WO2019059440A1 - Lithium secondary battery separator employing inorganic liquid electrolyte - Google Patents

Lithium secondary battery separator employing inorganic liquid electrolyte Download PDF

Info

Publication number
WO2019059440A1
WO2019059440A1 PCT/KR2017/010687 KR2017010687W WO2019059440A1 WO 2019059440 A1 WO2019059440 A1 WO 2019059440A1 KR 2017010687 W KR2017010687 W KR 2017010687W WO 2019059440 A1 WO2019059440 A1 WO 2019059440A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
separator
lithium
liquid electrolyte
Prior art date
Application number
PCT/KR2017/010687
Other languages
French (fr)
Korean (ko)
Inventor
김한수
김아영
송주혜
정호재
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2019059440A1 publication Critical patent/WO2019059440A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a separator for a lithium secondary battery employing an inorganic liquid electrolyte and a method for producing the same, and more particularly, to a separator for a lithium secondary battery employing an inorganic liquid electrolyte based on sulfur dioxide, To a separation membrane for a lithium secondary battery.
  • the separator which is one of the key components of the lithium secondary battery according to the necessity of a high output and a large capacity battery in an electric vehicle or a medium and large-sized energy storage system including a light weight and miniaturization of a portable electronic device, A material that can be improved is required.
  • the lithium secondary battery includes an electrode assembly composed of an anode, a cathode, and a separator disposed between the anode and the cathode, and an electrolyte containing a lithium salt.
  • charging and discharging proceed while repeating the process of inserting and separating lithium ions from each other between the positive electrode and the negative electrode.
  • the separation membrane includes micro pores, it provides a path through which lithium ions move through the pores, and physically separates the positive and negative electrodes to perform a function of being electrically insulated.
  • the thickness of the separator is reduced, the distance between the anode and the cathode is reduced, which is advantageous in terms of high output and high energy density of the battery.
  • the pore size must be very small in order to maintain the insulating property, .
  • the volume of the electrode assembly itself may become large and the volume-capacity may be deteriorated.
  • the electrochemical characteristics may be deteriorated. If the electrode is partially depleted due to the local depletion of the electrolyte or if the reaction is locally concentrated, lithium metal may precipitate and there is a risk of resin dendrite growth of lithium. Therefore, the electrolyte must be rapidly permeated into the separation membrane, and the state must be maintained uniformly even after wet. In addition, the interface between the electrode and the separation membrane and the electrolyte must be maintained firmly to achieve excellent charge / discharge characteristics and cycle life.
  • the polyolefin separator commercialized for lithium secondary batteries is excellent in chemical stability and mechanical strength, but has a disadvantage in that it has poor affinity with electrolytic solution, especially inorganic liquid electrolyte, and has poor thermal stability. Therefore, a system requiring high output and safety It is necessary to improve it.
  • an example using a composite membrane in which a polyolefin separator is coated with a polymer material or ceramic has been known.
  • lithium secondary battery employing a non-aqueous electrolyte in which a lithium salt is added to a mixed solvent of ethylene carbonate or propylene carbonate which is a high-dielectric solvent and dimethyl carbonate or diethyl carbonate which is a low-viscosity solvent, And a cycle life is limited, and a lithium secondary battery employing an inorganic liquid electrolyte having excellent wettability of a separator has not been reported.
  • the present inventors have found that when the surface of the separator is coated with a polymer material, the wettability of the separator to the electrolyte is greatly improved, and the sulfur dioxide-based The charging / discharging characteristics and the cycle life of the lithium secondary battery including the inorganic liquid electrolyte and the separator can be remarkably improved.
  • the present invention has been accomplished based on this finding.
  • Patent Document 1 Korean Patent Publication No. 10-2016-0109227
  • Patent Document 2 Korean Patent No. 10-1470696
  • Patent Document 3 JP-A-2016-081606
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a lithium secondary battery, which is capable of significantly improving the wettability of a separator for an inorganic liquid electrolyte and significantly improving charge / discharge characteristics and cycle life,
  • the present invention provides a separator for a lithium secondary battery employing a sulfur dioxide-based inorganic liquid electrolyte capable of being stably driven even when the separator is used.
  • a separation membrane for a lithium secondary battery comprising: (a) the lithium secondary battery includes a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected; (b) a separation layer for a lithium secondary battery, wherein a coating layer of a polymer material is formed on both sides of the separation layer.
  • the lithium salt is characterized by at least one selected from the group consisting of LiAlCl 4 , LiGaCl 4 , Li 2 CoCl 4 , Li 2 NiCl 4 , Li 2 CuCl 4 , Li 2 MnCl 4 , Li 2 ZnCl 4 and LiAlBr 4 .
  • the sulfuric acid-impregnated lithium salt-containing inorganic liquid electrolyte is characterized by being LiAlCl 4 -3 SO 2 .
  • the separator is a separator selected from the group consisting of polyethylene, polypropylene, polyester, polyamide, polyimide, polycarbonate, polyacetal, polyether sulfone, polyetheretherketone, polyphenylene oxide, polyphenylene sulfide Or more porous substrate.
  • the polymer material may be selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, polyvinyl acetate, ethylene vinyl acetate copolymer, cellulose acetate, carboxymethylcellulose and polyimide And at least one selected from the group consisting of
  • the coating layer has a thickness of 1 to 10 mu m.
  • the present invention also provides a lithium secondary battery including an anode, an anode, an electrode assembly composed of a porous separator disposed between the anode and the cathode, and an electrolyte, wherein the porous separator has a coating layer of a polymer material on both sides, wherein the electrolyte is a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected.
  • the present invention also provides an energy storage element comprising the lithium secondary battery.
  • the polymer material is coated on the porous separator for a lithium secondary battery, and the wettability of the separator to the electrolyte is greatly improved by employing an inorganic liquid electrolyte based on sulfur dioxide, and ultimately the charge / Life can be remarkably improved.
  • it can be stably driven at a low temperature, so that it can be applied to energy storage devices such as portable electronic devices or electric vehicles.
  • Example 1 is a scanning electron microscope (SEM) image of a membrane according to Example 1 (PEO coated PE separator), PE separator and glass fiber filter of the present invention.
  • Example 2 is a photograph of the wettability of the separator according to Example 1 (PEO coated PE), Comparative Example 1 (PE) and Comparative Example 2 (Glass fiber filter) of the present invention.
  • Example 3 is a graph showing characteristics of an initial cell of a lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
  • Example 4 is a graph showing the charge-discharge cycle capacity and lifetime characteristics of a lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
  • Example 5 is a graph showing the coulomb efficiency in the charge and discharge cycles of the lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
  • Example 6 is a graph showing the relationship between the initial discharge capacity of the lithium secondary battery fabricated in Example 1 of the present invention and the initial discharge capacity of the lithium secondary battery according to Example 1 (75 wt%, 50 wt%, 25 wt%, 10 Weight%) A graph comparing initial discharge capacities of the produced lithium secondary batteries.
  • FIG. 7 is a graph comparing the initial discharge capacities of the lithium secondary batteries manufactured in Example 2 and Comparative Examples 4 to 7, according to Examples and Comparative Examples 1 and 2 of the present invention.
  • Example 8 is a graph showing characteristics of an initial cell by driving the lithium secondary battery fabricated from Example 1 and Comparative Example 3 of the present invention at a low temperature.
  • the present invention relates to a separator for a lithium secondary battery, comprising: a) the lithium secondary battery comprises a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected; (b) a separation layer for a lithium secondary battery, wherein a coating layer of a polymer material is formed on both sides of the separation layer.
  • the electrolyte for a lithium secondary battery is mainly composed of a non-aqueous electrolyte containing lithium salt and lithium, and non-aqueous electrolyte, organic solid electrolyte and inorganic solid electrolyte are used as the non-aqueous electrolyte.
  • the nonaqueous electrolytic solution include nonaqueous electrolytes such as N-methyl-2-pyrrolidinone, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide or tetrahydrofuran A non-magnetic organic solvent is used.
  • a polymer including an ionic dissociation group such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, and a polyvinyl alcohol is used.
  • the inorganic solid electrolyte a nitride, a halide or a sulfate of lithium is used.
  • a lithium salt such as LiCl or LiPF 6 is added to a mixed solvent of ethylene carbonate or propylene carbonate which is a high-dielectric solvent and dimethyl carbonate or diethyl carbonate which is a low-viscosity solvent as a non-aqueous electrolyte,
  • ethylene carbonate or propylene carbonate which is a high-dielectric solvent
  • dimethyl carbonate or diethyl carbonate which is a low-viscosity solvent as a non-aqueous electrolyte
  • the wettability of the separator which is a core component of the lithium secondary battery, is further improved by employing the inorganic salt electrolyte containing lithium salt into which sulfur dioxide is injected as a novel type of electrolyte.
  • LiAlCl 4 , LiGaCl 4 , Li 2 CoCl 4 , Li 2 NiCl 4 , Li 2 CuCl 4 , Li 2 MnCl 4 , Li 2 ZnCl 4 and LiAlBr 4 is used as the lithium salt
  • LiAlCl 4 -3 SO 2 in the form of sulfur dioxide is more preferably used as an inorganic liquid electrolyte.
  • the separation membrane may be formed of a polyolefin (polyethylene or polypropylene), a polyester, a polyamide, a polyimide, a polycarbonate, a polyacetal, a polyether sulfone, a polyether ether ketone, a polyphenylene oxide, May be used as the porous substrate.
  • the separation membrane (porous substrate) has a disadvantage in that the wettability of the inorganic salt liquid electrolyte containing lithium salt injected with sulfur dioxide is somewhat low
  • the present invention is not limited thereto.
  • both sides of the separation membrane are coated with a polymer material, Thereby greatly improving the wettability of the lithium salt-containing inorganic liquid electrolyte.
  • polymer material examples include polyethylene oxide, polyvinyl pyrrolidone, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyvinyl acetate, ethylene vinyl acetate copolymer, cellulose acetate, carboxymethyl cellulose and polyimide At least one selected from the group consisting of polyethylene oxide is preferably used, and polyethylene oxide is more preferably used.
  • the coating layer of the polymer material preferably has a thickness of 1 to 10 mu m. If the thickness of the coating layer is less than 1 mu m, the affinity with the inorganic liquid electrolyte is poor and the wettability may deteriorate. If the thickness of the coating layer is less than 10 mu m , The initial discharge capacity may be lowered.
  • the conventional lithium secondary battery includes an anode, a cathode, an electrode assembly composed of a porous separator disposed between the anode and the cathode, and an electrolyte.
  • an anode, a cathode, And the electrolyte is a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected.
  • porous separator base material
  • polymer material coated on both sides of the porous separator and the lithium salt-containing inorganic liquid electrolyte into which the sulfur dioxide is injected are as described above, and thus the further explanation is omitted.
  • the lithium secondary battery according to the present invention ultimately significantly improves the charge / discharge characteristics and cycle life of the lithium secondary battery, and can be stably driven even at a low temperature, Therefore, the present invention can provide an energy storage device including the lithium secondary battery.
  • a lithium salt-containing inorganic liquid electrolyte in which sulfur dioxide was injected a battery (2032 coin type) was produced by using LiAlCl 4 -3 SO 2. Graphite was used as a working electrode and lithium metal was used as a counter electrode.
  • a battery (2032 coin type) was fabricated in the same manner as in Example 1 except that the thickness of the coating layer was adjusted to 2 ⁇ .
  • a cell (2032 coin type) was fabricated in the same manner as in Example 1, except that a PE separator without a PEO coating was used.
  • a cell (2032 coin type) was fabricated in the same manner as in Example 1 except that a glass fiber filter not coated with PEO was used as a separator.
  • Example 1 was repeated except that 1 M LiPF 6 was added to a mixed organic solvent (1: 1, volume ratio) of ethylene carbonate (EC) / dimethyl carbonate (DMC) instead of the inorganic liquid electrolyte of the above- A battery (2032 coin type) was produced in the same manner.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Example 1 shows a scanning electron microscope (SEM) image of a separation membrane according to Example 1 (PEO coated PE separator), Comparative Example 1 (PE separator) and Comparative Example 2 (Glass fiber filter) It can be confirmed that polyethylene oxide (PEO) was uniformly coated on the porous PE separator according to Example 1 of the present invention.
  • SEM scanning electron microscope
  • FIG. 2 is a photograph showing the wettability of the membrane according to Example 1 (PEO coated PE), Comparative Example 1 (PE) and Comparative Example 2 (Glass fiber filter) of the present invention.
  • Example 1 PET coated PE
  • Comparative Example 1 PE
  • Comparative Example 2 Glass fiber filter
  • Example 1 and Comparative Example 2 did not melt or shrink without reacting with the electrolytic solution, while in the case of Comparative Example 1, It can be seen that it is floating without being impregnated.
  • Figure 3 in Example 1 and Comparative Examples 1 to 3 was it exhibited an initial battery characteristics of the lithium secondary battery manufactured in a graph bar, amperage 20 mA g from the present invention result of driving the each cell to 1, the arms the initial capacity of the lithium secondary battery employing the liquid electrolyte is not as big a Comparative example 1, Comparative example 2 and carrying respective capacitance differences in 356.7 mAh g -1, 354.2 mAh g -1, 356.9 mAh g -1 in example 1 . As the graphite inserts and removes lithium, the flat voltage appears, and the deviation between the three cells is not so large.
  • the initial capacity is 340.9 mAh g -1 , which is much smaller than that of the inorganic liquid electrolyte.
  • the flat voltage is not clearly distinguished, and when a conventional organic liquid electrolyte is employed, the coating layer of the polymer material acts as a resistance of lithium movement, and the resistance of the battery increases.
  • FIG. 4 is a graph showing the charge-discharge cycle capacity and lifetime characteristics of the lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
  • Example 1 since the separation membrane having a thinner thickness and improved electrolyte wettability is used, an inorganic liquid electrolyte based on sulfur dioxide is employed, so the conductivity of lithium ion is increased and the internal resistance is lowered, thereby improving the life characteristic. It can be seen that after 20 cycles, the capacity retention rate rapidly decreases in the case of the comparative example 1, and the capacity retention rate is the lowest in comparison with the comparative example 2 and the example 1. [ The capacity was 221.1 mAh g- 1 on a 47-cycle basis with a 61.9% capacity reduction over the first cycle.
  • FIG. 5 is a graph showing the coulombic efficiency in the charge / discharge cycle of the lithium secondary battery manufactured in Example 1 of the present invention and Comparative Examples 1 to 3.
  • the efficiency was 97 to 98.8% While Comparative Example 1 is maintained at a low efficiency of 94.5 to 96%, while Comparative Example 2 shows a gradual decrease to 95%. Therefore, it can be seen that the lithium secondary battery manufactured from Example 1 has remarkably improved battery performance as compared with the lithium secondary battery manufactured from Comparative Example 1 and Comparative Example 2.
  • the capacity is gradually increased due to the initial low capacity expression, and the efficiency is maintained to be high.
  • Example 6 shows the initial discharge capacity of the lithium secondary battery fabricated in Example 1 of the present invention and the initial discharge capacity of the lithium secondary battery according to Example 1 (75 wt%, 50 wt%, 25 wt% , 10% by weight).
  • the graph of the initial discharge capacity of the produced lithium secondary battery is shown in FIG.
  • the lithium secondary battery (having a concentration of the polymer solution for coating of 90 wt%) manufactured from Example 1 of the present invention and the remaining lithium produced by varying the concentration of the polymer solution for coating It was found that the concentration of the polymer solution for the coating was not a large variable affecting the initial discharge capacity.
  • the lithium secondary battery manufactured in Example 1 It can be seen that the initial discharge capacity of the battery is relatively high.
  • Example 7 is a graph showing the initial discharge capacities of the lithium secondary batteries fabricated in Example 1 and Comparative Example 1 and in Example 2 and Comparative Examples 4 to 7 in different coating thicknesses. As can be seen, in the case of the discharge capacity to be developed, although the difference in the average capacity is not large, it is confirmed that the capacity gradually decreases from the case where the thickness of the coating layer exceeds 10 ⁇ , so that the thickness of the coating layer is preferably 1 ⁇ to 10 ⁇ Do.
  • Example 8 is a graph showing the characteristics of an initial cell by driving the lithium rechargeable battery fabricated from Example 1 and Comparative Example 3 at a low temperature. As the driving temperature is gradually lowered, a comparative example 3 shows that the capacity of the lithium secondary battery fabricated from Example 3 is lowered.
  • the lithium secondary battery employing the inorganic liquid electrolyte maintains a higher ionic conductivity than the lithium secondary battery employing the organic liquid electrolyte even at a low temperature, thereby maintaining the capacity for expressing the lithium secondary battery. It can be seen that the separation membrane having the polymer coating layer formed therein as in Example 1 is used and the lithium secondary battery employing the inorganic liquid electrolyte can be stably driven at a low temperature.
  • the polymer material is coated on the porous separator for a lithium secondary battery and the inorganic liquid electrolyte based on sulfur dioxide is employed, the wettability of the separator to the electrolyte is greatly improved, and ultimately, The cycle life is remarkably improved, and it can be stably driven even at a low temperature, so that it can be applied to an energy storage device such as a portable electronic device or an electric automobile.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

The present invention provides a lithium secondary battery separator characterized in that: (a) the lithium secondary battery comprises a lithium salt-containing inorganic liquid electrolyte in which sulfur dioxide is injected; and (b) coating layers made of a polymer material are formed on both surfaces of the separator. The present invention has greatly improved wettability of a separator in an electrolyte, ultimately and remarkably improves the charge/discharge characteristics and cycle lifespan of a lithium secondary battery and, particularly, can be stably operated even at room temperature, thereby being applicable to an energy storage device such as a portable electronic apparatus or an electric vehicle.

Description

무기 액체 전해질을 채용한 리튬이차전지용 분리막Separator for Lithium Secondary Battery Employing Inorganic Liquid Electrolyte
본 발명은 무기 액체 전해질을 채용한 리튬이차전지용 분리막 및 그 제조방법에 관한 것으로, 보다 상세하게는 이산화황 기반의 무기 액체 전해질을 채용하는 리튬이차전지의 분리막 표면이 고분자 소재로 코팅된 것을 특징으로 하는 리튬이차전지용 분리막에 관한 것이다.The present invention relates to a separator for a lithium secondary battery employing an inorganic liquid electrolyte and a method for producing the same, and more particularly, to a separator for a lithium secondary battery employing an inorganic liquid electrolyte based on sulfur dioxide, To a separation membrane for a lithium secondary battery.
최근, 기술의 발전으로 휴대용 전자기기뿐만 아니라 전기자동차의 동력원, 중대형 에너지 저장 시스템의 전력 저장장치까지 전지의 쓰임새가 넓어지고 있다. 따라서 다양한 요구를 충족시킬 수 있는 리튬이차전지에 대한 연구들이 진행되고 있는데, 특히 전지의 안전성이 중요한 이슈가 되고 있다. 구체적으로, 휴대용 전자기기에서 전지의 경량화 및 소형화를 비롯하여 전기자동차나 중대형 에너지 저장시스템에서 고출력, 대용량 전지의 필요성에 따라 리튬이차전지의 핵심적인 구성요소 중 하나인 분리막은 안전성이 높으면서도 전지성능을 향상시킬 수 있는 소재가 요구된다.In recent years, the development of the technology has widened the use of batteries not only for portable electronic devices but also for power sources for electric vehicles and power storage devices for medium and large-sized energy storage systems. Accordingly, researches on lithium secondary batteries capable of satisfying various demands have been carried out. In particular, safety of batteries is an important issue. Specifically, the separator, which is one of the key components of the lithium secondary battery according to the necessity of a high output and a large capacity battery in an electric vehicle or a medium and large-sized energy storage system including a light weight and miniaturization of a portable electronic device, A material that can be improved is required.
일반적으로 리튬이차전지는 양극, 음극, 그리고 양극과 음극 사이에 배치되는 분리막으로 구성된 전극조립체 및 리튬염이 함유된 전해질을 포함한다. 이러한 리튬 이차전지는 양극과 음극 간에 서로 리튬 이온이 삽입, 탈리되는 과정을 반복하면서 충전과 방전이 진행된다. 이때, 분리막은 미세 공극을 포함하므로 이 공극을 통해 리튬이온이 이동하는 경로를 제공함과 더불어 양극과 음극을 물리적으로 분리시켜 전기적으로 절연되는 기능을 수행한다. 한편, 상기 분리막의 두께가 얇아질수록 양극과 음극의 거리가 줄어들어 전지의 고출력, 고에너지밀도 측면에서 좋지만, 절연특성을 유지하기 위해 기공의 크기가 매우 작아야 하므로 기계적 강도 및 열적 안정성이 저하되는 단점이 있다. 반면, 두꺼운 분리막을 사용할 경우 전극조립체 자체의 부피가 커져 부피 대비 용량이 저하되는 문제가 발생할 수 있다. Generally, the lithium secondary battery includes an electrode assembly composed of an anode, a cathode, and a separator disposed between the anode and the cathode, and an electrolyte containing a lithium salt. In such a lithium secondary battery, charging and discharging proceed while repeating the process of inserting and separating lithium ions from each other between the positive electrode and the negative electrode. At this time, since the separation membrane includes micro pores, it provides a path through which lithium ions move through the pores, and physically separates the positive and negative electrodes to perform a function of being electrically insulated. On the other hand, as the thickness of the separator is reduced, the distance between the anode and the cathode is reduced, which is advantageous in terms of high output and high energy density of the battery. However, since the pore size must be very small in order to maintain the insulating property, . On the other hand, when a thick separator is used, the volume of the electrode assembly itself may become large and the volume-capacity may be deteriorated.
또한, 물리적 특성을 만족시키더라도 전해액의 젖음성(wettability)이 확보되지 못하다면 전기화학적 특성이 저하될 수 있다. 전해질의 국부적인 고갈로 인해 전극이 일부 퇴화되거나 반응이 국부적으로 집중하게 되면 리튬 금속이 석출될 가능성이 있어 리튬의 수지상 성장 우려도 있다. 따라서 분리막에 전해질이 빠르게 스며들어야 하고, 젖은 후에도 계속 균일하게 그 상태를 유지하여야 하며, 아울러 전극, 분리막과 전해질 사이의 계면이 견고하게 유지되어야 우수한 충방전 특성과 사이클 수명을 달성할 수 있다.In addition, even if the physical properties are satisfied, if the wettability of the electrolytic solution can not be secured, the electrochemical characteristics may be deteriorated. If the electrode is partially depleted due to the local depletion of the electrolyte or if the reaction is locally concentrated, lithium metal may precipitate and there is a risk of resin dendrite growth of lithium. Therefore, the electrolyte must be rapidly permeated into the separation membrane, and the state must be maintained uniformly even after wet. In addition, the interface between the electrode and the separation membrane and the electrolyte must be maintained firmly to achieve excellent charge / discharge characteristics and cycle life.
그런데 현재 리튬이차전지용으로 상용화된 폴리올레핀계 분리막의 경우, 화학적 안정성 및 기계적 강도가 우수하나 전해액, 특히 무기 액체 전해질과의 친화성이 좋지 않으며, 열적 안정성이 떨어지는 단점이 있어 고출력 및 안전성을 요구하는 시스템에 적용시키기 위해서는 개선이 필요한 실정이다. 이를 위하여 종래에는 폴리올레핀계 분리막을 고분자 물질 또는 세라믹으로 코팅한 복합막을 사용한 예가 공지되어 있다. 그러나 이는 대부분 리튬염을 고유전성 용매인 에틸렌카보네이트 또는 프로필렌카보네이트와 저점도 용매인 디메틸카보네이트 또는 디에틸카보네이트의 혼합용매에 첨가한 형태의 비수계 전해질을 채용한 리튬이차전지용으로 개발된 것으로 충방전 특성 및 사이클 수명에 한계가 있고, 분리막의 젖음성이 우수한 무기 액체 전해질을 채용하는 리튬이차전지용으로 개발된 사례는 보고된바 없다.However, the polyolefin separator commercialized for lithium secondary batteries is excellent in chemical stability and mechanical strength, but has a disadvantage in that it has poor affinity with electrolytic solution, especially inorganic liquid electrolyte, and has poor thermal stability. Therefore, a system requiring high output and safety It is necessary to improve it. For this purpose, an example using a composite membrane in which a polyolefin separator is coated with a polymer material or ceramic has been known. However, most of them have been developed for a lithium secondary battery employing a non-aqueous electrolyte in which a lithium salt is added to a mixed solvent of ethylene carbonate or propylene carbonate which is a high-dielectric solvent and dimethyl carbonate or diethyl carbonate which is a low-viscosity solvent, And a cycle life is limited, and a lithium secondary battery employing an inorganic liquid electrolyte having excellent wettability of a separator has not been reported.
그러므로 본 발명자들은 리튬염에 이산화황 가스가 주입된 무기 액체 전해질을 채용한 리튬이차전지용 분리막으로서, 상기 분리막의 표면을 고분자 소재로 코팅하면, 전해질에 대한 분리막의 젖음성이 크게 향상됨으로써, 상기 이산화황 기반의 무기 액체 전해질 및 분리막을 포함하는 리튬이차전지의 충방전 특성 및 사이클 수명이 현저하게 개선될 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.Therefore, the present inventors have found that when the surface of the separator is coated with a polymer material, the wettability of the separator to the electrolyte is greatly improved, and the sulfur dioxide-based The charging / discharging characteristics and the cycle life of the lithium secondary battery including the inorganic liquid electrolyte and the separator can be remarkably improved. The present invention has been accomplished based on this finding.
(선행기술문헌)(Prior art document)
(특허문헌)(Patent Literature)
특허문헌 1. 한국공개특허 제10-2016-0109227호 Patent Document 1. Korean Patent Publication No. 10-2016-0109227
특허문헌 2. 한국등록특허 제10-1470696호Patent Document 2. Korean Patent No. 10-1470696
특허문헌 3. 일본공개특허 제2016-081606호Patent Document 3: JP-A-2016-081606
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 무기 액체 전해질에 대한 분리막의 젖음성이 크게 향상되고, 리튬이차전지의 충방전 특성 및 사이클 수명이 현저하게 개선되며, 특히 저온에서도 안정적으로 구동이 가능한 이산화황 기반의 무기 액체 전해질을 채용한 리튬이차전지용 분리막을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a lithium secondary battery, which is capable of significantly improving the wettability of a separator for an inorganic liquid electrolyte and significantly improving charge / discharge characteristics and cycle life, The present invention provides a separator for a lithium secondary battery employing a sulfur dioxide-based inorganic liquid electrolyte capable of being stably driven even when the separator is used.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 리튬이차전지용 분리막에 있어서, (a) 상기 리튬이차전지는 이산화황이 주입된 리튬염 함유 무기 액체 전해질을 포함하며; (b) 상기 분리막은 양면에 고분자소재의 코팅층이 형성된 것;을 특징으로 하는 리튬이차전지용 분리막을 제공한다.According to an aspect of the present invention, there is provided a separation membrane for a lithium secondary battery, comprising: (a) the lithium secondary battery includes a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected; (b) a separation layer for a lithium secondary battery, wherein a coating layer of a polymer material is formed on both sides of the separation layer.
상기 리튬염은 LiAlCl4, LiGaCl4, Li2CoCl4, Li2NiCl4, Li2CuCl4, Li2MnCl4, Li2ZnCl4 및 LiAlBr4로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 한다.The lithium salt is characterized by at least one selected from the group consisting of LiAlCl 4 , LiGaCl 4 , Li 2 CoCl 4 , Li 2 NiCl 4 , Li 2 CuCl 4 , Li 2 MnCl 4 , Li 2 ZnCl 4 and LiAlBr 4 .
상기 이산화황이 주입된 리튬염 함유 무기 액체 전해질은 LiAlCl4-3SO2인 것을 특징으로 한다. The sulfuric acid-impregnated lithium salt-containing inorganic liquid electrolyte is characterized by being LiAlCl 4 -3 SO 2 .
(b) 상기 분리막은 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리아세탈, 폴리에테르술폰, 폴리에테르에테르케톤, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로 이루어진 군으로부터 선택된 1종 이상의 다공성 기재인 것을 특징으로 한다.(b) the separator is a separator selected from the group consisting of polyethylene, polypropylene, polyester, polyamide, polyimide, polycarbonate, polyacetal, polyether sulfone, polyetheretherketone, polyphenylene oxide, polyphenylene sulfide Or more porous substrate.
상기 고분자소재는 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리아크릴로니트릴, 폴리비닐리덴플루오라이드, 폴리메틸메타크릴레이트, 폴리비닐아세테이트, 에틸렌비닐아세테이트 공중합체, 셀룰로오스아세테이트, 카르복시메틸셀룰로오스 및 폴리이미드로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 한다.The polymer material may be selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, polyvinyl acetate, ethylene vinyl acetate copolymer, cellulose acetate, carboxymethylcellulose and polyimide And at least one selected from the group consisting of
상기 코팅층은 그 두께가 1~10 ㎛인 것을 특징으로 한다.The coating layer has a thickness of 1 to 10 mu m.
또한, 본 발명은 양극, 음극, 상기 양극과 음극 사이에 배치되는 다공성 분리막으로 구성된 전극조립체, 및 전해액을 포함하는 리튬이차전지에 있어서, 상기 다공성 분리막은 양면에 고분자소재의 코팅층이 형성되어 있으며, 상기 전해액은 이산화황이 주입된 리튬염 함유 무기 액체 전해질인 것을 특징으로 하는 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery including an anode, an anode, an electrode assembly composed of a porous separator disposed between the anode and the cathode, and an electrolyte, wherein the porous separator has a coating layer of a polymer material on both sides, Wherein the electrolyte is a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected.
또한, 본 발명은 상기 리튬이차전지를 포함하는 에너지 저장 소자를 제공한다. The present invention also provides an energy storage element comprising the lithium secondary battery.
본 발명에 따르면, 종래 리튬이차전지용 다공성 분리막 기재에 고분자소재가 코팅되고, 이산화황 기반의 무기 액체 전해질을 채용함으로써 전해질에 대한 분리막의 젖음성이 크게 향상되고, 궁극적으로 리튬이차전지의 충방전 특성 및 사이클 수명이 현저하게 개선되며, 특히 저온에서도 안정적으로 구동이 가능하여 휴대용 전자기기 또는 전기자동차 등의 에너지 저장 소자에 응용이 가능하다.According to the present invention, the polymer material is coated on the porous separator for a lithium secondary battery, and the wettability of the separator to the electrolyte is greatly improved by employing an inorganic liquid electrolyte based on sulfur dioxide, and ultimately the charge / Life can be remarkably improved. In particular, it can be stably driven at a low temperature, so that it can be applied to energy storage devices such as portable electronic devices or electric vehicles.
도 1은 본 발명의 실시예 1(PEO coated PE separator), 비교예 1(PE separator) 및 비교예 2(Glass fiber filter)에 따른 분리막의 주사전자현미경(SEM) 이미지.1 is a scanning electron microscope (SEM) image of a membrane according to Example 1 (PEO coated PE separator), PE separator and glass fiber filter of the present invention.
도 2는 본 발명의 실시예 1(PEO coated PE), 비교예 1(PE) 및 비교예 2(Glass fiber filter)에 따른 분리막의 젖음성을 관찰한 실물 사진.2 is a photograph of the wettability of the separator according to Example 1 (PEO coated PE), Comparative Example 1 (PE) and Comparative Example 2 (Glass fiber filter) of the present invention.
도 3은 본 발명의 실시예 1 및 비교예 1 내지 3으로부터 제작된 리튬이차전지의 초기 전지 특성을 나타낸 그래프.3 is a graph showing characteristics of an initial cell of a lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
도 4는 본 발명의 실시예 1 및 비교예 1 내지 3으로부터 제작된 리튬이차전지의 충방전 사이클 용량 및 수명 특성을 나타낸 그래프.4 is a graph showing the charge-discharge cycle capacity and lifetime characteristics of a lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
도 5는 본 발명의 실시예 1 및 비교예 1 내지 3으로부터 제작된 리튬이차전지의 충방전 사이클에서 쿨롱 효율을 나타낸 그래프.5 is a graph showing the coulomb efficiency in the charge and discharge cycles of the lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention.
도 6은 본 발명의 실시예 1로부터 제작된 리튬이차전지의 초기 방전용량 및 실시예 1에 따르되, 코팅을 위한 고분자용액의 농도를 달리하여(75 중량%, 50중량%, 25 중량%, 10 중량%) 제작된 리튬이차전지의 초기 방전용량을 비교한 그래프.6 is a graph showing the relationship between the initial discharge capacity of the lithium secondary battery fabricated in Example 1 of the present invention and the initial discharge capacity of the lithium secondary battery according to Example 1 (75 wt%, 50 wt%, 25 wt%, 10 Weight%) A graph comparing initial discharge capacities of the produced lithium secondary batteries.
도 7은 본 발명의 실시예 및 비교예 1, 그리고 코팅층의 두께를 달리하여 실시예 2 및 비교예 4 내지 7로부터 제작된 리튬이차전지의 초기 방전용량을 비교한 그래프.FIG. 7 is a graph comparing the initial discharge capacities of the lithium secondary batteries manufactured in Example 2 and Comparative Examples 4 to 7, according to Examples and Comparative Examples 1 and 2 of the present invention.
도 8은 본 발명의 실시예 1 및 비교예 3으로부터 제작된 리튬이차전지를 저온에서 구동하여 초기 전지 특성을 나타낸 그래프.8 is a graph showing characteristics of an initial cell by driving the lithium secondary battery fabricated from Example 1 and Comparative Example 3 of the present invention at a low temperature.
이하에서는 본 발명에 따른 이산화황 기반의 무기 액체 전해질을 채용한 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, a separator for a lithium secondary battery employing a sulfur dioxide-based inorganic liquid electrolyte according to the present invention and a lithium secondary battery including the same will be described in detail with reference to the accompanying drawings.
본 발명은, 리튬이차전지용 분리막에 있어서, a) 상기 리튬이차전지는 이산화황이 주입된 리튬염 함유 무기 액체 전해질을 포함하며; (b) 상기 분리막은 양면에 고분자소재의 코팅층이 형성된 것;을 특징으로 하는 리튬이차전지용 분리막을 제공한다.The present invention relates to a separator for a lithium secondary battery, comprising: a) the lithium secondary battery comprises a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected; (b) a separation layer for a lithium secondary battery, wherein a coating layer of a polymer material is formed on both sides of the separation layer.
종래 리튬이차전지용 전해질은 주로 리튬염 함유 비수계 전해질로서, 비수 전해질과 리튬으로 구성되는바, 비수 전해질로는 비수 전해액, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다. 상기 비수 전해액으로서는 N-메틸-2-피롤리디논, 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 감마-부티로락톤, 디메틸포름아미드, 디메틸아세트아미드, 디메틸술폭시드 또는 테트라히드로퓨란과 같은 비양자성 유기용매를 사용하고 있다.Conventionally, the electrolyte for a lithium secondary battery is mainly composed of a non-aqueous electrolyte containing lithium salt and lithium, and non-aqueous electrolyte, organic solid electrolyte and inorganic solid electrolyte are used as the non-aqueous electrolyte. Examples of the nonaqueous electrolytic solution include nonaqueous electrolytes such as N-methyl-2-pyrrolidinone, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide or tetrahydrofuran A non-magnetic organic solvent is used.
또한, 유기 고체 전해질로서는 폴리에틸렌 유도체, 폴리에틸렌옥사이드 유도체, 폴리프로필렌옥사이드 유도체, 인산에스테르 중합체, 폴리비닐알코올 등의 이온성 해리기를 포함하는 중합체 등을 사용하고 있다.As the organic solid electrolyte, a polymer including an ionic dissociation group such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphoric acid ester polymer, and a polyvinyl alcohol is used.
또한, 무기 고체 전해질로서는 리튬의 질화물, 할로겐화물 또는 황산염 등을 사용하고 있다.As the inorganic solid electrolyte, a nitride, a halide or a sulfate of lithium is used.
특히, LiCl 또는 LiPF6과 같은 리튬염을 비수 전해액으로서 고유전성 용매인 에틸렌카보네이트 또는 프로필렌카보네이트와 저점도 용매인 디메틸카보네이트 또는 디에틸카보네이트의 혼합용매에 첨가한 형태의 비수계 전해질이 리튬이차전지에 주로 채용되고 있으나, 충방전 특성 및 사이클 수명에 한계가 있어 새로운 전해질 개발에 대한 필요성이 꾸준히 제기되었다.In particular, a lithium salt such as LiCl or LiPF 6 is added to a mixed solvent of ethylene carbonate or propylene carbonate which is a high-dielectric solvent and dimethyl carbonate or diethyl carbonate which is a low-viscosity solvent as a non-aqueous electrolyte, However, since the charge and discharge characteristics and the cycle life are limited, the need for development of new electrolytes has been steadily raised.
따라서 본 발명에서는 신규한 형태의 전해질로서 이산화황이 주입된 리튬염 함유 무기 액체 전해질을 채용함으로써 리튬이차전지의 핵심 구성요소인 분리막의 젖음성(wettability)을 더욱 향상시키고자 하였다.Accordingly, in the present invention, the wettability of the separator, which is a core component of the lithium secondary battery, is further improved by employing the inorganic salt electrolyte containing lithium salt into which sulfur dioxide is injected as a novel type of electrolyte.
이때, 상기 리튬염으로서는 LiAlCl4, LiGaCl4, Li2CoCl4, Li2NiCl4, Li2CuCl4, Li2MnCl4, Li2ZnCl4 및 LiAlBr4로 이루어진 군으로부터 선택된 1종 이상의 것을 사용하며, 이산화황이 주입된 형태인 LiAlCl4-3SO2를 무기 액체 전해질로 더욱 바람직하게 사용한다.At this time, at least one selected from the group consisting of LiAlCl 4 , LiGaCl 4 , Li 2 CoCl 4 , Li 2 NiCl 4 , Li 2 CuCl 4 , Li 2 MnCl 4 , Li 2 ZnCl 4 and LiAlBr 4 is used as the lithium salt , And LiAlCl 4 -3 SO 2 in the form of sulfur dioxide is more preferably used as an inorganic liquid electrolyte.
또한, 종래에는 리튬이차전지용 분리막(separator)으로서 상용화된 유리섬유 필터를 사용하는 예가 많이 있으나, 이를 적용한 리튬이차전지는 수십 사이클 후 용량 유지율이 급격히 떨어지는 단점이 있으므로, 본 발명에서는 이를 대체하고자 (b) 상기 분리막은 폴리올레핀계(폴리에틸렌 또는 폴리프로필렌)를 비롯하여 폴리에스테르, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리아세탈, 폴리에테르술폰, 폴리에테르에테르케톤, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로 이루어진 군으로부터 선택된 1종 이상의 다공성 기재를 사용할 수 있다.Conventionally, there are many examples in which a commercialized glass fiber filter is used as a separator for a lithium secondary battery. However, since the lithium secondary battery employing the glass fiber filter has a disadvantage that the capacity retention rate drops sharply after several decades, ) The separation membrane may be formed of a polyolefin (polyethylene or polypropylene), a polyester, a polyamide, a polyimide, a polycarbonate, a polyacetal, a polyether sulfone, a polyether ether ketone, a polyphenylene oxide, May be used as the porous substrate.
그러나 상기 분리막(다공성 기재)들은 본 발명에서 채용한 이산화황이 주입된 리튬염 함유 무기 액체 전해질에 대한 젖음성이 다소 떨어지는 단점이 있으므로, 본 발명에서는 상기 분리막의 양면을 고분자소재로 코팅함으로써 이산화황이 주입된 리튬염 함유 무기 액체 전해질에 대한 젖음성을 크게 향상시킨다.However, since the separation membrane (porous substrate) has a disadvantage in that the wettability of the inorganic salt liquid electrolyte containing lithium salt injected with sulfur dioxide is somewhat low, the present invention is not limited thereto. In the present invention, both sides of the separation membrane are coated with a polymer material, Thereby greatly improving the wettability of the lithium salt-containing inorganic liquid electrolyte.
상기 고분자소재로서는 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리아크릴로니트릴, 폴리비닐리덴플루오라이드, 폴리메틸메타크릴레이트, 폴리비닐아세테이트, 에틸렌비닐아세테이트 공중합체, 셀룰로오스아세테이트, 카르복시메틸셀룰로오스 및 폴리이미드로 이루어진 군으로부터 선택된 1종 이상의 것을 바람직하게 사용하며, 특히 폴리에틸렌옥사이드를 더욱 바람직하게 사용한다.Examples of the polymer material include polyethylene oxide, polyvinyl pyrrolidone, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyvinyl acetate, ethylene vinyl acetate copolymer, cellulose acetate, carboxymethyl cellulose and polyimide At least one selected from the group consisting of polyethylene oxide is preferably used, and polyethylene oxide is more preferably used.
이때, 상기 고분자소재의 코팅층은 그 두께가 1~10 ㎛인 것이 바람직한바, 코팅층의 두께가 1 ㎛ 미만이면 무기 액체 전해질과의 친화성이 좋지 않아 젖음성이 떨어질 수 있고, 코팅층의 두께가 10 ㎛를 초과하면 초기 방전용량이 저하될 수 있다. The coating layer of the polymer material preferably has a thickness of 1 to 10 mu m. If the thickness of the coating layer is less than 1 mu m, the affinity with the inorganic liquid electrolyte is poor and the wettability may deteriorate. If the thickness of the coating layer is less than 10 mu m , The initial discharge capacity may be lowered.
또한, 통상의 리튬이차전지는 양극, 음극, 상기 양극과 음극 사이에 배치되는 다공성 분리막으로 구성된 전극조립체, 및 전해액을 포함하여 구성되는바, 본 발명에서는 양극, 음극, 상기 양극과 음극 사이에 배치되는 다공성 분리막으로 구성된 전극조립체, 및 전해액을 포함하는 리튬이차전지에 있어서, 상기 다공성 분리막은 양면에 고분자소재의 코팅층이 형성되어 있으며, 상기 전해액은 이산화황이 주입된 리튬염 함유 무기 액체 전해질인 것을 특징으로 하는 리튬이차전지를 제공한다.The conventional lithium secondary battery includes an anode, a cathode, an electrode assembly composed of a porous separator disposed between the anode and the cathode, and an electrolyte. In the present invention, an anode, a cathode, And the electrolyte is a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected. The lithium secondary battery according to any one of claims 1 to 3, wherein the porous separator has a porous coating layer on both surfaces thereof. To provide lithium secondary batteries.
이때, 상기 다공성 분리막(기재), 상기 다공성 분리막의 양면에 코팅되는 고분자소재 및 이산화황이 주입된 리튬염 함유 무기 액체 전해질은 상술한 바와 같으므로 더 이상의 설명을 생략한다.Here, the porous separator (base material), the polymer material coated on both sides of the porous separator, and the lithium salt-containing inorganic liquid electrolyte into which the sulfur dioxide is injected are as described above, and thus the further explanation is omitted.
또한, 본 발명에 따른 상기 리튬이차전지는 궁극적으로 리튬이차전지의 충방전 특성 및 사이클 수명이 현저하게 개선되며, 특히 저온에서도 안정적으로 구동이 가능하여 휴대용 전자기기 또는 전기자동차 등의 에너지 저장 소자에 응용이 가능하므로, 본 발명에서는 상기 리튬이차전지를 포함하는 에너지 저장 소자를 제공할 수 있다.Also, the lithium secondary battery according to the present invention ultimately significantly improves the charge / discharge characteristics and cycle life of the lithium secondary battery, and can be stably driven even at a low temperature, Therefore, the present invention can provide an energy storage device including the lithium secondary battery.
이하 구체적인 실시예 및 비교예를 상세히 설명한다. Hereinafter, specific examples and comparative examples will be described in detail.
(실시예 1)(Example 1)
폴리에틸렌옥사이드(PEO) 분말을 아세토니트릴(Acetonitrile) 용매에 용해시킨 고분자용액(90 중량%)을 상용화된 다공성 폴리에틸렌(PE) 분리막(두께 16 ㎛)의 양면에 캐스팅법으로 코팅한 후, 40℃에서 2시간 이상 건조하여 PEO가 코팅된 PE 분리막(PEO coated PE separator)을 제조하였으며, 이때 코팅층의 두께는 6 ㎛가 되도록 조절하였다. 이산화황이 주입된 리튬염 함유 무기 액체 전해질로서는 LiAlCl4-3SO2를 사용하여 전지(2032 coin type)를 제작하였으며, 이때 사용한 작동전극은 그라파이트, 상대전극은 리튬금속이었다.A polymer solution (90 wt%) in which polyethylene oxide (PEO) powder was dissolved in acetonitrile solvent was coated on both sides of a commercially available porous polyethylene (PE) separator (thickness 16 탆) by casting method, PEO coated PE separator was prepared by drying for more than 2 hours. The thickness of the coating layer was adjusted to 6 ㎛. As a lithium salt-containing inorganic liquid electrolyte in which sulfur dioxide was injected, a battery (2032 coin type) was produced by using LiAlCl 4 -3 SO 2. Graphite was used as a working electrode and lithium metal was used as a counter electrode.
(실시예 2)(Example 2)
코팅층의 두께를 2 ㎛가 되도록 조절한 것을 제외하고는 실시예 1과 동일하게 전지(2032 coin type)를 제작하였다.A battery (2032 coin type) was fabricated in the same manner as in Example 1 except that the thickness of the coating layer was adjusted to 2 탆.
(비교예 1)(Comparative Example 1)
PEO가 코팅되지 않은 다공성 PE 분리막(PE separator)을 사용한 것을 제외하고는 실시예 1과 동일하게 전지(2032 coin type)를 제작하였다.A cell (2032 coin type) was fabricated in the same manner as in Example 1, except that a PE separator without a PEO coating was used.
(비교예 2)(Comparative Example 2)
분리막으로서 PEO가 코팅되지 않은 유리섬유 필터(Glass fiber filter)를 사용한 것을 제외하고는 실시예 1과 동일하게 전지(2032 coin type)를 제작하였다.A cell (2032 coin type) was fabricated in the same manner as in Example 1 except that a glass fiber filter not coated with PEO was used as a separator.
(비교예 3)(Comparative Example 3)
상기 실시예의 무기 액체 전해질 대신에 에틸렌카보네이트(EC)/디메틸카보네이트(DMC)의 혼합 유기용매(1:1, 부피비)에 1M LiPF6가 첨가된 유기 액체 전해질을 사용한 것을 제외하고는 실시예 1과 동일하게 전지(2032 coin type)를 제작하였다. Example 1 was repeated except that 1 M LiPF 6 was added to a mixed organic solvent (1: 1, volume ratio) of ethylene carbonate (EC) / dimethyl carbonate (DMC) instead of the inorganic liquid electrolyte of the above- A battery (2032 coin type) was produced in the same manner.
(비교예 4 내지 7)(Comparative Examples 4 to 7)
코팅층의 두께를 달리한 것[12 ㎛(비교예 4), 20 ㎛(비교예 5), 28 ㎛(비교예 6), 34 ㎛(비교예 7)]을 제외하고는 실시예 1과 동일하게 전지(2032 coin type)를 제작하였다.Except for the difference in thickness of the coating layer (12 占 퐉 (Comparative Example 4), 20 占 퐉 (Comparative Example 5), 28 占 퐉 (Comparative Example 6), and 34 占 퐉 (Comparative Example 7) A battery (2032 coin type) was fabricated.
도 1에는 본 발명의 실시예 1(PEO coated PE separator), 비교예 1(PE separator) 및 비교예 2(Glass fiber filter)에 따른 분리막의 주사전자현미경(SEM) 이미지를 나타내었는바, 본 발명의 실시예 1에 따라 다공성 PE 분리막(PE separator)에 폴리에틸렌옥사이드(PEO)가 균일하게 코팅되었음을 확인할 수 있다.1 shows a scanning electron microscope (SEM) image of a separation membrane according to Example 1 (PEO coated PE separator), Comparative Example 1 (PE separator) and Comparative Example 2 (Glass fiber filter) It can be confirmed that polyethylene oxide (PEO) was uniformly coated on the porous PE separator according to Example 1 of the present invention.
또한, 도 2에는 본 발명의 실시예 1(PEO coated PE), 비교예 1(PE) 및 비교예 2(Glass fiber filter)에 따른 분리막의 젖음성을 관찰한 실물 사진을 나타내었다. 도 2에서 보는 바와 같이, 전해액에 접촉하지 않은 상태에서는 실시예 1, 비교예 1, 2 모두 불투명한 흰색의 면을 나타낸다. 그런데 전해액에 접촉하는 순간 실시예 1과 비교예 2는 전해액이 함침되며 가라앉는 반면, 비교예 1의 경우 색변화 없이 전해액층 위에 떠 있는 것을 확인할 수 있다. 또한, 1일, 7일, 21일로 시간이 경과될 때, 실시예 1과 비교예 2는 전해액과 반응하여 녹거나 수축하지 않고 형태를 그대로 유지하는 반면, 비교예 1의 경우에는 전해액과의 친화도가 없어 함침되지 않고 계속 떠 있는 것을 볼 수 있다.FIG. 2 is a photograph showing the wettability of the membrane according to Example 1 (PEO coated PE), Comparative Example 1 (PE) and Comparative Example 2 (Glass fiber filter) of the present invention. As shown in FIG. 2, in Example 1 and Comparative Examples 1 and 2, opaque white faces are shown in a state where they are not in contact with the electrolytic solution. However, it can be seen that the electrolyte solution is impregnated into the electrolyte solution at the instant of contact with the electrolytic solution, while the electrolyte solution is floated on the electrolyte solution layer in the case of Comparative Example 1 without color change. In addition, when the time elapsed to 1 day, 7 days, and 21 days, Example 1 and Comparative Example 2 did not melt or shrink without reacting with the electrolytic solution, while in the case of Comparative Example 1, It can be seen that it is floating without being impregnated.
또한, 도 3에는 본 발명의 실시예 1 및 비교예 1 내지 3으로부터 제작된 리튬이차전지의 초기 전지 특성을 그래프로 나타내었는바, 전류량 20 mA g- 1 로 각각의 전지를 구동시킨 결과, 무기 액체 전해질을 채용한 리튬이차전지에서의 초기용량은 비교예 1, 비교예 2 및 실시예 1에서 각각 356.7 mAh g-1, 354.2 mAh g-1, 356.9 mAh g-1로 용량차이가 크지는 않다. 그라파이트에 리튬이 삽입, 탈리됨에 따라 나타나는 평탄전압도 잘 보이며, 세 전지 간 편차가 그리 크지 않음을 알 수 있다.In addition, Figure 3 in Example 1 and Comparative Examples 1 to 3 was it exhibited an initial battery characteristics of the lithium secondary battery manufactured in a graph bar, amperage 20 mA g from the present invention result of driving the each cell to 1, the arms the initial capacity of the lithium secondary battery employing the liquid electrolyte is not as big a Comparative example 1, Comparative example 2 and carrying respective capacitance differences in 356.7 mAh g -1, 354.2 mAh g -1, 356.9 mAh g -1 in example 1 . As the graphite inserts and removes lithium, the flat voltage appears, and the deviation between the three cells is not so large.
그러나 유기 액체 전해질을 채용한 비교예 3의 리튬이차전지에서 초기용량은 340.9 mAh g-1로 무기 액체 전해질을 채용한 경우보다 용량이 매우 적다. 이는 무기 액체 전해질의 경우와 달리 평탄전압이 뚜렷이 구분되지 않는 것처럼 통상의 유기 액체 전해질을 채용할 경우, 고분자소재의 코팅층이 리튬 이동의 저항체로 작용되어 전지 저항요소가 증가하는 것을 알 수 있다. However, in the lithium secondary battery of Comparative Example 3 employing the organic liquid electrolyte, the initial capacity is 340.9 mAh g -1 , which is much smaller than that of the inorganic liquid electrolyte. This is because unlike the case of the inorganic liquid electrolyte, the flat voltage is not clearly distinguished, and when a conventional organic liquid electrolyte is employed, the coating layer of the polymer material acts as a resistance of lithium movement, and the resistance of the battery increases.
또한, 도 4에는 본 발명의 실시예 1 및 비교예 1 내지 3으로부터 제작된 리튬이차전지의 충방전 사이클 용량 및 수명 특성을 그래프로 나타내었다. 실시예 1에서는 두께가 보다 얇고, 전해액 젖음성이 향상된 분리막을 사용함과 더불어 이산화황 기반의 무기 액체 전해질을 채용하기 때문에 리튬이온의 전도성이 증가하고 내부 저항을 낮춤으로써 수명 특성이 향상된다. 20 사이클 이후, 비교예 1의 경우에는 급격하게 용량 유지율이 떨어지는 것을 볼 수 있고, 비교예 2와 실시예 1에 비해 용량 유지율이 가장 낮은 것을 확인할 수 있다. 47 사이클 기준 221.1 mAh g-1의 용량으로 첫 사이클 대비 61.9% 의 용량으로 용량이 제일 줄어들었음을 보여준다. 비교예 2의 경우에는 30 사이클 이후, 급격하게 용량 유지율이 떨어지는 것을 볼 수 있는바, 30 사이클 기준 비교예 2의 용량유지율은 350.5 mAh g-1의 용량으로 첫 사이클 대비 98.9%의 용량을 유지하고 있으나, 100 사이클 기준 115.4 mAh g-1의 용량으로 첫 사이클 대비 32.5%의 용량으로 용량이 크게 줄어들었음을 보여준다. 반면, 실시예 1로부터는 100 사이클에서 356.5 mAh g-1의 용량으로 첫 사이클 대비 99.8%의 용량을 유지하는 것으로 이산화황 기반의 무기 액체 전해질을 채용함과 동시에, 다공성 분리막 기재에 젖음성이 좋은 고분자소재를 코팅함으로써 전지의 성능을 현저하게 개선할 수 있었다. 아울러, 비교예 3으로부터 제작된 리튬이차전지의 경우에는 시간이 지남에 따라 발현되는 용량이 높아지는 것처럼 보이지만 이는 초기 저항요소가 높아 발현되지 못했던 용량이 회복되는 정도의 것이라 할 수 있다. FIG. 4 is a graph showing the charge-discharge cycle capacity and lifetime characteristics of the lithium secondary battery manufactured from Example 1 and Comparative Examples 1 to 3 of the present invention. In Example 1, since the separation membrane having a thinner thickness and improved electrolyte wettability is used, an inorganic liquid electrolyte based on sulfur dioxide is employed, so the conductivity of lithium ion is increased and the internal resistance is lowered, thereby improving the life characteristic. It can be seen that after 20 cycles, the capacity retention rate rapidly decreases in the case of the comparative example 1, and the capacity retention rate is the lowest in comparison with the comparative example 2 and the example 1. [ The capacity was 221.1 mAh g- 1 on a 47-cycle basis with a 61.9% capacity reduction over the first cycle. In the case of Comparative Example 2, the capacity retention rate rapidly dropped after 30 cycles. The capacity retention rate of Comparative Example 2 based on 30 cycles was maintained at a capacity of 350.5 mAh g -1 and a capacity of 98.9% based on the first cycle However, the capacity of 115.4 mAh g -1 on a 100-cycle basis shows a significant reduction in capacity to 32.5% of the initial cycle. On the other hand, from Example 1, the sulfuric acid-based inorganic liquid electrolyte was used to maintain a capacity of 99.8% as compared with the first cycle at a capacity of 356.5 mAh g -1 at 100 cycles, and at the same time, a polymer material The performance of the battery can be remarkably improved. In addition, in the case of the lithium secondary battery manufactured from Comparative Example 3, the capacity developed over time seems to be increased, but it can be said that the capacity that has not been developed due to a high initial resistance factor is recovered.
또한, 도 5에는 본 발명의 실시예 1 및 비교예 1 내지 3으로부터 제작된 리튬이차전지의 충방전 사이클에서 쿨롱 효율을 그래프로 나타내었는바, 실시예 1의 경우에는 효율이 97~98.8%로 유지되는 반면, 비교예 1은 94.5~96% 의 낮은 효율로 유지되고, 비교예 2는 95%까지 점차 감소하는 것을 보여준다. 따라서 실시예 1로부터 제작된 리튬이차전지가 비교예 1과 비교예 2로부터 제작된 리튬이차전지에 비하여 전지성능이 월등히 개선된 것을 확인할 수 있다. 또한, 비교예 3으로부터 제작된 리튬이차전지의 경우에는 도 3과 4에서 확인하였듯이 초기 낮은 용량 발현으로 인해 점차 용량이 증가하면서 효율이 높게 유지되는 것으로 보여진다.In addition, FIG. 5 is a graph showing the coulombic efficiency in the charge / discharge cycle of the lithium secondary battery manufactured in Example 1 of the present invention and Comparative Examples 1 to 3. In Example 1, the efficiency was 97 to 98.8% While Comparative Example 1 is maintained at a low efficiency of 94.5 to 96%, while Comparative Example 2 shows a gradual decrease to 95%. Therefore, it can be seen that the lithium secondary battery manufactured from Example 1 has remarkably improved battery performance as compared with the lithium secondary battery manufactured from Comparative Example 1 and Comparative Example 2. [ Also, in the case of the lithium secondary battery manufactured from Comparative Example 3, as shown in FIGS. 3 and 4, the capacity is gradually increased due to the initial low capacity expression, and the efficiency is maintained to be high.
또한, 도 6에는 본 발명의 실시예 1로부터 제작된 리튬이차전지의 초기 방전용량 및 실시예 1에 따르되, 코팅을 위한 고분자용액의 농도를 달리하여(75 중량%, 50중량%, 25 중량%, 10 중량%) 제작된 리튬이차전지의 초기 방전용량을 비교한 그래프를 나타내었다. 도 6에서 보는 바와 같이, 본 발명의 실시예 1로부터 제작된 리튬이차전지(코팅을 위한 고분자 용액의 농도가 90 중량%인 것)를 비롯하여 코팅을 위한 고분자용액의 농도를 달리하여 제작된 나머지 리튬이차전지에서도 비슷한 수준의 방전용량이 발현되는 것을 알 수 있으므로 코팅을 위한 고분자용액의 농도는 초기방전용량에 영향을 미치는 큰 변수가 되지 않음을 확인하였으나, 그 중에서도 실시예 1로부터 제작된 리튬이차전지의 초기 방전용량이 상대적으로 높음을 알 수 있다.6 shows the initial discharge capacity of the lithium secondary battery fabricated in Example 1 of the present invention and the initial discharge capacity of the lithium secondary battery according to Example 1 (75 wt%, 50 wt%, 25 wt% , 10% by weight). The graph of the initial discharge capacity of the produced lithium secondary battery is shown in FIG. As shown in FIG. 6, the lithium secondary battery (having a concentration of the polymer solution for coating of 90 wt%) manufactured from Example 1 of the present invention and the remaining lithium produced by varying the concentration of the polymer solution for coating It was found that the concentration of the polymer solution for the coating was not a large variable affecting the initial discharge capacity. However, in the lithium secondary battery manufactured in Example 1, It can be seen that the initial discharge capacity of the battery is relatively high.
도 7은 본 발명의 실시예 1 및 비교예 1, 그리고 코팅층의 두께를 달리하여 실시예 2 및 비교예 4 내지 7로부터 제작된 리튬이차전지의 초기 방전용량을 그래프를 나타내었는바, 도 7에서 보는 바와 같이 발현되는 방전용량의 경우, 평균용량 차이가 크지는 않으나 코팅층의 두께가 10 μm를 초과하는 경우부터 용량이 점차 저하되는 것을 확인할 수 있으므로, 코팅층의 두께는 1 μm 내지 10 μm인 것이 바람직하다. 7 is a graph showing the initial discharge capacities of the lithium secondary batteries fabricated in Example 1 and Comparative Example 1 and in Example 2 and Comparative Examples 4 to 7 in different coating thicknesses, As can be seen, in the case of the discharge capacity to be developed, although the difference in the average capacity is not large, it is confirmed that the capacity gradually decreases from the case where the thickness of the coating layer exceeds 10 탆, so that the thickness of the coating layer is preferably 1 탆 to 10 탆 Do.
또한, 도 8에는 본 발명의 실시예 1 및 비교예 3으로부터 제작된 리튬이차전지를 저온에서 구동하여 초기 전지 특성을 그래프로 나타내었는바, 구동 온도를 점점 낮출수록 유기 액체 전해질을 채용한 비교예 3으로부터 제작된 리튬이차전지의 발현용량이 떨어지는 것을 볼 수 있다. 도 8에 나타낸 10℃ 내지 -10℃에서의 결과를 살펴보면, 무기 액체 전해질을 채용한 실시예 1로부터 제작된 리튬이차전지는 362.7 mAh g-1의 용량에서 357.6 mAh g- 1으로 약 98.6 %의 용량이 유지되는 반면, 유기 액체 전해질을 채용한 비교예 3으로부터 제작된 리튬이차전지에서는 350.3 mAh g-1의 용량에서 334.4 mAh g- 1으로 약 95.4 %로 크게 떨어지는 것을 볼 수 있다. 따라서 무기 액체 전해질을 채용한 리튬이차전지는 저온에서도 유기 액체 전해질을 채용한 리튬이차전지보다 높은 이온전도도를 유지하며, 이에 따라 리튬이차전지가 발현하는 용량도 유지되는 것을 확인할 수 있어, 본 발명의 실시예 1에서처럼 고분자 소재의 코팅층이 형성된 분리막을 사용함과 아울러, 무기 액체 전해질을 채용한 리튬이차전지는 저온에서도 안정적으로 구동이 가능함을 알 수 있다.8 is a graph showing the characteristics of an initial cell by driving the lithium rechargeable battery fabricated from Example 1 and Comparative Example 3 at a low temperature. As the driving temperature is gradually lowered, a comparative example 3 shows that the capacity of the lithium secondary battery fabricated from Example 3 is lowered. The results at 10 ℃ to -10 ℃ shown in Figure 8, in capacity of 362.7 mAh g -1 which is the lithium produced from example 1 was used for the inorganic liquid electrolyte battery 357.6 mAh g - 1 of about 98.6% while the capacitance is maintained, in the lithium secondary battery produced from the comparative example 3 employing organic liquid electrolyte 334.4 mAh g in capacity of 350.3 mAh g -1 - it can be seen that significantly less to about 95.4% by one. Therefore, it can be confirmed that the lithium secondary battery employing the inorganic liquid electrolyte maintains a higher ionic conductivity than the lithium secondary battery employing the organic liquid electrolyte even at a low temperature, thereby maintaining the capacity for expressing the lithium secondary battery. It can be seen that the separation membrane having the polymer coating layer formed therein as in Example 1 is used and the lithium secondary battery employing the inorganic liquid electrolyte can be stably driven at a low temperature.
그러므로 본 발명에 따르면, 종래 리튬이차전지용 다공성 분리막 기재에 고분자소재가 코팅되고, 이산화황 기반의 무기 액체 전해질을 채용함으로써 전해질에 대한 분리막의 젖음성이 크게 향상되고, 궁극적으로 리튬이차전지의 충방전 특성 및 사이클 수명이 현저하게 개선되며, 특히 저온에서도 안정적으로 구동이 가능하여 휴대용 전자기기 또는 전기자동차 등의 에너지 저장 소자에 응용이 가능하다.Therefore, according to the present invention, since the polymer material is coated on the porous separator for a lithium secondary battery and the inorganic liquid electrolyte based on sulfur dioxide is employed, the wettability of the separator to the electrolyte is greatly improved, and ultimately, The cycle life is remarkably improved, and it can be stably driven even at a low temperature, so that it can be applied to an energy storage device such as a portable electronic device or an electric automobile.

Claims (8)

  1. 리튬이차전지용 분리막에 있어서,In the separator for a lithium secondary battery,
    (a) 상기 리튬이차전지는 이산화황이 주입된 리튬염 함유 무기 액체 전해질을 포함하며;(a) the lithium secondary battery comprises a lithium salt-containing inorganic liquid electrolyte into which sulfur dioxide is injected;
    (b) 상기 분리막은 양면에 고분자소재의 코팅층이 형성된 것;을 특징으로 하는 리튬이차전지용 분리막.(b) a separator for a lithium secondary battery, wherein a coating layer of a polymer material is formed on both sides of the separator.
  2. 제1항에 있어서, 상기 리튬염은 LiAlCl4, LiGaCl4, Li2CoCl4, Li2NiCl4, Li2CuCl4, Li2MnCl4, Li2ZnCl4 및 LiAlBr4로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 하는 리튬이차전지용 분리막.The lithium secondary battery according to claim 1, wherein the lithium salt is at least one selected from the group consisting of LiAlCl 4 , LiGaCl 4 , Li 2 CoCl 4 , Li 2 NiCl 4 , Li 2 CuCl 4 , Li 2 MnCl 4 , Li 2 ZnCl 4, and LiAlBr 4 Wherein the separator is a lithium secondary battery.
  3. 제1항에 있어서, 상기 이산화황이 주입된 리튬염 함유 무기 액체 전해질은 LiAlCl4-3SO2인 것을 특징으로 하는 리튬이차전지용 분리막.The separator for a lithium secondary battery according to claim 1, wherein the sulfuric acid-impregnated lithium salt-containing inorganic liquid electrolyte is LiAlCl 4 -3 SO 2 .
  4. 제1항에 있어서, (b) 상기 분리막은 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리아세탈, 폴리에테르술폰, 폴리에테르에테르케톤, 폴리페닐렌옥사이드, 폴리페닐렌설파이드로 이루어진 군으로부터 선택된 1종 이상의 다공성 기재인 것을 특징으로 하는 리튬이차전지용 분리막.The method of claim 1, wherein (b) the separation membrane is formed of a material selected from the group consisting of polyethylene, polypropylene, polyester, polyamide, polyimide, polycarbonate, polyacetal, polyethersulfone, polyetheretherketone, polyphenylene oxide, Wherein the porous substrate is at least one porous substrate selected from the group consisting of a porous substrate and a porous substrate.
  5. 제1항에 있어서, 상기 고분자소재는 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리아크릴로니트릴, 폴리비닐리덴플루오라이드, 폴리메틸메타크릴레이트, 폴리비닐아세테이트, 에틸렌비닐아세테이트 공중합체, 셀룰로오스아세테이트, 카르복시메틸셀룰로오스 및 폴리이미드로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 하는 리튬이차전지용 분리막.The method of claim 1, wherein the polymeric material is selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyvinylacetate, ethylene vinyl acetate copolymer, cellulose acetate, carboxy Methyl cellulose, and polyimide. The separator for a lithium secondary battery according to claim 1,
  6. 제1항에 있어서, 상기 코팅층은 그 두께가 1~10 ㎛인 것을 특징으로 하는 리튬이차전지용 분리막.The separator for a lithium secondary battery according to claim 1, wherein the coating layer has a thickness of 1 to 10 mu m.
  7. 양극, 음극, 상기 양극과 음극 사이에 배치되는 다공성 분리막으로 구성된 전극조립체, 및 전해액을 포함하는 리튬이차전지에 있어서,An electrode assembly comprising a positive electrode, a negative electrode, a porous separator disposed between the positive and negative electrodes, and a lithium secondary battery comprising an electrolyte,
    상기 다공성 분리막은 양면이 고분자소재로 코팅되어 있으며, 상기 전해액은 이산화황이 주입된 리튬염 함유 무기 액체 전해질인 것을 특징으로 하는 리튬이차전지.Wherein the porous separator is coated on both sides with a polymer material, and the electrolyte is an inorganic liquid electrolyte containing a lithium salt into which sulfur dioxide is injected.
  8. 제7항에 따른 리튬이차전지를 포함하는 에너지 저장 소자.An energy storage element comprising the lithium secondary battery according to claim 7.
PCT/KR2017/010687 2017-09-25 2017-09-27 Lithium secondary battery separator employing inorganic liquid electrolyte WO2019059440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0123631 2017-09-25
KR1020170123631A KR102465701B1 (en) 2017-09-25 2017-09-25 Separator for lithium secondary battery using inorganic liquid electrolyte

Publications (1)

Publication Number Publication Date
WO2019059440A1 true WO2019059440A1 (en) 2019-03-28

Family

ID=65811430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010687 WO2019059440A1 (en) 2017-09-25 2017-09-27 Lithium secondary battery separator employing inorganic liquid electrolyte

Country Status (2)

Country Link
KR (1) KR102465701B1 (en)
WO (1) WO2019059440A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994512A (en) * 2019-08-26 2022-01-28 株式会社Lg新能源 Lithium secondary battery and method for manufacturing the same
CN113994514A (en) * 2019-07-11 2022-01-28 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN115136404A (en) * 2020-02-28 2022-09-30 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354231B1 (en) * 2000-07-25 2002-09-27 삼성에스디아이 주식회사 An Electrolyte for Lithium Sulfur batteries
KR20040103425A (en) * 2003-05-30 2004-12-08 주식회사 엘지화학 Rechargeable lithium battery using separator partially coated with gel polymer
KR20120055735A (en) * 2003-09-23 2012-05-31 귄터 함빗처 Electrochemical battery cell
KR20130006614A (en) * 2010-02-12 2013-01-17 포투 인텔렉츄얼 프로퍼티 아게 Rechargeable electrochemical cell
KR20140014493A (en) * 2012-07-24 2014-02-06 주식회사 엘지화학 Fabricating method of seperator and electrochemical cell having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470696B1 (en) 2012-10-10 2014-12-08 한국생산기술연구원 Manufacturing method of separator of lithium secondary battery and the separator manufactured thereby and the lithium secondary battery having the separator
KR101790533B1 (en) 2014-12-31 2017-10-26 도레이케미칼 주식회사 Reflective polarizer and Backlight unit comprising the same
KR102050024B1 (en) 2015-03-10 2019-11-28 주식회사 엘지화학 Method for preparing separator of secondary battery and separator prepared by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354231B1 (en) * 2000-07-25 2002-09-27 삼성에스디아이 주식회사 An Electrolyte for Lithium Sulfur batteries
KR20040103425A (en) * 2003-05-30 2004-12-08 주식회사 엘지화학 Rechargeable lithium battery using separator partially coated with gel polymer
KR20120055735A (en) * 2003-09-23 2012-05-31 귄터 함빗처 Electrochemical battery cell
KR20130006614A (en) * 2010-02-12 2013-01-17 포투 인텔렉츄얼 프로퍼티 아게 Rechargeable electrochemical cell
KR20140014493A (en) * 2012-07-24 2014-02-06 주식회사 엘지화학 Fabricating method of seperator and electrochemical cell having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994514A (en) * 2019-07-11 2022-01-28 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113994514B (en) * 2019-07-11 2024-05-28 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113994512A (en) * 2019-08-26 2022-01-28 株式会社Lg新能源 Lithium secondary battery and method for manufacturing the same
CN113994512B (en) * 2019-08-26 2024-06-18 株式会社Lg新能源 Lithium secondary battery and method for manufacturing the same
CN115136404A (en) * 2020-02-28 2022-09-30 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
CN115136404B (en) * 2020-02-28 2024-06-04 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Also Published As

Publication number Publication date
KR102465701B1 (en) 2022-11-10
KR20190034972A (en) 2019-04-03

Similar Documents

Publication Publication Date Title
KR100609693B1 (en) Composite polymer electrolytes including lithium cationic single-ion conducting inorganic filler for lithium rechargeable battery and method for preparing the same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
KR100496642B1 (en) Composite polymer electrolytes including single-ion conductor for lithium rechargeable battery and method for preparing the same
WO2019054729A1 (en) Electrode for all-solid-state battery, comprising solid electrolyte
WO2014157955A1 (en) Anode active material slurry, anode using same slurry, and electrochemical device comprising same
WO2012074300A2 (en) Lithium secondary battery
WO2018182216A2 (en) Multi-layer structured composite electrolyte and secondary battery using same
WO2019216713A1 (en) Lithium metal secondary battery with improved safety, and battery module including same
WO2019078544A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2019093709A1 (en) Electrolyte composite for lithium-sulfur battery, electrochemical device comprising same, and preparation method therefor
WO2015002390A1 (en) Cathode mixture having improved conductivity, and cathode and electrochemical device containing same
WO2019221410A1 (en) Negative electrode including electrode protective layer, and lithium secondary battery employing same
WO2021261674A1 (en) Method for forming aligned structure of graphite, method for manufacturing electrode for battery having aligned graphite, and lithium secondary battery having aligned graphite
WO2019059440A1 (en) Lithium secondary battery separator employing inorganic liquid electrolyte
WO2020153790A1 (en) Method for manufacturing anode for secondary battery
WO2014200214A1 (en) Electrochemical device and battery module with improved anti-vibration characteristic
WO2016122196A1 (en) Electrode, and method for producing battery and electrode
WO2016111605A1 (en) Electrode, method for manufacturing same, electrode manufactured by same, and secondary battery comprising same
WO2021075924A1 (en) Separation membrane for electrochemical device, electrochemical device comprising same separation membrane, and method for manufacturing same separation membrane
WO2013187707A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
WO2012128460A2 (en) Separator film coating material using a polymer derived from mussels and method for manufacturing same, and material for preventing heat shrinkage and method for manufacturing same
WO2019093735A1 (en) Method for improving lifespan of lithium secondary battery
WO2019022474A1 (en) Battery separator comprising material reducing hydrofluoric acid
WO2021172809A1 (en) Method for manufacturing electrode for lithium secondary battery
WO2018124754A1 (en) Anode for lithium metal battery, method for manufacturing same, and lithium metal battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925864

Country of ref document: EP

Kind code of ref document: A1