WO2019061059A1 - 滚动式三维打印装置及其操作方法 - Google Patents
滚动式三维打印装置及其操作方法 Download PDFInfo
- Publication number
- WO2019061059A1 WO2019061059A1 PCT/CN2017/103611 CN2017103611W WO2019061059A1 WO 2019061059 A1 WO2019061059 A1 WO 2019061059A1 CN 2017103611 W CN2017103611 W CN 2017103611W WO 2019061059 A1 WO2019061059 A1 WO 2019061059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- powder
- dimensional printing
- rolling
- laser
- Prior art date
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 73
- 238000010146 3D printing Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 120
- 230000007246 mechanism Effects 0.000 claims abstract description 69
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 40
- 239000000428 dust Substances 0.000 claims description 14
- 238000011084 recovery Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000004064 recycling Methods 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 3
- 238000011017 operating method Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 6
- 238000007639 printing Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 40
- 238000012545 processing Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 10
- 238000007664 blowing Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000110 selective laser sintering Methods 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/10—Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
Definitions
- the present invention relates to a three-dimensional printing apparatus and an operating method thereof, and more particularly to a rolling three-dimensional printing apparatus and an operating method thereof.
- 3D rapid prototyping also known as 3D printing
- 3D printing mainly includes Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), and Electron Beam Melting (Electron Beam) Melting, EBM) and other technologies.
- SLS uses low-power laser to sinter low-melting polymer powder
- SLM uses high-energy beam laser to directly melt metal powder
- DMLS uses laser to sinter binary metal
- EBM uses electron beam to melt metal powder.
- the conventional laminated manufacturing in the powder supply/dusting mechanism/airflow blowing and recovery/laser processing process may be limited only by the working range of the lens path using the prior art lens mirror (f-Theta lens).
- the stacking object is manufactured from a fixed plane, and the cylindrical or conical workpiece cannot be fabricated, and the blowing gas cannot effectively provide long-stroke dust recovery, and the working range is limited by the laminar flow distance and the wind speed of the gas field.
- the main object of the present invention is to provide a rolling type three-dimensional printing apparatus and an operation method thereof, which utilizes the design of a rolling mechanism to perform lamination manufacturing of a cylindrical or circular-shaped workpiece to make a cylindrical or conical workpiece.
- the thickness and specific size can be produced by adding specific materials to the specified area.
- the present invention provides a rolling type three-dimensional printing apparatus comprising a rolling mechanism, an optical module and a powder conveying module; the rolling mechanism is for holding a workpiece to receive a powder and driving The workpiece rotates along an axis; the optical module has at least one laser source disposed above the rolling mechanism for emitting a laser to the powder; the powder conveying module has at least one powder a channel, at least one powder channel port, two gas channels, and two gas channel ports, wherein the powder passage is disposed above the rolling mechanism, and the powder passage opening is formed at an outlet end of the powder passage
- the gas passage is disposed above the rolling mechanism, and the gas passage openings are respectively formed at one end of the gas passage and located on two sides of the laser.
- the rolling mechanism has two rotary axes fixed to the two sides of the workpiece.
- the rolling mechanism further has two lifting frames, and the rotating shafts are respectively disposed on the lifting frame, and the lifting frame is configured to drive the rotating shaft to move up and down.
- the powder conveying module further has at least one scraper disposed on an outer surface of one of the gas passages for contacting the workpiece.
- the rolling three-dimensional printing device further includes a powder recovery tank, the rolling mechanism is disposed in the powder recovery tank, and the workpiece is located in the powder recovery tank. A top notch.
- the rolling three-dimensional printing device further includes a material removing mechanism disposed on one side of the rolling mechanism, the material removing mechanism having a tool shaft for mounting a cutter The workpiece is cut.
- the material removing mechanism further has a horizontal moving seat and a lifting seat, the lifting seat is configured to drive the horizontal moving seat to move up and down, the horizontal moving seat It is used to drive the tool shaft to move in a plane.
- the present invention provides a method for operating a rolling type three-dimensional printing apparatus for processing a workpiece, the operation method comprising a powder supply step, an adjustment step, a powder coating step, a heating step, a recycling step, a material removing step, and a completion determining step;
- the powder supplying step is: performing a certain amount of powder transport on at least one powder passage through the at least one powder feeding tank, and passing the powder through a powder
- the body passage port is outputted to a surface of a workpiece;
- the adjusting step is to adjust the height of the two sides of the workpiece by using two lifting frames of a rolling mechanism;
- the powder spreading step is driven by the two rotary axes of the rolling mechanism Rotating the workpiece such that at least one scraper flattens the powder on the workpiece;
- the heating step is to move at least one laser source to cause a laser emitted by the laser source to melt the powder on the workpiece Forming on the surface of the workpiece;
- the recycling step is to form
- the positioning step is for moving the two lifting frames of the rolling mechanism to move the workpiece to a specific position.
- a horizontal moving seat and a lifting seat of the material removing mechanism are respectively used to drive the tool to move up and down and planarly, and at the same time
- a tool shaft of the material removal mechanism drives the tool to rotate or axially vibrate to remove material from the surface of the workpiece.
- the rolling type three-dimensional printing apparatus of the present invention can provide a laminated manufacturing method of a cylindrical or circular type workpiece, so that the cylindrical or conical type of workpiece can be produced by adding a specific material to a specified area. Thickness and specific dimensions.
- the scroll type three-dimensional printing device of the present invention can The operation of the specific plane for powdering/laying/laser melting (providing energy source)/blowing dust can be performed without being limited by the working range limitation of the lens mirror group and the workpiece must be planar.
- Figure 1 is a side elevational view of a preferred embodiment of a rolling three-dimensional printing apparatus in accordance with the present invention.
- FIGS. 2 and 3 are partial schematic views of a preferred embodiment of a scrolling three-dimensional printing apparatus in accordance with the present invention.
- Figure 4 is a side elevational view of another preferred embodiment of a scrolling three-dimensional printing apparatus in accordance with the present invention.
- FIG. 5 and 6 are partial schematic views of another preferred embodiment of a scrolling three-dimensional printing apparatus in accordance with the present invention.
- Figure 7 is a flow chart of a preferred embodiment of a method of operation of a scrolling three-dimensional printing device.
- a preferred embodiment of the scrolling three-dimensional printing apparatus of the present invention includes a rolling mechanism 2, an optical module 3, a powder conveying module 4, and A powder recovery tank 5, the detailed structure, assembly relationship and operation principle of each component will be described in detail below.
- the rolling mechanism 2 is used to hold a workpiece 101 and receive a powder.
- the body 102 drives the workpiece 101 to rotate laterally along a horizontal axis (e.g., parallel to the horizon), wherein the rolling mechanism 2 is disposed in the powder recovery tank 5, and the workpiece 101 is located A top notch 51 of the powder recovery tank 5 is described.
- the rolling mechanism 2 has two rotating shafts 21 and two lifting frames 22, and the rotating shafts 21 are respectively fixed on two sides of the workpiece 101, and the rotating shafts 21 are respectively disposed on the lifting frame. 22, the lifting frame 22 is used to drive the rotary shaft 21 to move up and down.
- the optical module 3 is disposed on a top cover 103 and above the rolling mechanism 2 for emitting a laser 104 to the powder 102, wherein the optical module 3 having at least one or more laser sources 31, at least one coaxial vision component 32, at least one galvanometer assembly 33, and a longitudinal fine adjustment pedestal 34, wherein the laser source 31 (eg, a fiber laser or a semiconductor laser) is used to The powder 102 received on the workpiece 101 emits the laser light 104, so that the powder 102 is heated, melted, and solidified to be formed on the surface of the workpiece 101; the coaxial vision component 32 is combined in the laser
- the source 31 is configured to cooperate with a sensing component, such as a thermal thermometer, a thermal imager, a charge coupled device (CCD), a photo diode, and optically sense the workpiece 101.
- a sensing component such as a thermal thermometer, a thermal imager, a charge coupled device (CCD), a photo diode, and optically sense the workpiece
- a coaxial vision imaging is obtained; the galvanometer assembly 33 is combined on the laser source 31 for laser scanning with the laser source 31; the vertical fine adjustment base 34 is disposed on the top cover 103. Above, for the combination of the laser source 31 The laser source 31 is vertically adjustable in the vertical direction.
- the powder conveying module 4 has at least one powder passage 41, at least one powder passage port 42, two gas channels 43, two gas passage ports 44, and at least one scraper 45.
- a powder passage 41 is disposed above the rolling mechanism 2, and the powder passage opening 42 is formed at an outlet end of the powder passage 41 for outputting the powder 102 to the workpiece 101 (
- the gas passages 43 are disposed above the rolling mechanism 2, and the gas passages 44 are respectively formed at one end of the gas passage 43 and on both sides of the laser 104, for the purpose of the arrow B1.
- One direction (as indicated by arrow A1) is orthogonal or forms an angle greater than 45 degrees.
- the two lifting frames 22 of the rolling mechanism are controlled to perform positioning and resetting, so that the workpiece 101 is moved to a specific position; and then through a powder feeding tank (not shown)
- the powder passage 41 carries out a certain amount of powder 102 conveyance, and the powder 102 is outputted through the powder passage opening 42 to a surface of the workpiece 101; and then the two lifting frames of the rolling mechanism 2 are utilized. Adjusting the heights of the two sides of the workpiece 101 to simultaneously move the two sides of the workpiece 101 up and down (see FIGS.
- the cylindrical or conical type of workpiece 101 held by the rolling mechanism 2 is rotatably movable by computer command or numerical control, and the supplied powder 102 can be supplied by the workpiece 101 via the scraper 45 Swing and lay; then move a laser source 31, wherein a laser light 104 emitted by the laser source 31 is melted on the surface of the workpiece 101 by melting the powder 102 on the workpiece 101; and two of the two sides of the laser 104 are reused.
- the gas passage opening 44 forms a gas flow field for absorbing the dust 105 generated by the laser 104 to melt the powder 102 on the workpiece 101; finally, the two lifting frames 22 of the rolling mechanism 2 are lowered by a height, and then judged Whether the workpiece 101 is completed, and if so, the workpiece 101 is taken out, otherwise the process returns to the powder supplying step S202 until the machining process of the cylindrical or conical workpiece 101 is completed.
- the rolling three-dimensional printing apparatus of the present invention can provide a laminated manufacturing method of a cylindrical or circular-shaped workpiece 101, and at the same time, one or more laser sources 31 are disposed in a specific plane,
- the surface of the workpiece 101 of the cylindrical or conical shape is provided with energy of a curved surface scanning area, wherein the material can be provided by the powder conveying module 4 in a powder coating manner to perform stacking of layers.
- the layer processing enables the workpiece 101 of a cylindrical or conical shape to be bonded to a specific area to produce a thickness and a specific size (as shown in FIGS. 2 and 3).
- the rolling type three-dimensional printing apparatus of the present invention can perform the operation of powdering/laying/laser melting (energy source supply)/blowing and dusting of the specific plane, it is not limited to the f-theta lens.
- the working range limitation and the workpiece 101 must be planar, and the lamination processing of the cylindrical or conical workpiece 101 can be achieved, so that the work efficiency is improved, and the irregular surface such as a cylinder or a cone is efficiently processed.
- the workpiece 101, the gas flow field is reduced, the speed limit of blowing the dust 105 by the long stroke cannot be performed, and the time for waiting for the processing sequence of the workpiece 101 in the process is shortened.
- the scrolling three-dimensional printing apparatus Further comprising a material removal mechanism 6 disposed on one side of the rolling mechanism 2, wherein the material removal mechanism 6 has a tool shaft 61, a horizontal moving seat 62 and a lifting seat 63, the tool shaft 61 is used to install a cutter 106 to cut the workpiece 101, and the lifting seat 63 is used to drive the horizontal moving seat 62 to move up and down (as indicated by an arrow C1), the level The moving seat 62 is used to drive the tool shaft 61 to move in a plane.
- the tool shaft 61 is movably mounted on the horizontal moving seat 62 to be longitudinally movable (as indicated by an arrow C2).
- the horizontal moving seat 62 is movably fixed to the lifting base 63 to be laterally movable (as indicated by an arrow C3).
- the rolling type three-dimensional printing apparatus of the present invention can control the moving position of the cutter 106 by the material removing mechanism 6, so that the cutter 106 removes the material of the surface of the workpiece 101, wherein the control is utilized. Movement of the tool shaft 61 in the cylindrical or conical type of the workpiece Contact processing is performed on 101.
- the rolling type three-dimensional printing apparatus of the present invention has the function of surface finishing of the workpiece 101, and the material removal of the surface of the workpiece 101 is performed by the cutter 106, thereby increasing the process output speed and ensuring the workpiece. Processing quality.
- a preferred embodiment of the method for operating a rolling three-dimensional printing apparatus is an operation using the dust recovery three-dimensional printing apparatus, wherein the operation method includes a positioning.
- Step S201 a powder supply step S202, an adjustment step S203, a powder deposition step S204, a heating step S205, a recovery step S206, a material removal step S207, and a completion determination step S208.
- the operation of each step will be described in detail below.
- a computer or numerical control is provided to provide an instruction to control the movement of the two lifting frames 22 of the rolling mechanism for positioning and resetting.
- the workpiece 101 is moved to a specific position.
- a certain amount of powder 102 is transported to at least one powder passage 41 through at least one powder feeding tank (not shown).
- the powder 102 is output to a surface of a workpiece 101 through a powder passage port 42; in the embodiment, the powder supply tank is controlled by a corresponding valve or a powder supply hopper.
- the powder 102 is supplied, and the type of the powder 102 to be supplied can also be set according to a computer command or numerical control to provide different powders 102 for transport.
- the heights of the two sides of the workpiece 101 are adjusted by the two lifting frames 22 of a rolling mechanism 2; in this embodiment,
- the lifting frame 22 is a two-group Z-axis lifting and lowering mechanism, and can move the two sides of the workpiece 101 up and down simultaneously or separately (see Figures 2 and 3).
- the workpiece 101 is laterally rotated along a horizontal axis by the two-rotation shaft 21 of the rolling mechanism 2.
- At least one scraper 45 is used to flatten the powder 102 on the workpiece 101; in this embodiment, the fit
- the up and down movement of the lifting frame 22 enables the scraping blade 45 to be powdered on one side of the cylindrical or conical type of the workpiece 101, and is controlled by a computer command or numerical value so that the cylinder held by the rolling mechanism 2 or
- the workpiece 101 of a conical type is rotatably movable, and the supplied powder 102 can be laid by the rotation of the workpiece 101 via the scraper 45.
- the two laser sources 31 are moved, and a laser light 104 emitted from the laser source 31 is melted on the workpiece 101.
- 102 is formed on the surface of the workpiece 101; in the embodiment, after the deposition of the powder 102 in the previous step, the powder 102 is programmed to be heated at a specified position via computer command or numerical control, and simultaneously Control of one to a plurality of lasers 104 is performed, and the first layer of the workpiece 101 is fused by melting the powder 102 to be solidified on the surface of the workpiece 101.
- the gas passage opening 44 forms a gas flow field for absorbing the dust 105 generated by the laser 104 to melt the powder 102 on the workpiece 101; in the embodiment, the gas flow field is available in the gas passage
- the gas passages 42 corresponding to each other are blown and inhaled, wherein the gas of the gas flow field may be nitrogen (N 2 ) or an inert gas such as argon (Ar) and helium (He).
- the flow rate of the two gas passage ports 42 and the laminar flow control in the suction interval are performed at a certain flow rate, so that the dust 105 or other substances generated when the laser light 104 is irradiated onto the powder 102, for example, superheated gas,
- the slurry material and the material that is not melted but lifted up on the workpiece 101 are subjected to getter recovery through one of the gas passage ports 42 and are filtered in an air filter unit.
- a material removing mechanism 6 is used to control the moving position of a cutter 106 to cause the cutter 106 to remove the workpiece 101. Further, the material of the surface is further moved by a horizontal moving seat 62 and a lifting seat 63 of the material removing mechanism 6 to move up and down and planarly move the tool 106, respectively.
- the tool shaft 61 of the material removal mechanism 6 drives the cutter 106 Rotating or axially vibrating to remove material from the surface of the workpiece 101.
- the three axial displacements such as the X-axis, the Y-axis, and the Z-axis, provided by the horizontal moving seat 62 and the lifting base 63 are used to perform the movement of the tool shaft 61, wherein the moving direction can be in accordance with a computer or
- the numerical control is performed in a motion control, and high-frequency vibration of the rotary or axial vibration (15 to 45 kHz) which the cutter shaft 61 has is utilized to achieve material removal of the surface of the workpiece 101.
- the two lifting frames 22 of the rolling mechanism 2 are lowered by a height, and then it is determined whether the workpiece 101 is completed, and if so, the removal unit is removed.
- the workpiece 101 if otherwise returned to the powdering step S202, until the machining process of the cylindrical or conical workpiece 101 is completed, wherein the workpiece 101 may be one or more parts.
- the method of operation of the rolling three-dimensional printing apparatus of the present invention can provide a laminated manufacturing method of a workpiece 101 capable of performing a cylindrical or circular type, and at the same time, one or more laser sources 31 are disposed on a specific plane.
- the surface of the workpiece 101 of the cylindrical or conical shape is subjected to energy supply of a curved surface scanning area, wherein the material can be provided by the powder conveying module 4 in a powder coating manner to perform layering.
- the stacking process of the stack allows the workpiece 101 of a cylindrical or conical shape to be bonded to a specified area to produce a thickness and a specific size (as shown in Figures 2 and 3).
- the operation method of the rolling type three-dimensional printing apparatus of the present invention can perform the action of the specific plane powdering/laying/laser melting (energy source supply)/blowing dust, it is not limited to the lens group (f-).
- the working range limitation of the theta lens and the workpiece 101 must be planar, and the lamination processing of the cylindrical or conical workpiece 101 can be achieved, the working efficiency is improved, and the irregular surface such as a cylinder or a cone is efficiently processed.
- the workpiece 101 reduces the speed limit of the gas flow field for blowing the dust 105 for a long stroke, and shortens the time for waiting for the processing sequence of the workpiece 101 in the process.
- the powder conveying module 4 it is possible to reduce the speed limit in which the gas flow field cannot be blown by the long stroke, and it is possible to avoid parallel blowing. Therefore, it is possible to increase the process output speed, shorten the waiting time for the workpiece processing sequence in the process, and improve the process stability. Can ensure the quality of workpiece processing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Powder Metallurgy (AREA)
Abstract
公开了一种滚动式三维打印装置及其操作方法。该打印装置包含滚动机构(2),用以夹持工件(101)而承接粉体(102),并带动工件沿着其轴线旋转;光学模块(3)具有设置在滚动机构上方的至少一个激光源(31),用以对粉体发射激光;以及粉体输送模块(4),具有设置在滚动机构上方的至少一个粉体通道(61),以及形成在粉体通道一个出口端的至少一个粉体通道口(42),用以将粉体输出至工件上。利用该滚动机构的设计,圆柱或圆锥型的工件可被迭层制造。
Description
本发明是有关于一种三维打印装置及其操作方法,特别是关于一种滚动式三维打印装置及其操作方法。
3D快速成型(也称为3D打印)的主要技术内容是把数据数据及原料放进3D打印机中,透过铺粉装置将产品一层一层的打印出来,而形成最终成品。3D打印主要包括选择性激光烧结(Selective Laser Sintering,SLS)、选择性激光熔化(Selective Laser Melting,SLM)、直接金属粉料激光烧结(Direct Metal Laser Sintering,DMLS),及电子束熔化(Electron Beam Melting,EBM)等技术。SLS是利用低功率激光烧结低熔点高分子粉料;SLM是利用高能束激光直接熔化金属粉料;DMLS是采用激光对二元金属进行烧结;而EBM采用电子束熔化金属粉料。
然而,传统积层制造在粉末供给/铺粉机构/气流吹送及回收/激光加工制程等会因为受限于激光路使用现有技术的透镜镜组(f-Theta lens)的工作范围,仅能由一固定平面制造堆栈物体,而无法进行圆柱或圆锥型的工件的制作,而且吹吸气体无法有效提供长行程的粉尘回收,工作范围受限于气场的层流距离及风速。
因此,有必要提供一种改良的三维打印装置及其操作方法,以解决现有技术所存在的问题。
发明内容
有鉴于此,本发明的主要目的在于提供一种滚动式三维打印装置及其操作方法,利用滚动机构的设计,来进行圆柱或圆椎型的工件的迭层制造,使圆柱或圆锥型的工件可依指定区域加上特定材料,而产生厚度及特定尺寸。
为达上述的目的,本发明提供一种滚动式三维打印装置,包含一滚动机构、一光学模块及一粉体输送模块;所述滚动机构用以夹持一工件而承接一粉体,并带动所述工件沿着一轴线旋转;所述光学模块具有至少一激光源,设置在所述滚动机构的上方,用以对所述粉体发射一激光;所述粉体输送模块具有至少一粉体通道、至少一粉体信道口、二气体信道及二气体信道口,所述粉体通道设置在所述滚动机构的上方,所述粉体通道口形成在所述粉体通道的一出口端,用以将所述粉体输出至所述工件上,所述气体通道设置在所述滚动机构的上方,所述气体通道口分别形成在所述气体通道的一端且位于所述激光的二侧,用以分别输出气体至所述工件的上方以及吸收所述激光熔融所述工件上的粉体所产生的一粉尘,其中所述气体通道口之间形成一气体流场。
在本发明的一实施例中,所述滚动机构具有二回转轴,分别固定在所述工件的二侧。
在本发明的一实施例中,所述滚动机构另具有二升降架,所述回转轴分别设置在所述升降架上,所述升降架用以带动所述回转轴上下移动。
在本发明的一实施例中,所述粉体输送模块另具有至少一刮刀,设置在其中一气体通道的一外表面,用以接触所述工件。
在本发明的一实施例中,所述滚动式三维打印装置另包含一粉体回收槽,所述滚动机构设置在所述粉体回收槽内,且所述工件位于所述粉体回收槽的一顶部缺口。
在本发明的一实施例中,所述滚动式三维打印装置另包含一材料移除机构,设置在所述滚动机构的一侧,所述材料移除机构具有一刀具轴,用以安装一刀具而对所述工件进行切削。
在本发明的一实施例中,所述材料移除机构另具有一水平移动座及一升降座,所述升降座用以带动所述水平移动座进行上下移动,所述水平移动座
用以带动所述刀具轴在一平面移动。
为达上述的目的,本发明提供一种滚动式三维打印装置的操作方法,用以加工一工件,所述操作方法包含一供粉步骤、一调整步骤、一铺粉步骤、一热化步骤、一回收步骤、一材料移除步骤及一完成判断步骤;所述供粉步骤是透过至少一供粉槽对至少一粉体通道进行一定量的粉体输送,使所述粉体通过一粉体通道口输出至一工件的一表面上;所述调整步骤是利用一滚动机构的二升降架调整所述工件二侧的高度;所述铺粉步骤是利用所述滚动机构的二回转轴驱动所述工件旋转,使至少一刮刀铺平所述工件上的粉体;所述热化步骤是移动至少一激光源,使所述激光源所发射的一激光熔融所述工件上的粉体而成型在所述工件的表面上;所述回收步骤是当所述激光熔融所述工件上的粉体时,利用位于所述激光的二侧的二气体通道口形成一气体流场,以吸收所述激光熔融所述工件上的粉体所产生的一粉尘;所述材料移除步骤是利用一材料移除机构控制一刀具的移动位置,使所述刀具移除所述工件的表面的材料;所述完成判断步骤是将所述滚动机构的二升降架下降一高度,再判断是否完成所述工件,若是则取出所述工件,若否则回复至所述供粉步骤。
在本发明的一实施例中,在所述供粉步骤之前另包含一定位步骤,所述定位步骤用以移动所述滚动机构的二升降架,使所述工件移动至一特定位置。
在本发明的一实施例中,在所述材料移除步骤中,是分别利用所述材料移除机构的一水平移动座及一升降座带动所述刀具进行上下移动及平面移动,同时利用所述材料移除机构的一刀具轴驱动所述刀具回转或轴向振动,以移除所述工件的表面的材料。
如上所述,本发明滚动式三维打印装置能够提供一种可进行圆柱或圆椎型的工件的迭层制造方式,使圆柱或圆锥型的所述工件可依指定区域加上特定材料,而产生厚度及特定尺寸。另外,由于本发明滚动式三维打印装置能
够进行所述特定平面的给粉/铺粉/激光熔融(能量源提供)/吹吸粉尘的动作,可不受限于透镜镜组的工作范围限制及所述工件必须为平面的限制,而能够达成圆柱或圆锥型的工件的迭层加工,使得工作效率提升,并有效加工如圆柱或圆锥形等不规则表面的所述工件,降低气体流场无法进行长行程吹吸所述粉尘的速度限制,以及缩短制程中等待所述工件加工顺序的时间。
图1是根据本发明滚动式三维打印装置的一较佳实施例的一侧视图。
图2及3是根据本发明滚动式三维打印装置的一较佳实施例的一局部示意图。
图4是根据本发明滚动式三维打印装置的另一较佳实施例的一侧视图。
图5及6是根据本发明滚动式三维打印装置的另一较佳实施例的一局部示意图。
图7是根据滚动式三维打印装置的操作方法的一较佳实施例的一流程图。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1至3所示,为本发明滚动式三维打印装置的一较佳实施例,其中所述滚动式三维打印装置包含一滚动机构2、一光学模块3、一粉体输送模块4及一粉体回收槽5,本发明将于下文详细说明各组件的细部构造、组装关系及其运作原理。
请参照图1至3所示,所述滚动机构2用以夹持一工件101而承接一粉
体102,并且带动所述工件101沿着一水平的轴线(例如平行于地平线)进行横向的旋转,其中所述滚动机构2设置在所述粉体回收槽5内,而且所述工件101位于所述粉体回收槽5的一顶部缺口51。在本实施例中,所述滚动机构2具有二回转轴21及二升降架22,所述回转轴21分别固定在所述工件101的二侧,所述回转轴21分别设置在所述升降架22上,所述升降架22用以带动所述回转轴21上下移动。
请参照图1至3所示,所述光学模块3设置在一顶盖103上,且位于所述滚动机构2的上方,用以对所述粉体102发射一激光104,其中所述光学模块3具有至少一个或以上的激光源31、至少一同轴视觉组件32、至少一振镜组件33及一纵向微调基座34,其中所述激光源31(例如光纤激光或半导体激光)用以对所述工件101上所承接的粉体102发射所述激光104,使所述粉体102受热、熔融、固化而成型在所述工件101的表面;所述同轴视觉组件32组合在所述激光源31上,用以与感测组件相配合,例如:热温计、热像仪、感光耦合组件(Charge Coupled Device;CCD)、光电二极管(photo diode),而对所述工件101进行光学感测而获得一同轴视觉成像;所述振镜组件33组合在所述激光源31上,用以配合所述激光源31进行激光扫描;所述纵向微调基座34设置在所述顶盖103上,用以供所述激光源31组合而能够对所述激光源31沿着纵向进行上下微幅调整。
请参照图1至3所示,所述粉体输送模块4具有至少一粉体通道41、至少一粉体通道口42、二气体信道43、二气体信道口44及至少一刮刀45,所述粉体通道41设置在所述滚动机构2的上方,所述粉体通道口42形成在所述粉体通道41的一出口端,用以将所述粉体102输出至所述工件101上(如箭头B1所示),所述气体通道43设置在所述滚动机构2的上方,所述气体通道口44分别形成在所述气体通道43的一端且位于所述激光104的二侧,用以分别输出气体至所述工件101的上方,以及吸收所述激光104熔融所述工
件101上的粉体102所产生的一粉尘105,其中所述气体通道口42之间形成一气体流场(如箭头A1所示),所述刮刀45设置在其中一气体通道43的一外表面,用以接触所述工件101。在本实施例中,所述粉体通道口42位于所述粉体回收槽5的顶部缺口51的一侧,所述气体通道口44位于所述顶部缺口51的上方,所述光学模块3设置有二个激光源31(如图2及3所示),所述激光源31是沿着一设置方向排列,而且所述激光源31的激光104与所述气体通道43所产生的气体流场(如箭头A1所示)的一方向呈正交或形成大于45度的一角度。
依据上述的结构,首先控制移动所述滚动机构的所述二升降架22而进行定位与复归,使所述工件101移动至一特定位置;接着透过一供粉槽(未绘示)对所述粉体通道41进行一定量的粉体102输送,使所述粉体102通过所述粉体通道口42输出至所述工件101的一表面上;接着利用所述滚动机构2的二升降架22调整所述工件101二侧的高度而能够同时或分别带动所述工件101的二侧上下移动(见图2及3);利用所述滚动机构2的二回转轴21驱动所述工件101沿着一水平的轴线进行横向的旋转,使所述刮刀45铺平所述工件101上的粉体102,而能够使所述刮刀45铺粉于圆柱或圆锥型的所述工件101的一侧面,利用计算机指令或数值控制,使得被所述滚动机构2夹持的圆柱或圆锥型的所述工件101可进行回转运动,并且经由所述刮刀45可将供给的粉体102因所述工件101的回转而进行铺置;接着移动二激光源31,使所述激光源31所发射的一激光104熔融所述工件101上的粉体102而成型在所述工件101的表面上;再利用位于所述激光104的二侧的二气体通道口44形成一气体流场,以吸收所述激光104熔融所述工件101上的粉体102所产生的粉尘105;最后将所述滚动机构2的二升降架22下降一高度,再判断是否完成所述工件101,若是则取出所述工件101,若否则回复至所述供粉步骤S202,直到完成圆柱或圆锥型的所述工件101的加工程序。
利用上述的设计,本发明滚动式三维打印装置能够提供一种可进行圆柱或圆椎型的工件101的迭层制造方式,并同时设置有一个或多个激光源31在一特定平面内,对圆柱或圆锥型的所述工件101的表面进行圆弧曲面扫描区域的能量提供,其中的材料可由所述粉体输送模块4以铺粉方式提供所述粉体102,以进行层层堆栈的迭层加工,使圆柱或圆锥型的所述工件101可依指定区域加上特定材料,而产生厚度及特定尺寸(如图2及3所示)。另外,由于本发明滚动式三维打印装置能够进行所述特定平面的给粉/铺粉/激光熔融(能量源提供)/吹吸粉尘的动作,可不受限于透镜镜组(f-theta lens)的工作范围限制及所述工件101必须为平面的限制,而能够达成圆柱或圆锥型的工件101的迭层加工,使得工作效率提升,并有效加工如圆柱或圆锥形等不规则表面的所述工件101,降低气体流场无法进行长行程吹吸所述粉尘105的速度限制,以及缩短制程中等待所述工件101加工顺序的时间。
请参照图4至6所示,本发明滚动式三维打印装置的另一较佳实施例,并大致沿用相同组件名称及图号,但两者间差异的特征在于:所述滚动式三维打印装置另包含一材料移除机构6,所述材料移除机构6设置在所述滚动机构2的一侧,其中所述材料移除机构6具有一刀具轴61、一水平移动座62及一升降座63,所述刀具轴61用以安装一刀具106而对所述工件101进行切削,所述升降座63用以带动所述水平移动座62进行上下移动(如箭头C1所示),所述水平移动座62用以带动所述刀具轴61在一平面移动,在本实施例中,所述刀具轴61可移动地安装在所述水平移动座62上而能够纵向移动(如箭头C2所示),所述水平移动座62可移动地固定在所述升降座63上而能够横向移动(如箭头C3所示)。
依据上述的结构,本发明滚动式三维打印装置可利用所述材料移除机构6控制所述刀具106的移动位置,使所述刀具106移除所述工件101的表面的材料,其中是利用控制所述刀具轴61的移动,于圆柱或圆锥型的所述工件
101上进行接触式加工。
利用上述的设计,本发明滚动式三维打印装置具有所述工件101表面修整的功能,利用所述刀具106进行所述工件101的表面的材料移除,而能够增加制程产出速度,并确保工件加工质量。
请参照图7并配合图4至6所示,为本发明滚动式三维打印装置的操作方法的一较佳实施例,是利用上述粉尘回收的三维打印装置进行操作,所述操作方法包含一定位步骤S201、一供粉步骤S202、一调整步骤S203、一铺粉步骤S204、一热化步骤S205、一回收步骤S206、一材料移除步骤S207及一完成判断步骤S208。本发明将于下文详细说明各步骤的运作流程。
续参照图7并配合图4至6所示,在所述定位步骤S201中,经由计算机或数值控制的方式,提供指令控制移动所述滚动机构的二升降架22而进行定位与复归,使一工件101移动至一特定位置。
续参照图7并配合图4至6所示,在所述供粉步骤S202中,是透过至少一供粉槽(未绘示)对至少一粉体通道41进行一定量的粉体102输送,使所述粉体102通过一粉体通道口42输出至一工件101的一表面上;在本实施例中,所述供粉槽是经由控制相对应的阀门或供粉料斗进行一定量的粉体102供给,而供给的粉体102类别也能够依计算机指令或数值控制进行设定,以提供不同的粉体102进行输送。
续参照图7并配合图4至6所示,在所述调整步骤S203中,是利用一滚动机构2的二升降架22调整所述工件101二侧的高度;在本实施例中,所述升降架22为双组Z轴升降移动机构,能够同时或分别带动所述工件101的二侧上下移动(见第2及3图)。
续参照图7并配合图4至6所示,在所述铺粉步骤S204中,是利用所述滚动机构2的二回转轴21驱动所述工件101沿着一水平的轴线进行横向的旋转,使至少一刮刀45铺平所述工件101上的粉体102;在本实施例中,配合
所述升降架22的上下移动,能够使所述刮刀45铺粉于圆柱或圆锥型的所述工件101的一侧面,利用计算机指令或数值控制,使得被所述滚动机构2夹持的圆柱或圆锥型的所述工件101可进行回转运动,并且经由所述刮刀45可将供给的粉体102因所述工件101的回转而进行铺置。
续参照图7并配合图4至6所示,在所述热化步骤S205中,是移动二激光源31,使所述激光源31所发射的一激光104熔融所述工件101上的粉体102而成型在所述工件101的表面上;在本实施例中,在上一步骤的粉体102的铺置后,经由计算机指令或数值控制进行指定位置的粉体102程序化加热,并同时进行一个至多个激光104的控制,而在所述工件101的首层会以熔融所述粉体102进行融合而固化于所述工件101的表面上。
续参照图7并配合图4至6所示,在所述回收步骤S206中,是当所述激光104熔融所述工件101上的粉体102时,利用位于所述激光104的二侧的二气体通道口44形成一气体流场,以吸收所述激光104熔融所述工件101上的粉体102所产生的一粉尘105;在本实施例中,所述气体流场可于所述气体通道43彼此相对应的气体通道口42进行吹气及吸气,其中所述气体流场的气体可为氮气(N2)或惰性气体,例如:氩气(Ar)及氦气(He),以一定的流速进行所述两气体通道口42的吹气及吸气间距内的层流控制,得以将所述激光104照射于粉体102时所产生的粉尘105或其他物质,例如:过热气体、电浆态物质及未熔化但扬升于所述工件101上的物质,经由其中一气体通道口42进行吸气回收,并于一空气过滤装置内过滤上述物质。
续参照图7并配合图4至6所示,在所述材料移除步骤S207中,是利用一材料移除机构6控制一刀具106的移动位置,使所述刀具106移除所述工件101的表面的材料,进一步来说,分别是利用所述材料移除机构6的一水平移动座62及一升降座63带动所述刀具轴61上的刀具106进行上下移动及平面移动,同时利用所述材料移除机构6的所述刀具轴61驱动所述刀具106
回转或轴向振动,以移除所述工件101的表面的材料。在本实施例中,经由所述水平移动座62及升降座63提供的X轴、Y轴及Z轴等三个轴向的位移,以进行刀具轴61的移动,其中移动方向可依照计算机或数值控制的方式进行运动控制,并且利用所述刀具轴61具有的回转或轴向振动(15~45kHz)的高频振动,以达到所述工件101的表面的材料移除。
续参照图7并配合图4至6所示,在所述完成判断步骤S208,是将所述滚动机构2的二升降架22下降一高度,再判断是否完成所述工件101,若是则取出所述工件101,若否则回复至所述供粉步骤S202,直到完成圆柱或圆锥型的所述工件101的加工程序,其中所述工件101可以是一个或多个零件。
利用上述的设计,本发明滚动式三维打印装置的操作方法能够提供一种可进行圆柱或圆椎型的工件101的迭层制造方式,并同时设置有一个或多个激光源31在一特定平面内,对圆柱或圆锥型的所述工件101的表面进行圆弧曲面扫描区域的能量提供,其中的材料可由所述粉体输送模块4以铺粉方式提供所述粉体102,以进行层层堆栈的迭层加工,使圆柱或圆锥型的的所述工件101可依指定区域加上特定材料,而产生厚度及特定尺寸(如图2及3所示)。
另外,由于本发明滚动式三维打印装置的操作方法能够进行所述特定平面的给粉/铺粉/激光熔融(能量源提供)/吹吸粉尘的动作,可不受限于透镜镜组(f-theta lens)的工作范围限制及所述工件101必须为平面的限制,而能够达成圆柱或圆锥型的工件101的迭层加工,使得工作效率提升,并有效加工如圆柱或圆锥形等不规则表面的所述工件101,降低气体流场无法进行长行程吹吸所述粉尘105的速度限制,以及缩短制程中等待所述工件101加工顺序的时间。另外,利用所述粉体输送模块4的设计,能够降低气体流场无法进行长行程吹吸粉尘的速度限制,并且能够避免平行吹除即可。因而能够增加制程产出速度、缩短制程中等待工件加工顺序的时间及提高制程稳定性,而
能够确保工件加工质量。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反的,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
Claims (10)
- 一种滚动式三维打印装置,其特征在于:所述滚动式三维打印装置包含:一滚动机构,用以夹持一工件而承接一粉体,并带动所述工件沿着一轴线旋转;一光学模块,具有至少一激光源,设置在所述滚动机构的上方,用以对所述粉体发射一激光;及一粉体输送模块,具有:至少一粉体通道,设置在所述滚动机构的上方;至少一粉体通道口,形成在所述粉体通道的一出口端,用以将所述粉体输出至所述工件上;二气体通道,设置在所述滚动机构的上方;及二气体通道口,分别形成在所述气体通道的一端且位于所述激光的二侧,用以分别输出气体至所述工件的上方以及吸收所述激光熔融所述工件上的粉体所产生的一粉尘,其中所述气体通道口之间形成一气体流场。
- 如权利要求1所述的滚动式三维打印装置,其特征在于:所述滚动机构具有二回转轴,分别固定在所述工件的二侧。
- 如权利要求2所述的滚动式三维打印装置,其特征在于:所述滚动机构另具有二升降架,所述回转轴分别设置在所述升降架上,所述升降架用以带动所述回转轴上下移动。
- 如权利要求1所述的滚动式三维打印装置,其特征在于:所述粉体输送模块另具有至少一刮刀,设置在其中一气体通道的一外表面,用以接触所述工件。
- 如权利要求1所述的滚动式三维打印装置,其特征在于:所述滚动式三维打印装置另包含一粉体回收槽,所述滚动机构设置在所述粉体回收槽内, 且所述工件位于所述粉体回收槽的一顶部缺口。
- 如权利要求1所述的滚动式三维打印装置,其特征在于:所述滚动式三维打印装置另包含一材料移除机构,设置在所述滚动机构的一侧,所述材料移除机构具有一刀具轴,用以安装一刀具而对所述工件进行切削。
- 如权利要求6所述的滚动式三维打印装置,其特征在于:所述材料移除机构另具有一水平移动座及一升降座,所述升降座用以带动所述水平移动座进行上下移动,所述水平移动座用以带动所述刀具轴在一平面移动。
- 一种滚动式三维打印装置的操作方法,其特征在于:所述滚动式三维打印装置的操作方法包含步骤:一供粉步骤,透过至少一供粉槽对至少一粉体通道进行一定量的粉体输送,使所述粉体通过一粉体通道口输出至一工件的一表面上;一调整步骤,利用一滚动机构的二升降架调整所述工件二侧的高度;一铺粉步骤,利用所述滚动机构的二回转轴驱动所述工件旋转,使至少一刮刀铺平所述工件上的粉体;一热化步骤,移动至少一激光源,使所述激光源所发射的一激光熔融所述工件上的粉体而成型在所述工件的表面上;一回收步骤,当所述激光熔融所述工件上的粉体时,利用位于所述激光的二侧的二气体通道口形成一气体流场,以吸收所述激光熔融所述工件上的粉体所产生的一粉尘;一材料移除步骤,利用一材料移除机构控制一刀具的移动位置,使所述刀具移除所述工件的表面的材料;及一完成判断步骤,将所述滚动机构的二升降架下降一高度,再判断是否完成所述工件,若是则取出所述工件,若否则回复至所述供粉步骤。
- 如权利要求8所述的滚动式三维打印装置的操作方法,其特征在于:在所述供粉步骤之前另包含一定位步骤,所述定位步骤用以移动所述滚动机构 的二升降架,使所述工件移动至一特定位置。
- 如权利要求8所述的滚动式三维打印装置的操作方法,其特征在于:在所述材料移除步骤中,是分别利用所述材料移除机构的一水平移动座及一升降座带动所述刀具进行上下移动及平面移动,同时利用所述材料移除机构的一刀具轴驱动所述刀具回转或轴向振动,以移除所述工件的表面的材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/103611 WO2019061059A1 (zh) | 2017-09-27 | 2017-09-27 | 滚动式三维打印装置及其操作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/103611 WO2019061059A1 (zh) | 2017-09-27 | 2017-09-27 | 滚动式三维打印装置及其操作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019061059A1 true WO2019061059A1 (zh) | 2019-04-04 |
Family
ID=65900400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/103611 WO2019061059A1 (zh) | 2017-09-27 | 2017-09-27 | 滚动式三维打印装置及其操作方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019061059A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009043594A1 (de) * | 2009-09-25 | 2011-03-31 | Siemens Aktiengesellschaft | Verfahren zum elektrochemischen Beschichten und Einbau von Partikeln in die Schicht |
CN103343341A (zh) * | 2013-07-22 | 2013-10-09 | 中国科学院半导体研究所 | 激光熔覆用合金粉末及应用其的激光熔覆方法 |
CN104126075A (zh) * | 2012-02-15 | 2014-10-29 | 三星泰科威株式会社 | 旋转机的旋转体及制造该旋转体的方法 |
CN105619083A (zh) * | 2016-02-23 | 2016-06-01 | 苏州大学张家港工业技术研究院 | 一种回转体零件再制造增减材一体机 |
CN106676514A (zh) * | 2015-11-05 | 2017-05-17 | 首都航天机械公司 | 一种用于激光选区熔化成形的变向吹气方法 |
CN106964776A (zh) * | 2017-05-10 | 2017-07-21 | 窦鹤鸿 | 圆柱体形3d打印装备及3d打印机 |
CN107052340A (zh) * | 2017-05-17 | 2017-08-18 | 大连理工大学 | 将超声切削应用于铺粉式增减材复合制造中的设备及加工方法 |
-
2017
- 2017-09-27 WO PCT/CN2017/103611 patent/WO2019061059A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009043594A1 (de) * | 2009-09-25 | 2011-03-31 | Siemens Aktiengesellschaft | Verfahren zum elektrochemischen Beschichten und Einbau von Partikeln in die Schicht |
CN104126075A (zh) * | 2012-02-15 | 2014-10-29 | 三星泰科威株式会社 | 旋转机的旋转体及制造该旋转体的方法 |
CN103343341A (zh) * | 2013-07-22 | 2013-10-09 | 中国科学院半导体研究所 | 激光熔覆用合金粉末及应用其的激光熔覆方法 |
CN106676514A (zh) * | 2015-11-05 | 2017-05-17 | 首都航天机械公司 | 一种用于激光选区熔化成形的变向吹气方法 |
CN105619083A (zh) * | 2016-02-23 | 2016-06-01 | 苏州大学张家港工业技术研究院 | 一种回转体零件再制造增减材一体机 |
CN106964776A (zh) * | 2017-05-10 | 2017-07-21 | 窦鹤鸿 | 圆柱体形3d打印装备及3d打印机 |
CN107052340A (zh) * | 2017-05-17 | 2017-08-18 | 大连理工大学 | 将超声切削应用于铺粉式增减材复合制造中的设备及加工方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109551760B (zh) | 滚动式三维打印装置及其操作方法 | |
US11370031B2 (en) | Large scale additive machine | |
US10799953B2 (en) | Additive manufacturing using a mobile scan area | |
US10569331B2 (en) | Three-dimensional printer | |
US11103928B2 (en) | Additive manufacturing using a mobile build volume | |
US12076789B2 (en) | Additive manufacturing using a dynamically grown build envelope | |
JP5931948B2 (ja) | ノズル、積層造形装置、および積層造形物の製造方法 | |
JP5612735B1 (ja) | 三次元形状造形物の製造方法およびその製造装置 | |
CN109590470B (zh) | 一种多能场增材制造成形系统 | |
JP2019094515A (ja) | 積層造形装置 | |
US10981232B2 (en) | Additive manufacturing using a selective recoater | |
CN109604596B (zh) | 一种增材制造动态铺粉系统 | |
US20190070779A1 (en) | 3D Printing Device for Recycling Powders and Operation Method Thereof | |
US20200261977A1 (en) | Scan field variation compensation | |
CN109648079B (zh) | 一种应用于增材制造的气氛保护装置 | |
TWI649185B (zh) | 滾動式三維列印裝置及其操作方法 | |
WO2019061059A1 (zh) | 滚动式三维打印装置及其操作方法 | |
CN210966980U (zh) | 一种适用于多粉体的高精度激光烧结打印机 | |
WO2019041354A1 (zh) | 粉尘回收的三维打印装置及其操作方法 | |
JP3224277U (ja) | 回転サイロ付加製造システム | |
JP2023137267A (ja) | 三次元造形装置、および三次元造形物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17926597 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17926597 Country of ref document: EP Kind code of ref document: A1 |