WO2019059393A1 - Curing agent for powder paint and powder paint composition including said curing agent for powder paint - Google Patents

Curing agent for powder paint and powder paint composition including said curing agent for powder paint Download PDF

Info

Publication number
WO2019059393A1
WO2019059393A1 PCT/JP2018/035313 JP2018035313W WO2019059393A1 WO 2019059393 A1 WO2019059393 A1 WO 2019059393A1 JP 2018035313 W JP2018035313 W JP 2018035313W WO 2019059393 A1 WO2019059393 A1 WO 2019059393A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
curing agent
powder coating
diisocyanate
group
Prior art date
Application number
PCT/JP2018/035313
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 佐々木
Original Assignee
日清紡ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ケミカル株式会社 filed Critical 日清紡ケミカル株式会社
Publication of WO2019059393A1 publication Critical patent/WO2019059393A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Definitions

  • the present invention relates to a curing agent for powder coating and a composition for powder coating containing the curing agent for powder coating.
  • Powder coatings are attracting attention as materials with low environmental impact because they do not use organic solvents and can reuse unused materials.
  • the powder coating usually requires high-temperature baking at 180 ° C. or higher, which requires a large amount of energy.
  • Patent Document 1 proposes a resin composition for powder coating using a polyester resin and a blocked isocyanate-based curing agent.
  • Patent Document 2 proposes a powder coating composition using a carboxy group-containing polyester resin and a ⁇ -hydroxyalkylamide curing agent.
  • the resin composition for powder coating described in Patent Document 1 requires a high temperature of 150 to 180 ° C. for baking, and a large amount of volatile component is generated at the time of coating film formation, which has a problem of being environmentally undesirable. .
  • the coating film using this resin composition also had the problem that mechanical physical properties were inadequate.
  • the powder coating composition described in Patent Document 2 there is a problem that the water generated at the time of curing which is characteristic of ⁇ -hydroxyalkylamide causes pinholes in the obtained coating film.
  • the present invention has been made in view of such circumstances, and is a powder coating which is excellent in storage stability, can be baked at a low temperature, and can obtain a coating film excellent in curability and adhesion. It is an object of the present invention to provide a curing agent for powder coating and a composition for powder coating comprising the curing agent for powder coating.
  • aromatic heterocyclic compound is at least one aromatic heterocyclic compound selected from the group consisting of 3,5-dimethylpyrazole, 2-methylimidazole and 1H-imidazole Hardeners for powder coatings.
  • diisocyanate compound is an aromatic diisocyanate compound.
  • the aromatic diisocyanate compound is at least one aromatic diisocyanate compound selected from the group consisting of 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • the polycarbodiimide compound derived from the diisocyanate compound has two functional groups having reactivity with the polycarbodiimide compound derived from the aromatic diisocyanate compound and the terminal isocyanate group of the polycarbodiimide compound derived from the aromatic diisocyanate compound.
  • a compound having two or more functional groups having reactivity with the terminal isocyanate group of the polycarbodiimide compound derived from the aromatic diisocyanate compound is a polyetherpolyol, a polyesterpolyol, a polycarbonatepolyol, a castor oil-based polyol and a polybutadienepolyol
  • a composition for powder coating comprising the curing agent for powder coating according to any one of the above [1] to [8] and a carboxyl group-containing resin.
  • the powder coating composition according to the above [9] wherein the carboxyl group-containing resin is a polyester resin.
  • a curing agent for powder coating which is excellent in storage stability, can be baked at low temperature, and can obtain a coating film excellent in curability and adhesion, and a curing agent for the powder coating And a powder coating composition containing the
  • the curing agent for powder coatings of the present invention comprises a modified polycarbodiimide compound obtained by modifying a polycarbodiimide compound derived from a diisocyanate compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.
  • the aromatic heterocyclic compound used for the modified polycarbodiimide compound is not particularly limited as long as it is an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.
  • the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen refers to an aromatic heterocyclic compound having an amine in the heterocyclic ring.
  • the modified polycarbodiimide compound obtained by modifying the polycarbodiimide compound with an aromatic heterocyclic compound having such an endocyclic secondary amine nitrogen is for powder coatings
  • the storage stability of the composition can be improved.
  • a composition for powder coating can be prepared without reaction and gelation at the time of melt-kneading, and the dissociation initiation temperature of the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen from the modified polycarbodiimide compound is If the temperature is low, the carbodiimide-modified group can be returned to a highly reactive carbodiimide group at a low temperature, so that the baking temperature can be lowered.
  • the volatile substance at the time of baking can be reduced, and the appearance of the film after baking is good without defects such as pinholes. Coating film can be obtained.
  • the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably an aromatic heterocyclic compound in which the number of endocyclic nitrogens is 2 or more, more preferably substitution At least one aromatic heterocyclic compound selected from the group consisting of pyrazoles and optionally substituted imidazoles, more preferably a group consisting of 3,5-dimethylpyrazole, 2-methylimidazole and 1H-imidazole And at least one aromatic heterocyclic compound selected from
  • the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is 1H-imidazole
  • a polycarbodiimide compound derived from a diisocyanate compound having a carbodiimide group of the following formula (1) is modified with 1H-imidazole
  • the carbodiimide modified group of formula (2) is formed.
  • 1H-imidazole dissociates, it returns to the carbodiimide group of the following formula (1) having high reactivity.
  • the polycarbodiimide compound used for the said modified polycarbodiimide compound is a polycarbodiimide compound derived from a diisocyanate compound, Preferably, it is a polycarbodiimide compound derived from an aromatic diisocyanate compound.
  • the aromatic diisocyanate compound refers to an isocyanate compound in which two isocyanate groups present in the molecule are directly bonded to a carbon atom of an aromatic ring.
  • Examples of the polycarbodiimide compound derived from the diisocyanate compound include a polycarbodiimide compound derived from an aromatic diisocyanate compound and a polycarbodiimide compound derived from an aliphatic diisocyanate compound. Since the polycarbodiimide compound derived from the aromatic diisocyanate compound is superior in heat resistance to the polycarbodiimide compound derived from the aliphatic diisocyanate compound, the polycarbodiimide compound derived from the aromatic diisocyanate compound is preferable.
  • the polycarbodiimide compound derived from the diisocyanate compound has, for example, a group represented by the following general formula (3).
  • R represents a residue obtained by removing an isocyanate group from a diisocyanate compound.
  • aromatic diisocyanate compound from which the polycarbodiimide compound used for the modified polycarbodiimide compound is derived examples include 4,4′-diphenylmethane diisocyanate, 4,4′-diphenylether diisocyanate, p-phenylene diisocyanate, and m-phenylene.
  • a preferred aromatic diisocyanate compound is at least one selected from the group consisting of 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
  • the polycarbodiimide used in the present invention is a compound having two or more functional groups having reactivity with the polycarbodiimide compound derived from the above aromatic diisocyanate compound and the terminal isocyanate group of the polycarbodiimide compound (hereinafter referred to simply as It can be set as the copolymer with (it is also mentioned the compound which has two or more functional groups which have the reactivity with an isocyanate group).
  • Examples of the functional group possessed by the compound having two or more functional groups having reactivity with the isocyanate group include a hydroxyl group, an amino group, a carboxyl group, an acid anhydride group and the like, among which a hydroxyl group is preferable.
  • a polyol is mentioned as a compound which has two or more hydroxyl groups as a functional group which has the reactivity with an isocyanate group.
  • polyether polyol for example, polyether polyol, polyester polyol, polycarbonate polyol, polybutadiene diol, polyolefin polyol, polyurethane polyol, polyether ester polyol, polycarbonate ester polyol, polycarbonate ether polyol, castor oil based polyol, silicone diol, polyalkylene diol, 2 , 2-dimethylol propionic acid, 2,2-dimethylol butanoic acid, N, N-bishydroxyethyl glycine, N, N-bishydroxyethyl alanine, 3,4-dihydroxybutane sulfonic acid, 3,6-dihydroxy- And 2-toluenesulfonic acid.
  • At least one selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, castor oil-based polyols and polybutadiene polyols is preferable.
  • a polycarbodiimide copolymer containing a constituent unit derived from a compound having two or more functional groups having reactivity with an isocyanate group with respect to 100 parts by mass of a constituent unit derived from the polycarbodiimide compound derived from the aromatic diisocyanate compound The proportion is preferably 40 to 120 parts by mass, more preferably 50 to 100 parts by mass, still more preferably 60 to 100 parts by mass, still more preferably 80 to 100 parts by mass, still more preferably 90 to 99 parts by mass .
  • the polycarbodiimide compound used for the said modified polycarbodiimide compound can be manufactured by the various method which used the diisocyanate compound as the raw material.
  • a method for producing an isocyanate-terminated polycarbodiimide by decarboxylation condensation reaction of an aromatic diisocyanate compound with carbon dioxide US Pat. No. 2,941,956, JP-B-47-33279, J. Org. Chem, 28 2069-2075 (1963), Chemical Review 1981, Vol. 81, No. 4, p619-621 etc.).
  • the decarboxylation condensation reaction of the aromatic diisocyanate compound proceeds in the presence of a carbodiimidization catalyst.
  • the carbodiimidization catalyst includes, for example, 1-phenyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3 And 3-phospholene such as 3-phospholene isomer thereof, and the like, and among these, among these, from the viewpoint of reactivity, 3-methyl-1-phenyl-2- can be mentioned. Phosphorene-1-oxide is preferred.
  • the amount of the carbodiimidization catalyst is usually 0.1 to 3.0% by mass based on the aromatic diisocyanate compound used for the carbodiimidization.
  • the decarboxylation condensation reaction of the aromatic diisocyanate compound can be carried out without a solvent or can be carried out in a solvent.
  • a solvent which can be used alicyclic ethers such as tetrahydroxyfuran, 1,3-dioxane and dioxolane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; chlorobenzene, dichlorobenzene, trichlorobenzene, perchlorene, trichloroethane, Halogenated hydrocarbons such as dichloroethane; ester solvents such as ethyl acetate and butyl acetate; and ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • cyclohexanone and tetrahydroxy furan are examples of these solvent.
  • the temperature in the decarboxylation condensation reaction is not particularly limited, but is preferably 40 to 200 ° C., more preferably 50 to 130 ° C.
  • the temperature is preferably 40 ° C. to the boiling point of the solvent.
  • the concentration of the aromatic diisocyanate compound is preferably 5 to 55% by mass, more preferably 5 to 40% by mass.
  • the concentration of the aromatic diisocyanate compound is 5% by mass or more, the synthesis of the polycarbodiimide does not take too much time, and when it is 55% by mass or less, gelation during the reaction can be suppressed.
  • the solid concentration in the reaction is preferably 5 to 55% by mass, more preferably 20 to 50% by mass, of the total mass of the reaction system.
  • the compounding ratio of the compound having two or more functional groups having reactivity with an isocyanate group is preferably 40 to 100 parts by mass of the polycarbodiimide compound derived from the aromatic diisocyanate compound.
  • the amount is 120 parts by mass, more preferably 50 to 100 parts by mass, still more preferably 60 to 100 parts by mass, still more preferably 80 to 100 parts by mass, still more preferably 90 to 99 parts by mass.
  • the polycarbodiimide one having a molecular weight controlled to an appropriate degree of polymerization can be used by using a compound which reacts with the terminal isocyanate group of the polycarbodiimide such as monoisocyanate.
  • a compound which reacts with the terminal isocyanate group of the polycarbodiimide such as monoisocyanate.
  • the monoisocyanate for sealing the end of the polycarbodiimide and controlling the polymerization degree in this way for example, phenyl isocyanate, p- and m-tolyl isocyanate, p-isopropylphenyl isocyanate and the like can be used. In particular, phenyl isocyanate is suitably used.
  • methanol having a hydroxyl group, isopropyl alcohol, phenol, polyethylene glycol monomethyl ether, etc .; butylamine having an amino group, diethylamine etc .; propionone having a carboxy group Compounds having an acid, benzoic acid, etc. and an acid anhydride, etc. can be used.
  • the modified polycarbodiimide compound is obtained by modifying a polycarbodiimide compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.
  • modification of the polycarbodiimide compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen can be carried out without a solvent, for example, the polycarbodiimide compound is mixed with an organic solvent, and the endocyclic secondary amine is mixed there.
  • the compound can also be synthesized by adding an aromatic heterocyclic compound having nitrogen to an equivalent amount within the following range with respect to a carbodiimide group, and stirring and reacting.
  • the amount of addition of the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably 1 to 2 equivalents with respect to 1 equivalent of the carbodiimide group, and the amount of excess aromatic heterocyclic compound is small, and at the time of heat treatment amine More preferably, it is 1 to 1.2 equivalents in view of the fact that
  • the reaction temperature for modification of the polycarbodiimide compound with the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably from room temperature (about 25 ° C.) to 120 ° C. in view of reaction rate and side reaction during modification. is there.
  • the modification of the polycarbodiimide compound with the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably carried out with stirring, and the reaction time varies depending on the temperature, but is preferably about 0.1 to 10 hours.
  • the content of the modified polycarbodiimide compound contained in the curing agent for powder coatings of the present invention is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass. is there.
  • the curing agent for powder coatings of the present invention may, if necessary, other conventional curing agents, such as aliphatic or aromatic amines, as long as the effects of the present invention are not impaired
  • an acid anhydride, phenol, dihydrazide, dicyandiamide, acid group-containing polyester, blocked isocyanate, dibasic acid and the like may be used in combination.
  • the curing agent for powder coatings of the present invention can cure a resin composition that undergoes a crosslinking reaction with a carbodiimide group.
  • resin compositions include, for example, carboxyl group-containing resins having a carboxyl group in the molecule.
  • Preferable carboxyl group-containing resins include, for example, polyester resins, polyurethane resins, polyamide resins, acrylic resins, vinyl acetate resins, polyolefin resins, polyimide resins, and the like, from the easiness of crosslinking reaction with carbodiimide group.
  • composition for powder coating contains the above-mentioned curing agent for powder coating and a carboxyl group-containing resin. As a result, the storage stability of the powder coating composition is improved, baking can be performed at a low temperature, and a coating film excellent in curability and adhesion can be obtained.
  • the curing agent for powder coatings used for the composition for powder coatings of the present invention is as described in the section of "Hardener for powder coatings" described above.
  • the content of the curing agent for powder coating in the composition for powder coating of the present invention is, for example, 0.5 to 1.5 equivalents, preferably 0 based on the functional group equivalent of the carboxyl group-containing resin described later. .8-1.2 equivalents.
  • the total content of the curing agent for powder coating and the carboxyl group-containing resin in the composition for powder coating is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more More preferably, it is 95 mass% or more, for example, 100 mass%.
  • polyester resin As a carboxyl group-containing resin used for the composition for powder coating of this invention, a polyester resin, a polyurethane resin, a polyamide resin, an acrylic resin, vinyl acetate resin, polyolefin resin, a polyimide resin etc. are mentioned, for example. Among them, polyester resins, polyurethane resins, and acrylic resins are preferable from the viewpoint of weather resistance, and polyester resins are more preferably used.
  • any additive can be blended within the range that does not inhibit the effects of the present invention.
  • a pigment, a filler, a leveling agent, surfactant, a dispersing agent, a plasticizer, an ultraviolet absorber, antioxidant etc. can be mentioned, for example.
  • composition for powder coating of the present invention a method of dry blending the curing agent for powder coating and the carboxyl group-containing resin, the curing agent for powder coating, and the carboxyl group-containing resin And the like, and then cooled and then crushed.
  • composition for powder coating of the present invention is applied to an object to be coated by a known coating method such as electrostatic coating method, fluid immersion method, spraying method, etc., it is heated to cause a crosslinking reaction, so-called baking Thus, a coating film can be formed.
  • a known coating method such as electrostatic coating method, fluid immersion method, spraying method, etc.
  • the baking temperature usually requires a high temperature of 180 ° C. or more, but can preferably be 150 ° C. or less, more preferably 140 ° C. or less by using the powder coating composition of the present invention.
  • the baking time may be, for example, in the range of 5 minutes to 2 hours, although it depends on the baking temperature, the coating thickness of the composition for powder coating, and the like.
  • Synthesis Example 2 Synthesis of Modified Polycarbodiimide Compound (b)
  • the modified poly of Synthesis Example 2 was prepared in the same manner as in Synthesis Example 1 except that 39.9 parts by mass of 1H-imidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Cuazole SIZ) was used as the aromatic heterocyclic compound.
  • the carbodiimide compound (b) was obtained.
  • Synthesis Example 3 Synthesis of Modified Polycarbodiimide Compound (c) Modification of Synthesis Example 3 in the same manner as in Synthesis Example 1 except that 56.3 parts by mass of 3,5-dimethylpyrazole (DMP, manufactured by Nippon Finechem Co., Ltd.) was used as the aromatic heterocyclic compound in Synthesis Example 1. The polycarbodiimide compound (c) was obtained.
  • DMP 3,5-dimethylpyrazole
  • Synthesis Example 4 Synthesis of Modified Polycarbodiimide Compound (d) In Synthesis Example 1, 57.8 parts by mass of the compounded amount of polycarbonate diol, 27.4 parts by mass of the compounded amount of phenyl isocyanate, and 1.3 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide.
  • a modified polycarbodiimide compound (d) of Synthesis Example 4 was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 3 parts by mass and the carbodiimidization reaction time was 5 hours.
  • Synthesis Example 5 Synthesis of Modified Polycarbodiimide Compound (e) A modified polycarbodiimide compound of Synthesis Example 5 (Synthesis Example 1) except that in Synthesis Example 1, the polyol was changed to 97.9 parts by mass of polyester polyol (Polylite OD-X-2171 manufactured by DIC Corporation) got e).
  • Synthesis Example 6 Synthesis of Modified Polycarbodiimide Compound (f) In Synthesis Example 1, 96.4 parts by mass of tolylene diisocyanate as a diisocyanate compound was added to diphenylmethane diisocyanate (manufactured by Tosoh Corp., Millionate (registered trademark) MT, 4,4′-diphenylmethane diisocyanate) in polycarbonate diol A modified polycarbodiimide compound (f) of Synthesis Example 6 was obtained in the same manner as in Synthesis Example 1 except that the blending amount of 2-methylimidazole was changed to 33.5 parts by mass, and the carbodiimidization reaction time was changed to 5 hours. .
  • Synthesis Example 7 Synthesis of Modified Polycarbodiimide Compound (g) A modified polycarbodiimide compound of Synthesis Example 7 was prepared in the same manner as in Synthesis Example 1 except that 59.3 parts by mass of diisopropylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the aromatic heterocyclic compound in Synthesis Example 1. g) got.
  • tolylene diisocyanate
  • polycarbodiimide compound (1) was not modified by the aromatic heterocyclic compound.
  • Example 1 100 parts by mass of a saturated polyester resin for powder coating (Nippon Yupika Co., Ltd., Iupicoat GV-230), 45.0 parts by mass of the modified polycarbodiimide compound (a) obtained in Synthesis Example 1 as a curing agent After melt-kneading with Toyo Seiki Co., Ltd. product at 100 ° C. for 5 minutes, it was crushed with a table-top crusher (Osaka Chemical Co., Ltd. product WONDER BLENDER) to obtain a composition for powder coating .
  • a saturated polyester resin for powder coating Nippon Yupika Co., Ltd., Iupicoat GV-230
  • a modified polycarbodiimide compound (a) obtained in Synthesis Example 1 as a curing agent After melt-kneading with Toyo Seiki Co., Ltd. product at 100 ° C. for 5 minutes, it was crushed with a table-top crusher (Osaka Chemical Co., Ltd. product WONDER BLENDER)
  • Example 2 A powder coating composition of Example 2 was obtained in the same manner as in Example 1 except that the modifying agent was changed to 43.7 parts by mass of the modified polycarbodiimide compound (b) obtained in Synthesis Example 2 as a curing agent. Obtained.
  • Example 3 A powder coating composition of Example 3 was obtained in the same manner as in Example 1 except that the modifying agent was changed to 46.4 parts by mass of the modified polycarbodiimide compound (c) obtained in Synthesis Example 3 as a curing agent. Obtained.
  • Example 4 A powder coating composition of Example 4 is obtained in the same manner as in Example 1 except that the modifying agent is changed to 35.3 parts by mass of the modified polycarbodiimide compound (d) obtained in Synthesis Example 4 as a curing agent. Obtained.
  • Example 5 A powder coating composition of Example 5 is obtained in the same manner as in Example 1 except that the modifying agent is changed to 45.3 parts by mass of the modified polycarbodiimide compound (e) obtained in Synthesis Example 5 as a curing agent. Obtained.
  • Example 6 The powder coating composition of Example 6 is obtained in the same manner as in Example 1 except that the modifying agent is changed to 52.5 parts by mass of the modified polycarbodiimide compound (f) obtained in Synthesis Example 6 as a curing agent. Obtained.
  • Comparative Example 1 A powder coating composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that the polycarbodiimide compound (g) obtained in Synthesis Example 7 was changed to 37.0 parts by mass as a curing agent in Example 1.
  • the polycarbodiimide compound (g) obtained in Synthesis Example 7 was changed to 37.0 parts by mass as a curing agent in Example 1.
  • Comparative example 2 A powder coating composition of Comparative Example 1 is obtained in the same manner as in Example 2 except that the curing agent is changed to 37.0 parts by mass of the polycarbodiimide compound (1) obtained in Synthesis Example 8 in Example 1. The
  • Comparative example 3 A powder coating composition of Comparative Example 3 was obtained in the same manner as in Example 1 except that 32.9 parts by mass of the blocked isocyanate compound (manufactured by Evonik, VESTAGON B1530) was used as the curing agent. .
  • Comparative example 4 100 parts by mass of a saturated polyester resin for powder coating (Nippon YUPICA CO., LTD., UPICA COAT GV-230) was used as it is as a resin for powder coating.
  • Example 1 is the same as Example 1 except that the curing agent is changed to 7.9 parts by mass of N, N, N ', N'-tetrakis (2-hydroxyethyl) adipoamide (manufactured by Tokyo Chemical Industry Co., Ltd.). The composition for powder coating of Comparative Example 5 was obtained.
  • composition for powder coating materials of the comparative example 2 gelatinized during melt-kneading for 5 minutes on 100 degreeC conditions.
  • the results are shown in Table 2.
  • a blank indicates that there is no blending, and (-) indicates that it has not been implemented.
  • the powder coating compositions of Examples 1 to 6 are excellent in storage stability, can be baked at low temperature (150 ° C. or less), have a good appearance after baking, and have excellent curability and adhesion. It was found that an excellent coating film was obtained.
  • the composition for powder coating of Comparative Example 1 using a polycarbodiimide compound not modified with an aromatic heterocyclic compound as a curing agent was capable of baking at a low temperature, but the appearance after baking was poor Met.
  • Comparative Example 3 using a blocked isocyanate compound conventionally used as a curing agent for powder coatings Comparative Example 4 using only a powder coating resin, conventionally used as a curing agent for powder coatings
  • Comparative Example 5 using N, N, N ', N'-tetrakis (2-hydroxyethyl) adipamide the baking temperature is insufficient at 150.degree. C. or less, and the curability and adhesion of the coating film are sufficient. It was not a thing.
  • Comparative Example 5 when baked at 180 ° C. good solvent resistance was exhibited, but pinholes derived from a small amount of water generated by the curing reaction were generated, and appearance defects of the coating film after baking were generated. did.

Abstract

This curing agent for a powder paint includes a modified polycarbodiimide compound that is obtained by modifying a polycarbodiimide compound derived from a diisocyanate compound, the modification carried out using an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.

Description

粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物Curing agent for powder coating and composition for powder coating containing the curing agent for powder coating
 本発明は、粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物に関する。 The present invention relates to a curing agent for powder coating and a composition for powder coating containing the curing agent for powder coating.
 粉体塗料は有機溶剤を使用せず、また、未使用材料を再利用できる点から環境負荷の低い材料として注目されている。しかし、該粉体塗料は、通常180℃以上で高温焼付する必要があり、多量のエネルギーを必要とする。 Powder coatings are attracting attention as materials with low environmental impact because they do not use organic solvents and can reuse unused materials. However, the powder coating usually requires high-temperature baking at 180 ° C. or higher, which requires a large amount of energy.
 特許文献1には、ポリエステル樹脂とブロックイソシアネート系硬化剤とを用いる粉体塗料用樹脂組成物が提案されている。また、特許文献2には、カルボキシ基含有ポリエステル樹脂とβ-ヒドロキシアルキルアミド硬化剤を用いる粉体塗料組成物が提案されている。 Patent Document 1 proposes a resin composition for powder coating using a polyester resin and a blocked isocyanate-based curing agent. Patent Document 2 proposes a powder coating composition using a carboxy group-containing polyester resin and a β-hydroxyalkylamide curing agent.
特開平04-275375号公報JP 04-275375 A 特開2001-294804号公報JP, 2001-294804, A
 しかしながら、特許文献1に記載の粉体塗料用樹脂組成物は、焼付けに150~180℃の高温を必要とし、塗膜形成時に揮発成分が多く発生することから環境上好ましくないという問題があった。また、該樹脂組成物を用いた塗膜は、機械的な物性が不十分であるという問題もあった。さらに、特許文献2に記載の粉体塗料組成物では、β-ヒドロキシアルキルアミド特有の硬化時に発生する水により、得られた塗膜にピンホールが生じるという問題があった。 However, the resin composition for powder coating described in Patent Document 1 requires a high temperature of 150 to 180 ° C. for baking, and a large amount of volatile component is generated at the time of coating film formation, which has a problem of being environmentally undesirable. . Moreover, the coating film using this resin composition also had the problem that mechanical physical properties were inadequate. Furthermore, in the powder coating composition described in Patent Document 2, there is a problem that the water generated at the time of curing which is characteristic of β-hydroxyalkylamide causes pinholes in the obtained coating film.
 本発明は、このような実情に鑑みてなされたものであり、保存安定性に優れ、低温での焼付が可能であり、硬化性及び密着性に優れた塗膜を得ることができる粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a powder coating which is excellent in storage stability, can be baked at a low temperature, and can obtain a coating film excellent in curability and adhesion. It is an object of the present invention to provide a curing agent for powder coating and a composition for powder coating comprising the curing agent for powder coating.
 本発明者らは、前記の課題を解決するべく鋭意検討した結果、下記の発明により当該課題を解決できることを見出した。 MEANS TO SOLVE THE PROBLEM The present inventors discovered that the said subject could be solved by the following invention, as a result of earnestly examining in order to solve said subject.
 すなわち、本願開示は、以下に関する。
[1]環内2級アミン窒素を有する芳香族ヘテロ環化合物でジイソシアネート化合物由来のポリカルボジイミド化合物を変性して得られる変性ポリカルボジイミド化合物を含む粉体塗料用硬化剤。
[2]前記芳香族ヘテロ環化合物における環内窒素の数は2以上である上記[1]に記載の粉体塗料用硬化剤。
[3]前記芳香族ヘテロ環化合物が置換してもよいピラゾール及び置換してもよいイミダゾールからなる群から選択される少なくとも1種の芳香族ヘテロ環化合物である上記[1]または[2]に記載の粉体塗料用硬化剤。
[4]前記芳香族ヘテロ環化合物が、3,5-ジメチルピラゾール、2-メチルイミダゾール及び1H-イミダゾールからなる群から選択される少なくとも1種の芳香族ヘテロ環化合物である上記[3]に記載の粉体塗料用硬化剤。
[5]前記ジイソシアネート化合物が芳香族ジイソシアネート化合物である上記[1]~[4]のいずれかに記載の粉体塗料用硬化剤。
[6]前記芳香族ジイソシアネート化合物が、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート及び2,6-トリレンジイソシアネートからなる群から選択される少なくとも1種の芳香族ジイソシアネート化合物である上記[5]に記載の粉体塗料用硬化剤。
[7]前記ジイソシアネート化合物由来のポリカルボジイミド化合物が、芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物と、該芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物の末端のイソシアネート基との反応性を有する官能基を2つ以上有する化合物との共重合体である上記[1]~[6]のいずれかに記載の粉体塗料用硬化剤。
[8]前記芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物の末端のイソシアネート基との反応性を有する官能基を2つ以上有する化合物が、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ひまし油系ポリオール及びポリブタジエンポリオールからなる群より選ばれる少なくとも1種である上記[7]に記載の粉体塗料用硬化剤。
[9]
 上記[1]~[8]のいずれかに記載の粉体塗料用硬化剤及びカルボキシル基含有樹脂を含む粉体塗料用組成物。
[10]前記カルボキシル基含有樹脂がポリエステル樹脂である上記[9]に記載の粉体塗料用組成物。
That is, the present disclosure relates to the following.
[1] A curing agent for powder coating containing a modified polycarbodiimide compound obtained by modifying a polycarbodiimide compound derived from a diisocyanate compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.
[2] The curing agent for powder coating according to the above [1], wherein the number of ring nitrogens in the aromatic heterocyclic compound is 2 or more.
[3] In the above [1] or [2] which is at least one aromatic heterocyclic compound selected from the group consisting of pyrazole which may be substituted, and imidazole which may be substituted, as the aromatic heterocyclic compound Curing agent for powder coatings as described.
[4] The above-mentioned [3], wherein the aromatic heterocyclic compound is at least one aromatic heterocyclic compound selected from the group consisting of 3,5-dimethylpyrazole, 2-methylimidazole and 1H-imidazole Hardeners for powder coatings.
[5] The curing agent for powder coating according to any one of the above [1] to [4], wherein the diisocyanate compound is an aromatic diisocyanate compound.
[6] The aromatic diisocyanate compound is at least one aromatic diisocyanate compound selected from the group consisting of 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate. The curing agent for powder coatings as described in the above [5].
[7] The polycarbodiimide compound derived from the diisocyanate compound has two functional groups having reactivity with the polycarbodiimide compound derived from the aromatic diisocyanate compound and the terminal isocyanate group of the polycarbodiimide compound derived from the aromatic diisocyanate compound The curing agent for powder coating according to any one of the above [1] to [6], which is a copolymer with the compound having the above.
[8] A compound having two or more functional groups having reactivity with the terminal isocyanate group of the polycarbodiimide compound derived from the aromatic diisocyanate compound is a polyetherpolyol, a polyesterpolyol, a polycarbonatepolyol, a castor oil-based polyol and a polybutadienepolyol The curing agent for powder coating according to the above [7], which is at least one selected from the group consisting of
[9]
A composition for powder coating comprising the curing agent for powder coating according to any one of the above [1] to [8] and a carboxyl group-containing resin.
[10] The powder coating composition according to the above [9], wherein the carboxyl group-containing resin is a polyester resin.
 本発明によれば、保存安定性に優れ、低温での焼付が可能であり、硬化性及び密着性に優れた塗膜を得ることができる粉体塗料用硬化剤及び該粉体塗料用硬化剤を含む粉体塗料用組成物を提供することができる。 According to the present invention, a curing agent for powder coating which is excellent in storage stability, can be baked at low temperature, and can obtain a coating film excellent in curability and adhesion, and a curing agent for the powder coating And a powder coating composition containing the
[粉体塗料用硬化剤]
 本発明の粉体塗料用硬化剤は、環内2級アミン窒素を有する芳香族ヘテロ環化合物でジイソシアネート化合物由来のポリカルボジイミド化合物を変性して得られる変性ポリカルボジイミド化合物を含む。
[Hardener for powder coating]
The curing agent for powder coatings of the present invention comprises a modified polycarbodiimide compound obtained by modifying a polycarbodiimide compound derived from a diisocyanate compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.
(芳香族ヘテロ環化合物)
 変性ポリカルボジイミド化合物に使用される芳香族ヘテロ環化合物は、環内2級アミン窒素を有する芳香族ヘテロ環化合物であれば特に限定されない。ここで、環内2級アミン窒素を有する芳香族ヘテロ環化合物とは、ヘテロ環内にアミンを有する芳香族ヘテロ環化合物をいう。このような環内2級アミン窒素を有する芳香族ヘテロ環化合物により前記ポリカルボジイミド化合物を変性することで得られる変性ポリカルボジイミド化合物は、粉体塗料用硬化剤として用いた場合に、粉体塗料用組成物の保存安定性を向上させることができる。
 また、溶融混練時に反応してゲル化することなく粉体塗料用組成物を作製することができ、環内2級アミン窒素を有する芳香族ヘテロ環化合物の変性ポリカルボジイミド化合物からの解離開始温度が低いと、低温でカルボジイミド変性基を反応性の高いカルボジイミド基に戻すことができるため、焼付け温度の低温化を図ることができる。また、環内2級アミン窒素を有する芳香族ヘテロ環化合物の揮発性の低さより、焼付け時の揮発性物質の低減が可能で、焼き付け後の塗膜外観にピンホール等の欠点の無い、良好な塗膜を得ることができる。さらに、カルボジイミド基のカルボキシル基との反応性が非常に高いため、焼付けの際に速やかに反応し、得られる塗膜の硬化性及び密着性を高めることができる。このような観点から、環内2級アミン窒素を有する芳香族ヘテロ環化合物は、好ましくは、環内窒素の数が2以上である芳香族ヘテロ環化合物であり、より好ましくは、置換してもよいピラゾール及び置換してもよいイミダゾールからなる群から選択される少なくとも1種の芳香族ヘテロ環化合物であり、さらに好ましくは、3,5-ジメチルピラゾール、2-メチルイミダゾール及び1H-イミダゾールからなる群から選択される少なくとも1種の芳香族ヘテロ環化合物である。
(Aromatic heterocyclic compounds)
The aromatic heterocyclic compound used for the modified polycarbodiimide compound is not particularly limited as long as it is an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen. Here, the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen refers to an aromatic heterocyclic compound having an amine in the heterocyclic ring. When used as a curing agent for powder coatings, the modified polycarbodiimide compound obtained by modifying the polycarbodiimide compound with an aromatic heterocyclic compound having such an endocyclic secondary amine nitrogen is for powder coatings The storage stability of the composition can be improved.
In addition, a composition for powder coating can be prepared without reaction and gelation at the time of melt-kneading, and the dissociation initiation temperature of the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen from the modified polycarbodiimide compound is If the temperature is low, the carbodiimide-modified group can be returned to a highly reactive carbodiimide group at a low temperature, so that the baking temperature can be lowered. In addition, due to the low volatility of the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen, the volatile substance at the time of baking can be reduced, and the appearance of the film after baking is good without defects such as pinholes. Coating film can be obtained. Furthermore, since the reactivity with the carboxyl group of a carbodiimide group is very high, it can react rapidly at the time of baking, and the hardenability and adhesiveness of the obtained coating film can be improved. From such a point of view, the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably an aromatic heterocyclic compound in which the number of endocyclic nitrogens is 2 or more, more preferably substitution At least one aromatic heterocyclic compound selected from the group consisting of pyrazoles and optionally substituted imidazoles, more preferably a group consisting of 3,5-dimethylpyrazole, 2-methylimidazole and 1H-imidazole And at least one aromatic heterocyclic compound selected from
 例えば、環内2級アミン窒素を有する芳香族ヘテロ環化合物が1H-イミダゾールである場合、下記式(1)のカルボジイミド基を有する、ジイソシアネート化合物由来のポリカルボジイミド化合物を1H-イミダゾールで変性すると、下記式(2)のカルボジイミド変性基が形成される。そして、1H-イミダゾールが解離すると、反応性が高い下記式(1)のカルボジイミド基に戻る。 For example, when the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is 1H-imidazole, if a polycarbodiimide compound derived from a diisocyanate compound having a carbodiimide group of the following formula (1) is modified with 1H-imidazole, The carbodiimide modified group of formula (2) is formed. Then, when 1H-imidazole dissociates, it returns to the carbodiimide group of the following formula (1) having high reactivity.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(ポリカルボジイミド化合物)
 前記変性ポリカルボジイミド化合物に使用されるポリカルボジイミド化合物は、ジイソシアネート化合物由来のポリカルボジイミド化合物であり、好ましくは、芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物である。ここで、芳香族ジイソシアネート化合物とは、分子中に存在する2つのイソシアネート基が芳香環の炭素原子に直結しているイソシアネート化合物のことをいう。ジイソシアネート化合物由来のポリカルボジイミド化合物には、例えば、芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物と脂肪族ジイソシアネート化合物由来のポリカルボジイミド化合物とがある。芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物は、脂肪族ジイソシアネート化合物由来のポリカルボジイミド化合物と比較して耐熱性が優れているので、芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物が好ましい。
(Polycarbodiimide compound)
The polycarbodiimide compound used for the said modified polycarbodiimide compound is a polycarbodiimide compound derived from a diisocyanate compound, Preferably, it is a polycarbodiimide compound derived from an aromatic diisocyanate compound. Here, the aromatic diisocyanate compound refers to an isocyanate compound in which two isocyanate groups present in the molecule are directly bonded to a carbon atom of an aromatic ring. Examples of the polycarbodiimide compound derived from the diisocyanate compound include a polycarbodiimide compound derived from an aromatic diisocyanate compound and a polycarbodiimide compound derived from an aliphatic diisocyanate compound. Since the polycarbodiimide compound derived from the aromatic diisocyanate compound is superior in heat resistance to the polycarbodiimide compound derived from the aliphatic diisocyanate compound, the polycarbodiimide compound derived from the aromatic diisocyanate compound is preferable.
 ジイソシアネート化合物由来のポリカルボジイミド化合物は、例えば、下記一般式(3)に示す基を有する。 The polycarbodiimide compound derived from the diisocyanate compound has, for example, a group represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003

(式中、Rはジイソシアネート化合物からイソシアネート基を除いた残基を示す。)
Figure JPOXMLDOC01-appb-C000003

(In the formula, R represents a residue obtained by removing an isocyanate group from a diisocyanate compound.)
 前記変性ポリカルボジイミド化合物に使用されるポリカルボジイミド化合物の由来元となる芳香族ジイソシアネート化合物には、例えば、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、o-トリジンジイソシアネート、ナフチレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルエーテルジイソシアネート、3,3’-ジメチル-4,4’-ジフェニルエーテルジイソシアネート等が挙げられる。これらは1種を用いてもよく、2種以上を組み合わせてもよい。耐熱性の観点から、好ましい芳香族ジイソシアネート化合物は、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート及び2,6-トリレンジイソシアネートからなる群から選択される少なくとも1種である。 Examples of the aromatic diisocyanate compound from which the polycarbodiimide compound used for the modified polycarbodiimide compound is derived include 4,4′-diphenylmethane diisocyanate, 4,4′-diphenylether diisocyanate, p-phenylene diisocyanate, and m-phenylene. Diisocyanate, 3,3'-Dimethoxy-4,4'-biphenyl diisocyanate, o-tolidine diisocyanate, naphthyrylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 3,3'-dimethyl-4 4,4'-diphenylether diisocyanate, 3,3'-dimethyl-4,4'-diphenylether diisocyanate and the like. One of these may be used, or two or more may be combined. From the viewpoint of heat resistance, a preferred aromatic diisocyanate compound is at least one selected from the group consisting of 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate.
(ポリカルボジイミド共重合体)
 また、本発明に使用するポリカルボジイミドは、前記芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物と、該ポリカルボジイミド化合物の末端のイソシアネート基との反応性を有する官能基を2つ以上有する化合物(以下、単にイソシアネート基との反応性を有する官能基を2つ以上有する化合物ともいう)との共重合体とすることができる。
 前記イソシアネート基との反応性を有する官能基を2つ以上有する化合物が有する官能基としては、水酸基、アミノ基、カルボキシル基、酸無水物基等が挙げられ、中でも、水酸基が好ましい。イソシアネート基との反応性を有する官能基として水酸基を2つ以上有する化合物としては、ポリオールが挙げられる。
(Polycarbodiimide copolymer)
In addition, the polycarbodiimide used in the present invention is a compound having two or more functional groups having reactivity with the polycarbodiimide compound derived from the above aromatic diisocyanate compound and the terminal isocyanate group of the polycarbodiimide compound (hereinafter referred to simply as It can be set as the copolymer with (it is also mentioned the compound which has two or more functional groups which have the reactivity with an isocyanate group).
Examples of the functional group possessed by the compound having two or more functional groups having reactivity with the isocyanate group include a hydroxyl group, an amino group, a carboxyl group, an acid anhydride group and the like, among which a hydroxyl group is preferable. A polyol is mentioned as a compound which has two or more hydroxyl groups as a functional group which has the reactivity with an isocyanate group.
 ポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンジオール、ポリオレフィンポリオール、ポリウレタンポリオール、ポリエーテルエステルポリオール、ポリカーボネートエステルポリオール、ポリカーボネートエーテルポリオール、ひまし油系ポリオール、シリコーンジオール、ポリアルキレンジオール、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン、3,4-ジヒドロキシブタンスルホン酸、3,6-ジヒドロキシ-2-トルエンスルホン酸等が挙げられる。中でも、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ひまし油系ポリオール及びポリブタジエンポリオールからなる群より選ばれる少なくとも1種であることが好ましい。
 ポリカルボジイミド共重合体において、前記芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物に由来する構成単位100質量部に対する、イソシアネート基との反応性を有する官能基を2つ以上有する化合物に由来する構成単位の含有割合は、好ましくは40~120質量部、より好ましくは50~100質量部、更に好ましくは60~100質量部、より更に好ましくは80~100質量部、より更に好ましくは90~99質量部である。
As the polyol, for example, polyether polyol, polyester polyol, polycarbonate polyol, polybutadiene diol, polyolefin polyol, polyurethane polyol, polyether ester polyol, polycarbonate ester polyol, polycarbonate ether polyol, castor oil based polyol, silicone diol, polyalkylene diol, 2 , 2-dimethylol propionic acid, 2,2-dimethylol butanoic acid, N, N-bishydroxyethyl glycine, N, N-bishydroxyethyl alanine, 3,4-dihydroxybutane sulfonic acid, 3,6-dihydroxy- And 2-toluenesulfonic acid. Among them, at least one selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols, castor oil-based polyols and polybutadiene polyols is preferable.
In a polycarbodiimide copolymer, containing a constituent unit derived from a compound having two or more functional groups having reactivity with an isocyanate group with respect to 100 parts by mass of a constituent unit derived from the polycarbodiimide compound derived from the aromatic diisocyanate compound The proportion is preferably 40 to 120 parts by mass, more preferably 50 to 100 parts by mass, still more preferably 60 to 100 parts by mass, still more preferably 80 to 100 parts by mass, still more preferably 90 to 99 parts by mass .
(ポリカルボジイミド化合物の製造方法)
 前記変性ポリカルボジイミド化合物に使用されるポリカルボジイミド化合物は、ジイソシアネート化合物を原料とした種々の方法で製造することができる。例えば、芳香族ジイソシアネート化合物の脱二酸化炭素を伴う脱炭酸縮合反応により、イソシアネート末端ポリカルボジイミドを製造する方法(米国特許第2941956号明細書、特公昭47-33279号公報、J. Org. Chem, 28、2069-2075(1963)、Chemical Review1981、Vol.81, No.4, p619-621等)が挙げられる。
(Method for producing polycarbodiimide compound)
The polycarbodiimide compound used for the said modified polycarbodiimide compound can be manufactured by the various method which used the diisocyanate compound as the raw material. For example, a method for producing an isocyanate-terminated polycarbodiimide by decarboxylation condensation reaction of an aromatic diisocyanate compound with carbon dioxide (US Pat. No. 2,941,956, JP-B-47-33279, J. Org. Chem, 28 2069-2075 (1963), Chemical Review 1981, Vol. 81, No. 4, p619-621 etc.).
 前記芳香族ジイソシアネート化合物の脱炭酸縮合反応は、カルボジイミド化触媒の存在下において進行するものである。このカルボジイミド化触媒としては、例えば、1-フェニル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド及びこれらの3-ホスホレン異性体等のホスホレンオキシド等を挙げることができ、これらの中でも、反応性の面からは3-メチル-1-フェニル-2-ホスホレン-1-オキシドが好適である。カルボジイミド化触媒の量は、カルボジイミド化に用いられる芳香族ジイソシアネート化合物に対して、通常0.1~3.0質量%である。 The decarboxylation condensation reaction of the aromatic diisocyanate compound proceeds in the presence of a carbodiimidization catalyst. The carbodiimidization catalyst includes, for example, 1-phenyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3 And 3-phospholene such as 3-phospholene isomer thereof, and the like, and among these, among these, from the viewpoint of reactivity, 3-methyl-1-phenyl-2- can be mentioned. Phosphorene-1-oxide is preferred. The amount of the carbodiimidization catalyst is usually 0.1 to 3.0% by mass based on the aromatic diisocyanate compound used for the carbodiimidization.
 芳香族ジイソシアネート化合物の脱炭酸縮合反応は、無溶媒でも行うことができ、溶媒中で行うこともできる。使用できる溶媒としては、テトラヒドロキシフラン、1,3-ジオキサン、ジオキソラン等の脂環式エーテル;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、パークレン、トリクロロエタン、ジクロロエタン等のハロゲン化炭化水素;酢酸エチル、酢酸ブチル等のエステル系溶媒;及びメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒が挙げられる。これらは1種を用いてもよく、2種以上を組み合わせてもよい。これらの中でも、シクロヘキサノン及びテトラヒドロキシフランが好ましい。 The decarboxylation condensation reaction of the aromatic diisocyanate compound can be carried out without a solvent or can be carried out in a solvent. As a solvent which can be used, alicyclic ethers such as tetrahydroxyfuran, 1,3-dioxane and dioxolane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; chlorobenzene, dichlorobenzene, trichlorobenzene, perchlorene, trichloroethane, Halogenated hydrocarbons such as dichloroethane; ester solvents such as ethyl acetate and butyl acetate; and ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. One of these may be used, or two or more may be combined. Among these, cyclohexanone and tetrahydroxy furan are preferable.
 前記脱炭酸縮合反応における温度としては、特に限定はされないが、好ましくは40~200℃、より好ましくは50~130℃である。溶媒中で反応を行う場合、40℃~溶媒の沸点までであることが好ましい。また、溶媒中で反応を行う場合、芳香族ジイソシアネート化合物の濃度としては、好ましくは5~55質量%、より好ましくは5~40質量%である。芳香族ジイソシアネート化合物の濃度が5質量%以上であれば、ポリカルボジイミドの合成に時間がかかり過ぎることがなく、55質量%以下であれば、反応中にゲル化するのを抑制できる。また、反応を行う際の固形分濃度としては、好ましくは反応系の総量の5~55質量%であり、より好ましくは20~50質量%である。
 ポリカルボジイミド共重合体を製造する場合、前記芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物100質量部に対する、イソシアネート基との反応性を有する官能基を2つ以上有する化合物の配合割合は、好ましくは40~120質量部、より好ましくは50~100質量部、更に好ましくは60~100質量部、より更に好ましくは80~100質量部、より更に好ましくは90~99質量部である。
The temperature in the decarboxylation condensation reaction is not particularly limited, but is preferably 40 to 200 ° C., more preferably 50 to 130 ° C. When the reaction is carried out in a solvent, the temperature is preferably 40 ° C. to the boiling point of the solvent. When the reaction is carried out in a solvent, the concentration of the aromatic diisocyanate compound is preferably 5 to 55% by mass, more preferably 5 to 40% by mass. When the concentration of the aromatic diisocyanate compound is 5% by mass or more, the synthesis of the polycarbodiimide does not take too much time, and when it is 55% by mass or less, gelation during the reaction can be suppressed. The solid concentration in the reaction is preferably 5 to 55% by mass, more preferably 20 to 50% by mass, of the total mass of the reaction system.
In the case of producing a polycarbodiimide copolymer, the compounding ratio of the compound having two or more functional groups having reactivity with an isocyanate group is preferably 40 to 100 parts by mass of the polycarbodiimide compound derived from the aromatic diisocyanate compound. The amount is 120 parts by mass, more preferably 50 to 100 parts by mass, still more preferably 60 to 100 parts by mass, still more preferably 80 to 100 parts by mass, still more preferably 90 to 99 parts by mass.
(芳香族ポリカルボジイミドの末端封止)
 また、本発明において、ポリカルボジイミドとして、モノイソシアネート等のポリカルボジイミドの末端イソシアネート基と反応する化合物を用いて、適当な重合度に分子量を制御したものを使用することができる。
 このようにポリカルボジイミドの末端を封止してその重合度を制御するためのモノイソシアネートとしては、例えば、フェニルイソシアネート、p-及びm-トリルイソシアネート、p-イソプロピルフェニルイソシアネート等を用いることができる。特にフェニルイソシアネートが好適に用いられる。
 また、この他にも、封止剤として末端イソシアネートと反応し得る化合物として、水酸基をもつメタノール、イソプロピルアルコール、フェノール、ポリエチレングリコールモノメチルエーテル等;アミノ基をもつブチルアミン、ジエチルアミン等;カルボキシ基をもつプロピオン酸、安息香酸等及び酸無水物等を有する化合物を用いることができる。
(End capping of aromatic polycarbodiimide)
Further, in the present invention, as the polycarbodiimide, one having a molecular weight controlled to an appropriate degree of polymerization can be used by using a compound which reacts with the terminal isocyanate group of the polycarbodiimide such as monoisocyanate.
As the monoisocyanate for sealing the end of the polycarbodiimide and controlling the polymerization degree in this way, for example, phenyl isocyanate, p- and m-tolyl isocyanate, p-isopropylphenyl isocyanate and the like can be used. In particular, phenyl isocyanate is suitably used.
In addition, as a compound capable of reacting with terminal isocyanate as a capping agent, methanol having a hydroxyl group, isopropyl alcohol, phenol, polyethylene glycol monomethyl ether, etc .; butylamine having an amino group, diethylamine etc .; propionone having a carboxy group Compounds having an acid, benzoic acid, etc. and an acid anhydride, etc. can be used.
(芳香族ヘテロ環化合物によるポリカルボジイミド化合物の変性)
 上述したように、前記変性ポリカルボジイミド化合物は、環内2級アミン窒素を有する芳香族ヘテロ環化合物でポリカルボジイミド化合物を変性して得られる。環内2級アミン窒素を有する芳香族ヘテロ環化合物によるポリカルボジイミド化合物の変性は、例えば、無溶媒で行うこともできるが、前記ポリカルボジイミド化合物を有機溶媒と混合し、そこへ環内2級アミン窒素を有する芳香族ヘテロ環化合物をカルボジイミド基に対して下記範囲内の当量となるように添加し、撹拌して反応させることにより、合成することもできる。
(Modification of polycarbodiimide compound with aromatic heterocyclic compound)
As described above, the modified polycarbodiimide compound is obtained by modifying a polycarbodiimide compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen. Although modification of the polycarbodiimide compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen can be carried out without a solvent, for example, the polycarbodiimide compound is mixed with an organic solvent, and the endocyclic secondary amine is mixed there. The compound can also be synthesized by adding an aromatic heterocyclic compound having nitrogen to an equivalent amount within the following range with respect to a carbodiimide group, and stirring and reacting.
 環内2級アミン窒素を有する芳香族ヘテロ環化合物の添加量としては、カルボジイミド基1当量に対して好ましくは1~2当量であり、過剰な芳香族ヘテロ環化合物量が少なく、加熱処理時にアミンが逸散しやすいという点からより好ましくは1~1.2当量である。また、環内2級アミン窒素を有する芳香族ヘテロ環化合物によるポリカルボジイミド化合物の変性の反応温度は、反応速度と変性中の副反応を抑える点から好ましくは常温(25℃程度)~120℃である。環内2級アミン窒素を有する芳香族ヘテロ環化合物によるポリカルボジイミド化合物の変性は撹拌しながら行うことが好ましく、反応時間は温度によって異なるが、好ましくは0.1~10時間程度である。 The amount of addition of the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably 1 to 2 equivalents with respect to 1 equivalent of the carbodiimide group, and the amount of excess aromatic heterocyclic compound is small, and at the time of heat treatment amine More preferably, it is 1 to 1.2 equivalents in view of the fact that The reaction temperature for modification of the polycarbodiimide compound with the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably from room temperature (about 25 ° C.) to 120 ° C. in view of reaction rate and side reaction during modification. is there. The modification of the polycarbodiimide compound with the aromatic heterocyclic compound having an endocyclic secondary amine nitrogen is preferably carried out with stirring, and the reaction time varies depending on the temperature, but is preferably about 0.1 to 10 hours.
 本発明の粉体塗料用硬化剤中に含まれる、前記変性ポリカルボジイミド化合物の含有量は、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%である。 The content of the modified polycarbodiimide compound contained in the curing agent for powder coatings of the present invention is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass. is there.
 本発明の粉体塗料用硬化剤は、前記変性ポリカルボジイミド化合物の他に、本発明の効果を損なわない範囲で、必要に応じて他の従来の硬化剤、例えば、脂肪族或いは芳香族アミン、酸無水物、フェノール、ジヒドラジド、ジシアンジアミド、酸基含有ポリエステル、ブロックドイソシアネート、二塩基酸等を併用してもよい。 In addition to the modified polycarbodiimide compound, the curing agent for powder coatings of the present invention may, if necessary, other conventional curing agents, such as aliphatic or aromatic amines, as long as the effects of the present invention are not impaired An acid anhydride, phenol, dihydrazide, dicyandiamide, acid group-containing polyester, blocked isocyanate, dibasic acid and the like may be used in combination.
 本発明の粉体塗料用硬化剤は、カルボジイミド基と架橋反応する樹脂組成物を硬化させることができる。そのような樹脂組成物には、例えば、分子中にカルボキシル基を有するカルボキシル基含有樹脂が挙げられる。カルボジイミド基との架橋反応のしやすさから、好ましいカルボキシル基含有樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリオレフィン樹脂及びポリイミド樹脂等が挙げられる。 The curing agent for powder coatings of the present invention can cure a resin composition that undergoes a crosslinking reaction with a carbodiimide group. Such resin compositions include, for example, carboxyl group-containing resins having a carboxyl group in the molecule. Preferable carboxyl group-containing resins include, for example, polyester resins, polyurethane resins, polyamide resins, acrylic resins, vinyl acetate resins, polyolefin resins, polyimide resins, and the like, from the easiness of crosslinking reaction with carbodiimide group.
[粉体塗料用組成物]
 本発明の粉体塗料用組成物は、上述の粉体塗料用硬化剤及びカルボキシル基含有樹脂を含む。これにより、粉体塗料用組成物の保存安定性が向上し、低温での焼付が可能となり、硬化性及び密着性に優れた塗膜を得ることができる。
[Composition for powder coating]
The composition for powder coating of the present invention contains the above-mentioned curing agent for powder coating and a carboxyl group-containing resin. As a result, the storage stability of the powder coating composition is improved, baking can be performed at a low temperature, and a coating film excellent in curability and adhesion can be obtained.
 本発明の粉体塗料用組成物に使用される粉体塗料用硬化剤は、前述の[粉体塗料用硬化剤]の項で説明したとおりである。
 本発明の粉体塗料用組成物における粉体塗料用硬化剤の含有量は、例えば、後述するカルボキシル基含有樹脂の官能基当量に対し、0.5~1.5当量であり、好ましくは0.8~1.2当量である。粉体塗料用硬化剤の含有量を前記範囲内とすることで樹脂の硬化を十分に行うことができ、硬化性及び密着性に優れた塗膜を得ることができる。
 粉体塗料用組成物中における、粉体塗料用硬化剤及びカルボキシル基含有樹脂の合計含有量は、好ましくは60質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上、例えば100質量%である。
The curing agent for powder coatings used for the composition for powder coatings of the present invention is as described in the section of "Hardener for powder coatings" described above.
The content of the curing agent for powder coating in the composition for powder coating of the present invention is, for example, 0.5 to 1.5 equivalents, preferably 0 based on the functional group equivalent of the carboxyl group-containing resin described later. .8-1.2 equivalents. By setting the content of the curing agent for powder coating within the above range, curing of the resin can be sufficiently performed, and a coating film excellent in curability and adhesion can be obtained.
The total content of the curing agent for powder coating and the carboxyl group-containing resin in the composition for powder coating is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more More preferably, it is 95 mass% or more, for example, 100 mass%.
 本発明の粉体塗料用組成物に使用されるカルボキシル基含有樹脂としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、アクリル樹脂、酢酸ビニル樹脂、ポリオレフィン樹脂及びポリイミド樹脂等が挙げられる。中でも、耐候性の観点から、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂が好ましく、ポリエステル樹脂がより好ましく用いられる。 As a carboxyl group-containing resin used for the composition for powder coating of this invention, a polyester resin, a polyurethane resin, a polyamide resin, an acrylic resin, vinyl acetate resin, polyolefin resin, a polyimide resin etc. are mentioned, for example. Among them, polyester resins, polyurethane resins, and acrylic resins are preferable from the viewpoint of weather resistance, and polyester resins are more preferably used.
 本発明の粉体塗料用組成物は、本発明の効果を阻害しない範囲内で任意の添加剤を配合することができる。添加剤の具体例としては、例えば、顔料、充填剤、レベリング剤、界面活性剤、分散剤、可塑剤、紫外線吸収剤、酸化防止剤等を挙げることができる。 In the powder coating composition of the present invention, any additive can be blended within the range that does not inhibit the effects of the present invention. As a specific example of an additive, a pigment, a filler, a leveling agent, surfactant, a dispersing agent, a plasticizer, an ultraviolet absorber, antioxidant etc. can be mentioned, for example.
 本発明の粉体塗料用組成物を調製するには、前記粉体塗料用硬化剤と、前記カルボキシル基含有樹脂とをドライブレンドする方法、前記粉体塗料用硬化剤と、前記カルボキシル基含有樹脂とを溶融混練し冷却した後、粉砕する方法等を採用することができる。 To prepare the composition for powder coating of the present invention, a method of dry blending the curing agent for powder coating and the carboxyl group-containing resin, the curing agent for powder coating, and the carboxyl group-containing resin And the like, and then cooled and then crushed.
 本発明の粉体塗料用組成物を、静電塗装法、流動浸漬法、吹付法等の公知の塗装方法により、塗装する対象物に付着させた後、加熱し架橋反応させる、いわゆる焼付けをすることにより、塗膜を形成することができる。 After the composition for powder coating of the present invention is applied to an object to be coated by a known coating method such as electrostatic coating method, fluid immersion method, spraying method, etc., it is heated to cause a crosslinking reaction, so-called baking Thus, a coating film can be formed.
 焼付け温度は、通常180℃以上の高温を必要とするが、本発明の粉体塗料用組成物を用いることで、好ましくは150℃以下、より好ましくは140℃以下とすることができる。焼付け時間は、焼付け温度、粉体塗料用組成物の塗布厚み等によるが、例えば5分~2時間の範囲で行えばよい。 The baking temperature usually requires a high temperature of 180 ° C. or more, but can preferably be 150 ° C. or less, more preferably 140 ° C. or less by using the powder coating composition of the present invention. The baking time may be, for example, in the range of 5 minutes to 2 hours, although it depends on the baking temperature, the coating thickness of the composition for powder coating, and the like.
 以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は、実施例に記載の形態に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the embodiments described in the examples.
(合成例1:変性ポリカルボジイミド化合物(a)の合成)
 ジイソシアネート化合物として、トリレンジイソシアネート(三井化学(株)製、コスモネート(登録商標)T-80、2,4-トリレンジイソシアネート:2,6-トリレンジイソシアネート=75-85%:15-25%の混合物)100質量部、ポリオールとして、ポリカーボネートジオール(旭化成(株)製、DURANOL T-5650E、分子量500)96.3質量部、モノイソシアネートとして、フェニルイソシアネート45.6質量部、及びカルボジイミド化触媒として、3-メチル-1-フェニル-2-ホスホレン-1-オキシド1.5質量部を還流管及び撹拌機付きの反応容器に投入し、窒素気流下、100℃で6時間撹拌し、赤外吸収(IR)スペクトル測定により波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消滅したことを確認するとともに、波長2150cm-1前後のカルボジイミド基による吸収ピークを確認して、重合度3のポリカルボジイミド化合物を得た。
 このポリカルボジイミド化合物に、芳香族ヘテロ環化合物として、2-メチルイミダゾール(四国化成工業(株)製、キュアゾール2MZ)48.1質量部を添加して、80℃で1時間撹拌した。そして、赤外吸収(IR)スペクトル測定により波長1660cm-1前後にグアニジン基による吸収ピークが生成し、波長2150cm-1前後のカルボジイミド基による吸収ピークがほぼ消滅していることを確認して、合成例1の芳香族ヘテロ環化合物で変性されたポリカルボジイミド化合物(変性ポリカルボジイミド化合物(a))を得た。
Synthesis Example 1: Synthesis of Modified Polycarbodiimide Compound (a)
As a diisocyanate compound, tolylene diisocyanate (manufactured by Mitsui Chemicals, Cosmonate (registered trademark) T-80, 2,4-tolylene diisocyanate: 2,6-tolylene diisocyanate = 75 to 85%: 15 to 25%) Mixture of 100 parts by mass, 96.3 parts by mass of polycarbonate diol (Asahi Kasei Co., Ltd. product DURANOL T-5650E, molecular weight 500) as a polyol, 45.6 parts by mass of phenyl isocyanate as a monoisocyanate, and Then, 1.5 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide was charged into a reaction vessel equipped with a reflux condenser and a stirrer, and stirred at 100 ° C. for 6 hours under a nitrogen stream, and infrared absorption (IR) isocyanate groups having a wavelength of about 2270 cm -1 by spectrometry Together with the absorption peaks due to confirm that almost disappeared, check the absorption peak by wavelength 2150 cm -1 before and after the carbodiimide groups, give the polycarbodiimide compound having a degree of polymerization of 3.
To this polycarbodiimide compound was added 48.1 parts by mass of 2-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Cuazole 2MZ) as an aromatic heterocyclic compound, and the mixture was stirred at 80 ° C. for 1 hour. Then, the absorption peak due to guanidine groups before and after the wavelength 1660 cm -1 by infrared absorption (IR) spectrum measurement is generated, and confirm that absorption peaks due to the wavelength 2150 cm -1 before and after the carbodiimide group is substantially disappeared, synthetic A polycarbodiimide compound (modified polycarbodiimide compound (a)) modified with the aromatic heterocyclic compound of Example 1 was obtained.
(合成例2:変性ポリカルボジイミド化合物(b)の合成)
 合成例1において、芳香族ヘテロ環化合物として1H-イミダゾール(四国化成工業(株)製、キュアゾールSIZ)39.9質量部を用いた以外は合成例1と同様にして、合成例2の変性ポリカルボジイミド化合物(b)を得た。
Synthesis Example 2 Synthesis of Modified Polycarbodiimide Compound (b)
The modified poly of Synthesis Example 2 was prepared in the same manner as in Synthesis Example 1 except that 39.9 parts by mass of 1H-imidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Cuazole SIZ) was used as the aromatic heterocyclic compound. The carbodiimide compound (b) was obtained.
(合成例3:変性ポリカルボジイミド化合物(c)の合成)
 合成例1において、芳香族ヘテロ環化合物として3,5-ジメチルピラゾール(日本ファインケム(株)製、DMP)56.3質量部を用いた以外は合成例1と同様にして、合成例3の変性ポリカルボジイミド化合物(c)を得た。
Synthesis Example 3 Synthesis of Modified Polycarbodiimide Compound (c)
Modification of Synthesis Example 3 in the same manner as in Synthesis Example 1 except that 56.3 parts by mass of 3,5-dimethylpyrazole (DMP, manufactured by Nippon Finechem Co., Ltd.) was used as the aromatic heterocyclic compound in Synthesis Example 1. The polycarbodiimide compound (c) was obtained.
(合成例4:変性ポリカルボジイミド化合物(d)の合成)
 合成例1において、ポリカーボネートジオールの配合量を57.8質量部、フェニルイソシアネートの配合量を27.4質量部、3-メチル-1-フェニル-2-ホスホレン-1-オキシドの配合量を1.3質量部に変更し、カルボジイミド化反応時間を5時間とした以外は合成例1と同様にして、合成例4の変性ポリカルボジイミド化合物(d)を得た。
Synthesis Example 4 Synthesis of Modified Polycarbodiimide Compound (d)
In Synthesis Example 1, 57.8 parts by mass of the compounded amount of polycarbonate diol, 27.4 parts by mass of the compounded amount of phenyl isocyanate, and 1.3 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide. A modified polycarbodiimide compound (d) of Synthesis Example 4 was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 3 parts by mass and the carbodiimidization reaction time was 5 hours.
(合成例5:変性ポリカルボジイミド化合物(e)の合成)
 合成例1において、ポリオールとしてポリエステルポリオール(DIC(株)製、ポリライトOD-X-2171)97.9質量部に変更した以外は合成例1と同様にして、合成例5の変性ポリカルボジイミド化合物(e)を得た。
Synthesis Example 5 Synthesis of Modified Polycarbodiimide Compound (e)
A modified polycarbodiimide compound of Synthesis Example 5 (Synthesis Example 1) except that in Synthesis Example 1, the polyol was changed to 97.9 parts by mass of polyester polyol (Polylite OD-X-2171 manufactured by DIC Corporation) got e).
(合成例6:変性ポリカルボジイミド化合物(f)の合成)
 合成例1において、ジイソシアネート化合物としてトリレンジイソシアネートをジフェニルメタンジイソシアネート(東ソー(株)製、ミリオネート(登録商標)MT、4,4’-ジフェニルメタンジイソシアネート)に、ポリカーボネートジオールの配合量を96.4質量部、2-メチルイミダゾールの配合量を33.5質量部に変更し、カルボジイミド化反応時間を5時間とした以外は合成例1と同様にして、合成例6の変性ポリカルボジイミド化合物(f)を得た。
Synthesis Example 6: Synthesis of Modified Polycarbodiimide Compound (f)
In Synthesis Example 1, 96.4 parts by mass of tolylene diisocyanate as a diisocyanate compound was added to diphenylmethane diisocyanate (manufactured by Tosoh Corp., Millionate (registered trademark) MT, 4,4′-diphenylmethane diisocyanate) in polycarbonate diol A modified polycarbodiimide compound (f) of Synthesis Example 6 was obtained in the same manner as in Synthesis Example 1 except that the blending amount of 2-methylimidazole was changed to 33.5 parts by mass, and the carbodiimidization reaction time was changed to 5 hours. .
(合成例7:変性ポリカルボジイミド化合物(g)の合成)
 合成例1において、芳香族ヘテロ環化合物に変えて、ジイソプロピルアミン(東京化成工業社製)59.3質量部を用いた以外は合成例1と同様にして、合成例7の変性ポリカルボジイミド化合物(g)を得た。
Synthesis Example 7 Synthesis of Modified Polycarbodiimide Compound (g)
A modified polycarbodiimide compound of Synthesis Example 7 was prepared in the same manner as in Synthesis Example 1 except that 59.3 parts by mass of diisopropylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the aromatic heterocyclic compound in Synthesis Example 1. g) got.
(合成例8:ポリカルボジイミド化合物(1)の合成)
 ジイソシアネート化合物として、トリレンジイソシアネート(三井化学(株)製、コスモネート(登録商標)T-80、2,4-トリレンジイソシアネート:2,6-トリレンジイソシアネート=75-85%:15-25%の混合物)100質量部、ポリオールとして、ポリカーボネートジオール(旭化成ケミカルズ(株)製、DURANOL T-5650E、分子量500)96.3質量部、モノイソシアネートとして、フェニルイソシアネート45.6質量部、及びカルボジイミド化触媒として、3-メチル-1-フェニル-2-ホスホレン-1-オキシド1.5質量部を還流管及び撹拌機付きの反応容器に投入し、窒素気流下、100℃で6時間撹拌し、赤外吸収(IR)スペクトル測定により波長2270cm-1前後のイソシアネート基による吸収ピークがほぼ消滅したことを確認するとともに、波長2150cm-1前後のカルボジイミド基による吸収ピークを確認して、ポリカルボジイミド化合物(1)を得た。
 このポリカルボジイミド化合物(1)は、芳香族ヘテロ環化合物による変性を行わなかった。
Synthesis Example 8 Synthesis of Polycarbodiimide Compound (1)
As a diisocyanate compound, tolylene diisocyanate (manufactured by Mitsui Chemicals, Cosmonate (registered trademark) T-80, 2,4-tolylene diisocyanate: 2,6-tolylene diisocyanate = 75 to 85%: 15 to 25%) Mixture of 100 parts by mass, 96.3 parts by mass of polycarbonate diol (manufactured by Asahi Kasei Chemicals Corporation, DURANOL T-5650E, molecular weight 500) as a polyol, 45.6 parts by mass of phenyl isocyanate as a monoisocyanate, and a carbodiimidization catalyst As a mixture, 1.5 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide was charged into a reaction vessel equipped with a reflux condenser and a stirrer, and stirred at 100 ° C. for 6 hours under a nitrogen stream, and infrared (IR) absorption Isoshi wavelength of about 2270 cm -1 by spectrometry It reaffirmed that the absorption peak due to sulfonate groups is almost disappeared, check the absorption peak by wavelength 2150 cm -1 before and after the carbodiimide groups, give polycarbodiimide compound (1).
The polycarbodiimide compound (1) was not modified by the aromatic heterocyclic compound.
 前記合成例1~8で用いた各成分及び反応条件について表1に示す。なお、表1中、空欄は配合なしを表す。 The components and reaction conditions used in Synthesis Examples 1 to 8 are shown in Table 1. In Table 1, blanks indicate no blending.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例1)
 粉体塗料用飽和ポリエステル樹脂(日本ユピカ(株)製、ユピコートGV-230)100質量部、硬化剤として合成例1で得られた変性ポリカルボジイミド化合物(a)45.0質量部をラボミキサー(東洋精機(株)製)にて100℃の条件下で5分間溶融混練したあと、卓上粉砕機(大阪ケミカル(株)製、WONDER BLENDER)にて粉砕して粉体塗料用組成物を得た。
Example 1
100 parts by mass of a saturated polyester resin for powder coating (Nippon Yupika Co., Ltd., Iupicoat GV-230), 45.0 parts by mass of the modified polycarbodiimide compound (a) obtained in Synthesis Example 1 as a curing agent After melt-kneading with Toyo Seiki Co., Ltd. product at 100 ° C. for 5 minutes, it was crushed with a table-top crusher (Osaka Chemical Co., Ltd. product WONDER BLENDER) to obtain a composition for powder coating .
(実施例2)
 実施例1において、硬化剤として合成例2で得られた変性ポリカルボジイミド化合物(b)43.7質量部に変更した以外は実施例1と同様にして実施例2の粉体塗料用組成物を得た。
(Example 2)
A powder coating composition of Example 2 was obtained in the same manner as in Example 1 except that the modifying agent was changed to 43.7 parts by mass of the modified polycarbodiimide compound (b) obtained in Synthesis Example 2 as a curing agent. Obtained.
(実施例3)
 実施例1において、硬化剤として合成例3で得られた変性ポリカルボジイミド化合物(c)46.4質量部に変更した以外は実施例1と同様にして実施例3の粉体塗料用組成物を得た。
(Example 3)
A powder coating composition of Example 3 was obtained in the same manner as in Example 1 except that the modifying agent was changed to 46.4 parts by mass of the modified polycarbodiimide compound (c) obtained in Synthesis Example 3 as a curing agent. Obtained.
(実施例4)
 実施例1において、硬化剤として合成例4で得られた変性ポリカルボジイミド化合物(d)35.3質量部に変更した以外は実施例1と同様にして実施例4の粉体塗料用組成物を得た。
(Example 4)
A powder coating composition of Example 4 is obtained in the same manner as in Example 1 except that the modifying agent is changed to 35.3 parts by mass of the modified polycarbodiimide compound (d) obtained in Synthesis Example 4 as a curing agent. Obtained.
(実施例5)
 実施例1において、硬化剤として合成例5で得られた変性ポリカルボジイミド化合物(e)45.3質量部に変更した以外は実施例1と同様にして実施例5の粉体塗料用組成物を得た。
(Example 5)
A powder coating composition of Example 5 is obtained in the same manner as in Example 1 except that the modifying agent is changed to 45.3 parts by mass of the modified polycarbodiimide compound (e) obtained in Synthesis Example 5 as a curing agent. Obtained.
(実施例6)
 実施例1において、硬化剤として合成例6で得られた変性ポリカルボジイミド化合物(f)52.5質量部に変更した以外は実施例1と同様にして実施例6の粉体塗料用組成物を得た。
(Example 6)
The powder coating composition of Example 6 is obtained in the same manner as in Example 1 except that the modifying agent is changed to 52.5 parts by mass of the modified polycarbodiimide compound (f) obtained in Synthesis Example 6 as a curing agent. Obtained.
[規則91に基づく訂正 26.09.2018] 
(比較例1)
 実施例1において、硬化剤として合成例7で得られたポリカルボジイミド化合物(g)37.0質量部に変更した以外は実施例1と同様にして比較例1の粉体塗料用組成物を得た。
 
[Correction based on rule 91 26.09.218]
(Comparative example 1)
A powder coating composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that the polycarbodiimide compound (g) obtained in Synthesis Example 7 was changed to 37.0 parts by mass as a curing agent in Example 1. The
(比較例2)
 実施例1において、硬化剤として合成例8で得られたポリカルボジイミド化合物(1)37.0質量部に変更した以外は実施例2と同様にして比較例1の粉体塗料用組成物を得た。
(Comparative example 2)
A powder coating composition of Comparative Example 1 is obtained in the same manner as in Example 2 except that the curing agent is changed to 37.0 parts by mass of the polycarbodiimide compound (1) obtained in Synthesis Example 8 in Example 1. The
(比較例3)
 実施例1において、硬化剤としてブロックドイソシアネート化合物(エボニック社製、VESTAGON B1530)32.9質量部に変更した以外は実施例1と同様にして比較例3の粉体塗料用組成物を得た。
(Comparative example 3)
A powder coating composition of Comparative Example 3 was obtained in the same manner as in Example 1 except that 32.9 parts by mass of the blocked isocyanate compound (manufactured by Evonik, VESTAGON B1530) was used as the curing agent. .
(比較例4)
 粉体塗料用飽和ポリエステル樹脂(日本ユピカ(株)製、ユピカコートGV-230)100質量部をそのまま粉体塗料用樹脂として用いた。
(Comparative example 4)
100 parts by mass of a saturated polyester resin for powder coating (Nippon YUPICA CO., LTD., UPICA COAT GV-230) was used as it is as a resin for powder coating.
(比較例5)
実施例1において、硬化剤としてN,N,N',N'-テトラキス(2-ヒドロキシエチル)アジポアミド(東京化成工業社製)7.9質量部に変更した以外は実施例1と同様にして比較例5の粉体塗料用組成物を得た。
(Comparative example 5)
Example 1 is the same as Example 1 except that the curing agent is changed to 7.9 parts by mass of N, N, N ', N'-tetrakis (2-hydroxyethyl) adipoamide (manufactured by Tokyo Chemical Industry Co., Ltd.). The composition for powder coating of Comparative Example 5 was obtained.
<評価項目>
(1)保存安定性評価
 下記手順により評価した。前記実施例1~6及び比較例1~5で得られた各粉体塗料用組成物を、室温(25℃)で1週間放置した。1週間経過後の状態を目視にて観察し、ゲル化せずに安定だったものを「excellent」、ゲル化したものを「bad」として評価した。
<Evaluation item>
(1) Storage stability evaluation It evaluated according to the following procedure. The powder coating compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were left at room temperature (25 ° C.) for one week. The state after 1 week passed was visually observed, and what was stable without gelation was evaluated as "excellent", and what was gelled as "bad".
<評価項目>
(2)外観評価
 下記手順により評価した。前記実施例1~6及び比較例1~5で得られた各粉体塗料用組成物を、粉体塗料用組成物をPETフィルムと離形処理されたPETフィルムとで挟み、ミニテストプレス-10(東洋精機(株)製)にて表2に対応した硬化温度(140℃もしくは180℃)にて5分間熱プレスをして厚み10μmの塗膜を得た。塗膜外観を目視にて観察し、ピンホールの無いものを「excellent」、ピンホールが発生したものを「bad」として評価した。なお、比較例2の粉体塗料用組成物は、100℃の条件下で5分間溶融混練中にゲル化した。結果を表2に示す。なお、表2中、空欄は配合なしを表し、(-)は、実施しなかったことを表す。
<Evaluation item>
(2) Appearance evaluation It evaluated according to the following procedure. In each of the powder coating compositions obtained in the above Examples 1 to 6 and Comparative Examples 1 to 5, the composition for powder coatings is sandwiched between a PET film and a PET film subjected to release treatment, to form a mini-test press Hot-pressing was carried out at 10 (made by Toyo Seiki Co., Ltd.) for 5 minutes at a curing temperature (140 ° C. or 180 ° C.) corresponding to Table 2 to obtain a coating having a thickness of 10 μm. The appearance of the coated film was visually observed, and those without pinholes were evaluated as "excellent", and those with pinholes were evaluated as "bad". In addition, the composition for powder coating materials of the comparative example 2 gelatinized during melt-kneading for 5 minutes on 100 degreeC conditions. The results are shown in Table 2. In addition, in Table 2, a blank indicates that there is no blending, and (-) indicates that it has not been implemented.
(3)塗膜の耐溶剤性評価
 前記実施例1~6及び比較例1~5で得られた各粉体塗料用組成物について、これらを用いて塗膜試料を作成して耐溶剤性評価を行った。結果を表2に示す。
 塗膜の耐溶剤性は、粉体塗料の塗装、焼付け後の塗膜の硬化状態及び密着性を示すもので、優れた耐溶剤性を示すものが、粉体塗料としての硬化状態及び密着性に優れていることになる。
 耐溶剤性評価試験は、以下のようにして作成した塗膜試料(i)(ii)及び(iii)について、下記試験条件にて行った。なお、塗膜試料(i)は塗料作成時の溶融混練工程を想定し、塗膜試料(ii)および(iii)は焼付け工程を想定している。
(3) Solvent resistance evaluation of a coating film About each composition for powder coating obtained in the said Examples 1-6 and Comparative Examples 1-5, a coating film sample is created using these and solvent resistance evaluation Did. The results are shown in Table 2.
The solvent resistance of the coating film indicates the cured state and adhesion of the coating after powder coating and baking, and those showing excellent solvent resistance are the cured state and adhesion as a powder coating. It will be excellent.
The solvent resistance evaluation test was conducted under the following test conditions for coating film samples (i) (ii) and (iii) prepared as follows. In addition, coating-film sample (i) assumes the melt-kneading process at the time of coating preparation, and coating-film sample (ii) and (iii) assumes the baking process.
<塗膜試料>
(i)粉体塗料用組成物をPETフィルムと離形処理されたPETフィルムとで挟み、ミニテストプレス-10(東洋精機(株)製)にて100℃で5分間熱プレスをして厚み10μmの塗膜を得た。
(ii)粉体塗料用組成物をPETフィルムと離形処理されたPETフィルムとで挟み、ミニテストプレス-10(東洋精機(株)製)にて140℃で20分間熱プレスをして厚み10μmの塗膜を得た。
(iii)粉体塗料用組成物をPETフィルムと離形処理されたPETフィルムとで挟み、ミニテストプレス-10(東洋精機(株)製)にて180℃で20分間熱プレスをして厚み10μmの塗膜を得た。
<試験条件>
 試験機:摩擦試験機(ER-1B型、スガ試験機(株)製)
 溶剤:トルエン、アセトン、メチルエチルケトン
 溶剤を染み込ませた脱脂綿で塗膜試料表面を荷重900g/cmでダブルラビングを20回行った後の塗膜試料の状態を目視観察し、以下の評価基準にて評価を行った。
<評価>
 A:ダメージなし、または薄く跡が残った
 B:少し白化した
 C:強く白化した
 D:基材露出または膜溶解
 E:塗膜を得られない
<Coated film sample>
(I) The composition for powder coating is sandwiched between a PET film and a PET film subjected to release treatment, and heat pressed at 100 ° C. for 5 minutes in Mini Test Press-10 (manufactured by Toyo Seiki Co., Ltd.) A 10 μm coating was obtained.
(Ii) The composition for powder coating is sandwiched between a PET film and a PET film subjected to mold release treatment, and heat pressed at 140 ° C. for 20 minutes in Mini Test Press-10 (manufactured by Toyo Seiki Co., Ltd.) A 10 μm coating was obtained.
(Iii) The composition for powder coating is sandwiched between a PET film and a PET film subjected to release treatment, and heat pressed at 180 ° C. for 20 minutes in Mini Test Press-10 (manufactured by Toyo Seiki Co., Ltd.) A 10 μm coating was obtained.
<Test conditions>
Testing machine: Friction tester (ER-1B, manufactured by Suga Test Instruments Co., Ltd.)
Solvent: Toluene, acetone, methyl ethyl ketone The state of the coated film sample after performing double rubbing twice with a load of 900 g / cm 2 with cotton wool impregnated with a solvent was visually observed, and the following evaluation criteria I made an evaluation.
<Evaluation>
A: No damage or slight marks left B: Slightly whitened C: Strongly whitened D: Substrate exposure or film dissolution E: Coating film not obtained
 塗料作成時の溶融混練工程では、硬化が進むと混練が困難になり、また出来た粉体塗料がすでに硬化しており使用ができなくなることから、100℃5分間のキュア(塗膜試料(i))ではDの状態が良く、焼付け工程では、所定温度で所定時間内に硬化が進んで強固な塗膜が形成されることが必要であることから、140℃20分間のキュア(塗膜試料(ii))および180℃20分間のキュア(塗膜試料(iii))ではAまたはBの状態が良いことになる。 In the melt-kneading process at the time of preparation of the coating, if curing progresses, kneading becomes difficult, and the resulting powder coating is already cured and can not be used, so curing at 100 ° C. for 5 minutes (coating sample (i )), And in the baking process, it is necessary that curing proceeds within a predetermined time at a predetermined temperature to form a strong coating, so curing at 140 ° C. for 20 minutes (coating sample The condition of A or B is good in the case of (ii) and curing at 180 ° C. for 20 minutes (coating sample (iii)).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~6の粉体塗料用組成物は、いずれも保存安定性に優れ、低温(150℃以下)での焼付けが可能であり、焼き付け後の外観が良好で、硬化性及び密着性に優れた塗膜が得られることが分かった。一方、芳香族ヘテロ環化合物で変性していないポリカルボジイミド化合物を硬化剤として用いた比較例1の粉体塗料用組成物は、低温での焼付けが可能であったが、焼き付け後の外観が不良であった。また、従来、粉体塗料用硬化剤として用いられているブロックドイソシアネート化合物を用いた比較例3、及び粉体塗料樹脂のみを用いた比較例4、従来、粉体塗料用硬化剤として用いられているN,N,N',N'-テトラキス(2-ヒドロキシエチル)アジポアミドを用いた比較例5では、焼付け温度が150℃以下では不十分であり、塗膜の硬化性及び密着性が十分なものではなかった。さらに、比較例5では、180℃で焼き付けた際、良好な耐溶剤性を示したが、硬化反応で発生する微量の水分に由来するピンホールが発生し、焼き付け後塗膜の外観不良が発生した。
 
The powder coating compositions of Examples 1 to 6 are excellent in storage stability, can be baked at low temperature (150 ° C. or less), have a good appearance after baking, and have excellent curability and adhesion. It was found that an excellent coating film was obtained. On the other hand, the composition for powder coating of Comparative Example 1 using a polycarbodiimide compound not modified with an aromatic heterocyclic compound as a curing agent was capable of baking at a low temperature, but the appearance after baking was poor Met. In addition, Comparative Example 3 using a blocked isocyanate compound conventionally used as a curing agent for powder coatings, and Comparative Example 4 using only a powder coating resin, conventionally used as a curing agent for powder coatings In Comparative Example 5 using N, N, N ', N'-tetrakis (2-hydroxyethyl) adipamide, the baking temperature is insufficient at 150.degree. C. or less, and the curability and adhesion of the coating film are sufficient. It was not a thing. Furthermore, in Comparative Example 5, when baked at 180 ° C., good solvent resistance was exhibited, but pinholes derived from a small amount of water generated by the curing reaction were generated, and appearance defects of the coating film after baking were generated. did.

Claims (10)

  1.  環内2級アミン窒素を有する芳香族ヘテロ環化合物でジイソシアネート化合物由来のポリカルボジイミド化合物を変性して得られる変性ポリカルボジイミド化合物を含む粉体塗料用硬化剤。 A curing agent for powder coating containing a modified polycarbodiimide compound obtained by modifying a polycarbodiimide compound derived from a diisocyanate compound with an aromatic heterocyclic compound having an endocyclic secondary amine nitrogen.
  2.  前記芳香族ヘテロ環化合物における環内窒素の数は2以上である請求項1に記載の粉体塗料用硬化剤。 The curing agent for powder coatings according to claim 1, wherein the number of ring nitrogens in the aromatic heterocyclic compound is 2 or more.
  3.  前記芳香族ヘテロ環化合物が置換してもよいピラゾール及び置換してもよいイミダゾールからなる群から選択される少なくとも1種の芳香族ヘテロ環化合物である請求項1または2に記載の粉体塗料用硬化剤。 The powder coating material according to claim 1 or 2, wherein the aromatic heterocyclic compound is at least one aromatic heterocyclic compound selected from the group consisting of pyrazole which may be substituted and imidazole which may be substituted. Curing agent.
  4.  前記芳香族ヘテロ環化合物が、3,5-ジメチルピラゾール、2-メチルイミダゾール及び1H-イミダゾールからなる群から選択される少なくとも1種の芳香族ヘテロ環化合物である請求項3に記載の粉体塗料用硬化剤。 The powder coating according to claim 3, wherein the aromatic heterocyclic compound is at least one aromatic heterocyclic compound selected from the group consisting of 3,5-dimethylpyrazole, 2-methylimidazole and 1H-imidazole. Curing agent.
  5.  前記ジイソシアネート化合物が芳香族ジイソシアネート化合物である請求項1~4のいずれか1項に記載の粉体塗料用硬化剤。 The curing agent for powder coatings according to any one of claims 1 to 4, wherein the diisocyanate compound is an aromatic diisocyanate compound.
  6.  前記芳香族ジイソシアネート化合物が、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート及び2,6-トリレンジイソシアネートからなる群から選択される少なくとも1種の芳香族ジイソシアネート化合物である請求項5に記載の粉体塗料用硬化剤。 The aromatic diisocyanate compound is at least one aromatic diisocyanate compound selected from the group consisting of 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate. The curing agent for powder coatings described in.
  7.  前記ジイソシアネート化合物由来のポリカルボジイミド化合物が、芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物と、該芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物の末端のイソシアネート基との反応性を有する官能基を2つ以上有する化合物との共重合体である請求項1~6のいずれか1項に記載の粉体塗料用硬化剤。 The compound in which the said polycarbodiimide compound derived from the said diisocyanate compound has two or more functional groups which have the reactivity of the polycarbodiimide compound derived from an aromatic diisocyanate compound and the terminal isocyanate group of the polycarbodiimide compound derived from this aromatic diisocyanate compound The curing agent for powder coatings according to any one of claims 1 to 6, which is a copolymer thereof.
  8.  前記芳香族ジイソシアネート化合物由来のポリカルボジイミド化合物の末端のイソシアネート基との反応性を有する官能基を2つ以上有する化合物が、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ひまし油系ポリオール及びポリブタジエンポリオールからなる群より選ばれる少なくとも1種である請求項7に記載の粉体塗料用硬化剤。 A group in which the compound having two or more functional groups having reactivity with the terminal isocyanate group of the polycarbodiimide compound derived from the aromatic diisocyanate compound is a polyether polyol, a polyester polyol, a polycarbonate polyol, a castor oil based polyol and a polybutadiene polyol The curing agent for powder coatings according to claim 7, which is at least one selected from the group consisting of
  9.  請求項1~8のいずれか1項に記載の粉体塗料用硬化剤及びカルボキシル基含有樹脂を含む粉体塗料用組成物。 A composition for powder coating comprising the curing agent for powder coating according to any one of claims 1 to 8 and a carboxyl group-containing resin.
  10.  前記カルボキシル基含有樹脂がポリエステル樹脂である請求項9に記載の粉体塗料用組成物。
     
    10. The powder coating composition according to claim 9, wherein the carboxyl group-containing resin is a polyester resin.
PCT/JP2018/035313 2017-09-25 2018-09-25 Curing agent for powder paint and powder paint composition including said curing agent for powder paint WO2019059393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017183827 2017-09-25
JP2017-183827 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059393A1 true WO2019059393A1 (en) 2019-03-28

Family

ID=65811396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035313 WO2019059393A1 (en) 2017-09-25 2018-09-25 Curing agent for powder paint and powder paint composition including said curing agent for powder paint

Country Status (1)

Country Link
WO (1) WO2019059393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059835A1 (en) * 2019-09-25 2021-04-01 日清紡ケミカル株式会社 Modified polycarbodiimide compound having hydrophilic group

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157588A (en) * 1995-10-04 1997-06-17 Nisshinbo Ind Inc Curing agent for urethane coating material and polyester/urethane coating material
JPH1135850A (en) * 1997-05-19 1999-02-09 Nisshinbo Ind Inc Curing agent for powder coating material, powder coating composition containing the same and powder coating
JP2004027035A (en) * 2002-06-26 2004-01-29 Nisshinbo Ind Inc Powder coating composition for disk pad and disk pad coated therewith
JP2007138080A (en) * 2005-11-21 2007-06-07 Nisshinbo Ind Inc Modified polycarbodiimide composition and modified polycarbodiimide
WO2016163284A1 (en) * 2015-04-06 2016-10-13 日清紡ケミカル株式会社 Modified polycarbodiimide compound, curing agent, and thermosetting resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157588A (en) * 1995-10-04 1997-06-17 Nisshinbo Ind Inc Curing agent for urethane coating material and polyester/urethane coating material
JPH1135850A (en) * 1997-05-19 1999-02-09 Nisshinbo Ind Inc Curing agent for powder coating material, powder coating composition containing the same and powder coating
JP2004027035A (en) * 2002-06-26 2004-01-29 Nisshinbo Ind Inc Powder coating composition for disk pad and disk pad coated therewith
JP2007138080A (en) * 2005-11-21 2007-06-07 Nisshinbo Ind Inc Modified polycarbodiimide composition and modified polycarbodiimide
WO2016163284A1 (en) * 2015-04-06 2016-10-13 日清紡ケミカル株式会社 Modified polycarbodiimide compound, curing agent, and thermosetting resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021059835A1 (en) * 2019-09-25 2021-04-01 日清紡ケミカル株式会社 Modified polycarbodiimide compound having hydrophilic group

Similar Documents

Publication Publication Date Title
CN107531877B (en) Modified polycarbodiimide compound, curing agent and thermosetting resin composition
JP6849268B2 (en) Modified polycarbodiimide compound, curing agent and thermosetting resin composition
JP6476764B2 (en) Water-based heat-resistant resin composition and substrate
KR101308611B1 (en) Low temperature curable epoxy compositions containing urea curatives
WO2009119389A1 (en) Carbodiimide compound, carbodiimide composition and aqueous coating composition
CN109952333B (en) Polycarbodiimide copolymer
EP3287480B1 (en) Epoxy resin composition
JP2000096001A (en) Water-dilutable binder for soft feel lacquer
DE102009027825A1 (en) Catalysis of epoxy resin formulations with sparingly soluble catalysts
WO2019059393A1 (en) Curing agent for powder paint and powder paint composition including said curing agent for powder paint
US4496707A (en) Polyurethane and method for making stable components thereof
WO2010098210A1 (en) Primer composition
KR20180037974A (en) Polyamide compositions for sealants and high solids paints
JP2013253159A (en) Modified urethane resin, in-water dispersion thereof, and aqueous paint composition containing the in-water dispersion
JP3819254B2 (en) Curing agent for thermosetting coating and coating composition
JPS595631B2 (en) Resin composition for water-soluble coatings
JP5234477B2 (en) Crosslinking method, resin composition and production method thereof, coating agent composition, paint composition, binder for printing ink, adhesive composition, crosslinked product of resin composition, and crosslinking agent
WO2021059835A1 (en) Modified polycarbodiimide compound having hydrophilic group
JP5346481B2 (en) Urea urethane resin composition
JP2007277336A (en) Polyamideimide resin composition and paint, coating paint, binder resin using the same
JP2023119349A (en) Polyuretonimine composition, aqueous dispersion composition, solution composition, curable composition, cured resin product, and method for producing polyuretonimine composition
JP2010215866A (en) Primer composition for spray coating
JP2011012220A (en) Low-temperature curing low-elastic modulus polyamideimide resin, polyamideimide resin composition, coating, and coating for coating sliding part
JP2003183343A (en) Curable resin composition
JP2002371246A (en) Powder coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP