WO2019059038A1 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
WO2019059038A1
WO2019059038A1 PCT/JP2018/033576 JP2018033576W WO2019059038A1 WO 2019059038 A1 WO2019059038 A1 WO 2019059038A1 JP 2018033576 W JP2018033576 W JP 2018033576W WO 2019059038 A1 WO2019059038 A1 WO 2019059038A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
heating device
planar
sample
resonator
Prior art date
Application number
PCT/JP2018/033576
Other languages
French (fr)
Japanese (ja)
Inventor
友彦 三谷
大地 西尾
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018017324A external-priority patent/JP2019057485A/en
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2019059038A1 publication Critical patent/WO2019059038A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/46Dielectric heating
    • H05B6/62Apparatus for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present invention relates to a heating apparatus for heating an object to be heated with an electromagnetic field.
  • Patent Document 1 discloses a microwave heating apparatus that heats a material to be treated in a heating chamber by irradiating microwaves generated by a magnetron into the heating chamber.
  • Patent Document 2 discloses a microwave heating apparatus which efficiently heats a heating element in a cavity resonator by arranging the heating element on the antinode of a standing wave generated in the cavity resonator.
  • Non-Patent Documents 1 and 2 As a feeding method using an electromagnetic field, an electromagnetic field coupling type wireless feeding technology as disclosed in Non-Patent Documents 1 and 2 is known.
  • a conventional heating device using a cavity resonator can basically heat only one object to be heated, and can not heat a plurality of objects to be heated simultaneously. For this reason, a great deal of time will be spent heating the sample, especially in applications of chemical experiments.
  • a heating device such as a microwave oven can heat a plurality of objects to be heated simultaneously.
  • a heating device in order to prevent the electromagnetic waves from leaking and adversely affecting the communication equipment and the human body, it is necessary to surround the irradiation area of the electromagnetic waves with metal.
  • An object of the present invention is to provide a heating device capable of heating a plurality of objects to be heated simultaneously and also capable of heating without arranging the objects to be heated in a closed space.
  • a heating apparatus comprises a first resonator having a first planar conductor, and a second resonator having a second planar conductor, wherein the first planar conductor and the second planar conductor Are spaced apart from each other, electromagnetically coupled to each other, and a space for disposing an object to be heated is formed between the first planar conductor and the second planar conductor.
  • first resonator has a first ground conductor facing the first planar conductor
  • second resonator has a second ground conductor facing the second planar conductor.
  • the first ground conductor and the second ground conductor may face each other. This configuration can realize the heating device easily.
  • the first planar conductor In the direction from the first ground conductor to the second ground conductor, the first planar conductor is disposed between the first ground conductor and the second ground conductor, and the second planar conductor is It may be disposed between the first planar conductor and the second ground conductor.
  • first planar conductor and the second planar conductor may face each other.
  • a plurality of the second resonators are provided, and when viewed in plan from the direction of the normal of the main surface of the first planar conductor, the position of the second planar conductor of the plurality of second resonators is the second It may be offset from the position of the one-sided conductor. In this configuration, a plurality of the same objects to be heated can be heated simultaneously and uniformly.
  • first resonators and the second resonators are provided, and the first planar conductors of the plurality of first resonators are electromagnetically coupled to each other, and the second planar shapes of the plurality of second resonators are formed.
  • the conductors may be electromagnetically coupled to one another. Even with this configuration, a plurality of the same objects to be heated can be heated simultaneously and uniformly.
  • first planar conductor may be connected to a feed line, and the second planar conductor may be open. This configuration further improves the heating characteristics of the heating device.
  • the first resonator and the second resonator are, for example, half-wave resonators.
  • the heating device can be miniaturized.
  • a plurality of objects to be heated can be simultaneously heated, and can be heated without arranging the objects to be heated in a closed space.
  • FIG. 1 is a perspective view of a heating device 10 according to a first embodiment.
  • FIG. 2A is a plan view of the heating device 10.
  • FIG. 2B is a cross-sectional view of the heating device 10 taken along the line A1-A1.
  • FIG. 3 is a perspective view of the heating device 10 in which the sample 22 is disposed.
  • FIG. 4A is a plan view of the heating device 10 in which the sample 22 is disposed.
  • FIG. 4B is an A2-A2 cross-sectional view of the heating device 10 in which the sample 22 is disposed.
  • FIG. 5A is a circuit diagram showing an equivalent circuit 30 of the heating device 10.
  • FIG. 5B is a circuit diagram showing an equivalent circuit 40 obtained by modifying the equivalent circuit 30. As shown in FIG. FIG.
  • FIG. 5C is a circuit diagram showing the input impedance Zi as viewed from the terminals P1 and P2 to the equivalent circuit 40 side.
  • FIG. 6A shows a simulation result of the absolute value of the S parameter S11.
  • FIG. 6B shows a simulation result of the absolute value of the S parameter S21.
  • FIG. 7A is a perspective view showing a simulation result of the electric field distribution between the resonators 11 and 12.
  • FIG. 7B is a cross-sectional view showing a simulation result of the pointing vector between the resonators 11 and 12.
  • FIG. 8 is a diagram showing simulation results of the power characteristics of the heating device 10. As shown in FIG. FIG.
  • FIGS. 10A and 10B show S-parameters when the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121 is changed as shown in FIGS. 12A and 12B. It is a figure which shows the simulation result of the absolute value of S11.
  • 11 (A) and 11 (B) show S-parameters when the positional relationship between the sample 22 and the dielectric substrates 111 and 121 is changed as shown in FIGS. 12 (A) and 12 (B). It is a figure which shows the simulation result of the absolute value of S11.
  • FIG. 10A and 10B show S-parameters when the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121 is changed as shown in FIGS. 12A and 12 (B). It is a figure which shows the simulation result of the absolute value of S11.
  • FIG. 10A and 10B show S-parameters when the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121 is changed as shown in FIGS. 12A and 12 (B). It is a
  • FIG. 12A is a plan view for explaining the arrangement of the sample 22 and the dielectric substrates 111 and 121.
  • FIG. 12B is a side view for explaining the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121.
  • FIG. 13A shows a simulation result of the electric field distribution at a position 100 mm away from the heating device 10.
  • FIG. 13B is a view showing a simulation result of the magnetic field distribution at a position 100 mm away from the heating device 10.
  • FIG. 14A is a plan view of a heating device 50 according to the second embodiment.
  • FIG. 14B is a cross-sectional view of the heating device 50 taken along the line BB.
  • FIG. 15 is a diagram showing simulation results of absorbed power of the sample 22 in the heating devices 10 and 50. As shown in FIG.
  • FIG. 16A is a diagram showing an example of an experimental result of a time change of the temperature of the sample 22 when the sample 22 is heated by the heating devices 10 and 50.
  • FIG. 16B is a diagram showing a time change of the estimated absorbed power of the sample 22 estimated from the time change of the temperature of the sample 22 shown in FIG. 16A.
  • FIG. 17A is a cross-sectional view showing the simulation result of the electric field distribution in the inside of the sample 22 at the time of heating by the heating device 10.
  • FIG. 17B is a cross-sectional view showing a simulation result of the electric field distribution in the sample 22 at the time of heating by the heating device 50.
  • FIG. 18 is a perspective view of a heating device 60 according to the third embodiment.
  • FIG. 19A is a plan view of the heating device 60.
  • FIG. FIG. 19B is a cross-sectional view of the heating device 60 taken along the line C1-C1.
  • FIG. 20 is a perspective view of the heating device 60 in which the samples 22A and 22B are disposed.
  • FIG. 21A is a plan view of the heating device 60 in which the samples 22A and 22B are disposed.
  • FIG. 21B is a C2-C2 cross-sectional view of the heating device 60 in which the samples 22A and 22B are disposed.
  • FIG. 22A is a plan view of a heating device 70 according to a modification of the third embodiment.
  • FIG. 22B is a cross-sectional view of the heating device 70 taken along the line DD.
  • FIG. 23 is a view showing an example of an experimental result of a temporal change in temperature of the samples 22A and 22B when the samples 22A and 22B are heated by the heating devices 60 and 70.
  • FIG. 24 is a perspective view of a heating device 80 according to the fourth embodiment.
  • FIG. 25A is a plan view of the heating device 80.
  • FIG. 25B is a cross-sectional view of the heating device 80 taken along line E1-E1.
  • FIG. 26 is a perspective view of the heating device 80 in which the samples 22A and 22B are disposed.
  • FIG. 27A is a plan view of the heating device 80 in which the samples 22A and 22B are disposed.
  • FIG. 27B is an E2-E2 cross-sectional view of the heating device 80 in which the samples 22A and 22B are disposed.
  • FIG. 28 is a diagram showing simulation results of power characteristics of the heating device 80.
  • FIG. 29 is a view showing an example of the experimental results of the time change of the temperature and the reflected power of the samples 22A and 22B when the samples 22A and 22B are heated by the heating device 80.
  • FIG. 1 is a perspective view of a heating device 10 according to a first embodiment.
  • FIG. 2A is a plan view of the heating device 10.
  • FIG. 2B is a cross-sectional view of the heating device 10 taken along the line A1-A1.
  • the coaxial cables 14 and 15 are not shown in FIGS. 1 and 2A.
  • the heating device 10 includes square flat resonators 11 and 12.
  • the resonator 11 is an example of the "first resonator” in the present invention.
  • the resonator 12 is an example of the "second resonator” in the present invention.
  • the resonators 11 and 12 are half-wave resonators having a microstrip structure.
  • the resonator 11 and the resonator 12 have substantially the same structure.
  • the resonators 11 and 12 are disposed to face each other at a predetermined distance.
  • the coaxial cables 14 and 15 are connected to the resonators 11 and 12, respectively. When the high frequency power is supplied to the heating device 10, the resonator 11 and the resonator 12 are electromagnetically coupled to each other.
  • the resonator 11 has a dielectric substrate 111, a plane conductor 112 and a ground conductor 113.
  • the planar conductor 112 is an example of the "first planar conductor” in the present invention.
  • the ground conductor 113 is an example of the “first ground conductor” in the present invention.
  • the dielectric substrate 111 and the ground conductor 113 are each in the form of a rectangular plate.
  • the plane conductor 112 is rectangular flat.
  • the longitudinal dimension of the planar conductor 112 is approximately equal to one half of the wavelength in the high frequency dielectric substrate 111 used for the heating device 10.
  • the flat conductor 112 is formed substantially at the center of one main surface of the dielectric substrate 111.
  • the ground conductor 113 is formed on substantially the entire surface of the other main surface of the dielectric substrate 111.
  • the flat conductor 112 and the ground conductor 113 are opposed to each other via the dielectric substrate 111.
  • An inner conductor 141 of the coaxial cable 14 is connected to the plane conductor 112.
  • the inner conductor 141 is an example of the “feed line” in the present invention.
  • the inner conductor 141 extends through the opening 114 formed in the ground conductor 113 and then through the dielectric substrate 111 to the planar conductor 112.
  • the connection portion between the flat conductor 112 and the inner conductor 141 constitutes an input end 115.
  • the input end 115 is separated from the center point of the plane conductor 112 by a distance Dci in the longitudinal direction of the plane conductor 112 in plan view in the direction of the normal to the main surface of the plane conductor 112.
  • the outer conductor 142 of the coaxial cable 14 is connected to the ground conductor 113.
  • the flat conductor 112 is connected to a high frequency power source (not shown) via the inner conductor 141 of the coaxial cable 14.
  • the high frequency used for the heating device 10 is, for example, microwaves in the 2.45 GHz band, but is not limited thereto.
  • the ground conductor 113 is connected to the outer conductor 142 of the coaxial cable 14.
  • impedance matching is performed such that the input impedance seen from the input end 115 to the heating device 10 side is, for example, 50 ⁇ .
  • the resonator 12 has a dielectric substrate 121, a plane conductor 122 and a ground conductor 123.
  • the planar conductor 122 is an example of the "second planar conductor” in the present invention.
  • the ground conductor 123 is an example of the “second ground conductor” in the present invention.
  • the dielectric substrate 121 and the ground conductor 123 are each in the form of a rectangular flat plate.
  • the flat conductor 122 is rectangular flat.
  • the longitudinal dimension of the planar conductor 122 is approximately equal to one half of the wavelength in the high frequency dielectric substrate 121 used for the heating device 10.
  • the flat conductor 122 is formed substantially at the center of one main surface of the dielectric substrate 121.
  • the ground conductor 123 is formed on substantially the entire surface of the other main surface of the dielectric substrate 121.
  • the flat conductor 122 and the ground conductor 123 are opposed to each other via the dielectric substrate 121.
  • the inner conductor 151 of the coaxial cable 15 is connected to the plane conductor 122.
  • the inner conductor 151 of the coaxial cable 15 extends through the opening 124 formed in the ground conductor 123 and then through the dielectric substrate 121 to the planar conductor 122.
  • the connection portion between the plane conductor 122 and the inner conductor 151 constitutes an output end 125.
  • the output end 125 is separated from the center point of the plane conductor 122 by a distance Dc réelle in the longitudinal direction of the plane conductor 122 in plan view in the direction of the normal to the main surface of the plane conductor 122.
  • An outer conductor 152 of the coaxial cable 15 is connected to the ground conductor 123.
  • the plane conductor 122 is connected to a load (not shown) (not shown) via the inner conductor 151 of the coaxial cable 15.
  • the ground conductor 123 is connected to the outer conductor 152 of the coaxial cable 15.
  • impedance matching is performed such that the input impedance seen from the output end 125 to the heating device 10 side is, for example, 50 ⁇ .
  • the main surface of the dielectric substrate 111 on which the flat conductor 112 is formed and the main surface of the dielectric substrate 121 on which the flat conductor 122 is formed are opposed to each other at a predetermined distance.
  • the distance between dielectric substrate 111 and dielectric substrate 121 may be secured by a spacer (not shown) or may be secured by a support member (not shown) for supporting dielectric substrates 111 and 121.
  • the plane conductor 112 and the plane conductor 122 are arranged to face each other at a predetermined distance.
  • the planar conductor 112 and the planar conductor 122 substantially coincide with each other in plan view from the direction of the normal to the main surface of the planar conductor 112 (almost completely overlap).
  • a space 13 for disposing an object to be heated is formed between the plane conductor 112 and the plane conductor 122.
  • the planar conductor 112 of the resonator 11 and the planar conductor 122 of the resonator 12 are electromagnetically coupled. In this electromagnetic coupling, the contribution of the electric field coupling is larger than the contribution of the magnetic field coupling.
  • FIG. 3 is a perspective view of the heating device 10 in which the sample 22 is disposed.
  • FIG. 4A is a plan view of the heating device 10 in which the sample 22 is disposed.
  • FIG. 4B is an A2-A2 cross-sectional view of the heating device 10 in which the sample 22 is disposed.
  • illustration of the coaxial cables 14 and 15 is omitted.
  • the sample 22 is an example of the "object to be heated" of the present invention.
  • the sample 22 is, for example, water or an organic solvent.
  • the sample 22 in the test tube 21 is disposed in the space 13 between the plane conductor 112 and the plane conductor 122 when heated.
  • the test tube 21 is supported by a support member (not shown).
  • at least a portion of the sample 22 is disposed near the longitudinal ends of the planar conductors 112,122.
  • a plurality of objects to be heated may be disposed in the space 13.
  • one object to be heated may be disposed at one end in the longitudinal direction of the planar conductors 112 and 122, and another object to be heated may be disposed at the other end in the longitudinal direction of the planar conductors 112 and 122.
  • a plurality of objects to be heated may be disposed in the space 13 along the short direction of the planar conductors 112 and 122.
  • the heating device 10 when high frequency power is supplied from the high frequency power source (not shown) to the input end 115 via the inner conductor 141 of the coaxial cable 14, the flat conductor 112 of the resonator 11 and the flat conductor 122 of the resonator 12 And are electromagnetically coupled.
  • the sample 22 is heated by the electromagnetic field that contributes to the electromagnetic field coupling and is generated in the space 13 between the planar conductor 112 and the planar conductor 122.
  • FIG. 5A is a circuit diagram showing an equivalent circuit 30 of the heating device 10.
  • the equivalent circuit 30 includes resonant circuits 31 and 32.
  • the inductors constituting the resonant circuits 31 and 32 both have an inductance L.
  • Each capacitor constituting the resonant circuits 31 and 32 has a capacitance C.
  • the capacitors constituting the resonant circuits 31 and 32 are electrically coupled to each other by mutual capacitance Cm.
  • the resonant circuit 31 is connected to a high frequency power supply (not shown) by the terminals P1 and P2.
  • the resonant circuit 32 is connected to a load having an impedance Z.
  • the resonant circuit 31 is an equivalent circuit of the resonator 11 of the heating device 10.
  • the resonant circuit 32 is an equivalent circuit of the resonator 12 of the heating device 10.
  • FIG. 5B is a circuit diagram showing an equivalent circuit 40 obtained by modifying the equivalent circuit 30.
  • the equivalent circuit 40 includes resonant circuits 41 and 42.
  • Each of the inductors constituting the resonant circuits 41 and 42 has an inductance L.
  • Each capacitor constituting the resonant circuits 41 and 42 has a capacitance C-Cm.
  • the resonant circuit 41 and the resonant circuit 42 are connected via a capacitor having a capacitance Cm.
  • FIG. 5C is a circuit diagram showing the input impedance Zi as viewed from the terminals P1 and P2 to the equivalent circuit 40 side.
  • the influence of the capacitors of the resonant circuits 31 and 32 on the input impedance Zi disappears due to the resonance.
  • the setting parameters of the heating device 10 as shown in FIG. 2 (A) and FIG. 2 (B) were set as follows.
  • FIG. 3 FIG. 4 (A) and FIG. 4 (B)
  • the sample 22 in the test tube 21 was placed in the space 13.
  • the inner diameter Ra of the test tube 21 was 11.8 mm
  • the outer diameter Rb of the test tube 21 was 15 mm
  • the sample 22 was pure water of 4.3 mL.
  • FIG. 6A shows a simulation result of the absolute value of the S parameter S11.
  • FIG. 6B shows a simulation result of the absolute value of the S parameter S21.
  • the distance Dci was changed to various values, and the distance Dc refurbish was changed to the same value as the distance Dci.
  • the other conditions were set in the same manner as the above basic conditions. Further, the S parameter was calculated with the input end 115 side as the first terminal pair side and the output end 125 side as the second terminal pair side.
  • the absolute value of the S parameter S11 tends to be smaller, and the absolute value of the S parameter S21 tends to be larger.
  • the distance Dci is 10 mm, bimodality does not appear in the absolute value of the S parameter S11. Therefore, it is preferable to set the distances Dci and Dc réelle to 8 mm.
  • FIG. 7A is a perspective view showing a simulation result of the electric field distribution between the resonators 11 and 12.
  • FIG. 7B is a cross-sectional view showing a simulation result of the pointing vector between the resonators 11 and 12.
  • the test tube 21 and the sample 22 were not disposed in the space 13 of the heating device 10.
  • the other conditions were set in the same manner as the above basic conditions.
  • the electric field becomes large near the ends in the longitudinal direction of the planar conductors 112 and 122.
  • FIG. 7B the energy flow increases near the ends in the longitudinal direction of the planar conductors 112 and 122. For this reason, as described above, it is preferable that at least a part of the object to be heated be disposed near the ends in the longitudinal direction of the planar conductors 112 and 122.
  • FIG. 8 is a diagram showing simulation results of the power characteristics of the heating device 10. As shown in FIG. Here, real part ⁇ r ′ of complex relative dielectric constant of pure water and dielectric loss tangent tan ⁇ shown in FIG. 9 were used. The other conditions were set in the same manner as the above basic conditions.
  • “absorbed power of sample” is the power absorbed by the sample 22.
  • “Reflected power” is the power reflected at the input end 115.
  • Transparent power is power transmitted from the input end 115 side to the output end 125 side.
  • “Leakage power” is power that leaks from the heating device 10.
  • the “absorbed power of the substrate or the like” is the power absorbed by the dielectric substrates 111 and 121 and the test tube 21.
  • the absorbed power of the sample, the reflected power, the transmitted power, the leaked power, and the absorbed power of the substrate and the like are represented as a percentage of the input power input to the input terminal 115.
  • the temperature of the sample 22 is 20 ° C.
  • about 70% of the input power is absorbed by the sample 22.
  • the absorbed power of the sample 22 decreases. This drop occurs because when the temperature of the sample 22 changes, the dielectric properties of the sample 22 change, and as a result, the state of impedance matching changes.
  • the ratio of the leakage power is 20% or less of the input power. From this result, it can be understood that the electromagnetic field leaking to the outside of the heating device 10 at the time of heating is small.
  • 10 (A), 10 (B), 11 (A) and 11 (B) show samples 22 and dielectric substrates 111 and 121 as shown in FIGS. 12 (A) and 12 (B).
  • S parameter S11 the temperature of the sample 22 was set to 20.degree.
  • FIG. 11A the distance h between the dielectric substrate 111 and the dielectric substrate 121 is changed.
  • the other conditions were set in the same manner as the above basic conditions. Further, the S parameter was calculated with the input end 115 side as the first terminal pair side and the output end 125 side as the second terminal pair side.
  • FIG. 12A is a plan view for explaining the arrangement of the sample 22 and the dielectric substrates 111 and 121.
  • FIG. 12B is a side view for explaining the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121.
  • the ground conductors 113 and 123 and the coaxial cables 14 and 15 are not shown.
  • FIG. 10A shows an arrangement in which the sample 22 is rotated by the angle ⁇ x around the x axis from the arrangement of the reference, and an arrangement in which the sample 22 is rotated by the angle ⁇ z around the z axis from the arrangement of the reference. It shows the absolute value.
  • FIGS. 12A and 12B it corresponds to the center point of the plane conductor 122 when viewed from the direction of the normal to the main surface of the plane conductor 122, and the plane conductor 112 and the plane
  • the origin O of the coordinate axis is defined to be equally spaced from the conductor 122. As shown in FIG.
  • the absolute value of the S parameter S11 in the arrangement in which the sample 22 is rotated about the z axis hardly changes from the S parameter S11 in the reference arrangement.
  • the absolute value of the S parameter S11 in the arrangement in which the sample 22 is rotated around the x axis is different from the S parameter S11 in the reference arrangement.
  • FIG. 10B shows an arrangement in which the sample 22 is displaced by the distance Wx in the x-axis direction from the arrangement of the reference, an arrangement in which the sample 22 is moved by the distance Wy in the y-axis direction from the arrangement of the reference, and Shows the absolute value of the S parameter S11 in the arrangement in which the distance Wz is parallel moved in the z-axis direction.
  • the absolute value of the S parameter S11 in the arrangement in which the sample 22 is translated in the x-axis or y-axis direction hardly changes from the absolute value of the S parameter S11 in the reference arrangement.
  • the absolute value of the S parameter S11 in the arrangement in which the sample 22 is translated in the z-axis direction is changed from the absolute value of the S parameter S11 in the reference arrangement.
  • FIG. 11A shows the absolute value of the S parameter S11 when the distance h between the dielectric substrate 111 and the dielectric substrate 121 is changed. As shown in FIG. 11A, when the distance h changes from the reference value, the absolute value of the S parameter S11 changes.
  • FIG. 11B shows the absolute value of the S parameter S11 in the arrangement in which the dielectric substrate 121 is moved in the x-axis direction by distance Subx and in the arrangement in which the dielectric substrate 121 is moved in the y-axis direction by distance Suby. ing. As shown in FIG. 11B, the absolute value of the S parameter S11 in the arrangement in which the dielectric substrate 121 is moved in parallel in the x-axis and y-axis directions is almost different from the absolute value of the S parameter S11 in the reference arrangement. Absent.
  • the absolute value of the S parameter S11 is x of the arrangement of the sample 22 and the dielectric substrates 111, 121. Although hardly affected by the deviation in the y-axis direction, it is affected by the deviation in the z-axis direction of the arrangement of the sample 22 and the dielectric substrates 111 and 121. This occurs because the impedance matching state changes as the sample 22 approaches the planar conductor 112 or 122. For this reason, it is preferable that the support member which supports a to-be-heated material at the time of heating is what can arrange a to-be-heated material correctly in z axial direction.
  • FIG. 13A shows a simulation result of the electric field distribution at a position 100 mm away from the heating device 10.
  • FIG. 13B is a view showing a simulation result of the magnetic field distribution at a position 100 mm away from the heating device 10.
  • an input power of 30 W was input to the heating device 10
  • the temperature of the sample 22 was set to 80.degree.
  • the other conditions were set in the same manner as the above basic conditions.
  • the heating device 10 satisfies the management guideline defined in the radio wave protection guideline when the input power is 30 W or less.
  • the resonator 11 and the resonator 12 are disposed to face each other, the resonator 11 and the resonator 12 are electromagnetically coupled, and then, between the resonator 11 and the resonator 12 Place the object to be heated.
  • the object to be heated can be heated by the electromagnetic field.
  • the heating device 10 is particularly effective for use in chemical experiments, and is expected to be used as a device for simultaneously heating a plurality of small amounts of objects to be heated.
  • the object to be heated can be heated without arranging the object to be heated in the closed space. Therefore, for example, by sequentially passing the object to be heated between the resonators 11 and 12, it is possible to continuously heat the plurality of objects to be heated. Thus, the heating device 10 is useful for flow applications. Further, even when the object to be heated is larger than the space 13 between the planar conductor 112 and the planar conductor 122, by arranging a part of the object to be heated between the planar conductor 112 and the planar conductor 122 Part of it can be heated.
  • the contribution of the electric field coupling is large. Therefore, when the object to be heated is a dielectric, the efficiency of power absorption by the object to be heated is high. Therefore, dielectrics such as water and organic solvents can be heated with high power efficiency.
  • FIG. 14A is a plan view of a heating device 50 according to the second embodiment.
  • FIG. 14B is a cross-sectional view of the heating device 50 taken along the line BB.
  • the inner conductor of the coaxial cable is not connected to the plane conductor 122. That is, the flat conductor 122 is open.
  • FIG. 15 is a diagram showing simulation results of absorbed power of the sample 22 in the heating devices 10 and 50.
  • real part ⁇ r ′ of complex relative dielectric constant of pure water and dielectric loss tangent tan ⁇ shown in FIG. 9 were used.
  • the other conditions were set in the same manner as the above basic conditions.
  • the absorbed power of the sample 22 is expressed as a ratio to the input power input to the input end 115.
  • the heating device 50 the ratio of the absorbed power absorbed by the sample 22 is improved compared to the heating device 10.
  • FIG. 16A is a diagram showing an example of an experimental result of a time change of the temperature of the sample 22 when the sample 22 is heated by the heating devices 10 and 50.
  • the input power input to the heating devices 10 and 50 was set to 10 W.
  • the other conditions were set in the same manner as the above basic conditions.
  • the heating device 50 has improved heating characteristics as compared to the heating device 10. Further, in the heating device 50, the temperature of the sample 22 rises to 80 ° C. or more (a temperature difference of 55 K or more from the atmospheric temperature) in 5 minutes.
  • FIG. 16B is a diagram showing a time change of the estimated absorbed power of the sample 22 estimated from the time change of the temperature of the sample 22 shown in FIG. 16A.
  • Pest mc (dT / dt) + hS (T ⁇ T 0 ) + ⁇ sS (T 4 ⁇ T 0 4 ).
  • the heating device 50 when the temperature of the sample 22 is low, about 90% of the input power is absorbed by the sample 22. Further, it can also be seen from the results shown in FIG. 16B that the heating device 50 has improved heating characteristics as compared to the heating device 10. Although some errors occur between the simulation result shown in FIG. 15 and the experimental result shown in FIG. 16 (B), these results show the same tendency.
  • FIG. 17A is a cross-sectional view showing the simulation result of the electric field distribution in the inside of the sample 22 at the time of heating by the heating device 10.
  • FIG. 17B is a cross-sectional view showing a simulation result of the electric field distribution in the sample 22 at the time of heating by the heating device 50.
  • the temperature of the sample 22 was set to 25 ° C.
  • the other conditions were set in the same manner as the above basic conditions.
  • FIGS. 17A and 17B show the electric field distribution when the amplitude of the electric field inside the sample 22 is maximized.
  • the heating characteristic is further improved by opening the planar conductor 122.
  • FIG. 18 is a perspective view of a heating device 60 according to the third embodiment.
  • FIG. 19A is a plan view of the heating device 60.
  • FIG. 19B is a cross-sectional view of the heating device 60 taken along the line C1-C1.
  • the heating device 60 includes resonators 61A, 61B, 61C, 62A, 62B, 62C.
  • the resonators 61A, 61B, 61C, 62A, 62B, 62C are half-wave resonators having a microstrip structure.
  • the resonator 61A and the resonator 62A are disposed to face each other at a predetermined distance.
  • the resonator 61B and the resonator 62B are arranged to face each other at a predetermined distance.
  • the resonator 61C and the resonator 62C are disposed to face each other at a predetermined distance. That is, the heating device 60 is provided with three pairs of resonators. Note that three or more pairs of resonators may be provided.
  • the heating device 60 includes a dielectric substrate 111, planar conductors 112A, 112B and 112C, and a ground conductor 113.
  • the resonators 61A, 61B, and 61C are formed by planar conductors 112A, 112B, and 112C facing the ground conductor 113 via the dielectric substrate 111, respectively.
  • the resonators 61A, 61B, and 61C share the dielectric substrate 111 and the ground conductor 113.
  • the planar conductors 112A, 112B, and 112C are rectangular flat plates, and have substantially the same shape.
  • the plane conductors 112A, 112B, and 112C are formed on one main surface of the dielectric substrate 111, and the ground conductor 113 is formed on the other main surface of the dielectric substrate 111.
  • the planar conductor 112 ⁇ / b> C is disposed substantially at the center of the main surface of the dielectric substrate 111.
  • the plane conductor 112A is disposed at a predetermined interval on one side in the width direction of the plane conductor 112C
  • the plane conductor 112B is disposed at a predetermined interval on the other side in the width direction of the plane conductor 112C.
  • planar conductor 112A and planar conductor 112C are approximately equal to the distance between planar conductor 112B and planar conductor 112C.
  • planar conductors 112A, 112B, and 112C are aligned along the short direction of the planar conductor 112C.
  • the inner conductor 141 of the coaxial cable 14 is connected to the plane conductor 112C.
  • a connection portion between the flat conductor 112C and the inner conductor 141 constitutes an input end 115.
  • a plurality of input terminals may be provided.
  • an input end may be provided on each of the planar conductors 112A, 112B, and 112C.
  • the heating device 60 includes a dielectric substrate 121, planar conductors 122A, 122B and 122C, and a ground conductor 123.
  • the resonators 62A, 62B and 62C are formed by the planar conductors 122A, 122B and 122C facing the ground conductor 123 with the dielectric substrate 121 interposed therebetween.
  • the resonators 62A, 62B, 62C share the dielectric substrate 121 and the ground conductor 123.
  • the planar conductors 122A, 122B, and 122C are rectangular flat plates, and have substantially the same shape.
  • the plane conductors 122A, 122B and 122C are formed on one main surface of the dielectric substrate 121, and the ground conductor 123 is formed on the other main surface of the dielectric substrate 121.
  • the flat conductor 122 ⁇ / b> C is disposed substantially at the center of the main surface of the dielectric substrate 121.
  • the plane conductor 122A is disposed at a predetermined interval on one side in the width direction of the plane conductor 122C, and the plane conductor 122B is disposed at a predetermined interval on the other side in the width direction of the plane conductor 122C.
  • the distance between the plane conductor 122A and the plane conductor 122C is approximately equal to the distance between the plane conductor 122B and the plane conductor 122C.
  • the planar conductors 122A, 122B, and 122C are aligned along the short direction of the planar conductor 122C.
  • the inner conductor 151 of the coaxial cable 15 is connected to the plane conductor 122C.
  • the connection portion between the flat conductor 122C and the inner conductor 151 constitutes an output end 125.
  • a plurality of output terminals may be provided.
  • an output end may be provided to each of the plane conductors 122A, 122B, and 122C in response to the input end being provided to each of the plane conductors 112A, 112B, and 112C.
  • the plane conductor 112A and the plane conductor 122A are arranged to face each other at a predetermined interval.
  • a space 13A for disposing an object to be heated is formed between the plane conductor 112A and the plane conductor 122A.
  • the plane conductor 112B and the plane conductor 122B are arranged to face each other at a predetermined interval.
  • a space 13B for disposing an object to be heated is formed between the plane conductor 112B and the plane conductor 122B.
  • the plane conductor 112C and the plane conductor 122C are arranged to face each other at a predetermined interval.
  • planar conductors 112A, 112B, 112C, 122A, 122B, and 122C of the resonators 61A, 61B, 61C, 62A, 62B, and 62C are electromagnetically coupled to each other.
  • FIG. 20 is a perspective view of the heating device 60 in which the samples 22A and 22B are disposed.
  • FIG. 21A is a plan view of the heating device 60 in which the samples 22A and 22B are disposed.
  • FIG. 21B is a C2-C2 cross-sectional view of the heating device 60 in which the samples 22A and 22B are disposed.
  • the sample 22A in the test tube 21A is disposed in the space 13A between the planar conductor 112A and the planar conductor 122A when heated.
  • the sample 22B in the test tube 21B is disposed in the space 13B between the planar conductor 112B and the planar conductor 122B when heated.
  • the test tubes 21A and 21B are supported by support members (not shown).
  • the planar conductors 112A, 112B, 112C, 122A, 122B of the resonators 61A, 61B, 61C, 62A, 62B, 62C. , 122C are electromagnetically coupled to each other.
  • the sample 22A is heated by the electromagnetic field generated in the space 13A between the plane conductor 112A and the plane conductor 122A.
  • the sample 22B is heated by the electromagnetic field generated in the space 13B between the plane conductor 112B and the plane conductor 122B.
  • FIG. 22A is a plan view of a heating device 70 according to a modification of the third embodiment.
  • FIG. 22B is a cross-sectional view of the heating device 70 taken along the line DD.
  • the inner conductor of the coaxial cable is not connected to flat conductor 122C, and flat conductor 122C is open.
  • the other configuration of the heating device 70 is the same as the configuration of the heating device 60.
  • FIG. 23 is a view showing an example of an experimental result of a temporal change in temperature of the samples 22A and 22B when the samples 22A and 22B are heated by the heating devices 60 and 70.
  • the input power to be input to the heating devices 60 and 70 was set to 10 W.
  • the other conditions were set in the same manner as the above basic conditions. As shown in FIG. 23, in either of the heating devices 60 and 70, the samples 22A and 22B are substantially uniformly heated to each other.
  • the distributions of electromagnetic fields generated in the spaces 13A and 13B are substantially the same. Therefore, the same objects to be heated disposed in the spaces 13A and 13B absorb substantially the same power. Therefore, a plurality of the same objects to be heated can be simultaneously and uniformly heated.
  • FIG. 24 is a perspective view of a heating device 80 according to the fourth embodiment.
  • FIG. 25A is a plan view of the heating device 80.
  • FIG. 25B is a cross-sectional view of the heating device 80 taken along line E1-E1.
  • the heating device 80 is substantially the same as the heating device 70 according to the modification of the second embodiment except for the flat conductors 112A, 112B and 122C.
  • the heating device 80 includes resonators 81, 82A, 82B.
  • the resonators 81, 82A, 82B are half-wave resonators having a microstrip structure.
  • the resonator 81 and the resonators 82A and 82B are arranged at a predetermined interval in the direction of the normal to the main surface of the resonator 81.
  • the resonators 82A and 82B are arranged at predetermined intervals in the direction parallel to the main surface of the resonator 81.
  • the resonator 81 is disposed between the resonator 82A and the resonator 82B in a plan view from the direction of the normal to the main surface of the resonator 81.
  • Heating device 80 includes a dielectric substrate 111, a foil-like planar conductor 112 formed on one main surface of dielectric substrate 111, and a foil-like ground conductor 113 formed on the other main surface of dielectric substrate 111. Equipped with The resonator 81 is formed by the planar conductor 112 facing the ground conductor 113 via the dielectric substrate 111. A connection portion between the flat conductor 112 and the inner conductor 141 of the coaxial cable 14 constitutes an input end 115.
  • Heating device 80 includes dielectric substrate 121, foil-like planar conductors 122A and 122B formed on one principal surface of dielectric substrate 121, and a foil-like ground conductor formed on the other principal surface of dielectric substrate 121. And 123.
  • the resonators 82A and 82B are formed by the planar conductors 122A and 122B facing the ground conductor 123 with the dielectric substrate 121 interposed therebetween.
  • the resonators 82A and 82B share the dielectric substrate 121 and the ground conductor 123.
  • the plane conductors 122A and 122B are not connected to the inner conductor of the coaxial cable and are open.
  • a main surface of the dielectric substrate 111 on which the flat conductor 112 is formed and a main surface of the dielectric substrate 121 on which the flat conductors 122A and 122B are formed are opposed to each other at a predetermined distance.
  • the ground conductor 113 and the ground conductor 123 face each other at a predetermined interval.
  • the plane conductor 112 is disposed between the ground conductor 113 and the ground conductor 123, and the plane conductors 122A and 112B are disposed between the plane conductor 112 and the ground conductor 123 There is.
  • the positions of the planar conductors 122A and 122B of the plurality of resonators 82A and 82B are offset from the position of the planar conductor 112 of the resonator 81 in plan view in the direction of the normal to the main surface of the planar conductor 112.
  • the planar conductor 112 is disposed between the planar conductor 122A and the planar conductor 122B in plan view in the direction of the normal to the main surface of the planar conductor 112, and does not overlap with the planar conductors 122A and 122B.
  • a space 83A for disposing an object to be heated is formed between the plane conductor 112 and the plane conductor 122A.
  • a space 83B for disposing an object to be heated is formed between the plane conductor 112 and the plane conductor 122B.
  • FIG. 26 is a perspective view of the heating device 80 in which the samples 22A and 22B are disposed.
  • FIG. 27A is a plan view of the heating device 80 in which the samples 22A and 22B are disposed.
  • FIG. 27B is an E2-E2 cross-sectional view of the heating device 80 in which the samples 22A and 22B are disposed.
  • the sample 22A in the test tube 21A is disposed in the space 83A between the plane conductor 112 and the plane conductor 122A.
  • the sample 22B in the test tube 21B is disposed in the space 83B between the plane conductor 112 and the plane conductor 122B when heated.
  • FIG. 28 is a diagram showing simulation results of power characteristics of the heating device 80.
  • real part ⁇ r ′ of complex relative dielectric constant of pure water and dielectric loss tangent tan ⁇ shown in FIG. 9 were used.
  • the dimension Dcy in the y-axis direction of the planar conductors 112, 122A, 122B was set to 40 mm.
  • the other conditions were set in the same manner as the above basic conditions.
  • “absorbed power of sample” is the power absorbed by the samples 22A and 22B.
  • Reflected power is the power reflected at the input end 115.
  • Leakage power is power that leaks from the heating device 80.
  • the “absorbed power of the substrate etc.” is the power absorbed by the dielectric substrates 111 and 121 and the test tubes 21A and 21B.
  • the absorbed power of the sample, the reflected power, the leaked power, and the absorbed power of the substrate and the like are represented as a percentage of the input power input to the input terminal 115.
  • the absorbed power of the samples 22A and 22B is increased, and about 86% of the input power is absorbed by the samples 22A and 22B. Therefore, as also shown in the experimental result of FIG. 29, when the temperature of the samples 22A and 22B is 50 ° C., the heating rate is increased. When the temperature of the samples 22A and 22B is 50 ° C., the reflected power is suppressed to about 8% of the input power. Further, regardless of the temperature of the samples 22A and 22B, the ratio of the leaked power is suppressed to 4% or less of the input power.
  • FIG. 29 is a view showing an example of the experimental results of the time change of the temperature and the reflected power of the samples 22A and 22B when the samples 22A and 22B are heated by the heating device 80.
  • the dimension Dcy in the y-axis direction of the planar conductors 112, 122A, 122B was set to 40 mm.
  • the input power input to the heating device 80 was set to 10 W.
  • the other conditions were set in the same manner as the above basic conditions.
  • the temperature change of the sample 22A substantially matches the temperature change of the sample 22B, and the samples 22A and 22B are heated substantially uniformly to each other.
  • the heating rate increases when the temperature of the samples 22A and 22B is around 50 ° C.
  • the reflected power is suppressed to about 8% of the input power.
  • the absorption efficiency of high frequency power by the object to be heated is improved as compared to the third embodiment.
  • a half-wave resonator having a microstrip structure is illustrated, but the structure of the resonator is not limited to this.
  • the dielectric substrate constituting the above-described resonator is not essential.
  • the structure of the above-mentioned resonator may be changed by replacing the dielectric substrate with air.
  • a resonator having a flat conductor is illustrated, but the resonator may have a curved conductor, a bent flat conductor, or the like instead of the above flat conductor.
  • the resonator may have a conductor in which a planar portion and the other portion are integrally formed instead of the above-described flat conductor.
  • the planar portion of the conductor corresponds to the "planar conductor" of the present invention.
  • the ground conductor and the dielectric substrate may be curved or may be curved.
  • planar conductors sandwiching a space for disposing an object to be heated face each other in front of each other, but the planar conductors may be shifted from each other.
  • the configuration in which the flat conductors are mutually offset has the same configuration as that of the fourth embodiment in part, so that the same effect as the fourth embodiment can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

This heating device (10) is provided with: a resonator (11) which comprises a planar conductor (112); and a resonator (12) which comprises a planar conductor (122). The planar conductor (112) and the planar conductor (122) are arranged at a distance from each other, and are electromagnetically coupled to each other; and a space (13), in which an article to be heated is arranged, is formed between the planar conductor (112) and the planar conductor (122).

Description

加熱装置Heating device
 本発明は、被加熱物を電磁界で加熱する加熱装置に関する。 The present invention relates to a heating apparatus for heating an object to be heated with an electromagnetic field.
 電磁界を利用した最も一般的な加熱装置は電子レンジである。電子レンジは、日常生活で使用されるとともに、化学実験のような専門的な用途にも使用されている。また、空洞共振器内に被加熱物を挿入して加熱する加熱装置も多数知られている。例えば、特許文献1には、マグネトロンで発生させたマイクロ波を加熱室内に照射することにより、加熱室内の被処理材を加熱するマイクロ波加熱装置が開示されている。特許文献2には、空洞共振器内に発生させた定在波の腹に発熱体を配置することで、空洞共振器内の発熱体を効率良く加熱するマイクロ波加熱装置が開示されている。 The most common heating device utilizing an electromagnetic field is a microwave oven. Microwave ovens are used in daily life as well as in specialized applications such as chemical experiments. In addition, many heating devices are known which insert an object to be heated into a cavity resonator and heat the object. For example, Patent Document 1 discloses a microwave heating apparatus that heats a material to be treated in a heating chamber by irradiating microwaves generated by a magnetron into the heating chamber. Patent Document 2 discloses a microwave heating apparatus which efficiently heats a heating element in a cavity resonator by arranging the heating element on the antinode of a standing wave generated in the cavity resonator.
 また、電磁界を利用した給電方式として、非特許文献1,2に開示されているような電磁界結合型のワイヤレス給電技術が知られている。 Further, as a feeding method using an electromagnetic field, an electromagnetic field coupling type wireless feeding technology as disclosed in Non-Patent Documents 1 and 2 is known.
特開2009-301764号公報JP, 2009-301764, A 特開2006-140063号公報JP, 2006-140063, A
 空洞共振器を利用した従来の加熱装置は、基本的に、1つの被加熱物に対してしか加熱を行うことができず、複数の被加熱物を同時に加熱できない。このため、特に化学実験の用途において、試料の加熱に膨大な時間が費やされることになる。 A conventional heating device using a cavity resonator can basically heat only one object to be heated, and can not heat a plurality of objects to be heated simultaneously. For this reason, a great deal of time will be spent heating the sample, especially in applications of chemical experiments.
 一方、電子レンジのような加熱装置は複数の被加熱物を同時に加熱できる。しかし、そのような加熱装置では、電磁波が漏洩して通信機器や人体に悪影響を与えることを防止するために、電磁波の照射領域を金属で囲む必要がある。 On the other hand, a heating device such as a microwave oven can heat a plurality of objects to be heated simultaneously. However, in such a heating device, in order to prevent the electromagnetic waves from leaking and adversely affecting the communication equipment and the human body, it is necessary to surround the irradiation area of the electromagnetic waves with metal.
 本発明の目的は、複数の被加熱物を同時に加熱できるとともに、被加熱物を閉空間に配置しなくても加熱できる加熱装置を提供することにある。 An object of the present invention is to provide a heating device capable of heating a plurality of objects to be heated simultaneously and also capable of heating without arranging the objects to be heated in a closed space.
 本発明の加熱装置は、第1面状導体を有する第1共振器と、第2面状導体を有する第2共振器と、を備え、前記第1面状導体と前記第2面状導体とは、間隔をあけて配置され、互いに電磁界結合し、前記第1面状導体と前記第2面状導体との間に、被加熱物を配置するための空間が形成される。 A heating apparatus according to the present invention comprises a first resonator having a first planar conductor, and a second resonator having a second planar conductor, wherein the first planar conductor and the second planar conductor Are spaced apart from each other, electromagnetically coupled to each other, and a space for disposing an object to be heated is formed between the first planar conductor and the second planar conductor.
 この構成では、複数の被加熱物を同時に加熱できる。このため、特に化学実験の用途において実験時間の大幅な短縮が得られる。また、加熱装置外への電磁界の漏洩が少ないため、被加熱物を閉空間に配置しなくても、被加熱物を加熱できる。 In this configuration, a plurality of objects to be heated can be heated simultaneously. This results in a significant reduction of the experimental time, in particular in applications of chemical experiments. Further, since the leakage of the electromagnetic field to the outside of the heating device is small, the object to be heated can be heated without arranging the object to be heated in the closed space.
 また、前記第1共振器は、前記第1面状導体に対向する第1グランド導体を有し、前記第2共振器は、前記第2面状導体に対向する第2グランド導体を有し、前記第1グランド導体と前記第2グランド導体とは互いに対向してもよい。この構成では加熱装置を簡易に実現できる。 In addition, the first resonator has a first ground conductor facing the first planar conductor, and the second resonator has a second ground conductor facing the second planar conductor. The first ground conductor and the second ground conductor may face each other. This configuration can realize the heating device easily.
 また、前記第1グランド導体から前記第2グランド導体に向かう方向において、前記第1面状導体は前記第1グランド導体と前記第2グランド導体との間に配置され、前記第2面状導体は前記第1面状導体と前記第2グランド導体との間に配置されてもよい。 In the direction from the first ground conductor to the second ground conductor, the first planar conductor is disposed between the first ground conductor and the second ground conductor, and the second planar conductor is It may be disposed between the first planar conductor and the second ground conductor.
 また、前記第1面状導体と前記第2面状導体とは互いに対向してもよい。 Further, the first planar conductor and the second planar conductor may face each other.
 また、前記第2共振器は複数設けられ、前記第1面状導体の主面の法線の方向から平面視して、前記複数の第2共振器の第2面状導体の位置は前記第1面状導体の位置からずれていてもよい。この構成では複数の同じ被加熱物を同時に均一に加熱できる。 Further, a plurality of the second resonators are provided, and when viewed in plan from the direction of the normal of the main surface of the first planar conductor, the position of the second planar conductor of the plurality of second resonators is the second It may be offset from the position of the one-sided conductor. In this configuration, a plurality of the same objects to be heated can be heated simultaneously and uniformly.
 また、前記第1共振器および前記第2共振器は複数設けられ、前記複数の第1共振器の第1面状導体は互いに電磁界結合し、前記複数の第2共振器の第2面状導体は互いに電磁界結合してもよい。この構成でも複数の同じ被加熱物を同時に均一に加熱できる。 Further, a plurality of the first resonators and the second resonators are provided, and the first planar conductors of the plurality of first resonators are electromagnetically coupled to each other, and the second planar shapes of the plurality of second resonators are formed. The conductors may be electromagnetically coupled to one another. Even with this configuration, a plurality of the same objects to be heated can be heated simultaneously and uniformly.
 また、前記第1面状導体は給電線に接続され、前記第2面状導体は開放されてもよい。この構成では加熱装置の加熱特性がさらに向上する。 Further, the first planar conductor may be connected to a feed line, and the second planar conductor may be open. This configuration further improves the heating characteristics of the heating device.
 また、前記第1共振器および前記第2共振器は、例えば半波長共振器である。この構成では加熱装置を小型化できる。 The first resonator and the second resonator are, for example, half-wave resonators. In this configuration, the heating device can be miniaturized.
 本発明によれば、複数の被加熱物を同時に加熱できるとともに、被加熱物を閉空間に配置しなくても加熱できる。 According to the present invention, a plurality of objects to be heated can be simultaneously heated, and can be heated without arranging the objects to be heated in a closed space.
図1は第1の実施形態に係る加熱装置10の斜視図である。FIG. 1 is a perspective view of a heating device 10 according to a first embodiment. 図2(A)は加熱装置10の平面図である。図2(B)は加熱装置10のA1-A1断面図である。FIG. 2A is a plan view of the heating device 10. FIG. 2B is a cross-sectional view of the heating device 10 taken along the line A1-A1. 図3は、試料22が配置された加熱装置10の斜視図である。FIG. 3 is a perspective view of the heating device 10 in which the sample 22 is disposed. 図4(A)は、試料22が配置された加熱装置10の平面図である。図4(B)は、試料22が配置された加熱装置10のA2-A2断面図である。FIG. 4A is a plan view of the heating device 10 in which the sample 22 is disposed. FIG. 4B is an A2-A2 cross-sectional view of the heating device 10 in which the sample 22 is disposed. 図5(A)は、加熱装置10の等価回路30を示す回路図である。図5(B)は、等価回路30を変形して得られる等価回路40を示す回路図である。図5(C)は、端子P1,P2から等価回路40側を見た入力インピーダンスZiを示す回路図である。FIG. 5A is a circuit diagram showing an equivalent circuit 30 of the heating device 10. FIG. 5B is a circuit diagram showing an equivalent circuit 40 obtained by modifying the equivalent circuit 30. As shown in FIG. FIG. 5C is a circuit diagram showing the input impedance Zi as viewed from the terminals P1 and P2 to the equivalent circuit 40 side. 図6(A)はSパラメータS11の絶対値のシミュレーション結果を示す図である。図6(B)はSパラメータS21の絶対値のシミュレーション結果を示す図である。FIG. 6A shows a simulation result of the absolute value of the S parameter S11. FIG. 6B shows a simulation result of the absolute value of the S parameter S21. 図7(A)は、共振器11と共振器12との間の電界分布のシミュレーション結果を示す斜視図である。図7(B)は、共振器11と共振器12との間のポインティングベクトルのシミュレーション結果を示す断面図である。FIG. 7A is a perspective view showing a simulation result of the electric field distribution between the resonators 11 and 12. FIG. 7B is a cross-sectional view showing a simulation result of the pointing vector between the resonators 11 and 12. 図8は、加熱装置10の電力特性のシミュレーション結果を示す図である。FIG. 8 is a diagram showing simulation results of the power characteristics of the heating device 10. As shown in FIG. 図9は、純水の複素比誘電率の実部εr′および誘電正接tanδの温度特性を示す図である。FIG. 9 is a graph showing the temperature characteristics of the real part εr ′ of the complex relative dielectric constant of pure water and the dielectric loss tangent tanδ. 図10(A)および図10(B)は、図12(A)および図12(B)に示すように試料22と誘電体基板111,121との配置関係を変化させた場合における、SパラメータS11の絶対値のシミュレーション結果を示す図である。FIGS. 10A and 10B show S-parameters when the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121 is changed as shown in FIGS. 12A and 12B. It is a figure which shows the simulation result of the absolute value of S11. 図11(A)および図11(B)は、図12(A)および図12(B)に示すように試料22と誘電体基板111,121との配置関係を変化させた場合における、SパラメータS11の絶対値のシミュレーション結果を示す図である。11 (A) and 11 (B) show S-parameters when the positional relationship between the sample 22 and the dielectric substrates 111 and 121 is changed as shown in FIGS. 12 (A) and 12 (B). It is a figure which shows the simulation result of the absolute value of S11. 図12(A)は、試料22と誘電体基板111,121との配置関係を説明するための平面図である。図12(B)は、試料22と誘電体基板111,121との配置関係を説明するための側面図である。FIG. 12A is a plan view for explaining the arrangement of the sample 22 and the dielectric substrates 111 and 121. FIG. 12B is a side view for explaining the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121. 図13(A)は、加熱装置10から100mm離れた位置における電界分布のシミュレーション結果を示す図である。図13(B)は、加熱装置10から100mm離れた位置における磁界分布のシミュレーション結果を示す図である。FIG. 13A shows a simulation result of the electric field distribution at a position 100 mm away from the heating device 10. FIG. 13B is a view showing a simulation result of the magnetic field distribution at a position 100 mm away from the heating device 10. 図14(A)は第2の実施形態に係る加熱装置50の平面図である。図14(B)は加熱装置50のB-B断面図である。FIG. 14A is a plan view of a heating device 50 according to the second embodiment. FIG. 14B is a cross-sectional view of the heating device 50 taken along the line BB. 図15は、加熱装置10,50における試料22の吸収電力のシミュレーション結果を示す図である。FIG. 15 is a diagram showing simulation results of absorbed power of the sample 22 in the heating devices 10 and 50. As shown in FIG. 図16(A)は、加熱装置10,50で試料22を加熱した場合の試料22の温度の時間変化の実験結果の一例を示す図である。図16(B)は、図16(A)に示す試料22の温度の時間変化から推定される試料22の推定吸収電力の時間変化を示す図である。FIG. 16A is a diagram showing an example of an experimental result of a time change of the temperature of the sample 22 when the sample 22 is heated by the heating devices 10 and 50. As shown in FIG. FIG. 16B is a diagram showing a time change of the estimated absorbed power of the sample 22 estimated from the time change of the temperature of the sample 22 shown in FIG. 16A. 図17(A)は、加熱装置10による加熱時の試料22の内部の電界分布のシミュレーション結果を示す断面図である。図17(B)は、加熱装置50による加熱時の試料22の内部の電界分布のシミュレーション結果を示す断面図である。FIG. 17A is a cross-sectional view showing the simulation result of the electric field distribution in the inside of the sample 22 at the time of heating by the heating device 10. FIG. 17B is a cross-sectional view showing a simulation result of the electric field distribution in the sample 22 at the time of heating by the heating device 50. 図18は第3の実施形態に係る加熱装置60の斜視図である。FIG. 18 is a perspective view of a heating device 60 according to the third embodiment. 図19(A)は加熱装置60の平面図である。図19(B)は加熱装置60のC1-C1断面図である。FIG. 19A is a plan view of the heating device 60. FIG. FIG. 19B is a cross-sectional view of the heating device 60 taken along the line C1-C1. 図20は、試料22A,22Bが配置された加熱装置60の斜視図である。FIG. 20 is a perspective view of the heating device 60 in which the samples 22A and 22B are disposed. 図21(A)は、試料22A,22Bが配置された加熱装置60の平面図である。図21(B)は、試料22A,22Bが配置された加熱装置60のC2-C2断面図である。FIG. 21A is a plan view of the heating device 60 in which the samples 22A and 22B are disposed. FIG. 21B is a C2-C2 cross-sectional view of the heating device 60 in which the samples 22A and 22B are disposed. 図22(A)は第3の実施形態の変形例に係る加熱装置70の平面図である。図22(B)は加熱装置70のD-D断面図である。FIG. 22A is a plan view of a heating device 70 according to a modification of the third embodiment. FIG. 22B is a cross-sectional view of the heating device 70 taken along the line DD. 図23は、加熱装置60,70で試料22A,22Bを加熱した場合の試料22A,22Bの温度の時間変化の実験結果の一例を示す図である。FIG. 23 is a view showing an example of an experimental result of a temporal change in temperature of the samples 22A and 22B when the samples 22A and 22B are heated by the heating devices 60 and 70. 図24は第4の実施形態に係る加熱装置80の斜視図である。FIG. 24 is a perspective view of a heating device 80 according to the fourth embodiment. 図25(A)は加熱装置80の平面図である。図25(B)は加熱装置80のE1-E1断面図である。FIG. 25A is a plan view of the heating device 80. FIG. FIG. 25B is a cross-sectional view of the heating device 80 taken along line E1-E1. 図26は、試料22A,22Bが配置された加熱装置80の斜視図である。FIG. 26 is a perspective view of the heating device 80 in which the samples 22A and 22B are disposed. 図27(A)は、試料22A,22Bが配置された加熱装置80の平面図である。図27(B)は、試料22A,22Bが配置された加熱装置80のE2-E2断面図である。FIG. 27A is a plan view of the heating device 80 in which the samples 22A and 22B are disposed. FIG. 27B is an E2-E2 cross-sectional view of the heating device 80 in which the samples 22A and 22B are disposed. 図28は、加熱装置80の電力特性のシミュレーション結果を示す図である。FIG. 28 is a diagram showing simulation results of power characteristics of the heating device 80. As shown in FIG. 図29は、加熱装置80で試料22A,22Bを加熱した場合の試料22A,22Bの温度および反射電力の時間変化の実験結果の一例を示す図である。FIG. 29 is a view showing an example of the experimental results of the time change of the temperature and the reflected power of the samples 22A and 22B when the samples 22A and 22B are heated by the heating device 80.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点について説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, some specific examples will be described with reference to the drawings to show a plurality of modes for carrying out the present invention. In the second and subsequent embodiments, descriptions of matters in common with the first embodiment will be omitted, and different points will be described. In particular, the same operation and effect by the same configuration will not be sequentially referred to in each embodiment.
《第1の実施形態》
 図1は第1の実施形態に係る加熱装置10の斜視図である。図2(A)は加熱装置10の平面図である。図2(B)は加熱装置10のA1-A1断面図である。図1および図2(A)では同軸ケーブル14,15の図示を省略している。
First Embodiment
FIG. 1 is a perspective view of a heating device 10 according to a first embodiment. FIG. 2A is a plan view of the heating device 10. FIG. 2B is a cross-sectional view of the heating device 10 taken along the line A1-A1. The coaxial cables 14 and 15 are not shown in FIGS. 1 and 2A.
 加熱装置10は方形平板状の共振器11,12を備える。共振器11は本発明の「第1共振器」の一例である。共振器12は本発明の「第2共振器」の一例である。共振器11,12は、マイクロストリップ構造を有する半波長共振器である。共振器11と共振器12とは互いに略同じ構造を有する。共振器11と共振器12とは、所定間隔を隔てて互いに対向するように配置されている。共振器11,12には、それぞれ、同軸ケーブル14,15が接続されている。加熱装置10に高周波電力が供給されると、共振器11と共振器12とは互いに電磁界結合する。 The heating device 10 includes square flat resonators 11 and 12. The resonator 11 is an example of the "first resonator" in the present invention. The resonator 12 is an example of the "second resonator" in the present invention. The resonators 11 and 12 are half-wave resonators having a microstrip structure. The resonator 11 and the resonator 12 have substantially the same structure. The resonators 11 and 12 are disposed to face each other at a predetermined distance. The coaxial cables 14 and 15 are connected to the resonators 11 and 12, respectively. When the high frequency power is supplied to the heating device 10, the resonator 11 and the resonator 12 are electromagnetically coupled to each other.
 共振器11は、誘電体基板111、平面導体112およびグランド導体113を有する。平面導体112は本発明の「第1面状導体」の一例である。グランド導体113は本発明の「第1グランド導体」の一例である。 The resonator 11 has a dielectric substrate 111, a plane conductor 112 and a ground conductor 113. The planar conductor 112 is an example of the "first planar conductor" in the present invention. The ground conductor 113 is an example of the “first ground conductor” in the present invention.
 誘電体基板111およびグランド導体113は、それぞれ、方形平板状である。平面導体112は矩形平板状である。平面導体112の長手方向の寸法は、加熱装置10に使用される高周波の誘電体基板111中の波長の1/2に略等しい。平面導体112は誘電体基板111の一方主面の略中央に形成されている。グランド導体113は誘電体基板111の他方主面の略全面に形成されている。平面導体112とグランド導体113とは誘電体基板111を介して互いに対向している。 The dielectric substrate 111 and the ground conductor 113 are each in the form of a rectangular plate. The plane conductor 112 is rectangular flat. The longitudinal dimension of the planar conductor 112 is approximately equal to one half of the wavelength in the high frequency dielectric substrate 111 used for the heating device 10. The flat conductor 112 is formed substantially at the center of one main surface of the dielectric substrate 111. The ground conductor 113 is formed on substantially the entire surface of the other main surface of the dielectric substrate 111. The flat conductor 112 and the ground conductor 113 are opposed to each other via the dielectric substrate 111.
 平面導体112には同軸ケーブル14の内導体141が接続されている。内導体141は本発明の「給電線」の一例である。内導体141は、グランド導体113に形成された開口114内を通り、次に誘電体基板111内を通って、平面導体112まで延伸している。平面導体112と内導体141との接続部は入力端115を構成する。入力端115は、平面導体112の主面の法線の方向から平面視して、平面導体112の中心点から平面導体112の長手方向に距離Dci離間している。グランド導体113には同軸ケーブル14の外導体142が接続されている。平面導体112は同軸ケーブル14の内導体141を介して高周波電源(図示せず)に接続される。加熱装置10に使用される高周波は、例えば2.45GHz帯のマイクロ波であるが、これに限定されない。グランド導体113は同軸ケーブル14の外導体142に接続される。加熱装置10の入力端115側において、入力端115から加熱装置10側を見た入力インピーダンスが例えば50Ωになるように、インピーダンス整合をとる。 An inner conductor 141 of the coaxial cable 14 is connected to the plane conductor 112. The inner conductor 141 is an example of the “feed line” in the present invention. The inner conductor 141 extends through the opening 114 formed in the ground conductor 113 and then through the dielectric substrate 111 to the planar conductor 112. The connection portion between the flat conductor 112 and the inner conductor 141 constitutes an input end 115. The input end 115 is separated from the center point of the plane conductor 112 by a distance Dci in the longitudinal direction of the plane conductor 112 in plan view in the direction of the normal to the main surface of the plane conductor 112. The outer conductor 142 of the coaxial cable 14 is connected to the ground conductor 113. The flat conductor 112 is connected to a high frequency power source (not shown) via the inner conductor 141 of the coaxial cable 14. The high frequency used for the heating device 10 is, for example, microwaves in the 2.45 GHz band, but is not limited thereto. The ground conductor 113 is connected to the outer conductor 142 of the coaxial cable 14. At the input end 115 side of the heating device 10, impedance matching is performed such that the input impedance seen from the input end 115 to the heating device 10 side is, for example, 50 Ω.
 共振器12は、誘電体基板121、平面導体122およびグランド導体123を有する。平面導体122は本発明の「第2面状導体」の一例である。グランド導体123は本発明の「第2グランド導体」の一例である。 The resonator 12 has a dielectric substrate 121, a plane conductor 122 and a ground conductor 123. The planar conductor 122 is an example of the "second planar conductor" in the present invention. The ground conductor 123 is an example of the “second ground conductor” in the present invention.
 誘電体基板121およびグランド導体123は、それぞれ、方形平板状である。平面導体122は矩形平板状である。平面導体122の長手方向の寸法は、加熱装置10に使用される高周波の誘電体基板121中の波長の1/2に略等しい。平面導体122は誘電体基板121の一方主面の略中央に形成されている。グランド導体123は誘電体基板121の他方主面の略全面に形成されている。平面導体122とグランド導体123とは誘電体基板121を介して互いに対向している。 The dielectric substrate 121 and the ground conductor 123 are each in the form of a rectangular flat plate. The flat conductor 122 is rectangular flat. The longitudinal dimension of the planar conductor 122 is approximately equal to one half of the wavelength in the high frequency dielectric substrate 121 used for the heating device 10. The flat conductor 122 is formed substantially at the center of one main surface of the dielectric substrate 121. The ground conductor 123 is formed on substantially the entire surface of the other main surface of the dielectric substrate 121. The flat conductor 122 and the ground conductor 123 are opposed to each other via the dielectric substrate 121.
 平面導体122には同軸ケーブル15の内導体151が接続されている。同軸ケーブル15の内導体151は、グランド導体123に形成された開口124内を通り、次に誘電体基板121内を通って、平面導体122まで延伸している。平面導体122と内導体151との接続部は出力端125を構成する。出力端125は、平面導体122の主面の法線の方向から平面視して、平面導体122の中心点から平面導体122の長手方向に距離Dcо離間している。グランド導体123には同軸ケーブル15の外導体152が接続されている。平面導体122は、同軸ケーブル15の内導体151を介して、図示されていない負荷(終端器)に接続される。グランド導体123は同軸ケーブル15の外導体152に接続される。加熱装置10の出力端125側において、出力端125から加熱装置10側を見た入力インピーダンスが例えば50Ωになるように、インピーダンス整合をとる。 The inner conductor 151 of the coaxial cable 15 is connected to the plane conductor 122. The inner conductor 151 of the coaxial cable 15 extends through the opening 124 formed in the ground conductor 123 and then through the dielectric substrate 121 to the planar conductor 122. The connection portion between the plane conductor 122 and the inner conductor 151 constitutes an output end 125. The output end 125 is separated from the center point of the plane conductor 122 by a distance Dcо in the longitudinal direction of the plane conductor 122 in plan view in the direction of the normal to the main surface of the plane conductor 122. An outer conductor 152 of the coaxial cable 15 is connected to the ground conductor 123. The plane conductor 122 is connected to a load (not shown) (not shown) via the inner conductor 151 of the coaxial cable 15. The ground conductor 123 is connected to the outer conductor 152 of the coaxial cable 15. At the output end 125 side of the heating device 10, impedance matching is performed such that the input impedance seen from the output end 125 to the heating device 10 side is, for example, 50Ω.
 誘電体基板111における平面導体112が形成された主面と、誘電体基板121における平面導体122が形成された主面とは所定間隔を隔てて対向している。誘電体基板111と誘電体基板121との間隔は、スペーサー(図示せず)により確保されてもよいし、誘電体基板111,121を支持する支持部材(図示せず)により確保されてもよい。平面導体112と平面導体122とは所定間隔を隔てて互いに対向するように配置されている。平面導体112と平面導体122とは、平面導体112の主面の法線の方向から平面視して、略一致している(略完全に重なっている)。平面導体112と平面導体122との間には、被加熱物を配置するための空間13が形成されている。加熱装置10に高周波電力が供給されると、共振器11の平面導体112と共振器12の平面導体122とは電磁界結合する。この電磁界結合では、電界結合の寄与が磁界結合の寄与より大きい。 The main surface of the dielectric substrate 111 on which the flat conductor 112 is formed and the main surface of the dielectric substrate 121 on which the flat conductor 122 is formed are opposed to each other at a predetermined distance. The distance between dielectric substrate 111 and dielectric substrate 121 may be secured by a spacer (not shown) or may be secured by a support member (not shown) for supporting dielectric substrates 111 and 121. . The plane conductor 112 and the plane conductor 122 are arranged to face each other at a predetermined distance. The planar conductor 112 and the planar conductor 122 substantially coincide with each other in plan view from the direction of the normal to the main surface of the planar conductor 112 (almost completely overlap). A space 13 for disposing an object to be heated is formed between the plane conductor 112 and the plane conductor 122. When high frequency power is supplied to the heating device 10, the planar conductor 112 of the resonator 11 and the planar conductor 122 of the resonator 12 are electromagnetically coupled. In this electromagnetic coupling, the contribution of the electric field coupling is larger than the contribution of the magnetic field coupling.
 図3は、試料22が配置された加熱装置10の斜視図である。図4(A)は、試料22が配置された加熱装置10の平面図である。図4(B)は、試料22が配置された加熱装置10のA2-A2断面図である。図3および図4(A)では同軸ケーブル14,15の図示を省略している。試料22は本発明の「被加熱物」の一例である。試料22は、例えば、水、有機溶媒である。試験管21内の試料22は、加熱時に、平面導体112と平面導体122との間の空間13に配置される。試験管21は支持部材(図示せず)により支持される。試料22の少なくとも一部は平面導体112,122の長手方向の端付近に配置されることが好ましい。 FIG. 3 is a perspective view of the heating device 10 in which the sample 22 is disposed. FIG. 4A is a plan view of the heating device 10 in which the sample 22 is disposed. FIG. 4B is an A2-A2 cross-sectional view of the heating device 10 in which the sample 22 is disposed. In FIG. 3 and FIG. 4 (A), illustration of the coaxial cables 14 and 15 is omitted. The sample 22 is an example of the "object to be heated" of the present invention. The sample 22 is, for example, water or an organic solvent. The sample 22 in the test tube 21 is disposed in the space 13 between the plane conductor 112 and the plane conductor 122 when heated. The test tube 21 is supported by a support member (not shown). Preferably, at least a portion of the sample 22 is disposed near the longitudinal ends of the planar conductors 112,122.
 なお、空間13には複数の被加熱物が配置されてもよい。例えば、平面導体112,122の長手方向の一方端に1つの被加熱物が配置され、平面導体112,122の長手方向の他方端にもう1つの被加熱物が配置されてもよい。また、空間13に平面導体112,122の短手方向に沿って複数の被加熱物が配置されてもよい。 A plurality of objects to be heated may be disposed in the space 13. For example, one object to be heated may be disposed at one end in the longitudinal direction of the planar conductors 112 and 122, and another object to be heated may be disposed at the other end in the longitudinal direction of the planar conductors 112 and 122. Also, a plurality of objects to be heated may be disposed in the space 13 along the short direction of the planar conductors 112 and 122.
 加熱装置10では、高周波電源(図示せず)から同軸ケーブル14の内導体141を介して入力端115に高周波電力が供給されると、共振器11の平面導体112と共振器12の平面導体122とが電磁界結合する。この電磁界結合に寄与し、平面導体112と平面導体122との間の空間13に生じる電磁界によって、試料22が加熱される。 In the heating device 10, when high frequency power is supplied from the high frequency power source (not shown) to the input end 115 via the inner conductor 141 of the coaxial cable 14, the flat conductor 112 of the resonator 11 and the flat conductor 122 of the resonator 12 And are electromagnetically coupled. The sample 22 is heated by the electromagnetic field that contributes to the electromagnetic field coupling and is generated in the space 13 between the planar conductor 112 and the planar conductor 122.
 図5(A)は、加熱装置10の等価回路30を示す回路図である。等価回路30では、共振器11と共振器12との間の電磁界結合を電界結合で近似している。また、等価回路30では被加熱物の影響を考慮していない。等価回路30は共振回路31,32を備える。共振回路31,32を構成する各インダクタは共にインダクタンスLを有する。共振回路31,32を構成する各キャパシタはキャパシタンスCを有する。共振回路31,32を構成する各キャパシタは互いに相互容量Cmで電界結合する。共振回路31は端子P1,P2により高周波電源(図示せず)に接続される。共振回路32は、インピーダンスZを有する負荷に接続される。共振回路31は加熱装置10の共振器11の等価回路である。共振回路32は加熱装置10の共振器12の等価回路である。 FIG. 5A is a circuit diagram showing an equivalent circuit 30 of the heating device 10. In the equivalent circuit 30, the electromagnetic field coupling between the resonators 11 and 12 is approximated by electric field coupling. Further, in the equivalent circuit 30, the influence of the object to be heated is not considered. The equivalent circuit 30 includes resonant circuits 31 and 32. The inductors constituting the resonant circuits 31 and 32 both have an inductance L. Each capacitor constituting the resonant circuits 31 and 32 has a capacitance C. The capacitors constituting the resonant circuits 31 and 32 are electrically coupled to each other by mutual capacitance Cm. The resonant circuit 31 is connected to a high frequency power supply (not shown) by the terminals P1 and P2. The resonant circuit 32 is connected to a load having an impedance Z. The resonant circuit 31 is an equivalent circuit of the resonator 11 of the heating device 10. The resonant circuit 32 is an equivalent circuit of the resonator 12 of the heating device 10.
 図5(B)は、等価回路30を変形して得られる等価回路40を示す回路図である。等価回路40は共振回路41,42を備える。共振回路41,42を構成する各インダクタは共にインダクタンスLを有する。共振回路41,42を構成する各キャパシタはキャパシタンスC-Cmを有する。共振回路41と共振回路42とは、キャパシタンスCmを有するキャパシタを介して接続されている。 FIG. 5B is a circuit diagram showing an equivalent circuit 40 obtained by modifying the equivalent circuit 30. As shown in FIG. The equivalent circuit 40 includes resonant circuits 41 and 42. Each of the inductors constituting the resonant circuits 41 and 42 has an inductance L. Each capacitor constituting the resonant circuits 41 and 42 has a capacitance C-Cm. The resonant circuit 41 and the resonant circuit 42 are connected via a capacitor having a capacitance Cm.
 図5(C)は、端子P1,P2から等価回路40側を見た入力インピーダンスZiを示す回路図である。周波数ω=1/√LCの場合における入力インピーダンスZiは1/(ωCm)2Zになる。このように、共振より、入力インピーダンスZiに対する共振回路31,32のキャパシタの影響が消滅する。 FIG. 5C is a circuit diagram showing the input impedance Zi as viewed from the terminals P1 and P2 to the equivalent circuit 40 side. The input impedance Zi at the frequency ω = 1 / = 1LC is 1 / (ωCm) 2 Z. Thus, the influence of the capacitors of the resonant circuits 31 and 32 on the input impedance Zi disappears due to the resonance.
 次に、下記の加熱装置10のシミュレーションまたは実験の結果が得られたシミュレーションまたは実験の条件について説明する。但し、下記の加熱装置10のシミュレーションまたは実験の結果に関して、ここで述べる条件とは異なる条件下でシミュレーションまたは実験を行った場合には、その都度、適用した条件について述べる。なお、以後、ここで述べる条件を基本条件と称する。 Next, the conditions of the simulation or experiment from which the results of the simulation or experiment of the heating device 10 described below were obtained will be described. However, with regard to the results of simulation or experiment of the heating device 10 described below, when simulation or experiment is performed under conditions different from the conditions described here, the applied conditions will be described each time. Hereinafter, the conditions described here will be referred to as basic conditions.
 図2(A)および図2(B)に示すような加熱装置10の設定パラメータを下記のように設定した。 The setting parameters of the heating device 10 as shown in FIG. 2 (A) and FIG. 2 (B) were set as follows.
誘電体基板111,121のx軸方向の寸法     Dsx=100mm
誘電体基板111,121のy軸方向の寸法     Dsy=100mm
誘電体基板111,121のz軸方向の寸法     Dsz=0.8mm
平面導体112,122のx軸方向の寸法      Dcx=10mm
平面導体112,122のy軸方向の寸法      Dcy=38.5mm
誘電体基板111と誘電体基板121との間の距離  h=20mm
平面導体112の中心点と入力端115との間の距離 Dci=8mm
平面導体122の中心点と出力端125との間の距離 Dcо=8mm
誘電体基板111,121の複素比誘電率の実部   2.53
使用周波数                    2.45GHz
 ここで、平面導体112の短手方向をx軸方向とし、平面導体112の長手方向をy軸方向とし、平面導体112の主面の法線の方向をz軸方向としている。
Dimension in the x-axis direction of the dielectric substrates 111 and 121 Dsx = 100 mm
Dimension in the y-axis direction of the dielectric substrates 111 and 121 Dsy = 100 mm
Dimension in the z-axis direction of the dielectric substrates 111 and 121 Dsz = 0.8 mm
Dimension in the x-axis direction of the plane conductor 112, 122 Dcx = 10 mm
Dimension of planar conductor 112, 122 in the y-axis direction Dcy = 38.5 mm
Distance between dielectric substrate 111 and dielectric substrate 121 h = 20 mm
Distance between the center point of the plane conductor 112 and the input end 115 Dci = 8 mm
Distance between center point of flat conductor 122 and output end 125 Dcо = 8 mm
Real part of complex relative permittivity of dielectric substrates 111 and 121 2.53
Used frequency 2.45 GHz
Here, the short direction of the plane conductor 112 is taken as the x-axis direction, the longitudinal direction of the plane conductor 112 is taken as the y-axis direction, and the direction normal to the main surface of the plane conductor 112 is taken as the z-axis direction.
 また、図3、図4(A)および図4(B)に示すように、試験管21内の試料22を空間13に配置した。試験管21の内径Raを11.8mmとし、試験管21の外径Rbを15mmとし、そして、試料22を4.3mLの純水とした。 Further, as shown in FIG. 3, FIG. 4 (A) and FIG. 4 (B), the sample 22 in the test tube 21 was placed in the space 13. The inner diameter Ra of the test tube 21 was 11.8 mm, the outer diameter Rb of the test tube 21 was 15 mm, and the sample 22 was pure water of 4.3 mL.
 図6(A)はSパラメータS11の絶対値のシミュレーション結果を示す図である。図6(B)はSパラメータS21の絶対値のシミュレーション結果を示す図である。ここで、距離Dciを様々な値に変化させ、距離Dcоを距離Dciと同じ値に変化させた。他の条件については上記基本条件と同様に設定した。また、入力端115側を第1端子対側とし、出力端125側を第2端子対側として、Sパラメータを計算した。 FIG. 6A shows a simulation result of the absolute value of the S parameter S11. FIG. 6B shows a simulation result of the absolute value of the S parameter S21. Here, the distance Dci was changed to various values, and the distance Dcо was changed to the same value as the distance Dci. The other conditions were set in the same manner as the above basic conditions. Further, the S parameter was calculated with the input end 115 side as the first terminal pair side and the output end 125 side as the second terminal pair side.
 図6(A)および図6(B)に示すように、SパラメータS11,S21の絶対値に双峰性が現れている。このことから、共振器11の平面導体112と共振器12の平面導体122とが電磁界結合していることがわかる。 As shown in FIGS. 6A and 6B, bimodality appears in the absolute values of the S parameters S11 and S21. From this, it can be seen that the plane conductor 112 of the resonator 11 and the plane conductor 122 of the resonator 12 are electromagnetically coupled.
 また、使用周波数である2.45GHzにおいて、距離Dciが長くなるにつれて、SパラメータS11の絶対値が小さくなり、SパラメータS21の絶対値が大きくなる傾向にある。一方、距離Dciが10mmである場合、SパラメータS11の絶対値に双峰性が現れない。このため、距離Dci,Dcоを8mmに定めることが好ましい。 Also, at 2.45 GHz, which is the operating frequency, as the distance Dci becomes longer, the absolute value of the S parameter S11 tends to be smaller, and the absolute value of the S parameter S21 tends to be larger. On the other hand, when the distance Dci is 10 mm, bimodality does not appear in the absolute value of the S parameter S11. Therefore, it is preferable to set the distances Dci and Dcо to 8 mm.
 図7(A)は、共振器11と共振器12との間の電界分布のシミュレーション結果を示す斜視図である。図7(B)は、共振器11と共振器12との間のポインティングベクトルのシミュレーション結果を示す断面図である。ここで、加熱装置10の空間13に試験管21および試料22を配置しなかった。他の条件については上記基本条件と同様に設定した。図7(A)に示すように、平面導体112,122の長手方向の端付近で、電界が大きくなる。図7(B)に示すように、平面導体112,122の長手方向の端付近で、エネルギーフローが大きくなる。このため、上記のように、平面導体112,122の長手方向の端付近に被加熱物の少なくとも一部が配置されることが好ましい。 FIG. 7A is a perspective view showing a simulation result of the electric field distribution between the resonators 11 and 12. FIG. 7B is a cross-sectional view showing a simulation result of the pointing vector between the resonators 11 and 12. Here, the test tube 21 and the sample 22 were not disposed in the space 13 of the heating device 10. The other conditions were set in the same manner as the above basic conditions. As shown in FIG. 7A, the electric field becomes large near the ends in the longitudinal direction of the planar conductors 112 and 122. As shown in FIG. 7B, the energy flow increases near the ends in the longitudinal direction of the planar conductors 112 and 122. For this reason, as described above, it is preferable that at least a part of the object to be heated be disposed near the ends in the longitudinal direction of the planar conductors 112 and 122.
 図8は、加熱装置10の電力特性のシミュレーション結果を示す図である。ここで、図9に示す純水の複素比誘電率の実部εr′および誘電正接tanδを用いた。他の条件については上記基本条件と同様に設定した。図8において、「試料の吸収電力」は試料22に吸収される電力である。「反射電力」は入力端115で反射される電力である。「透過電力」は入力端115側から出力端125側に透過する電力である。「漏洩電力」は加熱装置10から漏洩する電力である。「基板等の吸収電力」は、誘電体基板111,121および試験管21に吸収される電力である。図8において、試料の吸収電力、反射電力、透過電力、漏洩電力、および基板等の吸収電力を、入力端115に入力された入力電力に対する割合で表している。 FIG. 8 is a diagram showing simulation results of the power characteristics of the heating device 10. As shown in FIG. Here, real part εr ′ of complex relative dielectric constant of pure water and dielectric loss tangent tanδ shown in FIG. 9 were used. The other conditions were set in the same manner as the above basic conditions. In FIG. 8, “absorbed power of sample” is the power absorbed by the sample 22. “Reflected power” is the power reflected at the input end 115. “Transparent power” is power transmitted from the input end 115 side to the output end 125 side. “Leakage power” is power that leaks from the heating device 10. The “absorbed power of the substrate or the like” is the power absorbed by the dielectric substrates 111 and 121 and the test tube 21. In FIG. 8, the absorbed power of the sample, the reflected power, the transmitted power, the leaked power, and the absorbed power of the substrate and the like are represented as a percentage of the input power input to the input terminal 115.
 試料22の温度が20℃の場合、入力電力の約70%が試料22に吸収される。試料22の温度が高くなるにつれて、試料22の吸収電力が低下する。この低下は、試料22の温度が変化すると、試料22の誘電特性が変化し、その結果、インピーダンス整合の状態が変化するために起こる。また、試料22の温度にかかわらず、漏洩電力の割合は入力電力の20%以下である。この結果から、加熱時に加熱装置10の外部に漏洩する電磁界が少ないことがわかる。 When the temperature of the sample 22 is 20 ° C., about 70% of the input power is absorbed by the sample 22. As the temperature of the sample 22 rises, the absorbed power of the sample 22 decreases. This drop occurs because when the temperature of the sample 22 changes, the dielectric properties of the sample 22 change, and as a result, the state of impedance matching changes. Also, regardless of the temperature of the sample 22, the ratio of the leakage power is 20% or less of the input power. From this result, it can be understood that the electromagnetic field leaking to the outside of the heating device 10 at the time of heating is small.
 図10(A)、図10(B)、図11(A)および図11(B)は、図12(A)および図12(B)に示すように試料22と誘電体基板111,121との配置関係を変化させた場合における、SパラメータS11の絶対値のシミュレーション結果を示す図である。ここで、試料22の温度を20℃に設定した。図11(A)において、誘電体基板111と誘電体基板121との間の距離hを変化させた。他の条件については上記基本条件と同様に設定した。また、入力端115側を第1端子対側とし、出力端125側を第2端子対側として、Sパラメータを計算した。 10 (A), 10 (B), 11 (A) and 11 (B) show samples 22 and dielectric substrates 111 and 121 as shown in FIGS. 12 (A) and 12 (B). When the arrangement relationship of is changed, it is a figure which shows the simulation result of the absolute value of S parameter S11. Here, the temperature of the sample 22 was set to 20.degree. In FIG. 11A, the distance h between the dielectric substrate 111 and the dielectric substrate 121 is changed. The other conditions were set in the same manner as the above basic conditions. Further, the S parameter was calculated with the input end 115 side as the first terminal pair side and the output end 125 side as the second terminal pair side.
 なお、図12(A)は、試料22と誘電体基板111,121との配置関係を説明するための平面図である。図12(B)は、試料22と誘電体基板111,121との配置関係を説明するための側面図である。図12(A)および図12(B)では、グランド導体113,123および同軸ケーブル14,15の図示を省略している。 FIG. 12A is a plan view for explaining the arrangement of the sample 22 and the dielectric substrates 111 and 121. FIG. 12B is a side view for explaining the arrangement relationship between the sample 22 and the dielectric substrates 111 and 121. In FIGS. 12A and 12B, the ground conductors 113 and 123 and the coaxial cables 14 and 15 are not shown.
 図10(A)は、基準の配置から試料22がx軸の周りに角度θx回転した配置、および、基準の配置から試料22がz軸の周りに角度θz回転した配置における、SパラメータS11の絶対値を示している。ここで、図12(A)および図12(B)に示すように、平面導体122の主面の法線の方向から見て平面導体122の中心点に一致し、かつ、平面導体112および平面導体122から等しく離間するように、座標軸の原点Oを定めている。図10(A)に示すように、試料22がz軸の周りに回転した配置におけるSパラメータS11の絶対値は、基準の配置におけるSパラメータS11から殆ど変化していない。一方、試料22がx軸の周りに回転した配置におけるSパラメータS11の絶対値は、基準の配置におけるSパラメータS11から変化している。 FIG. 10A shows an arrangement in which the sample 22 is rotated by the angle θx around the x axis from the arrangement of the reference, and an arrangement in which the sample 22 is rotated by the angle θz around the z axis from the arrangement of the reference. It shows the absolute value. Here, as shown in FIGS. 12A and 12B, it corresponds to the center point of the plane conductor 122 when viewed from the direction of the normal to the main surface of the plane conductor 122, and the plane conductor 112 and the plane The origin O of the coordinate axis is defined to be equally spaced from the conductor 122. As shown in FIG. 10A, the absolute value of the S parameter S11 in the arrangement in which the sample 22 is rotated about the z axis hardly changes from the S parameter S11 in the reference arrangement. On the other hand, the absolute value of the S parameter S11 in the arrangement in which the sample 22 is rotated around the x axis is different from the S parameter S11 in the reference arrangement.
 図10(B)は、基準の配置から試料22がx軸方向に距離Wx平行移動した配置、基準の配置から試料22がy軸方向に距離Wy平行移動した配置、および基準の配置から試料22がz軸方向に距離Wz平行移動した配置における、SパラメータS11の絶対値を示している。図10(B)に示すように、試料22がx軸またはy軸方向に平行移動した配置におけるSパラメータS11の絶対値は、基準の配置におけるSパラメータS11の絶対値から殆ど変化していない。一方、試料22がz軸方向に平行移動した配置におけるSパラメータS11の絶対値は、基準の配置におけるSパラメータS11の絶対値から変化している。 FIG. 10B shows an arrangement in which the sample 22 is displaced by the distance Wx in the x-axis direction from the arrangement of the reference, an arrangement in which the sample 22 is moved by the distance Wy in the y-axis direction from the arrangement of the reference, and Shows the absolute value of the S parameter S11 in the arrangement in which the distance Wz is parallel moved in the z-axis direction. As shown in FIG. 10B, the absolute value of the S parameter S11 in the arrangement in which the sample 22 is translated in the x-axis or y-axis direction hardly changes from the absolute value of the S parameter S11 in the reference arrangement. On the other hand, the absolute value of the S parameter S11 in the arrangement in which the sample 22 is translated in the z-axis direction is changed from the absolute value of the S parameter S11 in the reference arrangement.
 図11(A)は、誘電体基板111と誘電体基板121との間の距離hを変化させた場合のSパラメータS11の絶対値を示している。図11(A)に示すように、距離hが基準値から変化すると、SパラメータS11の絶対値が変化している。 FIG. 11A shows the absolute value of the S parameter S11 when the distance h between the dielectric substrate 111 and the dielectric substrate 121 is changed. As shown in FIG. 11A, when the distance h changes from the reference value, the absolute value of the S parameter S11 changes.
 図11(B)は、誘電体基板121がx軸方向に距離Subx平行移動した配置、および、誘電体基板121がy軸方向に距離Suby平行移動した配置における、SパラメータS11の絶対値を示している。図11(B)に示すように、誘電体基板121がx軸およびy軸方向に平行移動した配置におけるSパラメータS11の絶対値は、基準の配置におけるSパラメータS11の絶対値から殆ど変化していない。 FIG. 11B shows the absolute value of the S parameter S11 in the arrangement in which the dielectric substrate 121 is moved in the x-axis direction by distance Subx and in the arrangement in which the dielectric substrate 121 is moved in the y-axis direction by distance Suby. ing. As shown in FIG. 11B, the absolute value of the S parameter S11 in the arrangement in which the dielectric substrate 121 is moved in parallel in the x-axis and y-axis directions is almost different from the absolute value of the S parameter S11 in the reference arrangement. Absent.
 図10(A)、図10(B)、図11(A)および図11(B)に示すように、SパラメータS11の絶対値は、試料22および誘電体基板111,121の配置のx,y軸方向のずれに殆ど影響されないが、試料22および誘電体基板111,121の配置のz軸方向のずれに影響される。これは、試料22が平面導体112または122に近づくことで、インピーダンス整合の状態が変化するために生じる。このため、加熱時に被加熱物を支持する支持部材は、z軸方向において被加熱物を正確に配置できるものであることが好ましい。 As shown in FIGS. 10 (A), 10 (B), 11 (A) and 11 (B), the absolute value of the S parameter S11 is x of the arrangement of the sample 22 and the dielectric substrates 111, 121. Although hardly affected by the deviation in the y-axis direction, it is affected by the deviation in the z-axis direction of the arrangement of the sample 22 and the dielectric substrates 111 and 121. This occurs because the impedance matching state changes as the sample 22 approaches the planar conductor 112 or 122. For this reason, it is preferable that the support member which supports a to-be-heated material at the time of heating is what can arrange a to-be-heated material correctly in z axial direction.
 図13(A)は、加熱装置10から100mm離れた位置における電界分布のシミュレーション結果を示す図である。図13(B)は、加熱装置10から100mm離れた位置における磁界分布のシミュレーション結果を示す図である。ここで、加熱装置10に30Wの入力電力を入力し、試料22の温度を80℃に設定した。他の条件については上記基本条件と同様に設定した。 FIG. 13A shows a simulation result of the electric field distribution at a position 100 mm away from the heating device 10. FIG. 13B is a view showing a simulation result of the magnetic field distribution at a position 100 mm away from the heating device 10. Here, an input power of 30 W was input to the heating device 10, and the temperature of the sample 22 was set to 80.degree. The other conditions were set in the same manner as the above basic conditions.
 図13(A)および図13(B)に示すように、加熱装置10から100mm離れた位置において、電界の大きさは137V/m以下であり、磁界の大きさは0.365A/m以下である。このため、加熱装置10は、入力電力が30W以下の場合、電波防護指針に規定された管理指針を満たす。 As shown in FIGS. 13A and 13B, at a position 100 mm away from the heating device 10, the magnitude of the electric field is 137 V / m or less and the magnitude of the magnetic field is 0.365 A / m or less is there. Therefore, the heating device 10 satisfies the management guideline defined in the radio wave protection guideline when the input power is 30 W or less.
 第1の実施形態では、共振器11と共振器12とを対向するように配置し、共振器11と共振器12とを電磁界結合させ、そして、共振器11と共振器12との間に被加熱物を配置する。これにより、被加熱物を電磁界で加熱できる。 In the first embodiment, the resonator 11 and the resonator 12 are disposed to face each other, the resonator 11 and the resonator 12 are electromagnetically coupled, and then, between the resonator 11 and the resonator 12 Place the object to be heated. Thus, the object to be heated can be heated by the electromagnetic field.
 また、共振器11と共振器12との間に複数の被加熱物を配置することで、複数の被加熱物を同時に加熱できる。このため、特に化学実験の用途において実験時間の大幅な短縮が得られる。このように、加熱装置10は、特に化学実験の用途として有効であり、複数かつ少量の被加熱物を同時に加熱する装置としての利用が期待される。 Further, by arranging a plurality of objects to be heated between the resonator 11 and the resonator 12, it is possible to heat a plurality of objects to be heated simultaneously. This results in a significant reduction of the experimental time, in particular in applications of chemical experiments. Thus, the heating device 10 is particularly effective for use in chemical experiments, and is expected to be used as a device for simultaneously heating a plurality of small amounts of objects to be heated.
 また、加熱装置10の外部への電磁界の漏洩が少ないため、被加熱物を閉空間に配置しなくても、被加熱物を加熱できる。このため、例えば、共振器11と共振器12との間に被加熱物を順次通すことで、複数の被加熱物を連続的に加熱できる。従って、加熱装置10は流れ作業の用途に有効である。また、平面導体112と平面導体122との間の空間13より被加熱物が大きい場合でも、平面導体112と平面導体122との間に被加熱物の一部分を配置することで、被加熱物のその一部分を加熱できる。 Further, since the leakage of the electromagnetic field to the outside of the heating device 10 is small, the object to be heated can be heated without arranging the object to be heated in the closed space. Therefore, for example, by sequentially passing the object to be heated between the resonators 11 and 12, it is possible to continuously heat the plurality of objects to be heated. Thus, the heating device 10 is useful for flow applications. Further, even when the object to be heated is larger than the space 13 between the planar conductor 112 and the planar conductor 122, by arranging a part of the object to be heated between the planar conductor 112 and the planar conductor 122 Part of it can be heated.
 また、共振器11と共振器12との電磁界結合において電界結合の寄与が大きい。このため、被加熱物が誘電体である場合に、被加熱物による電力の吸収効率が高い。従って、水、有機溶媒のような誘電体を電力効率良く加熱できる。 In addition, in the electromagnetic field coupling between the resonator 11 and the resonator 12, the contribution of the electric field coupling is large. Therefore, when the object to be heated is a dielectric, the efficiency of power absorption by the object to be heated is high. Therefore, dielectrics such as water and organic solvents can be heated with high power efficiency.
《第2の実施形態》
 図14(A)は第2の実施形態に係る加熱装置50の平面図である。図14(B)は加熱装置50のB-B断面図である。加熱装置50では、平面導体122に同軸ケーブルの内導体が接続されていない。即ち、平面導体122は開放されている。
Second Embodiment
FIG. 14A is a plan view of a heating device 50 according to the second embodiment. FIG. 14B is a cross-sectional view of the heating device 50 taken along the line BB. In the heating device 50, the inner conductor of the coaxial cable is not connected to the plane conductor 122. That is, the flat conductor 122 is open.
 図15は、加熱装置10,50における試料22の吸収電力のシミュレーション結果を示す図である。ここで、図9に示す純水の複素比誘電率の実部εr′および誘電正接tanδを用いた。他の条件については上記基本条件と同様に設定した。図15において、試料22の吸収電力は、入力端115に入力された入力電力に対する割合で表されている。加熱装置50では、加熱装置10に比べて、試料22に吸収される吸収電力の割合が向上している。 FIG. 15 is a diagram showing simulation results of absorbed power of the sample 22 in the heating devices 10 and 50. As shown in FIG. Here, real part εr ′ of complex relative dielectric constant of pure water and dielectric loss tangent tanδ shown in FIG. 9 were used. The other conditions were set in the same manner as the above basic conditions. In FIG. 15, the absorbed power of the sample 22 is expressed as a ratio to the input power input to the input end 115. In the heating device 50, the ratio of the absorbed power absorbed by the sample 22 is improved compared to the heating device 10.
 図16(A)は、加熱装置10,50で試料22を加熱した場合の試料22の温度の時間変化の実験結果の一例を示す図である。ここで、加熱装置10,50に入力する入力電力を10Wに設定した。他の条件については上記基本条件と同様に設定した。加熱装置50では、加熱装置10に比べて、加熱特性が向上している。また、加熱装置50では、試料22の温度が5分で80℃以上(雰囲気温度からの温度差55K以上)に上昇している。 FIG. 16A is a diagram showing an example of an experimental result of a time change of the temperature of the sample 22 when the sample 22 is heated by the heating devices 10 and 50. As shown in FIG. Here, the input power input to the heating devices 10 and 50 was set to 10 W. The other conditions were set in the same manner as the above basic conditions. The heating device 50 has improved heating characteristics as compared to the heating device 10. Further, in the heating device 50, the temperature of the sample 22 rises to 80 ° C. or more (a temperature difference of 55 K or more from the atmospheric temperature) in 5 minutes.
 図16(B)は、図16(A)に示す試料22の温度の時間変化から推定される試料22の推定吸収電力の時間変化を示す図である。ここで、Pest=mc(dT/dt)+hS(T-T0)+εσsS(T4-T0 4)を用いて、試料22の推定吸収電力を計算した。上記の式の各変数または定数は下記のように定義されている。 FIG. 16B is a diagram showing a time change of the estimated absorbed power of the sample 22 estimated from the time change of the temperature of the sample 22 shown in FIG. 16A. Here, the estimated absorbed power of the sample 22 was calculated using Pest = mc (dT / dt) + hS (T−T 0 ) + εσsS (T 4 −T 0 4 ). Each variable or constant of the above equation is defined as follows.
推定吸収電力          Pest
試料温度            T
試料質量            m=4.3g
試料比熱            c=4.17J/g/K
試料表面積           S=1.74×10-32
熱伝達率            h=4.6W/m/K
雰囲気温度           T0=300K
シュテファン=ボルツマン定数  σs=5.67×10-8W/m2/K4
放射係数            ε=0.96
 また、上記の式において、簡単のため、試験管21からの放熱および伝熱は考慮されていない。
Estimated absorbed power Pest
Sample temperature T
Sample mass m = 4.3 g
Sample specific heat c = 4.17 J / g / K
Sample surface area S = 1.74 × 10 -3 m 2
Heat transfer coefficient h = 4.6 W / m 2 / K
Ambient temperature T 0 = 300 K
Stephan-Boltzmann constant σs = 5.67 × 10 -8 W / m 2 / K 4
Radiation coefficient ε = 0.96
Further, in the above equation, heat dissipation and heat transfer from the test tube 21 are not taken into consideration for the sake of simplicity.
 加熱装置50では、試料22の温度が低温の場合、入力電力の約90%が試料22に吸収されている。また、図16(B)に示す結果からも、加熱装置50では、加熱装置10に比べて、加熱特性が向上していることがわかる。なお、図15に示すシミュレーション結果と、図16(B)に示す実験結果との間に幾分誤差が生じているが、これらの結果は同じ傾向を示している。 In the heating device 50, when the temperature of the sample 22 is low, about 90% of the input power is absorbed by the sample 22. Further, it can also be seen from the results shown in FIG. 16B that the heating device 50 has improved heating characteristics as compared to the heating device 10. Although some errors occur between the simulation result shown in FIG. 15 and the experimental result shown in FIG. 16 (B), these results show the same tendency.
 図17(A)は、加熱装置10による加熱時の試料22の内部の電界分布のシミュレーション結果を示す断面図である。図17(B)は、加熱装置50による加熱時の試料22の内部の電界分布のシミュレーション結果を示す断面図である。ここで、試料22の温度を25℃に設定した。他の条件については上記基本条件と同様に設定した。図17(A)および図17(B)では、試料22の内部の電界の振幅が最大になるときの電界分布を示している。 FIG. 17A is a cross-sectional view showing the simulation result of the electric field distribution in the inside of the sample 22 at the time of heating by the heating device 10. FIG. 17B is a cross-sectional view showing a simulation result of the electric field distribution in the sample 22 at the time of heating by the heating device 50. As shown in FIG. Here, the temperature of the sample 22 was set to 25 ° C. The other conditions were set in the same manner as the above basic conditions. FIGS. 17A and 17B show the electric field distribution when the amplitude of the electric field inside the sample 22 is maximized.
 図17(A)に示すように、出力端125がインピーダンス整合されている場合でも、出力端125から試料22側への反射が10%程度発生するため、定在波が立つ。図17(B)に示すように、平面導体122が開放されている場合、透過電力が存在しないため、より大きな定在波が立つ。この傾向は加熱装置50の加熱効率の上昇に寄与している。 As shown in FIG. 17A, even when the output end 125 is impedance-matched, approximately 10% of the reflection from the output end 125 toward the sample 22 occurs, so a standing wave is generated. As shown in FIG. 17 (B), when the planar conductor 122 is open, a larger standing wave stands up because there is no transmitted power. This tendency contributes to the increase in the heating efficiency of the heating device 50.
 このように、第2の実施形態に係る加熱装置50では、平面導体122が開放されることで、加熱特性がさらに向上する。 As described above, in the heating device 50 according to the second embodiment, the heating characteristic is further improved by opening the planar conductor 122.
《第3の実施形態》
 図18は第3の実施形態に係る加熱装置60の斜視図である。図19(A)は加熱装置60の平面図である。図19(B)は加熱装置60のC1-C1断面図である。
Third Embodiment
FIG. 18 is a perspective view of a heating device 60 according to the third embodiment. FIG. 19A is a plan view of the heating device 60. FIG. FIG. 19B is a cross-sectional view of the heating device 60 taken along the line C1-C1.
 加熱装置60は共振器61A,61B,61C,62A,62B,62Cを備える。共振器61A,61B,61C,62A,62B,62Cは、マイクロストリップ構造を有する半波長共振器である。共振器61Aと共振器62Aとは所定間隔を隔てて互いに対向するように配置されている。共振器61Bと共振器62Bとは所定間隔を隔てて互いに対向するように配置されている。共振器61Cと共振器62Cとは所定間隔を隔てて互いに対向するように配置されている。即ち、加熱装置60には、共振器から構成される対が3つ設けられている。なお、共振器から構成される対は3つ以上設けられてもよい。 The heating device 60 includes resonators 61A, 61B, 61C, 62A, 62B, 62C. The resonators 61A, 61B, 61C, 62A, 62B, 62C are half-wave resonators having a microstrip structure. The resonator 61A and the resonator 62A are disposed to face each other at a predetermined distance. The resonator 61B and the resonator 62B are arranged to face each other at a predetermined distance. The resonator 61C and the resonator 62C are disposed to face each other at a predetermined distance. That is, the heating device 60 is provided with three pairs of resonators. Note that three or more pairs of resonators may be provided.
 加熱装置60は、誘電体基板111、平面導体112A,112B,112Cおよびグランド導体113を備える。共振器61A,61B、61Cは、それぞれ、平面導体112A,112B,112Cが誘電体基板111を介してグランド導体113と対向することにより形成される。共振器61A,61B、61Cは誘電体基板111およびグランド導体113を共用している。 The heating device 60 includes a dielectric substrate 111, planar conductors 112A, 112B and 112C, and a ground conductor 113. The resonators 61A, 61B, and 61C are formed by planar conductors 112A, 112B, and 112C facing the ground conductor 113 via the dielectric substrate 111, respectively. The resonators 61A, 61B, and 61C share the dielectric substrate 111 and the ground conductor 113.
 平面導体112A,112B,112Cは、矩形平板状であり、互いに略同一形状である。平面導体112A,112B,112Cは誘電体基板111の一方主面に形成され、グランド導体113は誘電体基板111の他方主面に形成されている。平面導体112Cは誘電体基板111の上記主面の略中央に配置されている。平面導体112Aは平面導体112Cの短手方向の一方側に所定間隔を隔てて配置され、平面導体112Bは平面導体112Cの短手方向の他方側に所定間隔を隔てて配置されている。平面導体112Aと平面導体112Cとの間の距離は、平面導体112Bと平面導体112Cとの間の距離に略等しい。換言すると、平面導体112A,112B,112Cは平面導体112Cの短手方向に沿って整列している。平面導体112Cには同軸ケーブル14の内導体141が接続されている。平面導体112Cと内導体141との接続部は入力端115を構成する。なお、入力端は複数設けられてもよい。例えば、平面導体112A,112B,112Cのそれぞれに入力端が設けられてもよい。 The planar conductors 112A, 112B, and 112C are rectangular flat plates, and have substantially the same shape. The plane conductors 112A, 112B, and 112C are formed on one main surface of the dielectric substrate 111, and the ground conductor 113 is formed on the other main surface of the dielectric substrate 111. The planar conductor 112 </ b> C is disposed substantially at the center of the main surface of the dielectric substrate 111. The plane conductor 112A is disposed at a predetermined interval on one side in the width direction of the plane conductor 112C, and the plane conductor 112B is disposed at a predetermined interval on the other side in the width direction of the plane conductor 112C. The distance between planar conductor 112A and planar conductor 112C is approximately equal to the distance between planar conductor 112B and planar conductor 112C. In other words, the planar conductors 112A, 112B, and 112C are aligned along the short direction of the planar conductor 112C. The inner conductor 141 of the coaxial cable 14 is connected to the plane conductor 112C. A connection portion between the flat conductor 112C and the inner conductor 141 constitutes an input end 115. Note that a plurality of input terminals may be provided. For example, an input end may be provided on each of the planar conductors 112A, 112B, and 112C.
 加熱装置60は、誘電体基板121、平面導体122A,122B,122Cおよびグランド導体123を備える。共振器62A,62B、62Cは、それぞれ、平面導体122A,122B,122Cが誘電体基板121を介してグランド導体123と対向することにより形成される。共振器62A,62B、62Cは誘電体基板121およびグランド導体123を共用している。 The heating device 60 includes a dielectric substrate 121, planar conductors 122A, 122B and 122C, and a ground conductor 123. The resonators 62A, 62B and 62C are formed by the planar conductors 122A, 122B and 122C facing the ground conductor 123 with the dielectric substrate 121 interposed therebetween. The resonators 62A, 62B, 62C share the dielectric substrate 121 and the ground conductor 123.
 平面導体122A,122B,122Cは、矩形平板状であり、互いに略同一形状である。平面導体122A,122B,122Cは誘電体基板121の一方主面に形成され、グランド導体123は誘電体基板121の他方主面に形成されている。平面導体122Cは誘電体基板121の上記主面の略中央に配置されている。平面導体122Aは平面導体122Cの短手方向の一方側に所定間隔を隔てて配置され、平面導体122Bは平面導体122Cの短手方向の他方側に所定間隔を隔てて配置されている。平面導体122Aと平面導体122Cとの間の距離は、平面導体122Bと平面導体122Cとの間の距離に略等しい。換言すると、平面導体122A,122B,122Cは平面導体122Cの短手方向に沿って整列している。平面導体122Cには同軸ケーブル15の内導体151が接続されている。平面導体122Cと内導体151との接続部は出力端125を構成する。なお、出力端は複数設けられてもよい。例えば、平面導体112A,112B,112Cのそれぞれに入力端が設けられたことに対応して、平面導体122A,122B,122Cのそれぞれに出力端が設けられてもよい。 The planar conductors 122A, 122B, and 122C are rectangular flat plates, and have substantially the same shape. The plane conductors 122A, 122B and 122C are formed on one main surface of the dielectric substrate 121, and the ground conductor 123 is formed on the other main surface of the dielectric substrate 121. The flat conductor 122 </ b> C is disposed substantially at the center of the main surface of the dielectric substrate 121. The plane conductor 122A is disposed at a predetermined interval on one side in the width direction of the plane conductor 122C, and the plane conductor 122B is disposed at a predetermined interval on the other side in the width direction of the plane conductor 122C. The distance between the plane conductor 122A and the plane conductor 122C is approximately equal to the distance between the plane conductor 122B and the plane conductor 122C. In other words, the planar conductors 122A, 122B, and 122C are aligned along the short direction of the planar conductor 122C. The inner conductor 151 of the coaxial cable 15 is connected to the plane conductor 122C. The connection portion between the flat conductor 122C and the inner conductor 151 constitutes an output end 125. Note that a plurality of output terminals may be provided. For example, an output end may be provided to each of the plane conductors 122A, 122B, and 122C in response to the input end being provided to each of the plane conductors 112A, 112B, and 112C.
 平面導体112Aと平面導体122Aとは所定間隔を隔てて互いに対向するように配置されている。平面導体112Aと平面導体122Aとの間には、被加熱物を配置するための空間13Aが形成されている。平面導体112Bと平面導体122Bとは所定間隔を隔てて互いに対向するように配置されている。平面導体112Bと平面導体122Bとの間には、被加熱物を配置するための空間13Bが形成されている。平面導体112Cと平面導体122Cとは所定間隔を隔てて互いに対向するように配置されている。加熱装置60に高周波電力が供給されると、共振器61A,61B,61C,62A,62B,62Cの平面導体112A,112B,112C,122A,122B,122Cは互いに電磁界結合する。 The plane conductor 112A and the plane conductor 122A are arranged to face each other at a predetermined interval. A space 13A for disposing an object to be heated is formed between the plane conductor 112A and the plane conductor 122A. The plane conductor 112B and the plane conductor 122B are arranged to face each other at a predetermined interval. A space 13B for disposing an object to be heated is formed between the plane conductor 112B and the plane conductor 122B. The plane conductor 112C and the plane conductor 122C are arranged to face each other at a predetermined interval. When high frequency power is supplied to the heating device 60, the planar conductors 112A, 112B, 112C, 122A, 122B, and 122C of the resonators 61A, 61B, 61C, 62A, 62B, and 62C are electromagnetically coupled to each other.
 図20は、試料22A,22Bが配置された加熱装置60の斜視図である。図21(A)は、試料22A,22Bが配置された加熱装置60の平面図である。図21(B)は、試料22A,22Bが配置された加熱装置60のC2-C2断面図である。試験管21A内の試料22Aは、加熱時に、平面導体112Aと平面導体122Aとの間の空間13Aに配置される。試験管21B内の試料22Bは、加熱時に、平面導体112Bと平面導体122Bとの間の空間13Bに配置される。試験管21A,21Bは支持部材(図示せず)により支持される。 FIG. 20 is a perspective view of the heating device 60 in which the samples 22A and 22B are disposed. FIG. 21A is a plan view of the heating device 60 in which the samples 22A and 22B are disposed. FIG. 21B is a C2-C2 cross-sectional view of the heating device 60 in which the samples 22A and 22B are disposed. The sample 22A in the test tube 21A is disposed in the space 13A between the planar conductor 112A and the planar conductor 122A when heated. The sample 22B in the test tube 21B is disposed in the space 13B between the planar conductor 112B and the planar conductor 122B when heated. The test tubes 21A and 21B are supported by support members (not shown).
 加熱装置60では、高周波電源(図示せず)から入力端115に高周波電力が供給されると、共振器61A,61B,61C,62A,62B,62Cの平面導体112A,112B,112C,122A,122B,122Cは互いに電磁界結合する。平面導体112Aと平面導体122Aとの間の空間13Aに生じる電磁界によって、試料22Aが加熱される。平面導体112Bと平面導体122Bとの間の空間13Bに生じる電磁界によって、試料22Bが加熱される。 In the heating device 60, when high frequency power is supplied from the high frequency power source (not shown) to the input end 115, the planar conductors 112A, 112B, 112C, 122A, 122B of the resonators 61A, 61B, 61C, 62A, 62B, 62C. , 122C are electromagnetically coupled to each other. The sample 22A is heated by the electromagnetic field generated in the space 13A between the plane conductor 112A and the plane conductor 122A. The sample 22B is heated by the electromagnetic field generated in the space 13B between the plane conductor 112B and the plane conductor 122B.
 図22(A)は第3の実施形態の変形例に係る加熱装置70の平面図である。図22(B)は加熱装置70のD-D断面図である。加熱装置70では、平面導体122Cに同軸ケーブルの内導体が接続されず、平面導体122Cが開放されている。加熱装置70の他の構成は加熱装置60の構成と同様である。 FIG. 22A is a plan view of a heating device 70 according to a modification of the third embodiment. FIG. 22B is a cross-sectional view of the heating device 70 taken along the line DD. In heating device 70, the inner conductor of the coaxial cable is not connected to flat conductor 122C, and flat conductor 122C is open. The other configuration of the heating device 70 is the same as the configuration of the heating device 60.
 図23は、加熱装置60,70で試料22A,22Bを加熱した場合の試料22A,22Bの温度の時間変化の実験結果の一例を示す図である。ここで、加熱装置60,70に入力する入力電力を10Wに設定した。他の条件については上記基本条件と同様に設定した。図23に示すように、加熱装置60,70のどちらの場合でも、試料22A,22Bは互いに略均一に加熱されている。 FIG. 23 is a view showing an example of an experimental result of a temporal change in temperature of the samples 22A and 22B when the samples 22A and 22B are heated by the heating devices 60 and 70. Here, the input power to be input to the heating devices 60 and 70 was set to 10 W. The other conditions were set in the same manner as the above basic conditions. As shown in FIG. 23, in either of the heating devices 60 and 70, the samples 22A and 22B are substantially uniformly heated to each other.
 第3の実施形態では、加熱装置60の構造の対称性から、空間13A,13Bに生じる電磁界の分布が互いに略同じになる。このため、空間13A,13Bに配置される互いに同じ被加熱物は略等しい電力を吸収する。従って、複数の同じ被加熱物を同時に均一に加熱できる。 In the third embodiment, due to the symmetry of the structure of the heating device 60, the distributions of electromagnetic fields generated in the spaces 13A and 13B are substantially the same. Therefore, the same objects to be heated disposed in the spaces 13A and 13B absorb substantially the same power. Therefore, a plurality of the same objects to be heated can be simultaneously and uniformly heated.
《第4の実施形態》
 図24は第4の実施形態に係る加熱装置80の斜視図である。図25(A)は加熱装置80の平面図である。図25(B)は加熱装置80のE1-E1断面図である。
Fourth Embodiment
FIG. 24 is a perspective view of a heating device 80 according to the fourth embodiment. FIG. 25A is a plan view of the heating device 80. FIG. FIG. 25B is a cross-sectional view of the heating device 80 taken along line E1-E1.
 加熱装置80は、第2の実施形態の変形例に係る加熱装置70から平面導体112A,112B,122Cを除いた構成と略同様である。加熱装置80は、共振器81,82A,82Bを備える。共振器81,82A,82Bは、マイクロストリップ構造を有する半波長共振器である。共振器81と共振器82A,82Bとは、共振器81の主面の法線の方向において所定間隔を隔てて配置されている。共振器82Aと共振器82Bとは、共振器81の主面に平行な方向において所定間隔を隔てて配置されている。共振器81は、共振器81の主面の法線の方向から平面視して、共振器82Aと共振器82Bとの間に配置されている。 The heating device 80 is substantially the same as the heating device 70 according to the modification of the second embodiment except for the flat conductors 112A, 112B and 122C. The heating device 80 includes resonators 81, 82A, 82B. The resonators 81, 82A, 82B are half-wave resonators having a microstrip structure. The resonator 81 and the resonators 82A and 82B are arranged at a predetermined interval in the direction of the normal to the main surface of the resonator 81. The resonators 82A and 82B are arranged at predetermined intervals in the direction parallel to the main surface of the resonator 81. The resonator 81 is disposed between the resonator 82A and the resonator 82B in a plan view from the direction of the normal to the main surface of the resonator 81.
 加熱装置80は、誘電体基板111と、誘電体基板111の一方主面に形成された箔状の平面導体112と、誘電体基板111の他方主面に形成された箔状のグランド導体113とを備える。共振器81は、平面導体112が誘電体基板111を介してグランド導体113と対向することにより形成される。平面導体112と同軸ケーブル14の内導体141との接続部は入力端115を構成する。 Heating device 80 includes a dielectric substrate 111, a foil-like planar conductor 112 formed on one main surface of dielectric substrate 111, and a foil-like ground conductor 113 formed on the other main surface of dielectric substrate 111. Equipped with The resonator 81 is formed by the planar conductor 112 facing the ground conductor 113 via the dielectric substrate 111. A connection portion between the flat conductor 112 and the inner conductor 141 of the coaxial cable 14 constitutes an input end 115.
 加熱装置80は、誘電体基板121と、誘電体基板121の一方主面に形成された箔状の平面導体122A,122Bと、誘電体基板121の他方主面に形成された箔状のグランド導体123とを備える。共振器82A,82Bは、それぞれ、平面導体122A,122Bが誘電体基板121を介してグランド導体123と対向することにより形成される。共振器82A,82Bは、誘電体基板121およびグランド導体123を共用している。平面導体122A,122Bは、同軸ケーブルの内導体に接続されておらず、開放されている。 Heating device 80 includes dielectric substrate 121, foil-like planar conductors 122A and 122B formed on one principal surface of dielectric substrate 121, and a foil-like ground conductor formed on the other principal surface of dielectric substrate 121. And 123. The resonators 82A and 82B are formed by the planar conductors 122A and 122B facing the ground conductor 123 with the dielectric substrate 121 interposed therebetween. The resonators 82A and 82B share the dielectric substrate 121 and the ground conductor 123. The plane conductors 122A and 122B are not connected to the inner conductor of the coaxial cable and are open.
 誘電体基板111における平面導体112が形成された主面と、誘電体基板121における平面導体122A,122Bが形成された主面とは所定間隔を隔てて対向している。換言すると、グランド導体113とグランド導体123とは所定間隔を隔てて対向している。グランド導体113からグランド導体123に向かう方向において、平面導体112はグランド導体113とグランド導体123との間に配置され、平面導体122A,112Bは平面導体112とグランド導体123との間に配置されている。 A main surface of the dielectric substrate 111 on which the flat conductor 112 is formed and a main surface of the dielectric substrate 121 on which the flat conductors 122A and 122B are formed are opposed to each other at a predetermined distance. In other words, the ground conductor 113 and the ground conductor 123 face each other at a predetermined interval. In the direction from the ground conductor 113 toward the ground conductor 123, the plane conductor 112 is disposed between the ground conductor 113 and the ground conductor 123, and the plane conductors 122A and 112B are disposed between the plane conductor 112 and the ground conductor 123 There is.
 平面導体112の主面の法線の方向から平面視して、複数の共振器82A,82Bの平面導体122A,122Bの位置は共振器81の平面導体112の位置からずれている。平面導体112は、平面導体112の主面の法線の方向から平面視して、平面導体122Aと平面導体122Bとの間に配置され、平面導体122A,122Bと重なっていない。 The positions of the planar conductors 122A and 122B of the plurality of resonators 82A and 82B are offset from the position of the planar conductor 112 of the resonator 81 in plan view in the direction of the normal to the main surface of the planar conductor 112. The planar conductor 112 is disposed between the planar conductor 122A and the planar conductor 122B in plan view in the direction of the normal to the main surface of the planar conductor 112, and does not overlap with the planar conductors 122A and 122B.
 平面導体112と平面導体122Aとの間には、被加熱物を配置するための空間83Aが形成されている。平面導体112と平面導体122Bとの間には、被加熱物を配置するための空間83Bが形成されている。加熱装置80に高周波電力が供給されると、共振器81,82A,82Bの平面導体112,122A,122Bは互いに電磁界結合する。 A space 83A for disposing an object to be heated is formed between the plane conductor 112 and the plane conductor 122A. A space 83B for disposing an object to be heated is formed between the plane conductor 112 and the plane conductor 122B. When high frequency power is supplied to the heating device 80, the planar conductors 112, 122A, 122B of the resonators 81, 82A, 82B are electromagnetically coupled to each other.
 図26は、試料22A,22Bが配置された加熱装置80の斜視図である。図27(A)は、試料22A,22Bが配置された加熱装置80の平面図である。図27(B)は、試料22A,22Bが配置された加熱装置80のE2-E2断面図である。試験管21A内の試料22Aは、加熱時に、平面導体112と平面導体122Aとの間の空間83Aに配置される。試験管21B内の試料22Bは、加熱時に、平面導体112と平面導体122Bとの間の空間83Bに配置される。 FIG. 26 is a perspective view of the heating device 80 in which the samples 22A and 22B are disposed. FIG. 27A is a plan view of the heating device 80 in which the samples 22A and 22B are disposed. FIG. 27B is an E2-E2 cross-sectional view of the heating device 80 in which the samples 22A and 22B are disposed. When heated, the sample 22A in the test tube 21A is disposed in the space 83A between the plane conductor 112 and the plane conductor 122A. The sample 22B in the test tube 21B is disposed in the space 83B between the plane conductor 112 and the plane conductor 122B when heated.
 図28は、加熱装置80の電力特性のシミュレーション結果を示す図である。ここで、図9に示す純水の複素比誘電率の実部εr′および誘電正接tanδを用いた。平面導体112,122A,122Bのy軸方向の寸法Dcyを40mmに設定した。他の条件については上記基本条件と同様に設定した。図28において、「試料の吸収電力」は試料22A,22Bに吸収される電力である。「反射電力」は入力端115で反射される電力である。「漏洩電力」は加熱装置80から漏洩する電力である。「基板等の吸収電力」は、誘電体基板111,121および試験管21A,21Bに吸収される電力である。図28において、試料の吸収電力、反射電力、漏洩電力、および基板等の吸収電力を、入力端115に入力された入力電力に対する割合で表している。 FIG. 28 is a diagram showing simulation results of power characteristics of the heating device 80. As shown in FIG. Here, real part εr ′ of complex relative dielectric constant of pure water and dielectric loss tangent tanδ shown in FIG. 9 were used. The dimension Dcy in the y-axis direction of the planar conductors 112, 122A, 122B was set to 40 mm. The other conditions were set in the same manner as the above basic conditions. In FIG. 28, “absorbed power of sample” is the power absorbed by the samples 22A and 22B. “Reflected power” is the power reflected at the input end 115. “Leakage power” is power that leaks from the heating device 80. The “absorbed power of the substrate etc.” is the power absorbed by the dielectric substrates 111 and 121 and the test tubes 21A and 21B. In FIG. 28, the absorbed power of the sample, the reflected power, the leaked power, and the absorbed power of the substrate and the like are represented as a percentage of the input power input to the input terminal 115.
 試料22A,22Bの温度が50℃のとき、試料22A,22Bの吸収電力が大きくなり、入力電力の約86%が試料22A,22Bに吸収される。このため、図29の実験結果にも示されるように、試料22A,22Bの温度が50℃のとき、加熱速度が上昇する。試料22A,22Bの温度が50℃のとき、反射電力は入力電力の約8%まで抑制される。また、試料22A,22Bの温度にかかわらず、漏洩電力の割合は入力電力の4%以下に抑制される。 When the temperature of the samples 22A and 22B is 50 ° C., the absorbed power of the samples 22A and 22B is increased, and about 86% of the input power is absorbed by the samples 22A and 22B. Therefore, as also shown in the experimental result of FIG. 29, when the temperature of the samples 22A and 22B is 50 ° C., the heating rate is increased. When the temperature of the samples 22A and 22B is 50 ° C., the reflected power is suppressed to about 8% of the input power. Further, regardless of the temperature of the samples 22A and 22B, the ratio of the leaked power is suppressed to 4% or less of the input power.
 図29は、加熱装置80で試料22A,22Bを加熱した場合の試料22A,22Bの温度および反射電力の時間変化の実験結果の一例を示す図である。ここで、平面導体112,122A,122Bのy軸方向の寸法Dcyを40mmに設定した。加熱装置80に入力する入力電力を10Wに設定した。他の条件については上記基本条件と同様に設定した。 FIG. 29 is a view showing an example of the experimental results of the time change of the temperature and the reflected power of the samples 22A and 22B when the samples 22A and 22B are heated by the heating device 80. Here, the dimension Dcy in the y-axis direction of the planar conductors 112, 122A, 122B was set to 40 mm. The input power input to the heating device 80 was set to 10 W. The other conditions were set in the same manner as the above basic conditions.
 試料22Aの温度変化と試料22Bの温度変化とは略一致しており、試料22A,22Bは互いに略均一に加熱されている。また、試料22A,22Bの温度が50℃付近のとき、加熱速度が上昇することが実験でも示された。試料22A,22Bの温度が50℃付近のとき、反射電力が入力電力の約8%まで抑制されることが実験でも示された。 The temperature change of the sample 22A substantially matches the temperature change of the sample 22B, and the samples 22A and 22B are heated substantially uniformly to each other. In addition, it was also shown by experiments that the heating rate increases when the temperature of the samples 22A and 22B is around 50 ° C. It was also shown by experiments that when the temperature of the samples 22A and 22B is around 50 ° C., the reflected power is suppressed to about 8% of the input power.
 第4の実施形態では、第3の実施形態と比較して、被加熱物による高周波電力の吸収効率が向上する。また、第3の実施形態と比較して、より高い精度で複数の同じ被加熱物を同時に均一に加熱できる。また、第3の実施形態と比較して、共振器の数を減らしても、また共振器が対をなさなくても、複数の被加熱物を加熱できる。 In the fourth embodiment, the absorption efficiency of high frequency power by the object to be heated is improved as compared to the third embodiment. In addition, as compared with the third embodiment, it is possible to simultaneously and uniformly heat a plurality of the same objects to be heated with higher accuracy. Moreover, compared with the third embodiment, even if the number of resonators is reduced and the resonators are not paired, it is possible to heat a plurality of objects to be heated.
 なお、上記の実施形態では、マイクロストリップ構造の半波長共振器を例示したが、共振器の構造はこれに限定されない。例えば、上記の共振器を構成する誘電体基板は必須ではない。換言すると、誘電体基板を空気で置き換えることで上記の共振器の構造を変更してもよい。 In the above embodiment, a half-wave resonator having a microstrip structure is illustrated, but the structure of the resonator is not limited to this. For example, the dielectric substrate constituting the above-described resonator is not essential. In other words, the structure of the above-mentioned resonator may be changed by replacing the dielectric substrate with air.
 また、上記の実施形態では、平面導体を有する共振器を例示したが、共振器は、上記の平面導体に代えて、曲面状の導体、屈曲された平面導体などを有してもよい。また、共振器は、上記の平面導体に代えて、面状部分とそれ以外の部分とが一体的に形成されてなる導体を有してもよい。この場合、当該導体の面状部分が本発明の「面状導体」に相当する。また、上記の実施形態では、平板状のグランド導体および誘電体基板を例示したが、グランド導体および誘電体基板は、曲面状でもよいし、屈曲していてもよい。 Further, in the above embodiment, a resonator having a flat conductor is illustrated, but the resonator may have a curved conductor, a bent flat conductor, or the like instead of the above flat conductor. In addition, the resonator may have a conductor in which a planar portion and the other portion are integrally formed instead of the above-described flat conductor. In this case, the planar portion of the conductor corresponds to the "planar conductor" of the present invention. Further, although the flat ground conductor and the dielectric substrate are illustrated in the above embodiment, the ground conductor and the dielectric substrate may be curved or may be curved.
 また、第1から第3の実施形態では、被加熱物を配置するための空間を挟む平面導体が互いに真正面で対向する例を示したが、当該平面導体は互いにずれていてもよい。特に、第3の実施形態で当該平面導体を互いにずらした構成は、部分的に第4の実施形態と同様の構成を有するので、第4の実施形態と同様の効果を得ることができる。 In the first to third embodiments, planar conductors sandwiching a space for disposing an object to be heated face each other in front of each other, but the planar conductors may be shifted from each other. In particular, in the third embodiment, the configuration in which the flat conductors are mutually offset has the same configuration as that of the fourth embodiment in part, so that the same effect as the fourth embodiment can be obtained.
 最後に、上記の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。本発明の範囲は、上記の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Finally, the description of the above embodiments is illustrative in all respects and not restrictive. Modifications and variations are possible as appropriate to those skilled in the art. It goes without saying that partial replacement or combination of the configurations shown in different embodiments is possible. The scope of the present invention is indicated not by the embodiments described above but by the claims. Further, the scope of the present invention is intended to include all modifications within the scope and meaning equivalent to the claims.
10,50,60,70,80…加熱装置
11,12,61A,61B,61C,62A,62B,62C,81,82A,82B…共振器
13,13A,13B,83A,83B…空間
14,15…同軸ケーブル
21,21A,21B…試験管
22,22A,22B…試料
30,40…等価回路
31,32,41,42…共振回路
111,121…誘電体基板
112,122,112A,112B,112C,122A,122B,122C…平面導体
113,123…グランド導体
114,124…開口
115…入力端
125…出力端
141,151…内導体
142,152…外導体
10, 50, 60, 70, 80 ... heating devices 11, 12, 61A, 61B, 61C, 62A, 62B, 62C, 81, 82A, 82B ... resonators 13, 13A, 13B, 83A, 83B ... spaces 14, 15 ... coaxial cable 21, 21A, 21B ... test tube 22, 22A, 22B ... sample 30, 40 ... equivalent circuit 31, 32, 41, 42 ... resonant circuit 111, 121 ... dielectric substrate 112, 122, 112A, 112B, 112C , 122A, 122B, 122C ... planar conductor 113, 123 ... ground conductor 114, 124 ... opening 115 ... input end 125 ... output end 141, 151 ... inner conductor 142, 152 ... outer conductor

Claims (8)

  1.  第1面状導体を有する第1共振器と、
     第2面状導体を有する第2共振器と、を備え、
     前記第1面状導体と前記第2面状導体とは、間隔をあけて配置され、互いに電磁界結合し、
     前記第1面状導体と前記第2面状導体との間に、被加熱物を配置するための空間が形成される、加熱装置。
    A first resonator having a first planar conductor;
    A second resonator having a second planar conductor,
    The first planar conductor and the second planar conductor are spaced apart and electromagnetically coupled to each other,
    A heating device, wherein a space for disposing an object to be heated is formed between the first planar conductor and the second planar conductor.
  2.  前記第1共振器は、前記第1面状導体に対向する第1グランド導体を有し、
     前記第2共振器は、前記第2面状導体に対向する第2グランド導体を有し、
     前記第1グランド導体と前記第2グランド導体とは互いに対向する、請求項1に記載の加熱装置。
    The first resonator has a first ground conductor facing the first planar conductor,
    The second resonator has a second ground conductor facing the second planar conductor,
    The heating device according to claim 1, wherein the first ground conductor and the second ground conductor face each other.
  3.  前記第1グランド導体から前記第2グランド導体に向かう方向において、前記第1面状導体は前記第1グランド導体と前記第2グランド導体との間に配置され、前記第2面状導体は前記第1面状導体と前記第2グランド導体との間に配置される、請求項2に記載の加熱装置。 In the direction from the first ground conductor to the second ground conductor, the first planar conductor is disposed between the first ground conductor and the second ground conductor, and the second planar conductor is the second planar conductor. The heating device according to claim 2, disposed between the one-sided conductor and the second ground conductor.
  4.  前記第1面状導体と前記第2面状導体とは互いに対向する、請求項1から3の何れかに記載の加熱装置。 The heating device according to any one of claims 1 to 3, wherein the first planar conductor and the second planar conductor face each other.
  5.  前記第2共振器は複数設けられ、
     前記第1面状導体の主面の法線の方向から平面視して、前記複数の第2共振器の第2面状導体の位置は前記第1面状導体の位置からずれている、請求項1から3の何れかに記載の加熱装置。
    A plurality of the second resonators are provided,
    The position of the second planar conductor of the plurality of second resonators is offset from the position of the first planar conductor in plan view in the direction of the normal to the main surface of the first planar conductor. A heating device according to any one of Items 1 to 3.
  6.  前記第1共振器および前記第2共振器は複数設けられ、
     前記複数の第1共振器の第1面状導体は互いに電磁界結合し、
     前記複数の第2共振器の第2面状導体は互いに電磁界結合する、請求項1から5の何れかに記載の加熱装置。
    A plurality of the first resonators and the second resonators are provided,
    The first planar conductors of the plurality of first resonators are electromagnetically coupled to each other,
    The heating device according to any one of claims 1 to 5, wherein the second planar conductors of the plurality of second resonators are electromagnetically coupled to each other.
  7.  前記第1面状導体は給電線に接続され、前記第2面状導体は開放される、請求項1から6の何れかに記載の加熱装置。 The heating device according to any one of claims 1 to 6, wherein the first planar conductor is connected to a feeder and the second planar conductor is open.
  8.  前記第1共振器および前記第2共振器は半波長共振器である、請求項1から7の何れかに記載の加熱装置。 The heating device according to any one of claims 1 to 7, wherein the first resonator and the second resonator are half-wave resonators.
PCT/JP2018/033576 2017-09-21 2018-09-11 Heating device WO2019059038A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017181071 2017-09-21
JP2017-181071 2017-09-21
JP2018-017324 2018-02-02
JP2018017324A JP2019057485A (en) 2017-09-21 2018-02-02 Heating apparatus

Publications (1)

Publication Number Publication Date
WO2019059038A1 true WO2019059038A1 (en) 2019-03-28

Family

ID=65810746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033576 WO2019059038A1 (en) 2017-09-21 2018-09-11 Heating device

Country Status (1)

Country Link
WO (1) WO2019059038A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870261A (en) * 1981-10-23 1983-04-26 Canon Inc Fixing device
US4629851A (en) * 1984-09-20 1986-12-16 Siemens Aktiengesellschaft Apparatus for heating a layer of dielectric material using radio frequency waves
US5641423A (en) * 1995-03-23 1997-06-24 Stericycle, Inc. Radio frequency heating apparatus for rendering medical materials
JP2007534521A (en) * 2004-04-16 2007-11-29 イーストマン コダック カンパニー Liquid printing color process and printing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870261A (en) * 1981-10-23 1983-04-26 Canon Inc Fixing device
US4629851A (en) * 1984-09-20 1986-12-16 Siemens Aktiengesellschaft Apparatus for heating a layer of dielectric material using radio frequency waves
US5641423A (en) * 1995-03-23 1997-06-24 Stericycle, Inc. Radio frequency heating apparatus for rendering medical materials
JP2007534521A (en) * 2004-04-16 2007-11-29 イーストマン コダック カンパニー Liquid printing color process and printing machine

Similar Documents

Publication Publication Date Title
Wang et al. Compact dual‐band rectenna for RF energy harvest based on a tree‐like antenna
Chaturvedi et al. A dual‐band half‐mode substrate integrated waveguide‐based antenna for WLAN/WBAN applications
Wang et al. Small‐size high‐selectivity bandstop filter with coupled‐line stubs for dual‐band applications
Kumar et al. Low‐profile substrate integrated waveguide (SIW) cavity‐backed self‐triplexed slot antenna
Gupta et al. A compact dual band short ended metamaterial antenna with extended bandwidth
Yeung et al. Comparison of the performance between a parasitically coupled and a direct coupled feed for a microstrip antenna array
Wang et al. Modal analysis and excitation of wideband slot antennas
Qu et al. Antenna design based on quasi‐degenerate characteristic modes of unbroken metal rim
Jusoh et al. Performance of a reconfigurable reflector antenna with scanning capability using low cost plasma elements
Kumar et al. Design of a microstrip fractal patch antenna for UWB applications
Xu et al. Printed multi‐band compound meta‐loop antenna with hybrid‐coupled SRRs
Liu et al. Efficiency of electrically small dipole antennas loaded with left-handed transmission lines
Lu et al. Planar dual‐mode wideband antenna using short‐circuited‐strips loaded slotline radiator: operation principle, design, and validation
Shaik et al. Bandwidth control of cylindrical ring dielectric resonator antennas using metallic cap and sleeve loading
WO2019059038A1 (en) Heating device
Younesiraad et al. Small multi-band rectangular dielectric resonator antennas for personal communication devices
JP2019057485A (en) Heating apparatus
Gangwar et al. CSRR based folded monopole tri‐band antenna array and its system level evaluation
Islam et al. Analysis of a dual‐resonant multiple split‐ring patch antenna
Xu et al. Cavity model analysis of differential dual‐polarised annular‐ring patch antenna
Ide et al. Low‐profile, electrically small meander antenna using a capacitive feed structure
Gupta et al. Higher mode‐based wideband antenna design using an engineered cylindrical dielectric resonator
TW201814955A (en) Switchable radiators and operating method for the same
Ahn et al. Improved heating uniformity of a 3-kWatt 2.45 GHz microwave dryer using multiple multi-slotted waveguides
Mohammad et al. Slotted Waveguide for Industrial Heating Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857472

Country of ref document: EP

Kind code of ref document: A1