季蓄冰盘管9依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源,跨季蓄能槽8通过循环管路与放能泵10、放能换热器11依次连通,组成夏季放冷、冬季放热的放能循环回路;放能换热器11又通过循环管路与空调泵12、空调冷热末端13依次连通,组成给空调冷热末端13夏季供冷、冬季供热的循环回路。
参见图1,静态盘管制冰跨季节蓄冷蓄热系统实施例一,冰源热泵2中设有蒸发器一22、蒸发器二23两个蒸发器,蒸发器一22通过循环管路与蓄冷泵4、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8蓄冷的循环回路,蒸发器一22还通过循环管路与放能泵10、放能换热器11依次连通,组成夏季供冷时向放能换热器11放冷的循环回路,蒸发器二23通过循环管路与冰源泵5、跨季蓄冰盘管9依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
参见图7,静态盘管制冰跨季节蓄冷蓄热系统实施例二,冰源热泵2中设有蒸发器一22一个蒸发器,蒸发器一22通过循环管路与蓄冷泵4、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8蓄冷的循环回路,蒸发器一22还通过循环管路与放能泵10、放能换热器11依次连通,组成夏季供冷时向放能换热器11放冷的循环回路,蒸发器一22还通过循环管路与冰源泵5、跨季蓄冰盘管9依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
参见图1和图7,静态盘管制冰跨季节蓄冷蓄热系统实施例一和实施例二中,跨季节蓄冷蓄热系统中设有一个跨季蓄能槽8。
参见图8和图9,静态盘管制冰跨季节蓄冷蓄热系统实施例三和实施例四中,跨季节蓄冷蓄热系统中设有两个跨季蓄能槽8,并且两个跨季蓄能槽8之间并联设置。当然,在其它实施例中,还可以并联更多个跨季蓄能槽8。
所述跨季蓄能槽8的外表面可设有隔热棉板等隔热保温措施。本实施例中,跨季蓄 冰盘管9蛇形排布在跨季蓄能槽8内,在其它实施例中,也可以以其他形式排布在跨季蓄能槽内。
静态盘管制冰跨季节蓄冷蓄热系统的具体实施方式:在使用时,冰源热泵2中的蒸发器二23与冰源泵5、跨季蓄冰盘管9依次连通,管道内充注防冻剂,组成冬季制热时的低温热源循环,同时作为跨季蓄冷的冷源来源,由于冰是静止的称之为静态制冰。冰源热泵2在制热的同时进行制冷,并且将此冷量通过跨季蓄冰盘管9以冰的形式蓄存于跨季蓄能槽8内。冰源热泵2的冷凝器21与空调泵12、空调冷热末端13依次连通,冰源热泵2利用跨季蓄能槽8内的水的显热、潜热作为低温热源进行制热,并通过空调泵12输送到空调冷热末端13。
请参阅图10-图18,本发明提供的第二种技术方案:动态制冰跨季节蓄冷蓄热系统,包括有冷却塔1、冰源热泵2、冷却蓄热泵3、蓄冷泵4、冰源泵5、冰浆泵6、制冰机组7、跨季蓄能槽8、放能泵10、放能换热器11、空调泵12和空调冷热末端13,其中冰源热泵2包括有冷凝器21和蒸发器,冰源热泵2中的冷凝器21通过循环管路与冷却蓄热泵3、冷却塔1依次连通,组成夏季供冷时向室外环境排热的循环回路,冰源热泵2中的冷凝器21还通过循环管路与冷却蓄热泵3、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8跨季蓄热的循环回路;冰源热泵2中的冷凝器21还通过循环管路与空调泵12、空调冷热末端13依次连通,组成冬季给空调冷热末端13供热的循环回路,冰源热泵2中的蒸发器通过循环管路与蓄冷泵4、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8蓄冷的循环回路,冰源热泵2中的蒸发器还通过循环管路与放能泵10、放能换热器11依次连通,组成夏季供冷时向放能换热器11放冷的循环回路,冰源热泵2的蒸发器还通过循环管路与冰源泵5、制冰机组7依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源,制冰机组7通过循环管路与冰浆泵6、跨季蓄能槽8依次连通,组成跨季蓄冷循环回路,跨季蓄能槽8通过循环管路与放能泵10、放能换热器11依次连通,组成夏季放冷、冬季放热的放能循环回路,放能换热器11又通过循环管路与空调泵12、空调冷热末端13依次连通,组成给空调冷热末端13夏季供冷、冬季供热的循环回路。
参见图10,动态制冰跨季节蓄冷蓄热系统实施例一,冰源热泵2中设有蒸发器一22、蒸发器二23两个蒸发器,蒸发器一22通过循环管路与蓄冷泵4、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8蓄冷的循环回路,蒸发器一22还通过循环管路与放能泵10、放能换热器11依次连通,组成夏季供冷时向放能换热器11放冷的循环回路,蒸发器二23通过循环管路与冰源泵5、制冰机组7依次连通,管道内充注防冻剂,组成冬季供 热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
参见图16,动态制冰跨季节蓄冷蓄热系统实施例二,冰源热泵2中设有蒸发器一22一个蒸发器,蒸发器一22通过循环管路与蓄冷泵4、跨季蓄能槽8依次连通,组成夏季供冷时向跨季蓄能槽8蓄冷的循环回路,蒸发器一22还通过循环管路与放能泵10、放能换热器11依次连通,组成夏季供冷时向放能换热器11放冷的循环回路,蒸发器一22还通过循环管路与冰源泵5、制冰机组7依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
参见图10和图16,动态制冰跨季节蓄冷蓄热系统实施例一和实施例二中,跨季节蓄冷蓄热系统中设有一个跨季蓄能槽8。
参见图17和图18,动态制冰跨季节蓄冷蓄热系统实施例三和实施例四中,跨季节蓄冷蓄热系统中设有两个跨季蓄能槽8,并且两个跨季蓄能槽8之间并联设置。当然,在其它实施例中,还可以并联更多个跨季蓄能槽8。
所述跨季蓄能槽8的外表面可设有隔热棉板等隔热保温措施。
动态制冰跨季节蓄冷蓄热系统的具体实施方式:在使用时,蓄冷时从跨季蓄能槽8出来的水或其他载冷剂在进入制冰机组7前是液态的,制冰机组7对水进行制冷结晶,制冰机组7排出的载冷剂是冰浆、水或其他载冷剂的混合态,然后进入跨季蓄能槽8,由于冰是流动的称之为动态制冰。
静态盘管制冰跨季节蓄冷蓄热系统和动态制冰跨季节蓄冷蓄热系统中,空调泵12出口与放能换热器11连通,空调泵12进口与空调冷热末端13连通,冷凝器21设有热源出口以及冷源进口,蒸发器设有冷源出口以及热源进口,跨季蓄能槽8顶部设有热源进出口,跨季蓄能槽8底部有冷源进出口。
放热时,放能泵10从跨季蓄能槽8顶部抽取夏季蓄存的高温热水输送到放能换热器11,降温后回到跨季蓄能槽8的底部,空调泵12将放能换热器11中的热量输送至空调冷热末端13,并对室内进行制热作业,从而实现了夏季制冷排热进行蓄存供冬季供热使用的功能,放冷时,放能泵10从跨季蓄能槽8底部抽取夏季蓄存的低温冷水输送到放能换热器11,降温后回到跨季蓄能槽8的顶部,空调泵12将放能换热器11中的冷气输送至空调冷热末端13,并对室内进行制冷作业,从而实现了蓄能制冷功能。
跨季节蓄冷蓄热系统可以实现在冬季直接利用跨季蓄能槽8进行直接供热运行,包括两个循环,一个循环是放能泵10、跨季蓄能槽8以及放能换热器11组成的放热循环,放热时,放能泵10从跨季蓄能槽8顶部抽取夏季蓄存的高温热水输送到放能换热器11,降温 后回到跨季蓄能槽8的底部,另一个循环是空调泵12、放能换热器11以及空调冷热末端13组成的冬季跨季放热供热循环。
跨季节蓄冷蓄热系统的供冷运行包括两个循环,一个循环是放能泵10、跨季蓄能槽8、放能换热器11组成的放冷循环,放冷时,放能泵10从跨季蓄能槽8底部抽取夏季蓄存的低温冷水输送到放能换热器11,降温后回到跨季蓄能槽8的顶部,另一个循环是空调泵12、放能换热器11以及空调冷热末端13组成的夏季跨季放冷供冷循环。
跨季节蓄冷蓄热系统实现在夏季中期直接利用冰源热泵2进行每天的蓄冷、放冷运行,实现削峰填谷、降低运行费用的目的,冷凝器21与冷却蓄热泵3、冷却塔1依次连通,将系统制冷时冰源热泵2的排热通过冷却蓄热泵3以及冷却塔1排放至室外,蒸发器、蓄冷泵4、跨季蓄能槽8、放能泵10以及放能换热器11组成蓄冷、放冷循环,夜间低谷电价时段,冰源热泵2制冷对跨季蓄能槽8进行水蓄冷,白天高峰电价时段,跨季蓄能槽8进行放冷,冰源热泵2以及跨季蓄能槽8也可以联合供冷,空调泵12、放能换热器11、空调冷热末端13依次连通,冰源热泵2的冷量、跨季蓄能槽8的冷量通过放能换热器11、空调泵12供应至空调冷热末端13。
跨季节蓄冷蓄热系统实现在夏季末期利用冰源热泵2进行制冷,同时利用冰源热泵2制冷时产生的废热对跨季蓄能槽8进行跨季蓄热,冷凝器21与冷却蓄热泵3、跨季蓄能槽8依次连通,通过冷却蓄热泵3、跨季蓄能槽8将冰源热泵2制冷时产生的废热进行跨季蓄存,冰源热泵2此时为直接供冷工况,不再进行蓄冷工况运行,冰源热泵2的冷量通过蓄冷泵4、放能泵10、放能换热器11供应给空调冷热末端13,空调泵12、放能换热器11、空调冷热末端13依次连通,冰源热泵2的冷量、跨季蓄能槽8的冷量通过放能换热器11、空调泵12供应至空调冷热末端13。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以 理解的其他实施方式。

Claims (9)

  1. 静态盘管制冰跨季节蓄冷蓄热系统,其特征在于:包括有冷却塔(1)、冰源热泵(2)、冷却蓄热泵(3)、蓄冷泵(4)、冰源泵(5)、跨季蓄能槽(8)、跨季蓄冰盘管(9)、放能泵(10)、放能换热器(11)、空调泵(12)和空调冷热末端(13),其中冰源热泵(2)包括有冷凝器(21)和蒸发器,跨季蓄冰盘管(9)设置在跨季蓄能槽(8)内;
    所述冰源热泵(2)中的冷凝器(21)通过循环管路与冷却蓄热泵(3)、冷却塔(1)依次连通,组成夏季供冷时向室外环境排热的循环回路,冰源热泵(2)中的冷凝器(21)还通过循环管路与冷却蓄热泵(3)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)跨季蓄热的循环回路,冰源热泵(2)中的冷凝器(21)还通过循环管路与空调泵(12)、空调冷热末端(13)依次连通,组成冬季给空调冷热末端(13)供热的循环回路;
    所述冰源热泵(2)中的蒸发器通过循环管路与蓄冷泵(4)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)蓄冷的循环回路,冰源热泵(2)中的蒸发器还通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季供冷时向放能换热器(11)放冷的循环回路,冰源热泵(2)的蒸发器还通过循环管路与冰源泵(5)、跨季蓄冰盘管(9)依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源;
    所述跨季蓄能槽(8)通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季放冷、冬季放热的放能循环回路,所述放能换热器(11)又通过循环管路与空调泵(12)、空调冷热末端(13)依次连通,组成给空调冷热末端(13)夏季供冷、冬季供热的循环回路。
  2. 根据权利要求1所述的静态盘管制冰跨季节蓄冷蓄热系统,其特征在于:所述冰源热泵(2)中设有蒸发器一(22)一个蒸发器,所述蒸发器一(22)通过循环管路与蓄冷泵(4)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)蓄冷的循环回路,所述蒸发器一(22)还通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季供冷时向放能换热器(11)放冷的循环回路;所述蒸发器一(22)还通过循环管路与冰源泵(5)、跨季蓄冰盘管(9)依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源;
    或者所述冰源热泵(2)中设有蒸发器一(22)、蒸发器二(23)两个蒸发器,所述蒸发器一(22)通过循环管路与蓄冷泵(4)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)蓄冷的循环回路,所述蒸发器一(22)还通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季供冷时向放能换热器(11)放冷的循环回路,所述蒸发器二 (23)通过循环管路与冰源泵(5)、跨季蓄冰盘管(9)依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
  3. 根据权利要求1所述的静态盘管制冰跨季节蓄冷蓄热系统,其特征在于:所述静态盘管制冰跨季节蓄冷蓄热系统中设有一个跨季蓄能槽(8),或者所述跨季节蓄冷蓄热系统中设有多个跨季蓄能槽(8),并且多个跨季蓄能槽(8)之间并联设置。
  4. 根据权利要求1所述的静态盘管制冰跨季节蓄冷蓄热系统,其特征在于:所述跨季蓄能槽(8)的外表面设有隔热棉板。
  5. 根据权利要求1所述的静态盘管制冰跨季节蓄冷蓄热系统,其特征在于:所述跨季蓄冰盘管(9)蛇形排布在跨季蓄能槽(8)内。
  6. 动态制冰跨季节蓄冷蓄热系统,其特征在于:包括有冷却塔(1)、冰源热泵(2)、冷却蓄热泵(3)、蓄冷泵(4)、冰源泵(5)、冰浆泵(6)、制冰机组(7)、跨季蓄能槽(8)、放能泵(10)、放能换热器(11)、空调泵(12)和空调冷热末端(13),其中冰源热泵(2)包括有冷凝器(21)和蒸发器;
    所述冰源热泵(2)中的冷凝器(21)通过循环管路与冷却蓄热泵(3)、冷却塔(1)依次连通,组成夏季供冷时向室外环境排热的循环回路,冰源热泵(2)中的冷凝器(21)还通过循环管路与冷却蓄热泵(3)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)跨季蓄热的循环回路,所述冰源热泵(2)中的冷凝器(21)还通过循环管路与空调泵(12)、空调冷热末端(13)依次连通,组成冬季给空调冷热末端(13)供热的循环回路;
    所述冰源热泵(2)中的蒸发器通过循环管路与蓄冷泵(4)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)蓄冷的循环回路,冰源热泵(2)中的蒸发器还通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季供冷时向放能换热器(11)放冷的循环回路,所述冰源热泵(2)的蒸发器还与冰源泵(5)、制冰机组(7)依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源;
    所述制冰机组(7)通过循环管路与冰浆泵(6)、跨季蓄能槽(8)依次连通,组成跨季蓄冷循环回路,所述跨季蓄能槽(8)通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季放冷、冬季放热的放能循环回路,所述放能换热器(11)又通过循环管路与空调泵(12)、空调冷热末端(13)依次连通,组成给空调冷热末端(13)夏季供冷、冬季供热的循环回路。
  7. 根据权利要求6所述的动态制冰跨季节蓄冷蓄热系统,其特征在于:所述冰源热泵(2)中设有蒸发器一(22)一个蒸发器,所述蒸发器一(22)通过循环管路与蓄冷泵(4)、跨季 蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)蓄冷的循环回路,所述蒸发器一(22)还通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季供冷时向放能换热器(11)放冷的循环回路,所述蒸发器一(22)还通过循环管路与冰源泵(5)、制冰机组(7)依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源;
    或者所述冰源热泵(2)中设有蒸发器一(22)、蒸发器二(23)两个蒸发器,所述蒸发器一(22)通过循环管路与蓄冷泵(4)、跨季蓄能槽(8)依次连通,组成夏季供冷时向跨季蓄能槽(8)蓄冷的循环回路,蒸发器一(22)还通过循环管路与放能泵(10)、放能换热器(11)依次连通,组成夏季供冷时向放能换热器(11)放冷的循环回路,所述蒸发器二(23)通过循环管路与冰源泵(5)、制冰机组(7)依次连通,管道内充注防冻剂,组成冬季供热时的低温热源循环回路,同时作为跨季蓄冷的冷源来源。
  8. 根据权利要求6所述的动态制冰跨季节蓄冷蓄热系统,其特征在于:所述动态制冰跨季节蓄冷蓄热系统中设有一个跨季蓄能槽(8),或者所述跨季节蓄冷蓄热系统中设有多个跨季蓄能槽(8),并且多个跨季蓄能槽(8)之间并联设置。
  9. 根据权利要求6所述的动态制冰跨季节蓄冷蓄热系统,其特征在于:所述跨季蓄能槽(8)的外表面设有隔热棉板。
PCT/CN2017/109919 2017-09-26 2017-11-08 跨季节蓄冷蓄热系统 WO2019061689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/199,170 US10767936B2 (en) 2017-09-26 2018-11-24 Trans-seasonal cold-storage heat-storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710883769.6A CN107525180B (zh) 2017-09-26 2017-09-26 跨季节蓄冷蓄热系统
CN201710883769.6 2017-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/199,170 Continuation US10767936B2 (en) 2017-09-26 2018-11-24 Trans-seasonal cold-storage heat-storage system

Publications (1)

Publication Number Publication Date
WO2019061689A1 true WO2019061689A1 (zh) 2019-04-04

Family

ID=60737502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109919 WO2019061689A1 (zh) 2017-09-26 2017-11-08 跨季节蓄冷蓄热系统

Country Status (2)

Country Link
CN (1) CN107525180B (zh)
WO (1) WO2019061689A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107401862B (zh) * 2017-09-16 2022-11-22 邵阳学院 蓄冷式冷凝的高效中央空调制冷系统
CN108518779B (zh) * 2018-05-17 2023-08-29 中机十院国际工程有限公司 流态冰热泵系统
CN108571842B (zh) * 2018-05-17 2024-04-16 中机十院国际工程有限公司 流态冰蒸发器及使用该流态冰蒸发器的空调系统
CN109159883B (zh) * 2018-07-27 2020-12-01 中国船舶重工集团公司第七一九研究所 一种海上核动力平台反应堆舱制冷系统
CN109113382A (zh) * 2018-08-30 2019-01-01 中节能城市节能研究院有限公司 一种节能环保的顺反季节冰场泳池系统
CN109548378B (zh) * 2018-12-14 2024-01-30 南京工程学院 一种数据中心冷却系统与热源塔热泵耦合系统
CN114396673A (zh) * 2022-01-20 2022-04-26 北京英沣特能源技术有限公司 一种跨季相变蓄能系统
CN115143550A (zh) * 2022-05-20 2022-10-04 华中科技大学 一种基于相变材料的冷热联供系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763460A (zh) * 2005-09-02 2006-04-26 聂民 蓄冰热泵节能机组
CN102494437A (zh) * 2011-11-25 2012-06-13 武汉凯迪控股投资有限公司 跨季蓄能供冷供热系统
CN103900175A (zh) * 2014-03-07 2014-07-02 浙江陆特能源科技有限公司 蓄能型热泵系统
JP5763013B2 (ja) * 2012-06-19 2015-08-12 株式会社日立製作所 空調給湯複合システム
CN205299850U (zh) * 2016-01-22 2016-06-08 中国建筑科学研究院 一种数据中心余热回收的供能系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207570049U (zh) * 2017-09-26 2018-07-03 中国建筑股份有限公司 跨季节蓄冷蓄热系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763460A (zh) * 2005-09-02 2006-04-26 聂民 蓄冰热泵节能机组
CN102494437A (zh) * 2011-11-25 2012-06-13 武汉凯迪控股投资有限公司 跨季蓄能供冷供热系统
JP5763013B2 (ja) * 2012-06-19 2015-08-12 株式会社日立製作所 空調給湯複合システム
CN103900175A (zh) * 2014-03-07 2014-07-02 浙江陆特能源科技有限公司 蓄能型热泵系统
CN205299850U (zh) * 2016-01-22 2016-06-08 中国建筑科学研究院 一种数据中心余热回收的供能系统

Also Published As

Publication number Publication date
CN107525180A (zh) 2017-12-29
CN107525180B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2019061689A1 (zh) 跨季节蓄冷蓄热系统
US10767936B2 (en) Trans-seasonal cold-storage heat-storage system
CN110195991B (zh) 跨季节混合储热冷热联供系统
CN106225043A (zh) 热泵系统和供暖系统
CN203549973U (zh) 热源再利用集成换热机组
CN103644612A (zh) 一种可利用蓄冷装置辅助制热的热源塔热泵空调系统
CN101000166A (zh) 小型多功能太阳能蓄能空调机
CN207570049U (zh) 跨季节蓄冷蓄热系统
CN105318466A (zh) 一种蓄热型空气源热泵冷热水系统及其运行方法
CN102261706A (zh) 一种基于热管的自然冷源多温级蓄冷系统
CN101769654B (zh) 压缩式热泵供热系统以及供热方法
CN102937315A (zh) 制冷蓄冷系统
CN203336874U (zh) 一种复合利用能量的冷、热水供应装置
CN203757845U (zh) 并联式超导太阳能热泵热水洗浴采暖系统
CN203518337U (zh) 地源热泵中央空调高效地埋管换热系统
CN202902525U (zh) 冰蓄冷水蓄热系统
CN111750418A (zh) 热管式光伏光热模块-热泵-相变材料耦合系统及方法
WO2014040371A1 (zh) 空气热能开发应用方法、换热式设备及制冷设备废热再生利用方法
CN204421418U (zh) 一种太阳能联合复合式循环蓄冷系统
CN213656920U (zh) 热管式光伏光热模块-热泵-相变地板耦合系统
CN212961846U (zh) 热管式光伏光热模块-热泵-相变材料耦合系统
CN104566726A (zh) 一种户用新型高效静态制冰间接融冰供冷空调系统
CN211316299U (zh) 城市热能综合利用系统
CN102927638B (zh) 冰蓄冷水蓄热系统
CN111750417A (zh) 热管式光伏光热模块-热泵-相变地板耦合系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926412

Country of ref document: EP

Kind code of ref document: A1