WO2019059655A2 - Positive electrode for secondary battery and secondary battery comprising same - Google Patents

Positive electrode for secondary battery and secondary battery comprising same Download PDF

Info

Publication number
WO2019059655A2
WO2019059655A2 PCT/KR2018/011082 KR2018011082W WO2019059655A2 WO 2019059655 A2 WO2019059655 A2 WO 2019059655A2 KR 2018011082 W KR2018011082 W KR 2018011082W WO 2019059655 A2 WO2019059655 A2 WO 2019059655A2
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mixture layer
material mixture
secondary battery
active material
Prior art date
Application number
PCT/KR2018/011082
Other languages
French (fr)
Korean (ko)
Other versions
WO2019059655A3 (en
Inventor
이동훈
전혜림
이상욱
노은솔
정왕모
강민석
백소라
박지영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180111643A external-priority patent/KR102465819B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020515873A priority Critical patent/JP7062161B2/en
Priority to EP18859067.3A priority patent/EP3671909B1/en
Priority to CN201880059198.7A priority patent/CN111095612B/en
Priority to US16/647,935 priority patent/US11569501B2/en
Priority to PL18859067T priority patent/PL3671909T3/en
Publication of WO2019059655A2 publication Critical patent/WO2019059655A2/en
Publication of WO2019059655A3 publication Critical patent/WO2019059655A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery and a secondary battery including the same.
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • overcharge phenomenon In the case of a lithium secondary battery, it can be overcharged beyond a normal charging region, and this phenomenon is referred to as overcharge phenomenon.
  • the lithium secondary battery When the lithium secondary battery is overcharged at a normal operating voltage or higher, heat is generated due to electrical resistance in the battery, and the temperature gradually rises. At this time, excessive lithium is discharged from the anode in the normal charging state, More lithium than is possible to enter, excess lithium is deposited on the cathode surface in the form of lithium metal. Also, when overcharging occurs, the structure collapses at the anode to provide not only thermal energy but also oxygen. When the separator is melted by the heat rapidly generated at the anode and the cathode, the anode and the cathode may develop into an inter short state have. When this condition is reached, the battery becomes extremely dangerous and can even explode.
  • An object of the present invention is to provide a positive electrode for a secondary battery that can prevent a battery from being exploded or heated by heat accumulated in the battery before reaching an overcharge reference voltage (about 8V to 10V).
  • the present invention provides a positive electrode current collector comprising: a first positive electrode mixture layer formed on a positive electrode collector; And a second positive electrode material mixture layer formed on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V, and includes an overcharging active material which generates lithium and gas upon charging A positive electrode for a secondary battery is provided.
  • a method of manufacturing a positive electrode collector comprising: forming a first positive electrode mixture layer on a positive electrode collector; And forming a second positive electrode material mixture layer on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V, A method for manufacturing a positive electrode for a secondary battery including an active material is provided.
  • the present invention also provides a secondary battery comprising the positive electrode for the secondary battery.
  • the positive electrode for a secondary battery according to the present invention includes a mixed layer including an overcharge active material which generates lithium and gas when the battery is driven and charged at an overcharge voltage level higher than an operating voltage of a general lithium secondary battery. Therefore, the resistance and the voltage of the battery rapidly increase before the battery is damaged or exploded due to the residual heat accumulated in the battery during the overcharge of the secondary battery and the explosion of the battery, so that the life characteristics and safety of the battery can be improved.
  • an overcharging active material layer capable of generating lithium and gas in a range lower than a voltage at which a battery is driven and a range in which an electrolyte undergo oxidative decomposition at the time of overcharging can be lowered is stacked on one surface of a positive electrode Respectively. Accordingly, when the battery is charged in the voltage range, gas is generated, and the resistance rapidly increases, and the voltage can be rapidly increased so as to be proportional thereto.
  • the resistance of the positive electrode active material is increased due to the reaction of the positive electrode active material before the exothermic reaction occurs,
  • a positive electrode for a secondary battery capable of preventing a heat generation or an explosion due to an oxidative decomposition reaction of an electrolyte to reach a voltage range corresponding to a voltage of a termination condition due to a sudden rise in the voltage of the positive electrode, Thereby providing a secondary battery.
  • a positive electrode for a secondary battery comprises: a first positive electrode material mixture layer formed on a positive electrode current collector; And a second positive electrode material mixture layer formed on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V, and includes an overcharging active material which generates lithium and gas upon charging do.
  • the cathode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and for example, a cathode may be formed on the surface of stainless steel, aluminum, nickel, titanium, , Nickel, titanium, silver, or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the first positive electrode material mixture layer formed on the positive electrode collector may include an overcharging active material having an operating voltage of 4.25 to 6.0 V and generating lithium and gas upon charging.
  • the operating voltage means a voltage range in which the overcharge-generating active material generates lithium and gas when the voltage reaches the above-mentioned range.
  • the operating voltage is not necessarily limited to the above range, But it can be regarded as the operating voltage range of the first positive electrode mixture layer if the voltage is lower than the voltage at which the reaction heat generated by oxidative decomposition of the electrolyte is generated.
  • the supercharging active material may include at least one element selected from the group consisting of a carbon element and a nitrogen element.
  • the overcharging active material contains the carbon element and / or the nitrogen element, it generates carbon dioxide (CO) and / or carbon monoxide (CO 2 ) within the operating voltage range and is vaporized.
  • the overchargeable active material contained in the first positive electrode material mixture layer generates gas and is vaporized, and at the same time, a part of the positive electrode is lost, so that the positive electrode resistance rapidly increases. Accordingly, the voltage of the anode also rises in proportion to the anode resistance, so that the supply of the voltage is stopped before the electrolyte is oxidized and decomposed to generate heat in the secondary battery.
  • the overcharging active material is selected from the group consisting of Li 2 C 2 O 4 , Li 2 C 4 O 4 , Li 2 C 3 O 5 , Li 2 C 4 O 6, and LiN 3
  • the material which is highly sensitive to the reaction within the specific operating voltage range more preferably, the overcharging active material may be Li 2 C 2 O 4 .
  • the overcharging active material may be contained in an amount of 60 to 99.9% by weight, preferably 65 to 99.8% by weight, and more preferably 70 to 99.8% by weight based on the total weight of the first cathode mix layer.
  • the overchargeable active material when included within the above range, when a voltage within the operating voltage range is applied to the battery, lithium and gas are sufficiently generated and the resistance and voltage may rise to a certain level or more.
  • the overcharge-capable active material is included in the above range, the capacity of the battery can be relatively increased. Therefore, it is preferable that the overcharging active material is contained within the above range.
  • the thickness of the first positive electrode material mixture layer is 0.1 to 30 ⁇ , more preferably 0.2 to 10 ⁇ .
  • the thickness of the first anodic coalescing layer is thinner than the above range, even if the voltage supplied to the battery reaches the voltage of the operating range and lithium and gas are generated, the amount of generated gas is small and the resistance rises accordingly The voltage of the anode is not likely to rise sharply.
  • the first positive electrode material mixture layer is formed to a thickness exceeding the above range, the charge / discharge performance of the electrode may be deteriorated.
  • the first positive electrode material mixture layer may further include a binder and a conductive material together with the above-described overchargeable active material.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • PVDF-co-HFP polyvinyl
  • the binder may be contained in an amount of 0.1 to 40% by weight, preferably 0.1 to 35% by weight, more preferably 0.1 to 30% by weight based on the total weight of the first cathode mix layer.
  • the binder is contained in the range below the above range, the adhesion between the first positive electrode mixture layer and the positive electrode collector is weak and the life characteristics of the battery may be deteriorated.
  • the binder is contained in the range exceeding the above range, The materials constituting the first positive electrode mixture layer may be aggregated and the first positive electrode material mixture layer may not be uniformly formed and the lifetime characteristics of the battery may be deteriorated, Is preferably included within the above range.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be included in an amount of 0.1 to 40% by weight, preferably 0.1 to 35% by weight, and more preferably 0.1 to 30% by weight based on the total weight of the cathode active material layer.
  • a conductivity of a certain level or higher can be given to the electrode.
  • it is contained in the range below the above range it is difficult to impart a certain level of conductivity to the electrode. If it exceeds the above range, coagulation phenomenon occurs between the conductive materials and the first positive electrode material mixture layer is not uniformly formed, It is preferable that the conductive material is contained within the above range.
  • the second positive electrode material mixture layer is a layer formed on the first positive electrode material mixture layer and contains lithium transition metal oxide as the positive electrode active material.
  • the second positive electrode material mixture layer may further include a binder and a conductive material
  • the binder and the conductive material used for the second positive electrode material mixture layer may include a binder and a conductive material used for the first positive electrode material mixture layer
  • the types of the binder and the conductive material are the same as those described above.
  • the lithium-transition metal oxide when the lithium-transition metal oxide, the binder and the conductive material are included, the lithium-transition metal oxide is 80 to 99.9% by weight based on the total weight of the second positive electrode material mixture layer, 85 to 99.8% by weight, and more preferably 90 to 99.8% by weight.
  • the binder may contain 0.1 to 20% by weight, preferably 0.1 to 15% by weight, more preferably 0.1 to 10% by weight based on the total weight of the second positive electrode material mixture layer.
  • the conductive material may include 0.1 to 20% by weight, preferably 0.1 to 15% by weight, more preferably 0.1 to 10% by weight based on the total weight of the second cathode mix layer.
  • the lithium transition metal oxide is contained in the range below the range, lithium ions may not be sufficiently supplied to the cathode. If the lithium transition metal oxide is contained in the range exceeding the above range, the performance of the battery may deteriorate due to the conductivity and adhesion of the electrode. Therefore, it is more preferable that the lithium transition metal oxide is included within the above range in consideration of the capacity and life performance of the battery.
  • the second positive electrode material mixture layer when the binder and the conductive material are contained within the above range, the adhesion between the first positive electrode material mixture layer and the second positive electrode material mixture layer can be improved and the conductivity can be maintained to a certain level or more.
  • the binder when the binder is included in the range below the above range, the adhesion between the second positive electrode material mixture layer and the first positive electrode material mixture layer may be deteriorated, and when the conductive material is contained in the range below the second positive electrode material mixture layer, Can also be lowered.
  • the binder and the conductive material are included in the amount exceeding the above range, aggregation phenomenon occurs between the materials forming the second positive electrode material mixture layer, resulting in deterioration in adhesion to the first positive electrode material mixture layer, and battery life characteristics are deteriorated . Therefore, it is more preferable that the binder and the conductive material are included within the above range.
  • the thickness of the second positive electrode material mixture layer is 20 to 500 mu m, more preferably 50 to 300 mu m.
  • the thickness of the second positive electrode material mixture layer is less than the above range, lithium ions may not be sufficiently supplied into the battery.
  • the thickness exceeds the above range, the total thickness of the positive electrode increases, It is more preferable that the thickness of the second positive electrode material mixture layer is within the above range.
  • the thickness ratio of the first positive electrode material mixture layer and the second positive electrode material mixture layer is 1: 1 to 1: 300, more preferably 1:50 to 1: 200.
  • the first positive electrode material mixture layer may be formed so as to abruptly increase the resistance and the voltage, so that the lifetime performance and stability of the battery may be improved , Lithium ions are sufficiently supplied and the battery capacity can be improved.
  • the electrical contact between the positive electrode collector and the second positive electrode mixture layer by the breakage of the first positive electrode mixture layer Can be blocked.
  • a method for producing a battery pack comprising the steps of (1) forming a first positive electrode mixture layer on a positive electrode collector, and (2) forming a second positive electrode mixture layer on the first positive electrode mixture layer,
  • the positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V and includes an overcharging active material which generates lithium and gas upon charging.
  • the method of forming the first positive electrode material mixture layer containing the overcharge-capable active material is not particularly limited.
  • the step of forming the first anode mixture layer comprises: mixing the overcharging active material with a conductive material and a binder to form a first anode formation composition; And applying the composition for forming an anode on the positive electrode current collector.
  • the overcharge-capable active material, the conductive material and the binder may be dissolved or dispersed in a solvent to prepare a composition for forming a first anode.
  • the types and contents of the overcharging active material, the conductive material and the binder are as described above.
  • the solvent for forming the first anode forming composition may be a solvent commonly used in the art, and examples thereof include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpiperazine (NMP), acetone, or water, and either one of them alone or a mixture of two or more of them may be used.
  • the amount of the solvent used is sufficient to dissolve or disperse the overchargeable active material, the conductive material and the binder in consideration of the application thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
  • the first positive electrode composition composition may be coated on the positive electrode collector, followed by drying and rolling to form the first positive electrode mixture layer.
  • the anode may be produced by casting the first composition for forming an anode on a separate support, then peeling the support from the support, and laminating the film on the cathode current collector.
  • the second positive electrode material mixture layer is formed on the first positive electrode material mixture layer, and the method of forming the second positive electrode material mixture layer is not particularly limited.
  • the second positive electrode mixture layer may be formed by mixing the lithium transition metal oxide with a conductive material and a binder to form a second positive electrode composition; And applying the second composition for forming an anode on the first positive electrode material mixture layer.
  • the type and content of the lithium transition metal oxide, the binder, the conductive material, and the solvent for forming the second positive electrode material mixture composition are as described above.
  • the lithium secondary battery according to the present invention includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , And a film obtained by peeling from the support may be laminated on the negative electrode collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides such as SiOx (0 ⁇ x ⁇ 2), SnO2, vanadium oxide, lithium vanadium oxide and the like capable of doping and dedoping lithium;
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallinity carbon.
  • Examples of the low-crystalline carbon include soft carbon and hard carbon.
  • Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • the binder and the conductive material are the same as those described above for the anode.
  • the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions.
  • the separator can be used without limitation, as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohexanone
  • a carbonate-based solvent is more preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, such as ethylene carbonate or propylene carbonate, which can increase the charge- (For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.).
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate having a high ionic conductivity and a high dielectric constant, such as ethylene carbonate or propylene carbonate, which can increase the charge- (For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.).
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1: 1 to about 1: 9, the performance of the electrolytic solution may be excellent.
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention ratio, and thus can be applied to portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles electric vehicle (HEV), and the like.
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles electric vehicle (HEV), and the like.
  • Li 2 C 2 O 4 , a conductive material (denka black KF1100), and a PVDF binder were mixed in a weight ratio of 90: 5: 5 and NMP as a solvent.
  • the resultant mixture was subjected to dispersion treatment for 30 minutes using a disperser (Paste mixer or homo disperse) to prepare a composition for forming a first positive electrode material mixture layer (solid content: about 70% by weight).
  • the composition for forming the first positive electrode material mixture layer was coated on the aluminum current collector, dried at 120 ° C, and rolled to form a first positive electrode material mixture layer on the aluminum current collector.
  • the resultant mixture was subjected to dispersion treatment for 30 minutes using a disperser (Paste mixer or homo disperse) to prepare a composition for forming a second positive electrode material mixture layer (solid content: about 75% by weight)
  • the composition for forming the positive electrode material mixture layer was coated on the first positive electrode material mixture layer, dried at 120 ⁇ and rolled to prepare a positive electrode.
  • a positive electrode was prepared in the same manner as in Example 1 except that LiN 3 was used instead of Li 2 C 2 O 4 in the preparation of the first positive electrode material mixture composition.
  • Example 1 Except that the first positive electrode material mixture layer was not formed in Example 1 and the composition for forming the second positive electrode material mixture layer was immediately applied to the aluminum current collector and dried at 120 ⁇ and then rolled, .
  • LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 a conductive material (denka black KF1100) and a PVDF binder in a weight ratio of 96: 2: 2, and mixed using NMP as a solvent. Further, 3 wt% of Li 2 C 2 O 4 was added and mixed.
  • the resultant mixture was subjected to dispersion treatment for 30 minutes using a disperser (Paste mixer or homo disperse) to prepare a composition for forming a positive electrode material mixture layer (solid content: about 70% by weight)
  • the composition for forming a layer was applied to an aluminum current collector, dried at 120 ⁇ , and rolled to form a positive electrode mixture layer on the aluminum current collector.
  • a lithium secondary battery was prepared using the positive electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3, respectively. More specifically, it is as follows.
  • the negative electrode active material slurry was prepared by mixing natural graphite, a carbon black conductive material, carboxymethyl cellulose (CMC) and a styrene butadiene rubber (SBR) binder in a weight ratio of 96: 1: 1: 2 and using H 2 O as a solvent .
  • the negative electrode active material slurry was applied to a copper current collector, followed by drying and rolling to prepare a negative electrode.
  • An electrode assembly was manufactured through a separator made of porous polyethylene between each of the positive electrodes and the negative electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3, the electrode assembly was placed inside the case, An electrolyte was injected to prepare a lithium secondary battery.
  • the lithium secondary batteries produced using the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 were charged under the charging conditions shown in Table 1 below to determine the voltage at the time of generation of the gas (the operating voltage of the first positive electrode material mixture layer (V)) was measured. The operating voltages measured at this time are shown in Table 1 below.
  • the lithium secondary battery prepared using the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 was subjected to stability test while being charged at 1.0 C in SOC 100 for one hour. At this time, when the voltage of the lithium secondary battery reaches 8.4 V without heat or explosion, it is evaluated as Pass. When the secondary battery fails to reach the voltage and the secondary battery is heated or exploded, it is evaluated as Fail.
  • the experimental results are shown in Table 2 below.

Abstract

Provided are a positive electrode for a secondary battery, comprising a first positive electrode mixture layer formed on a positive electrode current collector; and a second positive electrode mixture layer formed on the first positive electrode mixture layer, wherein the first positive electrode mixture layer has a working voltage of 4.25 to 6.0V and includes an overcharging active material that generates lithium and gas during the charging, and a lithium secondary battery comprising the positive electrode.

Description

이차전지용 양극 및 이를 포함하는 이차전지Secondary battery anode and secondary battery comprising same
관련출원과의 상호인용Mutual citation with related application
본 출원은 2017년 9월 19일자 한국 특허 출원 제10-2017-0120694호 및 2018년 9월 18일자 한국 특허 출원 제10-2018-0111643호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0120694 filed on September 19, 2017, and Korean Patent Application No. 10-2018-0111643 filed on September 18, 2018, The entire contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 이차전지용 양극 및 이를 포함하는 이차전지에 관한 것이다.The present invention relates to a positive electrode for a secondary battery and a secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among such secondary batteries, lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
그러나, 리튬 이차전지의 경우, 정상적인 충전영역을 벗어나서 과도하게 충전될 수 있고, 이러한 현상을 과충전 현상이라고 한다. 리튬 이차전지가 정상적인 작동전압 이상으로 과충전되는 경우, 전지 내에 전기적인 저항에 의하여 열이 발생하여 점점 온도가 상승하게 되고, 이때 양극에서는 정상충전상태에 비해 과량의 리튬이 나오게 되고, 음극에서는 수용할 수 있는 수준보다 더 많은 양의 리튬이 들어오고자 하여 잉여 리튬들이 음극 표면에 리튬 금속 형태로 석출된다. 또한 과충전시 양극에서는 구조붕괴가 일어나 열에너지뿐만 아니라 산소를 제공하게 되며, 양극과 음극에서 급격하게 발생된 열에 의해 분리막이 녹게 되면, 양극과 음극이 내부 단락(inter short)이 되는 상태로 진전될 수 있다. 이러한 상태에 도달하면 전지는 극도로 위험해지며 심지어 폭발까지 할 수 있다.However, in the case of a lithium secondary battery, it can be overcharged beyond a normal charging region, and this phenomenon is referred to as overcharge phenomenon. When the lithium secondary battery is overcharged at a normal operating voltage or higher, heat is generated due to electrical resistance in the battery, and the temperature gradually rises. At this time, excessive lithium is discharged from the anode in the normal charging state, More lithium than is possible to enter, excess lithium is deposited on the cathode surface in the form of lithium metal. Also, when overcharging occurs, the structure collapses at the anode to provide not only thermal energy but also oxygen. When the separator is melted by the heat rapidly generated at the anode and the cathode, the anode and the cathode may develop into an inter short state have. When this condition is reached, the battery becomes extremely dangerous and can even explode.
따라서 상기와 같은 문제를 해소하기 위하여 전해액에 과충전 방지제 등과 같은 첨가제를 더 포함하는 방법 등에 대한 연구 및 이와 관련된 물질의 개발이 활발하게 연구되고 있다. 그러나, 전해액에 방지제를 포함하더라도, 양극 또는 음극의 발열 현상을 미연에 방지하기는 어렵다는 문제가 있다.Therefore, in order to solve the above-mentioned problems, studies on a method including an additive such as an overcharge inhibitor in the electrolytic solution and the development of related materials have been actively studied. However, even if the electrolyte contains an inhibitor, there is a problem that it is difficult to prevent the heat generation of the anode or the cathode in advance.
한편, 과충전시 저항이 증가함에 따라 전압이 증가하게 되는 오버슈팅(Overshooting) 현상이 발생한다. 그러나, 오버슈팅 현상이 발생하기 전에 전지가 발열하거나 폭발하게 되어 안전성이 확보되지 않은 전지의 안정성이 저해된다는 문제가 있다.On the other hand, an overshooting phenomenon occurs in which the voltage increases as the resistance increases during overcharging. However, there is a problem that the stability or safety of the battery is deteriorated because the battery is heated or exploded before overshooting occurs.
본 발명은 과충전 기준 전압(약 8V 내지 10V)에 도달하기 전 전지 내에 축적된 열에 의하여 전지가 폭발하거나 발열되는 것을 방지할 수 있는 이차전지용 양극을 제공하고자 하는 것이다.An object of the present invention is to provide a positive electrode for a secondary battery that can prevent a battery from being exploded or heated by heat accumulated in the battery before reaching an overcharge reference voltage (about 8V to 10V).
본 발명은 양극 집전체 상에 형성된 제1양극 합제층; 및 상기 제1양극 합제층 상에 형성된 제2양극 합제층을 포함하며, 상기 제1양극 합제층은, 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함하는 이차전지용 양극을 제공한다.The present invention provides a positive electrode current collector comprising: a first positive electrode mixture layer formed on a positive electrode collector; And a second positive electrode material mixture layer formed on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V, and includes an overcharging active material which generates lithium and gas upon charging A positive electrode for a secondary battery is provided.
또한, 본 발명은 양극 집전체 상에 제1양극 합제층을 형성하는 단계; 및 상기 제1양극 합제층 상에 제2양극 합제층을 형성하는 단계를 포함하며, 상기 제1양극 합제층은, 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함하는 이차전지용 양극 제조방법을 제공한다.According to another aspect of the present invention, there is provided a method of manufacturing a positive electrode collector, comprising: forming a first positive electrode mixture layer on a positive electrode collector; And forming a second positive electrode material mixture layer on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V, A method for manufacturing a positive electrode for a secondary battery including an active material is provided.
또한, 본 발명은 상기 이차전지용 양극을 포함하는 이차전지를 제공한다.The present invention also provides a secondary battery comprising the positive electrode for the secondary battery.
본 발명에 따른 이차전지용 양극은 일반적인 리튬 이차 전지의 작동 전압대 보다 높은 과충전 전압대에서 전지가 구동되어 충전되는 경우, 리튬 및 가스를 발생하는 과충전용 활물질을 포함하는 합제층을 포함한다. 따라서, 이차전지가 과충전되는 도중 전지 내에 축적되어 있는 잔열 및 발열 현상에 의하여 전지가 손상되거나 폭발하기 전에, 전지의 저항 및 전압이 급격하게 증가하게 되어 전지의 수명특성 및 안전성이 향상될 수 있다.The positive electrode for a secondary battery according to the present invention includes a mixed layer including an overcharge active material which generates lithium and gas when the battery is driven and charged at an overcharge voltage level higher than an operating voltage of a general lithium secondary battery. Therefore, the resistance and the voltage of the battery rapidly increase before the battery is damaged or exploded due to the residual heat accumulated in the battery during the overcharge of the secondary battery and the explosion of the battery, so that the life characteristics and safety of the battery can be improved.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail in order to facilitate understanding of the present invention. Herein, terms and words used in the present specification and claims should not be construed to be limited to ordinary or dictionary meanings, and the inventor may appropriately define the concept of the term to describe its own invention in the best way. It should be construed as meaning and concept consistent with the technical idea of the present invention.
이차전지가 과충전되는 경우, 전해액 산화 분해 반응에 따른 발열 및 이에 전지에 축적된 열에 의하여 이차전지는 폭발되거나 발화현상이 발생된다는 문제점이 있었다. 다만, 일반적으로 이차전지가 과충전되는지 여부는 이차전지의 전압이 8 내지 10 V 정도의 고압에 도달하였는지를 기준으로 평가하는데, 전압이 급격하게 증가하기 전에 전해질이 분해됨에 따른 발열 현상에 의하여 전지가 폭발하거나 발화되어 전지의 안정성이 저하된다는 문제점이 있었다.When the secondary battery is overcharged, there is a problem that the secondary battery is exploded or ignited due to the heat generated by the oxidative decomposition reaction of the electrolyte and the heat accumulated in the battery. Generally, whether or not the secondary battery is overcharged is evaluated based on whether the voltage of the secondary battery reaches a high level of about 8 to 10 V. However, due to the heat generated by the decomposition of the electrolyte before the voltage abruptly increases, Or ignited and the stability of the battery is deteriorated.
이에, 본 발명자는 일반적으로 전지가 구동되는 전압보다는 높은 전압이고, 과충전시 전해액이 산화 분해되기 시작하는 전압의 범위보다는 낮은 범위에서 리튬 및 가스를 발생할 수 있는 과충전용 활물질 층을 양극의 일면에 적층하였다. 이에 따라, 상기 전압 범위로 전지가 충전되는 경우, 가스가 발생되어 저항이 급격하게 상승하고 이에 비례하도록 전압이 급격하게 상승할 수 있는 이차전지용 양극을 고안하였다.Therefore, the present inventors have found that an overcharging active material layer capable of generating lithium and gas in a range lower than a voltage at which a battery is driven and a range in which an electrolyte undergo oxidative decomposition at the time of overcharging can be lowered is stacked on one surface of a positive electrode Respectively. Accordingly, when the battery is charged in the voltage range, gas is generated, and the resistance rapidly increases, and the voltage can be rapidly increased so as to be proportional thereto.
본 발명에 따른 과충전용 양극 활물질로 이루어진 층이 형성된 양극을 사용하는 경우, 과충전 범위의 전극에 도달하는 과정에서 전해액에 분해됨에 따른 발열반응이 발생하기 전에 과충전용 양극 활물질의 반응으로 인한 저항 상승으로 양극의 전압이 급격하게 상승하게 되어 종료 조건의 전압에 해당되는 전압 범위에 도달하게 되어, 전해액의 산화 분해 반응에 의한 발열 또는 폭발을 방지할 수 있는 이차전지용 양극, 이의 제조방법, 및 이를 포함하는 이차전지를 제공한다. In the case of using the positive electrode having the layer formed of the positive electrode active material for overcharge according to the present invention, the resistance of the positive electrode active material is increased due to the reaction of the positive electrode active material before the exothermic reaction occurs, A positive electrode for a secondary battery capable of preventing a heat generation or an explosion due to an oxidative decomposition reaction of an electrolyte to reach a voltage range corresponding to a voltage of a termination condition due to a sudden rise in the voltage of the positive electrode, Thereby providing a secondary battery.
이차전지용 양극Anode for secondary battery
이하 본 발명에 따른 이차전지용 양극에 대해 설명한다.Hereinafter, a cathode for a secondary battery according to the present invention will be described.
본 발명에 따른 이차전지용 양극은, 양극 집전체 상에 형성된 제1양극 합제층; 및 상기 제1양극 합제층 상에 형성된 제2양극 합제층을 포함하며, 상기 제1양극 합제층은, 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함한다.A positive electrode for a secondary battery according to the present invention comprises: a first positive electrode material mixture layer formed on a positive electrode current collector; And a second positive electrode material mixture layer formed on the first positive electrode material mixture layer, wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V, and includes an overcharging active material which generates lithium and gas upon charging do.
본 발명이 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In the present invention, the cathode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and for example, a cathode may be formed on the surface of stainless steel, aluminum, nickel, titanium, , Nickel, titanium, silver, or the like may be used. In addition, the cathode current collector may have a thickness of 3 to 500 탆, and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
한편, 상기 양극 집전체 상에 형성된 제1양극 합제층은, 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함할 수 있다.Meanwhile, the first positive electrode material mixture layer formed on the positive electrode collector may include an overcharging active material having an operating voltage of 4.25 to 6.0 V and generating lithium and gas upon charging.
본 발명에 있어서, 상기 작동 전압이라는 것은 전압이 상기 범위에 도달하는 경우, 상기 과충전용 활물질이 리튬 및 가스를 발생하는 전압범위를 의미하는 것으로서, 상기 범위에 반드시 한정되는 것은 아니고, 일반적으로 이차전지가 구동되는 전압 범위보다는 높지만, 전해액이 산화 분해하여 발생하는 반응열이 생성되는 전압보다 낮은 전압대라면 상기 제1양극 합제층의 작동 전압 범위로 볼 수 있다. In the present invention, the operating voltage means a voltage range in which the overcharge-generating active material generates lithium and gas when the voltage reaches the above-mentioned range. The operating voltage is not necessarily limited to the above range, But it can be regarded as the operating voltage range of the first positive electrode mixture layer if the voltage is lower than the voltage at which the reaction heat generated by oxidative decomposition of the electrolyte is generated.
본 발명에 있어서, 상기 과충전용 활물질은 탄소 원소, 및 질소 원소로 이루어진 군에서 선택되는 적어도 하나 이상의 원소를 포함하는 것일 수 있다. 과충전용 활물질이 상기 탄소 원소 및/또는 질소 원소를 포함하는 경우, 상기 작동 전압의 범위 내에서 이산화탄소(CO) 및/또는 일산화탄소(CO2)를 발생시키며 기화된다. 상기 제1양극 합제층에 포함되어 있는 과충전용 활물질이 가스를 발생하며 기화됨과 동시에 양극의 구성 일부가 소실되므로, 양극 저항이 급격하게 상승하게 된다. 이에 따라, 양극 저항에 비례하게 양극의 전압 또한 상승하게 되어 전해액이 산화 분해되어 이차전지 내부에 열이 발생하기 이전에 전압의 공급이 중단된다.In the present invention, the supercharging active material may include at least one element selected from the group consisting of a carbon element and a nitrogen element. When the overcharging active material contains the carbon element and / or the nitrogen element, it generates carbon dioxide (CO) and / or carbon monoxide (CO 2 ) within the operating voltage range and is vaporized. The overchargeable active material contained in the first positive electrode material mixture layer generates gas and is vaporized, and at the same time, a part of the positive electrode is lost, so that the positive electrode resistance rapidly increases. Accordingly, the voltage of the anode also rises in proportion to the anode resistance, so that the supply of the voltage is stopped before the electrolyte is oxidized and decomposed to generate heat in the secondary battery.
본 발명의 일 실시예에 있어서, 상기 과충전용 활물질은 Li2C2O4, Li2C4O4, Li2C3O5, Li2C4O6 및 LiN3로 이루어진 군에서 선택되는 적어도 하나 이상인 것일 수 있고, 특히, 상기 특정 작동 전압의 범위 내에서 반응에 민감성이 높은 물질로서, 보다 바람직하게는, 과충전용 활물질은 Li2C2O4 인 것일 수 있다. In one embodiment of the present invention, the overcharging active material is selected from the group consisting of Li 2 C 2 O 4 , Li 2 C 4 O 4 , Li 2 C 3 O 5 , Li 2 C 4 O 6, and LiN 3 In particular, the material which is highly sensitive to the reaction within the specific operating voltage range, more preferably, the overcharging active material may be Li 2 C 2 O 4 .
본 발명에 있어서, 상기 과충전용 활물질은 상기 제1양극 합제층 총 중량 대비 60 내지 99.9 중량%, 바람직하게는 65 내지 99.8 중량%, 보다 바람직하게는 70 내지 99.8 중량%로 포함될 수 있다. 상기 과충전용 활물질이 상기 범위 내로 포함되는 경우에는 전지에 작동 전압 범위 내 전압이 가해지는 경우 리튬 및 가스가 충분하게 발생하여 저항 및 전압이 일정 수준 이상으로 상승할 수 있다. 또한, 상기 과충전용 활물질이 상기 범위내로 포함되는 경우 전지의 용량이 상대적으로 상승할 수 있다. 따라서, 상기 과충전용 활물질은 상기 범위 내로 포함되는 것이 바람직하다. In the present invention, the overcharging active material may be contained in an amount of 60 to 99.9% by weight, preferably 65 to 99.8% by weight, and more preferably 70 to 99.8% by weight based on the total weight of the first cathode mix layer. When the overchargeable active material is included within the above range, when a voltage within the operating voltage range is applied to the battery, lithium and gas are sufficiently generated and the resistance and voltage may rise to a certain level or more. In addition, when the overcharge-capable active material is included in the above range, the capacity of the battery can be relatively increased. Therefore, it is preferable that the overcharging active material is contained within the above range.
한편, 본 발명에 있어서, 상기 제1양극 합제 층의 두께는 0.1 내지 30 ㎛, 보다 바람직하게는 0.2 내지 10 ㎛이다. 제1양극 합체 층의 두께가 상기 범위보다 얇은 경우에는 전지에 공급되는 전압이 작동 범위의 전압에 도달하여 리튬 및 가스가 발생한다고 하더라도, 발생되는 가스의 양이 적음은 물론, 그에 따라 저항이 상승되는 정도 또한 낮아 양극의 전압이 급격하게 상승하기 어렵다. 한편, 상기 제1양극 합제 층이 상기 범위를 초과하는 수준의 두께로 형성되는 경우에는 전극의 충/방전 성능이 저하될 수 있고, 전지에 공급되는 전압이 작동 범위의 전압에 도달한 이후에도 상기 제1양극 합제 층 일부는 양극 상에 존재하게 되어, 양극의 저항이 급격하게 상승하지 못하고, 전해질 산화 분해 반응을 지속적으로 유도할 수 있으므로, 발열반응에 의하여 전지의 안정성이 저하될 수 있다. Meanwhile, in the present invention, the thickness of the first positive electrode material mixture layer is 0.1 to 30 탆, more preferably 0.2 to 10 탆. When the thickness of the first anodic coalescing layer is thinner than the above range, even if the voltage supplied to the battery reaches the voltage of the operating range and lithium and gas are generated, the amount of generated gas is small and the resistance rises accordingly The voltage of the anode is not likely to rise sharply. On the other hand, when the first positive electrode material mixture layer is formed to a thickness exceeding the above range, the charge / discharge performance of the electrode may be deteriorated. Even after the voltage supplied to the battery reaches the voltage of the operating range, 1 part of the positive electrode mixture layer is present on the positive electrode, the resistance of the positive electrode is not increased rapidly, and the electrolyte oxidative decomposition reaction can be continuously induced, so that the stability of the battery may be lowered by the exothermic reaction.
본 발명에 있어서, 제1양극 합제층이란, 앞서 설명한 과충전용 활물질과 함께, 바인더 및 도전재를 더 포함할 수 있다. In the present invention, the first positive electrode material mixture layer may further include a binder and a conductive material together with the above-described overchargeable active material.
상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. The binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof. One kind or a mixture of two or more kinds of them may be used.
상기 바인더는 제1양극 합제층 총 중량에 대하여 0.1 내지 40 중량%, 바람직하게는 0.1 내지 35 중량%, 보다 바람직하게는 0.1 내지 30 중량%로 포함될 수 있다. 상기 바인더가 상기 범위 미만으로 포함되면, 제1양극 합제층과 상기 양극 집전체 간의 부착력이 약하여 전지의 수명특성이 저하될 수 있으며, 바인더가 상기 범위를 초과하여 포함되는 경우에는 제1양극 합제층을 형성하는 공정 도중 점도가 높아지거나, 상기 제1양극 합제층을 구성하는 물질들끼리 응집하게 될 수 있어 제1양극 합제층이 균일하게 형성되지 않아 전지의 수명특성이 저하될 수 있으므로, 상기 바인더는 상기 범위 내로 포함되는 것이 바람직하다.The binder may be contained in an amount of 0.1 to 40% by weight, preferably 0.1 to 35% by weight, more preferably 0.1 to 30% by weight based on the total weight of the first cathode mix layer. When the binder is contained in the range below the above range, the adhesion between the first positive electrode mixture layer and the positive electrode collector is weak and the life characteristics of the battery may be deteriorated. When the binder is contained in the range exceeding the above range, The materials constituting the first positive electrode mixture layer may be aggregated and the first positive electrode material mixture layer may not be uniformly formed and the lifetime characteristics of the battery may be deteriorated, Is preferably included within the above range.
또한, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The conductive material is used for imparting conductivity to the electrode. The conductive material is not particularly limited as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
상기 도전재는 양극활물질층 총 중량에 대하여 0.1 내지 40 중량%, 바람직하게는 0.1 내지 35 중량%, 보다 바람직하게는 0.1 내지 30 중량%로 포함될 수 있다. 상기 도전재가 상기 범위 내로 포함되는 경우 일정 수준 이상의 전도성을 전극에 부여할 수 있다. 다만, 상기 범위 미만으로 포함되는 경우에는 일정 수준 이상의 도전성을 전극에 부여하기 어렵고, 상기 범위를 초과하여 포함되는 경우에는 도전재 간의 응집현상이 발생하여 제1양극 합제층이 균일하게 형성되지 않아 전지의 수명특성이 저하될 수 있으므로 상기 도전재는 상기 범위 내로 포함되는 것이 바람직하다. The conductive material may be included in an amount of 0.1 to 40% by weight, preferably 0.1 to 35% by weight, and more preferably 0.1 to 30% by weight based on the total weight of the cathode active material layer. When the conductive material is included within the above range, a conductivity of a certain level or higher can be given to the electrode. However, when it is contained in the range below the above range, it is difficult to impart a certain level of conductivity to the electrode. If it exceeds the above range, coagulation phenomenon occurs between the conductive materials and the first positive electrode material mixture layer is not uniformly formed, It is preferable that the conductive material is contained within the above range.
본 발명에 있어서, 제2양극 합제층이란, 상기 제1양극 합제층 상에 형성된 층으로서, 양극활물질로 리튬 전이금속 산화물을 포함한다.In the present invention, the second positive electrode material mixture layer is a layer formed on the first positive electrode material mixture layer and contains lithium transition metal oxide as the positive electrode active material.
보다 구체적으로, 상기 리튬 전이금속 산화물로서, Lix1CoO2(0.5<x1<1.3), Lix2NiO2(0.5<x2<1.3), Lix3MnO2(0.5<x3<1.3), Lix4Mn2O4(0.5<x4<1.3), Lix5(Nia1Cob1Mnc1)O2(0.5<x5<1.3, 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1), Lix6Ni1 -y1Coy1O2(0.5<x6<1.3, 0<y1<1), Lix7Co1 - y2Mny2O2(0.5<x7<1.3, 0≤y2<1), Lix8Ni1 -y3Mny3O2(0.5<x8<1.3, O≤y3<1), Lix9(Nia2Cob2Mnc2)O4(0.5<x9<1.3, 0<a2<2, 0<b2<2, 0<c2<2, a2+b2+c2=2), Lix10Mn2 - z1Niz1O4(0.5<x10<1.3, 0<z1<2), Lix11Mn2 -zCozO4(0.5<x11<1.3, 0<z<2), Lix12CoPO4(0.5<x12<1.3), Lix13FePO4(0.5<x13<1.3) 및 Li1+a3[Nix14Mny3Coz2Mv1]O(2-c)Ac3 (M은 Al, Zr, Zn, Ti, Mg, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이며, 0≤x14≤1.0, 0≤y3<0.6, 0≤z2<0.6, 0≤v1≤0.1, 0≤a3<0.3, 0≤c3≤0.2, a3+x14+y3+z2+v1=1)로 이루어진 군에서 선택되는 적어도 하나 이상을 사용할 수 있다.More specifically, the lithium-transition as the metal oxide, Li x1 CoO 2 (0.5 < x 1 <1.3), Li x2 NiO 2 (0.5 <x 2 <1.3), Li x3 MnO 2 (0.5 <x 3 <1.3), Li x4 Mn 2 O 4 (0.5 <x 4 <1.3), Li x5 (Ni a1 Co b1 Mn c1) O 2 (0.5 <x 5 <1.3, 0 <a 1 <1, 0 <b 1 <1, 0 <c 1 <1, a 1 + b 1 + c 1 = 1), Li x6 Ni 1 -y1 Co y1 O 2 (0.5 <x 6 <1.3, 0 <y 1 <1), Li x7 Co 1 - y2 Mn y2 O 2 (0.5 <x 7 <1.3, 0≤y 2 <1), Li x8 Ni 1 -y3 Mn y3 O 2 (0.5 <x 8 <1.3, O≤y3 <1), Li x9 (Ni a2 Co b2 Mn c2) O 4 ( 0.5 <x 9 <1.3, 0 <a 2 <2, 0 <b 2 <2, 0 <c 2 <2, a 2 + b 2 + c 2 = 2), Li x10 Mn 2 - z1 Ni z1 O 4 (0.5 <x 10 <1.3, 0 <z 1 <2), Li x11 Mn 2 -z Co z O 4 (0.5 <x 11 <1.3, 0 <z <2), Li x12 CoPO 4 (0.5 <x 12 <1.3), Li x13 FePO 4 (0.5 <x 13 <1.3) and Li 1 + a3 [Ni x14 Mn y3 Co z2 M v1] O (2-c) A c3 (M is A is at least one element selected from the group consisting of Al, Zr, Zn, Ti, Mg, Ga and In, or two or more elements selected from the group consisting of P, F, S and N, 0? X 14? 1.0, 0? Y 3 <0.6, 0? Z 2 <0.6 , 0≤v 1 ≤0.1, 0≤a 3 < 0.3, 0≤c 3 ≤0.2, a 3 + x 14 + y 3 + z 2 + v 1 = 1) using at least one selected from the group consisting of .
본 발명에 있어서, 상기 제2양극 합제층 또한, 바인더 및 도전재를 더 포함할 수 있으며, 상기 제2양극 합제층에 사용되는 바인더 및 도전재는 상기 제1양극 합제층에 사용되는 바인더 및 도전재의 종류와 동일하며, 상기 바인더 및 도전재의 종류에 대해서는 상기에 설명한 것과 동일하다.In the present invention, the second positive electrode material mixture layer may further include a binder and a conductive material, and the binder and the conductive material used for the second positive electrode material mixture layer may include a binder and a conductive material used for the first positive electrode material mixture layer And the types of the binder and the conductive material are the same as those described above.
한편, 상기 제2양극 합제층의 경우, 상기 리튬 전이금속 산화물, 바인더 및 도전재를 포함하였을 때, 상기 제2양극 합제층 총 중량 대비 상기 리튬 전이금속 산화물은 80 내지 99.9 중량%, 바람직하게는 85 내지 99.8 중량%, 보다 바람직하게는 90 내지 99.8 중량% 포함될 수 있다.Meanwhile, in the case of the second positive electrode material mixture layer, when the lithium-transition metal oxide, the binder and the conductive material are included, the lithium-transition metal oxide is 80 to 99.9% by weight based on the total weight of the second positive electrode material mixture layer, 85 to 99.8% by weight, and more preferably 90 to 99.8% by weight.
상기 바인더는 상기 제2양극 합제층 총 중량 대비 0.1 내지 20 중량%, 바람직하게는 0.1 내지 15 중량%, 보다 바람직하게는 0.1 내지 10 중량% 포함될 수 있다.The binder may contain 0.1 to 20% by weight, preferably 0.1 to 15% by weight, more preferably 0.1 to 10% by weight based on the total weight of the second positive electrode material mixture layer.
상기 도전재는 상기 제2양극 합제층 총 중량 대비 0.1 내지 20 중량%, 바람직하게는 0.1 내지 15 중량%, 보다 바람직하게는 0.1 내지 10 중량% 포함될 수 있다.The conductive material may include 0.1 to 20% by weight, preferably 0.1 to 15% by weight, more preferably 0.1 to 10% by weight based on the total weight of the second cathode mix layer.
상기 리튬 전이금속 산화물이 상기 범위 미만으로 포함되는 경우, 음극에 리튬 이온이 충분히 공급되지 않을 수 있으며, 상기 범위를 초과하여 포함되는 경우 전극의 도전성 및 접착력 부족으로 전지의 성능이 저하될 수 있다. 따라서, 전지의 용량, 수명성능을 고려할 때 상기 범위 내로 상기 리튬 전이금속 산화물이 포함되는 것이 보다 바람직하다. 상기 제2양극 합제층의 경우, 상기 범위 내로 바인더 및 도전재를 포함하는 경우, 제1양극 합제층 및 제2양극 합제층 간의 부착성이 향상될 수 있고, 도전성 또한 일정 수준 이상 유지할 수 있다. 그러나, 상기 범위 미만으로 바인더가 포함되는 경우, 상기 제2양극 합제층 및 상기 제1양극 합제층과의 부착력이 저하될 수 있으며, 상기 범위 미만으로 도전재가 포함되는 경우, 상기 제2양극 합제층의 도전성 또한 저하될 수 있다. 또한, 상기 범위를 초과하여 바인더 및 도전재가 포함되는 경우, 제2양극 합제층을 형성하는 물질 간의 응집현상이 발생하여 제1양극 합제층과의 접착력이 되려 저하될 수 있어 전지 수명 특성이 저하될 수 있다. 따라서 상기 바인더 및 상기 도전재는 상기 범위 내로 포함되는 것이 보다 바람직하다. If the lithium transition metal oxide is contained in the range below the range, lithium ions may not be sufficiently supplied to the cathode. If the lithium transition metal oxide is contained in the range exceeding the above range, the performance of the battery may deteriorate due to the conductivity and adhesion of the electrode. Therefore, it is more preferable that the lithium transition metal oxide is included within the above range in consideration of the capacity and life performance of the battery. In the case of the second positive electrode material mixture layer, when the binder and the conductive material are contained within the above range, the adhesion between the first positive electrode material mixture layer and the second positive electrode material mixture layer can be improved and the conductivity can be maintained to a certain level or more. However, when the binder is included in the range below the above range, the adhesion between the second positive electrode material mixture layer and the first positive electrode material mixture layer may be deteriorated, and when the conductive material is contained in the range below the second positive electrode material mixture layer, Can also be lowered. When the binder and the conductive material are included in the amount exceeding the above range, aggregation phenomenon occurs between the materials forming the second positive electrode material mixture layer, resulting in deterioration in adhesion to the first positive electrode material mixture layer, and battery life characteristics are deteriorated . Therefore, it is more preferable that the binder and the conductive material are included within the above range.
본 발명에 있어서, 상기 제2양극 합제층 층의 두께는 20 내지 500 ㎛, 보다 바람직하게는 50 내지 300 ㎛이다. 상기 제2양극 합제층의 두께가 상기 범위 미만인 경우에는 전지 내에 리튬 이온이 충분히 공급되지 않을 수 있고, 상기 범위를 초과하는 경우에는 양극의 총 두께가 증가하면서, 전지의 수명특성 및 안정성이 되려 저하될 수 있으므로, 상기 제2양극 합제층의 두께는 상기 범위 내로 형성되는 것이 보다 바람직하다. In the present invention, the thickness of the second positive electrode material mixture layer is 20 to 500 mu m, more preferably 50 to 300 mu m. When the thickness of the second positive electrode material mixture layer is less than the above range, lithium ions may not be sufficiently supplied into the battery. When the thickness exceeds the above range, the total thickness of the positive electrode increases, It is more preferable that the thickness of the second positive electrode material mixture layer is within the above range.
본 발명에 있어서, 상기 제1양극 합제층 및 상기 제2양극 합제층의 두께 비는 1:1 내지 1:300, 보다 바람직하게는 1:50 내지 1:200이다. 상기 제1양극 합제층 및 상기 제2양극 합제층의 두께 비가 상기 범위 내인 경우, 상기 제1양극 합제층이 저항 및 전압을 급격하게 상승시킬 정도로 형성되어 전지의 수명성능 및 안정성이 향상될 수 있고, 리튬이온이 충분히 공급되어 전지 용량 또한 향상될 수 있다. In the present invention, the thickness ratio of the first positive electrode material mixture layer and the second positive electrode material mixture layer is 1: 1 to 1: 300, more preferably 1:50 to 1: 200. When the thickness ratio of the first positive electrode material mixture layer and the second positive electrode material mixture layer is within the above range, the first positive electrode material mixture layer may be formed so as to abruptly increase the resistance and the voltage, so that the lifetime performance and stability of the battery may be improved , Lithium ions are sufficiently supplied and the battery capacity can be improved.
상기 본 발명의 일 실시예에 따른 양극을 포함하는 리튬 이차전지가 과충전 상태가 되었을 때, 상기 제1양극 합제층의 구조 파괴에 의해 상기 양극 집전체와 상기 제2 양극 합제층과의 전기적 접촉이 차단될 수 있다.When the lithium secondary battery including the positive electrode according to an embodiment of the present invention is in an overcharged state, the electrical contact between the positive electrode collector and the second positive electrode mixture layer by the breakage of the first positive electrode mixture layer Can be blocked.
이차전지용 양극의 제조방법Method for manufacturing positive electrode for secondary battery
이하, 본 발명에 따른 이차전지용 양극의 제조방법에 대해 설명한다.Hereinafter, a method of manufacturing a positive electrode for a secondary battery according to the present invention will be described.
본 발명에 있어서, (1) 양극 집전체 상에 제1양극 합제층을 형성하는 단계 및 (2) 상기 제1양극 합제층 상에 제2양극 합제층을 형성하는 단계를 포함하며, 상기 제1양극 합제층은, 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함한다.In the present invention, there is provided a method for producing a battery pack, comprising the steps of (1) forming a first positive electrode mixture layer on a positive electrode collector, and (2) forming a second positive electrode mixture layer on the first positive electrode mixture layer, The positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V and includes an overcharging active material which generates lithium and gas upon charging.
(1) 제1양극 합제층 형성 단계(1) First positive electrode mixture layer formation step
상기 과충전용 활물질을 포함하는 제1양극 합제층을 형성하는 방법은 특별히 제한되지는 않는다. 다만, 보다 바람직하게는 상기 제1양극 합제층을 형성하는 단계는, 상기 과충전용 활물질을 도전재 및 바인더와 혼합하여 제1양극 형성용 조성물을 형성하는 단계; 및 상기 제1양극 형성용 조성물을 양극 집전체 상에 도포하는 단계;를 포함할 수 있다.The method of forming the first positive electrode material mixture layer containing the overcharge-capable active material is not particularly limited. Preferably, the step of forming the first anode mixture layer comprises: mixing the overcharging active material with a conductive material and a binder to form a first anode formation composition; And applying the composition for forming an anode on the positive electrode current collector.
상기 과충전용 활물질, 도전재 및 바인더를 용매 중에 용해 또는 분산시켜 제1양극 형성용 조성물을 제조할 수 있다. 상기 과충전 활물질, 도전재 및 바인더의 종류 및 함량은 앞서 설명한 바와 같다.The overcharge-capable active material, the conductive material and the binder may be dissolved or dispersed in a solvent to prepare a composition for forming a first anode. The types and contents of the overcharging active material, the conductive material and the binder are as described above.
한편, 상기 제1양극 형성용 조성물을 형성하는 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 과충전용 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.Meanwhile, the solvent for forming the first anode forming composition may be a solvent commonly used in the art, and examples thereof include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpiperazine (NMP), acetone, or water, and either one of them alone or a mixture of two or more of them may be used. The amount of the solvent used is sufficient to dissolve or disperse the overchargeable active material, the conductive material and the binder in consideration of the application thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
다음으로, 상기 제1양극 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제1양극 합제층을 형성할 수 있다.Next, the first positive electrode composition composition may be coated on the positive electrode collector, followed by drying and rolling to form the first positive electrode mixture layer.
한편, 다른 방법으로, 상기 제1양극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 양극을 제조할 수도 있다.Alternatively, the anode may be produced by casting the first composition for forming an anode on a separate support, then peeling the support from the support, and laminating the film on the cathode current collector.
(2) 제2양극 합제층 형성 단계(2) Second positive electrode material mixture layer forming step
본 발명에 있어서, 상기 제2양극 합제층은 상기 제1양극 합제층 상에 형성되는 것으로서, 상기 제2양극 합제층을 형성하는 방법이 특별히 제한되는 것은 아니다. In the present invention, the second positive electrode material mixture layer is formed on the first positive electrode material mixture layer, and the method of forming the second positive electrode material mixture layer is not particularly limited.
다만, 상기 제2양극 합제층은 상기 리튬 전이금속 산화물을 도전재 및 바인더와 혼합하여 제2양극 형성용 조성물을 형성하는 단계; 및 상기 제2양극 형성용 조성물을 상기 제1양극 합제층 상에 도포하는 단계;를 포함하여 형성될 수 있다.However, the second positive electrode mixture layer may be formed by mixing the lithium transition metal oxide with a conductive material and a binder to form a second positive electrode composition; And applying the second composition for forming an anode on the first positive electrode material mixture layer.
상기 양극 집전체 상에 형성된 상기 제1양극 합제층 상에 상기 리튬 전이금속 산화물 및 선택적으로, 바인더 및 도전재를 포함하는 상기 제2양극 합제층 조성물을 도포한 후, 건조 및 압연함으로써 제조될 수 있다.Applying the second positive electrode material mixture composition comprising the lithium transition metal oxide and, optionally, a binder and a conductive material, onto the first positive electrode material mixture layer formed on the positive electrode current collector, followed by drying and rolling have.
이때, 리튬 전이금속 산화물, 바인더, 도전재의 종류 및 함량, 상기 제2양극 합제층 조성물을 형성하는 용매는 앞서 설명한 바와 같다.At this time, the type and content of the lithium transition metal oxide, the binder, the conductive material, and the solvent for forming the second positive electrode material mixture composition are as described above.
리튬 이차전지Lithium secondary battery
이하, 본 발명에 따른 리튬 이차전지에 대해 설명한다.Hereinafter, a lithium secondary battery according to the present invention will be described.
본 발명에 따른 상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함한다.The lithium secondary battery according to the present invention includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다. The anode is as described above. The lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질층을 포함한다. 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector. The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used. In addition, the negative electrode collector may have a thickness of 3 to 500 탆, and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.The anode active material layer optionally includes a binder and a conductive material together with the anode active material. The negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode including a negative electrode active material on the negative electrode collector and, optionally, a binder and a conductive material, or by casting the composition for forming a negative electrode on a separate support , And a film obtained by peeling from the support may be laminated on the negative electrode collector.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides such as SiOx (0 < x < 2), SnO2, vanadium oxide, lithium vanadium oxide and the like capable of doping and dedoping lithium; Or a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used. Also, a metal lithium thin film may be used as the negative electrode active material. The carbon material may be both low-crystalline carbon and high-crystallinity carbon. Examples of the low-crystalline carbon include soft carbon and hard carbon. Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일하다.The binder and the conductive material are the same as those described above for the anode.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.Meanwhile, in the lithium secondary battery, the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions. The separator can be used without limitation, as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte. Specifically, porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used. Further, a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used. In order to secure heat resistance or mechanical strength, a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. Examples of the electrolyte used in the present invention include an organic-based liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 보다 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and? -Caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a straight, branched or cyclic hydrocarbon group of C2 to C20, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Of these, a carbonate-based solvent is more preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, such as ethylene carbonate or propylene carbonate, which can increase the charge- (For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate, etc.). In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1: 1 to about 1: 9, the performance of the electrolytic solution may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt, LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2. LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used. The concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다. In addition to the electrolyte components, the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다. As described above, the lithium secondary battery including the positive electrode according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention ratio, and thus can be applied to portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles electric vehicle (HEV), and the like.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
실시예Example
실시예Example 1 One
<< 제1양극The first anode 합제층Compound layer 형성> Formation>
Li2C2O4, 도전재(덴카블랙 KF1100) 및 PVDF바인더를 90:5:5의 중량비로 하고, NMP를 용매로 하여 혼합하였다. 그 결과로 수득된 혼합물을 분산기기(Paste mixer or homo disperse)를 이용하여 30 분 동안 분산처리하여 제1양극 합제층 형성용 조성물(고형분 함량: 약 70중량%)을 제조하였다. Li 2 C 2 O 4 , a conductive material (denka black KF1100), and a PVDF binder were mixed in a weight ratio of 90: 5: 5 and NMP as a solvent. The resultant mixture was subjected to dispersion treatment for 30 minutes using a disperser (Paste mixer or homo disperse) to prepare a composition for forming a first positive electrode material mixture layer (solid content: about 70% by weight).
상기 제조된 제1양극 합제층 형성용 조성물을 알루미늄 집전체에 도포한 후, 120℃에서 건조 후, 압연하여 제1양극 합제층을 알루미늄 집전체 상에 형성하였다.The composition for forming the first positive electrode material mixture layer was coated on the aluminum current collector, dried at 120 ° C, and rolled to form a first positive electrode material mixture layer on the aluminum current collector.
<양극 제조>&Lt; Preparation of positive electrode &
이후, LiNi0 . 6Co0 . 2Mn0 . 2O2, 도전재(덴카블랙 KF1100) 및 PVDF바인더를 96:2:2의 중량비로 하고, NMP를 용매로 하여 혼합하였다. 그 결과로 수득된 혼합물을 분산기기(Paste mixer or homo disperse)를 이용하여 30분 동안 분산처리하여 제2양극 합제층 형성용 조성물(고형분 함량: 약 75중량%)을 제조한 후, 상기 제2양극 합제층 형성용 조성물을 상기 제1양극 합제층 상에 도포한 후, 120℃에서 건조 후, 압연하여 양극을 제조하였다. Then, LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 , a conductive material (denka black KF1100) and a PVDF binder in a weight ratio of 96: 2: 2, and mixed using NMP as a solvent. The resultant mixture was subjected to dispersion treatment for 30 minutes using a disperser (Paste mixer or homo disperse) to prepare a composition for forming a second positive electrode material mixture layer (solid content: about 75% by weight) The composition for forming the positive electrode material mixture layer was coated on the first positive electrode material mixture layer, dried at 120 캜 and rolled to prepare a positive electrode.
실시예Example 2 2
상기 실시예 1에서 제1양극 합제층 조성물을 제조할 때, Li2C2O4대신 Li2C4O4를 사용한 것을 제외하고는 동일한 방법으로 양극을 제조하였다. A positive electrode in Example 1 in the preparation of the first positive electrode material mixture layer composition, Li 2 C 2 O 4 instead of Li 2 in the same manner except that the C 4 O 4 was prepared.
실시예Example 3 3
상기 실시예 1에서 제1양극 합제층 조성물을 제조할 때, Li2C2O4 대신 LiN3를 사용한 것을 제외하고는 동일한 방법으로 양극을 제조하였다. A positive electrode was prepared in the same manner as in Example 1 except that LiN 3 was used instead of Li 2 C 2 O 4 in the preparation of the first positive electrode material mixture composition.
비교예Comparative Example
비교예Comparative Example 1 One
상기 실시예 1에서 제1양극 합제층을 형성하지 않고, 상기 제2양극 합제층 형성용 조성물을 곧바로 알루미늄 집전체에 도포한 후 120℃에서 건조 후, 압연한 것을 제외하고는 동일한 방법으로 양극을 제조하였다.Except that the first positive electrode material mixture layer was not formed in Example 1 and the composition for forming the second positive electrode material mixture layer was immediately applied to the aluminum current collector and dried at 120 캜 and then rolled, .
비교예Comparative Example 2 2
상기 실시예 1에서 제1양극 합제층 조성물을 제조할 때, Li2C2O4대신 Li2CO3를 사용한 것을 제외하고는 동일한 방법으로 양극을 제조하였다. A positive electrode in Example 1 when producing the first positive electrode material mixture layer composition in, Li 2 C 2 O 4 instead of Li 2 in the same manner except that the CO 3 was prepared.
비교예Comparative Example 3 3
LiNi0 . 6Co0 . 2Mn0 . 2O2, 도전재(덴카블랙 KF1100) 및 PVDF 바인더를 96:2:2의 중량비로 하고, NMP를 용매로 하여 혼합하였다. 또한, Li2C2O4를 3중량% 첨가하여 혼합하였다. 그 결과로 수득된 혼합물을 분산기기(Paste mixer or homo disperse)를 이용하여 30분 동안 분산처리하여 양극 합제층 형성용 조성물(고형분 함량: 약 70중량%)을 제조한 후, 상기 제조된 양극 합제층 형성용 조성물을 알루미늄 집전체에 도포한 후, 120℃에서 건조 후, 압연하여 양극 합제층을 알루미늄 집전체 상에 형성하였다.LiNi 0 . 6 Co 0 . 2 Mn 0 . 2 O 2 , a conductive material (denka black KF1100) and a PVDF binder in a weight ratio of 96: 2: 2, and mixed using NMP as a solvent. Further, 3 wt% of Li 2 C 2 O 4 was added and mixed. The resultant mixture was subjected to dispersion treatment for 30 minutes using a disperser (Paste mixer or homo disperse) to prepare a composition for forming a positive electrode material mixture layer (solid content: about 70% by weight) The composition for forming a layer was applied to an aluminum current collector, dried at 120 캜, and rolled to form a positive electrode mixture layer on the aluminum current collector.
제조예Manufacturing example
상기 실시예 1 내지 3 및 비교예 1 내지 3에서 제조한 양극을 각각 이용하여 리튬 이차전지를 제조하였다. 보다 구체적으로는 아래와 같다.A lithium secondary battery was prepared using the positive electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3, respectively. More specifically, it is as follows.
<음극 제조>&Lt; Preparation of negative electrode &
음극활물질로서 천연흑연, 카본블랙 도전재, 카르복시메틸 셀룰로오스(CMC) 및 스티렌부타디엔 고무(SBR) 바인더를 96:1:1:2의 중량비로 하고, H2O를 용매로 하여 혼합하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 구리 집전체에 도포한 후 건조 후 압연하여 음극을 제조하였다.The negative electrode active material slurry was prepared by mixing natural graphite, a carbon black conductive material, carboxymethyl cellulose (CMC) and a styrene butadiene rubber (SBR) binder in a weight ratio of 96: 1: 1: 2 and using H 2 O as a solvent . The negative electrode active material slurry was applied to a copper current collector, followed by drying and rolling to prepare a negative electrode.
<< 리튬이차전지Lithium secondary battery 제조> Manufacturing>
상기 실시예 1 내지 3 및 비교예 1 내지 3에서 제조한 각각의 양극과 상기 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다. An electrode assembly was manufactured through a separator made of porous polyethylene between each of the positive electrodes and the negative electrodes prepared in Examples 1 to 3 and Comparative Examples 1 to 3, the electrode assembly was placed inside the case, An electrolyte was injected to prepare a lithium secondary battery. The electrolyte solution was prepared by dissolving 1.0 M lithium hexafluorophosphate (LiPF 6 ) in an organic solvent composed of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixed volume ratio of EC / DMC / EMC = 3/4/3) Respectively.
실험예Experimental Example : 과충전 전지 안전성 실험 : Overcharge Battery Safety Test
실험예Experimental Example 1 One
상기 실시예 1 내지 3 및 비교예 1 내지 3의 양극을 이용하여 제조한 리튬 이차전지를 하기 표 1의 충전 조건으로 충전시켜, 가스가 발생하는 시점에서의 전압(제1양극 합제층의 작동 전압(V))을 측정하였다. 이때 측정되는 작동 전압을 하기 표 1에 나타내었다.The lithium secondary batteries produced using the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 were charged under the charging conditions shown in Table 1 below to determine the voltage at the time of generation of the gas (the operating voltage of the first positive electrode material mixture layer (V)) was measured. The operating voltages measured at this time are shown in Table 1 below.
충전 조건Charging conditions 제1양극 합제층의 작동 전압 (V)The operating voltage (V) of the first positive-
실시예 1Example 1 0.1C @ 25℃0.1 C @ 25 C 5.0~5.2V 5.0 to 5.2V
실시예 2Example 2 0.1C @ 25℃0.1 C @ 25 C 4.25~6V 4.25-6V
1.0C @ 25℃1.0 C @ 25 C 4.5~6V 4.5 ~ 6V
1.0C @ 60℃1.0 C @ 60 C 4.25~5.4V 4.25 to 5.4 V
실시예 3Example 3 1.0C @ 25℃1.0 C @ 25 C 5.0~5.8V 5.0 to 5.8V
비교예 1Comparative Example 1 0.1C @ 25℃0.1 C @ 25 C 작동 없음No operation
비교예 2Comparative Example 2 0.1C @ 25℃0.1 C @ 25 C 작동 없음No operation
비교예 3Comparative Example 3 0.1C @ 25℃0.1 C @ 25 C 작동 없음No operation
실험예Experimental Example 2 2
상기 실시예 1 내지 3 및 비교예 1 내지 3의 양극을 이용하여 제조한 리튬 이차전지를 SOC 100에서 1.0C로 한 시간 동안 충전시키면서 안정성 통과 실험을 수행하였다. 이때 발열이나 폭발 없이, 그 리튬 이차전지의 전압이 8.4V에 도달하면 Pass로, 상기 전압에 도달하지 못하고 이차전지가 발열되거나 폭발하면 Fail로 평가하였다. 실험 결과는 하기 표 2에 기재하였다. The lithium secondary battery prepared using the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 was subjected to stability test while being charged at 1.0 C in SOC 100 for one hour. At this time, when the voltage of the lithium secondary battery reaches 8.4 V without heat or explosion, it is evaluated as Pass. When the secondary battery fails to reach the voltage and the secondary battery is heated or exploded, it is evaluated as Fail. The experimental results are shown in Table 2 below.
안정성 통과 여부 (1.0C @ 25℃ 평가)Stability Passability (1.0C @ 25 ℃ Evaluation)
실시예 1Example 1 PassPass
실시예 2Example 2 Pass Pass
실시예 3Example 3 Pass Pass
비교예 1Comparative Example 1 FailFail
비교예 2Comparative Example 2 FailFail
비교예 3Comparative Example 3 FailFail
상기 표2를 참조하면, 실시예 1~3은 이차전지가 발열이나 폭발 없이 8.4V까지 도달하여 안정성 실험을 Pass하였으나, 비교예 1~3의 경우 8.4V 이전에 발열되거나 폭발하여 안정성 실험에서 Fail로 나타났다. 비교예 2의 경우 과충전시 Li2CO3의 산화반응이 진행되기는 하나 Li2CO3 자체가 소모되거나 소멸되지 않아 저항이 증가되는 정도가 미약하며, 비교예 3의 경우 하나의 양극 합제층에 Li2C2O4이 포함된 것이어서 Li2C2O4이 소모되거나 소멸되더라도 두 층의 양극 합제층으로 형성된 실시예 1~3에 비하여 저항 증가가 적어 상기 전압에 도달하지 못하고 발열되거나 폭발한 것으로 생각된다.Referring to Table 2, in Examples 1 to 3, the secondary battery reached 8.4 V without exothermic or explosion, and passed the stability test. In Comparative Examples 1 to 3, the secondary battery was heated or exploded before 8.4 V, Respectively. In the case of Comparative Example 2, although the oxidation reaction of Li 2 CO 3 proceeded during overcharging, Li 2 CO 3 itself was not consumed or extinguished, so that the degree of resistance increase was slight. In Comparative Example 3, Li 2 C 2 O 4 , even if Li 2 C 2 O 4 is consumed or extinguished, the resistance is lower than those of Examples 1 to 3 formed of the positive electrode mixture layer of two layers, I think.

Claims (19)

  1. 양극 집전체 상에 형성된 제1양극 합제층; 및A first positive electrode mixture layer formed on the positive electrode collector; And
    상기 제1양극 합제층 상에 형성된 제2양극 합제층을 포함하며,And a second positive electrode material mixture layer formed on the first positive electrode material mixture layer,
    상기 제1양극 합제층은, 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함하는 이차전지용 양극. Wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V and includes an overcharging active material which generates lithium and gas upon charging.
  2. 제1항에 있어서,The method according to claim 1,
    상기 과충전용 활물질은 탄소 원소, 및 질소 원소로 이루어진 군에서 선택되는 적어도 하나 이상의 원소를 포함하는 것인 이차전지용 양극.Wherein the overcharging active material comprises at least one element selected from the group consisting of a carbon element and a nitrogen element.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 과충전용 활물질은 Li2C2O4, Li2C4O4, Li2C3O5, Li2C4O6 및 LiN3로 이루어진 군에서 선택되는 적어도 하나 이상인 것인 이차전지용 양극.Wherein the overcharging active material is at least one or more selected from the group consisting of Li 2 C 2 O 4 , Li 2 C 4 O 4 , Li 2 C 3 O 5 , Li 2 C 4 O 6 and LiN 3 .
  4. 제3항에 있어서,The method of claim 3,
    상기 과충전용 활물질은 Li2C2O4 인 것인 이차전지용 양극.The overcharging active material is Li 2 C 2 O 4 Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt;
  5. 제1항에 있어서,The method according to claim 1,
    상기 제1양극 합제층의 두께는 0.1 내지 30 ㎛ 인 이차전지용 양극.Wherein the first positive electrode material mixture layer has a thickness of 0.1 to 30 占 퐉.
  6. 제1항에 있어서,The method according to claim 1,
    상기 제2양극 합제층의 두께는 20 내지 500 ㎛ 인 이차전지용 양극.Wherein the thickness of the second positive electrode material mixture layer is 20 to 500 m.
  7. 제1항에 있어서,The method according to claim 1,
    상기 제1양극 합제층 및 상기 제2양극 합제층의 두께 비는 1:1 내지 1:300인 이차전지용 양극.Wherein the thickness ratio of the first positive electrode material mixture layer and the second positive electrode material mixture layer is from 1: 1 to 1: 300.
  8. 제1항에 있어서,The method according to claim 1,
    상기 제1양극 합제층은 바인더 및 도전재를 더 포함하는 것인 이차전지용 양극.Wherein the first positive electrode material mixture layer further comprises a binder and a conductive material.
  9. 제1항에 있어서,The method according to claim 1,
    상기 제2양극 합제층은 리튬 전이금속 산화물을 포함하는 것인 이차전지용 양극.Wherein the second positive electrode material mixture layer comprises a lithium transition metal oxide.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 리튬 전이금속 산화물은, Lix1CoO2(0.5<x1<1.3), Lix2NiO2(0.5<x2<1.3), Lix3MnO2(0.5<x3<1.3), Lix4Mn2O4(0.5<x4<1.3), Lix5(Nia1Cob1Mnc1)O2(0.5<x5<1.3, 0<a1<1, 0<b1<1, 0<c1<1, a1+b1+c1=1), Lix6Ni1 - y1Coy1O2(0.5<x6<1.3, 0<y1<1), Lix7Co1 -y2Mny2O2(0.5<x7<1.3, 0≤y2<1), Lix8Ni1 - y3Mny3O2(0.5<x8<1.3, O≤y3<1), Lix9(Nia2Cob2Mnc2)O4(0.5<x9<1.3, 0<a2<2, 0<b2<2, 0<c2<2, a2+b2+c2=2), Lix10Mn2 -z1Niz1O4(0.5<x10<1.3, 0<z1<2), Lix11Mn2 - zCozO4(0.5<x11<1.3, 0<z<2), Lix12CoPO4(0.5<x12<1.3), Lix13FePO4(0.5<x13<1.3) 및 Li1 + a3[Nix14Mny3Coz2Mv1]O(2-c)Ac3 (M은 Al, Zr, Zn, Ti, Mg, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이며, 0≤x14≤1.0, 0≤y3<0.6, 0≤z2<0.6, 0≤v1≤0.1, 0≤a3<0.3, 0≤c3≤0.2, a3+x14+y3+z2+v1=1)로 이루어진 군에서 선택되는 적어도 하나 이상인 것인 이차전지용 양극. The lithium transition metal oxide, Li x1 CoO 2 (0.5 < x 1 <1.3), Li x2 NiO 2 (0.5 <x 2 <1.3), Li x3 MnO 2 (0.5 <x 3 <1.3), Li x4 Mn 2 O 4 (0.5 <x 4 < 1.3), Li x5 (Ni a1 Co b1 Mn c1) O 2 (0.5 <x 5 <1.3, 0 <a 1 <1, 0 <b 1 <1, 0 <c 1 < 1, a 1 + b 1 + c 1 = 1), Li x6 Ni 1 - y1 Co y1 O 2 (0.5 <x 6 <1.3, 0 <y 1 <1), Li x7 Co 1 -y2 Mn y2 O 2 (0.5 <x 7 <1.3, 0≤y 2 <1), Li x8 Ni 1 - y3 Mn y3 O 2 (0.5 <x 8 <1.3, O≤y3 <1), Li x9 (Ni a2 Co b2 Mn c2 ) O 4 (0.5 <x 9 <1.3, 0 <a 2 <2, 0 <b 2 <2, 0 <c 2 <2, a 2 + b 2 + c 2 = 2), Li x10 Mn 2 -z1 Ni z1 O 4 (0.5 <x 10 <1.3, 0 <z 1 <2), Li x11 Mn 2 - z Co z O 4 (0.5 <x 11 <1.3, 0 <z <2), Li x12 CoPO 4 ( 0.5 <x 12 <1.3), Li x13 FePO 4 (0.5 <x 13 <1.3) and Li 1 + a3 [Ni x14 Mn y3 Co z2 M v1] O (2-c) A c3 (M is Al, Zr, Zn, Ti, Mg, Ga, and any one or two or more of these elements is selected from the group consisting of in, and; a is at least one member selected from the group consisting of P, F, S and N, 0≤x 14 ≤1.0, 0≤y 3 <0.6, 0≤z 2 <0.6, 0≤v 1 ≤0.1, 0≤a 3 <0.3, 0≤c 3 ≤0.2, a 3 + x 14 + y 3 + z 2 + v 1 = 1) the positive electrode of a secondary battery is at least at least one selected from the group consisting of.
  11. 양극 집전체 상에 제1양극 합제층을 형성하는 단계; 및Forming a first positive electrode mixture layer on the positive electrode collector; And
    상기 제1양극 합제층 상에 제2양극 합제층을 형성하는 단계를 포함하며,And forming a second positive electrode material mixture layer on the first positive electrode material mixture layer,
    상기 제1양극 합제층은 4.25 내지 6.0 V의 작동 전압을 가지며, 충전 시 리튬 및 가스를 발생하는 과충전용 활물질을 포함하는 이차전지용 양극 제조방법.Wherein the first positive electrode material mixture layer has an operating voltage of 4.25 to 6.0 V and includes an overcharging active material which generates lithium and gas upon charging.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 과충전용 활물질은 탄소 원소 및 질소 원소로 이루어진 군에서 선택되는 적어도 하나 이상의 원소를 포함하는 것인 이차전지용 양극 제조방법.Wherein the overcharging active material comprises at least one element selected from the group consisting of a carbon element and a nitrogen element.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 과충전용 활물질은 Li2C2O4, Li2C4O4, Li2C3O5, Li2C4O6 및 LiN3 로 이루어진 군에서 선택되는 적어도 하나 이상인 것인 이차전지용 양극 제조방법.The overcharging active material may be Li 2 C 2 O 4 , Li 2 C 4 O 4 , Li 2 C 3 O 5 , Li 2 C 4 O 6, and LiN 3 Wherein the positive electrode active material is at least one selected from the group consisting of a positive electrode active material and a negative electrode active material.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 과충전용 활물질은 Li2C4O4인 이차전지용 양극 제조방법.Wherein the overcharging active material is Li 2 C 4 O 4 .
  15. 제11항에 있어서,12. The method of claim 11,
    상기 제1양극 합제층은 0.1 내지 30 ㎛ 두께로 형성되는 것인 이차전지용 양극 제조방법.Wherein the first positive electrode material mixture layer is formed to a thickness of 0.1 to 30 占 퐉.
  16. 제11항에 있어서,12. The method of claim 11,
    상기 제2양극 합제층은 20 내지 500 ㎛ 두께로 형성되는 것인 이차전지용 양극 제조방법.Wherein the second positive electrode material mixture layer has a thickness of 20 to 500 mu m.
  17. 제11항에 있어서,12. The method of claim 11,
    상기 제1양극 합제층 및 상기 제2양극 합제층의 두께 비는 1:1 내지 1:300인 이차전지용 양극 제조방법.Wherein the thickness ratio of the first positive electrode material mixture layer and the second positive electrode material mixture layer is from 1: 1 to 1: 300.
  18. 제1항 내지 제10항 중 어느 한 항에 따른 이차전지용 양극을 포함하는 리튬 이차전지.11. A lithium secondary battery comprising a positive electrode for a secondary battery according to any one of claims 1 to 10.
  19. 제18항에 있어서,19. The method of claim 18,
    상기 리튬 이차전지가 과충전 상태가 되었을 때, 상기 제1양극 합제층의 구조 파괴에 의해 상기 양극 집전체와 상기 제2 양극 합제층과의 전기적 접촉이 차단되는 리튬 이차전지.Wherein when the lithium secondary battery is in an overcharged state, electrical contact between the positive electrode collector and the second positive electrode mixture layer is blocked by breakage of the structure of the first positive electrode mixture layer.
PCT/KR2018/011082 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery comprising same WO2019059655A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020515873A JP7062161B2 (en) 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery including this
EP18859067.3A EP3671909B1 (en) 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery including the same
CN201880059198.7A CN111095612B (en) 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery comprising same
US16/647,935 US11569501B2 (en) 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery including the same
PL18859067T PL3671909T3 (en) 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0120694 2017-09-19
KR20170120694 2017-09-19
KR10-2018-0111643 2018-09-18
KR1020180111643A KR102465819B1 (en) 2017-09-19 2018-09-18 Positive electrode for secondary battery and secondary battery comprising the same

Publications (2)

Publication Number Publication Date
WO2019059655A2 true WO2019059655A2 (en) 2019-03-28
WO2019059655A3 WO2019059655A3 (en) 2019-05-09

Family

ID=65811386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011082 WO2019059655A2 (en) 2017-09-19 2018-09-19 Positive electrode for secondary battery and secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019059655A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260990A (en) * 2005-03-17 2006-09-28 Nissan Motor Co Ltd Stacked battery
KR101201044B1 (en) * 2006-04-27 2012-11-14 삼성에스디아이 주식회사 Anode plate and Lithium rechargeable battery using the same and Method of making anode plate
CN103441236B (en) * 2013-09-11 2017-10-13 东莞新能源科技有限公司 Cathode plate of lithium ion battery, lithium ion battery and preparation method thereof
FR3040547B1 (en) * 2015-09-02 2017-08-25 Renault Sas METHOD FOR FORMING A LI-ION BATTERY CELL EQUIPPED WITH A POSITIVE ELECTRODE COMPRISING A SACRIFICIAL SALT

Also Published As

Publication number Publication date
WO2019059655A3 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2018097562A1 (en) Positive electrode for secondary battery and lithium secondary battery comprising same
WO2019151834A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019022422A1 (en) Secondary battery cathode and lithium secondary battery comprising same
WO2019147017A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019194433A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2019164313A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019050282A1 (en) Lithium secondary battery cathode active material, preparation method therefor, lithium secondary battery cathode comprising same, and lithium secondary battery
WO2015065102A1 (en) Lithium secondary battery
WO2019074306A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2020111649A1 (en) Cathode for lithium secondary battery and lithium secondary battery including same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2019022423A1 (en) Secondary battery cathode and lithium secondary battery comprising same
WO2019177403A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2019245286A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery
WO2019203455A1 (en) Anode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019078626A1 (en) Method for preparing cathode active material for secondary battery and secondary battery using same
WO2020145638A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859067

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020515873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859067

Country of ref document: EP

Effective date: 20200317