WO2019059010A1 - Mounting mechanism and electric motor using same - Google Patents

Mounting mechanism and electric motor using same Download PDF

Info

Publication number
WO2019059010A1
WO2019059010A1 PCT/JP2018/033337 JP2018033337W WO2019059010A1 WO 2019059010 A1 WO2019059010 A1 WO 2019059010A1 JP 2018033337 W JP2018033337 W JP 2018033337W WO 2019059010 A1 WO2019059010 A1 WO 2019059010A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
attachment mechanism
nut
slit
boss
Prior art date
Application number
PCT/JP2018/033337
Other languages
French (fr)
Japanese (ja)
Inventor
将克 大久保
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880059357.3A priority Critical patent/CN111094902B/en
Priority to JP2019543552A priority patent/JP7113237B2/en
Publication of WO2019059010A1 publication Critical patent/WO2019059010A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/09Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/09Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces
    • F16D1/093Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces using one or more elastic segmented conical rings forming at least one of the conical surfaces, the rings being expanded or contracted to effect clamping
    • F16D1/094Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping due to axial loading of at least one pair of conical surfaces using one or more elastic segmented conical rings forming at least one of the conical surfaces, the rings being expanded or contracted to effect clamping using one or more pairs of elastic or segmented rings with mutually mating conical surfaces, one of the mating rings being contracted and the other being expanded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices

Definitions

  • the present disclosure relates to an attachment mechanism for attaching a rotating body to a rotation shaft and a motor having an encoder attached thereto.
  • the motor has an encoder mounted using a mounting mechanism.
  • the rotary encoder includes a boss, a light emitting diode as a light source, a substrate on which a position detection pattern is formed, and a rotary plate attached to the boss and having a light transmitting window through which light of the light emitting diode is formed.
  • the boss is attached to the rotating shaft of the motor by being tightened with a screw or the like.
  • the rotating plate is located between the light emitting diode and the substrate.
  • the rotating plate rotates with the rotation axis.
  • the boss is fixed to the rotation shaft from its outer peripheral side surface by tightening it with a screw or the like. At this time, due to the tightening of the screw, a shift may occur between the rotation center of the boss and the rotation center of the rotation shaft. Due to the deviation that has occurred, in the rotary encoder, runout occurs in the rotary plate with respect to the rotation center of the rotary encoder, that is, the rotation center of the rotation shaft. If run-out occurs on the rotary plate, the detection accuracy of the position detection pattern provided on the rotary plate is lowered, which causes a problem that desired control by the rotary encoder can not be performed.
  • the rotation center is also referred to as an axial center.
  • the present disclosure aims to suppress runout of a rotating body when attaching a device having a rotating body such as a rotating plate to a shaft body such as a rotating shaft.
  • the present disclosure is directed to an attachment mechanism for attaching a rotary body to a rotary shaft and a motor having a rotary encoder attached thereto using the same, and adopts the following solutions.
  • one aspect of the present disclosure is an attachment mechanism for attaching a rotating body to a rotation shaft.
  • the attachment mechanism includes a first nut, a second nut, and a ring body.
  • the first nut includes a cylindrical portion and a flange portion.
  • the rotation axis passes through the cylindrical portion.
  • the cylindrical portion extends along the axial center of the rotation axis and has a first outer peripheral surface including a first thread.
  • the flange portion has a first inner circumferential surface including a first screw groove, which is convex in a direction intersecting with the axis and opposite to the side where the rotation axis is located.
  • the rotation axis passes through the second nut.
  • the second nut includes a second thread groove and a small hole.
  • the second thread groove is formed in a part of the second inner circumferential surface facing the rotation axis, and is screwed with the first thread.
  • the small hole portion is formed in a portion other than the second screw groove in the second inner circumferential surface, and fitted with the rotation shaft.
  • the ring body is located between the rotation axis and the third inner circumferential surface of the cylindrical portion with the rotation axis passing through.
  • the ring body exerts an axial force acting on the axial center applied from each of the first nut and the second nut. It has a first inclined surface that translates into a force acting in a direction intersecting the heart.
  • Another aspect of the present disclosure includes a rotor having a rotor core attached to a rotation shaft, a bearing that rotatably supports the rotation shaft, and a stator positioned opposite to the rotor.
  • An encoder is attached to a rotating shaft using the mounting mechanism of
  • the runout of the rotating body can be suppressed.
  • FIG. 1 is a cross-sectional view showing an outline of a motor in which a mounting mechanism according to a first embodiment of the present disclosure is used.
  • FIG. 2 is an exploded perspective view showing a mounting mechanism according to Embodiment 1 of the present disclosure and an encoder mounted by the mounting mechanism.
  • FIG. 3 is a cross-sectional view showing the attachment mechanism according to Embodiment 1 of the present disclosure and an encoder attached to the attachment mechanism.
  • FIG. 4 is a schematic cross-sectional view showing the action on the rotation axis in the attachment mechanism according to the first embodiment of the present disclosure.
  • FIG. 5 is a perspective view of one member of the attachment mechanism according to the first embodiment of the present disclosure.
  • FIG. 6 is a front view of one member of the attachment mechanism according to the first embodiment of the present disclosure.
  • FIG. 7 is a front view of another member of the mounting mechanism according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a perspective view of another member of the mounting mechanism according to Embodiment 1 of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view showing the action on the rotation axis in the attachment mechanism according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a perspective view of one member of the attachment mechanism according to the second embodiment of the present disclosure.
  • FIG. 11 is a front view of one member of the attachment mechanism according to Embodiment 2 of the present disclosure.
  • FIG. 12 is a front view of another member of the attachment mechanism according to Embodiment 2 of the present disclosure.
  • FIG. 13 is a perspective view of another member of the attachment mechanism according to Embodiment 2 of the present disclosure.
  • FIG. 14 is a schematic cross-sectional view showing the action on the rotation axis in the attachment mechanism according to Embodiment 3 of the present disclosure.
  • FIG. 15 is a perspective view of one member of the attachment mechanism according to the third embodiment of the present disclosure.
  • FIG. 16 is a front view of one member of the attachment mechanism according to Embodiment 3 of the present disclosure.
  • FIG. 17 is a front view of another member of the attachment mechanism according to Embodiment 3 of the present disclosure.
  • FIG. 18 is a perspective view of another member of the mounting mechanism according to Embodiment 3 of the present disclosure.
  • FIG. 19 is a schematic cross-sectional view showing an operation on the rotation axis in the attachment mechanism according to Embodiment 4 of the present disclosure.
  • FIG. 20 is a perspective view of one member of the attachment mechanism according to Embodiment 4 of the present disclosure.
  • FIG. 21 is a front view of one member of the attachment mechanism according to Embodiment 4 of the present disclosure.
  • FIG. 22 is a front view of another member of the attachment mechanism according to Embodiment 4 of the present disclosure.
  • FIG. 23 is a perspective view of another member of the mounting mechanism according to Embodiment 4 of the present disclosure.
  • FIG. 24 is a front view of one member of the attachment mechanism according to Embodiment 5 of the present disclosure.
  • FIG. 25 is a front view of another member of the attachment mechanism according to Embodiment 5 of the present disclosure.
  • an electric motor capable of position control, speed control and the like is used as a power source.
  • an optical or magnetic rotary encoder (hereinafter simply referred to as an encoder) is attached to such a motor as means for detecting the rotational speed and rotational angle of the rotational shaft.
  • a position detection pattern is formed on the rotating plate.
  • An encoder is attached to the rotating shaft. Therefore, in order to improve the position detection accuracy of the encoder, it is important to accurately position the rotation center of the rotary plate with respect to the rotation center of the rotation axis.
  • the rotary plate is attached to and held by a boss which is a reinforcing component for reinforcing the cylindrical shaft.
  • the boss to which the rotating plate is attached has an axial hole.
  • the axial hole is inserted into the rotary shaft on which the encoder is mounted.
  • the boss is fixed to the rotation axis. Specifically, the boss is fixed to the rotation shaft from its outer peripheral side surface, for example, by tightening a screw.
  • the mounting accuracy of the rotary plate to the boss depends on the positioning accuracy between the rotation center of the rotation axis and the rotation center of the boss. For this reason, when a gap is generated between the shaft hole of the boss and the rotation shaft of the motor, a shift occurs between the rotation center of the rotation shaft and the rotation center of the boss. Therefore, it becomes difficult to improve the mounting accuracy of the rotary plate to the boss. Therefore, it becomes difficult to suppress run-out of the rotary plate rotating with the rotary shaft.
  • the mounting accuracy of the boss with respect to the rotation axis also depends on the positioning accuracy between the rotation center of the rotation axis and the rotation center of the boss. For this reason, if there is a gap between the shaft hole of the boss and the rotation axis, the screw tightening causes a shift between the rotation center of the boss and the rotation center of the rotation axis. Therefore, it is difficult to improve the mounting accuracy of the boss with respect to the rotation shaft. Therefore, even in this case, it is difficult to suppress run-out of the rotary plate with respect to the rotation shaft.
  • Embodiment 1 Embodiments of the present disclosure will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view showing an outline of a motor 200 in which a mounting mechanism according to a first embodiment of the present disclosure is used.
  • a motor 200 includes a rotor 210, a bearing 220, and a stator 230.
  • a rotor core 212 is attached to the rotating shaft 110.
  • the rotor core 212 is formed by laminating thin steel plates in the axial center C direction of the rotating shaft 110.
  • the stacked rotor core 212 is formed with a plurality of magnet holes 214 along an axial center C of the rotation shaft 110. Permanent magnets 216 are respectively inserted into the magnet holes 214.
  • the bearing 220 rotatably supports the rotating shaft 110.
  • the pair of bearings 220 is positioned to sandwich the rotor core 212.
  • Each of the pair of bearings 220 is held by a case 222 forming an outer shell of the motor 200.
  • stator 230 is located opposite to the rotor 210.
  • stator 230 includes a stator core 232 and a winding 234.
  • the stator core 232 is formed by laminating thin steel plates along the axial center C of the rotating shaft 110.
  • the stacked stator core 232 has a plurality of teeth protruding toward the axial center C. Slots are respectively formed between the adjacent teeth among the plurality of teeth.
  • the windings 234 are wound around the stator core 232 using slots.
  • the winding 234 is wound around the stator core 232 via an insulator 236 which is an insulator.
  • the encoder 100 is attached to the rotation shaft 110 using the attachment mechanism 40.
  • the attachment mechanism 40 includes a boss fixing nut 10 which is a first nut, a lock nut 20 which is a second nut, and a taper ring 30 which is a ring body.
  • the encoder 100 includes an LED (Light Emitting Diode) element 151 that is a light emitting element, a phototransistor (Phototransistor) 152 that is a light receiving element, and a boss body 120 that fixes the rotating plate 130 to the rotating shaft 110.
  • the rotary plate 130 is formed with a light transmission window through which light emitted from the LED element 151 passes.
  • attachment mechanism 40 and the encoder 100 Details of the attachment mechanism 40 and the encoder 100 will be described later.
  • drive current is supplied to the winding 234 from the outside of the motor 200.
  • the winding 234 supplied with the drive current generates a predetermined magnetic flux via the stator core 232.
  • the permanent magnets 216 embedded in the rotor core 212 are affected by the magnetic flux generated by the stator core 232.
  • the rotor 210 rotates about the rotation axis 110 as a rotation center under the influence of the magnetic flux received by the permanent magnet 216.
  • the rotary plate 130 mounted on the rotary shaft 110 using the mounting mechanism 40 rotates with the rotor 210.
  • the LED element 151 which comprises the encoder 100 emits light.
  • the phototransistor 152 receives the light emitted from the LED element 151. Since the rotating plate 130 rotates, light emitted from the LED element 151 is received by the phototransistor 152 only when the light transmitting window formed on the rotating plate 130 passes between the LED element 151 and the phototransistor 152. . At other times, the light emitted from the LED element 151 is blocked by the rotary plate 130, so the phototransistor 152 can not receive the light emitted from the LED element 151.
  • the encoder 100 can detect the rotating state of the rotor 210.
  • the control unit of the motor 200 controls a drive current to be applied to the winding 234.
  • the encoder 100 in the present embodiment can be attached so that the axial center J of the boss body 120 is located on the axial center C of the rotation shaft 110. Therefore, it can suppress that a shift arises between the rotation center of rotation axis 110, and the rotation center of boss body 120. Therefore, the encoder 100 can detect the rotational state of the rotor 210 with high accuracy.
  • a brushless motor provided with a magnet embedded rotor is exemplified as the motor 200.
  • the motor according to the present disclosure can also be used as another form of brushless motor, commutator motor, induction motor or the like.
  • the motor according to the present disclosure can be used as an inner rotor type motor or an outer rotor type motor.
  • FIG. 2 is an exploded perspective view showing the attachment mechanism 40 and the encoder 100 attached by the attachment mechanism 40 according to the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view showing the attachment mechanism 40 and the encoder 100 attached to the attachment mechanism 40 according to the first embodiment of the present disclosure.
  • the rotating body is an encoder 100 including a boss body 120 and a rotating plate 130.
  • the rotating shaft 110 passes through the boss body 120.
  • the boss body 120 extends along the axial center C of the rotation axis 110.
  • the boss body 120 has a second outer peripheral surface 124 including a second thread 122 screwed with the first thread groove 18 included in the flange portion 10B.
  • the rotating plate 130 is attached to intersect with the axis C. Specifically, the rotary plate 130 is formed so as to extend in the plane direction with the axis C as a normal.
  • the encoder 100 is attached to the end of the rotation shaft 110 by the attachment mechanism 40 according to the present embodiment.
  • the rotating shaft 110 is a shaft of a motor.
  • the attachment mechanism 40 which concerns on this indication can be utilized also for the shaft which has the same function except the shaft of an electric motor.
  • the encoder 100 has a boss body 120 which is a rotating body fitted with the rotating shaft 110 and held by the mounting mechanism 40.
  • a rotary plate 130 for detecting a rotational position or rotational speed is held by the projection 120 a of the boss body 120 so as to be orthogonal to the axial center J of the boss body 120.
  • the rotary plate 130 is attached to the boss body 120 by screwing, fitting, or an adhesive.
  • the rotary plate 130 is formed with a light transmission window 131 which is a transmission pattern for position detection which selectively transmits light.
  • the light transmitting window 131 can be made of, for example, a transparent glass material or a resin material.
  • the encoder 100 is, for example, an optical detector in which an LED element 151 which is a light emitting element and a phototransistor 152 which is a light receiving element are disposed in a housing 100 a.
  • the housing 100 a is made of, for example, a metal plate and attached so as to surround the encoder 100.
  • the light emitting element may be, for example, the LED element 151.
  • the light receiving element may be, for example, a phototransistor 152.
  • the LED element 151 and the phototransistor 152 are disposed in the housing 100 a at positions facing each other across the rotary plate 130. Therefore, the transmitted light emitted from the LED element 151 and transmitted through the rotating plate 130 is received by the phototransistor 152 and is electrically detected.
  • a circuit board mounted with a control circuit that controls the LED element 151 and the phototransistor 152 may be disposed inside the housing 100a.
  • the boss body 120 held by the rotation shaft 110 is rotatably supported with the housing 100 a via the bearing mechanism 140 and with the axis center J as the rotation center.
  • the housing 100a may be held by an external member (not shown) or the like via, for example, a plate spring or the like.
  • FIG. 4 is a schematic cross-sectional view showing an action on the rotation shaft 110 in the attachment mechanism 40 according to the first embodiment of the present disclosure.
  • FIG. 5 is a perspective view of one member of the attachment mechanism 40 according to the first embodiment of the present disclosure.
  • FIG. 6 is a front view of one member of the attachment mechanism 40 according to the first embodiment of the present disclosure.
  • FIG. 7 is a front view of another member of the attachment mechanism 40 according to Embodiment 1 of the present disclosure.
  • FIG. 8 is a perspective view of another member of the attachment mechanism 40 according to the first embodiment of the present disclosure.
  • the attachment mechanism 40 is configured of three annular members penetrating the rotation shaft 110 respectively.
  • the boss body 120 which is a rotating body is attached to the rotation shaft 110.
  • the attachment mechanism 40 includes a boss fixing nut 10 which is a first nut, a lock nut 20 which is a second nut, and a taper ring 30 which is a ring body.
  • the rotating shaft 110 passes through the boss fixing nut 10.
  • the boss fixing nut 10 includes a cylindrical portion 10A and a flange portion 10B.
  • the cylindrical portion 10 ⁇ / b> A extends along the axial center C of the rotation shaft 110 and has a first outer circumferential surface 12 including a first screw thread 14.
  • the flange portion 10B is convex in a direction intersecting with the axial center C and in a direction opposite to the side where the rotation shaft 110 is located, and the first inner circumferential surface 16 including the first screw groove 18 is Have.
  • the first inner circumferential surface 16 of the flange portion 10B is positioned to face the rotation shaft 110.
  • the rotary shaft 110 passes through the lock nut 20.
  • the lock nut 20 includes a second screw groove 22 and a small hole 24.
  • the second screw groove 22 is formed in a part of the second inner circumferential surface 26 facing the rotary shaft 110 and is screwed with the first screw thread 14 of the boss fixing nut 10 which is the first nut.
  • the small hole portion 24 is formed in a portion of the second inner circumferential surface 26 other than the second screw groove 22 and fitted with the rotation shaft 110.
  • the rotating shaft 110 passes through the taper ring 30 which is a ring body.
  • the taper ring 30 is located between the third inner circumferential surface 17 of the cylindrical portion 10A and the rotation shaft 110.
  • the ring bodies used in the mounting mechanism 40 are a pair of taper rings 30 having inclined surfaces 32 a and 32 b which face each other and abut.
  • the taper ring 30 is an example of a ring body such as a spanner ring, and includes an outer ring 30 a and an inner ring 30 b.
  • the inclined surface 32 is configured of a first inclined surface and a second inclined surface that is opposed to and in contact with the first inclined surface.
  • the inclined surface 32a of the outer ring 30a functions as a first inclined surface.
  • the inclined surface 32b of the inner ring 30b functions as a second inclined surface.
  • the boss fixing nut 10 includes a flange portion 10 ⁇ / b> B and a cylindrical portion 10 ⁇ / b> A.
  • a first screw groove 18 is formed on a first inner circumferential surface 16 facing the boss body 120.
  • the cylindrical portion 10A has a first outer peripheral surface 12 on the opposite side to the side on which the boss body 120 is located.
  • a first thread 14 is formed on the first outer circumferential surface 12.
  • the second screw thread 122 is formed on the end portion 120 b of the boss 120 opposite to the protrusion 120 a formed on the boss 120.
  • the second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 10.
  • the lock nut 20 secures the boss fixing nut 10 to the boss body 120.
  • a second screw groove 22 engaged with the first screw thread 14 formed on the boss fixing nut 10 is formed.
  • the lock nut 20 has a small hole portion 24 fitted with the rotation shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 26 of the lock nut 20.
  • the cylindrical portion 10A of the boss fixing nut 10 is formed such that a gap 10C is generated between the cylindrical portion 10A and the rotation shaft 110.
  • a pair of taper rings 30 is inserted into the gap 10C.
  • the pair of taper rings 30 has an outer ring 30a and an inner ring 30b, each having an inclined surface 32a, 32b facing and abutting each other.
  • the inclined surface 32a of the outer ring 30a slides out of the inclined surface 32b of the inner ring 30b.
  • the inclined surface 32b of the inner ring 30b is embedded inside the inclined surface 32a of the outer ring 30a.
  • the thickness of the tapering 30 increases in the direction intersecting with the axial center C, so the outer diameter of the tapering 30 is enlarged. Therefore, as shown in FIG. 4, in the taper ring 30 whose outer diameter is enlarged, the boss fixing nut 10 and the lock nut 20 operate outward in the direction intersecting with the axial center C and outward. A force F1 is generated. Therefore, a force F2 which is a reaction to the boss body 120 is generated. As a result, in the direction intersecting with the axial center C, the boss body 120 is strongly pressed from the circumference of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions.
  • the axial centers J (rotational centers) of the boss fixing nut 10, the locknut 20 and the taper ring 30 all coincide with the axial center C (rotational center) of the boss body 120. For this reason, it is possible to suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
  • the coefficient of friction of the inclined surfaces 32a and 32b which are the contact surfaces (sliding surfaces) of the outer ring 30a and the inner ring 30b constituting the taper ring 30, is preferably large.
  • the end surface 34 on the boss fixing nut 10 side in the taper ring 30 is in contact with the end surface 120 c on the boss fixing nut 10 side in the boss body 120.
  • the end surface 34 on the boss fixing nut 10 side of the taper ring 30 may be in contact with the inner surface 10 d of the flange portion 10B of the boss fixing nut 10.
  • the end face 34a of the taper ring 30 located on the small hole 24 side of the lock nut 20 be in contact with the inner surface 20a of the small hole 24.
  • the extension ring of the inner ring 30b which is a taper ring located on the rotary shaft 110 side, intersects the axis C. It suffices to have the formed slit 36.
  • the inner ring 30 b has the slit 36.
  • the extension of the slit 36 intersects with the axis C.
  • the extension line of the slit 36 refers to a line extended in the direction of cutting in the slit 36 which is a gap which is narrowly opened.
  • the extension line of the inner ring 30 b located on the rotary shaft 110 side is the axial center C It is sufficient to have a plurality of slits 36 formed so as to intersect with.
  • the inner ring 30 b has a plurality of slits 36.
  • Each extension line of the plurality of slits 36 intersects the axial center C, respectively.
  • the plurality of slits 36 may be spaced apart in the circumferential direction around the axial center C, respectively.
  • the slits 36 are formed along the inclined surface 32. When the center line of the slit 36 is extended, the extension line may intersect the axis C.
  • the plurality of slits 36 may be radially positioned around the axial center C, and may be circumferentially positioned at appropriate angles.
  • the slits 36 are positioned at equal intervals.
  • the equal intervals or appropriate angles are not intended to be mathematically equivalent, as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 32b divided by the respective slits 36 are equal.
  • variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
  • the inner ring 30b presses the boss body 120 more strongly from the periphery of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions.
  • the inner ring 30 b can adjust the tightening strength of the boss body 120 in the range which can be adjusted by the width dimension of the slit 36. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 10, the lock nut 20 and the taper ring 30 coincides with the axial center C (rotation center) of the boss body 120 is improved. For this reason, it is possible to further suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
  • the slit 36a used in the attachment mechanism 40 may have a slit width W2 on the opening 36c side wider than the slit width W1 on the tip 36b side.
  • the slit 36a of the inner ring 30b has a slit width W2 on the opening 36c side of the tapering wider than a slit width W1 on the tip 36b side of the tapering.
  • the difference between the slit width W2 and the slit width W1 is equal to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the inner ring 30b and the rotary shaft 110 can always ensure appropriate holding power.
  • the mounting mechanism 40 of the present embodiment is the mounting mechanism 40 for mounting the rotating body corresponding to the boss body 120 to the rotating shaft 110, and includes the first nut 10 and the second nut 20; And a ring body 30.
  • the first nut 10 includes a cylindrical portion 10A and a flange portion 10B.
  • the rotating shaft 110 penetrates the cylindrical portion 10A.
  • the cylindrical portion 10 ⁇ / b> A extends along the axial center C of the rotation shaft 110 and has a first outer circumferential surface 12 including a first screw thread 14.
  • the flange portion 10B is convex in a direction intersecting with the axial center C and in a direction opposite to the side where the rotation shaft 110 is located, and the first inner circumferential surface 16 including the first screw groove 18 is Have.
  • the rotating shaft 110 passes through the second nut 20.
  • the second nut 20 includes a second screw groove 22 and a small hole 24.
  • the second screw groove 22 is formed in a part of the second inner circumferential surface 26 facing the rotation shaft 110 and screwed with the first screw thread 14.
  • the small hole portion 24 is formed in a portion of the second inner circumferential surface 26 other than the second screw groove 22 and fitted with the rotation shaft 110.
  • the ring body 30 is located between the third inner circumferential surface 17 of the cylindrical portion 10A and the rotary shaft 110, with the rotary shaft 110 penetrating therethrough.
  • the ring body 30 is a direction along the axial center C applied from each of the first nut 10 and the second nut 20 Has a first inclined surface corresponding to the inclined surface 32a that converts the force acting on the shaft into a force acting in the direction intersecting the axial center C.
  • the ring body 30 may be a pair of taper rings 30 further having a second inclined surface corresponding to the inclined surface 32b opposed to and in contact with the first inclined surface corresponding to the inclined surface 32a.
  • the taper ring corresponding to the inner ring 30 b located on the rotation shaft 110 side has a slit 36.
  • the extension line of the slit 36 may intersect the axis C.
  • the taper ring corresponding to the inner ring 30 b located on the rotation shaft 110 side has a plurality of slits 36.
  • Each extension line of the plurality of slits 36 intersects the axial center C, respectively.
  • the plurality of slits 36 may be spaced apart in the circumferential direction around the axis C, respectively.
  • the slit 36a of the taper ring corresponding to the inner ring 30b located on the rotary shaft 110 side is a taper ring corresponding to the inner ring 30b than the slit width W1 on the tip 36b side of the taper ring corresponding to the inner ring 30b.
  • the slit width W2 on the opening 36c side may be wider.
  • the rotary body may be the encoder 100 including the boss body 120 and the rotary plate 130.
  • the rotating shaft 110 passes through the boss body 120.
  • the boss body 120 extends along the axial center C of the rotary shaft 110 and has a second outer circumferential surface 124 including a second thread 122 which is screwed with the first thread groove 18 included in the flange portion 10B. do it.
  • the rotating plate 130 may be attached so as to intersect the axis C.
  • a rotor 210 having a rotor core 212 attached to the rotation shaft 110, a bearing 220 rotatably supporting the rotation shaft 110, and a stator positioned opposite to the rotor 210 And 230.
  • the encoder 100 is attached to the rotating shaft 110 using the attachment mechanism 40 described above.
  • FIG. 9 is a schematic cross-sectional view showing an operation on the rotation shaft 110 in the attachment mechanism 440 according to the second embodiment of the present disclosure.
  • FIG. 10 is a perspective view of one member of the attachment mechanism 440 according to the second embodiment of the present disclosure.
  • FIG. 11 is a front view of one member of an attachment mechanism 440 according to Embodiment 2 of the present disclosure.
  • FIG. 12 is a front view of another member of the attachment mechanism 440 according to Embodiment 2 of the present disclosure.
  • FIG. 13 is a perspective view of another member of the attachment mechanism 440 according to Embodiment 2 of the present disclosure.
  • attachment mechanism 440 In the description of the attachment mechanism 440, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description is used.
  • the boss body 460 which is a rotating body in which the attachment mechanism 440 is used has a taper which extends between the third inner circumferential surface 17 and the rotation axis 110 in the direction along the axis C. It has a portion 462.
  • the tapered portion 462 includes an inclined surface 432 b opposite to the inclined surface 432 a of the taper ring 430 which is a ring body.
  • the inclined surface 432a of the taper ring 430 functions as a first inclined surface.
  • the inclined surface 432b of the tapered portion 462 functions as a second inclined surface.
  • the boss fixing nut 10 includes a flange portion 10B and a cylindrical portion 10A.
  • a first screw groove 18 is formed on a first inner circumferential surface 16 facing the boss body 460.
  • the cylindrical portion 10A has a first outer circumferential surface 12 on the opposite side to the side on which the boss 460 is located.
  • a first thread 14 is formed on the first outer circumferential surface 12.
  • a second screw thread 122 is formed on the end 460 b of the boss 460 opposite to the projection formed on the boss 460 in the axial center J direction.
  • the second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 10.
  • the lock nut 20 secures the boss fixing nut 10 to the boss body 460.
  • a second screw groove 22 engaged with the first screw thread 14 formed on the boss fixing nut 10 is formed.
  • the lock nut 20 has a small hole portion 24 fitted with the rotation shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 26 of the lock nut 20.
  • the cylindrical portion 10A of the boss fixing nut 10 is formed such that a gap 410C is generated between the cylindrical portion 10A and the tapered portion 462.
  • a taper ring 430 is inserted into the air gap portion 410C.
  • the taper ring 430 has an inclined surface 432 a that faces and abuts on the inclined surface 432 b of the tapered portion 462.
  • the inclined surface 432 a of the taper ring 430 slides out of the inclined surface 432 b of the tapered portion 462.
  • the inclined surface 432 b of the tapered portion 462 is embedded inside the inclined surface 432 a of the tapered ring 430.
  • the taper ring 430 moves in the direction away from the axis C of the rotating shaft 110 in the direction intersecting with the axis C, so the outer diameter of the taper ring 430 is enlarged. Therefore, as shown in FIG. 9, the tapered ring 430 whose outer diameter is expanded is a direction intersecting the axial center C with respect to the boss fixing nut 10 and the lock nut 20, and has an outward action.
  • a force F1 is generated. Therefore, a force F2 which is the reaction is generated in the boss body 460.
  • the boss body 460 is strongly pressed from the circumference of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions. That is, the axial center J (rotation center) of the boss fixing nut 10, the lock nut 20, and the taper ring 430 coincides with the axial center C (rotation center) of the boss 460. For this reason, it is possible to suppress center run-out of the boss body 460 which is a rotating body, and consequently the rotary plate 130.
  • the coefficient of friction of the contact surface (sliding surface) where the inclined surface 432a of the taper ring 430 and the inclined surface 432b of the tapered portion 462 are in contact with each other is preferably large.
  • the tapered portion 462 of the boss 460 may have a slit 436 formed so that the extension line thereof intersects with the axial center C.
  • the tapered portion 462 has a slit 436.
  • the extension line of the slit 436 refers to a line extended in the direction to cut in the slit 436 which is a gap which is narrow and cut open.
  • the tapered portion 462 of the boss 460 may have a plurality of slits 436 formed such that the extension line thereof intersects with the axial center C.
  • the tapered portion 462 has a plurality of slits 436.
  • Each extension line of the plurality of slits 436 intersects the axial center C, respectively.
  • the plurality of slits 436 may be spaced apart in the circumferential direction around the axial center C, respectively.
  • the slit 436 is formed along the inclined surface 432b. When the center line of the slit 436 is extended, the extension line may intersect the axis C.
  • the plurality of slits 436 may be radially positioned around the axial center C, and may be circumferentially positioned at appropriate angles.
  • the slits 436 are located at equal intervals.
  • the equal intervals or appropriate angles are not intended to be mathematically equivalent as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 432b divided by the respective slits 436 are equal.
  • variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
  • the tapered portion 462 presses the boss body 460 more strongly from the periphery of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions.
  • the tapered portion 462 can adjust the tightening strength of the boss 460 in a range that can be adjusted by the width dimension of the slit 436. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 10, the lock nut 20 and the taper ring 430 coincides with the axial center C (rotation center) of the boss 460 is improved. For this reason, it is possible to further suppress center run-out of the boss body 460 which is a rotating body, and consequently the rotary plate 130.
  • an appropriate holding force is applied to the rotation shaft 110 from the inclined surfaces 432 b divided respectively.
  • the number of steps for forming the slit 436 on the inclined surface 432b can also be realized within the range of an appropriate number of steps.
  • the slit 436a may have a slit width W2 on the opening 436c side wider than the slit width W1 on the tip 436b side.
  • the slit 436a of the tapered portion 462 has a slit width W2 on the opening 36c side of the tapered portion 462 larger than the slit width W1 on the tip 436b side of the tapered portion 462.
  • the difference between the slit width W2 and the slit width W1 corresponds to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the tapered portion 462 and the rotating shaft 110 can always ensure appropriate holding power.
  • the boss 460 has a tapered portion 462 that reaches between the third inner circumferential surface 17 of the boss fixing nut 10 and the outer circumferential surface of the rotary shaft 110.
  • the tapered portion 462 exerts an action corresponding to the inner ring 30 b described in the first embodiment.
  • the taper ring 430 has an effect corresponding to the outer ring 30a described in the first embodiment. That is, in the second embodiment, as compared with the first embodiment, the taper ring 430 can be configured by one member. Therefore, in the second embodiment, assembling workability is improved as compared with the attachment mechanism 40 shown in the first embodiment.
  • the rotating body corresponding to the boss body 460 of the present embodiment has the tapered portion 462 extending between the third inner circumferential surface 17 and the rotating shaft 110 in the direction along the axial center C.
  • the tapered portion 462 includes a second inclined surface corresponding to the inclined surface 432 b opposed to the first inclined surface corresponding to the inclined surface 432 a.
  • the tapered portion 462 also has a slit 436.
  • the extension line of the slit 436 may intersect the axis C.
  • the tapered portion 462 also has a plurality of slits 436.
  • the extension line of each of the plurality of slits 436 intersects with the axial center C, respectively.
  • the plurality of slits 436 may be spaced apart in the circumferential direction around the axis C, respectively.
  • the slit 436a of the tapered portion 462 may be wider at the slit width W2 at the opening 436c side of the tapered portion 462 than at the slit width W1 at the tip 436b side of the tapered portion 462.
  • FIG. 14 is a schematic cross-sectional view showing an operation on the rotation shaft 110 in the attachment mechanism 540 according to the third embodiment of the present disclosure.
  • FIG. 15 is a perspective view of one member of the attachment mechanism 540 according to the third embodiment of the present disclosure.
  • FIG. 16 is a front view of one member of the attachment mechanism 540 according to the third embodiment of the present disclosure.
  • FIG. 17 is a front view of another member of the attachment mechanism 540 according to Embodiment 3 of the present disclosure.
  • FIG. 18 is a perspective view of another member of the attachment mechanism 540 according to the third embodiment of the present disclosure.
  • attachment mechanism 540 In the description of the attachment mechanism 540, the same components as those in the first and second embodiments described above are denoted by the same reference numerals, and the description is used.
  • the third inner circumferential surface 517 of the boss fixing nut 510 which is the first nut used for the attachment mechanism 540 is inclined to face the inclined surface 532 a of the taper ring 530 which is the ring body.
  • the surface 532 b is included.
  • the third inner circumferential surface 517 doubles as the inclined surface 532 b.
  • the inclined surface 532a of the taper ring 530 which is a ring body functions as a first inclined surface.
  • the inclined surface 532b of the cylindrical portion 510A functions as a second inclined surface.
  • the boss fixing nut 510 includes a flange portion 510B and a cylindrical portion 510A.
  • a first screw groove 18 is formed on the first inner circumferential surface 16 facing the boss body 120.
  • the cylindrical portion 510A has the first outer circumferential surface 12 on the opposite side to the side where the boss body 120 is located.
  • a first thread 14 is formed on the first outer circumferential surface 12.
  • the second screw thread 122 is formed at the end 120 b of the boss 120 opposite to the protrusion formed on the boss 120.
  • the second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 510.
  • the lock nut 20 secures the boss fixing nut 510 to the boss body 120.
  • a second screw groove 22 to be screwed with the first screw thread 14 formed on the boss fixing nut 510 is formed.
  • the lock nut 20 has a small hole portion 24 fitted with the rotation shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 26 of the lock nut 20.
  • the cylindrical portion 510A of the boss fixing nut 510 is formed such that a space 510C is generated between the cylindrical portion 510A and the rotation shaft 110.
  • a taper ring 530 is inserted into the air gap portion 510C.
  • the taper ring 530 has an inclined surface 532 a that faces and abuts the inclined surface 532 b of the cylindrical portion 510A.
  • the inclined surface 532a of the taper ring 530 sinks inside the inclined surface 532 b of the cylindrical portion 510A.
  • the inclined surface 532b of the cylindrical portion 510A slides out of the inclined surface 532a of the taper ring 530.
  • the cylindrical portion 510A moves in a direction away from the axial center C of the rotation shaft 110 in the direction intersecting the axial center C, so that the outer diameter of the cylindrical portion 510A is enlarged. Therefore, as shown in FIG. 14, in the cylindrical portion 510A whose outer diameter is enlarged by the taper ring 530, the boss fixing nut 510 and the lock nut 20 are in the direction intersecting with the axial center C and outside.
  • a force F1 is generated which is an action directed to the side. Therefore, a force F2 which is a reaction to the boss body 120 is generated.
  • the boss body 120 is strongly pressed from the circumference of the boss fixing nut 510 and the lock nut 20 toward the axial center C in all directions. That is, the axial centers J (rotational centers) of the boss fixing nut 510, the locknut 20 and the taper ring 530 all coincide with the axial center C (rotational center) of the boss body 120. For this reason, it is possible to suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
  • the coefficient of friction at the contact surface (slip surface) where the inclined surface 532a of the taper ring 530 and the inclined surface 532b of the cylindrical portion 510A are in contact with each other is preferably large.
  • the taper ring 530 which is a ring body may have a slit 536 formed so that the extension line thereof intersects with the axial center C.
  • taper ring 530 which is a ring body has slit 536.
  • the extension line of the slit 536 refers to a line extended in the direction of cutting in the slit 536 which is a gap which is narrow and cut open.
  • the taper ring 530 which is a ring body may have a plurality of slits 536 formed such that the extension line intersects with the axial center C.
  • the taper ring 530 has a plurality of slits 536.
  • Each extension line of the plurality of slits 536 intersects the axial center C, respectively.
  • the plurality of slits 536 may be spaced apart in the circumferential direction around the axial center C, respectively.
  • the slit 536 may be formed along the inclined surface 532a. When the center line of the slit 536 is extended, the extension line may intersect the axis C.
  • the plurality of slits 536 may be radially positioned around the axial center C, respectively, and may be circumferentially positioned at appropriate angles.
  • the slits 536 are positioned at equal intervals.
  • the equal intervals or appropriate angles are not intended to be mathematically equivalent, as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 532a divided by the respective slits 536 are equal.
  • variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
  • the taper ring 530 presses the boss body 120 more strongly from the periphery of the boss fixing nut 510 and the lock nut 20 toward the axial center C in all directions.
  • the taper ring 530 can adjust the tightening strength of the boss body 120 in the range which can be adjusted by the width dimension of the slit 536. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 510, the lock nut 20 and the taper ring 530 matches the axial center C (rotation center) of the boss body 120 is improved. For this reason, it is possible to further suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
  • an appropriate holding force is applied to the rotary shaft 110 from the inclined surfaces 532 a divided respectively.
  • the number of steps for forming the slits 536 in the inclined surface 532a can also be realized within the range of an appropriate number of steps.
  • the slit width W2 on the opening 536c side may be wider than the slit width W1 on the tip 536b side.
  • the slit 536a of the taper ring 530 is wider at the slit width W2 at the opening 536c side of the taper ring 530 than at the slit width W1 at the tip 536 b side of the taper ring 530.
  • the difference between the slit width W2 and the slit width W1 is equal to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the tapering 530 and the rotating shaft 110 can always ensure appropriate holding power.
  • the boss fixing nut 510 has a shape in which the boss fixing nut 10 described in the first embodiment and the outer ring 30a are combined.
  • the taper ring 530 exerts an action equivalent to that of the inner ring 30b described in the first embodiment. That is, in the third embodiment, the taper ring 530 can be configured by one member as compared with the first embodiment. Therefore, in the third embodiment, assembling workability is improved as compared with the attachment mechanism 40 shown in the first embodiment.
  • the third inner circumferential surface 517 of the first nut 510 used in the attachment mechanism 540 of the present embodiment is the inclined surface 532 b opposite to the first inclined surface corresponding to the inclined surface 532 a. It includes the corresponding second inclined surface.
  • taper ring 530 which is a ring body may have a slit 536 in a direction along the axial center C.
  • the taper ring 530 which is a ring body may have a plurality of slits 536 formed in a direction along the axial center C.
  • the plurality of slits 536 may be positioned at equal intervals in the circumferential direction around the axis C on a plane orthogonal to the axis C.
  • the slit 536a of the taper ring 530 is wider than the slit width W1 of the end 536b of the taper ring 530, which is the slit width W2 of the opening 536c of the taper ring 530. Just do it.
  • Embodiment 4 The configuration of the attachment mechanism 640 according to the fourth embodiment will be described.
  • FIG. 19 is a schematic cross-sectional view showing an operation on the rotation shaft 110 in the attachment mechanism 640 according to the fourth embodiment of the present disclosure.
  • FIG. 20 is a perspective view of one member of a mounting mechanism 640 according to Embodiment 4 of the present disclosure.
  • FIG. 21 is a front view of one member of an attachment mechanism 640 according to Embodiment 4 of the present disclosure.
  • FIG. 22 is a front view of another member of the attachment mechanism 640 according to Embodiment 4 of the present disclosure.
  • FIG. 23 is a perspective view of another member of the attachment mechanism 640 according to Embodiment 4 of the present disclosure.
  • the same components as those of the components 1 to 3 described above are denoted by the same reference numerals, and the description is used.
  • a lock nut 620 which is a second nut used for the attachment mechanism 640 has a convex portion 622 which reaches between the second inner circumferential surface 626 and the rotation shaft 110.
  • the convex portion 622 includes an inclined surface 632 a opposed to the inclined surface 632 b of the taper ring 630 which is a ring body.
  • the inclined surface 632b of the taper ring 630 which is a ring body functions as a first inclined surface.
  • the inclined surface 632a of the convex portion 622 functions as a second inclined surface.
  • the boss fixing nut 10 includes a flange portion 10B and a cylindrical portion 10A.
  • a first screw groove 18 is formed on a first inner circumferential surface 16 facing the boss body 120.
  • the cylindrical portion 10A has a first outer peripheral surface 12 on the opposite side to the side on which the boss body 120 is located.
  • a first thread 14 is formed on the first outer circumferential surface 12.
  • the second screw thread 122 is formed at the end 120 b of the boss 120 opposite to the protrusion formed on the boss 120.
  • the second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 10.
  • the lock nut 620 secures the boss fixing nut 10 to the boss body 120.
  • a second screw groove 22 engaged with the first screw thread 14 formed on the boss fixing nut 10 is formed.
  • the lock nut 620 has a small hole 24 fitted with the rotating shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 626 of the lock nut 620.
  • the cylindrical portion 10A of the boss fixing nut 10 is formed such that a gap 610C is generated between the cylindrical portion 10A and the rotation shaft 110.
  • a taper ring 630 is inserted into the air gap 610C.
  • the taper ring 630 has an inclined surface 632 b opposed to and in contact with the inclined surface 632 a of the convex portion 622.
  • the convex portion 622 in the convex portion 622, the inclined surface 632a of the convex portion 622 slides out of the inclined surface 632b of the taper ring 630.
  • the convex portion 622 moves in a direction away from the axial center C of the rotating shaft 110 in the direction intersecting with the axial center C, so that the outer diameter of the convex portion 622 is enlarged. Therefore, as shown in FIG. 19, the convex portion 622 whose outer diameter is enlarged by the taper ring 630 is a direction that intersects with the axial center C with respect to the boss fixing nut 10 and acts outward.
  • a force F1 is generated. Therefore, a force F2 which is a reaction to the boss body 120 is generated.
  • the boss body 120 is strongly pressed from the periphery of the boss fixing nut 10 and the lock nut 620 toward the axial center C in all directions. That is, the axial center J (rotation center) of the boss fixing nut 10, the lock nut 620, and the taper ring 630 coincides with the axial center C (rotation center) of the boss body 120. For this reason, it is possible to suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
  • the coefficient of friction at the contact surface (slip surface) where the inclined surface 632b of the taper ring 630 and the inclined surface 632a of the convex portion 622 are in contact with each other is preferably large.
  • the taper ring 630 which is a ring body, may have a slit 636 formed so that its extension line intersects with the axial center C.
  • the taper ring 630 which is a ring body has a slit 636.
  • the extension line of the slit 636 refers to a line extended in the direction to cut in the slit 636 which is a gap which is narrow and cut open.
  • the taper ring 630 which is a ring body may have a plurality of slits 636 formed so that the extension line thereof intersects with the axial center C.
  • taper ring 630 has a plurality of slits 636.
  • Each extension line of the plurality of slits 636 intersects the axial center C, respectively.
  • the plurality of slits 636 may be spaced apart in the circumferential direction around the axial center C, respectively.
  • the slit 636 may be formed along the inclined surface 632 b. When the center line of the slit 636 is extended, the extension line may intersect the axis C.
  • the plurality of slits 636 may be radially positioned around the axial center C, and may be circumferentially positioned at appropriate angles.
  • the slits 636 are positioned at equal intervals.
  • the equal intervals or appropriate angles are not intended to be mathematically equivalent as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 632 b divided by the respective slits 636 are equal. Typically, variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
  • the taper ring 630 presses the boss body 120 more strongly from the periphery of the boss fixing nut 10 and the lock nut 620 toward the axial center C in all directions.
  • the taper ring 630 can adjust the tightening strength of the boss body 120 within the range that can be adjusted by the width dimension of the slit 636. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 10, the lock nut 620, and the taper ring 630 coincides with the axial center C (rotation center) of the boss body 120 is improved. For this reason, it is possible to further suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
  • the slit 636a may have a slit width W2 on the opening 636c side wider than the slit width W1 on the tip 636b side.
  • the slit 636a of the taper ring 630 is wider at the slit width W2 at the opening 636c side of the taper ring 630 than at the slit width W1 at the tip 636b side of the taper ring 630.
  • the difference between the slit width W2 and the slit width W1 is equal to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the tapering 630 and the rotary shaft 110 can always ensure appropriate holding power.
  • the lock nut 620 has a shape in which the lock nut 20 described in the first embodiment and the outer ring 30 a are combined.
  • the taper ring 630 exerts an action equivalent to that of the inner ring 30b described in the first embodiment. That is, in the fourth embodiment, the taper ring 630 can be configured by one member as compared with the first embodiment. Therefore, in the fourth embodiment, assembling workability is improved as compared with the attachment mechanism 40 shown in the first embodiment.
  • the second nut 620 used in the attachment mechanism 640 of the present embodiment has the convex portion 622 that reaches between the second inner circumferential surface 626 and the rotation shaft 110.
  • the convex portion 622 includes a second inclined surface corresponding to the inclined surface 632 a facing the first inclined surface corresponding to the inclined surface 632 b.
  • taper ring 630 which is a ring body may have a slit 636 in a direction along the axial center C.
  • the taper ring 630 which is a ring body may have a plurality of slits 636 formed in a direction along the axial center C. In the plane orthogonal to the axial center C, the plurality of slits 636 may be equally spaced in the circumferential direction around the axial center C.
  • the slit 636a of the taper ring 630 which is a ring body has a wider slit width W2 on the opening 636c side of the taper ring 630 than the slit width W1 of the tip 636b of the taper ring 630 which is a ring body. Just do it.
  • FIG. 24 is a front view of one member of the attachment mechanism according to Embodiment 5 of the present disclosure.
  • FIG. 25 is a front view of another member of the attachment mechanism according to Embodiment 5 of the present disclosure.
  • the taper ring 730 which is a ring body has a plurality of slits 736 in the inclined surface 732 b.
  • the plurality of slits 736 When viewed in the axial center C direction, the plurality of slits 736 have adjacent openings 736c at equal intervals in the circumferential direction centering on the axial center C, respectively.
  • Each of the plurality of slits 736 is formed with a notch in the direction of the axis C and the position of twist.
  • the adjacent tips 736b are equally spaced in the circumferential direction.
  • the shape of the notch forming the slit can be realized by a linear slit 736 as shown in FIG.
  • the shape of the notch forming the slit can be realized by a spiral slit 736a as shown in FIG.
  • the slits 736 and 736a of this shape can be provided on the inclined surfaces shown in the first to fourth embodiments described above.
  • a known locking means such as a metal washer is disposed between the facing surfaces of the flange portion 10B of the boss fixing nut 10 and the lock nut 20. May be In this way, the rotational stability of the boss body 120 including the rotary plate 130 can be obtained over a long period of time.
  • the attachment mechanism according to the present disclosure can attach a rotating body in a device including the rotating body to a rotatable shaft.
  • the attachment mechanism according to the present disclosure is used, for example, to detect a rotational position in a servo system.
  • the attachment mechanism according to the present disclosure is useful for an encoder or the like that detects an absolute position of a tool or the like of a machine tool with high accuracy and high resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

This mounting mechanism is provided with: a first nut through which a rotating shaft extends, the first nut including a circular cylinder section which extends along the axis of the rotating shaft and which has a first outer peripheral surface including a first thread ridge, the first nut also including a flange section protruding in a direction which intersects the axis and which is away from the side on which the rotating shaft is located, the flange section having a first inner peripheral surface including a first thread trough; a second nut through which the rotating shaft extends, the second nut including a second thread trough which is formed in part of a second inner peripheral surface facing the rotating shaft and which engages with the first thread ridge, the second nut also including a small hole formed in the portion of the second inner peripheral surface other than the second thread trough and engaging with the rotating shaft; and a ring body through which the rotating shaft extends, the ring body being located between the rotating shaft and a third inner peripheral surface of the circular cylinder section and having a first sloped surface which, when the first nut and the second nut are engaged with each other in the direction in which the first nut and the second nut move toward each other, converts forces applied from the first nut and the second nut in the direction of the axis into forces acting in the direction intersecting the axis.

Description

取付機構及びそれを用いた電動機Mounting mechanism and motor using the same
 本開示は、回転軸に回転体を取り付ける取付機構及びそれを用いてエンコーダを取り付けた電動機に関する。電動機は、取付機構を用いて取り付けたエンコーダを有する。 The present disclosure relates to an attachment mechanism for attaching a rotating body to a rotation shaft and a motor having an encoder attached thereto. The motor has an encoder mounted using a mounting mechanism.
 従来、電動機には、ロータリエンコーダが取り付けられるものがある。ロータリエンコーダは、ボスと、光源である発光ダイオードと、位置検出用パターンが形成された基板と、ボスに取り付けられるとともに、発光ダイオードの光を通す透光窓が形成された回転板と、を含む。 2. Description of the Related Art Heretofore, there are some motors to which a rotary encoder is attached. The rotary encoder includes a boss, a light emitting diode as a light source, a substrate on which a position detection pattern is formed, and a rotary plate attached to the boss and having a light transmitting window through which light of the light emitting diode is formed. .
 ボスは、電動機が有する回転軸に対して、ねじ等によって締め付けられることにより、取り付けられている。 The boss is attached to the rotating shaft of the motor by being tightened with a screw or the like.
 回転板は、発光ダイオードと基板との間に位置する。回転板は、回転軸とともに回転する。 The rotating plate is located between the light emitting diode and the substrate. The rotating plate rotates with the rotation axis.
 回転板が回転すれば、発光ダイオードから発せられた光は、回転板に形成された透光窓を通って、位置検出用パターンに届く(例えば、特許文献1、2を参照)。 When the rotating plate rotates, light emitted from the light emitting diode passes through the light transmitting window formed on the rotating plate and reaches the position detection pattern (see, for example, Patent Documents 1 and 2).
 ボスは、その外周側面から、ねじ等によって締め付けることにより、回転軸に固定される。このとき、ねじの締め付けにより、ボスの回転中心と回転軸の回転中心との間にずれが生じる場合がある。生じたずれに起因して、ロータリエンコーダには、ロータリエンコーダの回転中心、すなわち回転軸の回転中心に対して、回転板に芯振れが発生する。回転板に芯振れが発生すると、回転板に設けられた位置検出用パターンによる検出精度が低下して、ロータリエンコーダによる所望の制御を行えない、という問題が生じる。なお、以下の説明において、回転中心は軸心ともいう。 The boss is fixed to the rotation shaft from its outer peripheral side surface by tightening it with a screw or the like. At this time, due to the tightening of the screw, a shift may occur between the rotation center of the boss and the rotation center of the rotation shaft. Due to the deviation that has occurred, in the rotary encoder, runout occurs in the rotary plate with respect to the rotation center of the rotary encoder, that is, the rotation center of the rotation shaft. If run-out occurs on the rotary plate, the detection accuracy of the position detection pattern provided on the rotary plate is lowered, which causes a problem that desired control by the rotary encoder can not be performed. In the following description, the rotation center is also referred to as an axial center.
特開平08-168210号公報Japanese Patent Application Publication No. 08-168210 特開2008-228397号公報JP 2008-228397 A
 本開示は、回転板等の回転体を有する装置を回転軸等の軸体に取り付ける際に、回転体の芯振れを抑制することを目的とする。 The present disclosure aims to suppress runout of a rotating body when attaching a device having a rotating body such as a rotating plate to a shaft body such as a rotating shaft.
 本開示は、回転軸に回転体を取り付ける取付機構及びそれを用いてロータリエンコーダを取り付けた電動機を対象とし、次のような解決手段を講じている。 The present disclosure is directed to an attachment mechanism for attaching a rotary body to a rotary shaft and a motor having a rotary encoder attached thereto using the same, and adopts the following solutions.
 すなわち、本開示の一態様は、回転軸に回転体を取り付ける取付機構である。取付機構は、第1のナットと、第2のナットと、リング体と、を備える。 That is, one aspect of the present disclosure is an attachment mechanism for attaching a rotating body to a rotation shaft. The attachment mechanism includes a first nut, a second nut, and a ring body.
 第1のナットは、円筒部と、フランジ部と、を含む。円筒部は、回転軸が貫通する。円筒部は、回転軸の軸心に沿って延伸するとともに、第1のねじ山を含む第1の外周面を有する。フランジ部は、軸心と交差する方向であって、回転軸が位置する側の反対方向に向かって凸となるとともに、第1のねじ溝を含む第1の内周面を有する。 The first nut includes a cylindrical portion and a flange portion. The rotation axis passes through the cylindrical portion. The cylindrical portion extends along the axial center of the rotation axis and has a first outer peripheral surface including a first thread. The flange portion has a first inner circumferential surface including a first screw groove, which is convex in a direction intersecting with the axis and opposite to the side where the rotation axis is located.
 第2のナットは、回転軸が貫通する。第2のナットは、第2のねじ溝と、小孔部と、を含む。第2のねじ溝は、回転軸と向い合う第2の内周面の一部に形成されるとともに、第1のねじ山と螺合する。小孔部は、第2の内周面のうち第2のねじ溝以外の部分に形成されるとともに、回転軸と嵌合する。 The rotation axis passes through the second nut. The second nut includes a second thread groove and a small hole. The second thread groove is formed in a part of the second inner circumferential surface facing the rotation axis, and is screwed with the first thread. The small hole portion is formed in a portion other than the second screw groove in the second inner circumferential surface, and fitted with the rotation shaft.
 リング体は、回転軸が貫通するとともに、円筒部が有する第3の内周面と回転軸との間に位置する。第1のナットと第2のナットとが互いに近づく方向に螺合したとき、リング体は、第1のナット及び第2のナットのそれぞれから加えられる軸心に沿った方向に作用する力を軸心と交差する方向に作用する力に変換する第1の傾斜面を有する。 The ring body is located between the rotation axis and the third inner circumferential surface of the cylindrical portion with the rotation axis passing through. When the first nut and the second nut are screwed in the direction in which they approach each other, the ring body exerts an axial force acting on the axial center applied from each of the first nut and the second nut. It has a first inclined surface that translates into a force acting in a direction intersecting the heart.
 本開示の他の態様は、回転軸にロータコアが取り付けられた回転子と、回転軸を回転自在に支持する軸受と、回転子と対向して位置する固定子と、を備え、本開示に記載の取付機構を用いて、回転軸にエンコーダを取り付けた電動機である。 Another aspect of the present disclosure includes a rotor having a rotor core attached to a rotation shaft, a bearing that rotatably supports the rotation shaft, and a stator positioned opposite to the rotor. An encoder is attached to a rotating shaft using the mounting mechanism of
 本開示によれば、回転板等の回転体を有する装置を回転軸に取り付ける際に、回転体の芯振れを抑制することができる。 According to the present disclosure, when the apparatus having the rotating body such as the rotating plate is attached to the rotating shaft, the runout of the rotating body can be suppressed.
図1は、本開示の実施の形態1に係る取付機構が用いられる電動機の概要を示す断面図である。FIG. 1 is a cross-sectional view showing an outline of a motor in which a mounting mechanism according to a first embodiment of the present disclosure is used. 図2は、本開示の実施の形態1に係る取付機構と取付機構により取り付けられるエンコーダとを示す分解斜視図である。FIG. 2 is an exploded perspective view showing a mounting mechanism according to Embodiment 1 of the present disclosure and an encoder mounted by the mounting mechanism. 図3は、本開示の実施の形態1に係る取付機構と取付機構に取り付けられるエンコーダとを示す断面図である。FIG. 3 is a cross-sectional view showing the attachment mechanism according to Embodiment 1 of the present disclosure and an encoder attached to the attachment mechanism. 図4は、本開示の実施の形態1に係る取付機構における回転軸に対する作用を表す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing the action on the rotation axis in the attachment mechanism according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1に係る取付機構を構成する一部材の斜視図である。FIG. 5 is a perspective view of one member of the attachment mechanism according to the first embodiment of the present disclosure. 図6は、本開示の実施の形態1に係る取付機構を構成する一部材の正面図である。FIG. 6 is a front view of one member of the attachment mechanism according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1に係る取付機構を構成する他の一部材の正面図である。FIG. 7 is a front view of another member of the mounting mechanism according to Embodiment 1 of the present disclosure. 図8は、本開示の実施の形態1に係る取付機構を構成する他の一部材の斜視図である。FIG. 8 is a perspective view of another member of the mounting mechanism according to Embodiment 1 of the present disclosure. 図9は、本開示の実施の形態2に係る取付機構における回転軸に対する作用を表す模式的な断面図である。FIG. 9 is a schematic cross-sectional view showing the action on the rotation axis in the attachment mechanism according to Embodiment 2 of the present disclosure. 図10は、本開示の実施の形態2に係る取付機構を構成する一部材の斜視図である。FIG. 10 is a perspective view of one member of the attachment mechanism according to the second embodiment of the present disclosure. 図11は、本開示の実施の形態2に係る取付機構を構成する一部材の正面図である。FIG. 11 is a front view of one member of the attachment mechanism according to Embodiment 2 of the present disclosure. 図12は、本開示の実施の形態2に係る取付機構を構成する他の一部材の正面図である。FIG. 12 is a front view of another member of the attachment mechanism according to Embodiment 2 of the present disclosure. 図13は、本開示の実施の形態2に係る取付機構を構成する他の一部材の斜視図である。FIG. 13 is a perspective view of another member of the attachment mechanism according to Embodiment 2 of the present disclosure. 図14は、本開示の実施の形態3に係る取付機構における回転軸に対する作用を表す模式的な断面図である。FIG. 14 is a schematic cross-sectional view showing the action on the rotation axis in the attachment mechanism according to Embodiment 3 of the present disclosure. 図15は、本開示の実施の形態3に係る取付機構を構成する一部材の斜視図である。FIG. 15 is a perspective view of one member of the attachment mechanism according to the third embodiment of the present disclosure. 図16は、本開示の実施の形態3に係る取付機構を構成する一部材の正面図である。FIG. 16 is a front view of one member of the attachment mechanism according to Embodiment 3 of the present disclosure. 図17は、本開示の実施の形態3に係る取付機構を構成する他の一部材の正面図である。FIG. 17 is a front view of another member of the attachment mechanism according to Embodiment 3 of the present disclosure. 図18は、本開示の実施の形態3に係る取付機構を構成する他の一部材の斜視図である。FIG. 18 is a perspective view of another member of the mounting mechanism according to Embodiment 3 of the present disclosure. 図19は、本開示の実施の形態4に係る取付機構における回転軸に対する作用を表す模式的な断面図である。FIG. 19 is a schematic cross-sectional view showing an operation on the rotation axis in the attachment mechanism according to Embodiment 4 of the present disclosure. 図20は、本開示の実施の形態4に係る取付機構を構成する一部材の斜視図である。FIG. 20 is a perspective view of one member of the attachment mechanism according to Embodiment 4 of the present disclosure. 図21は、本開示の実施の形態4に係る取付機構を構成する一部材の正面図である。FIG. 21 is a front view of one member of the attachment mechanism according to Embodiment 4 of the present disclosure. 図22は、本開示の実施の形態4に係る取付機構を構成する他の一部材の正面図である。FIG. 22 is a front view of another member of the attachment mechanism according to Embodiment 4 of the present disclosure. 図23は、本開示の実施の形態4に係る取付機構を構成する他の一部材の斜視図である。FIG. 23 is a perspective view of another member of the mounting mechanism according to Embodiment 4 of the present disclosure. 図24は、本開示の実施の形態5に係る取付機構を構成する一部材の正面図である。FIG. 24 is a front view of one member of the attachment mechanism according to Embodiment 5 of the present disclosure. 図25は、本開示の実施の形態5に係る取付機構を構成する他の一部材の正面図である。FIG. 25 is a front view of another member of the attachment mechanism according to Embodiment 5 of the present disclosure.
 (本開示に至った経緯)
 従来、各種の部品若しくは製品の搬送、又はX-Yステージの移動には、その動力源として、位置制御及び速度制御等を行える電動機が用いられている。このような電動機には、回転軸の回転速度及び回転角度を検出する手段として、一般には光学式又は磁気式のロータリエンコーダ(以下、単にエンコーダとも呼ぶ)が取り付けられている。
(Circumstances leading to the present disclosure)
Conventionally, for transportation of various parts or products, or movement of an XY stage, an electric motor capable of position control, speed control and the like is used as a power source. Generally, an optical or magnetic rotary encoder (hereinafter simply referred to as an encoder) is attached to such a motor as means for detecting the rotational speed and rotational angle of the rotational shaft.
 回転板には、位置検出用パターンが形成される。回転軸には、エンコーダが取り付けられる。よって、エンコーダの位置検出精度を高めるために、回転板の回転中心を回転軸の回転中心に対して正確に位置決めすることが重要である。 A position detection pattern is formed on the rotating plate. An encoder is attached to the rotating shaft. Therefore, in order to improve the position detection accuracy of the encoder, it is important to accurately position the rotation center of the rotary plate with respect to the rotation center of the rotation axis.
 回転板は、筒状の軸体を補強する補強部品であるボスに取り付けられて保持される。回転板が取り付けられたボスは、軸孔を有する。その軸孔は、エンコーダが取り付けられる回転軸に挿入される。ボスは、回転軸に固定される。具体的には、ボスは、その外周側面から、たとえばビスを締め付けることにより回転軸に固定される。 The rotary plate is attached to and held by a boss which is a reinforcing component for reinforcing the cylindrical shaft. The boss to which the rotating plate is attached has an axial hole. The axial hole is inserted into the rotary shaft on which the encoder is mounted. The boss is fixed to the rotation axis. Specifically, the boss is fixed to the rotation shaft from its outer peripheral side surface, for example, by tightening a screw.
 このように構成されたエンコーダについて、まず、回転板のボスに対する取り付け精度は、回転軸の回転中心とボスの回転中心との位置決め精度に依存する。このため、ボスの軸孔と電動機が有する回転軸との間に隙間が生じていると、回転軸の回転中心とボスの回転中心との間にずれが生じる。このため、回転板のボスに対する取り付け精度を向上させることが困難となる。従って、回転軸と共に回転する回転板の芯振れを抑制することが困難となる。 In the encoder thus configured, first, the mounting accuracy of the rotary plate to the boss depends on the positioning accuracy between the rotation center of the rotation axis and the rotation center of the boss. For this reason, when a gap is generated between the shaft hole of the boss and the rotation shaft of the motor, a shift occurs between the rotation center of the rotation shaft and the rotation center of the boss. Therefore, it becomes difficult to improve the mounting accuracy of the rotary plate to the boss. Therefore, it becomes difficult to suppress run-out of the rotary plate rotating with the rotary shaft.
 回転軸に対するボスの取り付け精度も、回転軸の回転中心とボスの回転中心との位置決め精度に依存する。このため、ボスの軸孔と回転軸との間に隙間があると、ビスの締め付けによりボスの回転中心と回転軸の回転中心との間にずれが生じる。このため、ボスの回転軸に対する取り付け精度を向上させることが難しくなる。従って、この場合でも、回転板の回転軸に対する芯振れを抑えることが難しくなる。 The mounting accuracy of the boss with respect to the rotation axis also depends on the positioning accuracy between the rotation center of the rotation axis and the rotation center of the boss. For this reason, if there is a gap between the shaft hole of the boss and the rotation axis, the screw tightening causes a shift between the rotation center of the boss and the rotation center of the rotation axis. Therefore, it is difficult to improve the mounting accuracy of the boss with respect to the rotation shaft. Therefore, even in this case, it is difficult to suppress run-out of the rotary plate with respect to the rotation shaft.
 本開示は、上記の問題点を鑑みてなされる。以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、公知の事項に関する詳細な説明、又は実質的に同一の構成に対する重複した説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避けることにより、当業者の理解を容易にするためである。 The present disclosure is made in view of the above problems. Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, the detailed description may be omitted if necessary. For example, detailed descriptions of well-known matters, or duplicate descriptions of substantially the same configurations may be omitted. This is to facilitate the understanding of those skilled in the art by avoiding unnecessary redundancy in the following description.
 なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらによって、請求の範囲に記載の主題が限定されることは意図していない。 It is to be understood that the attached drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and they are not intended to limit the claimed subject matter.
 (実施の形態1)
 本開示の実施の形態について図面を参照しながら説明する。
Embodiment 1
Embodiments of the present disclosure will be described with reference to the drawings.
 図1は、本開示の実施の形態1に係る取付機構が用いられる電動機200の概要を示す断面図である。 FIG. 1 is a cross-sectional view showing an outline of a motor 200 in which a mounting mechanism according to a first embodiment of the present disclosure is used.
 (電動機の概要)
 本開示の実施の形態として、取付機構を用いてエンコーダを電動機に取り付ける形態を例示して説明する。なお、本開示における取付機構は、回転軸に回転体を取り付けることができれば、電動機以外に利用することもできる。
(Overview of motor)
An embodiment of the present disclosure will be described by exemplifying an embodiment in which an encoder is attached to a motor using an attachment mechanism. In addition, the attachment mechanism in this indication can also be utilized except a motor, if a rotation body can be attached to a rotating shaft.
 図1に示すように、本開示の実施の形態である電動機200は、回転子210と、軸受220と、固定子230と、を備える。 As shown in FIG. 1, a motor 200 according to an embodiment of the present disclosure includes a rotor 210, a bearing 220, and a stator 230.
 回転子210において、回転軸110にロータコア212が取り付けられる。本実施の形態において、ロータコア212は、回転軸110の軸心C方向に薄い鋼板を積層して形成される。積層されたロータコア212は、回転軸110の軸心Cに沿って、複数の磁石孔214が形成される。磁石孔214の内部には、それぞれ永久磁石216が挿入される。 In the rotor 210, a rotor core 212 is attached to the rotating shaft 110. In the present embodiment, the rotor core 212 is formed by laminating thin steel plates in the axial center C direction of the rotating shaft 110. The stacked rotor core 212 is formed with a plurality of magnet holes 214 along an axial center C of the rotation shaft 110. Permanent magnets 216 are respectively inserted into the magnet holes 214.
 軸受220は、回転軸110を回転自在に支持する。本実施の形態において、一対の軸受220は、ロータコア212を挟むように位置する。一対の軸受220は、それぞれ、電動機200の外殻を成すケース222に保持される。 The bearing 220 rotatably supports the rotating shaft 110. In the present embodiment, the pair of bearings 220 is positioned to sandwich the rotor core 212. Each of the pair of bearings 220 is held by a case 222 forming an outer shell of the motor 200.
 固定子230は、回転子210と対向して位置する。本実施の形態において、固定子230は、ステータコア232と、巻線234と、を含む。ステータコア232は、回転軸110の軸心Cに沿って、薄い鋼板を積層して形成される。積層されたステータコア232は、軸心Cに向かって突き出る、複数のティースを有する。複数のティースのうち、隣接するティース間には、それぞれスロットが形成される。巻線234は、スロットを利用してステータコア232に巻き回される。巻線234は、絶縁体であるインシュレータ236を介して、ステータコア232に巻き回される。 The stator 230 is located opposite to the rotor 210. In the present embodiment, stator 230 includes a stator core 232 and a winding 234. The stator core 232 is formed by laminating thin steel plates along the axial center C of the rotating shaft 110. The stacked stator core 232 has a plurality of teeth protruding toward the axial center C. Slots are respectively formed between the adjacent teeth among the plurality of teeth. The windings 234 are wound around the stator core 232 using slots. The winding 234 is wound around the stator core 232 via an insulator 236 which is an insulator.
 回転軸110には、取付機構40を用いてエンコーダ100が取り付けられる。 The encoder 100 is attached to the rotation shaft 110 using the attachment mechanism 40.
 取付機構40は、第1のナットであるボス固定ナット10と、第2のナットであるロックナット20と、リング体であるテーパリング30と、を含む。 The attachment mechanism 40 includes a boss fixing nut 10 which is a first nut, a lock nut 20 which is a second nut, and a taper ring 30 which is a ring body.
 エンコーダ100は、発光素子であるLED(Light Emitting Diode)素子151と、受光素子であるフォトトランジスタ(Phototransistor)152と、回転板130を回転軸110に固定するボス体120とを含む。回転板130には、LED素子151が発する光を通す透光窓が形成される。 The encoder 100 includes an LED (Light Emitting Diode) element 151 that is a light emitting element, a phototransistor (Phototransistor) 152 that is a light receiving element, and a boss body 120 that fixes the rotating plate 130 to the rotating shaft 110. The rotary plate 130 is formed with a light transmission window through which light emitted from the LED element 151 passes.
 取付機構40及びエンコーダ100の詳細は、後述する。 Details of the attachment mechanism 40 and the encoder 100 will be described later.
 本構成において、巻線234には、電動機200の外部から駆動電流が供給される。駆動電流が供給された巻線234は、ステータコア232を介して、所定の磁束を発生する。ロータコア212に埋め込まれた永久磁石216は、ステータコア232で発生した磁束の影響を受ける。回転子210は、永久磁石216が受けた磁束の影響により、回転軸110を回転中心として回転する。 In the present configuration, drive current is supplied to the winding 234 from the outside of the motor 200. The winding 234 supplied with the drive current generates a predetermined magnetic flux via the stator core 232. The permanent magnets 216 embedded in the rotor core 212 are affected by the magnetic flux generated by the stator core 232. The rotor 210 rotates about the rotation axis 110 as a rotation center under the influence of the magnetic flux received by the permanent magnet 216.
 取付機構40を用いて回転軸110に取り付けられた回転板130は、回転子210とともに回転する。 The rotary plate 130 mounted on the rotary shaft 110 using the mounting mechanism 40 rotates with the rotor 210.
 エンコーダ100を成すLED素子151は、光を発する。フォトトランジスタ152は、LED素子151が発する光を受光する。回転板130が回転するため、LED素子151が発する光は、回転板130に形成された透光窓がLED素子151とフォトトランジスタ152との間を通るときにのみ、フォトトランジスタ152に受光される。その他のとき、LED素子151が発する光は回転板130により遮光されるため、フォトトランジスタ152は、LED素子151が発する光を受光できない。 The LED element 151 which comprises the encoder 100 emits light. The phototransistor 152 receives the light emitted from the LED element 151. Since the rotating plate 130 rotates, light emitted from the LED element 151 is received by the phototransistor 152 only when the light transmitting window formed on the rotating plate 130 passes between the LED element 151 and the phototransistor 152. . At other times, the light emitted from the LED element 151 is blocked by the rotary plate 130, so the phototransistor 152 can not receive the light emitted from the LED element 151.
 LED素子151が発する光をフォトトランジスタ152が受光することにより、エンコーダ100は、回転子210が回転している状態を検出できる。検出された回転子210の回転状態を受けて、電動機200の制御部は、巻線234に通電する駆動電流を制御する。 When the phototransistor 152 receives the light emitted from the LED element 151, the encoder 100 can detect the rotating state of the rotor 210. In response to the detected rotational state of the rotor 210, the control unit of the motor 200 controls a drive current to be applied to the winding 234.
 後述するように、本実施の形態におけるエンコーダ100は、ボス体120の軸心Jを回転軸110の軸心C上に位置するように取り付けることができる。よって、回転軸110の回転中心とボス体120の回転中心との間にずれが生じることを抑制できる。したがって、エンコーダ100は、精度良く回転子210の回転状態を検出できる。 As described later, the encoder 100 in the present embodiment can be attached so that the axial center J of the boss body 120 is located on the axial center C of the rotation shaft 110. Therefore, it can suppress that a shift arises between the rotation center of rotation axis 110, and the rotation center of boss body 120. Therefore, the encoder 100 can detect the rotational state of the rotor 210 with high accuracy.
 なお、上述した説明において、電動機200として磁石埋込型ロータを備えたブラシレスモータを例示した。本開示に係る電動機は、他の形態のブラシレスモータ、整流子モータ、または誘導モータ等でも利用できる。また、本開示に係る電動機は、インナーロータ型モータでも、アウターロータ型モータでも利用できる。 In the above description, a brushless motor provided with a magnet embedded rotor is exemplified as the motor 200. The motor according to the present disclosure can also be used as another form of brushless motor, commutator motor, induction motor or the like. In addition, the motor according to the present disclosure can be used as an inner rotor type motor or an outer rotor type motor.
 (エンコーダの構成)
 図2は、本開示の実施の形態1に係る取付機構40と取付機構40により取り付けられるエンコーダ100とを示す分解斜視図である。図3は、本開示の実施の形態1に係る取付機構40と取付機構40に取り付けられるエンコーダ100とを示す断面図である。
(Configuration of encoder)
FIG. 2 is an exploded perspective view showing the attachment mechanism 40 and the encoder 100 attached by the attachment mechanism 40 according to the first embodiment of the present disclosure. FIG. 3 is a cross-sectional view showing the attachment mechanism 40 and the encoder 100 attached to the attachment mechanism 40 according to the first embodiment of the present disclosure.
 図2及び図3に示すように、本実施の形態に係る回転体は、ボス体120と、回転板130と、を含むエンコーダ100である。 As shown in FIGS. 2 and 3, the rotating body according to the present embodiment is an encoder 100 including a boss body 120 and a rotating plate 130.
 ボス体120は、回転軸110が貫通する。ボス体120は、回転軸110の軸心Cに沿って延伸する。ボス体120は、フランジ部10Bが含む第1のねじ溝18と螺合する第2のねじ山122を含む第2の外周面124を有する。 The rotating shaft 110 passes through the boss body 120. The boss body 120 extends along the axial center C of the rotation axis 110. The boss body 120 has a second outer peripheral surface 124 including a second thread 122 screwed with the first thread groove 18 included in the flange portion 10B.
 回転板130は、軸心Cと交差するように取り付けられている。具体的には、回転板130は、軸心Cを法線とする面方向に向かって延伸するように形成される。 The rotating plate 130 is attached to intersect with the axis C. Specifically, the rotary plate 130 is formed so as to extend in the plane direction with the axis C as a normal.
 図面を用いて、さらに詳細に説明する。 This will be described in more detail using the drawings.
 図2及び図3に示すように、例えば、エンコーダ100は、回転軸110の端部に、本実施の形態に係る取付機構40によって取り付けられている。ここで、回転軸110は、電動機のシャフトである。なお、本開示に係る取付機構40は、電動機のシャフト以外、同様の機能を有する軸体にも利用できる。 As shown in FIGS. 2 and 3, for example, the encoder 100 is attached to the end of the rotation shaft 110 by the attachment mechanism 40 according to the present embodiment. Here, the rotating shaft 110 is a shaft of a motor. In addition, the attachment mechanism 40 which concerns on this indication can be utilized also for the shaft which has the same function except the shaft of an electric motor.
 エンコーダ100は、回転軸110と嵌合し、且つ、取付機構40によって保持される回転体であるボス体120を有している。ボス体120の突起部120aには、回転位置または回転速度を検出するための回転板130が、ボス体120の軸心Jと直交するように保持される。回転板130は、ねじ止め、嵌め合わせ、または、接着剤等によって、ボス体120に取り付けられる。回転板130には、光を選択的に透過する位置検出用の透過パターンである透光窓131が形成されている。透光窓131は、例えば、透明なガラス材料又は樹脂材料等により構成できる。 The encoder 100 has a boss body 120 which is a rotating body fitted with the rotating shaft 110 and held by the mounting mechanism 40. A rotary plate 130 for detecting a rotational position or rotational speed is held by the projection 120 a of the boss body 120 so as to be orthogonal to the axial center J of the boss body 120. The rotary plate 130 is attached to the boss body 120 by screwing, fitting, or an adhesive. The rotary plate 130 is formed with a light transmission window 131 which is a transmission pattern for position detection which selectively transmits light. The light transmitting window 131 can be made of, for example, a transparent glass material or a resin material.
 また、図3に示すように、エンコーダ100は、例えば、筐体100aに、発光素子であるLED素子151及び受光素子であるフォトトランジスタ152が配設された光学式の検出器である。筐体100aは、例えば金属製の板材からなり、エンコーダ100を囲むように取り付けられている。 Further, as shown in FIG. 3, the encoder 100 is, for example, an optical detector in which an LED element 151 which is a light emitting element and a phototransistor 152 which is a light receiving element are disposed in a housing 100 a. The housing 100 a is made of, for example, a metal plate and attached so as to surround the encoder 100.
 発光素子は、例えばLED素子151であってもよい。発光素子には、同様の機能を有するものであれば、他の素子を利用することができる。受光素子は、例えばフォトトランジスタ152であってもよい。受光素子には、同様の機能を有するものであれば、他の素子を利用することができる。LED素子151及びフォトトランジスタ152は、筐体100aの内部に、回転板130を挟んで互いに対向する位置に配設されている。従って、LED素子151から発光され、回転板130を透過した透過光は、フォトトランジスタ152で受光され、電気的に検出されるように構成されている。さらに、筐体100aの内部には、LED素子151及びフォトトランジスタ152をそれぞれ制御する制御回路を搭載した回路基板が配設されていてもよい。 The light emitting element may be, for example, the LED element 151. As the light emitting element, other elements can be used as long as they have the same function. The light receiving element may be, for example, a phototransistor 152. As the light receiving element, other elements can be used as long as they have the same function. The LED element 151 and the phototransistor 152 are disposed in the housing 100 a at positions facing each other across the rotary plate 130. Therefore, the transmitted light emitted from the LED element 151 and transmitted through the rotating plate 130 is received by the phototransistor 152 and is electrically detected. Furthermore, a circuit board mounted with a control circuit that controls the LED element 151 and the phototransistor 152 may be disposed inside the housing 100a.
 さらに、回転軸110に保持されたボス体120は、筐体100aとは、ベアリング機構140を介し、且つ、軸心Jを回転中心として回転可能に支持される。筐体100aは、例えば、板ばね等を介して、図示しない外部の部材等に保持されてもよい。 Furthermore, the boss body 120 held by the rotation shaft 110 is rotatably supported with the housing 100 a via the bearing mechanism 140 and with the axis center J as the rotation center. The housing 100a may be held by an external member (not shown) or the like via, for example, a plate spring or the like.
 (取付機構の構成)
 図4は、本開示の実施の形態1に係る取付機構40における回転軸110に対する作用を表す模式的な断面図である。図5は、本開示の実施の形態1に係る取付機構40を構成する一部材の斜視図である。図6は、本開示の実施の形態1に係る取付機構40を構成する一部材の正面図である。図7は、本開示の実施の形態1に係る取付機構40を構成する他の一部材の正面図である。図8は、本開示の実施の形態1に係る取付機構40を構成する他の一部材の斜視図である。
(Configuration of mounting mechanism)
FIG. 4 is a schematic cross-sectional view showing an action on the rotation shaft 110 in the attachment mechanism 40 according to the first embodiment of the present disclosure. FIG. 5 is a perspective view of one member of the attachment mechanism 40 according to the first embodiment of the present disclosure. FIG. 6 is a front view of one member of the attachment mechanism 40 according to the first embodiment of the present disclosure. FIG. 7 is a front view of another member of the attachment mechanism 40 according to Embodiment 1 of the present disclosure. FIG. 8 is a perspective view of another member of the attachment mechanism 40 according to the first embodiment of the present disclosure.
 図2から図4に示すように、本実施の形態に係る取付機構40は、それぞれ回転軸110を貫通する3つの環状部材から構成される。 As shown in FIG. 2 to FIG. 4, the attachment mechanism 40 according to the present embodiment is configured of three annular members penetrating the rotation shaft 110 respectively.
 すなわち、本実施の形態に係る取付機構40は、回転軸110に回転体であるボス体120を取り付ける。 That is, in the attachment mechanism 40 according to the present embodiment, the boss body 120 which is a rotating body is attached to the rotation shaft 110.
 取付機構40は、第1のナットであるボス固定ナット10と、第2のナットであるロックナット20と、リング体であるテーパリング30と、を備える。 The attachment mechanism 40 includes a boss fixing nut 10 which is a first nut, a lock nut 20 which is a second nut, and a taper ring 30 which is a ring body.
 ボス固定ナット10には、回転軸110が貫通する。ボス固定ナット10は、円筒部10Aと、フランジ部10Bと、を含む。 The rotating shaft 110 passes through the boss fixing nut 10. The boss fixing nut 10 includes a cylindrical portion 10A and a flange portion 10B.
 円筒部10Aは、回転軸110の軸心Cに沿って延伸するとともに、第1のねじ山14を含む第1の外周面12を有する。フランジ部10Bは、軸心Cと交差する方向であって、回転軸110が位置する側の反対方向に向かって凸となるとともに、第1のねじ溝18を含む第1の内周面16を有する。フランジ部10Bが有する第1の内周面16は、回転軸110と向い合って位置する。 The cylindrical portion 10 </ b> A extends along the axial center C of the rotation shaft 110 and has a first outer circumferential surface 12 including a first screw thread 14. The flange portion 10B is convex in a direction intersecting with the axial center C and in a direction opposite to the side where the rotation shaft 110 is located, and the first inner circumferential surface 16 including the first screw groove 18 is Have. The first inner circumferential surface 16 of the flange portion 10B is positioned to face the rotation shaft 110.
 ロックナット20には、回転軸110が貫通する。ロックナット20は、第2のねじ溝22と、小孔部24と、を含む。 The rotary shaft 110 passes through the lock nut 20. The lock nut 20 includes a second screw groove 22 and a small hole 24.
 第2のねじ溝22は、回転軸110と向い合う第2の内周面26の一部に形成されるとともに、第1のナットであるボス固定ナット10が有する第1のねじ山14と螺合する。小孔部24は、第2の内周面26のうち第2のねじ溝22以外の部分に形成されるとともに、回転軸110と嵌合する。 The second screw groove 22 is formed in a part of the second inner circumferential surface 26 facing the rotary shaft 110 and is screwed with the first screw thread 14 of the boss fixing nut 10 which is the first nut. Match. The small hole portion 24 is formed in a portion of the second inner circumferential surface 26 other than the second screw groove 22 and fitted with the rotation shaft 110.
 リング体であるテーパリング30には、回転軸110が貫通する。テーパリング30は、円筒部10Aが有する第3の内周面17と回転軸110との間に位置する。テーパリング30は、第1のナットであるボス固定ナット10と第2のナットであるロックナット20とが互いに近づく方向(図4中、D1、D2)に螺合したとき、第1のナットであるボス固定ナット10及び第2のナットであるロックナット20のそれぞれから加えられる軸心Cに沿った方向に作用する力F01、F02を、軸心Cと交差する方向に作用する力F1、F2に変換する傾斜面32を有する。 The rotating shaft 110 passes through the taper ring 30 which is a ring body. The taper ring 30 is located between the third inner circumferential surface 17 of the cylindrical portion 10A and the rotation shaft 110. When the boss fixing nut 10, which is the first nut, and the lock nut 20, which is the second nut, are screwed together in a direction (D1, D2 in FIG. 4) where the taper fixing 30 is the first nut, Forces F01 and F02 acting in the direction along the axial center C applied from each of the certain boss fixing nut 10 and the second nut lock nut 20 force F1 and F2 acting in the direction intersecting the axial center C The inclined surface 32 is converted to
 特に、顕著な作用効果を奏する形態は、つぎのとおりである。 In particular, the form that exerts remarkable effects is as follows.
 取付機構40に用いられるリング体は、それぞれが互いに対向して当接する傾斜面32a、32bを有する、一対のテーパリング30である。テーパリング30は、シュパンリング等のリング体の一例であり、外側リング30aと、内側リング30bと、を有する。 The ring bodies used in the mounting mechanism 40 are a pair of taper rings 30 having inclined surfaces 32 a and 32 b which face each other and abut. The taper ring 30 is an example of a ring body such as a spanner ring, and includes an outer ring 30 a and an inner ring 30 b.
 本実施の形態において、傾斜面32は、第1の傾斜面と、第1の傾斜面に対向して当接する第2の傾斜面と、で構成される。以下の説明において、外側リング30aが有する傾斜面32aは、第1の傾斜面として機能する。一方、内側リング30bが有する傾斜面32bは、第2の傾斜面として機能する。 In the present embodiment, the inclined surface 32 is configured of a first inclined surface and a second inclined surface that is opposed to and in contact with the first inclined surface. In the following description, the inclined surface 32a of the outer ring 30a functions as a first inclined surface. On the other hand, the inclined surface 32b of the inner ring 30b functions as a second inclined surface.
 図面を用いて、さらに詳細に説明する。 This will be described in more detail using the drawings.
 図3、図4に示すように、ボス固定ナット10は、フランジ部10Bと、円筒部10Aと、を含む。フランジ部10Bには、ボス体120と向い合う第1の内周面16に、第1のねじ溝18が形成される。円筒部10Aは、ボス体120が位置する側の反対側に第1の外周面12を有する。第1の外周面12には、第1のねじ山14が形成される。 As shown in FIGS. 3 and 4, the boss fixing nut 10 includes a flange portion 10 </ b> B and a cylindrical portion 10 </ b> A. In the flange portion 10B, a first screw groove 18 is formed on a first inner circumferential surface 16 facing the boss body 120. The cylindrical portion 10A has a first outer peripheral surface 12 on the opposite side to the side on which the boss body 120 is located. A first thread 14 is formed on the first outer circumferential surface 12.
 軸心J方向において、ボス体120には、ボス体120に形成された突起部120aと反対側に位置する端部120bに、第2のねじ山122が形成される。第2のねじ山122は、ボス固定ナット10に形成された第1のねじ溝18と螺合される。 In the direction of the axis J, the second screw thread 122 is formed on the end portion 120 b of the boss 120 opposite to the protrusion 120 a formed on the boss 120. The second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 10.
 ロックナット20は、ボス固定ナット10をボス体120に固持させる。ロックナット20が有する第2の内周面26の一部には、ボス固定ナット10に形成された第1のねじ山14と螺合する第2のねじ溝22が形成される。ロックナット20は、ロックナット20が有する第2の内周面26の残部の少なくとも一部に、回転軸110と嵌合する小孔部24を有する。 The lock nut 20 secures the boss fixing nut 10 to the boss body 120. In a part of the second inner circumferential surface 26 of the lock nut 20, a second screw groove 22 engaged with the first screw thread 14 formed on the boss fixing nut 10 is formed. The lock nut 20 has a small hole portion 24 fitted with the rotation shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 26 of the lock nut 20.
 ここで、ボス固定ナット10が有する円筒部10Aは、回転軸110との間に空隙部10Cが生じるように形成されている。この空隙部10Cには、一対のテーパリング30が挿入されている。一対のテーパリング30は、それぞれが互いに対向して当接する傾斜面32a、32bを有する、外側リング30a及び内側リング30bを有する。一対のテーパリング30は、ロックナット20をボス固定ナット10の方向D2に螺合すると、外側リング30aの傾斜面32aが内側リング30bの傾斜面32bの外側に滑り出す。言い換えれば、一対のテーパリング30は、内側リング30bの傾斜面32bが外側リング30aの傾斜面32aの内側に潜り込む。これにより、軸心Cと交差する方向において、テーパリング30の厚さが増大するため、テーパリング30の外径が拡大する。よって、図4に示すように、外径が拡大したテーパリング30には、ボス固定ナット10及びロックナット20に対して、軸心Cと交差する方向であって、且つ、外方へ向かう作用である力F1が生じる。したがって、ボス体120にはその反作用である力F2が生じる。この結果、軸心Cと交差する方向において、ボス体120は、ボス固定ナット10、ロックナット20の周囲から全方位的に軸心Cに向かって強く押し付けられる。つまり、ボス固定ナット10、ロックナット20及びテーパリング30の軸心J(回転中心)は、いずれもボス体120の軸心C(回転中心)と一致している。このため、回転体であるボス体120、ひいては回転板130の芯振れを抑制することができる。 Here, the cylindrical portion 10A of the boss fixing nut 10 is formed such that a gap 10C is generated between the cylindrical portion 10A and the rotation shaft 110. A pair of taper rings 30 is inserted into the gap 10C. The pair of taper rings 30 has an outer ring 30a and an inner ring 30b, each having an inclined surface 32a, 32b facing and abutting each other. When the lock nut 20 is screwed in the direction D2 of the boss fixing nut 10, the inclined surface 32a of the outer ring 30a slides out of the inclined surface 32b of the inner ring 30b. In other words, in the pair of taper rings 30, the inclined surface 32b of the inner ring 30b is embedded inside the inclined surface 32a of the outer ring 30a. As a result, the thickness of the tapering 30 increases in the direction intersecting with the axial center C, so the outer diameter of the tapering 30 is enlarged. Therefore, as shown in FIG. 4, in the taper ring 30 whose outer diameter is enlarged, the boss fixing nut 10 and the lock nut 20 operate outward in the direction intersecting with the axial center C and outward. A force F1 is generated. Therefore, a force F2 which is a reaction to the boss body 120 is generated. As a result, in the direction intersecting with the axial center C, the boss body 120 is strongly pressed from the circumference of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions. That is, the axial centers J (rotational centers) of the boss fixing nut 10, the locknut 20 and the taper ring 30 all coincide with the axial center C (rotational center) of the boss body 120. For this reason, it is possible to suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
 なお、テーパリング30を構成する外側リング30a及び内側リング30bの互いの当接面(滑り面)である傾斜面32a、32bにおける摩擦係数は大きい方が好ましい。 The coefficient of friction of the inclined surfaces 32a and 32b, which are the contact surfaces (sliding surfaces) of the outer ring 30a and the inner ring 30b constituting the taper ring 30, is preferably large.
 図4に示すように、テーパリング30におけるボス固定ナット10側の端面34は、ボス体120におけるボス固定ナット10側の端面120cと当接していることが好ましい。あるいは、テーパリング30におけるボス固定ナット10側の端面34は、ボス固定ナット10におけるフランジ部10Bの内面10dと当接していてもよい。 As shown in FIG. 4, it is preferable that the end surface 34 on the boss fixing nut 10 side in the taper ring 30 is in contact with the end surface 120 c on the boss fixing nut 10 side in the boss body 120. Alternatively, the end surface 34 on the boss fixing nut 10 side of the taper ring 30 may be in contact with the inner surface 10 d of the flange portion 10B of the boss fixing nut 10.
 さらに、ロックナット20が有する小孔部24側に位置するテーパリング30の端面34aは、小孔部24が有する内面20aと当接していることが好ましい。 Furthermore, it is preferable that the end face 34a of the taper ring 30 located on the small hole 24 side of the lock nut 20 be in contact with the inner surface 20a of the small hole 24.
 この構成とすれば、作用である力F1及び反作用である力F2を確実に生じさせることができる。 With this configuration, it is possible to reliably generate the force F1 which is the action and the force F2 which is the reaction.
 つぎの構成とすれば、さらに顕著な作用効果を奏することができる。 With the following configuration, it is possible to achieve further remarkable effects.
 図5に示すように、取付機構40に用いられる、一対のテーパリング30のうち、回転軸110側に位置するテーパリングである内側リング30bは、その延長線が軸心Cと交差するように形成されたスリット36を有すればよい。言い換えれば、内側リング30bは、スリット36を有する。スリット36の延長線は、軸心Cと交差する。ここで、スリット36の延長線とは、幅狭く切り開かれた隙間であるスリット36を切り込む方向に延ばした線をいう。 As shown in FIG. 5, of the pair of taper rings 30 used in the attachment mechanism 40, the extension ring of the inner ring 30b, which is a taper ring located on the rotary shaft 110 side, intersects the axis C. It suffices to have the formed slit 36. In other words, the inner ring 30 b has the slit 36. The extension of the slit 36 intersects with the axis C. Here, the extension line of the slit 36 refers to a line extended in the direction of cutting in the slit 36 which is a gap which is narrowly opened.
 あるいは、図6、図7に示すように、取付機構40に用いられる、一対のテーパリング30のうち、回転軸110側に位置するテーパリングである内側リング30bは、その延長線が軸心Cと交差するように形成された、複数のスリット36を有すればよい。言い換えれば、内側リング30bは、複数のスリット36を有する。複数のスリット36のそれぞれの延長線はそれぞれ、軸心Cと交差する。軸心Cと直交する平面上において、複数のスリット36は、それぞれ軸心Cを中心とする円周方向に亘って間隔を置いて位置すればよい。 Alternatively, as shown in FIG. 6 and FIG. 7, of the pair of taper rings 30 used in the attachment mechanism 40, the extension line of the inner ring 30 b located on the rotary shaft 110 side is the axial center C It is sufficient to have a plurality of slits 36 formed so as to intersect with. In other words, the inner ring 30 b has a plurality of slits 36. Each extension line of the plurality of slits 36 intersects the axial center C, respectively. In the plane orthogonal to the axial center C, the plurality of slits 36 may be spaced apart in the circumferential direction around the axial center C, respectively.
 スリット36は、傾斜面32に沿って形成される。スリット36の中心線を延長した場合、その延長線は軸心Cと交差すればよい。 The slits 36 are formed along the inclined surface 32. When the center line of the slit 36 is extended, the extension line may intersect the axis C.
 言い換えれば、軸心Cと直交する平面上において、複数のスリット36は、それぞれ軸心Cを中心とする径方向であって、適切な角度ごとに円周上に位置すればよい。 In other words, on a plane orthogonal to the axial center C, the plurality of slits 36 may be radially positioned around the axial center C, and may be circumferentially positioned at appropriate angles.
 特に好ましい例として、図6に示すように、それぞれのスリット36は、θ1=120°ごとに位置すればよい。あるいは、図7に示すように、それぞれのスリット36は、θ2=90°ごとに位置すればよい。 As a particularly preferred example, as shown in FIG. 6, each slit 36 may be positioned every θ1 = 120 °. Alternatively, as shown in FIG. 7, each slit 36 may be positioned every θ2 = 90 °.
 図6、図7に示す具体例では、それぞれのスリット36は、等間隔で位置している。等間隔、あるいは、適切な角度とは、それぞれのスリット36で分けられたそれぞれの傾斜面32bが回転軸110に与える保持力が等しくなればよく、数学的な均等を意図するものではない。典型的には、製造上の公差に起因するばらつきは、本実施の形態でいう等間隔、あるいは、適切な角度の範囲内である。 In the example shown in FIGS. 6 and 7, the slits 36 are positioned at equal intervals. The equal intervals or appropriate angles are not intended to be mathematically equivalent, as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 32b divided by the respective slits 36 are equal. Typically, variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
 本構成とすれば、軸心Cと交差する方向において、内側リング30bは、ボス固定ナット10、ロックナット20の周囲から全方位的に軸心Cに向かって、ボス体120をより強く押し付けることができる。つまり、内側リング30bは、スリット36の幅寸法で調整できる範囲において、ボス体120を締め付ける強度を調整できる。したがって、ボス固定ナット10、ロックナット20及びテーパリング30の軸心J(回転中心)は、いずれもボス体120の軸心C(回転中心)と一致する精度が向上する。このため、回転体であるボス体120、ひいては回転板130の芯振れをより抑制することができる。 According to this configuration, in the direction intersecting with the axial center C, the inner ring 30b presses the boss body 120 more strongly from the periphery of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions. Can. That is, the inner ring 30 b can adjust the tightening strength of the boss body 120 in the range which can be adjusted by the width dimension of the slit 36. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 10, the lock nut 20 and the taper ring 30 coincides with the axial center C (rotation center) of the boss body 120 is improved. For this reason, it is possible to further suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
 特に、図6に示す3つのスリット36や、図7に示す4つのスリット36を形成した場合、それぞれに分けられた傾斜面32bから回転軸110に対して、適度な保持力が加えられる。傾斜面32bにスリット36を形成する工数も、適度な工数の範囲内で実現できる。 In particular, when the three slits 36 shown in FIG. 6 and the four slits 36 shown in FIG. 7 are formed, an appropriate holding force is applied to the rotating shaft 110 from the inclined surfaces 32 b divided respectively. The number of steps for forming the slits 36 in the inclined surface 32b can also be realized within the range of appropriate number of steps.
 図8に示すように、取付機構40に用いられるスリット36aは、先端36b側のスリット幅W1よりも開口36c側のスリット幅W2のほうが広ければよい。言い換えれば、回転軸110側に位置するテーパリングのうち内側リング30bが有するスリット36aは、テーパリングの先端36b側のスリット幅W1よりもテーパリングの開口36c側のスリット幅W2のほうが広くなっている。 As shown in FIG. 8, the slit 36a used in the attachment mechanism 40 may have a slit width W2 on the opening 36c side wider than the slit width W1 on the tip 36b side. In other words, among the taper rings located on the rotary shaft 110 side, the slit 36a of the inner ring 30b has a slit width W2 on the opening 36c side of the tapering wider than a slit width W1 on the tip 36b side of the tapering. There is.
 本構成とすれば、内側リング30bの内周面と回転軸110の外周面との間に、なんらかの要因による隙間が生じたとしても、スリット幅W2とスリット幅W1との差分が、この隙間を吸収する。つまり、スリット幅W2とスリット幅W1との差分が存在することにより、内側リング30bと回転軸110とは、常に、適切な保持力を確保することができる。 With this configuration, even if a gap is generated between the inner circumferential surface of the inner ring 30b and the outer circumferential surface of the rotating shaft 110, the difference between the slit width W2 and the slit width W1 is equal to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the inner ring 30b and the rotary shaft 110 can always ensure appropriate holding power.
 以上のように、本実施の形態の取付機構40は、回転軸110にボス体120に相当する回転体を取り付ける取付機構40であって、第1のナット10と、第2のナット20と、リング体30と、を備える。 As described above, the mounting mechanism 40 of the present embodiment is the mounting mechanism 40 for mounting the rotating body corresponding to the boss body 120 to the rotating shaft 110, and includes the first nut 10 and the second nut 20; And a ring body 30.
 第1のナット10は、円筒部10Aと、フランジ部10Bと、を含む。円筒部10Aは、回転軸110が貫通する。円筒部10Aは、回転軸110の軸心Cに沿って延伸するとともに、第1のねじ山14を含む第1の外周面12を有する。フランジ部10Bは、軸心Cと交差する方向であって、回転軸110が位置する側の反対方向に向かって凸となるとともに、第1のねじ溝18を含む第1の内周面16を有する。 The first nut 10 includes a cylindrical portion 10A and a flange portion 10B. The rotating shaft 110 penetrates the cylindrical portion 10A. The cylindrical portion 10 </ b> A extends along the axial center C of the rotation shaft 110 and has a first outer circumferential surface 12 including a first screw thread 14. The flange portion 10B is convex in a direction intersecting with the axial center C and in a direction opposite to the side where the rotation shaft 110 is located, and the first inner circumferential surface 16 including the first screw groove 18 is Have.
 第2のナット20は、回転軸110が貫通する。第2のナット20は、第2のねじ溝22と、小孔部24と、を含む。第2のねじ溝22は、回転軸110と向い合う第2の内周面26の一部に形成されるとともに、第1のねじ山14と螺合する。小孔部24は、第2の内周面26のうち第2のねじ溝22以外の部分に形成されるとともに、回転軸110と嵌合する。 The rotating shaft 110 passes through the second nut 20. The second nut 20 includes a second screw groove 22 and a small hole 24. The second screw groove 22 is formed in a part of the second inner circumferential surface 26 facing the rotation shaft 110 and screwed with the first screw thread 14. The small hole portion 24 is formed in a portion of the second inner circumferential surface 26 other than the second screw groove 22 and fitted with the rotation shaft 110.
 リング体30は、回転軸110が貫通するとともに、円筒部10Aが有する第3の内周面17と回転軸110との間に位置する。第1のナット10と第2のナット20とが互いに近づく方向に螺合したとき、リング体30は、第1のナット10及び第2のナット20のそれぞれから加えられる軸心Cに沿った方向に作用する力を軸心Cと交差する方向に作用する力に変換する傾斜面32aに相当する第1の傾斜面を有する。 The ring body 30 is located between the third inner circumferential surface 17 of the cylindrical portion 10A and the rotary shaft 110, with the rotary shaft 110 penetrating therethrough. When the first nut 10 and the second nut 20 are screwed in the direction in which they approach each other, the ring body 30 is a direction along the axial center C applied from each of the first nut 10 and the second nut 20 Has a first inclined surface corresponding to the inclined surface 32a that converts the force acting on the shaft into a force acting in the direction intersecting the axial center C.
 これにより、ボス体120に相当する回転体の芯振れを抑制することができる。 Thereby, the runout of the rotating body corresponding to the boss body 120 can be suppressed.
 また、リング体30は、傾斜面32aに相当する第1の傾斜面に対向して当接する傾斜面32bに相当する第2の傾斜面をさらに有する、一対のテーパリング30であってよい。 Further, the ring body 30 may be a pair of taper rings 30 further having a second inclined surface corresponding to the inclined surface 32b opposed to and in contact with the first inclined surface corresponding to the inclined surface 32a.
 また、一対のテーパリング30のうち、回転軸110側に位置する内側リング30bに相当するテーパリングは、スリット36を有する。スリット36の延長線は軸心Cと交差すればよい。 Further, of the pair of taper rings 30, the taper ring corresponding to the inner ring 30 b located on the rotation shaft 110 side has a slit 36. The extension line of the slit 36 may intersect the axis C.
 また、一対のテーパリング30のうち、回転軸110側に位置する内側リング30bに相当するテーパリングは、複数のスリット36を有する。複数のスリット36のそれぞれの延長線はそれぞれ軸心Cと交差する。軸心Cと直交する平面上において、複数のスリット36はそれぞれ、軸心Cを中心とする円周方向に亘って間隔を置いて位置すればよい。 Further, of the pair of taper rings 30, the taper ring corresponding to the inner ring 30 b located on the rotation shaft 110 side has a plurality of slits 36. Each extension line of the plurality of slits 36 intersects the axial center C, respectively. In the plane orthogonal to the axis C, the plurality of slits 36 may be spaced apart in the circumferential direction around the axis C, respectively.
 また、回転軸110側に位置する内側リング30bに相当するテーパリングが有するスリット36aは、内側リング30bに相当するテーパリングの先端36b側のスリット幅W1よりも内側リング30bに相当するテーパリングの開口36c側のスリット幅W2のほうが広ければよい。 The slit 36a of the taper ring corresponding to the inner ring 30b located on the rotary shaft 110 side is a taper ring corresponding to the inner ring 30b than the slit width W1 on the tip 36b side of the taper ring corresponding to the inner ring 30b. The slit width W2 on the opening 36c side may be wider.
 また、取付機構40において、回転体は、ボス体120と回転板130とを含むエンコーダ100であってもよい。ボス体120は、回転軸110が貫通する。ボス体120は、回転軸110の軸心Cに沿って延伸するとともに、フランジ部10Bが含む第1のねじ溝18と螺合する第2のねじ山122を含む第2の外周面124を有すればよい。回転板130は、軸心Cと交差するように取り付けられていればよい。 In addition, in the attachment mechanism 40, the rotary body may be the encoder 100 including the boss body 120 and the rotary plate 130. The rotating shaft 110 passes through the boss body 120. The boss body 120 extends along the axial center C of the rotary shaft 110 and has a second outer circumferential surface 124 including a second thread 122 which is screwed with the first thread groove 18 included in the flange portion 10B. do it. The rotating plate 130 may be attached so as to intersect the axis C.
 また、本実施の形態の電動機200は、回転軸110にロータコア212が取り付けられた回転子210と、回転軸110を回転自在に支持する軸受220と、回転子210と対向して位置する固定子230と、を備える。回転軸110には、説明した取付機構40を用いてエンコーダ100を取り付けている。 In the motor 200 according to the present embodiment, a rotor 210 having a rotor core 212 attached to the rotation shaft 110, a bearing 220 rotatably supporting the rotation shaft 110, and a stator positioned opposite to the rotor 210 And 230. The encoder 100 is attached to the rotating shaft 110 using the attachment mechanism 40 described above.
 (実施の形態2)
 実施の形態2に係る取付機構440の構成を説明する。
Second Embodiment
The configuration of the attachment mechanism 440 according to the second embodiment will be described.
 図9は、本開示の実施の形態2に係る取付機構440における回転軸110に対する作用を表す模式的な断面図である。図10は、本開示の実施の形態2に係る取付機構440を構成する一部材の斜視図である。図11は、本開示の実施の形態2に係る取付機構440を構成する一部材の正面図である。図12は、本開示の実施の形態2に係る取付機構440を構成する他の一部材の正面図である。図13は、本開示の実施の形態2に係る取付機構440を構成する他の一部材の斜視図である。 FIG. 9 is a schematic cross-sectional view showing an operation on the rotation shaft 110 in the attachment mechanism 440 according to the second embodiment of the present disclosure. FIG. 10 is a perspective view of one member of the attachment mechanism 440 according to the second embodiment of the present disclosure. FIG. 11 is a front view of one member of an attachment mechanism 440 according to Embodiment 2 of the present disclosure. FIG. 12 is a front view of another member of the attachment mechanism 440 according to Embodiment 2 of the present disclosure. FIG. 13 is a perspective view of another member of the attachment mechanism 440 according to Embodiment 2 of the present disclosure.
 なお、取付機構440を説明するにあたり、上述した実施の形態1の各構成要素と同様の構成については、同じ符号を付して、説明を援用する。 In the description of the attachment mechanism 440, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description is used.
 図9に示すように、取付機構440が用いられる回転体であるボス体460は、軸心Cに沿った方向において、第3の内周面17と回転軸110との間にまで延伸したテーパ部462を有する。テーパ部462は、リング体であるテーパリング430が有する傾斜面432aと対向する傾斜面432bを含む。 As shown in FIG. 9, the boss body 460 which is a rotating body in which the attachment mechanism 440 is used has a taper which extends between the third inner circumferential surface 17 and the rotation axis 110 in the direction along the axis C. It has a portion 462. The tapered portion 462 includes an inclined surface 432 b opposite to the inclined surface 432 a of the taper ring 430 which is a ring body.
 以下の説明において、テーパリング430が有する傾斜面432aは、第1の傾斜面として機能する。一方、テーパ部462が有する傾斜面432bは、第2の傾斜面として機能する。 In the following description, the inclined surface 432a of the taper ring 430 functions as a first inclined surface. On the other hand, the inclined surface 432b of the tapered portion 462 functions as a second inclined surface.
 図面を用いて、さらに詳細に説明する。 This will be described in more detail using the drawings.
 図9に示すように、ボス固定ナット10は、フランジ部10Bと、円筒部10Aと、を含む。フランジ部10Bには、ボス体460と向い合う第1の内周面16に、第1のねじ溝18が形成される。円筒部10Aは、ボス体460が位置する側の反対側に第1の外周面12を有する。第1の外周面12には、第1のねじ山14が形成される。 As shown in FIG. 9, the boss fixing nut 10 includes a flange portion 10B and a cylindrical portion 10A. In the flange portion 10B, a first screw groove 18 is formed on a first inner circumferential surface 16 facing the boss body 460. The cylindrical portion 10A has a first outer circumferential surface 12 on the opposite side to the side on which the boss 460 is located. A first thread 14 is formed on the first outer circumferential surface 12.
 軸心J方向において、ボス体460には、ボス体460に形成された突起部と反対側に位置する端部460bに、第2のねじ山122が形成される。第2のねじ山122は、ボス固定ナット10に形成された第1のねじ溝18と螺合される。 A second screw thread 122 is formed on the end 460 b of the boss 460 opposite to the projection formed on the boss 460 in the axial center J direction. The second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 10.
 ロックナット20は、ボス固定ナット10をボス体460に固持させる。ロックナット20が有する第2の内周面26の一部には、ボス固定ナット10に形成された第1のねじ山14と螺合する第2のねじ溝22が形成される。ロックナット20は、ロックナット20が有する第2の内周面26の残部の少なくとも一部に、回転軸110と嵌合する小孔部24を有する。 The lock nut 20 secures the boss fixing nut 10 to the boss body 460. In a part of the second inner circumferential surface 26 of the lock nut 20, a second screw groove 22 engaged with the first screw thread 14 formed on the boss fixing nut 10 is formed. The lock nut 20 has a small hole portion 24 fitted with the rotation shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 26 of the lock nut 20.
 ここで、ボス固定ナット10が有する円筒部10Aは、テーパ部462との間に空隙部410Cが生じるように形成されている。空隙部410Cには、テーパリング430が挿入されている。テーパリング430は、テーパ部462が有する傾斜面432bに対向して当接する傾斜面432aを有する。テーパリング430は、ロックナット20をボス固定ナット10の方向D2に螺合すると、テーパリング430の傾斜面432aがテーパ部462の傾斜面432bの外側に滑り出す。言い換えれば、テーパ部462は、テーパ部462の傾斜面432bがテーパリング430の傾斜面432aの内側に潜り込む。これにより、軸心Cと交差する方向において、テーパリング430が回転軸110の軸心Cから離れる方向へ移動するため、テーパリング430の外径が拡大する。よって、図9に示すように、外径が拡大したテーパリング430は、ボス固定ナット10及びロックナット20に対して、軸心Cと交差する方向であって、且つ、外方へ向かう作用である力F1が生じる。したがって、ボス体460にはその反作用である力F2が生じる。この結果、軸心Cと交差する方向において、ボス体460は、ボス固定ナット10、ロックナット20の周囲から全方位的に軸心Cに向かって強く押し付けられる。つまり、ボス固定ナット10、ロックナット20及びテーパリング430の軸心J(回転中心)は、いずれもボス体460の軸心C(回転中心)と一致している。このため、回転体であるボス体460、ひいては回転板130の芯振れを抑制することができる。 Here, the cylindrical portion 10A of the boss fixing nut 10 is formed such that a gap 410C is generated between the cylindrical portion 10A and the tapered portion 462. A taper ring 430 is inserted into the air gap portion 410C. The taper ring 430 has an inclined surface 432 a that faces and abuts on the inclined surface 432 b of the tapered portion 462. In the taper ring 430, when the lock nut 20 is screwed in the direction D 2 of the boss fixing nut 10, the inclined surface 432 a of the taper ring 430 slides out of the inclined surface 432 b of the tapered portion 462. In other words, in the tapered portion 462, the inclined surface 432 b of the tapered portion 462 is embedded inside the inclined surface 432 a of the tapered ring 430. As a result, the taper ring 430 moves in the direction away from the axis C of the rotating shaft 110 in the direction intersecting with the axis C, so the outer diameter of the taper ring 430 is enlarged. Therefore, as shown in FIG. 9, the tapered ring 430 whose outer diameter is expanded is a direction intersecting the axial center C with respect to the boss fixing nut 10 and the lock nut 20, and has an outward action. A force F1 is generated. Therefore, a force F2 which is the reaction is generated in the boss body 460. As a result, in the direction intersecting with the axial center C, the boss body 460 is strongly pressed from the circumference of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions. That is, the axial center J (rotation center) of the boss fixing nut 10, the lock nut 20, and the taper ring 430 coincides with the axial center C (rotation center) of the boss 460. For this reason, it is possible to suppress center run-out of the boss body 460 which is a rotating body, and consequently the rotary plate 130.
 なお、テーパリング430が有する傾斜面432aと、テーパ部462が有する傾斜面432bとが接する当接面(滑り面)における摩擦係数は、大きい方が好ましい。 The coefficient of friction of the contact surface (sliding surface) where the inclined surface 432a of the taper ring 430 and the inclined surface 432b of the tapered portion 462 are in contact with each other is preferably large.
 つぎの構成とすれば、さらに顕著な作用効果を奏することができる。 With the following configuration, it is possible to achieve further remarkable effects.
 図10に示すように、ボス体460が有するテーパ部462は、その延長線が軸心Cと交差するように形成されたスリット436を有すればよい。言い換えれば、テーパ部462は、スリット436を有する。ここで、スリット436の延長線とは、幅狭く切り開かれた隙間であるスリット436を切り込む方向に延ばした線をいう。 As shown in FIG. 10, the tapered portion 462 of the boss 460 may have a slit 436 formed so that the extension line thereof intersects with the axial center C. In other words, the tapered portion 462 has a slit 436. Here, the extension line of the slit 436 refers to a line extended in the direction to cut in the slit 436 which is a gap which is narrow and cut open.
 あるいは、図11、図12に示すように、ボス体460が有するテーパ部462は、その延長線が軸心Cと交差するように形成された、複数のスリット436を有すればよい。言い換えれば、テーパ部462は、複数のスリット436を有する。複数のスリット436のそれぞれの延長線はそれぞれ、軸心Cと交差する。軸心Cと直交する平面上において、複数のスリット436は、それぞれ軸心Cを中心とする円周方向に亘って間隔を置いて位置すればよい。 Alternatively, as shown in FIG. 11 and FIG. 12, the tapered portion 462 of the boss 460 may have a plurality of slits 436 formed such that the extension line thereof intersects with the axial center C. In other words, the tapered portion 462 has a plurality of slits 436. Each extension line of the plurality of slits 436 intersects the axial center C, respectively. In the plane orthogonal to the axial center C, the plurality of slits 436 may be spaced apart in the circumferential direction around the axial center C, respectively.
 スリット436は、傾斜面432bに沿って形成される。スリット436の中心線を延長した場合、その延長線は軸心Cと交差すればよい。 The slit 436 is formed along the inclined surface 432b. When the center line of the slit 436 is extended, the extension line may intersect the axis C.
 言い換えれば、軸心Cと直交する平面上において、複数のスリット436は、それぞれ軸心Cを中心とする径方向であって、適切な角度ごとに円周上に位置すればよい。 In other words, in the plane orthogonal to the axial center C, the plurality of slits 436 may be radially positioned around the axial center C, and may be circumferentially positioned at appropriate angles.
 特に好ましい例として、図11に示すように、それぞれのスリット436は、θ1=120°ごとに位置すればよい。あるいは、図12に示すように、それぞれのスリット436は、θ2=90°ごとに位置すればよい。 As a particularly preferable example, as shown in FIG. 11, each slit 436 may be positioned every θ1 = 120 °. Alternatively, as shown in FIG. 12, each slit 436 may be positioned every θ2 = 90 °.
 図11、図12に示す具体例では、それぞれのスリット436は、等間隔で位置している。等間隔、あるいは、適切な角度とは、それぞれのスリット436で分けられたそれぞれの傾斜面432bが回転軸110に与える保持力が等しくなればよく、数学的な均等を意図するものではない。典型的には、製造上の公差に起因するばらつきは、本実施の形態でいう等間隔、あるいは、適切な角度の範囲内である。 In the example shown in FIGS. 11 and 12, the slits 436 are located at equal intervals. The equal intervals or appropriate angles are not intended to be mathematically equivalent as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 432b divided by the respective slits 436 are equal. Typically, variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
 本構成とすれば、軸心Cと交差する方向において、テーパ部462は、ボス固定ナット10、ロックナット20の周囲から全方位的に軸心Cに向かって、ボス体460をより強く押し付けることができる。つまり、テーパ部462は、スリット436の幅寸法で調整できる範囲において、ボス体460を締め付ける強度を調整できる。したがって、ボス固定ナット10、ロックナット20及びテーパリング430の軸心J(回転中心)は、いずれもボス体460の軸心C(回転中心)と一致する精度が向上する。このため、回転体であるボス体460、ひいては回転板130の芯振れをより抑制することができる。 According to this configuration, in the direction intersecting with the axial center C, the tapered portion 462 presses the boss body 460 more strongly from the periphery of the boss fixing nut 10 and the lock nut 20 toward the axial center C in all directions. Can. That is, the tapered portion 462 can adjust the tightening strength of the boss 460 in a range that can be adjusted by the width dimension of the slit 436. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 10, the lock nut 20 and the taper ring 430 coincides with the axial center C (rotation center) of the boss 460 is improved. For this reason, it is possible to further suppress center run-out of the boss body 460 which is a rotating body, and consequently the rotary plate 130.
 特に、図11に示す3つのスリット436や、図12に示す4つのスリット436を形成した場合、それぞれに分けられた傾斜面432bから回転軸110に対して、適度な保持力が加えられる。傾斜面432bにスリット436を形成する工数も、適度な工数の範囲内で実現できる。 In particular, in the case where the three slits 436 shown in FIG. 11 and the four slits 436 shown in FIG. 12 are formed, an appropriate holding force is applied to the rotation shaft 110 from the inclined surfaces 432 b divided respectively. The number of steps for forming the slit 436 on the inclined surface 432b can also be realized within the range of an appropriate number of steps.
 図13に示すように、スリット436aは、先端436b側のスリット幅W1よりも開口436c側のスリット幅W2のほうが広ければよい。言い換えれば、テーパ部462が有するスリット436aは、テーパ部462の先端436b側のスリット幅W1よりもテーパ部462の開口36c側のスリット幅W2のほうが広くなっている。 As shown in FIG. 13, the slit 436a may have a slit width W2 on the opening 436c side wider than the slit width W1 on the tip 436b side. In other words, the slit 436a of the tapered portion 462 has a slit width W2 on the opening 36c side of the tapered portion 462 larger than the slit width W1 on the tip 436b side of the tapered portion 462.
 本構成とすれば、テーパ部462の内周面と回転軸110の外周面との間に、なんらかの要因による隙間が生じたとしても、スリット幅W2とスリット幅W1との差分が、この隙間を吸収する。つまり、スリット幅W2とスリット幅W1との差分が存在することにより、テーパ部462と回転軸110とは、常に、適切な保持力を確保することができる。 With this configuration, even if a gap is generated between the inner circumferential surface of the tapered portion 462 and the outer circumferential surface of the rotating shaft 110, the difference between the slit width W2 and the slit width W1 corresponds to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the tapered portion 462 and the rotating shaft 110 can always ensure appropriate holding power.
 以上の説明から明らかなように、上述した実施の形態2において、ボス体460は、ボス固定ナット10が有する第3の内周面17と回転軸110の外周面との間に達するテーパ部462を有する。テーパ部462は、実施の形態1で説明した内側リング30bに相当する作用を奏する。本構成では、テーパリング430は、実施の形態1で説明した外側リング30aに相当する作用を奏する。つまり、実施の形態2は、実施の形態1と比べて、テーパリング430をひとつの部材で構成できる。よって、実施の形態2は、実施の形態1で示した取付機構40と比べて、組立の作業性が向上する。 As is apparent from the above description, in the above-described second embodiment, the boss 460 has a tapered portion 462 that reaches between the third inner circumferential surface 17 of the boss fixing nut 10 and the outer circumferential surface of the rotary shaft 110. Have. The tapered portion 462 exerts an action corresponding to the inner ring 30 b described in the first embodiment. In the present configuration, the taper ring 430 has an effect corresponding to the outer ring 30a described in the first embodiment. That is, in the second embodiment, as compared with the first embodiment, the taper ring 430 can be configured by one member. Therefore, in the second embodiment, assembling workability is improved as compared with the attachment mechanism 40 shown in the first embodiment.
 以上のように、本実施の形態のボス体460に相当する回転体は、軸心Cに沿った方向において、第3の内周面17と回転軸110との間まで延伸したテーパ部462を有する。テーパ部462は、傾斜面432aに相当する第1の傾斜面と対向する傾斜面432bに相当する第2の傾斜面を含む。 As described above, the rotating body corresponding to the boss body 460 of the present embodiment has the tapered portion 462 extending between the third inner circumferential surface 17 and the rotating shaft 110 in the direction along the axial center C. Have. The tapered portion 462 includes a second inclined surface corresponding to the inclined surface 432 b opposed to the first inclined surface corresponding to the inclined surface 432 a.
 これにより、ボス体460に相当する回転体の芯振れを抑制することができる。 Thereby, the runout of the rotating body corresponding to the boss body 460 can be suppressed.
 また、テーパ部462は、スリット436を有する。スリット436の延長線は軸心Cと交差すればよい。 The tapered portion 462 also has a slit 436. The extension line of the slit 436 may intersect the axis C.
 また、テーパ部462は、複数のスリット436を有する。複数のスリット436のそれぞれの延長線はそれぞれ軸心Cと交差する。軸心Cと直交する平面上において、複数のスリット436はそれぞれ、軸心Cを中心とする円周方向に亘って間隔を置いて位置すればよい。 The tapered portion 462 also has a plurality of slits 436. The extension line of each of the plurality of slits 436 intersects with the axial center C, respectively. In the plane orthogonal to the axis C, the plurality of slits 436 may be spaced apart in the circumferential direction around the axis C, respectively.
 また、テーパ部462が有するスリット436aは、テーパ部462の先端436b側のスリット幅W1よりもテーパ部462の開口436c側のスリット幅W2のほうが広ければよい。 The slit 436a of the tapered portion 462 may be wider at the slit width W2 at the opening 436c side of the tapered portion 462 than at the slit width W1 at the tip 436b side of the tapered portion 462.
 (実施の形態3)
 実施の形態3に係る取付機構540の構成を説明する。
Third Embodiment
The configuration of the attachment mechanism 540 according to the third embodiment will be described.
 図14は、本開示の実施の形態3に係る取付機構540における回転軸110に対する作用を表す模式的な断面図である。図15は、本開示の実施の形態3に係る取付機構540を構成する一部材の斜視図である。図16は、本開示の実施の形態3に係る取付機構540を構成する一部材の正面図である。図17は、本開示の実施の形態3に係る取付機構540を構成する他の一部材の正面図である。図18は、本開示の実施の形態3に係る取付機構540を構成する他の一部材の斜視図である。 FIG. 14 is a schematic cross-sectional view showing an operation on the rotation shaft 110 in the attachment mechanism 540 according to the third embodiment of the present disclosure. FIG. 15 is a perspective view of one member of the attachment mechanism 540 according to the third embodiment of the present disclosure. FIG. 16 is a front view of one member of the attachment mechanism 540 according to the third embodiment of the present disclosure. FIG. 17 is a front view of another member of the attachment mechanism 540 according to Embodiment 3 of the present disclosure. FIG. 18 is a perspective view of another member of the attachment mechanism 540 according to the third embodiment of the present disclosure.
 なお、取付機構540を説明するにあたり、上述した実施の形態1及び2の各構成要素と同様の構成については、同じ符号を付して、説明を援用する。 In the description of the attachment mechanism 540, the same components as those in the first and second embodiments described above are denoted by the same reference numerals, and the description is used.
 図14に示すように、取付機構540に用いられる第1のナットであるボス固定ナット510が有する第3の内周面517は、リング体であるテーパリング530が有する傾斜面532aと対向する傾斜面532bを含む。言い換えれば、第3の内周面517は、傾斜面532bを兼ねる。 As shown in FIG. 14, the third inner circumferential surface 517 of the boss fixing nut 510 which is the first nut used for the attachment mechanism 540 is inclined to face the inclined surface 532 a of the taper ring 530 which is the ring body. The surface 532 b is included. In other words, the third inner circumferential surface 517 doubles as the inclined surface 532 b.
 つまり、以下の説明において、リング体であるテーパリング530が有する傾斜面532aは、第1の傾斜面として機能する。一方、円筒部510Aが有する傾斜面532bは、第2の傾斜面として機能する。 That is, in the following description, the inclined surface 532a of the taper ring 530 which is a ring body functions as a first inclined surface. On the other hand, the inclined surface 532b of the cylindrical portion 510A functions as a second inclined surface.
 図面を用いて、さらに詳細に説明する。 This will be described in more detail using the drawings.
 図14に示すように、ボス固定ナット510は、フランジ部510Bと、円筒部510Aと、を含む。フランジ部510Bには、ボス体120と向い合う第1の内周面16に、第1のねじ溝18が形成される。円筒部510Aは、ボス体120が位置する側の反対側に第1の外周面12を有する。第1の外周面12には、第1のねじ山14が形成される。 As shown in FIG. 14, the boss fixing nut 510 includes a flange portion 510B and a cylindrical portion 510A. In the flange portion 510 </ b> B, a first screw groove 18 is formed on the first inner circumferential surface 16 facing the boss body 120. The cylindrical portion 510A has the first outer circumferential surface 12 on the opposite side to the side where the boss body 120 is located. A first thread 14 is formed on the first outer circumferential surface 12.
 軸心J方向において、ボス体120には、ボス体120に形成された突起部と反対側に位置する端部120bに、第2のねじ山122が形成される。第2のねじ山122は、ボス固定ナット510に形成された第1のねじ溝18と螺合される。 In the direction of the axis J, the second screw thread 122 is formed at the end 120 b of the boss 120 opposite to the protrusion formed on the boss 120. The second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 510.
 ロックナット20は、ボス固定ナット510をボス体120に固持させる。ロックナット20が有する第2の内周面26の一部には、ボス固定ナット510に形成された第1のねじ山14と螺合する第2のねじ溝22が形成される。ロックナット20は、ロックナット20が有する第2の内周面26の残部の少なくとも一部に、回転軸110と嵌合する小孔部24を有する。 The lock nut 20 secures the boss fixing nut 510 to the boss body 120. In a part of the second inner circumferential surface 26 of the lock nut 20, a second screw groove 22 to be screwed with the first screw thread 14 formed on the boss fixing nut 510 is formed. The lock nut 20 has a small hole portion 24 fitted with the rotation shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 26 of the lock nut 20.
 ここで、ボス固定ナット510が有する円筒部510Aは、回転軸110との間に空隙部510Cが生じるように形成されている。空隙部510Cには、テーパリング530が挿入されている。テーパリング530は、円筒部510Aが有する傾斜面532bに対向して当接する傾斜面532aを有する。テーパリング530は、ロックナット20をボス固定ナット510の方向D2に螺合すると、テーパリング530の傾斜面532aが円筒部510Aの傾斜面532bの内側に潜り込む。言い換えれば、円筒部510Aは、円筒部510Aの傾斜面532bがテーパリング530の傾斜面532aの外側に滑り出す。これにより、軸心Cと交差する方向において、円筒部510Aが回転軸110の軸心Cから離れる方向へ移動するため、円筒部510Aの外径が拡大する。よって、図14に示すように、テーパリング530によって外径が拡大した円筒部510Aには、ボス固定ナット510及びロックナット20に対して、軸心Cと交差する方向であって、且つ、外方へ向かう作用である力F1が生じる。したがって、ボス体120にはその反作用である力F2が生じる。この結果、軸心Cと交差する方向において、ボス体120は、ボス固定ナット510、ロックナット20の周囲から全方位的に軸心Cに向かって強く押し付けられる。つまり、ボス固定ナット510、ロックナット20及びテーパリング530の軸心J(回転中心)は、いずれもボス体120の軸心C(回転中心)と一致している。このため、回転体であるボス体120、ひいては回転板130の芯振れを抑制することができる。 Here, the cylindrical portion 510A of the boss fixing nut 510 is formed such that a space 510C is generated between the cylindrical portion 510A and the rotation shaft 110. A taper ring 530 is inserted into the air gap portion 510C. The taper ring 530 has an inclined surface 532 a that faces and abuts the inclined surface 532 b of the cylindrical portion 510A. In the taper ring 530, when the lock nut 20 is screwed in the direction D2 of the boss fixing nut 510, the inclined surface 532a of the taper ring 530 sinks inside the inclined surface 532 b of the cylindrical portion 510A. In other words, in the cylindrical portion 510A, the inclined surface 532b of the cylindrical portion 510A slides out of the inclined surface 532a of the taper ring 530. Thus, the cylindrical portion 510A moves in a direction away from the axial center C of the rotation shaft 110 in the direction intersecting the axial center C, so that the outer diameter of the cylindrical portion 510A is enlarged. Therefore, as shown in FIG. 14, in the cylindrical portion 510A whose outer diameter is enlarged by the taper ring 530, the boss fixing nut 510 and the lock nut 20 are in the direction intersecting with the axial center C and outside. A force F1 is generated which is an action directed to the side. Therefore, a force F2 which is a reaction to the boss body 120 is generated. As a result, in the direction intersecting with the axial center C, the boss body 120 is strongly pressed from the circumference of the boss fixing nut 510 and the lock nut 20 toward the axial center C in all directions. That is, the axial centers J (rotational centers) of the boss fixing nut 510, the locknut 20 and the taper ring 530 all coincide with the axial center C (rotational center) of the boss body 120. For this reason, it is possible to suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
 なお、テーパリング530が有する傾斜面532aと、円筒部510Aが有する傾斜面532bとが接する当接面(滑り面)における摩擦係数は、大きい方が好ましい。 The coefficient of friction at the contact surface (slip surface) where the inclined surface 532a of the taper ring 530 and the inclined surface 532b of the cylindrical portion 510A are in contact with each other is preferably large.
 つぎの構成とすれば、さらに顕著な作用効果を奏することができる。 With the following configuration, it is possible to achieve further remarkable effects.
 図15に示すように、リング体であるテーパリング530は、その延長線が軸心Cと交差するように形成されたスリット536を有すればよい。言い換えれば、リング体であるテーパリング530は、スリット536を有する。ここで、スリット536の延長線とは、幅狭く切り開かれた隙間であるスリット536を切り込む方向に延ばした線をいう。 As shown in FIG. 15, the taper ring 530 which is a ring body may have a slit 536 formed so that the extension line thereof intersects with the axial center C. In other words, taper ring 530 which is a ring body has slit 536. Here, the extension line of the slit 536 refers to a line extended in the direction of cutting in the slit 536 which is a gap which is narrow and cut open.
 あるいは、図16、図17に示すように、リング体であるテーパリング530は、その延長線が軸心Cと交差するように形成された、複数のスリット536を有すればよい。言い換えれば、テーパリング530は、複数のスリット536を有する。複数のスリット536のそれぞれの延長線はそれぞれ、軸心Cと交差する。軸心Cと直交する平面上において、複数のスリット536は、それぞれ軸心Cを中心とする円周方向に亘って間隔を置いて位置すればよい。 Alternatively, as shown in FIG. 16 and FIG. 17, the taper ring 530 which is a ring body may have a plurality of slits 536 formed such that the extension line intersects with the axial center C. In other words, the taper ring 530 has a plurality of slits 536. Each extension line of the plurality of slits 536 intersects the axial center C, respectively. In the plane orthogonal to the axial center C, the plurality of slits 536 may be spaced apart in the circumferential direction around the axial center C, respectively.
 スリット536は、傾斜面532aに沿って形成されればよい。スリット536の中心線を延長した場合、その延長線は軸心Cと交差すればよい。 The slit 536 may be formed along the inclined surface 532a. When the center line of the slit 536 is extended, the extension line may intersect the axis C.
 言い換えれば、軸心Cと直交する平面上において、複数のスリット536は、それぞれ軸心Cを中心とする径方向であって、適切な角度ごとに円周上に位置すればよい。 In other words, on the plane orthogonal to the axial center C, the plurality of slits 536 may be radially positioned around the axial center C, respectively, and may be circumferentially positioned at appropriate angles.
 特に好ましい例として、図16に示すように、それぞれのスリット536は、θ1=120°ごとに位置すればよい。あるいは、図17に示すように、それぞれのスリット536は、θ2=90°ごとに位置すればよい。 As a particularly preferable example, as shown in FIG. 16, each slit 536 may be positioned every θ 1 = 120 °. Alternatively, as shown in FIG. 17, the slits 536 may be positioned every θ2 = 90 °.
 図16、図17に示す具体例では、それぞれのスリット536は、等間隔で位置している。等間隔、あるいは、適切な角度とは、それぞれのスリット536で分けられたそれぞれの傾斜面532aが回転軸110に与える保持力が等しくなればよく、数学的な均等を意図するものではない。典型的には、製造上の公差に起因するばらつきは、本実施の形態でいう等間隔、あるいは、適切な角度の範囲内である。 In the specific example shown in FIGS. 16 and 17, the slits 536 are positioned at equal intervals. The equal intervals or appropriate angles are not intended to be mathematically equivalent, as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 532a divided by the respective slits 536 are equal. Typically, variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
 本構成とすれば、軸心Cと交差する方向において、テーパリング530は、ボス固定ナット510、ロックナット20の周囲から全方位的に軸心Cに向かって、ボス体120をより強く押し付けることができる。つまり、テーパリング530は、スリット536の幅寸法で調整できる範囲において、ボス体120を締め付ける強度を調整できる。したがって、ボス固定ナット510、ロックナット20及びテーパリング530の軸心J(回転中心)は、いずれもボス体120の軸心C(回転中心)と一致する精度が向上する。このため、回転体であるボス体120、ひいては回転板130の芯振れをより抑制することができる。 According to this configuration, in the direction intersecting with the axial center C, the taper ring 530 presses the boss body 120 more strongly from the periphery of the boss fixing nut 510 and the lock nut 20 toward the axial center C in all directions. Can. That is, the taper ring 530 can adjust the tightening strength of the boss body 120 in the range which can be adjusted by the width dimension of the slit 536. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 510, the lock nut 20 and the taper ring 530 matches the axial center C (rotation center) of the boss body 120 is improved. For this reason, it is possible to further suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
 特に、図16に示す3つのスリット536や、図17に示す4つのスリット536を形成した場合、それぞれに分けられた傾斜面532aから回転軸110に対して、適度な保持力が加えられる。傾斜面532aにスリット536を形成する工数も、適度な工数の範囲内で実現できる。 In particular, in the case where the three slits 536 shown in FIG. 16 and the four slits 536 shown in FIG. 17 are formed, an appropriate holding force is applied to the rotary shaft 110 from the inclined surfaces 532 a divided respectively. The number of steps for forming the slits 536 in the inclined surface 532a can also be realized within the range of an appropriate number of steps.
 図18に示すように、スリット536aは、先端536b側のスリット幅W1よりも開口536c側のスリット幅W2のほうが広ければよい。言い換えれば、テーパリング530が有するスリット536aは、テーパリング530の先端536b側のスリット幅W1よりもテーパリング530の開口536c側のスリット幅W2のほうが広くなっている。 As shown in FIG. 18, in the slit 536a, the slit width W2 on the opening 536c side may be wider than the slit width W1 on the tip 536b side. In other words, the slit 536a of the taper ring 530 is wider at the slit width W2 at the opening 536c side of the taper ring 530 than at the slit width W1 at the tip 536 b side of the taper ring 530.
 本構成とすれば、テーパリング530の内周面と回転軸110の外周面との間に、なんらかの要因による隙間が生じたとしても、スリット幅W2とスリット幅W1との差分が、この隙間を吸収する。つまり、スリット幅W2とスリット幅W1との差分が存在することにより、テーパリング530と回転軸110とは、常に、適切な保持力を確保することができる。 With this configuration, even if a gap is generated between the inner circumferential surface of the taper ring 530 and the outer circumferential surface of the rotating shaft 110, the difference between the slit width W2 and the slit width W1 is equal to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the tapering 530 and the rotating shaft 110 can always ensure appropriate holding power.
 以上の説明から明らかなように、上述した実施の形態3において、ボス固定ナット510は、実施の形態1で説明したボス固定ナット10と外側リング30aとを併せた形状を成す。よって、本構成では、テーパリング530は、実施の形態1で説明した内側リング30bに相当する作用を奏する。つまり、実施の形態3は、実施の形態1と比べてテーパリング530をひとつの部材で構成できる。よって、実施の形態3は、実施の形態1で示した取付機構40と比べて、組立の作業性が向上する。 As apparent from the above description, in the third embodiment described above, the boss fixing nut 510 has a shape in which the boss fixing nut 10 described in the first embodiment and the outer ring 30a are combined. Thus, in the present configuration, the taper ring 530 exerts an action equivalent to that of the inner ring 30b described in the first embodiment. That is, in the third embodiment, the taper ring 530 can be configured by one member as compared with the first embodiment. Therefore, in the third embodiment, assembling workability is improved as compared with the attachment mechanism 40 shown in the first embodiment.
 以上のように、本実施の形態の取付機構540に用いられる第1のナット510が有する第3の内周面517は、傾斜面532aに相当する第1の傾斜面と対向する傾斜面532bに相当する第2の傾斜面を含む。 As described above, the third inner circumferential surface 517 of the first nut 510 used in the attachment mechanism 540 of the present embodiment is the inclined surface 532 b opposite to the first inclined surface corresponding to the inclined surface 532 a. It includes the corresponding second inclined surface.
 これにより、取付機構540において、組立の作業性が向上する。 Thereby, in the attachment mechanism 540, the workability of assembly is improved.
 また、リング体であるテーパリング530は、軸心Cに沿った方向のスリット536を有してもよい。 In addition, the taper ring 530 which is a ring body may have a slit 536 in a direction along the axial center C.
 また、リング体であるテーパリング530は、軸心Cに沿った方向に形成された、複数のスリット536を有してもよい。軸心Cと直交する平面上において、複数のスリット536はそれぞれ、軸心Cを中心とする円周方向に亘って等間隔に位置すればよい。 Further, the taper ring 530 which is a ring body may have a plurality of slits 536 formed in a direction along the axial center C. The plurality of slits 536 may be positioned at equal intervals in the circumferential direction around the axis C on a plane orthogonal to the axis C.
 また、リング体であるテーパリング530が有するスリット536aは、リング体であるテーパリング530の先端536b側のスリット幅W1よりもリング体であるテーパリング530の開口536c側のスリット幅W2のほうが広ければよい。 The slit 536a of the taper ring 530 is wider than the slit width W1 of the end 536b of the taper ring 530, which is the slit width W2 of the opening 536c of the taper ring 530. Just do it.
 (実施の形態4)
 実施の形態4に係る取付機構640の構成を説明する。
Embodiment 4
The configuration of the attachment mechanism 640 according to the fourth embodiment will be described.
 図19は、本開示の実施の形態4に係る取付機構640における回転軸110に対する作用を表す模式的な断面図である。図20は、本開示の実施の形態4に係る取付機構640を構成する一部材の斜視図である。図21は、本開示の実施の形態4に係る取付機構640を構成する一部材の正面図である。図22は、本開示の実施の形態4に係る取付機構640を構成する他の一部材の正面図である。図23は、本開示の実施の形態4に係る取付機構640を構成する他の一部材の斜視図である。 FIG. 19 is a schematic cross-sectional view showing an operation on the rotation shaft 110 in the attachment mechanism 640 according to the fourth embodiment of the present disclosure. FIG. 20 is a perspective view of one member of a mounting mechanism 640 according to Embodiment 4 of the present disclosure. FIG. 21 is a front view of one member of an attachment mechanism 640 according to Embodiment 4 of the present disclosure. FIG. 22 is a front view of another member of the attachment mechanism 640 according to Embodiment 4 of the present disclosure. FIG. 23 is a perspective view of another member of the attachment mechanism 640 according to Embodiment 4 of the present disclosure.
 なお、取付機構640を説明するにあたり、上述した1~3の各構成要素と同様の構成については、同じ符号を付して、説明を援用する。 In the description of the mounting mechanism 640, the same components as those of the components 1 to 3 described above are denoted by the same reference numerals, and the description is used.
 図19に示すように、取付機構640に用いられる第2のナットであるロックナット620は、第2の内周面626と回転軸110との間に達する凸部622を有する。凸部622は、リング体であるテーパリング630が有する傾斜面632bと対向する傾斜面632aを含む。 As shown in FIG. 19, a lock nut 620 which is a second nut used for the attachment mechanism 640 has a convex portion 622 which reaches between the second inner circumferential surface 626 and the rotation shaft 110. The convex portion 622 includes an inclined surface 632 a opposed to the inclined surface 632 b of the taper ring 630 which is a ring body.
 つまり、以下の説明において、リング体であるテーパリング630が有する傾斜面632bは、第1の傾斜面として機能する。一方、凸部622が有する傾斜面632aは、第2の傾斜面として機能する。 That is, in the following description, the inclined surface 632b of the taper ring 630 which is a ring body functions as a first inclined surface. On the other hand, the inclined surface 632a of the convex portion 622 functions as a second inclined surface.
 図面を用いて、さらに詳細に説明する。 This will be described in more detail using the drawings.
 図19に示すように、ボス固定ナット10は、フランジ部10Bと、円筒部10Aと、を含む。フランジ部10Bには、ボス体120と向い合う第1の内周面16に、第1のねじ溝18が形成される。円筒部10Aは、ボス体120が位置する側の反対側に第1の外周面12を有する。第1の外周面12には、第1のねじ山14が形成される。 As shown in FIG. 19, the boss fixing nut 10 includes a flange portion 10B and a cylindrical portion 10A. In the flange portion 10B, a first screw groove 18 is formed on a first inner circumferential surface 16 facing the boss body 120. The cylindrical portion 10A has a first outer peripheral surface 12 on the opposite side to the side on which the boss body 120 is located. A first thread 14 is formed on the first outer circumferential surface 12.
 軸心J方向において、ボス体120には、ボス体120に形成された突起部と反対側に位置する端部120bに、第2のねじ山122が形成される。第2のねじ山122は、ボス固定ナット10に形成された第1のねじ溝18と螺合される。 In the direction of the axis J, the second screw thread 122 is formed at the end 120 b of the boss 120 opposite to the protrusion formed on the boss 120. The second screw thread 122 is screwed into a first screw groove 18 formed in the boss fixing nut 10.
 ロックナット620は、ボス固定ナット10をボス体120に固持させる。ロックナット620が有する第2の内周面626の一部には、ボス固定ナット10に形成された第1のねじ山14と螺合する第2のねじ溝22が形成される。ロックナット620は、ロックナット620が有する第2の内周面626の残部の少なくとも一部に、回転軸110と嵌合する小孔部24を有する。 The lock nut 620 secures the boss fixing nut 10 to the boss body 120. In a part of the second inner circumferential surface 626 of the lock nut 620, a second screw groove 22 engaged with the first screw thread 14 formed on the boss fixing nut 10 is formed. The lock nut 620 has a small hole 24 fitted with the rotating shaft 110 in at least a part of the remaining portion of the second inner circumferential surface 626 of the lock nut 620.
 ここで、ボス固定ナット10が有する円筒部10Aは、回転軸110との間に空隙部610Cが生じるように形成されている。空隙部610Cには、テーパリング630が挿入されている。テーパリング630は、凸部622が有する傾斜面632aに対向して当接する傾斜面632bを有する。テーパリング630は、ロックナット620をボス固定ナット10の方向D2に螺合すると、テーパリング630の傾斜面632bが凸部622の傾斜面632aの内側に潜り込む。言い換えれば、凸部622は、凸部622の傾斜面632aがテーパリング630の傾斜面632bの外側に滑り出す。これにより、軸心Cと交差する方向において、凸部622が回転軸110の軸心Cから離れる方向へ移動するため、凸部622の外径が拡大する。よって、図19に示すように、テーパリング630によって外径が拡大した凸部622は、ボス固定ナット10に対して、軸心Cと交差する方向であって、且つ、外方へ向かう作用である力F1が生じる。したがって、ボス体120にはその反作用である力F2が生じる。この結果、軸心Cと交差する方向において、ボス体120は、ボス固定ナット10、ロックナット620の周囲から全方位的に軸心Cに向かって強く押し付けられる。つまり、ボス固定ナット10、ロックナット620及びテーパリング630の軸心J(回転中心)は、いずれもボス体120の軸心C(回転中心)と一致している。このため、回転体であるボス体120、ひいては回転板130の芯振れを抑制することができる。 Here, the cylindrical portion 10A of the boss fixing nut 10 is formed such that a gap 610C is generated between the cylindrical portion 10A and the rotation shaft 110. A taper ring 630 is inserted into the air gap 610C. The taper ring 630 has an inclined surface 632 b opposed to and in contact with the inclined surface 632 a of the convex portion 622. When the lock nut 620 is screwed in the direction D 2 of the boss fixing nut 10, the inclined surface 632 b of the taper ring 630 sinks inside the inclined surface 632 a of the convex portion 622. In other words, in the convex portion 622, the inclined surface 632a of the convex portion 622 slides out of the inclined surface 632b of the taper ring 630. As a result, the convex portion 622 moves in a direction away from the axial center C of the rotating shaft 110 in the direction intersecting with the axial center C, so that the outer diameter of the convex portion 622 is enlarged. Therefore, as shown in FIG. 19, the convex portion 622 whose outer diameter is enlarged by the taper ring 630 is a direction that intersects with the axial center C with respect to the boss fixing nut 10 and acts outward. A force F1 is generated. Therefore, a force F2 which is a reaction to the boss body 120 is generated. As a result, in the direction intersecting with the axial center C, the boss body 120 is strongly pressed from the periphery of the boss fixing nut 10 and the lock nut 620 toward the axial center C in all directions. That is, the axial center J (rotation center) of the boss fixing nut 10, the lock nut 620, and the taper ring 630 coincides with the axial center C (rotation center) of the boss body 120. For this reason, it is possible to suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
 なお、テーパリング630が有する傾斜面632bと、凸部622が有する傾斜面632aとが接する当接面(滑り面)における摩擦係数は、大きい方が好ましい。 The coefficient of friction at the contact surface (slip surface) where the inclined surface 632b of the taper ring 630 and the inclined surface 632a of the convex portion 622 are in contact with each other is preferably large.
 つぎの構成とすれば、さらに顕著な作用効果を奏することができる。 With the following configuration, it is possible to achieve further remarkable effects.
 図20に示すように、リング体であるテーパリング630は、その延長線が軸心Cと交差するように形成されたスリット636を有すればよい。言い換えれば、リング体であるテーパリング630は、スリット636を有する。ここで、スリット636の延長線とは、幅狭く切り開かれた隙間であるスリット636を切り込む方向に延ばした線をいう。 As shown in FIG. 20, the taper ring 630, which is a ring body, may have a slit 636 formed so that its extension line intersects with the axial center C. In other words, the taper ring 630 which is a ring body has a slit 636. Here, the extension line of the slit 636 refers to a line extended in the direction to cut in the slit 636 which is a gap which is narrow and cut open.
 あるいは、図21、図22に示すように、リング体であるテーパリング630は、その延長線が軸心Cと交差するように形成された、複数のスリット636を有すればよい。言い換えれば、テーパリング630は、複数のスリット636を有する。複数のスリット636のそれぞれの延長線はそれぞれ、軸心Cと交差する。軸心Cと直交する平面上において、複数のスリット636は、それぞれ軸心Cを中心とする円周方向に亘って間隔を置いて位置すればよい。 Alternatively, as shown in FIG. 21 and FIG. 22, the taper ring 630 which is a ring body may have a plurality of slits 636 formed so that the extension line thereof intersects with the axial center C. In other words, taper ring 630 has a plurality of slits 636. Each extension line of the plurality of slits 636 intersects the axial center C, respectively. In the plane orthogonal to the axial center C, the plurality of slits 636 may be spaced apart in the circumferential direction around the axial center C, respectively.
 スリット636は、傾斜面632bに沿って形成されればよい。スリット636の中心線を延長した場合、その延長線は軸心Cと交差すればよい。 The slit 636 may be formed along the inclined surface 632 b. When the center line of the slit 636 is extended, the extension line may intersect the axis C.
 言い換えれば、軸心Cと直交する平面上において、複数のスリット636は、それぞれ軸心Cを中心とする径方向であって、適切な角度ごとに円周上に位置すればよい。 In other words, on the plane orthogonal to the axial center C, the plurality of slits 636 may be radially positioned around the axial center C, and may be circumferentially positioned at appropriate angles.
 特に好ましい例として、図21に示すように、それぞれのスリット636は、θ1=120°ごとに位置すればよい。あるいは、図22に示すように、それぞれのスリット636は、θ2=90°ごとに位置すればよい。 As a particularly preferable example, as shown in FIG. 21, each slit 636 may be positioned every θ 1 = 120 °. Alternatively, as shown in FIG. 22, each slit 636 may be positioned every θ2 = 90 °.
 図21、図22に示す具体例では、それぞれのスリット636は、等間隔で位置している。等間隔、あるいは、適切な角度とは、それぞれのスリット636で分けられたそれぞれの傾斜面632bが回転軸110に与える保持力が等しくなればよく、数学的な均等を意図するものではない。典型的には、製造上の公差に起因するばらつきは、本実施の形態でいう等間隔、あるいは、適切な角度の範囲内である。 In the example shown in FIGS. 21 and 22, the slits 636 are positioned at equal intervals. The equal intervals or appropriate angles are not intended to be mathematically equivalent as long as the holding forces given to the rotation axis 110 by the respective inclined surfaces 632 b divided by the respective slits 636 are equal. Typically, variations due to manufacturing tolerances are within the equal intervals or an appropriate range of angles as described in the present embodiment.
 本構成とすれば、軸心Cと交差する方向において、テーパリング630は、ボス固定ナット10、ロックナット620の周囲から全方位的に軸心Cに向かって、ボス体120をより強く押し付けることができる。つまり、テーパリング630は、スリット636の幅寸法で調整できる範囲において、ボス体120を締め付ける強度を調整できる。したがって、ボス固定ナット10、ロックナット620及びテーパリング630の軸心J(回転中心)は、いずれもボス体120の軸心C(回転中心)と一致する精度が向上する。このため、回転体であるボス体120、ひいては回転板130の芯振れをより抑制することができる。 According to this configuration, in the direction intersecting with the axial center C, the taper ring 630 presses the boss body 120 more strongly from the periphery of the boss fixing nut 10 and the lock nut 620 toward the axial center C in all directions. Can. That is, the taper ring 630 can adjust the tightening strength of the boss body 120 within the range that can be adjusted by the width dimension of the slit 636. Therefore, the accuracy with which the axial center J (rotation center) of the boss fixing nut 10, the lock nut 620, and the taper ring 630 coincides with the axial center C (rotation center) of the boss body 120 is improved. For this reason, it is possible to further suppress center run-out of the boss body 120 which is a rotating body, and consequently the rotary plate 130.
 特に、図21に示す3つのスリット636や、図22に示す4つのスリット636を形成した場合、それぞれに分けられた傾斜面632bから回転軸110に対して、適度な保持力が加えられる。傾斜面632bにスリット636を形成する工数も、適度な工数の範囲内で実現できる。 In particular, when the three slits 636 shown in FIG. 21 and the four slits 636 shown in FIG. 22 are formed, an appropriate holding force is applied to the rotation shaft 110 from the inclined surfaces 632 b divided respectively. The number of steps for forming the slits 636 in the inclined surface 632 b can also be realized within the range of an appropriate number of steps.
 図23に示すように、スリット636aは、先端636b側のスリット幅W1よりも開口636c側のスリット幅W2のほうが広ければよい。言い換えれば、テーパリング630が有するスリット636aは、テーパリング630の先端636b側のスリット幅W1よりもテーパリング630の開口636c側のスリット幅W2のほうが広くなっている。 As shown in FIG. 23, the slit 636a may have a slit width W2 on the opening 636c side wider than the slit width W1 on the tip 636b side. In other words, the slit 636a of the taper ring 630 is wider at the slit width W2 at the opening 636c side of the taper ring 630 than at the slit width W1 at the tip 636b side of the taper ring 630.
 本構成とすれば、テーパリング630の内周面と回転軸110の外周面との間に、なんらかの要因による隙間が生じたとしても、スリット幅W2とスリット幅W1との差分が、この隙間を吸収する。つまり、スリット幅W2とスリット幅W1との差分が存在することにより、テーパリング630と回転軸110とは、常に、適切な保持力を確保することができる。 With this configuration, even if a gap is generated between the inner circumferential surface of the taper ring 630 and the outer circumferential surface of the rotating shaft 110, the difference between the slit width W2 and the slit width W1 is equal to this gap. Absorb. That is, due to the difference between the slit width W2 and the slit width W1, the tapering 630 and the rotary shaft 110 can always ensure appropriate holding power.
 以上の説明から明らかなように、上述した実施の形態4において、ロックナット620は、実施の形態1で説明したロックナット20と外側リング30aとを併せた形状を成す。よって、本構成では、テーパリング630は、実施の形態1で説明した内側リング30bに相当する作用を奏する。つまり、実施の形態4は、実施の形態1と比べてテーパリング630をひとつの部材で構成できる。よって、実施の形態4は、実施の形態1で示した取付機構40と比べて、組立の作業性が向上する。 As apparent from the above description, in the fourth embodiment described above, the lock nut 620 has a shape in which the lock nut 20 described in the first embodiment and the outer ring 30 a are combined. Thus, in the present configuration, the taper ring 630 exerts an action equivalent to that of the inner ring 30b described in the first embodiment. That is, in the fourth embodiment, the taper ring 630 can be configured by one member as compared with the first embodiment. Therefore, in the fourth embodiment, assembling workability is improved as compared with the attachment mechanism 40 shown in the first embodiment.
 以上のように、本実施の形態の取付機構640に用いられる第2のナット620は、第2の内周面626と回転軸110との間に達する凸部622を有する。凸部622は、傾斜面632bに相当する第1の傾斜面と対向する傾斜面632aに相当する第2の傾斜面を含む。 As described above, the second nut 620 used in the attachment mechanism 640 of the present embodiment has the convex portion 622 that reaches between the second inner circumferential surface 626 and the rotation shaft 110. The convex portion 622 includes a second inclined surface corresponding to the inclined surface 632 a facing the first inclined surface corresponding to the inclined surface 632 b.
 これにより、ボス体120に相当する回転体の芯振れを抑制することができる。 Thereby, the runout of the rotating body corresponding to the boss body 120 can be suppressed.
 また、リング体であるテーパリング630は、軸心Cに沿った方向のスリット636を有してもよい。 Further, the taper ring 630 which is a ring body may have a slit 636 in a direction along the axial center C.
 また、リング体であるテーパリング630は、軸心Cに沿った方向に形成された、複数のスリット636を有してもよい。軸心Cと直交する平面上において、複数のスリット636はそれぞれ、軸心Cを中心とする円周方向に亘って等間隔に位置すればよい。 Further, the taper ring 630 which is a ring body may have a plurality of slits 636 formed in a direction along the axial center C. In the plane orthogonal to the axial center C, the plurality of slits 636 may be equally spaced in the circumferential direction around the axial center C.
 また、リング体であるテーパリング630が有するスリット636aは、リング体であるテーパリング630の先端636b側のスリット幅W1よりもリング体であるテーパリング630の開口636c側のスリット幅W2のほうが広ければよい。 Further, the slit 636a of the taper ring 630 which is a ring body has a wider slit width W2 on the opening 636c side of the taper ring 630 than the slit width W1 of the tip 636b of the taper ring 630 which is a ring body. Just do it.
 (実施の形態5)
 実施の形態5に係る取付機構の構成を説明する。
Fifth Embodiment
The configuration of the mounting mechanism according to the fifth embodiment will be described.
 図24は、本開示の実施の形態5に係る取付機構を構成する一部材の正面図である。図25は、本開示の実施の形態5に係る取付機構を構成する他の一部材の正面図である。 FIG. 24 is a front view of one member of the attachment mechanism according to Embodiment 5 of the present disclosure. FIG. 25 is a front view of another member of the attachment mechanism according to Embodiment 5 of the present disclosure.
 なお、取付機構を説明するにあたり、上述した実施の形態1~4の各構成要素と同様の構成については、同じ符号を付して、説明を援用する。 In the description of the mounting mechanism, the same components as those in the first to fourth embodiments described above are designated by the same reference numerals, and the description will be incorporated.
 図24に示すように、リング体であるテーパリング730は、傾斜面732bに複数のスリット736を有する。軸心C方向から見て、複数のスリット736は、それぞれ軸心Cを中心とする周方向において、隣り合う開口736cが等間隔に位置する。複数のスリット736はそれぞれ、軸心Cとねじれの位置となる方向に切り欠きが形成される。よって、隣り合う先端736bは、周方向において等間隔に位置する。 As shown in FIG. 24, the taper ring 730 which is a ring body has a plurality of slits 736 in the inclined surface 732 b. When viewed in the axial center C direction, the plurality of slits 736 have adjacent openings 736c at equal intervals in the circumferential direction centering on the axial center C, respectively. Each of the plurality of slits 736 is formed with a notch in the direction of the axis C and the position of twist. Thus, the adjacent tips 736b are equally spaced in the circumferential direction.
 スリットを成す切り欠きの形状は、図24に示すように、直線状のスリット736で実現できる。あるいは、スリットを成す切り欠きの形状は、図25に示すように、螺旋状のスリット736aでも実現できる。 The shape of the notch forming the slit can be realized by a linear slit 736 as shown in FIG. Alternatively, the shape of the notch forming the slit can be realized by a spiral slit 736a as shown in FIG.
 本形状のスリット736、736aは、上述した実施の形態1~4で示した各傾斜面に施すことができる。 The slits 736 and 736a of this shape can be provided on the inclined surfaces shown in the first to fourth embodiments described above.
 本形状のスリット736、736aを用いても、上述した実施の形態1~4と同様の作用効果を奏することができる。 Even when the slits 736 and 736a of this shape are used, the same function and effect as those of the first to fourth embodiments can be obtained.
 (実施の形態の一変形例)
 本開示に係る実施の形態の一変形例として、ボス固定ナット10のフランジ部10Bとロックナット20との対向面同士の間に、金属製のワッシャ等の、公知のゆるみ止め手段を配設してもよい。このようにすると、回転板130を含むボス体120における回転安定性を長期に亘って得ることができる。
(Modified Example of Embodiment)
As a modification of the embodiment according to the present disclosure, a known locking means such as a metal washer is disposed between the facing surfaces of the flange portion 10B of the boss fixing nut 10 and the lock nut 20. May be In this way, the rotational stability of the boss body 120 including the rotary plate 130 can be obtained over a long period of time.
 本開示に係る取り付け機構は、回転体を含む装置における回転体を回転可能な軸体に取り付けることができる。本開示に係る取り付け機構は、例えば、サーボシステムにおける回転位置の検出に用いられる。本開示に係る取り付け機構は、工作機械の工具等の絶対位置を高精度且つ高分解能で検出するエンコーダ等に有用である。 The attachment mechanism according to the present disclosure can attach a rotating body in a device including the rotating body to a rotatable shaft. The attachment mechanism according to the present disclosure is used, for example, to detect a rotational position in a servo system. The attachment mechanism according to the present disclosure is useful for an encoder or the like that detects an absolute position of a tool or the like of a machine tool with high accuracy and high resolution.
10、510 ボス固定ナット(第1のナット)
10A、510A 円筒部
10B、510B フランジ部
10C、410C、510C、610C 空隙部
10d、20a 内面
12 第1の外周面
14 第1のねじ山
16 第1の内周面
17、517 第3の内周面
18 第1のねじ溝
20、620 ロックナット(第2のナット)
22 第2のねじ溝
24 小孔部
26、626 第2の内周面
30、430、530、630、730 テーパリング(リング体)
30a 外側リング
30b 内側リング
32、32a、32b、432a、432b、532a、532b、632a、632b、732b 傾斜面
34、34a、120c 端面
36、36a、436、436a、536、536a、636、636a、736、736a スリット
36b、436b、536b、636b、736b 先端
36c、436c、536c、636c、736c 開口
40、440、540、640 取付機構
100 エンコーダ
100a 筐体
110 回転軸
120、460 ボス体(回転体)
120a 突起部
120b、460b 端部
122 第2のねじ山
124 第2の外周面
130 回転板(回転体)
131 透光窓
140 ベアリング機構
151 LED素子(発光素子)
152 フォトトランジスタ(受光素子)
200 電動機
210 回転子
212 ロータコア
214 磁石孔
216 永久磁石
220 軸受
222 ケース
230 固定子
232 ステータコア
234 巻線
236 インシュレータ
462 テーパ部
622 凸部
10, 510 Boss fixing nut (first nut)
10A, 510A cylindrical portion 10B, 510B flange portion 10C, 410C, 510C, 610C gap portion 10d, 20a inner surface 12 first outer circumferential surface 14 first thread 16 first inner circumferential surface 17, 517 third inner circumferential surface Face 18 first thread groove 20, 620 lock nut (second nut)
22 second thread groove 24 small hole 26, 626 second inner circumferential surface 30, 430, 530, 630, 730 taper ring (ring body)
30a outer ring 30b inner ring 32, 32a, 32b, 432a, 432b, 532a, 532b, 632a, 632b, 732b inclined surface 34, 34a, 120c end surface 36, 36a, 436, 436a, 536, 536a, 636, 636a, 736 , 736a slit 36b 436b 536b 636b 736b tip 36c 436c 536c 636c 736c opening 40 440 540 540 attachment mechanism 100 encoder 100a housing 110 rotation shaft 120 boss body (rotary body)
120a protrusion 120b, 460b end 122 second screw thread 124 second outer circumferential surface 130 rotary plate (rotary body)
131 translucent window 140 bearing mechanism 151 LED element (light emitting element)
152 phototransistor (light receiving element)
200 motor 210 rotor 212 rotor core 214 magnet hole 216 permanent magnet 220 bearing 222 case 230 stator 232 stator core 234 winding 236 insulator 462 taper portion 622 convex portion

Claims (16)

  1. 回転軸に回転体を取り付ける取付機構であって、
       前記回転軸が貫通し、前記回転軸の軸心に沿って延伸するとともに、第1のねじ山を含む第1の外周面を有する円筒部と、
          前記軸心と交差する方向であって、前記回転軸が位置する側の反対方向に向かって凸となるとともに、第1のねじ溝を含む第1の内周面を有するフランジ部と、
       を含む第1のナットと、
       前記回転軸が貫通し、
          前記回転軸と向い合う第2の内周面の一部に形成されるとともに、前記第1のねじ山と螺合する第2のねじ溝と、
          前記第2の内周面のうち前記第2のねじ溝以外の部分に形成されるとともに、前記回転軸と嵌合する小孔部と、
       を含む第2のナットと、
       前記回転軸が貫通するとともに、前記円筒部が有する第3の内周面と前記回転軸との間に位置し、前記第1のナットと前記第2のナットとが互いに近づく方向に螺合したとき、前記第1のナット及び前記第2のナットのそれぞれから加えられる前記軸心に沿った方向に作用する力を前記軸心と交差する方向に作用する力に変換する第1の傾斜面を有するリング体と、
    を備える、取付機構。
    An attachment mechanism for attaching a rotating body to a rotating shaft,
    A cylindrical portion having the first outer peripheral surface through which the rotary shaft passes and extends along the axial center of the rotary shaft;
    A flange portion having a first inner circumferential surface including a first screw groove and being convex in a direction that intersects the axis and is opposite to the side on which the rotation axis is located;
    A first nut including
    The rotating shaft penetrates,
    A second thread groove formed on a part of the second inner circumferential surface facing the rotation axis and screwed with the first thread;
    A small hole formed in a portion of the second inner peripheral surface other than the second screw groove and fitted with the rotation shaft;
    And a second nut including
    The rotary shaft penetrates, is positioned between the third inner circumferential surface of the cylindrical portion and the rotary shaft, and the first nut and the second nut are screwed in a direction approaching each other When the force applied in the direction along the axis, which is applied from each of the first nut and the second nut, is converted into a force acting in the direction intersecting with the axis, With a ring body,
    , Mounting mechanism.
  2. 前記リング体は、前記第1の傾斜面に対向して当接する第2の傾斜面をさらに有する、一対のテーパリングである、請求項1に記載の取付機構。 The attachment mechanism according to claim 1, wherein the ring body is a pair of taper rings further having a second inclined surface opposed to and in contact with the first inclined surface.
  3. 前記一対のテーパリングのうち、前記回転軸側に位置するテーパリングは、スリットを有し、前記スリットの延長線は前記軸心と交差する、請求項2に記載の取付機構。 The attachment mechanism according to claim 2, wherein the taper ring located on the rotation shaft side among the pair of taper rings has a slit, and an extension line of the slit intersects the axis.
  4. 前記一対のテーパリングのうち、前記回転軸側に位置するテーパリングは、複数のスリットを有し、前記複数のスリットのそれぞれの延長線はそれぞれ前記軸心と交差し、
    前記軸心と直交する平面上において、前記複数のスリットはそれぞれ、前記軸心を中心とする円周方向に亘って間隔を置いて位置する、請求項2に記載の取付機構。
    Among the pair of taper rings, the taper ring located on the rotation shaft side has a plurality of slits, and extension lines of the plurality of slits respectively intersect the axis,
    The attachment mechanism according to claim 2, wherein the plurality of slits are spaced apart in a circumferential direction about the axis on a plane orthogonal to the axis.
  5. 前記回転軸側に位置する前記テーパリングが有する前記スリットは、前記テーパリングの先端側のスリット幅よりも前記テーパリングの開口側のスリット幅のほうが広い、請求項3または4に記載の取付機構。 The attachment mechanism according to claim 3 or 4, wherein the slit of the taper ring located on the rotation shaft side has a slit width on the opening side of the taper ring wider than a slit width on the tip end of the taper ring. .
  6. 前記回転体は、前記軸心に沿った方向において、前記第3の内周面と前記回転軸との間まで延伸したテーパ部を有し、
    前記テーパ部は、前記第1の傾斜面と対向する第2の傾斜面を含む、請求項1に記載の取付機構。
    The rotating body has a tapered portion extending between the third inner circumferential surface and the rotation axis in a direction along the axis.
    The attachment mechanism according to claim 1, wherein the tapered portion includes a second inclined surface opposite to the first inclined surface.
  7. 前記テーパ部は、スリットを有し、前記スリットの延長線は前記軸心と交差する、請求項6に記載の取付機構。 The attachment mechanism according to claim 6, wherein the tapered portion has a slit, and an extension of the slit intersects the axis.
  8. 前記テーパ部は、複数のスリットを有し、前記スリットのそれぞれの延長線はそれぞれ前記軸心と交差し、
    前記軸心と直交する平面上において、前記複数のスリットはそれぞれ、前記軸心を中心とする円周方向に亘って間隔を置いて位置する、請求項6に記載の取付機構。
    The tapered portion has a plurality of slits, and extension lines of the slits respectively intersect the axis.
    The attachment mechanism according to claim 6, wherein the plurality of slits are spaced apart in a circumferential direction about the axis on a plane orthogonal to the axis.
  9. 前記テーパ部が有する前記スリットは、前記テーパ部の先端側のスリット幅よりも前記テーパ部の開口側のスリット幅のほうが広い、請求項7または8に記載の取付機構。 The attachment mechanism according to claim 7 or 8, wherein the slit of the tapered portion has a slit width on the opening side of the tapered portion that is wider than a slit width on the tip end side of the tapered portion.
  10. 前記第1のナットが有する前記第3の内周面は、前記第1の傾斜面と対向する第2の傾斜面を含む、請求項1に記載の取付機構。 The attachment mechanism according to claim 1, wherein the third inner circumferential surface of the first nut includes a second inclined surface opposite to the first inclined surface.
  11. 前記第2のナットは、前記第2の内周面と前記回転軸との間に達する凸部をさらに有し、前記凸部は、前記第1の傾斜面と対向する第2の傾斜面を含む、請求項1に記載の取付機構。 The second nut further includes a convex portion reaching between the second inner peripheral surface and the rotation axis, and the convex portion has a second inclined surface facing the first inclined surface. The attachment mechanism according to claim 1, comprising:
  12. 前記リング体は、前記軸心に沿った方向のスリットを有する、請求項10または11に記載の取付機構。 The attachment mechanism according to claim 10, wherein the ring body has a slit in a direction along the axis.
  13. 前記リング体は、前記軸心に沿った方向に形成された、複数のスリットを有し、
    前記軸心と直交する平面上において、前記複数のスリットはそれぞれ、前記軸心を中心とする円周方向に亘って等間隔に位置する、請求項10または11に記載の取付機構。
    The ring body has a plurality of slits formed in a direction along the axis,
    The attachment mechanism according to claim 10, wherein the plurality of slits are equally spaced in a circumferential direction about the axis on a plane orthogonal to the axis.
  14. 前記リング体が有する前記スリットは、前記リング体の先端側のスリット幅よりも前記リング体の開口側のスリット幅のほうが広い、請求項12または13に記載の取付機構。 The attachment mechanism according to claim 12 or 13, wherein the slit of the ring body has a slit width on the opening side of the ring body wider than a slit width on the tip side of the ring body.
  15. 前記回転体は、
       前記回転軸が貫通し、前記回転軸の軸心に沿って延伸するとともに、前記フランジ部が含む前記第1のねじ溝と螺合する第2のねじ山を含む第2の外周面を有するボス体と、
       前記軸心と交差するように取り付けられた回転板と、
    を含むエンコーダである、請求項1、2、6、10及び11のいずれか一項に記載の取付機構。
    The rotating body is
    A boss having a second outer peripheral surface including a second screw thread through which the rotation shaft penetrates and extends along the axial center of the rotation shaft and which is screwed with the first screw groove included in the flange portion Body,
    A rotary plate attached to intersect with the axis;
    The attachment mechanism according to any one of claims 1, 2, 6, 10 and 11, wherein the attachment mechanism comprises an encoder.
  16.    前記回転軸にロータコアが取り付けられた回転子と、
       前記回転軸を回転自在に支持する軸受と、
       前記回転子と対向して位置する固定子と、
    を備え、
    前記回転軸には、請求項15に記載の取付機構を用いて前記エンコーダを取り付ける、電動機。
    A rotor having a rotor core attached to the rotating shaft;
    A bearing rotatably supporting the rotating shaft;
    A stator located opposite to the rotor;
    Equipped with
    The motor according to claim 15, wherein the encoder is attached to the rotation shaft using the attachment mechanism according to claim 15.
PCT/JP2018/033337 2017-09-20 2018-09-10 Mounting mechanism and electric motor using same WO2019059010A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880059357.3A CN111094902B (en) 2017-09-20 2018-09-10 Mounting mechanism and motor using the same
JP2019543552A JP7113237B2 (en) 2017-09-20 2018-09-10 Mounting mechanism and electric motor using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-180301 2017-09-20
JP2017180301 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019059010A1 true WO2019059010A1 (en) 2019-03-28

Family

ID=65809895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033337 WO2019059010A1 (en) 2017-09-20 2018-09-10 Mounting mechanism and electric motor using same

Country Status (3)

Country Link
JP (1) JP7113237B2 (en)
CN (1) CN111094902B (en)
WO (1) WO2019059010A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142420A (en) * 1983-02-04 1984-08-15 Fanuc Ltd Magnetic type pulse encoder
JPH0216412A (en) * 1988-07-04 1990-01-19 Matsushita Electric Ind Co Ltd Rotary encoder
JPH02163517A (en) * 1987-12-29 1990-06-22 Tokyo Jido Kiko Kk Bushing for transfer wheel
JPH02102053U (en) * 1989-01-31 1990-08-14
JP2001501286A (en) * 1996-09-11 2001-01-30 フェナー,インコーポレイテッド Mounting device
JP2003139156A (en) * 2001-11-05 2003-05-14 Kawasaki Heavy Ind Ltd Rotor assembly and fastening mechanism thereof
JP2010115022A (en) * 2008-11-06 2010-05-20 Mitsuba Corp Brushless motor
JP2011088488A (en) * 2009-10-20 2011-05-06 Nsk Ltd Driving device for vehicle
US20140161515A1 (en) * 2012-12-06 2014-06-12 Fenner U.S., Inc. Method and Apparatus for Mounting a Machine Element onto a Shaft

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168210A (en) * 1994-12-12 1996-06-25 Olympus Optical Co Ltd Encoder unit, control motor, and assembly of control motor
JP2005042832A (en) * 2003-07-23 2005-02-17 Tsubaki Emerson Co Fastener of shaft and rotating body
CN206368912U (en) * 2016-09-14 2017-08-01 西门子公司 Rotating shaft and axle sleeve attachment structure, decoder, encoder and motor
CN206060467U (en) * 2016-09-21 2017-03-29 新誉轨道交通科技有限公司 A kind of attachment structure of motor and encoder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142420A (en) * 1983-02-04 1984-08-15 Fanuc Ltd Magnetic type pulse encoder
JPH02163517A (en) * 1987-12-29 1990-06-22 Tokyo Jido Kiko Kk Bushing for transfer wheel
JPH0216412A (en) * 1988-07-04 1990-01-19 Matsushita Electric Ind Co Ltd Rotary encoder
JPH02102053U (en) * 1989-01-31 1990-08-14
JP2001501286A (en) * 1996-09-11 2001-01-30 フェナー,インコーポレイテッド Mounting device
JP2003139156A (en) * 2001-11-05 2003-05-14 Kawasaki Heavy Ind Ltd Rotor assembly and fastening mechanism thereof
JP2010115022A (en) * 2008-11-06 2010-05-20 Mitsuba Corp Brushless motor
JP2011088488A (en) * 2009-10-20 2011-05-06 Nsk Ltd Driving device for vehicle
US20140161515A1 (en) * 2012-12-06 2014-06-12 Fenner U.S., Inc. Method and Apparatus for Mounting a Machine Element onto a Shaft

Also Published As

Publication number Publication date
CN111094902B (en) 2022-03-22
JPWO2019059010A1 (en) 2020-09-03
CN111094902A (en) 2020-05-01
JP7113237B2 (en) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2019198525A1 (en) Articulation unit, robot arm, and robot
CN110880836B (en) Structure and method for mounting rotary member of encoder
US11002355B2 (en) Actuator with sensor on output flange
JPWO2009001399A1 (en) Motor rotation position detection device
JP2018503840A (en) Magnetic angular displacement measurement system
US9151638B2 (en) Rotating electric machine
KR20150035911A (en) Rotary electric machine
JP2022511533A (en) Dual absolute encoder
US9784556B2 (en) Rotation detector detecting rotation of rotating machine and system provided with rotation detector
JP7113237B2 (en) Mounting mechanism and electric motor using the same
US11204261B2 (en) Rotational position detection device
JP6297802B2 (en) Resolver mounting structure
WO2011158370A1 (en) Device for elevator repair work
JP2015133841A (en) Motor and motor unit
CN110773759B (en) Connecting disc subassembly and have its numerical control lathe electricity main shaft
US9470558B2 (en) Encoder alignment structure
JP2013007411A (en) Sliding bearing device with rotation detection function
JP2013246077A (en) Rotation angle detector and motor device
WO2023171696A1 (en) Rotary electric machine
JP7023179B2 (en) Linear actuator with output screw shaft centering mechanism
EP2871011A1 (en) Tool holder unit for portable machine tools.
JP7153998B2 (en) motor
WO2020262387A1 (en) Motor assembly
JP2017085758A (en) Actuator and mechanical device
JP2017085757A (en) Actuator and mechanical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857957

Country of ref document: EP

Kind code of ref document: A1