WO2019058920A1 - Aqueous ink composition for inkjet recording, image forming method, and resin fine particles - Google Patents

Aqueous ink composition for inkjet recording, image forming method, and resin fine particles Download PDF

Info

Publication number
WO2019058920A1
WO2019058920A1 PCT/JP2018/032170 JP2018032170W WO2019058920A1 WO 2019058920 A1 WO2019058920 A1 WO 2019058920A1 JP 2018032170 W JP2018032170 W JP 2018032170W WO 2019058920 A1 WO2019058920 A1 WO 2019058920A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
polymer
ink composition
formula
aqueous ink
Prior art date
Application number
PCT/JP2018/032170
Other languages
French (fr)
Japanese (ja)
Inventor
史子 玉國
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019543515A priority Critical patent/JP6795704B2/en
Publication of WO2019058920A1 publication Critical patent/WO2019058920A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks

Definitions

  • the present invention relates to an aqueous ink composition for ink jet recording, an image forming method, and resin fine particles.
  • an image recording method for forming an image on a recording medium such as paper based on an image data signal there are recording methods such as an electrophotographic method, a sublimation type and a fusion type thermal transfer method, and an inkjet method.
  • the inkjet recording method does not require a printing plate, and discharges the ink only to the image forming unit to form an image directly on the recording medium. Therefore, the ink can be used efficiently and the running cost is reduced.
  • the ink jet recording method is relatively low in cost, can be miniaturized, and has less noise as compared with the conventional printing machine.
  • the inkjet recording method has various advantages as compared with other image recording methods.
  • the ink used in the ink jet recording method is required to have discharge stability capable of stably discharging a desired amount of ink from the nozzle in order to form a target image accurately and stably.
  • the ink is also required to be capable of forming an image showing mechanical strength (abrasion resistance) which is not scratched or peeled off when a force is applied from the outside.
  • Patent Documents 1 to 4 describe an ink composition for inkjet recording containing polymer fine particles having a core-shell structure in which the glass transition temperature of the core polymer and the shell polymer is specified.
  • Patent Document 2 describes a clear ink for ink jet containing a polymer particle having a core-shell structure obtained by polymerizing a core polymer in the presence of a shell polymer having a unit derived from a specific monomer.
  • Patent Document 3 describes an aqueous ink containing a specific resin particle having a core and a shell, and a polyvalent metal ion.
  • Patent Document 4 describes an inkjet ink containing a colorant and resin particles having a specific shell part and a specific core part.
  • the ink jet recording method has been mainly used in the field of office printers, home printers and the like. Furthermore, in recent years, its use has expanded to the commercial printing field, and the speeding up of ink jet recording has been advanced. Along with this, the demand for the ejection stability of the ink is in a state of becoming more and more advanced year by year.
  • the ink jet recording method has a unique and urgent problem that the nozzle is clogged if the nozzle is left after image formation, for example, once the image formation is paused (interrupted). For this reason, the ink used in the ink jet recording method is strongly required to have characteristics (also referred to as latency and restorability) which can be normally ejected even after pausing.
  • the performance (blocking resistance) to prevent the color transfer between the front and back of the stacked recording media or the adhesion between the recording media when the recording media on which the image is formed is stacked, etc. It is required to be able to form an image having the same.
  • the present invention provides an aqueous ink composition for inkjet recording, which is excellent in latency when applied to an inkjet recording method, and can form an image excellent in abrasion resistance and blocking resistance, and the aqueous ink composition for inkjet recording.
  • An object is to provide an image forming method used. Further, the present invention can impart high latency to the aqueous ink composition for ink jet recording by blending into the aqueous ink composition for ink jet recording, and further, the abrasion resistance and blocking resistance of the formed image. It is an object of the present invention to provide resin fine particles which can also enhance
  • the present inventor has identified a specific structural unit (repeating unit) in which a specific acidic group such as a carboxy group or the like or a salt thereof is bound via a specific group.
  • the core-shell resin fine particles are contained in an aqueous medium using at least a polymer having a structural unit having an alkyleneoxy group as a shell polymer as a shell polymer and controlling the relationship of the glass transition temperature between the core and the shell polymer. It has been found that the aqueous ink composition is excellent in latency when used as an ink for ink jet recording, and further, the abrasion resistance and blocking resistance of an image formed using this aqueous ink composition are excellent.
  • the present invention has been further studied based on these findings and has been completed.
  • An aqueous ink composition for inkjet recording comprising an aqueous medium and resin fine particles,
  • the resin fine particles have a core-shell structure containing a core polymer and a shell polymer covering the core polymer,
  • the shell polymer has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2A) or the formula (2B),
  • An aqueous ink composition for ink jet recording wherein the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20 to 130 ° C.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group.
  • a 1 represents an alkylene group having 2 to 20 carbon atoms.
  • m 1 is an integer of 1 to 100.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula and Y 1A .
  • M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
  • water-based ink composition for inkjet recording as described in ⁇ 1> whose structural unit represented by ⁇ 2> Formula (1) is a structural unit represented by following formula (3).
  • R 1 and R 2 are as described above.
  • m 2 is an integer of 2 to 100.
  • the aqueous ink composition for inkjet recording as described in ⁇ 1> or ⁇ 2> whose absolute value of the difference of the glass transition temperature of ⁇ 3> core polymer and the glass transition temperature of shell polymer is 20 degreeC or more.
  • object. ⁇ 5> The inkjet recording according to any one of ⁇ 1> to ⁇ 4>, wherein at least one of the core polymer and the shell polymer has a structural unit derived from an ethylenically unsaturated compound having an aromatic ring or an aliphatic ring. Water-based ink composition.
  • the content of the structural unit represented by any one of formulas (A) to (E) in the ⁇ 7> core polymer is 10 to 90% by mass
  • the aqueous ink composition for inkjet recording according to ⁇ 6>, wherein the content of the structural unit represented by any of the general formulas (A) to (E) in the shell polymer is 70% by mass or less.
  • ⁇ 9> The aqueous ink composition for inkjet recording according to any one of ⁇ 1> to ⁇ 8>, which contains a pigment.
  • An image forming method comprising an ink applying step of applying an aqueous ink composition for inkjet recording according to ⁇ 9> onto a recording medium by an inkjet method to form an image.
  • the shell polymer has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2A) or the formula (2B), Resin fine particles, wherein the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20 to 130 ° C.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group.
  • a 1 represents an alkylene group having 2 to 20 carbon atoms.
  • m 1 is an integer of 1 to 100.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula and Y 1A .
  • M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
  • the resin particle as described in ⁇ 12> whose structural unit represented by ⁇ 13> Formula (1) is a structural unit represented by following formula (3).
  • R 1 and R 2 are as described above.
  • m 2 is an integer of 2 to 100.
  • substituents and the like when there are a plurality of substituents, linking groups, ligands, structural units and the like (hereinafter referred to as substituents and the like), which are represented by specific symbols, When the groups are simultaneously or alternatively defined, each substituent may be the same as or different from each other. The same applies to the definition of the number of substituents and the like.
  • group of each group described as an example of each substituent is used to include both the unsubstituted form and the form having a substituent.
  • alkyl group means an alkyl group which may have a substituent.
  • (meth) acrylate is used to mean including both acrylate and methacrylate.
  • the aqueous ink composition for inkjet recording of the present invention can form an image excellent in latency when applied to an inkjet recording method, and excellent in abrasion resistance and blocking resistance.
  • the image forming method of the present invention can stably (unclogged) form an image excellent in abrasion resistance and blocking resistance.
  • the resin fine particle of the present invention can impart latency suitable for the ink jet recording method to the aqueous ink composition by blending the same into the aqueous ink composition, and further, an image excellent in abrasion resistance and blocking resistance. Can be formed.
  • aqueous ink composition for inkjet recording of the present invention (hereinafter sometimes simply referred to as the aqueous ink composition of the present invention), the image forming method and the resin fine particles are described below.
  • the aqueous ink composition of the present invention contains an aqueous medium and specific resin fine particles.
  • the aqueous ink composition of the present invention usually contains a pigment.
  • the aqueous ink composition of the present invention does not contain a pigment, it can be used as a clear ink, and when it contains a pigment, it can be used for color imaging applications.
  • the aqueous medium used in the present invention contains at least water, and optionally contains at least one water-soluble organic solvent.
  • - water As water used in the present invention, it is preferable to use water which does not contain ionic impurities such as ion exchange water and distilled water.
  • the content of water in the aqueous ink composition is appropriately selected according to the purpose, but generally 10 to 95% by mass, preferably 30 to 80% by mass, and more preferably 50 to 50% by mass. More preferably, it is 70% by mass.
  • the aqueous medium in the present invention preferably contains at least one water-soluble organic solvent.
  • the prevention of drying means that the ink adheres to the ink discharge port of the jet nozzle and is dried to prevent aggregation and clogging.
  • a water-soluble organic solvent having a vapor pressure lower than that of water is preferred.
  • the water-soluble organic solvent can be used as a penetration accelerator for enhancing the ink permeability to paper.
  • water-soluble organic solvent examples include, for example, alkyl alcohols having 1 to 4 carbon atoms, alkanediols (polyhydric alcohols), sugar alcohols, glycol ethers and the like.
  • alkyl alcohol having 1 to 4 carbon atoms is not particularly limited, and examples thereof include ethanol, methanol, butanol, propanol and isopropanol.
  • the alkane diol is not particularly limited, but glycerin, 1,2,6-hexanetriol, trimethylolpropane, ethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,2-hexanediol, 1 And 2-heptanediol, 1,2-octanediol, 1,2-nonanediol, 1,2-decanediol, and those described later.
  • glycol ethers are not particularly limited, and the following compounds may be mentioned.
  • the water-soluble organic solvents can be used singly or in combination of two or more.
  • Polyhydric alcohols are useful for the purpose of preventing drying or moistening, for example, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, 2 And 3-butanediol. These may be used alone or in combination of two or more.
  • polyol compounds are preferred, and aliphatic diols are preferred.
  • aliphatic diols include 2-ethyl-2-methyl-1,3-propanediol, 3,3-dimethyl-1,2-butanediol, 2,2-diethyl-1,3-propanediol, and the like.
  • -ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol and the like are examples of 2-ethyl-1,3-hexanediol and 2,2,4-trimethyl-1,3-pentanediol can be mentioned as preferable examples.
  • the water-soluble organic solvent in the invention may also contain at least one of the compounds represented by the following structural formula (S) from the viewpoint of suppressing the occurrence of curling in the recording medium.
  • AO represents at least one of an ethyleneoxy group (EO) and a propyleneoxy group (PO), and among them, a propyleneoxy group is preferable.
  • EO and PO are bonded with the ethylene group or propylene group located on the hydroxyl group side.
  • the water-soluble organic solvent may be used singly or in combination of two or more.
  • the content of the water-soluble organic solvent in the aqueous ink composition is preferably 1% by mass to 60% by mass, more preferably 5% by mass to 40% by mass, and still more preferably 7% by mass to 30%. It is less than mass%.
  • the aqueous ink composition of the present invention contains resin fine particles having a core-shell structure containing a core polymer and a shell polymer for coating the core polymer.
  • a shell polymer has a structural unit (I) represented by the following formula (1) and a structural unit (II) represented by the following formula (2A) or the formula (2B) There is.
  • the fine resin particles have a glass transition temperature of the core polymer higher than that of the shell polymer and a glass transition temperature of the shell polymer of 20 to 130 ° C. This resin fine particle is also simply referred to as "resin fine particle used in the present invention".
  • the aqueous ink composition of the present invention contains the above-mentioned resin fine particles, it is possible to form an image excellent in latency when applied to an ink jet recording method and excellent in abrasion resistance and blocking resistance.
  • the shell polymer forming the resin fine particles contains the structural unit (II) having a specific group Y 1A or Y 1B , and this specific group functions as a so-called charge repellent group in the resin fine particles.
  • the shell polymer can cause the resin particles to electrostatically repel each other, and can exert a dispersion stabilizing action of the resin particles.
  • the shell polymer is a structural unit (a group represented by-(A 1 -O) m 1-in the formula (1)) in combination with the structural unit (II) (a group represented by-(A 1 -O) m 1- ) I).
  • structural units (I) and (II) the stability of the resin fine particles in the aqueous ink composition is improved, gelation of the aqueous ink composition, and further resin fine particles to aqueous The aggregation of the ink composition is suppressed, and the above-mentioned dispersion stabilizing action is effectively developed. As a result, clogging of the nozzles is less likely to occur, which is considered to indicate high latency.
  • the glass transition temperature of the shell polymer is set to 20 to 130 ° C.
  • the glass transition temperature higher than that of the shell polymer, each of the polymers forming the core-shell structure of the resin fine particles in the image formation with the aqueous ink composition of the present invention does not impair the expression of the above-mentioned action. It can assume different functions. As a result, both abrasion resistance and blocking resistance can be enhanced.
  • the fine resin particles can exhibit and maintain the thermal adhesion by the shell polymer having a low glass transition temperature and the thermal stability by a core polymer having a high glass transition temperature in a well-balanced manner. Therefore, the resin fine particles of the present invention can enhance the abrasion resistance and the blocking resistance of the image while exhibiting an excellent latency.
  • this resin fine particle has a core-shell structure containing a core polymer and a shell polymer that coats the core polymer.
  • the core polymer core layer formed by the core polymer
  • the shell polymer may be at least partially covered with the shell polymer, and the amount of the core polymer coated is not particularly limited.
  • the layer thickness of the shell layer which consists of shell polymers is not specifically limited, either.
  • the coating amount and the layer thickness of the shell layer can be specified by, for example, the mass ratio of the core polymer to the shell polymer, and it is indicated by the mass ratio [core polymer: shell polymer], for example, 80 to The ratio is preferably 20:20 to 80, and more preferably 70:30 to 30:70.
  • the core polymer and the shell polymer (both may be collectively referred to as core / shell polymer) which form the resin fine particles may be one kind or two or more kinds respectively.
  • the resin fine particles may have a polymer different from the core polymer and the shell polymer as long as the effects of the present invention are not impaired.
  • the shell polymer has, as structural units, at least one of structural units (I) described later and at least one of structural units (II).
  • the shell polymer preferably has, in addition to the structural unit (I) and the structural unit (II), other structural units (III) described later.
  • the core polymer may have any structural unit as long as the conditions of the glass transition temperature are satisfied.
  • the core polymer does not necessarily have to have the structural unit (I) and the structural unit (II), and has one or both of the structural unit (I) and the structural unit (II) You do not have to.
  • the core polymer preferably has the other structural unit (III) described later, and may be one or two or more polymers of the structural unit (III), and the structural unit (III) and And a copolymer with either or both of the structural unit (I) and the structural unit (II).
  • the type of structural unit forming each of the core polymer and the shell polymer is selected so that the glass transition temperature of the shell polymer and the difference (absolute value) between the glass transition temperatures of both polymers satisfy the ranges described later.
  • the aqueous ink composition of the present invention preferably contains 1 to 15% by mass, more preferably 1 to 10% by mass, and still more preferably 4 to 10% by mass of resin fine particles used in the present invention. .
  • the aqueous ink composition of the present invention is improved in the ejection stability and latency of the aqueous ink composition by containing 1 to 15% by mass of the resin fine particles used in the present invention.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 1 is preferably a hydrogen atom or methyl, more preferably methyl.
  • R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group.
  • R 2 is preferably a hydrogen atom or a linear or branched alkyl group, more preferably a hydrogen atom or a linear alkyl group.
  • the alkyl group is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably It is an alkyl group of 1 to 8 and most preferably methyl.
  • the aromatic ring group is not particularly limited as long as it is a group consisting of an aromatic ring, and may be a single ring or a condensed ring, and may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon ring forming the aromatic hydrocarbon ring group is not particularly limited, but one having 6 to 12 carbon atoms is preferable.
  • the aromatic heterocycle forming an aromatic heterocycle group contains, as a ring member atom, at least one or more hetero atoms and carbon atoms.
  • the hetero atom includes, for example, a nitrogen atom, an oxygen atom and a sulfur atom, and the number thereof is not particularly limited, and is, for example, 1 to 2.
  • the number of ring carbon atoms is not particularly limited, but preferably 3 to 20, more preferably 3 to 12. Further, the number of ring members of the aromatic ring (in the case of a condensed ring, a ring forming the condensed ring) is also not particularly limited, but a 5- or 6-membered ring is preferable.
  • an aromatic hydrocarbon ring a benzene ring, a naphthalene ring, an anthracene ring, a binaphthyl group etc. are mentioned, for example.
  • aromatic heterocycle examples include a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, an oxazole ring, a thiazole ring, a 5-membered ring such as thienothiophene or a fused ring containing a 5-membered ring, a pyridine ring, a pyrimidyl ring, And 6-membered rings such as pyrazine ring, quinoline ring and isoquinoline ring, or fused rings containing 6-membered rings.
  • the aromatic ring group is preferably an aromatic hydrocarbon ring group, more preferably a benzene ring group.
  • R 2 may have a substituent.
  • a substituent is not particularly limited, and examples thereof include (cyclo) alkyl group, (cyclo) alkenyl group, (cyclo) alkynyl group, aromatic hydrocarbon ring group, aromatic heterocyclic group and the like. Among them, an alkyl group, an aromatic hydrocarbon ring group and an aromatic heterocyclic group are preferable, and an alkyl group is more preferable.
  • R 2 has a substituent, the substituent may be directly linked to R 2 or may be linked via a linking group.
  • a 1 represents an alkylene group having 2 to 20 carbon atoms, preferably an alkylene group having 2 to 15 carbon atoms, more preferably an alkylene group having 2 to 10 carbon atoms, still more preferably 2 or 3 carbon atoms And an alkylene group, particularly preferably an ethylene group.
  • the alkylene group may be linear, branched or cyclic, preferably linear or branched, and more preferably linear.
  • a 1 may be one kind or two or more kinds. When A 1 is two or more, the binding mode of two (-A 1 -O-) units may be block or random. If A 1 is 2 or more, a combination of ethylene and propylene are preferred.
  • a 1 may have a substituent. Such a substituent is not particularly limited, and examples thereof include substituents which R 2 may have.
  • m 1 is an integer of 1 to 100, and is preferably an integer of 2 to 100, and more preferably, from the viewpoint that even a resin fine particle having a structural unit (II) can effectively suppress gelation or aggregation thereof.
  • the structural unit represented by Formula (1) has a preferable structural unit represented by following formula (3).
  • R 1 and R 2 have the same meanings as R 1 and R 2 of formula (1), it is preferable also the same.
  • m 2 is an integer of 2 to 100.
  • m 2 is preferably an integer of 2 to 80, more preferably an integer of 2 to 50, in that the resin fine particles having the structural unit (II) can effectively suppress gelation or aggregation thereof. is there.
  • any alkyl group that can be taken as R 2 is linear. * Indicates a linking site.
  • Each polymer of the core / shell polymer may have one or more structural units (I).
  • -Structural unit (II)- Structural unit (II) is represented by following formula (2A) or Formula (2B), and what is represented by Formula (2A) is preferable.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which has the same meaning as R 1 in formula (1), and preferred examples are also the same.
  • L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula (2A) and Y 1A .
  • the number of linking groups is not particularly limited as long as it is 2 or more, and for example, 2 to 5 are preferable, and 2 to 3 are more preferable.
  • the alkylene group may be linear or branched, but is preferably linear from the viewpoint of discharge stability, latency, and stability of the resin fine particles.
  • the number of carbon atoms of the alkylene group is not particularly limited as long as it satisfies that the minimum number of atoms described later is 6 or less.
  • L 1A is an alkylene group
  • the carbon number of the alkylene group is 6 or less, preferably 5 or less, and more preferably 2 or 3.
  • L 1A contains an alkylene group (when it is a linking group formed by linking two or more as described above)
  • the number of carbon atoms of the alkylene group is preferably 1 to 3, and 1 or 2 is more preferable. preferable.
  • L 1A has at least 6 or less atoms connecting the carbonyl carbon atom in the formula (2A) and Y 1A .
  • the number of bonds of atoms constituting the shortest chain among the atomic chains connecting the carbonyl carbon atom and Y 1A is 6 or less.
  • the structural unit (I) to which Y 1A is bonded via such a relatively short chain linking group L 1A is included, the stability of the resin fine particles in the aqueous ink composition is improved.
  • the linking group L 1A is a relatively short chain, the affinity with other monomers or organic solvents is increased, and there is an advantage that handling at the time of synthesis becomes easy.
  • the linking group L 1A is a short chain
  • the function originally exhibited by Y 1A is not effectively exhibited, and the resin fine particles gel or aggregate, resulting in a high aqueous ink composition for inkjet recording. It becomes impossible to provide latency and excellent image forming characteristics (abrasion resistance and blocking resistance).
  • a structural unit (II) is combined with the structural unit (I) to be incorporated into a shell polymer forming resin fine particles.
  • L 1A may have a substituent.
  • a substituent is not particularly limited, and examples thereof include substituents which R 2 may have.
  • M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
  • M is preferably an alkali metal ion, more preferably a sodium ion or a potassium ion, and still more preferably a potassium ion, from the viewpoint of discharge stability, latency, and stability of the resin fine particles.
  • M may be separated (free).
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which has the same meaning as R 1 in formula (1), and preferred ones are also the same.
  • M represents a hydrogen atom, an alkali metal ion or an ammonium ion, and has the same meaning as M which Y 1A may have, and preferred examples are also the same.
  • the position to which Y 1B is bonded is not particularly limited, but is preferably in the para-position to the ring-constituting carbon atom bonded to the carbon atom having R 3 .
  • the benzene ring in Formula (2) may have a substituent. Such a substituent is not particularly limited, and examples thereof include the substituents which R 2 may have, and further, Y 1 B described above and the like.
  • Each polymer of the core / shell polymer may have one or more structural units (II).
  • one structural unit (II) When one structural unit (II) is contained, it may be a structural unit represented by the formula (2A) or a structural unit represented by the formula (2B).
  • it when it has 2 or more types of structural unit (II), it may have 2 or more types of structural units represented by Formula (2A) or Formula (2B), and is a structural unit represented by Formula (2A) And at least one structural unit represented by the formula (2B).
  • structural unit (I) and structural unit (II) are not specifically limited, The preferable thing of structural unit (I) and the preferable thing of structural unit (II) can be combined suitably.
  • the structural unit represented by the said Formula (3) as structural unit (I) and the structural unit represented by said Formula (2A) as structural unit (II) can be combined.
  • the structural unit (referred to as “other structural unit (III)”) other than the structural unit (I) and the structural unit (II) constituting at least one of the core / shell polymer is not particularly limited, and is preferable
  • structural units described in JP-A-2001-181549 and JP-A-2002-88294 there can be mentioned structural units described in JP-A-2001-181549 and JP-A-2002-88294.
  • At least one of the core / shell polymers preferably contains, as another structural unit (III), a structural unit (i) of an ethylenically unsaturated compound having an aromatic ring or an aliphatic ring.
  • the aromatic ring or aliphatic ring contained in the structural unit (i) includes a benzene ring, a naphthalene ring, an anthracene ring, and an aliphatic hydrocarbon ring having 5 to 20 carbon atoms, and the benzene ring and carbon Aliphatic hydrocarbon rings of several 6 to 10 are preferred.
  • These aromatic rings or aliphatic rings may have a substituent.
  • the substituent is not particularly limited, and examples of the substituent include substituents other than those described above which can be taken as Y 1A and Y 1B .
  • an ethylenically unsaturated compound having an aromatic ring or aliphatic ring leading to the structural unit (i) is preferable, and styrene or (meth) acrylate is preferable.
  • the compound or the (meth) acrylamide compound is more preferable, and the styrene which may have a substituent or the (meth) acrylate compound is more preferable.
  • Examples of the above-mentioned ethylenically unsaturated compound include, but are not particularly limited to, compounds which lead to structural units represented by the following general formulas (A) to (E), and more specifically styrene, benzyl ( Examples include meta) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate and the like.
  • the structural unit (i) preferably contains a structural unit represented by any one of the following general formula (A) to general formula (E) from the viewpoint of the production aptitude (filterability) of the obtained image From the viewpoint of the stability of particles in the ink, it is more preferable to include a structural unit represented by the following general formula (A).
  • R 11 and R 12 each independently represent a methyl group or a hydrogen atom.
  • Each R 13 independently represents a linear or branched alkyl group having 1 to 10 carbon atoms.
  • N in the general formula (A) and the general formula (B) represents an integer of 0 to 5.
  • N in the general formula (C) is an integer of 0 to 11.
  • L 11 represents a single bond, a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms, an arylene group having 6 to 18 carbon atoms, -O-, -NH-, -S- or -C ( OO) — or a divalent linking group formed by linking two or more of these.
  • R 11 is preferably a hydrogen atom.
  • R 12 is preferably a methyl group.
  • each of R 13 s independently preferably represents a linear or branched alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group or an ethyl group.
  • the structural unit represented by each formula has a plurality of R 13 's, they may be combined with each other to form a ring.
  • the structural unit represented by the general formula (C) when a plurality of R 13 combine with each other to form a ring, the structural unit represented by the general formulas (D) and (E) can not be obtained.
  • n is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • L 11 is preferably a divalent linking group containing -O- or -NH- at the bonding site to the carbonyl carbon atom described in the general formula (B), and the carbonyl carbon atom More preferably a divalent linking group containing -O- or -NH- at the bonding site with and containing a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms, and -OCH 2- Or -NHCH 2- is more preferred, and -OCH 2 -is particularly preferred.
  • L 11 contains -O- or -NH- at the bonding site to the carbonyl carbon atom described in the general formulas (C) to (E)
  • a divalent linking group is preferred, -O- or -NH- is more preferred, and -O- is more preferred.
  • the structural unit represented by the general formula (A) is preferably a structural unit derived from styrene.
  • the structural unit represented by the general formula (B) is preferably a structural unit derived from benzyl (meth) acrylate.
  • the structural unit represented by the general formula (C) is preferably a structural unit derived from cyclohexyl (meth) acrylate.
  • the structural unit represented by the general formula (D) is preferably a structural unit derived from isobornyl (meth) acrylate.
  • the structural unit represented by the general formula (E) is preferably a structural unit derived from dicyclopentanyl (meth) acrylate.
  • Each polymer of the core / shell polymer may have one or more structural units (i).
  • At least one of the core / shell polymers may have a structural unit (ii) other than the structural unit (i) as the other structural unit (III).
  • the structural unit (ii) is not particularly limited as long as it is derived from a compound that can be polymerized with the above structural unit, and is preferably a structural unit derived from a (meth) acrylamide compound or a (meth) acrylate compound, It is more preferable that it is a structural unit derived from an acrylate compound.
  • the structural unit (ii) is preferably an alkyl (meth) acrylate compound or an alkyl (meth) acrylamide compound in which the alkyl group has 1 to 18 carbon atoms, and an alkyl (meth) acrylate compound is more preferable.
  • the alkyl (meth) acrylate compound is more preferably an alkyl (meth) acrylate compound in which the alkyl group has 1 to 10 carbon atoms.
  • the above-mentioned alkyl group possessed by the structural unit (ii) may be linear or branched, and has a cyclic structure (except those included in the above general formula (C) to general formula (E)). It may be done.
  • the structural unit (ii) may have a substituent. Although it does not specifically limit as a substituent which structural unit (ii) may have, For example, substituents other than said Y1A and Y1B , for example, a hydroxyl group, an amino group, are mentioned.
  • Each polymer of the core / shell polymer may have one or more structural units (ii). At least one of the core / shell polymers may have a structural unit other than the above structural units as the other structural unit (III).
  • a structural unit is not particularly limited, and examples thereof include structural units derived from (meth) acrylic acid compounds or salts thereof (including the above-mentioned alkali metal salts or ammonium salts).
  • the content of the structural unit forming each of the core polymer and the shell polymer is the difference between the glass transition temperature of the shell polymer and the glass transition temperature of both polymers, taking into account the type and content of other structural units, etc. (absolute The value is selected to satisfy the range described later.
  • the content of the structural unit (I) in the shell polymer is, for example, from the viewpoint of being compatible with the latency (discharge stability) and the abrasion resistance and the blocking resistance of the image at a high level, From the viewpoint of stability, the content is preferably more than 0% by mass and 30% by mass or less, more preferably 0.5 to 30% by mass, still more preferably 1 to 25% by mass, and 2 to 20% by mass Is particularly preferred.
  • the content of the structural unit (I) is the sum of the contents of the structural units.
  • the content of the structural unit (I) in the core polymer is the same as the content of the shell polymer.
  • the content of the structural unit (II) in the shell polymer is, for example, from the viewpoint of being compatible with the latency, the abrasion resistance and the blocking resistance of the image at a high level, further from the viewpoint of the stability of the resin fine particles.
  • the content is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 2 to 15% by mass.
  • the content of the structural unit (II) is the sum of the content of each structural unit.
  • the content of the structural unit (II) in the core polymer is the same as the content of the shell polymer.
  • the content of the structural unit (i) of the other structural units (III) in each of the core / shell polymer is set in the following range, taking into consideration the production suitability (filterability) of the resin fine particles Is preferred.
  • the content of the structural unit (i) in the shell polymer is preferably 0 to 80% by mass, more preferably 0 to 75% by mass, and still more preferably 0 to 70% by mass.
  • the content of the structural unit (i) in the core polymer is preferably 1 to 100% by mass, more preferably 5 to 95% by mass, and still more preferably 10 to 90% by mass.
  • the structural unit derived from styrene which is particularly preferable among the structural units (i), is contained in the shell polymer, considering the viewpoint of discharge stability, scratch resistance, and optionally the production suitability (filterability) of the resin fine particles
  • the amount is preferably 0 to 50% by mass, more preferably 0 to 40% by mass, and still more preferably 0 to 35% by mass.
  • the content of structural units derived from styrene in the core polymer is preferably 1 to 100% by mass, more preferably 10 to 90% by mass, and still more preferably 15 to 80% by mass.
  • the content of the structural unit (ii) of the other structural units (III) in each of the core / shell polymer is preferably 0 to 90% by mass from the viewpoint of dischargeability and abrasion resistance, respectively. And 0 to 70% by mass is more preferable.
  • the above content is the total of the content of each structural unit, when each polymer contains plural kinds of structural units (ii).
  • the core polymer and the shell polymer each contain the above structural units (I), (II) and (III), and the total content of these structural units is preferably 100% by mass.
  • the content of structural units other than the above structural units is preferably 0 to 20% by mass, and 0 to 15% by mass in the core polymer or shell polymer More preferably, 0 to 10% by mass is more preferable.
  • the glass transition temperature (hereinafter sometimes referred to as the glass transition temperature of the resin fine particles) of the resin fine particles (the entire resin including the core polymer and the shell polymer) used in the present invention is the scratch resistance and blocking resistance of the obtained image. Accordingly, the temperature is preferably 20 to 150 ° C., more preferably 40 to 130 ° C., and still more preferably 50 to 120 ° C.
  • the glass transition temperature of the shell polymer forming the resin fine particles used in the present invention is 20 to 130.degree. By this, it is possible to secure the fusion bondability by the shell polymer and to further improve the abrasion resistance of the image, and further to maintain the high thermal stability of the core polymer and to further enhance the blocking resistance.
  • the glass transition temperature of the shell polymer is preferably 20 to 130 ° C., and more preferably 30 to 100 ° C.
  • the core polymer forming the resin fine particles used in the present invention has a glass transition temperature higher than that of the shell polymer.
  • the absolute value of the difference (Tg difference) between the glass transition temperature of the core polymer and the glass transition temperature of the shell-shell polymer is not particularly limited as long as it exceeds 0 ° C. From the viewpoint of achieving compatibility at a high level, it is preferably 20 ° C. or more, more preferably 25 ° C. or more, and still more preferably 30 ° C. or more.
  • the difference in Tg is too small, the difference in thermal stability between the core polymer and the shell polymer may be small, and one of scratch resistance and blocking resistance may be poor.
  • the upper limit of the difference with the glass transition temperature is not particularly limited, but is practically 80 ° C. or less.
  • the glass transition temperature of the core-shell polymer may be higher than the glass transition temperature of the shell polymer, and for example, 70 to 150 ° C. is preferable from the viewpoint of achieving both latency and high levels of abrasion resistance and blocking resistance of the image. 80 to 130 ° C. is more preferable.
  • the glass transition temperature of the resin fine particles, the core polymer and the shell polymer can be appropriately controlled by a conventionally known method.
  • the glass transition temperature of the resin fine particles can be adjusted by appropriately adjusting the kind or the composition ratio of the monomer used for the synthesis of each polymer of the core / shell polymer constituting the resin fine particles, and the molecular weight of the polymer constituting the resin fine particles. It can be controlled to a desired range.
  • the glass transition temperature applies the measured Tg obtained by measurement.
  • the measurement Tg is a temperature at which the baseline starts to change along with the glass transition when measured at a temperature rising rate of 5 ° C./min using a differential scanning calorimeter (DSC) EXSTAR 6220 manufactured by SII Nano Technology Inc., It is measured as the average with the temperature returning to baseline again.
  • DSC differential scanning calorimeter
  • the calculated Tg calculated by the following formula is applied.
  • X i is the i-th mass fraction of the monomer components
  • Tg i is the i-th glass transition temperature of the homopolymer of monomer (absolute temperature).
  • the value (Tg i ) of the glass transition temperature of the homopolymer of each monomer adopts the value of Polymer Handbook (3rd Edition) (J. Brandrup, E. H. Immergut (Wiley-Interscience, 1989)). .
  • the weight average molecular weight (Mw) of the resin constituting the resin fine particles used in the present invention is preferably 70,000 or more, more preferably 80,000 to 1,000,000, and further preferably 100,000 to 800,000. preferable. By setting the weight average molecular weight to 70,000 or more, mechanical properties of the obtained film can be further improved.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) by a known method.
  • the resin constituting the resin fine particles used in the present invention and each polymer of the core / shell polymer may be either a block copolymer or a random copolymer.
  • the particle size of the resin fine particles used in the present invention is preferably 1 to 400 nm, more preferably 5 to 300 nm, and more preferably 20 to 200 nm from the viewpoint of ink dischargeability. It is more preferable that there be some, 20 to 100 nm is particularly preferable, and 20 to 80 nm is most preferable.
  • the above particle size of the resin fine particles means a volume average particle size. This volume average particle diameter can be measured by the method described in the examples described later.
  • the resin fine particles are produced by a method capable of producing particles of a resin having a core-shell structure, using the structural unit (I), the structural unit (II), the structural unit (III) and the like as required. be able to.
  • a method for producing resin particles known methods can be applied without particular limitation. For example, there is a polymerization method having a core polymerization step of synthesizing a core polymer and a shell polymerization step of synthesizing a shell polymer. If necessary, Y 1A and / or Y 1B cation M exchange reaction can also be performed during core polymerization, during shell polymerization, and further after shell polymerization.
  • the resin fine particles can be prepared by an emulsion polymerization method.
  • the emulsion polymerization method is a method of preparing resin fine particles by polymerizing an emulsion prepared by adding a monomer, a polymerization initiator, an emulsifying agent, and, if necessary, a chain transfer agent in an aqueous medium (for example, water). It is.
  • a known emulsifier may be added separately as long as the ejection stability is not reduced.
  • the emulsifier include surfactants (anionic surfactant, nonionic surfactant and cationic surfactant) described later that may be contained in the aqueous ink composition of the present invention.
  • the polymerization initiator is not particularly limited, and inorganic persulfates (eg, potassium persulfate, sodium persulfate, ammonium persulfate etc.), azo initiators (eg, 2,2′-azobis (2-amidinopropane) ) Dihydrochloride, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 4,4′-azobis (4-cyanovaleric acid)), organic peroxides (eg, Peroxypivalic acid-t-butyl, t-butyl hydroperoxide, disuccinic acid peroxide) or the like, or salts thereof can be used. These can be used alone or in combination of two or more.
  • inorganic persulfates eg, potassium persulfate, sodium persulfate, ammonium persulfate etc.
  • azo initiators eg, 2,2′-azobis (2-amidinopropane)
  • the amount of the polymerization initiator used in the present invention is usually 0.01 to 5 parts by mass, preferably 0.2 to 2 parts by mass, with respect to 100 parts by mass of all the monomers.
  • chain transfer agent known compounds such as carbon tetrahalides, dimers of styrenes, dimers of (meth) acrylic esters, mercaptans and sulfides can be used. Among them, dimers of styrenes or mercaptans described in JP-A-5-17510 can be suitably used.
  • the resin fine particles used in the present invention are preferably dispersed in the aqueous medium as described above.
  • the resin fine particles used in the present invention are more preferably self-dispersible resin fine particles.
  • a self-dispersible resin fine particle is a water-insoluble resin which can be dispersed in an aqueous medium by a functional group of the resin itself (in particular, an acidic group or a salt thereof, specifically Y 1A or Y 1B ).
  • the dispersed state means an emulsified state in which a water-insoluble resin is dispersed in a liquid state in an aqueous medium (emulsion) and a dispersed state in which a water-insoluble resin is dispersed in a solid state in an aqueous medium (suspension) Is included.
  • Water insoluble indicates that the amount of dissolution in 100 parts by mass of water (25 ° C) is 5.0 parts by mass or less.
  • the resin fine particles used in the present invention do not function as a pigment dispersant, and therefore do not contain the pigment inside the particles.
  • the aqueous ink composition of the present invention preferably has a form in which one or more pigments are dispersed.
  • a normal organic or inorganic pigment can be used.
  • the organic pigment include azo pigments, polycyclic pigments, dye chelates, nitro pigments, nitroso pigments, and aniline black.
  • an azo pigment or a polycyclic pigment is preferable.
  • an azo pigment an azo lake, an insoluble azo pigment, a condensation azo pigment, a chelate azo pigment is mentioned, for example.
  • polycyclic pigments examples include phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, indigo pigments, thioindigo pigments, isoindolinone pigments, and quinophthalone pigments.
  • dye chelates include basic dye chelates and acid dye chelates.
  • examples of the inorganic pigment include titanium oxide, iron oxide, calcium carbonate, barium sulfate, aluminum hydroxide, barium yellow, cadmium red, chromium yellow and carbon black.
  • pigments described in paragraphs [0142] to [0145] of JP-A-2007-100071 include the pigments described in paragraphs [0142] to [0145] of JP-A-2007-100071.
  • the volume average particle size of the pigment in the aqueous ink composition of the present invention is preferably 10 to 200 nm, more preferably 10 to 150 nm, and still more preferably 10 to 100 nm.
  • the volume average particle diameter is 200 nm or less, the color reproducibility becomes good, and in the case of the ink jet system, the droplet deposition characteristics become good.
  • light resistance becomes favorable because a volume average particle diameter is 10 nm or more.
  • the volume average particle size of the pigment in the aqueous ink composition can be measured by a known measurement method.
  • the particle size distribution of the pigment in the aqueous ink composition of the present invention is not particularly limited, and may be any of a wide particle size distribution or a monodispersed particle size distribution. Further, two or more colorants having a monodisperse particle size distribution may be mixed and used.
  • the volume average particle size of the pigment can be measured by the same method as the measurement of the volume average particle size of the above-mentioned resin fine particles.
  • the content of the pigment in the aqueous ink composition is preferably 1 to 20% by mass, and more preferably 1 to 10% by mass, from the viewpoint of colorability and storage stability. preferable.
  • the aqueous ink composition of the present invention contains a pigment, as the pigment, colored particles (hereinafter simply referred to as "colored particles") in which the pigment is dispersed in an aqueous medium by a dispersing agent are prepared, and these are used It is preferable to use as a raw material of goods.
  • the dispersant may be a polymer dispersant or a low molecular weight surfactant type dispersant.
  • the polymer dispersant may be either a water-soluble polymer dispersant or a water-insoluble polymer dispersant.
  • low molecular weight surfactant type dispersant for example, a known low molecular weight surfactant type dispersant described in paragraphs 0047 to 0052 of JP-A-2011-178029 can be used.
  • examples of water-soluble dispersants include hydrophilic polymer compounds.
  • natural hydrophilic polymer compounds include plant polymers such as gum arabic, gum traga gum, guar gum, karaya gum, locust bean gum, arabinogalacton, pectin, quince seed starch, seaweeds such as alginic acid, carrageenan and agar.
  • examples thereof include molecules, animal-based polymers such as gelatin, casein, albumin and collagen, and microorganism-based polymers such as xanthene gum and dextran.
  • hydrophilic polymer compounds modified with natural products as raw materials cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose, starches such as sodium starch glycolate and sodium starch phosphate ester And seaweed polymers such as sodium alginate and propylene glycol alginate.
  • vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, non-crosslinked polyacrylamide, polyacrylic acid or alkali metal salts thereof, water-soluble styrene acrylic resin, etc.
  • Acrylic resin water soluble styrene maleic resin, water soluble vinyl naphthalene acrylic resin, water soluble vinyl naphthalene maleic resin, polyvinyl pyrrolidone, polyvinyl alcohol, alkali metal salt of ⁇ -naphthalene sulfonic acid formalin condensate, quaternary ammonium, amino Examples thereof include polymer compounds having a salt of a cationic functional group such as a group in a side chain, and natural polymer compounds such as shellac.
  • hydrophilic polymer compounds into which a carboxy group is introduced are preferable, such as homopolymers of acrylic acid or methacrylic acid, and copolymers of acrylic acid or methacrylic acid and other monomers.
  • the water-insoluble polymer dispersant is a water-insoluble polymer and is not particularly limited as long as the pigment can be dispersed, and a conventionally known water-insoluble polymer dispersant can be used.
  • the water-insoluble polymer dispersant can, for example, be configured to include both hydrophobic structural units and hydrophilic structural units.
  • a monomer component which comprises a hydrophobic structural unit a styrene-type monomer component, an alkyl (meth) acrylate component, an aromatic group containing (meth) acrylate component etc. can be mentioned.
  • a monomer component which comprises a hydrophilic structural unit if it is a monomer component containing a hydrophilic group, there will be no restriction
  • the hydrophilic group include nonionic groups, carboxy groups, sulfonic acid groups, and phosphoric acid groups.
  • the nonionic group may, for example, be a hydroxyl group, an amide group (with nitrogen atom not substituted), a group derived from an alkylene oxide polymer (for example, polyethylene oxide or polypropylene oxide), or a group derived from sugar alcohol.
  • the hydrophilic structural unit preferably contains at least a carboxy group, and is preferably in a form containing both a nonionic group and a carboxy group.
  • water-insoluble polymer dispersant examples include styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- (meth) acrylic acid ester copolymer, and (meth) acrylic acid ester- (meth) acrylic acid And acrylic acid copolymer, polyethylene glycol (meth) acrylate- (meth) acrylic acid copolymer, styrene-maleic acid copolymer and the like.
  • the water-insoluble polymer dispersant is preferably a vinyl polymer containing a carboxy group from the viewpoint of dispersion stability of the pigment. Furthermore, it is more preferable to be a vinyl polymer having a structural unit derived from at least an aromatic group-containing monomer as a hydrophobic structural unit and having a structural unit containing a carboxy group as a hydrophilic structural unit.
  • the weight average molecular weight of the water-insoluble polymer dispersant is preferably 3,000 to 200,000, more preferably 5,000 to 100,000, and still more preferably 5,000 to 200,000 from the viewpoint of dispersion stability of the pigment. It is 80,000, particularly preferably 10,000 to 60,000.
  • the content of the dispersant in the colored particles is preferably 10 to 90 parts by mass with respect to 100 parts by mass of the pigment, from the viewpoint of pigment dispersibility, ink colorability, and dispersion stability, and preferably 20 to 70 The parts by mass are more preferable, and 30 to 50 parts by mass are particularly preferable.
  • the content of the dispersing agent in the colored particles is in the above range, the pigment is coated with an appropriate amount of the dispersing agent, which tends to easily obtain colored particles having a small particle size and excellent in temporal stability.
  • the colored particles can be obtained, for example, by dispersing a mixture containing a pigment, a dispersant, and if necessary, a solvent (preferably an organic solvent) and the like with a disperser. More specifically, for example, after a step of adding an aqueous solution containing a basic substance to a mixture of a pigment, a dispersant, and an organic solvent for dissolving or dispersing the dispersant (mixing / hydration step), an organic solvent Can be manufactured as a dispersion by providing a process (solvent removal process) excluding. Thereby, the pigment is finely dispersed, and a dispersion of colored particles excellent in storage stability can be produced.
  • a solvent preferably an organic solvent
  • the organic solvent needs to be able to dissolve or disperse the dispersant, but in addition to that, it is preferable to have a certain degree of affinity for water. Specifically, it is preferable that the solubility in water at 20 ° C. is 10 to 50% by mass or less.
  • Preferred examples of the organic solvent include water-soluble organic solvents. Among them, isopropyl alcohol, acetone and methyl ethyl ketone are preferable, and methyl ethyl ketone is particularly preferable.
  • the organic solvents may be used alone or in combination of two or more.
  • the above basic substance is used for the neutralization of an anionic group (preferably a carboxy group) which may be possessed by the polymer.
  • an anionic group preferably a carboxy group
  • the degree of neutralization of the anionic group is no particular limitation.
  • the liquid property of the finally obtained colorant particle dispersion is, for example, pH 4.5 to 10.
  • the pH can also be determined by the desired degree of neutralization of the polymer.
  • the method of removing the organic solvent in the production process of the colored particle dispersion is not particularly limited, and can be removed by a known method such as vacuum distillation.
  • the colored particles may be used singly or in combination of two or more.
  • the aqueous ink composition of the present invention may contain a surfactant as a surface tension regulator.
  • a surfactant any of anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants and betaine surfactants can be used.
  • anionic surfactants include sodium dodecyl benzene sulfonate, sodium lauryl sulfate, sodium alkyl diphenyl ether disulfonate, sodium alkyl naphthalene sulfonate, sodium dialkyl sulfosuccinate, sodium stearate, sodium stearate, potassium oleate, sodium dioctyl Sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, sodium dialkyl sulfosuccinate, sodium oleate, sodium t-octylphenoxyethoxypolyethoxyethyl sulfate, etc. Can be selected, and one or more of these can be selected.
  • nonionic surfactant examples include, for example, acetylene diol derivatives such as ethylene oxide adduct of acetylene diol, polyoxyethylene lauryl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene oleyl phenyl ether, polyoxyethylene nonyl Examples thereof include phenyl ether, oxyethylene • oxypropylene block copolymer, t-octyl phenoxyethyl polyethoxyethanol, nonyl phenoxyethyl polyethoxyethanol and the like, and one or more of these can be selected.
  • cationic surfactant examples include tetraalkylammonium salts, alkylamine salts, benzalkonium salts, alkylpyridinium salts, imidazolium salts, etc. Specifically, for example, dihydroxyethyl stearylamine, 2-heptadecenyl -Hydroxyethyl imidazoline, lauryl dimethyl benzyl ammonium chloride, cetyl pyridinium chloride, stearamido methyl pyridinium chloride and the like.
  • nonionic surfactants are preferable, and acetylene diol derivatives are more preferable.
  • the content of the surfactant in the aqueous ink composition is preferably such an amount that the aqueous ink composition can be brought into the range of the surface tension described below. More specifically, the content of the surfactant in the aqueous ink composition is preferably 0.1% by mass or more, more preferably 0.1 to 10% by mass, and still more preferably 0.2. It is up to 3% by mass.
  • the aqueous ink composition of the present invention may further contain, if necessary, a drying inhibitor (swelling agent), a coloring inhibitor, a penetration accelerator, a UV absorber, a preservative, a rust inhibitor, a defoaming agent, a clay regulator, You may mix additives, such as a pH adjuster and a chelating agent.
  • a drying inhibitor swelling agent
  • a coloring inhibitor such as a a swelling agent
  • a penetration accelerator such as a UV absorber, a preservative, a rust inhibitor, a defoaming agent, a clay regulator
  • You may mix additives, such as a pH adjuster and a chelating agent.
  • the mixing method is not particularly limited, and a commonly used mixing method can be appropriately selected to obtain the aqueous ink composition of the present invention.
  • the viscosity at 30 ° C. of the aqueous ink composition of the present invention is preferably 1.2 mPa ⁇ s to 15.0 mPa ⁇ s, more preferably 2 mPa ⁇ s to less than 13 mPa ⁇ s, and still more preferably 2.5 mPa ⁇ s or more and less than 10 mPa ⁇ s.
  • the viscosity of the aqueous ink composition is measured at a temperature of 30 ° C. using VISCOMETER TV-22 (manufactured by TOKI SANGYO CO. LTD).
  • the aqueous ink composition of the present invention preferably has a pH of 6 to 11 at 25 ° C. from the viewpoint of dispersion stability.
  • the aqueous ink composition of the present invention is used in an ink jet recording system, it is preferable to adjust the amount of surfactant so that the surface tension of the aqueous ink composition is 20 to 60 mN / m from the viewpoint of ink dischargeability.
  • the amount is more preferably 20 to 45 mN / m, and still more preferably 25 to 40 mN / m.
  • the surface tension of the aqueous ink composition is measured at a temperature of 25 ° C. using an Automatic Surface Tensiometer CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.).
  • the image forming method of the present invention includes an ink applying step of applying the aqueous ink composition of the present invention onto a recording medium by an inkjet method to form an image.
  • the step of drying and removing the aqueous medium in the aqueous ink composition applied to the recording medium (hereinafter also referred to as "ink drying step"), if necessary, the aqueous ink composition. It may further include other processes such as a process of melting and fixing resin fine particles contained in a substance (hereinafter, also referred to as a “heat fixing process”).
  • the ink application step is preferably a step of directly applying the aqueous ink composition of the present invention onto a low water absorption recording medium or a non water absorption recording medium to form an image.
  • Direct application of the ink on the low water absorption recording medium or non-water absorption recording medium means that the provided ink and the low water absorption recording medium or non-water absorption recording medium are in direct contact with each other.
  • the aqueous ink composition and the low water absorption recording medium or the non water absorption recording medium are not in direct contact with each other.
  • the above-mentioned known processing solution include the processing solutions described in JP-A-2012-40778.
  • the above-mentioned known processing liquid is not applied after the ink application step. That is, the image forming method of the present invention preferably does not include the step of applying the above-mentioned known processing liquid.
  • a precoat liquid or a top coat liquid is used on the recording medium.
  • a method of aggregating the components in the aqueous ink composition to be discharged to suppress the spread of the aqueous ink composition to improve the image quality is known.
  • the aqueous ink composition of the present invention exhibits the above-described excellent properties and can impart high performance to an image, it is possible to use a low water absorption recording medium or non-water absorption without using a precoat solution or a topcoat solution. An image with excellent image quality can be formed on the recording medium.
  • the recording medium used in the image forming method of the present invention is not particularly limited, but is preferably a paper medium. That is, general printing paper mainly composed of cellulose such as so-called high quality paper, coated paper, art paper, etc., which are used for general offset printing and the like can be used.
  • the recording medium those commercially available on the market can be used. For example, “OK Prince Fine” manufactured by Oji Paper Co., Ltd., “Shiraoi” manufactured by Nippon Paper Industries, and “New NPI” manufactured by Nippon Paper Co., Ltd. High quality paper such as “high quality” (A), high quality coated paper such as “Silver Diamond” manufactured by Nippon Paper Industries Co., Ltd., “OK Everlight Coat” manufactured by Oji Paper Co., Ltd., and fine paint such as “Aurora S” manufactured by Nippon Paper Industries Co., Ltd. Paper, lightweight coated paper (A3) such as OK Coat L manufactured by Oji Paper Co., Ltd. and Aurora L manufactured by Nippon Paper Co., Ltd.
  • A3 high quality coated paper
  • coated paper used for general offset printing and the like is preferable.
  • the coated paper is obtained by applying a coating material to the surface of a generally non-surface-treated high-quality paper mainly made of cellulose, neutral paper or the like to provide a coat layer.
  • Coated paper is likely to cause quality problems such as gloss and abrasion resistance of the image in image formation by a common aqueous ink jet, but when using the aqueous ink composition of the present invention, uneven gloss is suppressed It is possible to obtain an image with good gloss and scratch resistance.
  • the low water absorption recording medium is one having an absorption coefficient Ka of water of 0.05 to 0.5 mL / m 2 ⁇ ms 1/2 , and 0.1 to 0.4 mL / m 2. It is preferably ms 1/2 , more preferably 0.2 to 0.3 mL / m 2 ⁇ ms 1/2 .
  • the non-water-absorbent recording medium refers to one having an absorption coefficient Ka of water of less than 0.05 mL / m 2 ⁇ ms 1/2 .
  • the water absorption coefficient Ka is the same as that described in JAPAN TAPPI Paper and Pulp Test Method No. 51: 2000 (issued by the Japan Institute of Paper and Pulp Technology), and specifically, the absorption coefficient Ka is an automatic scanning liquid absorption meter It is calculated from the difference between the transfer amount of water at a contact time of 100 ms and a contact time of 900 ms using KM500Win (manufactured by Kumagaya Riki Co., Ltd.).
  • the aqueous ink composition of the present invention containing a pigment is applied onto a recording medium.
  • the method of applying the aqueous ink composition is not particularly limited as long as it is an inkjet method capable of applying the aqueous ink composition onto the image, and a known ink applying method can be used.
  • the inkjet method has advantages such as compactness of the recording apparatus and high-speed recording performance.
  • the image formation by the inkjet method (method) by supplying energy, the aqueous ink composition is discharged onto the recording medium to form a colored image.
  • the method described in paragraph Nos. 0093 to 0105 of JP-A-2003-306623 can be applied as an inkjet recording method preferable for the present invention.
  • the inkjet method is not particularly limited, and known methods, for example, a charge control method that discharges ink using electrostatic attraction, a drop-on-demand method (pressure pulse method) that uses the vibration pressure of a piezo element, Either an acoustic inkjet method that converts an electrical signal into an acoustic beam and ejects the ink using radiation pressure by irradiating the ink, or a thermal inkjet method that forms a bubble by heating the ink and uses the generated pressure.
  • the inkjet head used in the inkjet method may be an on-demand method or a continuous method.
  • the ink jet method includes a method of emitting a large number of low density inks called photo ink in a small volume, a method of improving the image quality using a plurality of inks having substantially the same hue and different densities, and a colorless and transparent ink The method used is included.
  • a shuttle type which performs recording while scanning the head in the width direction of the recording medium using a short serial head, and a line head in which recording elements are arranged corresponding to the whole area of one side of the recording medium
  • a line method using In the line method image recording can be performed on the entire surface of the recording medium by scanning the recording medium in the direction orthogonal to the arrangement direction of the recording elements, and a conveyance system such as a carriage for scanning a short head becomes unnecessary.
  • the recording speed can be increased compared to the shuttle method.
  • the amount of droplets of the aqueous ink composition discharged by the ink jet system is preferably 1.5 to 10 pL from the viewpoint of forming a high definition print, 1.5 to 10 pL. It is more preferable than it is 6 pL.
  • the amount of droplets of the aqueous ink composition to be discharged can be adjusted by appropriately adjusting the discharge conditions.
  • the image forming method of the present invention comprises an ink drying step of drying and removing an aqueous medium (for example, water, the above-mentioned water-soluble organic solvent, etc.) in an aqueous ink composition applied on a recording medium, if necessary. It may be
  • the ink drying step is not particularly limited as long as at least a part of the aqueous medium in the aqueous ink composition can be removed, and a commonly used method can be applied.
  • the image forming method of the present invention preferably comprises a heat fixing step after the ink drying step, if necessary.
  • a heat fixing step for example, the heat fixing step described in paragraph Nos. 0112 to 0120 of JP 2010-221415 A can be adopted.
  • the image forming method of the present invention may, if necessary, include an ink removing step of removing the aqueous ink composition (for example, the solid ink solidified by drying) attached to the head for inkjet recording with a maintenance liquid.
  • a maintenance liquid for example, the solid ink solidified by drying
  • the maintenance liquid and the ink removal process described in WO 2013/180074 can be preferably applied to the details of the maintenance liquid and the ink removal process.
  • the resin fine particles of the present invention are the resin fine particles used in the present invention described above. As described above, this resin fine particle has a core-shell structure containing a core polymer and a shell polymer, and the shell polymer has a structural unit (I) and a structural unit (II), and the glass transition temperature of the core polymer Is a resin fine particle whose temperature is higher than the glass transition temperature of the shell polymer and whose glass transition temperature of the shell polymer is 20 to 130.degree.
  • the resin fine particles of the present invention can be typically obtained as a form of a reaction liquid when the resin fine particles are prepared by the above-mentioned emulsion polymerization method, but the form is not particularly limited.
  • the resin fine particles of the present invention can be suitably used in the aqueous ink composition of the present invention.
  • the Mw, Tg, Tg difference (absolute value) and particle diameter of the resin particle are the Mw, Tg, Tg difference (absolute value) of the resin particle contained in the aqueous ink composition of the present invention and It is the same as the particle size.
  • the resin fine particles of the present invention are preferably present in the form of being dispersed in water or a mixture of water and a water-soluble organic solvent, that is, an aqueous medium.
  • the preferred form of this aqueous medium is the same as the above-mentioned aqueous medium used for the aqueous ink composition of the present invention.
  • the content of the resin particles in this dispersion is preferably 1 to 50% by mass, 20 to 40% by mass is more preferable.
  • the fine resin particle CP-5 is a fine particle of a resin which does not have a core-shell structure and is formed only of the following core polymer.
  • the number of each structural unit represents a mass ratio.
  • "*" shown in each structural unit indicates a linking site for incorporation into a polymer.
  • a monomer solution consisting of methyl methacrylate (36.00 g) and styrene (24.00 g) is dropped at the same speed so that the dropping is completed in 2 hours, and after the dropping of the monomer solution is completed, The mixture was further stirred for 2 hours (core polymerization step).
  • a mixed solution consisting of potassium persulfate (0.30 g), potassium hydrogen carbonate (0.24 g) and water (30 g) is added to the obtained dispersion, and then methyl methacrylate (18.00 g), A monomer solution consisting of benzyl methacrylate (33.00 g), methoxypolyethylene glycol monomethacrylate (6.00 g) and methacrylic acid (3.00 g) is dropped at an equal speed so that the dropping is completed in 2 hours. After completion of the dropwise addition, stirring was further performed for 3 hours (shell polymerization step).
  • the resulting reaction mixture was adjusted to pH 8.0 with 1N KOH aqueous solution and filtered through a mesh of 50 ⁇ m mesh to obtain an aqueous dispersion of resin fine particles P-1.
  • the resulting aqueous dispersion of resin fine particles P-1 had a solid content concentration of 24%.
  • the resin fine particles in the aqueous dispersion had a volume average particle size of 38 nm (measured with Microtrac UPA EX-150 (manufactured by Nikkiso Co., Ltd.)).
  • the fine resin particles P-1 had a core-shell structure, and the weight ratio of the core polymer to the shell polymer [core polymer: shell polymer] was 50:50.
  • the differences (absolute values) between the glass transition temperatures Tg of the core polymer and the shell polymer and the glass transition temperatures of the core polymer and the shell polymer are shown in Table 1 below.
  • the Tg of each polymer was measured as follows. That is, it was measured at a temperature rising rate of 5 ° C./min using a sample obtained by drying an aqueous dispersion of a resin and using a differential scanning calorimeter (DSC) EXSTAR 6220 manufactured by SII Nano Technology.
  • the volume average particle diameter of the resin fine particles prepared in the following and the Tg of each polymer were also measured by the above-mentioned measuring apparatus and measuring method.
  • Y 1A or Y 1B When Y 1A or Y 1B is a sodium cation or ammonium cation, Y 1A or Y 1B was converted to a sodium salt or ammonium salt by a conventional method using a sodium salt or ammonia. Physical properties of the obtained P-2 to P-15 and CP-1 to CP4 and CP-6 to CP-8 are shown in Table 1.
  • minimum number of atoms * indicates the number of bonds of atoms constituting the shortest chain of L 1A in formula (2A).
  • the “-” in the column of the minimum number of atoms indicates that the shell polymer forming the corresponding resin fine particle has no structural unit represented by the formula (2A).
  • Mass ratio ** represents the mass of core polymer: mass of shell polymer. Further, since the resin fine particle CP-5 does not have a shell polymer, “-” is described in the shell polymer column of glass transition temperature and the absolute value column of difference.
  • Example 1 Preparation of Aqueous Ink Composition (Preparation of Black Ink Composition K-1) -Synthesis of water-soluble polymer dispersant Q-1-
  • a monomer feed composition was prepared by mixing methacrylic acid (172 parts), benzyl methacrylate (828 parts) and isopropanol (375 parts).
  • An initiator feed composition was also prepared by mixing 2,2-azobis (2-methylbutyronitrile) (22.05 parts) and isopropanol (187.5 parts). Next, isopropanol (187.5 parts) was heated to 80 ° C. under a nitrogen atmosphere, and a mixture of the monomer feed composition and the initiator feed composition was added dropwise thereto over 2 hours.
  • the obtained solution was kept at 80 ° C. for further 4 hours, and then cooled to 25 ° C. After cooling, the solvent was removed under reduced pressure to obtain a water-soluble polymer dispersant Q-1 having a weight average molecular weight of about 30,000 and an acid value of 112 mg KOH / g.
  • Dispersion was carried out until the desired volume average particle diameter was obtained with a diameter of 0.1 mm ⁇ , zirconia beads), to obtain a dispersion (uncrosslinked dispersion) of polymer-coated black pigment particles having a pigment concentration of 15%.
  • a crosslinking agent Denacol EX-321 (manufactured by Nagase ChemteX Corp.) (1.3 parts) and an aqueous boric acid solution (boric acid concentration: 4% by mass) (14.3 parts)
  • the reaction mixture was allowed to react at 50.degree. C. for 6 and a half hours, and then cooled to 25.degree. C. to obtain a crosslinked dispersion.
  • the black pigment dispersion was obtained by concentrating until a pigment concentration becomes 15 mass%.
  • the pigment contained in the black pigment dispersion is a polymer-coated pigment (encapsulated pigment) whose surface is coated with a crosslinked polymer in which the water-soluble polymer dispersant Q-1 is crosslinked by a crosslinking agent.
  • Black Ink Composition K-1 Each component was mixed so that it might become the following composition, and each polymer containing ink composition was adjusted. After the preparation, coarse particles were removed using a 1 ⁇ m filter to prepare a black ink composition K-1. The content of the resin fine particles P-1 in the black ink composition K-1 was 5% by mass.
  • Black pigment dispersion An amount that the concentration of black pigment is 4 parts by mass
  • Water-soluble organic solvent 1 Diethylene glycol monohexyl ether (manufactured by Wako Pure Chemical Industries, Ltd.): 3 parts by mass
  • Water-soluble organic solvent 2 Diethylene glycol (sum Kojun Pharmaceutical Co., Ltd.
  • Black Ink Compositions K-2 to K-15 and CK-1 to CK-8 In preparation of the black ink composition K-1, each aqueous dispersion of resin fine particles P-2 to P-15 and CP-1 to CP-8 was used in place of the aqueous dispersion of resin fine particles P-1 The content of resin fine particles in each black ink composition was set to 5% by mass.
  • Black ink composition K-2 to K as an aqueous ink composition in the same manner as black ink composition K-1 -15 and CK-1 to CK-8 were prepared respectively.
  • the viscosities of the black ink compositions prepared above were all within the range of 3 to 15 mPa ⁇ s at 30 ° C.
  • This viscosity was measured by VISCOMETER TV-22 (manufactured by TOKI SANGYO CO. LTD).
  • the surface tension was measured by platinum plate method using CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.
  • the surface tensions of the black ink compositions prepared above were all in the range of 20 to 60 mN / m.
  • Latency test An image was drawn directly on a recording medium ("painting photo finishing Pro” manufactured by Fujifilm Corporation) under the following ink application conditions, and dried. Thereafter, one nozzle check pattern image was drawn (the image here is taken as an "initial image sample”). Thereafter, the environment of the recording head nozzle portion was maintained at 25 ° C. and 50% RH, and left for 30 minutes and for 15 hours. After leaving for a predetermined time, one sheet of the same nozzle check pattern image as described above was drawn again on the same recording medium as used above (here, the image after leaving for 30 minutes and leaving for 15 hours Let them be “post-image samples”, and put both together into “post-standing image samples”.
  • nozzle missing image missing
  • nozzle check pattern image with an optical microscope to determine the ejection rate
  • the ejection rate was determined from “(number of ejection nozzles in image sample after standing / number of ejection nozzles in initial image sample) ⁇ 100”.
  • ⁇ Ink application condition ⁇ Head A 1,200 dpi (dot per inch) / 20 inch wide piezo full line head was used. The amount of discharged droplets: 2.4 pL. Drive frequency: 24 kHz (recording medium conveyance speed 500 mm / sec).
  • ⁇ Abrasion resistance test> The abrasion resistance test was performed on each ink of which the result of the latency after leaving for 30 minutes is the evaluation rank "B" or more in the above-mentioned ⁇ latency (restorability to recover from standing) test>. That is, in Comparative Examples 1, 2 and 4 in which the result of latency after leaving for 30 minutes is the evaluation rank “C” or “D”, the ink resistance is not performed because the ink performance is already poor (Table 2) In “.”)). Under the following ink application conditions, a solid black image with a recording duty of 100% was formed directly on coated paper (trade name "OK Top Coat +", manufactured by Oji Paper Co., Ltd.) as a recording medium using predetermined black inks. .
  • the solid image thus formed was left under an environment of 25 ° C. and 50% relative humidity for 24 hours.
  • the surface of the solid image was rubbed 50 times with a Silon paper loaded at 2 ⁇ 10 4 N / m 2 .
  • the condition of the abraded surface of the solid image was visually confirmed, and the abrasion resistance of the image was evaluated according to the evaluation criteria shown below. In this test, "B" or more is a pass level.
  • the black color is given by each predetermined black ink
  • the solid image with a recording duty of 100% was directly printed. Immediately after printing, it was dried with warm air of 60 ° C. for 2 seconds to obtain a print sample. The print sample was cut into two pieces of 3 cm square size. Next, the four corners were aligned and overlapped so that the two printed surfaces face each other. This was placed on an 80 ° C. hot plate.
  • a 2.0 cm ⁇ 2.0 cm ⁇ 0.3 cm flat rubber plate is placed with the 2.0 cm ⁇ 2.0 cm face on the paper side, and a 2.0 cm ⁇ 2.0 cm face on it.
  • the plastic plate of 2.0 cm ⁇ 2.0 cm ⁇ 0.3 cm was placed on the rubber plate.
  • a 500 g weight was placed on a plastic plate and allowed to stand for 1 hour, and then the two superposed sheets of paper were peeled off and the blocking resistance was evaluated according to the following evaluation criteria. In this test, "B" or more is a pass level.
  • Evaluation criteria A Peeled off naturally. Or, although there was resistance at the time of peeling, there was no color transfer of the print sample.
  • B Color transfer of the print sample was observed in the range of less than 10% of the area of the print surface, but it was at a level causing no problem in practical use.
  • C Color transfer of the print sample was observed in a wide range of 10% or more of the area of the print surface, which was a level at which problems in practical use occur.
  • each of the aqueous ink compositions (CK-1 to CK-8) for inkjet recording of the comparative example not containing the resin fine particles specified in the present invention has latency, abrasion resistance and blocking resistance. It was not something that had sex.
  • all of the aqueous ink compositions (K-1 to K-15) for inkjet recording of the examples containing the resin fine particles defined in the present invention have high latency, abrasion resistance and blocking resistance. It combines in the level.
  • the recording medium is the above-mentioned low water absorption recording medium or non-water absorbing recording medium It can be seen that even a medium can be formed directly on the recording medium with an image showing high abrasion and blocking resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided are: an aqueous ink composition for inkjet recording containing an aqueous medium and resin fine particles, wherein the resin fine particles each have a core-shell structure including a core polymer and a shell polymer covering the core polymer, the shell polymer has specific structural units (I) and (II), the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20-130ºC; an image forming method; and the resin fine particles.

Description

インクジェット記録用水性インク組成物、画像形成方法及び樹脂微粒子Aqueous ink composition for ink jet recording, image forming method and resin fine particle
 本発明は、インクジェット記録用水性インク組成物、画像形成方法及び樹脂微粒子に関する。 The present invention relates to an aqueous ink composition for ink jet recording, an image forming method, and resin fine particles.
 画像データ信号に基づき、紙等の記録媒体に画像を形成する画像記録方法として、電子写真方式、昇華型及び溶融型熱転写方式、インクジェット方式等の記録方法がある。
 インクジェット記録方法は、印刷版を必要とせず、画像形成部のみにインクを吐出して記録媒体上に直接画像形成を行う。そのため、インクを効率的に使用でき、ランニングコストが安くなる。更に、インクジェット記録方法は印刷装置も従来の印刷機に比べ比較的低コストで、小型化も可能であり、騒音も少ない。このように、インクジェット記録方法は他の画像記録方式に比べて種々の利点を兼ね備えている。
As an image recording method for forming an image on a recording medium such as paper based on an image data signal, there are recording methods such as an electrophotographic method, a sublimation type and a fusion type thermal transfer method, and an inkjet method.
The inkjet recording method does not require a printing plate, and discharges the ink only to the image forming unit to form an image directly on the recording medium. Therefore, the ink can be used efficiently and the running cost is reduced. Furthermore, the ink jet recording method is relatively low in cost, can be miniaturized, and has less noise as compared with the conventional printing machine. Thus, the inkjet recording method has various advantages as compared with other image recording methods.
 インクジェット記録方法に用いるインクには、目的の画像を精度良く、安定して形成するために、ノズルから所望量のインクを安定的に吐出できる吐出安定性が求められる。また、インクには、外部から力を加えた際に傷付いたり剥がれたりしない機械強度(耐擦性)を示す画像を形成できるものであることも求められる。 The ink used in the ink jet recording method is required to have discharge stability capable of stably discharging a desired amount of ink from the nozzle in order to form a target image accurately and stably. In addition, the ink is also required to be capable of forming an image showing mechanical strength (abrasion resistance) which is not scratched or peeled off when a force is applied from the outside.
 上記の要求を満たすべくインクの改良が進められている。例えば、コアシェル構造を有する樹脂微粒子を含有するインクが種々提案されている(特許文献1~4参照)。
 具体的には、特許文献1には、コアポリマー及びシェルポリマーのガラス転移温度を規定したコアシェル構造の重合体微粒子を含有するインクジェット記録用インク組成物が記載されている。また、特許文献2には、特定のモノマーに由来するユニットを有するシェルポリマーの存在下でコアポリマーを重合したコアシェル構造を有するポリマー微粒子を含有するインクジェット用のクリアインクが記載されている。更に、特許文献3には、コアとシェルを有する特定の樹脂粒子と、多価金属イオンとを含有する水性インクが記載されている。特許文献4には、色材、及び、特定のシェル部と特定のコア部とを有する樹脂粒子を含有するインクジェット用インクが記載されている。
Improvements are being made to the ink to meet the above requirements. For example, various inks containing resin fine particles having a core-shell structure have been proposed (see Patent Documents 1 to 4).
Specifically, Patent Document 1 describes an ink composition for inkjet recording containing polymer fine particles having a core-shell structure in which the glass transition temperature of the core polymer and the shell polymer is specified. In addition, Patent Document 2 describes a clear ink for ink jet containing a polymer particle having a core-shell structure obtained by polymerizing a core polymer in the presence of a shell polymer having a unit derived from a specific monomer. Further, Patent Document 3 describes an aqueous ink containing a specific resin particle having a core and a shell, and a polyvalent metal ion. Patent Document 4 describes an inkjet ink containing a colorant and resin particles having a specific shell part and a specific core part.
特開2014-208738号公報JP, 2014-208738, A 特開2011-11449号公報JP, 2011-11449, A 特開2017-101178号公報JP 2017-101178 A 特開2013-136744号公報JP, 2013-136744, A
 インクジェット記録方法はこれまで主にオフィスプリンタ、ホームプリンタ等の分野で用いられてきた。更に、近年は、商業印刷分野にまでその利用が拡大し、インクジェット記録の高速化も進んでいる。これに伴いインクの吐出安定性に対する要求は年々高度化している状況にある。インクジェット記録方法には、画像形成後にノズルを放置すると、例えば画像の形成を一旦休止(中断)すると、ノズルが目詰まりするという特有かつ喫緊の解決すべき問題がある。そのため、インクジェット記録方法に用いるインクには、一旦休止後にも正常に吐出される特性(レイテンシ、放置回復性ともいう。)が強く求められている。しかも、インクジェット記録方法に用いるインクにおいても、画像を形成した記録媒体を積み重ねた際等に、重ねた記録媒体の表裏の間の色移り又は記録媒体同士の接着を防ぐ性能(耐ブロッキング性)を有する画像を形成できることが求められる。 The ink jet recording method has been mainly used in the field of office printers, home printers and the like. Furthermore, in recent years, its use has expanded to the commercial printing field, and the speeding up of ink jet recording has been advanced. Along with this, the demand for the ejection stability of the ink is in a state of becoming more and more advanced year by year. The ink jet recording method has a unique and urgent problem that the nozzle is clogged if the nozzle is left after image formation, for example, once the image formation is paused (interrupted). For this reason, the ink used in the ink jet recording method is strongly required to have characteristics (also referred to as latency and restorability) which can be normally ejected even after pausing. Moreover, in the ink used for the inkjet recording method, the performance (blocking resistance) to prevent the color transfer between the front and back of the stacked recording media or the adhesion between the recording media when the recording media on which the image is formed is stacked, etc. It is required to be able to form an image having the same.
 本発明は、インクジェット記録方法に適用した際のレイテンシに優れ、かつ耐擦性及び耐ブロッキング性に優れた画像を形成できるインクジェット記録用水性インク組成物、及び、このインクジェット記録用水性インク組成物を用いた画像形成方法を提供することを課題とする。
 また、本発明は、インクジェット記録用水性インク組成物に配合することにより、このインクジェット記録用水性インク組成物に高いレイテンシを付与することができ、更に、形成した画像の耐擦性及び耐ブロッキング性をも高めることも可能とする樹脂微粒子を提供することを課題とする。
The present invention provides an aqueous ink composition for inkjet recording, which is excellent in latency when applied to an inkjet recording method, and can form an image excellent in abrasion resistance and blocking resistance, and the aqueous ink composition for inkjet recording. An object is to provide an image forming method used.
Further, the present invention can impart high latency to the aqueous ink composition for ink jet recording by blending into the aqueous ink composition for ink jet recording, and further, the abrasion resistance and blocking resistance of the formed image. It is an object of the present invention to provide resin fine particles which can also enhance
 本発明者は、上記課題に鑑み鋭意検討を重ねた結果、カルボキシ基等の特定の酸性基等又はその塩が特定の基を介して結合している特定の構造単位(繰り返し単位)と、特定のアルキレンオキシ基を有する構造単位とを組み合わせて有するポリマーを少なくともシェルポリマーとして用い、かつコアとシェルのポリマー間のガラス転移温度の関係を制御したコアシェル構造の樹脂微粒子を、水性媒体中に含有させた水性インク組成物が、インクジェット記録のインクとして用いた際のレイテンシに優れること、更にこの水性インク組成物を用いて形成した画像の耐擦性及び耐ブロッキング性が優れることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。 As a result of intensive investigations in view of the above problems, the present inventor has identified a specific structural unit (repeating unit) in which a specific acidic group such as a carboxy group or the like or a salt thereof is bound via a specific group. The core-shell resin fine particles are contained in an aqueous medium using at least a polymer having a structural unit having an alkyleneoxy group as a shell polymer as a shell polymer and controlling the relationship of the glass transition temperature between the core and the shell polymer It has been found that the aqueous ink composition is excellent in latency when used as an ink for ink jet recording, and further, the abrasion resistance and blocking resistance of an image formed using this aqueous ink composition are excellent. The present invention has been further studied based on these findings and has been completed.
 本発明の上記課題は下記の手段により解決された。
<1>水性媒体と樹脂微粒子とを含むインクジェット記録用水性インク組成物であって、
 樹脂微粒子が、コアポリマーと、コアポリマーを被覆するシェルポリマーとを含有するコアシェル構造を有し、
 シェルポリマーが、下記式(1)で表される構造単位と、下記式(2A)若しくは式(2B)で表される構造単位とを有し、
 コアポリマーのガラス転移温度がシェルポリマーのガラス転移温度より高く、かつ、シェルポリマーのガラス転移温度が20~130℃である、インクジェット記録用水性インク組成物。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、Rは水素原子又は炭素数1~4のアルキル基を示す。Rは、水素原子、炭素数1~20の直鎖状若しくは分岐鎖状のアルキル基、又は、芳香族環基を示す。Aは炭素数2~20のアルキレン基を示す。mは1~100の整数である。
 式(2A)及び式(2B)中、Rは水素原子又は炭素数1~4のアルキル基を示す。L1Aは、単結合、又は式中のカルボニル炭素原子とY1Aとを連結する最少原子数が6以下の連結基を示す。Y1Aは、L1Aが単結合である場合、-OMを示し、L1Aが連結基である場合、-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Y1Bは-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Mは水素原子、アルカリ金属イオン又はアンモニウムイオンを示す。
The above problems of the present invention are solved by the following means.
<1> An aqueous ink composition for inkjet recording comprising an aqueous medium and resin fine particles,
The resin fine particles have a core-shell structure containing a core polymer and a shell polymer covering the core polymer,
The shell polymer has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2A) or the formula (2B),
An aqueous ink composition for ink jet recording, wherein the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20 to 130 ° C.
Figure JPOXMLDOC01-appb-C000006
In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group. A 1 represents an alkylene group having 2 to 20 carbon atoms. m 1 is an integer of 1 to 100.
In formulas (2A) and (2B), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula and Y 1A . Y 1A represents —OM when L 1A is a single bond, and —C (= O) OM, —S (= O) 2 OM or —OS (= O) when L 1A is a linking group 2 indicates OM. Y 1B represents —C (= O) OM, —S (= O) 2 OM or —OS (= O) 2 OM. M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
<2>式(1)で表される構造単位が、下記式(3)で表される構造単位である、<1>に記載のインクジェット記録用水性インク組成物。
Figure JPOXMLDOC01-appb-C000007
 式中、R及びRは上記の通りである。mは2~100の整数である。
The aqueous | water-based ink composition for inkjet recording as described in <1> whose structural unit represented by <2> Formula (1) is a structural unit represented by following formula (3).
Figure JPOXMLDOC01-appb-C000007
In the formula, R 1 and R 2 are as described above. m 2 is an integer of 2 to 100.
<3>コアポリマーのガラス転移温度とシェルポリマーのガラス転移温度との差の絶対値が20℃以上である<1>又は<2>に記載のインクジェット記録用水性インク組成物。
<4>シェルポリマー中の、式(1)で表される構造単位の含有率が30質量%以下である、<1>~<3>のいずれか1つに記載のインクジェット記録用水性インク組成物。
<5>コアポリマー及びシェルポリマーの少なくとも一方が、芳香族環又は脂肪族環を有するエチレン性不飽和化合物由来の構造単位を有する<1>~<4>のいずれか1つに記載のインクジェット記録用水性インク組成物。
The aqueous ink composition for inkjet recording as described in <1> or <2> whose absolute value of the difference of the glass transition temperature of <3> core polymer and the glass transition temperature of shell polymer is 20 degreeC or more.
The aqueous ink composition for inkjet recording according to any one of <1> to <3>, wherein the content of the structural unit represented by Formula (1) in the <4> shell polymer is 30% by mass or less. object.
<5> The inkjet recording according to any one of <1> to <4>, wherein at least one of the core polymer and the shell polymer has a structural unit derived from an ethylenically unsaturated compound having an aromatic ring or an aliphatic ring. Water-based ink composition.
<6>芳香族環又は脂肪族環を有するエチレン性不飽和化合物由来の構造単位が、下記一般式(A)~(E)のいずれかで表される<5>に記載のインクジェット記録用水性インク組成物。
Figure JPOXMLDOC01-appb-C000008
 一般式(A)~(E)中、R11及びR12はメチル又は水素原子を示す。R13は炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基を示す。一般式(A)及び一般式(B)中のnは0~5の整数であり、一般式(C)中のnは0~11の整数である。L11は単結合、炭素数1~18の直鎖状、分岐鎖状若しくは環状のアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-若しくは-C(=O)-、又は、これらを2個以上連結して形成される2価の連結基を示す。
The aqueous | water-based for inkjet recording as described in <5> by which the structural unit derived from the ethylenically unsaturated compound which has a <6> aromatic ring or an aliphatic ring is represented with either of the following general formula (A)-(E). Ink composition.
Figure JPOXMLDOC01-appb-C000008
In formulas (A) to (E), R 11 and R 12 each represent a methyl or hydrogen atom. R 13 represents a linear or branched alkyl group having 1 to 10 carbon atoms. N in the general formula (A) and the general formula (B) is an integer of 0 to 5, and n in the general formula (C) is an integer of 0 to 11. L 11 represents a single bond, a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms, an arylene group having 6 to 18 carbon atoms, -O-, -NH-, -S- or -C (= O)-or a divalent linking group formed by linking two or more of these.
<7>コアポリマー中の、一般式(A)~(E)のいずれかで表される構造単位の含有量が10~90質量%であり、
 シェルポリマー中の、一般式(A)~(E)のいずれかで表される構造単位の含有量が70質量%以下である、<6>に記載のインクジェット記録用水性インク組成物。
<8>樹脂微粒子の含有量が、インクジェット記録用水性インク組成物の全質量に対して1~15質量%である<1>~<7>のいずれか1つに記載のインクジェット記録用水性インク組成物。
<9>顔料を含有する<1>~<8>のいずれか1つに記載のインクジェット記録用水性インク組成物。
<10>上記<9>に記載のインクジェット記録用水性インク組成物をインクジェット法により記録媒体上に付与して画像を形成するインク付与工程を含む、画像形成方法。
<11>インクジェット記録用水性インク組成物を、低吸水性記録媒体又は非吸水性記録媒体上に直接付与する<10>に記載の画像形成方法。
The content of the structural unit represented by any one of formulas (A) to (E) in the <7> core polymer is 10 to 90% by mass,
The aqueous ink composition for inkjet recording according to <6>, wherein the content of the structural unit represented by any of the general formulas (A) to (E) in the shell polymer is 70% by mass or less.
The aqueous ink for inkjet recording according to any one of <1> to <7>, wherein the content of the fine resin particles is 1 to 15% by mass with respect to the total mass of the aqueous ink composition for inkjet recording Composition.
<9> The aqueous ink composition for inkjet recording according to any one of <1> to <8>, which contains a pigment.
<10> An image forming method comprising an ink applying step of applying an aqueous ink composition for inkjet recording according to <9> onto a recording medium by an inkjet method to form an image.
<11> The image forming method according to <10>, wherein the aqueous ink composition for inkjet recording is directly applied onto a low water absorption recording medium or a non-water absorption recording medium.
<12>コアポリマーと、コアポリマーを被覆するシェルポリマーとを含有するコアシェル構造を有する樹脂微粒子であって、
 シェルポリマーが、下記式(1)で表される構造単位と、下記式(2A)若しくは式(2B)で表される構造単位とを有し、
 コアポリマーのガラス転移温度がシェルポリマーのガラス転移温度より高く、かつ、シェルポリマーのガラス転移温度が20~130℃である、樹脂微粒子。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Rは水素原子又は炭素数1~4のアルキル基を示す。Rは、水素原子、炭素数1~20の直鎖状若しくは分岐鎖状のアルキル基、又は、芳香族環基を示す。Aは炭素数2~20のアルキレン基を示す。mは1~100の整数である。
 式(2A)及び式(2B)中、Rは水素原子又は炭素数1~4のアルキル基を示す。L1Aは、単結合、又は式中のカルボニル炭素原子とY1Aとを連結する最少原子数が6以下の連結基を示す。Y1Aは、L1Aが単結合である場合、-OMを示し、L1Aが連結基である場合、-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Y1Bは-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Mは水素原子、アルカリ金属イオン又はアンモニウムイオンを示す。
A fine resin particle having a core-shell structure containing a <12> core polymer and a shell polymer for covering the core polymer,
The shell polymer has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2A) or the formula (2B),
Resin fine particles, wherein the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20 to 130 ° C.
Figure JPOXMLDOC01-appb-C000009
In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group. A 1 represents an alkylene group having 2 to 20 carbon atoms. m 1 is an integer of 1 to 100.
In formulas (2A) and (2B), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula and Y 1A . Y 1A represents —OM when L 1A is a single bond, and —C (= O) OM, —S (= O) 2 OM or —OS (= O) when L 1A is a linking group 2 indicates OM. Y 1B represents —C (= O) OM, —S (= O) 2 OM or —OS (= O) 2 OM. M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
<13>式(1)で表される構造単位が下記式(3)で表される構造単位である、<12>に記載の樹脂微粒子。
Figure JPOXMLDOC01-appb-C000010
 式中、R及びRは上記の通りである。mは2~100の整数である。
The resin particle as described in <12> whose structural unit represented by <13> Formula (1) is a structural unit represented by following formula (3).
Figure JPOXMLDOC01-appb-C000010
In the formula, R 1 and R 2 are as described above. m 2 is an integer of 2 to 100.
 本明細書において、特に断りがない限り、特定の符号で表示された置換基、連結基、配位子、構造単位等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。
 本明細書において、各置換基の例として説明される各基の「基」は無置換の形態及び置換基を有する形態のいずれも包含する意味に用いる。例えば、「アルキル基」は置換基を有してもよいアルキル基を意味する。
 本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの両者を含む意味に用いる。このことは、「(メタ)アクリル酸」、「(メタ)アクリルアミド」及び「(メタ)アクリロイル基」についても同様である。
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
In the present specification, unless otherwise specified, when there are a plurality of substituents, linking groups, ligands, structural units and the like (hereinafter referred to as substituents and the like), which are represented by specific symbols, When the groups are simultaneously or alternatively defined, each substituent may be the same as or different from each other. The same applies to the definition of the number of substituents and the like.
In the present specification, the “group” of each group described as an example of each substituent is used to include both the unsubstituted form and the form having a substituent. For example, "alkyl group" means an alkyl group which may have a substituent.
In the present specification, “(meth) acrylate” is used to mean including both acrylate and methacrylate. The same applies to "(meth) acrylic acid", "(meth) acrylamide" and "(meth) acryloyl group".
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
 本発明のインクジェット記録用水性インク組成物は、インクジェット記録方法に適用した際のレイテンシに優れ、かつ耐擦性及び耐ブロッキング性に優れた画像を形成することができる。本発明の画像形成方法は、耐擦性及び耐ブロッキング性に優れた画像を安定して(目詰まりなく)形成することができる。本発明の樹脂微粒子は、これを水性インク組成物に配合することにより、インクジェット記録方法に適したレイテンシを水性インク組成物に付与することができ、更に耐擦性及び耐ブロッキング性に優れた画像を形成することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
The aqueous ink composition for inkjet recording of the present invention can form an image excellent in latency when applied to an inkjet recording method, and excellent in abrasion resistance and blocking resistance. The image forming method of the present invention can stably (unclogged) form an image excellent in abrasion resistance and blocking resistance. The resin fine particle of the present invention can impart latency suitable for the ink jet recording method to the aqueous ink composition by blending the same into the aqueous ink composition, and further, an image excellent in abrasion resistance and blocking resistance. Can be formed.
The above and other features and advantages of the present invention will become more apparent from the following description.
 本発明のインクジェット記録用水性インク組成物(以下、単に、本発明の水性インク組成物ということがある。)、画像形成方法及び樹脂微粒子の好ましい実施形態について以下に説明する。 The preferred embodiments of the aqueous ink composition for inkjet recording of the present invention (hereinafter sometimes simply referred to as the aqueous ink composition of the present invention), the image forming method and the resin fine particles are described below.
[インクジェット記録用水性インク組成物]
 本発明の水性インク組成物は、水性媒体と特定の樹脂微粒子とを含有する。また、本発明の水性インク組成物は、通常は顔料を含有する。本発明の水性インク組成物が顔料を含有しない場合は、クリアインクとして使用することができ、顔料を含有する場合はカラー画像形成用途に用いることができる。
[Water-based ink composition for inkjet recording]
The aqueous ink composition of the present invention contains an aqueous medium and specific resin fine particles. In addition, the aqueous ink composition of the present invention usually contains a pigment. When the aqueous ink composition of the present invention does not contain a pigment, it can be used as a clear ink, and when it contains a pigment, it can be used for color imaging applications.
<水性媒体>
 本発明に用いる水性媒体は少なくとも水を含み、必要に応じて水溶性有機溶剤の少なくとも1種を含んで構成される。
- 水 -
 本発明に用いる水としては、イオン交換水、蒸留水等のイオン性不純物を含まない水を用いることが好ましい。また、水性インク組成物における水の含有率は、目的に応じて適宜選択されるが、通常、10~95質量%であることが好ましく、30~80質量%であることがより好ましく、50~70質量%であることが更に好ましい。
<Aqueous medium>
The aqueous medium used in the present invention contains at least water, and optionally contains at least one water-soluble organic solvent.
- water -
As water used in the present invention, it is preferable to use water which does not contain ionic impurities such as ion exchange water and distilled water. The content of water in the aqueous ink composition is appropriately selected according to the purpose, but generally 10 to 95% by mass, preferably 30 to 80% by mass, and more preferably 50 to 50% by mass. More preferably, it is 70% by mass.
- 水溶性有機溶剤 -
 本発明における水性媒体は水溶性有機溶剤の少なくとも1種を含むことが好ましい。水溶性有機溶剤を含有することで、乾燥防止、湿潤又は浸透促進の効果を得ることができる。ここで、乾燥防止とは、噴射ノズルのインク吐出口にインクが付着乾燥して凝集体ができ目詰まりするのを防止することを意味する。乾燥防止又は湿潤には、水より蒸気圧の低い水溶性有機溶剤が好ましい。また水溶性有機溶剤は、紙へのインク浸透性を高める浸透促進剤として用いることができる。
-Water soluble organic solvent-
The aqueous medium in the present invention preferably contains at least one water-soluble organic solvent. By containing the water-soluble organic solvent, it is possible to obtain the effect of the anti-drying, the wetting or the permeation acceleration. Here, the prevention of drying means that the ink adheres to the ink discharge port of the jet nozzle and is dried to prevent aggregation and clogging. For the purpose of preventing drying or wetting, a water-soluble organic solvent having a vapor pressure lower than that of water is preferred. Further, the water-soluble organic solvent can be used as a penetration accelerator for enhancing the ink permeability to paper.
 水溶性有機溶剤の例としては、例えば、炭素数1~4のアルキルアルコール類、アルカンジオール(多価アルコール類)、糖アルコール類、グリコールエーテル類等が挙げられる。
 炭素数1~4のアルキルアルコール類としては、特に限定されないが、エタノール、メタノール、ブタノール、プロパノール、イソプロパノール等が挙げられる。
 アルカンジオールとしては、特に限定されないが、グリセリン、1,2,6-ヘキサントリオール、トリメチロールプロパン、エチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,2-ヘキサンジオール、1,2-ヘプタンジオール、1,2-オクタンジオール、1,2-ノナンジオール、1,2-デカンジオール、更には後述するもの等が挙げられる。
Examples of the water-soluble organic solvent include, for example, alkyl alcohols having 1 to 4 carbon atoms, alkanediols (polyhydric alcohols), sugar alcohols, glycol ethers and the like.
The alkyl alcohol having 1 to 4 carbon atoms is not particularly limited, and examples thereof include ethanol, methanol, butanol, propanol and isopropanol.
The alkane diol is not particularly limited, but glycerin, 1,2,6-hexanetriol, trimethylolpropane, ethylene glycol, propylene glycol, dipropylene glycol, 1,2-butanediol, 1,2-hexanediol, 1 And 2-heptanediol, 1,2-octanediol, 1,2-nonanediol, 1,2-decanediol, and those described later.
 グリコールエーテル類としては、特に限定されないが、下記の各化合物が挙げられる。
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノヘプチルエーテル、エチレングリコールモノオクチルエーテル、エチレングリコールモノノニルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノメチルエーテルアセテート、
 ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノペンチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノヘプチルエーテル、ジエチレングリコールモノオクチルエーテル、ジエチレングリコールモノノニルエーテル、ジエチレングリコールモノ-2-エチルヘキシルエーテル、
 トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノペンチルエーテル、トリエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノヘプチルエーテル、トリエチレングリコールモノオクチルエーテル、トリエチレングリコールモノノニルエーテル、トリエチレングリコールモノ-2-エチルヘキシルエーテル、
 プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノペンチルエーテル、プロピレングリコールモノヘキシルエーテル、プロピレングリコールモノヘプチルエーテル、プロピレングリコールモノオクチルエーテル、プロピレングリコールモノ-2-エチルヘキシルエーテル、
 ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノペンチルエーテル、ジプロピレングリコールモノヘキシルエーテル、ジプロピレングリコールモノヘプチルエーテル、ジプロピレングリコールモノオクチルエーテル、ジプロピレングリコールモノ-2-エチルヘキシルエーテル、
 トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノペンチルエーテル、トリプロピレングリコールモノヘキシルエーテル、トリプロピレングリコールモノヘプチルエーテル、トリプロピレングリコールモノオクチルエーテル、トリプロピレングリコールモノ-2-エチルヘキシルエーテル、
 1-メチル-1-メトキシブタノール
The glycol ethers are not particularly limited, and the following compounds may be mentioned.
Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol monohexyl ether, ethylene glycol monoheptyl ether, ethylene glycol monooctyl ether, ethylene glycol monononyl Ether, ethylene glycol mono-2-ethylhexyl ether, ethylene glycol monomethyl ether acetate,
Diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monopentyl ether, diethylene glycol monopentyl ether, diethylene glycol monohexyl ether, diethylene glycol monoheptyl ether, diethylene glycol monooctyl ether, diethylene glycol monononyl ether, diethylene glycol mono-2-ethylhexyl ether ,
Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, triethylene glycol monopentyl ether, triethylene glycol monohexyl ether, triethylene glycol monoheptyl ether, triethylene glycol monooctyl ether, triethylene glycol monononyl ether, triethylene Glycol mono-2-ethylhexyl ether,
Propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monopentyl ether, propylene glycol monohexyl ether, propylene glycol monoheptyl ether, propylene glycol monooctyl ether, propylene glycol mono- 2-ethylhexyl ether,
Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, dipropylene glycol monopentyl ether, dipropylene glycol monohexyl ether, dipropylene glycol monoheptyl ether, dipropylene glycol Monooctyl ether, dipropylene glycol mono-2-ethylhexyl ether,
Tripropylene glycol monomethyl ether, tripropylene glycol monobutyl ether, tripropylene glycol monopentyl ether, tripropylene glycol monohexyl ether, tripropylene glycol monoheptyl ether, tripropylene glycol monooctyl ether, tripropylene glycol mono-2-ethylhexyl ether,
1-Methyl-1-methoxybutanol
 水溶性有機溶剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 乾燥防止又は湿潤の目的としては、多価アルコール類が有用であり、例えば、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
The water-soluble organic solvents can be used singly or in combination of two or more.
Polyhydric alcohols are useful for the purpose of preventing drying or moistening, for example, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, 2 And 3-butanediol. These may be used alone or in combination of two or more.
 浸透促進の目的としては、ポリオール化合物が好ましく、脂肪族ジオールが好適である。脂肪族ジオールとしては、例えば、2-エチル-2-メチル-1,3-プロパンジオール、3,3-ジメチル-1,2-ブタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール等が挙げられる。これらの中でも、2-エチル-1,3-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオールが好ましい例として挙げることができる。 For the purpose of permeation promotion, polyol compounds are preferred, and aliphatic diols are preferred. Examples of aliphatic diols include 2-ethyl-2-methyl-1,3-propanediol, 3,3-dimethyl-1,2-butanediol, 2,2-diethyl-1,3-propanediol, and the like. And -ethyl-1,3-hexanediol, 2,2,4-trimethyl-1,3-pentanediol and the like. Among these, 2-ethyl-1,3-hexanediol and 2,2,4-trimethyl-1,3-pentanediol can be mentioned as preferable examples.
 また本発明における水溶性有機溶剤としては、記録媒体におけるカール発生抑制の点から、下記構造式(S)で表される化合物の少なくとも1種を含有することもできる。 The water-soluble organic solvent in the invention may also contain at least one of the compounds represented by the following structural formula (S) from the viewpoint of suppressing the occurrence of curling in the recording medium.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 構造式(S)において、t、u及びvは、各々独立に1以上の整数を表し、t+u+v=3~15を満たし、t+u+vは3~12の範囲が好ましく、3~10の範囲がより好ましい。t+u+vの値は、3以上であると良好なカール抑制力を示し、15以下であると良好な吐出性が得られる。構造式(S)中、AOは、エチレンオキシ基(EO)及びプロピレンオキシ基(PO)の少なくとも一方を表し、中でもプロピレンオキシ基が好ましい。上記(AO)、(AO)、及び(AO)における各AOはそれぞれ同一でも異なってもよい。なお、上記構造式(S)において、EO及びPOはそのエチレン基又はプロピレン基が水酸基側に位置して結合する。 In structural formula (S), t, u and v each independently represent an integer of 1 or more, satisfy t + u + v = 3-15, t + u + v is preferably in the range of 3-12, more preferably in the range of 3-10 . When the value of t + u + v is 3 or more, a good curl suppressing power is exhibited, and when it is 15 or less, good dischargeability is obtained. In Structural Formula (S), AO represents at least one of an ethyleneoxy group (EO) and a propyleneoxy group (PO), and among them, a propyleneoxy group is preferable. Each AO in the above (AO) t , (AO) u , and (AO) v may be the same or different. In the above structural formula (S), EO and PO are bonded with the ethylene group or propylene group located on the hydroxyl group side.
 本発明において水溶性有機溶剤は、1種単独で使用しても、2種類以上混合して使用してもよい。
 また水溶性有機溶剤の水性インク組成物中における含有量としては、1質量%以上60質量%以下が好ましく、より好ましくは5質量%以上40質量%以下であり、更に好ましくは7質量%以上30質量%以下である。
In the present invention, the water-soluble organic solvent may be used singly or in combination of two or more.
The content of the water-soluble organic solvent in the aqueous ink composition is preferably 1% by mass to 60% by mass, more preferably 5% by mass to 40% by mass, and still more preferably 7% by mass to 30%. It is less than mass%.
<樹脂微粒子>
 本発明の水性インク組成物は、コアポリマーと、コアポリマーを被覆するシェルポリマーとを含有するコアシェル構造を有する樹脂微粒子を含有する。この樹脂微粒子は、少なくともシェルポリマーが、下記式(1)で表される構造単位(I)と、下記式(2A)若しくは式(2B)で表される構造単位(II)とを有している。また、樹脂微粒子は、コアポリマーのガラス転移温度がシェルポリマーのガラス転移温度より高く、かつ、シェルポリマーのガラス転移温度が20~130℃である。この樹脂微粒子を、単に「本発明に用いる樹脂微粒子」ともいう。
<Resin fine particles>
The aqueous ink composition of the present invention contains resin fine particles having a core-shell structure containing a core polymer and a shell polymer for coating the core polymer. In the fine resin particles, at least a shell polymer has a structural unit (I) represented by the following formula (1) and a structural unit (II) represented by the following formula (2A) or the formula (2B) There is. The fine resin particles have a glass transition temperature of the core polymer higher than that of the shell polymer and a glass transition temperature of the shell polymer of 20 to 130 ° C. This resin fine particle is also simply referred to as "resin fine particle used in the present invention".
 本発明の水性インク組成物が上記樹脂微粒子を含有していると、インクジェット記録方法に適用した際のレイテンシに優れ、かつ耐擦性及び耐ブロッキング性に優れた画像を形成することができる。その詳細な理由は定かではないが、次のように考えられる。
 すなわち、樹脂微粒子を形成するシェルポリマーは、特定の基Y1A又はY1Bを有する構造単位(II)を含み、この特定の基が樹脂微粒子において所謂荷電反発基として機能する。これにより、シェルポリマーは、樹脂微粒子同士を静電的に反発させて、樹脂微粒子の分散安定作用を奏しうる。しかも、シェルポリマーは、この構造単位(II)に組み合わせて、親水性のアルキレンオキシ基(式(1)中、-(A-O)m-で表される基)を含む構造単位(I)を有する。このような構造単位(I)と(II)とが協働することにより、水性インク組成物中での樹脂微粒子の安定性が向上し、水性インク組成物のゲル化、更には樹脂微粒子ないし水性インク組成物の凝集が抑えられ、上述の分散安定作用が効果的に発現する。その結果、ノズルの目詰まりが発生しにくくなり、高いレイテンシを示すと考えられる。
 一方、上述の、特定の組み合わせで構造単位(I)と構造単位(II)とを有するシェルポリマーを含む樹脂微粒子において、シェルポリマーのガラス転移温度を20~130℃に設定し、かつコアポリマーのガラス転移温度をシェルポリマーよりも高く設定することにより、上述の作用の発現を損なうことなく、本発明の水性インク組成物による画像形成の際に、樹脂微粒子のコアシェル構造を形成する各々のポリマーが異なる機能を担うことができる。その結果、耐擦性と耐ブロッキング性を共に高めることができる。すなわち、この樹脂微粒子は、ガラス転移温度の低いシェルポリマーによる熱融着力と、ガラス転移温度の高いコアポリマーによる熱安定性とを、バランスよく発揮し、維持できると考えられる。そのため、本発明の樹脂微粒子は、優れたレイテンシを示しつつも、画像の耐擦性及び耐ブロッキング性を高めることができる。
When the aqueous ink composition of the present invention contains the above-mentioned resin fine particles, it is possible to form an image excellent in latency when applied to an ink jet recording method and excellent in abrasion resistance and blocking resistance. Although the detailed reason is not clear, it is considered as follows.
That is, the shell polymer forming the resin fine particles contains the structural unit (II) having a specific group Y 1A or Y 1B , and this specific group functions as a so-called charge repellent group in the resin fine particles. Thus, the shell polymer can cause the resin particles to electrostatically repel each other, and can exert a dispersion stabilizing action of the resin particles. Moreover, the shell polymer is a structural unit (a group represented by-(A 1 -O) m 1-in the formula (1)) in combination with the structural unit (II) (a group represented by-(A 1 -O) m 1- ) I). By the cooperation of such structural units (I) and (II), the stability of the resin fine particles in the aqueous ink composition is improved, gelation of the aqueous ink composition, and further resin fine particles to aqueous The aggregation of the ink composition is suppressed, and the above-mentioned dispersion stabilizing action is effectively developed. As a result, clogging of the nozzles is less likely to occur, which is considered to indicate high latency.
On the other hand, in the resin fine particles containing the shell polymer having the structural unit (I) and the structural unit (II) in the specific combination described above, the glass transition temperature of the shell polymer is set to 20 to 130 ° C. By setting the glass transition temperature higher than that of the shell polymer, each of the polymers forming the core-shell structure of the resin fine particles in the image formation with the aqueous ink composition of the present invention does not impair the expression of the above-mentioned action. It can assume different functions. As a result, both abrasion resistance and blocking resistance can be enhanced. That is, it is considered that the fine resin particles can exhibit and maintain the thermal adhesion by the shell polymer having a low glass transition temperature and the thermal stability by a core polymer having a high glass transition temperature in a well-balanced manner. Therefore, the resin fine particles of the present invention can enhance the abrasion resistance and the blocking resistance of the image while exhibiting an excellent latency.
 この樹脂微粒子は、上述のように、コアポリマーと、コアポリマーを被覆するシェルポリマーとを含有するコアシェル構造を有している。このコアシェル構造において、コアポリマー(コアポリマーが形成するコア層)はその少なくとも一部がシェルポリマーで被覆されていればよく、コアポリマーの被覆量は特に限定されない。また、シェルポリマーからなるシェル層の層厚も特に限定されない。本発明においては、被覆量、シェル層の層厚は、例えば、コアポリマーとシェルポリマーとの質量比で特定することができ、質量比[コアポリマー:シェルポリマー]で示すと、例えば、80~20:20~80であることが好ましく、70:30~30:70であることがより好ましい。
 樹脂微粒子を形成するコアポリマー及びシェルポリマー(両者を合わせて、コア/シェルポリマーということがある。)は、それぞれ、1種でも2種以上でもよい。また、樹脂微粒子は、コアポリマー及びシェルポリマーとは異なるポリマーを本発明の効果を損なわない範囲で有していてもよい。
As described above, this resin fine particle has a core-shell structure containing a core polymer and a shell polymer that coats the core polymer. In this core-shell structure, the core polymer (core layer formed by the core polymer) may be at least partially covered with the shell polymer, and the amount of the core polymer coated is not particularly limited. Moreover, the layer thickness of the shell layer which consists of shell polymers is not specifically limited, either. In the present invention, the coating amount and the layer thickness of the shell layer can be specified by, for example, the mass ratio of the core polymer to the shell polymer, and it is indicated by the mass ratio [core polymer: shell polymer], for example, 80 to The ratio is preferably 20:20 to 80, and more preferably 70:30 to 30:70.
The core polymer and the shell polymer (both may be collectively referred to as core / shell polymer) which form the resin fine particles may be one kind or two or more kinds respectively. The resin fine particles may have a polymer different from the core polymer and the shell polymer as long as the effects of the present invention are not impaired.
 シェルポリマーは、構造単位として、後述する構造単位(I)の少なくとも1種と、構造単位(II)の少なくとも1種とを有している。シェルポリマーは、構造単位(I)及び構造単位(II)以外に、後述するその他の構造単位(III)を有していることが好ましい。
 コアポリマーは、ガラス転移温度の条件を満たす限り、任意の構造単位を有していればよい。例えば、このコアポリマーは、必ずしも、構造単位(I)と構造単位(II)とを有している必要はなく、構造単位(I)及び構造単位(II)のいずれか一方又は両方を有していなくてもよい。コアポリマーは、後述するその他の構造単位(III)を有していることが好ましく、この構造単位(III)の1種又は2種以上の重合体であってもよく、構造単位(III)と、構造単位(I)及び構造単位(II)のいずれか一方又は両方との共重合体であってもよい。
 コアポリマー及びシェルポリマーそれぞれを形成する構造単位の種類等は、シェルポリマーのガラス転移温度、及び、両ポリマーのガラス転移温度の差(絶対値)が後述する範囲を満たすように、選択される。
The shell polymer has, as structural units, at least one of structural units (I) described later and at least one of structural units (II). The shell polymer preferably has, in addition to the structural unit (I) and the structural unit (II), other structural units (III) described later.
The core polymer may have any structural unit as long as the conditions of the glass transition temperature are satisfied. For example, the core polymer does not necessarily have to have the structural unit (I) and the structural unit (II), and has one or both of the structural unit (I) and the structural unit (II) You do not have to. The core polymer preferably has the other structural unit (III) described later, and may be one or two or more polymers of the structural unit (III), and the structural unit (III) and And a copolymer with either or both of the structural unit (I) and the structural unit (II).
The type of structural unit forming each of the core polymer and the shell polymer is selected so that the glass transition temperature of the shell polymer and the difference (absolute value) between the glass transition temperatures of both polymers satisfy the ranges described later.
 本発明の水性インク組成物は、本発明に用いる樹脂微粒子を1~15質量%含有することが好ましく、1~10質量%含有することがより好ましく、4~10質量%含有することが更に好ましい。本発明の水性インク組成物は、本発明に用いる樹脂微粒子を1~15質量%含有することにより、水性インク組成物の吐出安定性、レイテンシが良好となる。 The aqueous ink composition of the present invention preferably contains 1 to 15% by mass, more preferably 1 to 10% by mass, and still more preferably 4 to 10% by mass of resin fine particles used in the present invention. . The aqueous ink composition of the present invention is improved in the ejection stability and latency of the aqueous ink composition by containing 1 to 15% by mass of the resin fine particles used in the present invention.
 以下に、コアポリマー及びシェルポリマーを形成する構造単位について具体的に説明する。
 - 構造単位(I) -
 構造単位(I)は下記式(1)で表される。
Below, the structural unit which forms a core polymer and a shell polymer is demonstrated concretely.
-Structural unit (I)-
Structural unit (I) is represented by following formula (1).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(1)中、Rは水素原子又は炭素数1~4のアルキル基を示す。Rは水素原子又はメチルが好ましく、より好ましくはメチルである。 In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 1 is preferably a hydrogen atom or methyl, more preferably methyl.
 Rは、水素原子、炭素数1~20の直鎖状若しくは分岐鎖状のアルキル基、又は、芳香族環基を示す。Rは、水素原子、又は、直鎖状若しくは分岐鎖状のアルキル基が好ましく、水素原子又は直鎖状のアルキル基がより好ましい。
 アルキル基は、好ましくは炭素数1~15のアルキル基であり、より好ましくは炭素数1~12のアルキル基であり、更に好ましくは炭素数1~10のアルキル基であり、特に好ましくは炭素数1~8のアルキル基であり、最も好ましくはメチルである。
R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group. R 2 is preferably a hydrogen atom or a linear or branched alkyl group, more preferably a hydrogen atom or a linear alkyl group.
The alkyl group is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably It is an alkyl group of 1 to 8 and most preferably methyl.
 芳香族環基は、芳香族環からなる基であれば特に限定されず、単環でも縮合環でもよく、芳香族炭化水素環基でも芳香族ヘテロ環基でもよい。芳香族炭化水素環基を形成する芳香族炭化水素環は、特に限定されないが、炭素数が6~12であるものが好ましい。芳香族ヘテロ環基を形成する芳香族ヘテロ環は、環構成原子として、少なくとも1個以上のヘテロ原子と炭素原子とを含む。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が挙げられ、その数は、特に限定されないが、例えば、1~2個である。環構成炭素原子の数は、特に限定されないが、好ましくは3~20個であり、更に好ましくは3~12個である。また、芳香族環(縮合環の場合、縮合環を形成する環)の環員数も、特に限定されないが、5員環又は6員環が好ましい。
 芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、ビナフチル基等が挙げられる。
 芳香族ヘテロ環としては、例えば、チオフェン環、フラン環、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、チエノチオフェン等の5員環、若しくは5員環を含む縮合環、ピリジン環、ピリミジル環、ピラジン環、キノリン環、イソキノリン環等の6員環、若しくは6員環を含む縮合環が挙げられる。
 芳香族環基は、芳香族炭化水素環基が好ましく、ベンゼン環基がより好ましい。
The aromatic ring group is not particularly limited as long as it is a group consisting of an aromatic ring, and may be a single ring or a condensed ring, and may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group. The aromatic hydrocarbon ring forming the aromatic hydrocarbon ring group is not particularly limited, but one having 6 to 12 carbon atoms is preferable. The aromatic heterocycle forming an aromatic heterocycle group contains, as a ring member atom, at least one or more hetero atoms and carbon atoms. The hetero atom includes, for example, a nitrogen atom, an oxygen atom and a sulfur atom, and the number thereof is not particularly limited, and is, for example, 1 to 2. The number of ring carbon atoms is not particularly limited, but preferably 3 to 20, more preferably 3 to 12. Further, the number of ring members of the aromatic ring (in the case of a condensed ring, a ring forming the condensed ring) is also not particularly limited, but a 5- or 6-membered ring is preferable.
As an aromatic hydrocarbon ring, a benzene ring, a naphthalene ring, an anthracene ring, a binaphthyl group etc. are mentioned, for example.
Examples of the aromatic heterocycle include a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, an oxazole ring, a thiazole ring, a 5-membered ring such as thienothiophene or a fused ring containing a 5-membered ring, a pyridine ring, a pyrimidyl ring, And 6-membered rings such as pyrazine ring, quinoline ring and isoquinoline ring, or fused rings containing 6-membered rings.
The aromatic ring group is preferably an aromatic hydrocarbon ring group, more preferably a benzene ring group.
 Rは、置換基を有していてもよい。このような置換基としては、特に限定されず、例えば、(シクロ)アルキル基、(シクロ)アルケニル基、(シクロ)アルキニル基、芳香族炭化水素環基、芳香族ヘテロ環基等が挙げられる。中でも、アルキル基、芳香族炭化水素環基、芳香族ヘテロ環基が好ましく、アルキル基がより好ましい。
 Rが置換基を有する場合、置換基は、Rに直結していてもよく、連結基を介して結合していてもよい。連結基としては、特に限定されないが、例えば、-NH-、-S-、-О-、-C(=O)-、又は、これらを2個以上連結して形成される2価の連結基が挙げられる。この連結基において、-NH-、-S-、-О-及び-C(=O)-が連結される数は、特に限定されないが、2~5個が好ましい。上記基を2個以上連結して形成される連結基としては、例えば、-C(=O)-NH-、-C(=O)-S-、-NH-C(=O)-NH-、-NH-C(=O)-S-、-C(=O)-О-、-C(=O)-О-C(=O)-等が挙げられる。
R 2 may have a substituent. Such a substituent is not particularly limited, and examples thereof include (cyclo) alkyl group, (cyclo) alkenyl group, (cyclo) alkynyl group, aromatic hydrocarbon ring group, aromatic heterocyclic group and the like. Among them, an alkyl group, an aromatic hydrocarbon ring group and an aromatic heterocyclic group are preferable, and an alkyl group is more preferable.
When R 2 has a substituent, the substituent may be directly linked to R 2 or may be linked via a linking group. The linking group is not particularly limited. For example, -NH-, -S-, -O-, -C (= O)-, or a divalent linking group formed by linking two or more of these Can be mentioned. In this linking group, the number to which -NH-, -S-, -O- and -C (= O)-are linked is not particularly limited, but is preferably 2 to 5. As a linking group formed by linking two or more of the above groups, for example, —C (= O) —NH—, —C (= O) —S—, —NH—C (= O) —NH— And -NH-C (= O) -S-, -C (= O) -O-, -C (= O) -O-C (= O)-and the like.
 Aは、炭素数2~20のアルキレン基を示し、好ましくは炭素数2~15のアルキレン基であり、より好ましくは炭素数2~10のアルキレン基であり、更に好ましくは炭素数2又は3のアルキレン基であり、特に好ましくはエチレン基である。
 このアルキレン基は、直鎖状、分岐鎖状又は環状のいずれであってもよく、直鎖状又は分岐鎖状が好ましく、直鎖状がより好ましい。
 構造単位(I)において、Aは、1種でも2種以上でもよい。Aが2種以上である場合、2種の(-A-O-)単位の結合様式は、ブロックでもランダムでもよい。Aが2種以上である場合、エチレンとプロピレンの組み合わせが好ましい。
 Aは置換基を有していてもよい。このような置換基としては、特に限定されず、例えば、Rが有していてもよい置換基が挙げられる。
A 1 represents an alkylene group having 2 to 20 carbon atoms, preferably an alkylene group having 2 to 15 carbon atoms, more preferably an alkylene group having 2 to 10 carbon atoms, still more preferably 2 or 3 carbon atoms And an alkylene group, particularly preferably an ethylene group.
The alkylene group may be linear, branched or cyclic, preferably linear or branched, and more preferably linear.
In the structural unit (I), A 1 may be one kind or two or more kinds. When A 1 is two or more, the binding mode of two (-A 1 -O-) units may be block or random. If A 1 is 2 or more, a combination of ethylene and propylene are preferred.
A 1 may have a substituent. Such a substituent is not particularly limited, and examples thereof include substituents which R 2 may have.
 mは、1~100の整数であり、構造単位(II)を有する樹脂微粒子であってもそのゲル化ないし凝集を効果的に抑制できる点で、好ましく2~100の整数であり、より好ましくは2~80の整数であり、更に好ましくは2~50の整数である。 m 1 is an integer of 1 to 100, and is preferably an integer of 2 to 100, and more preferably, from the viewpoint that even a resin fine particle having a structural unit (II) can effectively suppress gelation or aggregation thereof. Is an integer of 2 to 80, more preferably an integer of 2 to 50.
 式(1)で表される構造単位は、下記式(3)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(3)中、R及びRは式(1)のR及びRと同義であり、好ましいものも同じである。
 mは2~100の整数である。mは、構造単位(II)を有する樹脂微粒子であってもそのゲル化ないし凝集を効果的に抑制できる点で、好ましくは2~80の整数であり、より好ましくは2~50の整数である。
The structural unit represented by Formula (1) has a preferable structural unit represented by following formula (3).
Figure JPOXMLDOC01-appb-C000013
In the formula (3), R 1 and R 2 have the same meanings as R 1 and R 2 of formula (1), it is preferable also the same.
m 2 is an integer of 2 to 100. m 2 is preferably an integer of 2 to 80, more preferably an integer of 2 to 50, in that the resin fine particles having the structural unit (II) can effectively suppress gelation or aggregation thereof. is there.
 構造単位(I)の好ましい具体例を以下に示すが、本発明はこれらに限定されない。下記構造単位において、Rとして採りうるアルキル基は、いずれも、直鎖状である。*は連結部位を示す。 Preferred specific examples of the structural unit (I) are shown below, but the present invention is not limited thereto. In the following structural units, any alkyl group that can be taken as R 2 is linear. * Indicates a linking site.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 コア/シェルポリマーの各ポリマーは、構造単位(I)を1種又は2種以上有していてもよい。 Each polymer of the core / shell polymer may have one or more structural units (I).
 - 構造単位(II) -
 構造単位(II)は下記式(2A)又は式(2B)で表され、式(2A)で表されるものが好ましい。
-Structural unit (II)-
Structural unit (II) is represented by following formula (2A) or Formula (2B), and what is represented by Formula (2A) is preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(2A)において、Rは水素原子又は炭素数1~4のアルキル基を示し、式(1)のRと同義であり、好ましいものも同じである。 In formula (2A), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which has the same meaning as R 1 in formula (1), and preferred examples are also the same.
 L1Aは、単結合、又は、式(2A)中のカルボニル炭素原子とY1Aとを連結する最少原子数が6以下の連結基を示す。L1Aとして採りうる2価の連結基は、最少原子数が6以下であれば特に限定されず、例えば、直鎖、分岐若しくは環状のアルキレン基、アリーレン基、-O-、-NH-、-S-若しくは-C(=O)-、又は、これらを2個以上連結して形成される2価の連結基が挙げられる。連結する基の数は、2個以上であれば特に限定されず、例えば、2~5個が好ましく、2~3個がより好ましい。連結基は、アルキレン基、-NH-アルキレン基、-O-アルキレン基、-S-アルキレン基、-O-アリーレン基、-NH-アリーレン基、-O-アルキレン基-O-C(=O)-アルキレン基、又は-NH-アリーレン基がより好ましく、-O-アルキレン基又は-NH-アルキレン基が更に好ましい。 L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula (2A) and Y 1A . The divalent linking group that can be taken as L 1A is not particularly limited as long as the minimum number of atoms is 6 or less, and, for example, a linear, branched or cyclic alkylene group, an arylene group, -O-, -NH-,- S- or -C (= O)-or a divalent linking group formed by linking two or more of them. The number of linking groups is not particularly limited as long as it is 2 or more, and for example, 2 to 5 are preferable, and 2 to 3 are more preferable. The linking group is an alkylene group, -NH-alkylene group, -O-alkylene group, -S-alkylene group, -O-arylene group, -NH-arylene group, -O-alkylene group -OC (= O) -Alkylene group or -NH-arylene group is more preferable, and -O-alkylene group or -NH-alkylene group is more preferable.
 アルキレン基は、直鎖でも分岐を有していてもよいが、吐出安定性、レイテンシ、及び樹脂微粒子の安定性の観点から直鎖であることが好ましい。
 アルキレン基の炭素数は、後述する最少原子数が6以下であることを満たすものであれば特に限定されない。例えば、L1Aがアルキレン基である場合、アルキレン基の炭素数は、6個以下であり、好ましくは5個以下であり、より好ましくは2個又は3個である。L1Aがアルキレン基を含有する場合(上述の、2個以上連結して形成される連結基である場合)、アルキレン基の炭素数は、1~3個が好ましく、1個又は2個がより好ましい。
 L1Aは、式(2A)中のカルボニル炭素原子とY1Aとを連結する最少原子数が6以下である。換言すると、カルボニル炭素原子とY1Aとを連結する原子鎖のうち最短鎖を構成する原子の結合数が6以下である。このような比較的短鎖の連結基L1Aを介してY1Aが結合する構造単位(I)を有すると、水性インク組成物中での樹脂微粒子の安定性が良くなる。また連結基L1Aが比較的短鎖であることで他のモノマー又は有機溶媒との親和性が高くなり、合成時の取り扱いが容易になるという利点がある。その一方で、連結基L1Aが短鎖であると、Y1Aが本来示す作用機能が効果的に発現せず、樹脂微粒子がゲル化ないし凝集して、インクジェット記録用水性インク組成物に、高いレイテンシ、優れた画像形成特性(耐擦性及び耐ブロッキング性)を付与できなくなる。しかし、本発明では、このような構造単位(II)を構造単位(I)と組み合わせて、樹脂微粒子を形成するシェルポリマーに組み込む。これにより、上述のように、本発明の樹脂微粒子は、優れたレイテンシを示しつつも、画像の耐擦性及び耐ブロッキング性を高めることができる。
The alkylene group may be linear or branched, but is preferably linear from the viewpoint of discharge stability, latency, and stability of the resin fine particles.
The number of carbon atoms of the alkylene group is not particularly limited as long as it satisfies that the minimum number of atoms described later is 6 or less. For example, when L 1A is an alkylene group, the carbon number of the alkylene group is 6 or less, preferably 5 or less, and more preferably 2 or 3. When L 1A contains an alkylene group (when it is a linking group formed by linking two or more as described above), the number of carbon atoms of the alkylene group is preferably 1 to 3, and 1 or 2 is more preferable. preferable.
L 1A has at least 6 or less atoms connecting the carbonyl carbon atom in the formula (2A) and Y 1A . In other words, the number of bonds of atoms constituting the shortest chain among the atomic chains connecting the carbonyl carbon atom and Y 1A is 6 or less. When the structural unit (I) to which Y 1A is bonded via such a relatively short chain linking group L 1A is included, the stability of the resin fine particles in the aqueous ink composition is improved. In addition, since the linking group L 1A is a relatively short chain, the affinity with other monomers or organic solvents is increased, and there is an advantage that handling at the time of synthesis becomes easy. On the other hand, when the linking group L 1A is a short chain, the function originally exhibited by Y 1A is not effectively exhibited, and the resin fine particles gel or aggregate, resulting in a high aqueous ink composition for inkjet recording. It becomes impossible to provide latency and excellent image forming characteristics (abrasion resistance and blocking resistance). However, in the present invention, such a structural unit (II) is combined with the structural unit (I) to be incorporated into a shell polymer forming resin fine particles. Thereby, as described above, the resin fine particle of the present invention can enhance the abrasion resistance and the blocking resistance of the image while exhibiting an excellent latency.
 L1Aは、置換基を有していてもよい。このような置換基としては、特に限定されず、例えば、Rが有していてもよい置換基が挙げられる。 L 1A may have a substituent. Such a substituent is not particularly limited, and examples thereof include substituents which R 2 may have.
 Y1Aは、L1Aが単結合である場合、-OMを示し、L1Aが上記連結基である場合、-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。このY1Aは、レイテンシと、画像の耐擦性及び耐ブロッキング性を高い水準で両立できる点で、L1Aが上記連結基である場合、-C(=O)OM若しくは-S(=O)OMが好ましく、-C(=O)OMがより好ましい。
 Mは水素原子、アルカリ金属イオン又はアンモニウムイオンを示す。吐出安定性、レイテンシと樹脂微粒子の安定性の観点から、Mはアルカリ金属イオンが好ましく、ナトリウムイオン又はカリウムイオンがより好ましく、カリウムイオンが更に好ましい。
 本発明の水性インク組成物中において、Mは乖離(遊離)していてもよい。
Y 1A represents -OM when L 1A is a single bond, and -C (= O) OM, -S (= O) 2 OM or -OS (= O when L 1A is the above linking group 2 ) Show the OM. In the case where L 1A is the above-mentioned linking group, this Y 1A is compatible with the latency, and the abrasion resistance and the blocking resistance of the image at a high level, -C (= O) OM or -S (= O) 2 OM is preferable, and -C (= O) OM is more preferable.
M represents a hydrogen atom, an alkali metal ion or an ammonium ion. M is preferably an alkali metal ion, more preferably a sodium ion or a potassium ion, and still more preferably a potassium ion, from the viewpoint of discharge stability, latency, and stability of the resin fine particles.
In the aqueous ink composition of the present invention, M may be separated (free).
 式(2B)において、Rは水素原子又は炭素数1~4のアルキル基を示し、式(1)のRと同義であり、好ましいものも同じである。 In formula (2B), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which has the same meaning as R 1 in formula (1), and preferred ones are also the same.
 Y1Bは、-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Y1Bは、レイテンシと、画像の耐擦性及び耐ブロッキング性を高い水準で両立できる点で、-C(=O)OM若しくは-S(=O)OMが好ましく、-C(=O)OMがより好ましい。
 Mは、水素原子、アルカリ金属イオン又はアンモニウムイオンを示し、Y1Aが有しうるMと同義であり、好ましいものも同じである。
 式(2)中のベンゼン環において、Y1Bが結合する位置は、特に限定されないが、Rを有する炭素原子に結合する環構成炭素原子に対してパラ位が好ましい。
 式(2)中のベンゼン環は、置換基を有していてもよい。このような置換基としては、特に限定されず、例えば、Rが有していてもよい置換基、更には上記Y1B等が挙げられる。
Y 1B represents —C (= O) OM, —S (= O) 2 OM or —OS (= O) 2 OM. Y 1 B is preferably —C (= O) OM or —S (= O) 2 OM, from the viewpoint that it is compatible with latency, image scratch resistance and blocking resistance at a high level, and —C (= O) OM is more preferred.
M represents a hydrogen atom, an alkali metal ion or an ammonium ion, and has the same meaning as M which Y 1A may have, and preferred examples are also the same.
In the benzene ring in the formula (2), the position to which Y 1B is bonded is not particularly limited, but is preferably in the para-position to the ring-constituting carbon atom bonded to the carbon atom having R 3 .
The benzene ring in Formula (2) may have a substituent. Such a substituent is not particularly limited, and examples thereof include the substituents which R 2 may have, and further, Y 1 B described above and the like.
 構造単位(II)の好ましい具体例を以下に示すが、本発明はこれらに限定されるものではない。下記構造単位において、*は連結部位を示す。なお、以下で示す構造単位(II)の好ましい具体例は、上記式(2A)中のM及び式(2B)中のMが水素原子である構造を示すが、この水素原子に代えて、アルカリ金属イオン又はアンモニウムイオンを採用した形態も、上記構造単位(II)として好ましい。 Preferred specific examples of the structural unit (II) are shown below, but the present invention is not limited thereto. In the following structural units, * indicates a linking site. In addition, although the preferable specific example of structural-unit (II) shown below shows the structure whose M in a said Formula (2A) and M in a formula (2B) is a hydrogen atom, it replaces with this hydrogen atom, and is an alkali The form which employ | adopted metal ion or ammonium ion is also preferable as said structural unit (II).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 コア/シェルポリマーの各ポリマーは、構造単位(II)を1種又は2種以上有していてもよい。構造単位(II)を1種有する場合、式(2A)で表される構造単位であっても、式(2B)で表される構造単位であってもよい。また、構造単位(II)を2種以上有する場合、式(2A)又は式(2B)で表される構造単位を2種以上有していてもよく、式(2A)で表される構造単位の少なくとも1種と式(2B)で表される構造単位の少なくとも1種とを有していてもよい。 Each polymer of the core / shell polymer may have one or more structural units (II). When one structural unit (II) is contained, it may be a structural unit represented by the formula (2A) or a structural unit represented by the formula (2B). Moreover, when it has 2 or more types of structural unit (II), it may have 2 or more types of structural units represented by Formula (2A) or Formula (2B), and is a structural unit represented by Formula (2A) And at least one structural unit represented by the formula (2B).
 構造単位(I)と構造単位(II)との組み合わせは、特に限定されないが、構造単位(I)の好ましいものと構造単位(II)の好ましいものとを適宜に組み合わせることができる。例えば、構造単位(I)として上記式(3)で表される構造単位と、構造単位(II)として上記式(2A)で表される構造単位とを組み合わせることができる。 Although the combination of structural unit (I) and structural unit (II) is not specifically limited, The preferable thing of structural unit (I) and the preferable thing of structural unit (II) can be combined suitably. For example, the structural unit represented by the said Formula (3) as structural unit (I), and the structural unit represented by said Formula (2A) as structural unit (II) can be combined.
 - その他の構造単位(III) -
 コア/シェルポリマーの少なくとも一方を構成する、上記構造単位(I)及び構造単位(II)以外の構造単位(「他の構造単位(III)」という。)としては、特に限定されず、好適な例としては、特開2001-181549号公報及び特開2002-88294号公報に記載されている構造単位を挙げることができる。
-Other structural units (III)-
The structural unit (referred to as “other structural unit (III)”) other than the structural unit (I) and the structural unit (II) constituting at least one of the core / shell polymer is not particularly limited, and is preferable As examples, there can be mentioned structural units described in JP-A-2001-181549 and JP-A-2002-88294.
 コア/シェルポリマーの少なくとも一方は、他の構造単位(III)として、芳香族環又は脂肪族環を有するエチレン性不飽和化合物の構造単位(i)を含有することが好ましい。
 構造単位(i)に含まれる芳香族環又は脂肪族環としては、ベンゼン環、ナフタレン環、アントラセン環、及び、炭素数5~20の脂肪族炭化水素環が挙げられ、ベンゼン環、及び、炭素数6~10の脂肪族炭化水素環が好ましい。
 これらの芳香族環又は脂肪族環は置換基を有していてもよい。芳香族環又は脂肪族環が置換基を有する場合、置換基は、特に限定されないが、上記Y1A及びY1Bとして採りうる上述の基以外の置換基が挙げられる。
At least one of the core / shell polymers preferably contains, as another structural unit (III), a structural unit (i) of an ethylenically unsaturated compound having an aromatic ring or an aliphatic ring.
The aromatic ring or aliphatic ring contained in the structural unit (i) includes a benzene ring, a naphthalene ring, an anthracene ring, and an aliphatic hydrocarbon ring having 5 to 20 carbon atoms, and the benzene ring and carbon Aliphatic hydrocarbon rings of several 6 to 10 are preferred.
These aromatic rings or aliphatic rings may have a substituent. When the aromatic ring or the aliphatic ring has a substituent, the substituent is not particularly limited, and examples of the substituent include substituents other than those described above which can be taken as Y 1A and Y 1B .
 構造単位(i)を導く芳香族環又は脂肪族環を有するエチレン性不飽和化合物としては、化合物末端にエチレン性不飽和基を有するエチレン性不飽和化合物が好ましく、スチレン、又は、(メタ)アクリレート化合物、又は、(メタ)アクリルアミド化合物がより好ましく、置換基を有していてもよいスチレン、又は、(メタ)アクリレート化合物が更に好ましい。
 上記エチレン性不飽和化合物としては、特に限定されないが、下記一般式(A)~一般式(E)で表される構造単位を導く化合物等が挙げられ、より具体的には、スチレン、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。
As the ethylenically unsaturated compound having an aromatic ring or aliphatic ring leading to the structural unit (i), an ethylenically unsaturated compound having an ethylenically unsaturated group at the compound end is preferable, and styrene or (meth) acrylate is preferable The compound or the (meth) acrylamide compound is more preferable, and the styrene which may have a substituent or the (meth) acrylate compound is more preferable.
Examples of the above-mentioned ethylenically unsaturated compound include, but are not particularly limited to, compounds which lead to structural units represented by the following general formulas (A) to (E), and more specifically styrene, benzyl ( Examples include meta) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate and the like.
 構造単位(i)は、得られる画像の製造適性(ろ過性)の観点から、下記一般式(A)~一般式(E)のいずれか1つの式で表される構造単位を含むことが好ましく、インク中での粒子の安定性の観点から、下記一般式(A)で表される構造単位を含むことがより好ましい。 The structural unit (i) preferably contains a structural unit represented by any one of the following general formula (A) to general formula (E) from the viewpoint of the production aptitude (filterability) of the obtained image From the viewpoint of the stability of particles in the ink, it is more preferable to include a structural unit represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(A)~一般式(E)中、R11及びR12は、各々独立に、メチル基又は水素原子を表す。R13は、各々独立に、直鎖状又は分岐鎖状の炭素数が1~10のアルキル基を表す。一般式(A)及び一般式(B)中のnは0~5の整数を示す。一般式(C)中のnは0~11の整数である。L11は、単結合、炭素数1~18の直鎖状、分岐鎖状若しくは環状のアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-若しくは-C(=O)-、又は、これらを2個以上連結して形成される2価の連結基を示す。 In formulas (A) to (E), R 11 and R 12 each independently represent a methyl group or a hydrogen atom. Each R 13 independently represents a linear or branched alkyl group having 1 to 10 carbon atoms. N in the general formula (A) and the general formula (B) represents an integer of 0 to 5. N in the general formula (C) is an integer of 0 to 11. L 11 represents a single bond, a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms, an arylene group having 6 to 18 carbon atoms, -O-, -NH-, -S- or -C ( OO) — or a divalent linking group formed by linking two or more of these.
 一般式(A)中、R11は水素原子であることが好ましい。
 一般式(B)~一般式(E)中、R12はメチル基であることが好ましい。
 一般式(A)~一般式(C)中、R13は、各々独立に、直鎖状又は分岐鎖状の炭素数1~4のアルキル基が好ましく、メチル基又はエチル基がより好ましい。各式で表される構造単位が複数のR13を有する場合、互いに結合して環を形成してもよい。ただし、一般式(C)で表される構造単位において、複数のR13が互いに結合して環を形成する場合、一般式(D)及び(E)で表される構造単位となることはない。
 nは、いずれの式においても、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることが更に好ましい。
In formula (A), R 11 is preferably a hydrogen atom.
In the general formulas (B) to (E), R 12 is preferably a methyl group.
In formulas (A) to (C), each of R 13 s independently preferably represents a linear or branched alkyl group having 1 to 4 carbon atoms, and more preferably a methyl group or an ethyl group. When the structural unit represented by each formula has a plurality of R 13 's, they may be combined with each other to form a ring. However, in the structural unit represented by the general formula (C), when a plurality of R 13 combine with each other to form a ring, the structural unit represented by the general formulas (D) and (E) can not be obtained. .
In any formula, n is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 一般式(B)中、L11は、一般式(B)中に記載されたカルボニル炭素原子との結合部位に-O-又は-NH-を含む2価の連結基が好ましく、上記カルボニル炭素原子との結合部位に-O-又は-NH-を含み、かつ、炭素数1~18の直鎖状、分岐鎖状若しくは環状のアルキレン基を含む2価の連結基がより好ましく、-OCH-又は-NHCH-が更に好ましく、-OCH-が特に好ましい。
 一般式(C)~一般式(E)中、L11は、一般式(C)~一般式(E)中に記載されたカルボニル炭素原子との結合部位に-O-又は-NH-を含む2価の連結基が好ましく、-O-又は-NH-がより好ましく、-O-が更に好ましい。
In the general formula (B), L 11 is preferably a divalent linking group containing -O- or -NH- at the bonding site to the carbonyl carbon atom described in the general formula (B), and the carbonyl carbon atom More preferably a divalent linking group containing -O- or -NH- at the bonding site with and containing a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms, and -OCH 2- Or -NHCH 2- is more preferred, and -OCH 2 -is particularly preferred.
In the general formulas (C) to (E), L 11 contains -O- or -NH- at the bonding site to the carbonyl carbon atom described in the general formulas (C) to (E) A divalent linking group is preferred, -O- or -NH- is more preferred, and -O- is more preferred.
 一般式(A)で表される構造単位は、スチレンに由来する構造単位であることが好ましい。
 一般式(B)で表される構造単位は、ベンジル(メタ)アクリレートに由来する構造単位であることが好ましい。
 一般式(C)で表される構造単位は、シクロヘキシル(メタ)アクリレートに由来する構造単位であることが好ましい。
 一般式(D)で表される構造単位は、イソボルニル(メタ)アクリレートに由来する構造単位であることが好ましい。
 一般式(E)で表される構造単位は、ジシクロペンタニル(メタ)アクリレートに由来する構造単位であることが好ましい。
The structural unit represented by the general formula (A) is preferably a structural unit derived from styrene.
The structural unit represented by the general formula (B) is preferably a structural unit derived from benzyl (meth) acrylate.
The structural unit represented by the general formula (C) is preferably a structural unit derived from cyclohexyl (meth) acrylate.
The structural unit represented by the general formula (D) is preferably a structural unit derived from isobornyl (meth) acrylate.
The structural unit represented by the general formula (E) is preferably a structural unit derived from dicyclopentanyl (meth) acrylate.
 コア/シェルポリマーの各ポリマーは、構造単位(i)を1種又は2種以上有していてもよい。 Each polymer of the core / shell polymer may have one or more structural units (i).
 コア/シェルポリマーの少なくとも一方は、他の構造単位(III)として、上記構造単位(i)以外の構造単位(ii)を有していてもよい。
 構造単位(ii)は、上記構造単位と重合可能な化合物由来のものであれば特に限定されず、(メタ)アクリルアミド化合物又は(メタ)アクリレート化合物に由来する構造単位であることが好ましく、(メタ)アクリレート化合物に由来する構造単位であることがより好ましい。
At least one of the core / shell polymers may have a structural unit (ii) other than the structural unit (i) as the other structural unit (III).
The structural unit (ii) is not particularly limited as long as it is derived from a compound that can be polymerized with the above structural unit, and is preferably a structural unit derived from a (meth) acrylamide compound or a (meth) acrylate compound, It is more preferable that it is a structural unit derived from an acrylate compound.
 構造単位(ii)は、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレート化合物、又は、アルキル(メタ)アクリルアミド化合物が好ましく、アルキル(メタ)アクリレート化合物がより好ましい。このアルキル(メタ)アクリレート化合物は、アルキル基の炭素数が1~10であるアルキル(メタ)アクリレート化合物であることが更に好ましい。
 構造単位(ii)が有する上記アルキル基は、直鎖状でも分岐鎖状でもよく、環状構造(ただし、上記一般式(C)~一般式(E)に包含されるものを除く。)を有していてもよい。
 上記構造単位(ii)は置換基を有していてもよい。構造単位(ii)が有していてもよい置換基としては、特に限定されないが、上記Y1A及びY1B以外の置換基、例えば水酸基、アミノ基が挙げられる。
The structural unit (ii) is preferably an alkyl (meth) acrylate compound or an alkyl (meth) acrylamide compound in which the alkyl group has 1 to 18 carbon atoms, and an alkyl (meth) acrylate compound is more preferable. The alkyl (meth) acrylate compound is more preferably an alkyl (meth) acrylate compound in which the alkyl group has 1 to 10 carbon atoms.
The above-mentioned alkyl group possessed by the structural unit (ii) may be linear or branched, and has a cyclic structure (except those included in the above general formula (C) to general formula (E)). It may be done.
The structural unit (ii) may have a substituent. Although it does not specifically limit as a substituent which structural unit (ii) may have, For example, substituents other than said Y1A and Y1B , for example, a hydroxyl group, an amino group, are mentioned.
 コア/シェルポリマーの各ポリマーは、構造単位(ii)を1種又は2種以上有していてもよい。
 コア/シェルポリマーの少なくとも一方は、他の構造単位(III)として、上記構造単位以外の構造単位を有していてもよい。このような構造単位としては、特に限定されないが、例えば、(メタ)アクリル酸系化合物又はその塩(上記アルカリ金属塩又はアンモニウム塩が挙げられる。)に由来する構造単位が挙げられる。
Each polymer of the core / shell polymer may have one or more structural units (ii).
At least one of the core / shell polymers may have a structural unit other than the above structural units as the other structural unit (III). Such a structural unit is not particularly limited, and examples thereof include structural units derived from (meth) acrylic acid compounds or salts thereof (including the above-mentioned alkali metal salts or ammonium salts).
 コアポリマー及びシェルポリマーそれぞれを形成する構造単位の含有量は、他の構造単位の種類及び含有量等を考慮して、シェルポリマーのガラス転移温度、及び、両ポリマーのガラス転移温度の差(絶対値)が後述する範囲を満たすように、選択される。 The content of the structural unit forming each of the core polymer and the shell polymer is the difference between the glass transition temperature of the shell polymer and the glass transition temperature of both polymers, taking into account the type and content of other structural units, etc. (absolute The value is selected to satisfy the range described later.
 シェルポリマー中、上記構造単位(I)の含有量は、例えば、レイテンシ(吐出安定性)と、画像の耐擦性及び耐ブロッキング性を高い水準で両立できる観点から、更に所望により、樹脂微粒子の安定性の観点から、0質量%を越え、30質量%以下であることが好ましく、0.5~30質量%であることがより好ましく、1~25質量%が更に好ましく、2~20質量%が特に好ましい。構造単位(I)の上記含有量は、シェルポリマーが複数種の構造単位(I)を含有する場合、各構造単位の含有量の合計とする。
 コアポリマーが構造単位(I)を有する場合、コアポリマー中の構造単位(I)の含有量はシェルポリマーの含有量と同じである。
The content of the structural unit (I) in the shell polymer is, for example, from the viewpoint of being compatible with the latency (discharge stability) and the abrasion resistance and the blocking resistance of the image at a high level, From the viewpoint of stability, the content is preferably more than 0% by mass and 30% by mass or less, more preferably 0.5 to 30% by mass, still more preferably 1 to 25% by mass, and 2 to 20% by mass Is particularly preferred. When the shell polymer contains a plurality of structural units (I), the content of the structural unit (I) is the sum of the contents of the structural units.
When the core polymer has the structural unit (I), the content of the structural unit (I) in the core polymer is the same as the content of the shell polymer.
 シェルポリマー中、上記構造単位(II)の含有量は、例えば、レイテンシと、画像の耐擦性及び耐ブロッキング性を高い水準で両立できる観点から、更に所望により、樹脂微粒子の安定性の観点から、0.5~30質量%であることが好ましく、1~20質量%がより好ましく、2~15質量%が更に好ましい。構造単位(II)の含有量は、シェルポリマーが複数種の構造単位(II)を含有する場合、各構造単位の含有量の合計とする。
 コアポリマーが構造単位(II)を有する場合、コアポリマー中の構造単位(II)の含有量はシェルポリマーの含有量と同じである。
The content of the structural unit (II) in the shell polymer is, for example, from the viewpoint of being compatible with the latency, the abrasion resistance and the blocking resistance of the image at a high level, further from the viewpoint of the stability of the resin fine particles. The content is preferably 0.5 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 2 to 15% by mass. When the shell polymer contains a plurality of structural units (II), the content of the structural unit (II) is the sum of the content of each structural unit.
When the core polymer has the structural unit (II), the content of the structural unit (II) in the core polymer is the same as the content of the shell polymer.
 コア/シェルポリマーの各ポリマー中、他の構造単位(III)のうち構造単位(i)の含有量は、それぞれ、樹脂微粒子の製造適性(ろ過性)の観点も考慮すると、下記範囲に設定されることが好ましい。シェルポリマー中の構造単位(i)の含有量は、0~80質量%が好ましく、0~75質量%がより好ましく、0~70質量%が更に好ましい。コアポリマー中の構造単位(i)の含有量は、1~100質量%が好ましく、5~95質量%がより好ましく、10~90質量%が更に好ましい。上記含有量は、各ポリマーが複数種の構造単位(i)を含有する場合、各構造単位の含有量の合計とする。
 構造単位(i)の中で特に好ましいスチレン由来の構造単位については、吐出安定性、耐傷性の観点、更に所望により樹脂微粒子の製造適性(ろ過性)の観点を考慮すると、シェルポリマー中の含有量は、0~50質量%が好ましく、0~40質量%がより好ましく、0~35質量%が更に好ましい。コアポリマー中の、スチレン由来の構造単位の含有量は、1~100質量%が好ましく、10~90質量%がより好ましく、15~80質量%が更に好ましい。
The content of the structural unit (i) of the other structural units (III) in each of the core / shell polymer is set in the following range, taking into consideration the production suitability (filterability) of the resin fine particles Is preferred. The content of the structural unit (i) in the shell polymer is preferably 0 to 80% by mass, more preferably 0 to 75% by mass, and still more preferably 0 to 70% by mass. The content of the structural unit (i) in the core polymer is preferably 1 to 100% by mass, more preferably 5 to 95% by mass, and still more preferably 10 to 90% by mass. When each polymer contains multiple types of structural unit (i), the said content is made into the sum total of content of each structural unit.
The structural unit derived from styrene, which is particularly preferable among the structural units (i), is contained in the shell polymer, considering the viewpoint of discharge stability, scratch resistance, and optionally the production suitability (filterability) of the resin fine particles The amount is preferably 0 to 50% by mass, more preferably 0 to 40% by mass, and still more preferably 0 to 35% by mass. The content of structural units derived from styrene in the core polymer is preferably 1 to 100% by mass, more preferably 10 to 90% by mass, and still more preferably 15 to 80% by mass.
 コア/シェルポリマーの各ポリマー中、他の構造単位(III)のうち構造単位(ii)の含有量は、それぞれ、吐出性及び耐擦性の観点から、0~90質量%であることが好ましく、0~70質量%であることがより好ましい。上記含有量は、各ポリマーが複数種の構造単位(ii)を含有する場合、各構造単位の含有量の合計とする。 The content of the structural unit (ii) of the other structural units (III) in each of the core / shell polymer is preferably 0 to 90% by mass from the viewpoint of dischargeability and abrasion resistance, respectively. And 0 to 70% by mass is more preferable. The above content is the total of the content of each structural unit, when each polymer contains plural kinds of structural units (ii).
 本発明においては、コアポリマー及びシェルポリマーは、それぞれ、上記構造単位(I)、(II)及び(III)を含有し、これらの構造単位の含有量の合計が100質量%となることが好ましい。
 コアポリマー又はシェルポリマーが上記構造単位以外の構造単位を有する場合、上記構造単位以外の構造単位の含有量は、コアポリマー又はシェルポリマー中、0~20質量%が好ましく、0~15質量%がより好ましく、0~10質量%が更に好ましい。
In the present invention, the core polymer and the shell polymer each contain the above structural units (I), (II) and (III), and the total content of these structural units is preferably 100% by mass. .
When the core polymer or shell polymer has a structural unit other than the above structural units, the content of structural units other than the above structural units is preferably 0 to 20% by mass, and 0 to 15% by mass in the core polymer or shell polymer More preferably, 0 to 10% by mass is more preferable.
 本発明に用いる樹脂微粒子(コアポリマー及びシェルポリマーを含む樹脂全体)のガラス転移温度(以下、樹脂微粒子のガラス転移温度ということがある。)は、得られる画像の耐傷性、耐ブロッキング性の観点から、20~150℃が好ましく、40~130℃がより好ましく、50~120℃が更に好ましい。
 本発明に用いる樹脂微粒子を形成するシェルポリマーのガラス転移温度は20~130℃である。これにより、シェルポリマーによる融着性力を担保して画像の耐擦性をより向上させることができ、しかも、コアポリマーの高い熱安定性を維持して耐ブロッキング性を更に高めることができる。シェルポリマーのガラス転移温度は、20~130℃が好ましく、30~100℃がより好ましい。
The glass transition temperature (hereinafter sometimes referred to as the glass transition temperature of the resin fine particles) of the resin fine particles (the entire resin including the core polymer and the shell polymer) used in the present invention is the scratch resistance and blocking resistance of the obtained image. Accordingly, the temperature is preferably 20 to 150 ° C., more preferably 40 to 130 ° C., and still more preferably 50 to 120 ° C.
The glass transition temperature of the shell polymer forming the resin fine particles used in the present invention is 20 to 130.degree. By this, it is possible to secure the fusion bondability by the shell polymer and to further improve the abrasion resistance of the image, and further to maintain the high thermal stability of the core polymer and to further enhance the blocking resistance. The glass transition temperature of the shell polymer is preferably 20 to 130 ° C., and more preferably 30 to 100 ° C.
 本発明に用いる樹脂微粒子を形成するコアポリマーは、シェルポリマーよりも高いガラス転移温度を有している。これにより、シェルポリマーによる融着性力を担保して画像の耐擦性をより向上させることができ、しかも、コアポリマーの高い熱安定性を維持して耐ブロッキング性を更に高めることができる。コアポリマーのガラス転移温度とシェルシェルポリマーのガラス転移温度との差(Tg差)の絶対値は、0℃を越えるものであれば特に限定されないが、レイテンシと、画像の耐擦性及び耐ブロッキング性を高い水準で両立できる観点から、好ましくは20℃以上であり、より好ましくは25℃以上であり、更に好ましくは30℃以上である。Tg差が小さすぎると、コアポリマーとシェルポリマーとの熱安定性の差が小さく、耐擦性又は耐ブロッキング性の一方が劣ることがある。ガラス転移温度との差の上限は、特に限定されないが、実際的には80℃以下である。
 コアシェルポリマーのガラス転移温度は、シェルポリマーのガラス転移温度よりも高ければよく、例えば、レイテンシと、画像の耐擦性及び耐ブロッキング性を高い水準で両立できる観点から、70~150℃が好ましく、80~130℃がより好ましい。
The core polymer forming the resin fine particles used in the present invention has a glass transition temperature higher than that of the shell polymer. By this, it is possible to secure the fusion bondability by the shell polymer and to further improve the abrasion resistance of the image, and further to maintain the high thermal stability of the core polymer and to further enhance the blocking resistance. The absolute value of the difference (Tg difference) between the glass transition temperature of the core polymer and the glass transition temperature of the shell-shell polymer is not particularly limited as long as it exceeds 0 ° C. From the viewpoint of achieving compatibility at a high level, it is preferably 20 ° C. or more, more preferably 25 ° C. or more, and still more preferably 30 ° C. or more. When the difference in Tg is too small, the difference in thermal stability between the core polymer and the shell polymer may be small, and one of scratch resistance and blocking resistance may be poor. The upper limit of the difference with the glass transition temperature is not particularly limited, but is practically 80 ° C. or less.
The glass transition temperature of the core-shell polymer may be higher than the glass transition temperature of the shell polymer, and for example, 70 to 150 ° C. is preferable from the viewpoint of achieving both latency and high levels of abrasion resistance and blocking resistance of the image. 80 to 130 ° C. is more preferable.
 上記樹脂微粒子、コアポリマー及びシェルポリマーのガラス転移温度は、従来公知の方法によって適宜に制御することができる。例えば、樹脂微粒子を構成するコア/シェルポリマーの各ポリマーの合成に用いるモノマーの種類若しくはその構成比率、樹脂微粒子を構成するポリマーの分子量等を適宜に調整することで、樹脂微粒子のガラス転移温度を所望の範囲に制御することができる。 The glass transition temperature of the resin fine particles, the core polymer and the shell polymer can be appropriately controlled by a conventionally known method. For example, the glass transition temperature of the resin fine particles can be adjusted by appropriately adjusting the kind or the composition ratio of the monomer used for the synthesis of each polymer of the core / shell polymer constituting the resin fine particles, and the molecular weight of the polymer constituting the resin fine particles. It can be controlled to a desired range.
 本発明において、ガラス転移温度は、実測によって得られる測定Tgを適用する。測定Tgは、エスアイアイ・ナノテクノロジー社製の示差走査熱量計(DSC)EXSTAR6220を用いて、昇温速度5℃/分で測定したときに、ガラス転移に伴いベースラインが変化しはじめる温度と、再びベースラインに戻る温度との平均として測定される。
 ただし、樹脂の分解、感度等により測定が困難な場合には、下記の計算式で算出される計算Tgを適用する。計算Tgは下記の式により計算されるものである。
 
  1/Tg=Σ(X/Tg
 
 ここで、計算対象となる樹脂はi=1からnまでのn種のモノマーが共重合しているとする。Xはi番目のモノマー成分の質量分率、Tgはi番目のモノマーの単独重合体のガラス転移温度(絶対温度)である。ただし、Σはi=1からnまでの和をとる。なお、各モノマーの単独重合体のガラス転移温度の値(Tg)は、Polymer Handbook (3rd Edition) (J.Brandrup, E.H.Immergut著(Wiley-Interscience、1989))の値を採用する。
In the present invention, the glass transition temperature applies the measured Tg obtained by measurement. The measurement Tg is a temperature at which the baseline starts to change along with the glass transition when measured at a temperature rising rate of 5 ° C./min using a differential scanning calorimeter (DSC) EXSTAR 6220 manufactured by SII Nano Technology Inc., It is measured as the average with the temperature returning to baseline again.
However, when measurement is difficult due to decomposition of the resin, sensitivity, etc., the calculated Tg calculated by the following formula is applied. The calculated Tg is calculated by the following equation.

1 / Tg = Σ (X i / T g i )

Here, in the resin to be calculated, n kinds of monomers from i = 1 to n are copolymerized. X i is the i-th mass fraction of the monomer components, Tg i is the i-th glass transition temperature of the homopolymer of monomer (absolute temperature). However, Σ takes the sum of i = 1 to n. In addition, the value (Tg i ) of the glass transition temperature of the homopolymer of each monomer adopts the value of Polymer Handbook (3rd Edition) (J. Brandrup, E. H. Immergut (Wiley-Interscience, 1989)). .
 本発明に用いる樹脂微粒子を構成する樹脂の重量平均分子量(Mw)は、7万以上であることが好ましく、8万~100万であることがより好ましく、10万~80万であることが更に好ましい。重量平均分子量を7万以上とすることで、得られる膜の機械物性をより向上させることができる。重量平均分子量は、ゲル透過クロマトグラフ(GPC)を用いて、公知の方法で測定できる。 The weight average molecular weight (Mw) of the resin constituting the resin fine particles used in the present invention is preferably 70,000 or more, more preferably 80,000 to 1,000,000, and further preferably 100,000 to 800,000. preferable. By setting the weight average molecular weight to 70,000 or more, mechanical properties of the obtained film can be further improved. The weight average molecular weight can be measured by gel permeation chromatography (GPC) by a known method.
 本発明に用いる樹脂微粒子を構成する樹脂、コア/シェルポリマーの各ポリマーは、いずれも、ブロック共重合体でもランダム共重合体でもよい。 The resin constituting the resin fine particles used in the present invention and each polymer of the core / shell polymer may be either a block copolymer or a random copolymer.
 本発明の水性インク組成物中において、本発明に用いる樹脂微粒子の粒径は、インク吐出性の観点から1~400nmであることが好ましく、5~300nmであることがより好ましく、20~200nmであることが更に好ましく、20~100nmであることが特に好ましく、20~80nmであることが最も好ましい。
 樹脂微粒子の上記粒径は体積平均粒径を意味する。この体積平均粒径は、後述する実施例に記載の方法により測定することができる。
In the aqueous ink composition of the present invention, the particle size of the resin fine particles used in the present invention is preferably 1 to 400 nm, more preferably 5 to 300 nm, and more preferably 20 to 200 nm from the viewpoint of ink dischargeability. It is more preferable that there be some, 20 to 100 nm is particularly preferable, and 20 to 80 nm is most preferable.
The above particle size of the resin fine particles means a volume average particle size. This volume average particle diameter can be measured by the method described in the examples described later.
 上記樹脂微粒子は、上述の構造単位(I)と、構造単位(II)と、必要により構造単位(III)等とを用いて、コアシェル構造を有する樹脂の粒子を製造可能な方法により、製造することができる。樹脂の粒子を製造する方法としては、公知の方法を特に制限されることなく、適用できる。例えば、コアポリマーを合成するコア重合工程と、シェルポリマーを合成するシェル重合工程とを有する重合方法が挙げられる。必要により、コア重合の際、シェル重合の際、更にはシェル重合の後に、Y1A及び/又はY1BカチオンM交換反応を行うこともできる。
 上記樹脂微粒子は、乳化重合法により調製することができる。乳化重合法は、水性媒体(例えば、水)中にモノマー、重合開始剤、乳化剤、及び、必要に応じて連鎖移動剤等を加えて調製した乳化物を重合させることで樹脂微粒子を調製する方法である。吐出安定性を低下させない範囲であれば、既知の乳化剤を別途添加してもよい。上記乳化剤としては、例えば、本発明の水性インク組成物に含有されてもよい、後述する界面活性剤(アニオン系界面活性剤、ノニオン性界面活性剤及びカチオン性界面活性剤)が挙げられる。
The resin fine particles are produced by a method capable of producing particles of a resin having a core-shell structure, using the structural unit (I), the structural unit (II), the structural unit (III) and the like as required. be able to. As a method for producing resin particles, known methods can be applied without particular limitation. For example, there is a polymerization method having a core polymerization step of synthesizing a core polymer and a shell polymerization step of synthesizing a shell polymer. If necessary, Y 1A and / or Y 1B cation M exchange reaction can also be performed during core polymerization, during shell polymerization, and further after shell polymerization.
The resin fine particles can be prepared by an emulsion polymerization method. The emulsion polymerization method is a method of preparing resin fine particles by polymerizing an emulsion prepared by adding a monomer, a polymerization initiator, an emulsifying agent, and, if necessary, a chain transfer agent in an aqueous medium (for example, water). It is. A known emulsifier may be added separately as long as the ejection stability is not reduced. Examples of the emulsifier include surfactants (anionic surfactant, nonionic surfactant and cationic surfactant) described later that may be contained in the aqueous ink composition of the present invention.
 上記重合開始剤は、特に制限されるものではなく、無機過硫酸塩(例えば過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系開始剤(例えば2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、4,4’-アゾビス(4-シアノ吉草酸))、有機過酸化物(例えばペルオキシピバル酸-t-ブチル、t-ブチルヒドロペルオキシド、二コハク酸ペルオキシド)等、又はそれらの塩を用いることができる。これらは単独で又は2種以上を組み合わせて使用することができる。中でもアゾ系開始剤又は無機過酸化物を用いることが好ましい。
 本発明における重合開始剤の使用量としては、全モノマー100質量部に対して、通常0.01~5質量部であり、好ましくは0.2~2質量部である。
The polymerization initiator is not particularly limited, and inorganic persulfates (eg, potassium persulfate, sodium persulfate, ammonium persulfate etc.), azo initiators (eg, 2,2′-azobis (2-amidinopropane) ) Dihydrochloride, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 4,4′-azobis (4-cyanovaleric acid)), organic peroxides (eg, Peroxypivalic acid-t-butyl, t-butyl hydroperoxide, disuccinic acid peroxide) or the like, or salts thereof can be used. These can be used alone or in combination of two or more. Among them, it is preferable to use an azo initiator or an inorganic peroxide.
The amount of the polymerization initiator used in the present invention is usually 0.01 to 5 parts by mass, preferably 0.2 to 2 parts by mass, with respect to 100 parts by mass of all the monomers.
 上記連鎖移動剤としては、四ハロゲン化炭素、スチレン類の二量体、(メタ)アクリル酸エステル類の二量体、メルカプタン類、スルフィド類等の公知の化合物を用いることができる。中でも、特開平5-17510号公報に記載されているスチレン類の二量体又はメルカプタン類を好適に用いることができる。 As the chain transfer agent, known compounds such as carbon tetrahalides, dimers of styrenes, dimers of (meth) acrylic esters, mercaptans and sulfides can be used. Among them, dimers of styrenes or mercaptans described in JP-A-5-17510 can be suitably used.
 本発明に用いる樹脂微粒子は、上記のような水性媒体中に分散していることが好ましい。本発明に用いる樹脂微粒子は、自己分散性樹脂微粒子であることがより好ましい。
 本発明において、自己分散性樹脂微粒子とは、樹脂自身が有する官能基(特に酸性基又はその塩、具体的には上記Y1A又はY1B)によって、水性媒体中で分散状態となり得る水不溶性樹脂からなる微粒子をいう。分散状態とは、水性媒体中に水不溶性樹脂が液体状態で分散された乳化状態(エマルション)、及び、水性媒体中に水不溶性樹脂が固体状態で分散された分散状態(サスペンジョン)の両方の状態を含むものである。「水不溶性」とは、水100質量部(25℃)に対する溶解量が5.0質量部以下であることを指す。
 本発明に用いる樹脂微粒子は、顔料の分散剤として機能するものではなく、したがって粒子内部に顔料を含まない。
The resin fine particles used in the present invention are preferably dispersed in the aqueous medium as described above. The resin fine particles used in the present invention are more preferably self-dispersible resin fine particles.
In the present invention, a self-dispersible resin fine particle is a water-insoluble resin which can be dispersed in an aqueous medium by a functional group of the resin itself (in particular, an acidic group or a salt thereof, specifically Y 1A or Y 1B ). Refers to fine particles consisting of The dispersed state means an emulsified state in which a water-insoluble resin is dispersed in a liquid state in an aqueous medium (emulsion) and a dispersed state in which a water-insoluble resin is dispersed in a solid state in an aqueous medium (suspension) Is included. "Water insoluble" indicates that the amount of dissolution in 100 parts by mass of water (25 ° C) is 5.0 parts by mass or less.
The resin fine particles used in the present invention do not function as a pigment dispersant, and therefore do not contain the pigment inside the particles.
<顔料>
 本発明の水性インク組成物は、1種又は2種以上の顔料が分散してなる形態が好ましい。
 本発明の水性インク組成物に用いられる顔料の種類に特に制限はなく、通常の有機又は無機顔料を用いることができる。
 有機顔料としては、例えば、アゾ顔料、多環式顔料、染料キレート、ニトロ顔料、ニトロソ顔料、アニリンブラックが挙げられる。これらの中でも、アゾ顔料、又は多環式顔料が好ましい。アゾ顔料としては、例えば、アゾレーキ、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料が挙げられる。多環式顔料としては、例えば、フタロシアニン顔料、ぺリレン顔料、ペリノン顔料、アントラキノン顔料、キナクリドン顔料、ジオキサジン顔料、インジゴ顔料、チオインジゴ顔料、イソインドリノン顔料、キノフタロン顔料が挙げられる。染料キレートとしては、例えば、塩基性染料型キレート、酸性染料型キレートが挙げられる。
<Pigment>
The aqueous ink composition of the present invention preferably has a form in which one or more pigments are dispersed.
There is no restriction | limiting in particular in the kind of pigment used for the water-based ink composition of this invention, A normal organic or inorganic pigment can be used.
Examples of the organic pigment include azo pigments, polycyclic pigments, dye chelates, nitro pigments, nitroso pigments, and aniline black. Among these, an azo pigment or a polycyclic pigment is preferable. As an azo pigment, an azo lake, an insoluble azo pigment, a condensation azo pigment, a chelate azo pigment is mentioned, for example. Examples of polycyclic pigments include phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, indigo pigments, thioindigo pigments, isoindolinone pigments, and quinophthalone pigments. Examples of dye chelates include basic dye chelates and acid dye chelates.
 無機顔料としては、例えば、酸化チタン、酸化鉄、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、バリウムイエロー、カドミウムレッド、クロムイエロー、カーボンブラックが挙げられる。 Examples of the inorganic pigment include titanium oxide, iron oxide, calcium carbonate, barium sulfate, aluminum hydroxide, barium yellow, cadmium red, chromium yellow and carbon black.
 本発明に用いることができる顔料の具体例は、特開2007-100071号公報の段落番号0142~0145に記載の顔料等が挙げられる。 Specific examples of the pigment that can be used in the present invention include the pigments described in paragraphs [0142] to [0145] of JP-A-2007-100071.
 本発明の水性インク組成物中の顔料の体積平均粒径は、10~200nmが好ましく、10~150nmがより好ましく、10~100nmが更に好ましい。体積平均粒径が200nm以下であることで色再現性が良好になり、インクジェット方式の場合には打滴特性が良好になる。また、体積平均粒径が10nm以上であることで、耐光性が良好になる。水性インク組成物中の顔料の体積平均粒径は、公知の測定方法で測定することができる。具体的には遠心沈降光透過法、X線透過法、レーザー回折・散乱法、動的光散乱法により測定することができる。
 また、本発明の水性インク組成物中の顔料の粒径分布に関しては、特に制限はなく、広い粒径分布又は単分散性の粒径分布のいずれであってもよい。また、単分散性の粒径分布を持つ着色剤を、2種以上混合して使用してもよい。
 なお、顔料の体積平均粒径は、上述の樹脂微粒子の体積平均粒径の測定と同様の方法で測定することができる。
The volume average particle size of the pigment in the aqueous ink composition of the present invention is preferably 10 to 200 nm, more preferably 10 to 150 nm, and still more preferably 10 to 100 nm. When the volume average particle diameter is 200 nm or less, the color reproducibility becomes good, and in the case of the ink jet system, the droplet deposition characteristics become good. Moreover, light resistance becomes favorable because a volume average particle diameter is 10 nm or more. The volume average particle size of the pigment in the aqueous ink composition can be measured by a known measurement method. Specifically, it can be measured by a centrifugal sedimentation light transmission method, an X-ray transmission method, a laser diffraction / scattering method, or a dynamic light scattering method.
The particle size distribution of the pigment in the aqueous ink composition of the present invention is not particularly limited, and may be any of a wide particle size distribution or a monodispersed particle size distribution. Further, two or more colorants having a monodisperse particle size distribution may be mixed and used.
The volume average particle size of the pigment can be measured by the same method as the measurement of the volume average particle size of the above-mentioned resin fine particles.
 本発明の水性インク組成物が顔料を含む場合、着色性、保存安定性の観点から、水性インク組成物中の顔料の含有量は、1~20質量%が好ましく、1~10質量%がより好ましい。 When the aqueous ink composition of the present invention contains a pigment, the content of the pigment in the aqueous ink composition is preferably 1 to 20% by mass, and more preferably 1 to 10% by mass, from the viewpoint of colorability and storage stability. preferable.
- 分散剤 -
 本発明の水性インク組成物が顔料を含む場合、顔料としては、顔料が分散剤によって水性媒体中に分散された着色粒子(以下、単に「着色粒子」という)を調製し、これを水性インク組成物の原料として用いることが好ましい。
 上記分散剤としては、ポリマー分散剤でも低分子の界面活性剤型分散剤でもよい。また、ポリマー分散剤としては水溶性ポリマー分散剤でも水不溶性ポリマー分散剤のいずれでもよい。
-Dispersant-
When the aqueous ink composition of the present invention contains a pigment, as the pigment, colored particles (hereinafter simply referred to as "colored particles") in which the pigment is dispersed in an aqueous medium by a dispersing agent are prepared, and these are used It is preferable to use as a raw material of goods.
The dispersant may be a polymer dispersant or a low molecular weight surfactant type dispersant. The polymer dispersant may be either a water-soluble polymer dispersant or a water-insoluble polymer dispersant.
 上記低分子の界面活性剤型分散剤については、例えば、特開2011-178029号公報の段落0047~0052に記載された公知の低分子の界面活性剤型分散剤を用いることができる。 As the low molecular weight surfactant type dispersant, for example, a known low molecular weight surfactant type dispersant described in paragraphs 0047 to 0052 of JP-A-2011-178029 can be used.
 上記ポリマー分散剤のうち、水溶性分散剤としては、親水性高分子化合物が挙げられる。例えば、天然の親水性高分子化合物では、アラビアガム、トラガンガム、グアーガム、カラヤガム、ローカストビーンガム、アラビノガラクトン、ペクチン、クインスシードデンプン等の植物性高分子、アルギン酸、カラギーナン、寒天等の海藻系高分子、ゼラチン、カゼイン、アルブミン、コラーゲン等の動物系高分子、キサンテンガム、デキストラン等の微生物系高分子等が挙げられる。 Among the above-mentioned polymer dispersants, examples of water-soluble dispersants include hydrophilic polymer compounds. For example, natural hydrophilic polymer compounds include plant polymers such as gum arabic, gum traga gum, guar gum, karaya gum, locust bean gum, arabinogalacton, pectin, quince seed starch, seaweeds such as alginic acid, carrageenan and agar. Examples thereof include molecules, animal-based polymers such as gelatin, casein, albumin and collagen, and microorganism-based polymers such as xanthene gum and dextran.
 また、天然物を原料に修飾した親水性高分子化合物では、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等の繊維素系高分子、デンプングリコール酸ナトリウム、デンプンリン酸エステルナトリウム等のデンプン系高分子、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等の海藻系高分子等が挙げられる。
 更に、合成系の親水性高分子化合物としては、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル等のビニル系高分子、非架橋ポリアクリルアミド、ポリアクリル酸又はそのアルカリ金属塩、水溶性スチレンアクリル樹脂等のアクリル系樹脂、水溶性スチレンマレイン酸樹脂、水溶性ビニルナフタレンアクリル樹脂、水溶性ビニルナフタレンマレイン酸樹脂、ポリビニルピロリドン、ポリビニルアルコール、β-ナフタレンスルホン酸ホルマリン縮合物のアルカリ金属塩、四級アンモニウム、アミノ基等のカチオン性官能基の塩を側鎖に有する高分子化合物、セラック等の天然高分子化合物等が挙げられる。
Also, among hydrophilic polymer compounds modified with natural products as raw materials, cellulose polymers such as methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose, starches such as sodium starch glycolate and sodium starch phosphate ester And seaweed polymers such as sodium alginate and propylene glycol alginate.
Furthermore, as synthetic hydrophilic polymer compounds, vinyl polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, non-crosslinked polyacrylamide, polyacrylic acid or alkali metal salts thereof, water-soluble styrene acrylic resin, etc. Acrylic resin, water soluble styrene maleic resin, water soluble vinyl naphthalene acrylic resin, water soluble vinyl naphthalene maleic resin, polyvinyl pyrrolidone, polyvinyl alcohol, alkali metal salt of β-naphthalene sulfonic acid formalin condensate, quaternary ammonium, amino Examples thereof include polymer compounds having a salt of a cationic functional group such as a group in a side chain, and natural polymer compounds such as shellac.
 これらの中でも、アクリル酸又はメタクリル酸のホモポリマー、アクリル酸又はメタクリル酸と他のモノマーとの共重合体等のように、カルボキシ基が導入された親水性高分子化合物が好ましい。 Among these, hydrophilic polymer compounds into which a carboxy group is introduced are preferable, such as homopolymers of acrylic acid or methacrylic acid, and copolymers of acrylic acid or methacrylic acid and other monomers.
 水不溶性ポリマー分散剤は、水不溶性のポリマーであって、顔料を分散可能であれば特に制限はなく、従来公知の水不溶性ポリマー分散剤を用いることができる。水不溶性ポリマー分散剤は、例えば、疎水性の構造単位と親水性の構造単位の両方を含んで構成することができる。 The water-insoluble polymer dispersant is a water-insoluble polymer and is not particularly limited as long as the pigment can be dispersed, and a conventionally known water-insoluble polymer dispersant can be used. The water-insoluble polymer dispersant can, for example, be configured to include both hydrophobic structural units and hydrophilic structural units.
 ここで、疎水性の構造単位を構成するモノマー成分としては、スチレン系モノマー成分、アルキル(メタ)アクリレート成分、芳香族基含有(メタ)アクリレート成分等を挙げることができる。
 また、親水性の構造単位を構成するモノマー成分としては、親水性基を含むモノマー成分であれば特に制限はない。この親水性基としては、ノニオン性基、カルボキシ基、スルホン酸基、リン酸基等を挙げることができる。なお、ノニオン性基は、水酸基、(窒素原子が無置換の)アミド基、アルキレンオキシド重合体(例えば、ポリエチレンオキシド、ポリプロピレンオキシド等)に由来する基、糖アルコールに由来する基等が挙げられる。
 上記親水性の構造単位は、分散安定性の観点から、少なくともカルボキシ基を含むことが好ましく、ノニオン性基とカルボキシ基を共に含む形態であることもまた好ましい。
Here, as a monomer component which comprises a hydrophobic structural unit, a styrene-type monomer component, an alkyl (meth) acrylate component, an aromatic group containing (meth) acrylate component etc. can be mentioned.
Moreover, as a monomer component which comprises a hydrophilic structural unit, if it is a monomer component containing a hydrophilic group, there will be no restriction | limiting in particular. Examples of the hydrophilic group include nonionic groups, carboxy groups, sulfonic acid groups, and phosphoric acid groups. The nonionic group may, for example, be a hydroxyl group, an amide group (with nitrogen atom not substituted), a group derived from an alkylene oxide polymer (for example, polyethylene oxide or polypropylene oxide), or a group derived from sugar alcohol.
From the viewpoint of dispersion stability, the hydrophilic structural unit preferably contains at least a carboxy group, and is preferably in a form containing both a nonionic group and a carboxy group.
 水不溶性ポリマー分散剤として、具体的には、スチレン-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体、ポリエチレングリコール(メタ)アクリレート-(メタ)アクリル酸共重合体、スチレン-マレイン酸共重合体等が挙げられる。 Specific examples of the water-insoluble polymer dispersant include styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- (meth) acrylic acid ester copolymer, and (meth) acrylic acid ester- (meth) acrylic acid And acrylic acid copolymer, polyethylene glycol (meth) acrylate- (meth) acrylic acid copolymer, styrene-maleic acid copolymer and the like.
 水不溶性ポリマー分散剤は、顔料の分散安定性の観点から、カルボキシ基を含むビニルポリマーであることが好ましい。更に、疎水性の構造単位として少なくとも芳香族基含有モノマーに由来する構造単位を有し、親水性の構造単位としてカルボキシ基を含む構造単位を有するビニルポリマーであることがより好ましい。 The water-insoluble polymer dispersant is preferably a vinyl polymer containing a carboxy group from the viewpoint of dispersion stability of the pigment. Furthermore, it is more preferable to be a vinyl polymer having a structural unit derived from at least an aromatic group-containing monomer as a hydrophobic structural unit and having a structural unit containing a carboxy group as a hydrophilic structural unit.
 また、水不溶性ポリマー分散剤の重量平均分子量は、顔料の分散安定性の観点から、3,000~200,000が好ましく、より好ましくは5,000~100,000、更に好ましくは5,000~80,000、特に好ましくは10,000~60,000である。 The weight average molecular weight of the water-insoluble polymer dispersant is preferably 3,000 to 200,000, more preferably 5,000 to 100,000, and still more preferably 5,000 to 200,000 from the viewpoint of dispersion stability of the pigment. It is 80,000, particularly preferably 10,000 to 60,000.
 着色粒子における分散剤の含有量は、顔料の分散性、インク着色性、分散安定性の観点から、顔料100質量部に対し、分散剤が10~90質量部であることが好ましく、20~70質量部がより好ましく、30~50質量部が特に好ましい。
 着色粒子中の分散剤の含有量が、上記範囲内にあることにより、顔料が適量の分散剤で被覆され、粒径が小さく経時安定に優れた着色粒子を得やすい傾向となり好ましい。
The content of the dispersant in the colored particles is preferably 10 to 90 parts by mass with respect to 100 parts by mass of the pigment, from the viewpoint of pigment dispersibility, ink colorability, and dispersion stability, and preferably 20 to 70 The parts by mass are more preferable, and 30 to 50 parts by mass are particularly preferable.
When the content of the dispersing agent in the colored particles is in the above range, the pigment is coated with an appropriate amount of the dispersing agent, which tends to easily obtain colored particles having a small particle size and excellent in temporal stability.
 着色粒子は、例えば、顔料、分散剤、必要に応じて溶剤(好ましくは有機溶剤)等を含む混合物を、分散機により分散することで得ることができる。
 より詳細には、例えば、顔料と、分散剤と、この分散剤を溶解又は分散する有機溶剤との混合物に、塩基性物質を含む水溶液を加える工程(混合・水和工程)の後、有機溶剤を除く工程(溶剤除去工程)を設けて分散物として製造することができる。これにより、顔料が微細に分散され、保存安定性に優れた着色粒子の分散物を作製することができる。
The colored particles can be obtained, for example, by dispersing a mixture containing a pigment, a dispersant, and if necessary, a solvent (preferably an organic solvent) and the like with a disperser.
More specifically, for example, after a step of adding an aqueous solution containing a basic substance to a mixture of a pigment, a dispersant, and an organic solvent for dissolving or dispersing the dispersant (mixing / hydration step), an organic solvent Can be manufactured as a dispersion by providing a process (solvent removal process) excluding. Thereby, the pigment is finely dispersed, and a dispersion of colored particles excellent in storage stability can be produced.
 上記有機溶剤は、分散剤を溶解又は分散できることが必要であるが、これに加えて水に対してある程度の親和性を有することが好ましい。具体的には、20℃において水に対する溶解度が10~50質量%以下であるものが好ましい。
 有機溶剤の好ましい例としては、水溶性有機溶剤が挙げられる。中でもイソプロピルアルコール、アセトン及びメチルエチルケトンが好ましく、特に、メチルエチルケトンが好ましい。有機溶剤は、1種単独で用いても複数併用してもよい。
The organic solvent needs to be able to dissolve or disperse the dispersant, but in addition to that, it is preferable to have a certain degree of affinity for water. Specifically, it is preferable that the solubility in water at 20 ° C. is 10 to 50% by mass or less.
Preferred examples of the organic solvent include water-soluble organic solvents. Among them, isopropyl alcohol, acetone and methyl ethyl ketone are preferable, and methyl ethyl ketone is particularly preferable. The organic solvents may be used alone or in combination of two or more.
 上記塩基性物質は、ポリマーが有することがあるアニオン性基(好ましくはカルボキシ基)の中和に用いられる。アニオン性基の中和度には、特に限定がない。通常、最終的に得られる着色剤粒子の分散物の液性が、例えばpHが4.5~10であるものが好ましい。上記ポリマーの望まれる中和度により、pHを決めることもできる。 The above basic substance is used for the neutralization of an anionic group (preferably a carboxy group) which may be possessed by the polymer. There is no particular limitation on the degree of neutralization of the anionic group. In general, it is preferable that the liquid property of the finally obtained colorant particle dispersion is, for example, pH 4.5 to 10. The pH can also be determined by the desired degree of neutralization of the polymer.
 着色粒子分散物の製造工程での有機溶剤の除去は、特に方法が限定されるものではなく、減圧蒸留等の公知に方法により除去できる。 The method of removing the organic solvent in the production process of the colored particle dispersion is not particularly limited, and can be removed by a known method such as vacuum distillation.
 本発明の水性インク組成物において、上記着色粒子は、1種単独又は2種以上を組み合わせて使用してもよい。 In the aqueous ink composition of the present invention, the colored particles may be used singly or in combination of two or more.
<界面活性剤>
 本発明の水性インク組成物は、表面張力調整剤として界面活性剤を含有してもよい。
 界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、ノニオン性界面活性剤、ベタイン系界面活性剤のいずれも使用することができる。
<Surfactant>
The aqueous ink composition of the present invention may contain a surfactant as a surface tension regulator.
As the surfactant, any of anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants and betaine surfactants can be used.
 アニオン系界面活性剤の具体例としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ステアリン酸ナトリウム、オレイン酸カリウム、ナトリウムジオクチルスルホサクシネート、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテ硫酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、オレイン酸ナトリウム、t-オクチルフェノキシエトキシポリエトキシエチル硫酸ナトリウム塩等が挙げられ、これらの1種、又は2種以上を選択することができる。 Specific examples of anionic surfactants include sodium dodecyl benzene sulfonate, sodium lauryl sulfate, sodium alkyl diphenyl ether disulfonate, sodium alkyl naphthalene sulfonate, sodium dialkyl sulfosuccinate, sodium stearate, sodium stearate, potassium oleate, sodium dioctyl Sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkylphenyl ether sulfate, sodium dialkyl sulfosuccinate, sodium oleate, sodium t-octylphenoxyethoxypolyethoxyethyl sulfate, etc. Can be selected, and one or more of these can be selected.
 ノニオン性界面活性剤の具体例としては、例えば、アセチレンジオールのエチレンオキサイド付加物等のアセチレンジオール誘導体、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンオレイルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、オキシエチレン・オキシプロピレンブロックコポリマー、t-オクチルフェノキシエチルポリエトキシエタノール、ノニルフェノキシエチルポリエトキシエタノール等が挙げられ、これらの1種、又は2種以上を選択することができる。 Specific examples of the nonionic surfactant include, for example, acetylene diol derivatives such as ethylene oxide adduct of acetylene diol, polyoxyethylene lauryl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene oleyl phenyl ether, polyoxyethylene nonyl Examples thereof include phenyl ether, oxyethylene • oxypropylene block copolymer, t-octyl phenoxyethyl polyethoxyethanol, nonyl phenoxyethyl polyethoxyethanol and the like, and one or more of these can be selected.
 カチオン性界面活性剤としては、テトラアルキルアンモニウム塩、アルキルアミン塩、ベンザルコニウム塩、アルキルピリジウム塩、イミダゾリウム塩等が挙げられ、具体的には、例えば、ジヒドロキシエチルステアリルアミン、2-ヘプタデセニル-ヒドロキシエチルイミダゾリン、ラウリルジメチルベンジルアンモニウムクロライド、セチルピリジニウムクロライド、ステアラミドメチルピリジウムクロライド等が挙げられる。
 これらの界面活性剤の中でも、安定性の点から、ノニオン性界面活性剤が好ましく、アセチレンジオール誘導体がより好ましい。
Examples of the cationic surfactant include tetraalkylammonium salts, alkylamine salts, benzalkonium salts, alkylpyridinium salts, imidazolium salts, etc. Specifically, for example, dihydroxyethyl stearylamine, 2-heptadecenyl -Hydroxyethyl imidazoline, lauryl dimethyl benzyl ammonium chloride, cetyl pyridinium chloride, stearamido methyl pyridinium chloride and the like.
Among these surfactants, in terms of stability, nonionic surfactants are preferable, and acetylene diol derivatives are more preferable.
 水性インク組成物中の界面活性剤の含有量は、水性インク組成物を下記表面張力の範囲内とすることができる量であることが好ましい。より具体的には、水性インク組成物中の界面活性剤の含有量が0.1質量%以上であることが好ましく、より好ましくは0.1~10質量%であり、更に好ましくは0.2~3質量%である。 The content of the surfactant in the aqueous ink composition is preferably such an amount that the aqueous ink composition can be brought into the range of the surface tension described below. More specifically, the content of the surfactant in the aqueous ink composition is preferably 0.1% by mass or more, more preferably 0.1 to 10% by mass, and still more preferably 0.2. It is up to 3% by mass.
<他の成分>
 本発明の水性インク組成物は、更に必要に応じて、乾燥防止剤(膨潤剤)、着色防止剤、浸透促進剤、紫外線吸収剤、防腐剤、防錆剤、消泡剤、粘土調整剤、pH調製剤、キレート剤等の添加剤を混合してもよい。混合方法に特に制限はなく、通常用いられる混合方法を適宜に選択し、本発明の水性インク組成物を得ることができる。
<Other ingredients>
The aqueous ink composition of the present invention may further contain, if necessary, a drying inhibitor (swelling agent), a coloring inhibitor, a penetration accelerator, a UV absorber, a preservative, a rust inhibitor, a defoaming agent, a clay regulator, You may mix additives, such as a pH adjuster and a chelating agent. The mixing method is not particularly limited, and a commonly used mixing method can be appropriately selected to obtain the aqueous ink composition of the present invention.
<水性インク組成物の物性>
 本発明の水性インク組成物の30℃での粘度は、1.2mPa・s以上15.0mPa・s以下であることが好ましく、より好ましくは2mPa・s以上13mPa・s未満であり、更に好ましくは2.5mPa・s以上10mPa・s未満である。
 水性インク組成物の粘度は、VISCOMETER TV-22(TOKI SANGYO CO.LTD製)を用い、30℃の温度下で測定される。
Physical Properties of Aqueous Ink Composition
The viscosity at 30 ° C. of the aqueous ink composition of the present invention is preferably 1.2 mPa · s to 15.0 mPa · s, more preferably 2 mPa · s to less than 13 mPa · s, and still more preferably 2.5 mPa · s or more and less than 10 mPa · s.
The viscosity of the aqueous ink composition is measured at a temperature of 30 ° C. using VISCOMETER TV-22 (manufactured by TOKI SANGYO CO. LTD).
 本発明の水性インク組成物のpHは、分散安定性の観点から、25℃におけるpHが6~11が好ましい。 The aqueous ink composition of the present invention preferably has a pH of 6 to 11 at 25 ° C. from the viewpoint of dispersion stability.
 本発明の水性インク組成物をインクジェット記録方式に用いる場合、インク吐出性の観点から、水性インク組成物の表面張力が20~60mN/mとなるよう界面活性剤の量を調整することが好ましく、より好ましくは20~45mN/mとなる量であり、更に好ましくは25~40mN/mとなる量である。
 水性インク組成物の表面張力は、Automatic Surface Tensiometer CBVP-Z(協和界面科学株式会社製)を用い、25℃の温度下で測定される。
When the aqueous ink composition of the present invention is used in an ink jet recording system, it is preferable to adjust the amount of surfactant so that the surface tension of the aqueous ink composition is 20 to 60 mN / m from the viewpoint of ink dischargeability. The amount is more preferably 20 to 45 mN / m, and still more preferably 25 to 40 mN / m.
The surface tension of the aqueous ink composition is measured at a temperature of 25 ° C. using an Automatic Surface Tensiometer CBVP-Z (manufactured by Kyowa Interface Science Co., Ltd.).
[画像形成方法]
 本発明の画像形成方法は、本発明の水性インク組成物をインクジェット法により記録媒体上に付与して画像を形成するインク付与工程を含む。
 また、本発明の画像形成方法は、必要に応じて、記録媒体に付与された水性インク組成物中の水性媒体を乾燥除去する工程(以下、「インク乾燥工程」ともいう。)、水性インク組成物に含まれる樹脂微粒子を溶融定着する工程(以下、「熱定着工程」ともいう。)等の他の工程を更に有してもよい。
 上記インク付与工程は、低吸水性記録媒体又は非吸水性記録媒体上に、本発明の水性インク組成物を直接付与して画像を形成する工程であることが好ましい。
 低吸水性記録媒体又は非吸水性記録媒体上に、インクを直接付与するとは、付与されたインクと低吸水性記録媒体又は非吸水性記録媒体が直接接することを意味している。例えば、水性インク組成物に含まれる樹脂微粒子等の成分の凝集を目的とした、水性インク組成物による画像形成方法の分野において公知の処理液の付与を事前に行う場合には、水性インク組成物と上記低吸水性記録媒体又は上記非吸水性記録媒体は直接接しない。上述の公知の処理液としては、例えば、特開2012-40778号公報に記載の処理液が挙げられる。
 また、本発明の画像形成方法は、インク付与工程の後に、上述の公知の処理液を付与しないことが好ましい。すなわち、本発明の画像形成方法は、上述の公知の処理液を付与する工程を含まないことが好ましい。
[Image formation method]
The image forming method of the present invention includes an ink applying step of applying the aqueous ink composition of the present invention onto a recording medium by an inkjet method to form an image.
In the image forming method of the present invention, the step of drying and removing the aqueous medium in the aqueous ink composition applied to the recording medium (hereinafter also referred to as "ink drying step"), if necessary, the aqueous ink composition. It may further include other processes such as a process of melting and fixing resin fine particles contained in a substance (hereinafter, also referred to as a “heat fixing process”).
The ink application step is preferably a step of directly applying the aqueous ink composition of the present invention onto a low water absorption recording medium or a non water absorption recording medium to form an image.
Direct application of the ink on the low water absorption recording medium or non-water absorption recording medium means that the provided ink and the low water absorption recording medium or non-water absorption recording medium are in direct contact with each other. For example, in the case where a treatment liquid known in the field of an image forming method using an aqueous ink composition is applied in advance for the purpose of aggregation of components such as resin fine particles contained in the aqueous ink composition, the aqueous ink composition And the low water absorption recording medium or the non water absorption recording medium are not in direct contact with each other. Examples of the above-mentioned known processing solution include the processing solutions described in JP-A-2012-40778.
Further, in the image forming method of the present invention, it is preferable that the above-mentioned known processing liquid is not applied after the ink application step. That is, the image forming method of the present invention preferably does not include the step of applying the above-mentioned known processing liquid.
 従来の水性インク組成物を用いたインクジェット法においては、特に、記録媒体として低吸水性記録媒体又は非吸水性記録媒体を用いる場合、例えばプレコート液又はトップコート液等を使用して、記録媒体上に吐出される水性インク組成物中の成分を凝集させ、水性インク組成物の広がりを抑制して画質を向上させる方法が知られている。
 しかし、本発明の水性インク組成物は、上述の優れた特性を示し、画像に高い性能を付与できるため、プレコート液又はトップコート液等を使用しなくても、低吸水性記録媒体又は非吸水性記録媒体上に、画質に優れた画像を形成できる。
In the inkjet method using a conventional aqueous ink composition, particularly when using a low water absorption recording medium or a non water absorption recording medium as a recording medium, for example, a precoat liquid or a top coat liquid is used on the recording medium. There is known a method of aggregating the components in the aqueous ink composition to be discharged to suppress the spread of the aqueous ink composition to improve the image quality.
However, since the aqueous ink composition of the present invention exhibits the above-described excellent properties and can impart high performance to an image, it is possible to use a low water absorption recording medium or non-water absorption without using a precoat solution or a topcoat solution. An image with excellent image quality can be formed on the recording medium.
<記録媒体>
 本発明の画像形成方法に用いる記録媒体に特に制限はないが、紙媒体であることが好ましい。すなわち、一般のオフセット印刷等に用いられる、いわゆる上質紙、コート紙、アート紙等のセルロースを主体とする一般印刷用紙を用いることができる。
<Recording medium>
The recording medium used in the image forming method of the present invention is not particularly limited, but is preferably a paper medium. That is, general printing paper mainly composed of cellulose such as so-called high quality paper, coated paper, art paper, etc., which are used for general offset printing and the like can be used.
 記録媒体としては、一般に市販されているものを使用することができ、例えば、王子製紙社製の「OKプリンス上質」、日本製紙社製の「しらおい」、及び日本製紙社製の「ニューNPI上質」等の上質紙(A)、日本製紙社製の「シルバーダイヤ」等の上質コート紙、王子製紙社製の「OKエバーライトコート」及び日本製紙社製の「オーロラS」等の微塗工紙、王子製紙社製の「OKコートL」及び日本製紙社製の「オーロラL」等の軽量コート紙(A3)、王子製紙社製の「OKトップコート+」及び日本製紙社製の「オーロラコート」、「ユーライト」等のコート紙(A2、B2)、王子製紙社製の「OK金藤+」及び三菱製紙社製の「特菱アート」等のアート紙(A1)等が挙げられる。また、インクジェット記録用の各種写真専用紙を用いることも可能である。 As the recording medium, those commercially available on the market can be used. For example, “OK Prince Fine” manufactured by Oji Paper Co., Ltd., “Shiraoi” manufactured by Nippon Paper Industries, and “New NPI” manufactured by Nippon Paper Co., Ltd. High quality paper such as “high quality” (A), high quality coated paper such as “Silver Diamond” manufactured by Nippon Paper Industries Co., Ltd., “OK Everlight Coat” manufactured by Oji Paper Co., Ltd., and fine paint such as “Aurora S” manufactured by Nippon Paper Industries Co., Ltd. Paper, lightweight coated paper (A3) such as OK Coat L manufactured by Oji Paper Co., Ltd. and Aurora L manufactured by Nippon Paper Co., Ltd. OK Top Coat + manufactured by Oji Paper Co., Ltd. manufactured by Nippon Paper Co., Ltd. "Aurora coat", coated paper such as "Yulight" (A2, B2), "OK Kinto +" manufactured by Oji Paper Co., Ltd., and art paper (A1) such as "Tokubishi Art" manufactured by Mitsubishi Paper Co., Ltd. . It is also possible to use various types of photo paper for inkjet recording.
 記録媒体の中でも、一般のオフセット印刷等に用いられるいわゆる塗工紙(コート紙)が好ましい。塗工紙は、セルロースを主体とした一般に表面処理されていない上質紙、中性紙等の表面にコート材を塗布してコート層を設けたものである。塗工紙は、通常の水性インクジェットによる画像形成においては、画像の光沢、耐擦性等、品質上の問題を生じやすいが、本発明の水性インク組成物を用いる場合には、光沢ムラが抑制されて光沢性、耐傷性の良好な画像を得ることができる。特に、原紙とカオリン及び/又は重炭酸カルシウムを含むコート層とを有する塗工紙を用いるのが好ましい。アート紙、コート紙、軽量コート紙又は微塗工紙がより好ましい。 Among the recording media, so-called coated paper (coated paper) used for general offset printing and the like is preferable. The coated paper is obtained by applying a coating material to the surface of a generally non-surface-treated high-quality paper mainly made of cellulose, neutral paper or the like to provide a coat layer. Coated paper is likely to cause quality problems such as gloss and abrasion resistance of the image in image formation by a common aqueous ink jet, but when using the aqueous ink composition of the present invention, uneven gloss is suppressed It is possible to obtain an image with good gloss and scratch resistance. In particular, it is preferable to use a coated paper having a base paper and a coat layer containing kaolin and / or calcium bicarbonate. Art paper, coated paper, lightweight coated paper or finely coated paper is more preferred.
 上記の中でも、顔料移動の抑制効果が大きく、従来以上に色濃度及び色相の良好な高品位な画像を得る観点から、記録媒体としては、低吸水性記録媒体又は非吸水性記録媒体を用いることが好ましい。本発明において、低吸水性記録媒体とは、水の吸収係数Kaが0.05~0.5mL/m・ms1/2であるものをいい、0.1~0.4mL/m・ms1/2であることが好ましく、0.2~0.3mL/m・ms1/2であることがより好ましい。また、非吸水性記録媒体とは、水の吸収係数Kaが0.05mL/m・ms1/2未満であるものをいう。
 水の吸収係数Kaは、JAPAN TAPPI 紙パルプ試験方法No51:2000(発行:紙パルプ技術協会)に記載されているものと同義であり、具体的には、吸収係数Kaは、自動走査吸液計KM500Win(熊谷理機社製)を用いて接触時間100msと接触時間900msにおける水の転移量の差から算出されるものである。
Among the above, from the viewpoint of obtaining a high-quality image having a large effect of suppressing pigment movement and having better color density and hue than in the prior art, use a low water absorption recording medium or a non water absorption recording medium as a recording medium. Is preferred. In the present invention, the low water absorption recording medium is one having an absorption coefficient Ka of water of 0.05 to 0.5 mL / m 2 · ms 1/2 , and 0.1 to 0.4 mL / m 2. It is preferably ms 1/2 , more preferably 0.2 to 0.3 mL / m 2 · ms 1/2 . Further, the non-water-absorbent recording medium refers to one having an absorption coefficient Ka of water of less than 0.05 mL / m 2 · ms 1/2 .
The water absorption coefficient Ka is the same as that described in JAPAN TAPPI Paper and Pulp Test Method No. 51: 2000 (issued by the Japan Institute of Paper and Pulp Technology), and specifically, the absorption coefficient Ka is an automatic scanning liquid absorption meter It is calculated from the difference between the transfer amount of water at a contact time of 100 ms and a contact time of 900 ms using KM500Win (manufactured by Kumagaya Riki Co., Ltd.).
<インク付与工程>
 インク付与工程では、顔料を含有する本発明の水性インク組成物が記録媒体上に付与される。水性インク組成物の付与方法としては、画像上に水性インク組成物を付与可能なインクジェット方法であれば、特に制限はなく公知のインク付与方法を用いることができる。インクジェット方法は、記録装置のコンパクト化と高速記録性等の利点を有している。
 インクジェット方式(方法)による画像形成では、エネルギーを供与することにより、記録媒体上に水性インク組成物を吐出し、着色画像を形成する。なお、本発明に好ましいインクジェット記録方法として、特開2003-306623号公報の段落番号0093~0105に記載の方法が適用できる。
<Ink application process>
In the ink application step, the aqueous ink composition of the present invention containing a pigment is applied onto a recording medium. The method of applying the aqueous ink composition is not particularly limited as long as it is an inkjet method capable of applying the aqueous ink composition onto the image, and a known ink applying method can be used. The inkjet method has advantages such as compactness of the recording apparatus and high-speed recording performance.
In the image formation by the inkjet method (method), by supplying energy, the aqueous ink composition is discharged onto the recording medium to form a colored image. The method described in paragraph Nos. 0093 to 0105 of JP-A-2003-306623 can be applied as an inkjet recording method preferable for the present invention.
 インクジェット方式には、特に制限はなく、公知の方式、例えば、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、インクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット方式等のいずれであってもよい。
 また、インクジェット方式で用いるインクジェットヘッドは、オンデマンド方式でもコンティニュアス方式でも構わない。更に上記インクジェット方式により記録を行う際に使用するインクノズル等についても特に制限はなく、目的に応じて、適宜選択することができる。
 なお、インクジェット方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式、無色透明のインクを用いる方式等が含まれる。
The inkjet method is not particularly limited, and known methods, for example, a charge control method that discharges ink using electrostatic attraction, a drop-on-demand method (pressure pulse method) that uses the vibration pressure of a piezo element, Either an acoustic inkjet method that converts an electrical signal into an acoustic beam and ejects the ink using radiation pressure by irradiating the ink, or a thermal inkjet method that forms a bubble by heating the ink and uses the generated pressure. May be
Further, the inkjet head used in the inkjet method may be an on-demand method or a continuous method. Furthermore, the ink nozzle and the like used when performing recording by the above-mentioned ink jet method are not particularly limited, and can be appropriately selected according to the purpose.
The ink jet method includes a method of emitting a large number of low density inks called photo ink in a small volume, a method of improving the image quality using a plurality of inks having substantially the same hue and different densities, and a colorless and transparent ink The method used is included.
 またインクジェット方式として、短尺のシリアルヘッドを用い、ヘッドを記録媒体の幅方向に走査させながら記録を行うシャトル方式と、記録媒体の1辺の全域に対応して記録素子が配列されているラインヘッドを用いたライン方式とがある。ライン方式では、記録素子の配列方向と直交する方向に記録媒体を走査させることで記録媒体の全面に画像記録を行うことができ、短尺ヘッドを走査するキャリッジ等の搬送系が不要となる。また、キャリッジの移動と記録媒体との複雑な走査制御が不要になり、記録媒体だけが移動するので、シャトル方式に比べて記録速度の高速化が実現できる。 In addition, as the inkjet method, a shuttle type which performs recording while scanning the head in the width direction of the recording medium using a short serial head, and a line head in which recording elements are arranged corresponding to the whole area of one side of the recording medium There is a line method using In the line method, image recording can be performed on the entire surface of the recording medium by scanning the recording medium in the direction orthogonal to the arrangement direction of the recording elements, and a conveyance system such as a carriage for scanning a short head becomes unnecessary. In addition, since the complex movement control of the carriage and the recording medium becomes unnecessary and only the recording medium is moved, the recording speed can be increased compared to the shuttle method.
 インク付与工程をインクジェット方式で実施する場合、高精細印画を形成する観点から、インクジェット方式により吐出される水性インク組成物の液滴量が1.5~10pLであることが好ましく、1.5~6pLであることより好ましい。吐出される水性インク組成物の液滴量は、吐出条件を適宜に調整して調節することができる。 When the ink application process is carried out by an ink jet system, the amount of droplets of the aqueous ink composition discharged by the ink jet system is preferably 1.5 to 10 pL from the viewpoint of forming a high definition print, 1.5 to 10 pL. It is more preferable than it is 6 pL. The amount of droplets of the aqueous ink composition to be discharged can be adjusted by appropriately adjusting the discharge conditions.
<インク乾燥工程>
 本発明の画像形成方法は、必要に応じて、記録媒体上に付与された水性インク組成物中の水性媒体(例えば、水、上述の水溶性有機溶剤等)を乾燥除去するインク乾燥工程を備えていてもよい。インク乾燥工程は、水性インク組成物中の水性媒体の少なくとも一部を除去できれば特に制限はなく、通常用いられる方法を適用することができる。
<Ink drying process>
The image forming method of the present invention comprises an ink drying step of drying and removing an aqueous medium (for example, water, the above-mentioned water-soluble organic solvent, etc.) in an aqueous ink composition applied on a recording medium, if necessary. It may be The ink drying step is not particularly limited as long as at least a part of the aqueous medium in the aqueous ink composition can be removed, and a commonly used method can be applied.
<熱定着工程>
 本発明の画像形成方法は、必要により、上記インク乾燥工程の後に、熱定着工程を備えることが好ましい。熱定着処理を施すことにより、記録媒体上の画像の定着が施され、画像の擦過に対する耐性をより向上させることができる。熱定着工程として、例えば、特開2010-221415号公報の段落番号0112~0120に記載の熱定着工程を採用することができる。
<Heat fixing process>
The image forming method of the present invention preferably comprises a heat fixing step after the ink drying step, if necessary. By performing the heat fixing process, the image on the recording medium is fixed, and the scratch resistance of the image can be further improved. As the heat fixing step, for example, the heat fixing step described in paragraph Nos. 0112 to 0120 of JP 2010-221415 A can be adopted.
<インク除去工程>
 本発明の画像形成方法は、必要に応じて、インクジェット記録用ヘッドに付着した水性インク組成物(例えば、乾燥により固形化したインク固形物)をメンテナンス液により除去するインク除去工程を含んでいてもよい。メンテナンス液及びインク除去工程の詳細は、国際公開第2013/180074号に記載されたメンテナンス液及びインク除去工程を好ましく適用することができる。
<Ink removal process>
The image forming method of the present invention may, if necessary, include an ink removing step of removing the aqueous ink composition (for example, the solid ink solidified by drying) attached to the head for inkjet recording with a maintenance liquid. Good. The maintenance liquid and the ink removal process described in WO 2013/180074 can be preferably applied to the details of the maintenance liquid and the ink removal process.
[樹脂微粒子]
 本発明の樹脂微粒子は、上述した本発明に用いる樹脂微粒子である。この樹脂微粒子は、上述のように、コアポリマーとシェルポリマーとを含有するコアシェル構造を有し、シェルポリマーが構造単位(I)と構造単位(II)とを有し、コアポリマーのガラス転移温度がシェルポリマーのガラス転移温度より高く、かつ、シェルポリマーのガラス転移温度が20~130℃である、樹脂微粒子である。
 本発明の樹脂微粒子は、典型的には、上述した乳化重合法により樹脂微粒子を調製した際の反応液の形態として得ることができるが、その形態に特に制限はない。本発明の樹脂微粒子は、本発明の水性インク組成物に好適に用いることができる。
[Resin fine particles]
The resin fine particles of the present invention are the resin fine particles used in the present invention described above. As described above, this resin fine particle has a core-shell structure containing a core polymer and a shell polymer, and the shell polymer has a structural unit (I) and a structural unit (II), and the glass transition temperature of the core polymer Is a resin fine particle whose temperature is higher than the glass transition temperature of the shell polymer and whose glass transition temperature of the shell polymer is 20 to 130.degree.
The resin fine particles of the present invention can be typically obtained as a form of a reaction liquid when the resin fine particles are prepared by the above-mentioned emulsion polymerization method, but the form is not particularly limited. The resin fine particles of the present invention can be suitably used in the aqueous ink composition of the present invention.
 本発明の樹脂微粒子において、樹脂微粒子のMw、Tg、Tg差(絶対値)及び粒径は、それぞれ本発明の水性インク組成物に含まれる樹脂微粒子のMw、Tg、Tg差(絶対値)及び粒径と同じである。
 本発明の樹脂微粒子は、水又は水と水溶性有機溶剤との混合液、すなわち水性媒体に分散してなる形態で存在していることが好ましい。この水性媒体の好ましい形態は、本発明の水性インク組成物に用いる上述した水性媒体と同じである。
 本発明の樹脂微粒子が水性媒体中に分散してなる形態で存在する場合(樹脂微粒子分散物として存在する場合)、この分散物中、樹脂微粒子の含有量は、1~50質量%が好ましく、20~40質量%がより好ましい。
In the resin particle of the present invention, the Mw, Tg, Tg difference (absolute value) and particle diameter of the resin particle are the Mw, Tg, Tg difference (absolute value) of the resin particle contained in the aqueous ink composition of the present invention and It is the same as the particle size.
The resin fine particles of the present invention are preferably present in the form of being dispersed in water or a mixture of water and a water-soluble organic solvent, that is, an aqueous medium. The preferred form of this aqueous medium is the same as the above-mentioned aqueous medium used for the aqueous ink composition of the present invention.
When the resin particles of the present invention are present in the form of being dispersed in an aqueous medium (when present as a resin particle dispersion), the content of the resin particles in this dispersion is preferably 1 to 50% by mass, 20 to 40% by mass is more preferable.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、組成を表す「部」及び「%」は質量基準である。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, "part" and "%" showing a composition are mass references | standards.
[樹脂微粒子の合成]
 以下に、実施例及び比較例用いた樹脂微粒子P-1~P-15及びCP-1~CP-8を構成するコアポリマー及びシェルポリマーを示す。樹脂微粒子CP-5は、コアシェル構造を有せず、下記コアポリマーのみからなる樹脂の微粒子である。
 下記コアポリマー及びシェルポリマーそれぞれにおいて、各構造単位の数字は質量比を表す。また、各構造単位に示される「*」はポリマー中に組み込まれるための連結部位を示す。
[Synthesis of resin fine particles]
Hereinafter, core polymers and shell polymers constituting resin fine particles P-1 to P-15 and CP-1 to CP-8 used in Examples and Comparative Examples are shown. The fine resin particle CP-5 is a fine particle of a resin which does not have a core-shell structure and is formed only of the following core polymer.
In each of the following core polymer and shell polymer, the number of each structural unit represents a mass ratio. Also, "*" shown in each structural unit indicates a linking site for incorporation into a polymer.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<樹脂微粒子P-1の合成及び樹脂微粒子P-1の水性分散物の調製>
 攪拌機、温度計、還流冷却管及び窒素ガス導入管を備えた1リットル三口フラスコに、水(314g)、ネオペレックスG-15(16質量%のドデシルベンゼンスルホン酸ナトリウム水溶液、花王株式会社製)(7.50g)を仕込んで、窒素気流下で80℃まで昇温した。そこへ、過硫酸カリウム(ラジカル重合開始剤、和光純薬社製)(0.61g)、炭酸水素カリウム(0.47g)及び水(30g)からなる混合溶液を加え、10分間攪拌した。次いで、上記三口フラスコに、メチルメタクリレート(36.00g)と、スチレン(24.00g)とからなるモノマー溶液を2時間で滴下が完了するように等速で滴下し、モノマー溶液の滴下完了後、更に2時間攪拌した(コア重合工程)。
 続いて、得られた分散液に、過硫酸カリウム(0.30g)、炭酸水素カリウム(0.24g)及び水(30g)からなる混合溶液を加え、次いで、メチルメタクリレート(18.00g)と、ベンジルメタクリレート(33.00g)と、メトキシポリエチレングリコールモノメタクリレート(6.00g)と、メタクリル酸(3.00g)からなるモノマー溶液を2時間で滴下が完了するように等速で滴下し、モノマー溶液の滴下完了後、更に3時間攪拌した(シェル重合工程)。得られた反応混合物を1N-KOH水溶液でpH8.0に調整した後、網目50μmのメッシュでろ過し、樹脂微粒子P-1の水性分散物を得た。
 得られた樹脂微粒子P-1の水性分散物は固形分濃度24%であった。水性分散液中の樹脂微粒子は、体積平均粒径38nm(マイクロトラックUPA EX-150(日機装社製)で測定した。)であった。この樹脂微粒子P-1は、コアシェル構造を有しており、コアポリマーとシェルポリマーとの質量比[コアポリマー:シェルポリマー]は50:50であった。コアポリマー及びシェルポリマーのガラス転移温度Tgと、コアポリマーとシェルポリマーとのガラス転移温度の差(絶対値)を下記表1に示す。
<Synthesis of Resin Fine Particle P-1 and Preparation of Aqueous Dispersion of Resin Fine Particle P-1>
Water (314 g), Neoperex G-15 (16 mass% sodium dodecylbenzene sulfonate aqueous solution, manufactured by Kao Corporation) (a 1-liter three-necked flask equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet) 7.50 g) was charged, and the temperature was raised to 80 ° C. under a nitrogen stream. A mixed solution consisting of potassium persulfate (radical polymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd.) (0.61 g), potassium hydrogen carbonate (0.47 g) and water (30 g) was added thereto and stirred for 10 minutes. Next, a monomer solution consisting of methyl methacrylate (36.00 g) and styrene (24.00 g) is dropped at the same speed so that the dropping is completed in 2 hours, and after the dropping of the monomer solution is completed, The mixture was further stirred for 2 hours (core polymerization step).
Subsequently, a mixed solution consisting of potassium persulfate (0.30 g), potassium hydrogen carbonate (0.24 g) and water (30 g) is added to the obtained dispersion, and then methyl methacrylate (18.00 g), A monomer solution consisting of benzyl methacrylate (33.00 g), methoxypolyethylene glycol monomethacrylate (6.00 g) and methacrylic acid (3.00 g) is dropped at an equal speed so that the dropping is completed in 2 hours. After completion of the dropwise addition, stirring was further performed for 3 hours (shell polymerization step). The resulting reaction mixture was adjusted to pH 8.0 with 1N KOH aqueous solution and filtered through a mesh of 50 μm mesh to obtain an aqueous dispersion of resin fine particles P-1.
The resulting aqueous dispersion of resin fine particles P-1 had a solid content concentration of 24%. The resin fine particles in the aqueous dispersion had a volume average particle size of 38 nm (measured with Microtrac UPA EX-150 (manufactured by Nikkiso Co., Ltd.)). The fine resin particles P-1 had a core-shell structure, and the weight ratio of the core polymer to the shell polymer [core polymer: shell polymer] was 50:50. The differences (absolute values) between the glass transition temperatures Tg of the core polymer and the shell polymer and the glass transition temperatures of the core polymer and the shell polymer are shown in Table 1 below.
 各ポリマーのTgは次のようにして測定した。すなわち、樹脂の水性分散物を乾燥したサンプルを用い、エスアイアイ・ナノテクノロジー社製の示差走査熱量計(DSC)EXSTAR6220を用いて、昇温速度5℃/分で測定した。
 以降で調製する樹脂微粒子の体積平均粒径及び各ポリマーのTgも、上記の測定装置、測定方法により測定した。
The Tg of each polymer was measured as follows. That is, it was measured at a temperature rising rate of 5 ° C./min using a sample obtained by drying an aqueous dispersion of a resin and using a differential scanning calorimeter (DSC) EXSTAR 6220 manufactured by SII Nano Technology.
The volume average particle diameter of the resin fine particles prepared in the following and the Tg of each polymer were also measured by the above-mentioned measuring apparatus and measuring method.
<樹脂微粒子P-2~P-15並びにCP-1~CP4及びCP-6~CP-8の合成>
 上記樹脂微粒子P-1の合成において、各重合工程に用いるモノマーの種類を、上記構造単位を導くモノマーの種類に変更し、更に、各重合工程に用いるモノマーの量を、上記構造単位の質量比を満たし、かつコアポリマーとシェルポリマーとの質量比が表1に記載示す「質量比**」となる量に変更したこと以外は、樹脂微粒子P-1の合成と同様にして、樹脂微粒子P-2~P-15並びにCP-1~CP4及びCP-6~CP-8の水性分散物をそれぞれ得た。また、Y1A又はY1Bがナトリウムカチオン又はアンモニウムカチオンである場合、ナトリウム塩又はアンモニアを用いて常法によりY1A又はY1Bをナトリウム塩又はアンモニウム塩に変換した。
 得られたP-2~P-15並びにCP-1~CP4及びCP-6~CP-8の物性を表1に示す。
<Synthesis of Resin Fine Particles P-2 to P-15 and CP-1 to CP4 and CP-6 to CP-8>
In the synthesis of the resin fine particles P-1, the type of monomer used in each polymerization step is changed to the type of monomer leading to the structural unit, and the amount of monomer used in each polymerization step is the mass ratio of the structural unit Resin fine particle P in the same manner as the resin fine particle P-1 except that the weight ratio of the core polymer to the shell polymer is changed to the “mass ratio **” shown in Table 1 and Aqueous dispersions of -2 to P-15 and CP-1 to CP4 and CP-6 to CP-8 were obtained, respectively. When Y 1A or Y 1B is a sodium cation or ammonium cation, Y 1A or Y 1B was converted to a sodium salt or ammonium salt by a conventional method using a sodium salt or ammonia.
Physical properties of the obtained P-2 to P-15 and CP-1 to CP4 and CP-6 to CP-8 are shown in Table 1.
<樹脂微粒子CP-5の合成>
 上記樹脂微粒子P-1の合成において、コア重合工程に使用したモノマーの種類と量を、上記構造単位を導くモノマーの種類と上記構造単位の質量比を満たす量に変更し、シェル重合工程を行わないこと以外は、樹脂微粒子P-1の合成と同様にして、樹脂微粒子CP-6の水性分散物を得た。得られたCP-5の物性を表1に示す。樹脂微粒子CP-5のTgをコアポリマーのガラス転移温度欄に示す。
<Synthesis of Resin Fine Particle CP-5>
In the synthesis of the resin fine particles P-1, the shell polymerization process is carried out by changing the kind and amount of the monomer used in the core polymerization step to an amount satisfying the mass ratio of the monomer leading to the structural unit and the structural unit. An aqueous dispersion of resin fine particles CP-6 was obtained in the same manner as in the synthesis of the resin fine particles P-1 except for the absence. Physical properties of the obtained CP-5 are shown in Table 1. The Tg of the resin fine particle CP-5 is shown in the glass transition temperature column of the core polymer.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1において、「最少原子数*」は、式(2A)中のL1Aの最短鎖を構成する原子の結合数を示す。
最少原子数欄の「-」は、対応する樹脂微粒子を形成するシェルポリマーが式(2A)で表される構造単位を有しないことを示す。
 「質量比**」は、コアポリマーの質量:シェルポリマーの質量を表す。
 また、樹脂微粒子CP-5はシェルポリマーを有しないため、ガラス転移温度のシェルポリマー欄及び差の絶対値欄に「-」を記載した。
In Table 1, “minimum number of atoms *” indicates the number of bonds of atoms constituting the shortest chain of L 1A in formula (2A).
The “-” in the column of the minimum number of atoms indicates that the shell polymer forming the corresponding resin fine particle has no structural unit represented by the formula (2A).
"Mass ratio **" represents the mass of core polymer: mass of shell polymer.
Further, since the resin fine particle CP-5 does not have a shell polymer, “-” is described in the shell polymer column of glass transition temperature and the absolute value column of difference.
[実施例1]
<水性インク組成物の調製>
(ブラックインク組成物K-1の調製)
-水溶性ポリマー分散剤Q-1の合成-
 メタクリル酸(172部)と、メタクリル酸ベンジル(828部)と、イソプロパノール(375部)とを混合することにより、モノマー供給組成物を調製した。また、2,2-アゾビス(2-メチルブチロニトリル)(22.05部)と、イソプロパノール(187.5部)とを混合することにより、開始剤供給組成物を調製した。
 次に、イソプロパノール(187.5部)を窒素雰囲気下、80℃に加温し、そこに、上記モノマー供給組成物及び上記開始剤供給組成物の混合物を2時間かけて滴下した。滴下終了後、得られた溶液を更に4時間、80℃に保った後、25℃まで冷却した。
 冷却後、溶剤を減圧除去することにより、重量平均分子量約30,000、酸価112mgKOH/gの水溶性ポリマー分散剤Q-1を得た。
Example 1
Preparation of Aqueous Ink Composition
(Preparation of Black Ink Composition K-1)
-Synthesis of water-soluble polymer dispersant Q-1-
A monomer feed composition was prepared by mixing methacrylic acid (172 parts), benzyl methacrylate (828 parts) and isopropanol (375 parts). An initiator feed composition was also prepared by mixing 2,2-azobis (2-methylbutyronitrile) (22.05 parts) and isopropanol (187.5 parts).
Next, isopropanol (187.5 parts) was heated to 80 ° C. under a nitrogen atmosphere, and a mixture of the monomer feed composition and the initiator feed composition was added dropwise thereto over 2 hours. After completion of the dropwise addition, the obtained solution was kept at 80 ° C. for further 4 hours, and then cooled to 25 ° C.
After cooling, the solvent was removed under reduced pressure to obtain a water-soluble polymer dispersant Q-1 having a weight average molecular weight of about 30,000 and an acid value of 112 mg KOH / g.
-ブラック顔料分散物の調製-
 上記で得られた水溶性ポリマー分散剤Q-1(150部)中のメタクリル酸量の0.8当量を、水酸化カリウム水溶液を用いて中和した後、水溶性ポリマー分散剤濃度が25質量%となるように、更にイオン交換水を加えて調整し、水溶性ポリマー分散剤水溶液を得た。
 この水溶性ポリマー分散剤水溶液(124部)と、カーボンブラックMA-100(ブラック顔料)(48部)と、水(75部)と、ジプロピレングリコール(30部)とを混合し、ビーズミル(ビーズ径0.1mmφ、ジルコニアビーズ)で所望の体積平均粒径を得るまで分散し、顔料濃度15%のポリマー被覆ブラック顔料粒子の分散物(未架橋分散物)を得た。
 この未架橋分散物(136部)に、架橋剤:Denacol EX-321(ナガセケムテックス社製)(1.3部)と、ホウ酸水溶液(ホウ酸濃度:4質量%)(14.3部)とを添加し、50℃にて6時間半反応させた後、25℃に冷却し、架橋分散物を得た。次に、得られた架橋分散物にイオン交換水を加え、攪拌型ウルトラホルダー(ADVANTEC社製)及び限外ろ過フィルター(ADVANTEC社製、分画分子量5万、Q0500076Eウルトラフィルター)を用いて限外ろ過を行った。架橋分散物中のジプロピレングリコール濃度が0.1質量%以下となるように精製した後、顔料濃度が15質量%となるまで濃縮することにより、ブラック顔料分散物を得た。ブラック顔料分散物に含まれる顔料は、水溶性ポリマー分散剤Q-1が架橋剤により架橋された架橋ポリマーで表面が被覆されているポリマー被覆顔料(カプセル化顔料)である。
-Preparation of black pigment dispersion-
After neutralizing 0.8 equivalent of the amount of methacrylic acid in the water-soluble polymer dispersant Q-1 (150 parts) obtained above with a potassium hydroxide aqueous solution, the concentration of the water-soluble polymer dispersant is 25 mass The mixture was further adjusted by adding ion exchange water to obtain a water-soluble polymer dispersant aqueous solution.
This water-soluble polymer dispersant aqueous solution (124 parts), carbon black MA-100 (black pigment) (48 parts), water (75 parts) and dipropylene glycol (30 parts) are mixed to obtain a bead mill (beads). Dispersion was carried out until the desired volume average particle diameter was obtained with a diameter of 0.1 mmφ, zirconia beads), to obtain a dispersion (uncrosslinked dispersion) of polymer-coated black pigment particles having a pigment concentration of 15%.
In this uncrosslinked dispersion (136 parts), a crosslinking agent: Denacol EX-321 (manufactured by Nagase ChemteX Corp.) (1.3 parts) and an aqueous boric acid solution (boric acid concentration: 4% by mass) (14.3 parts) The reaction mixture was allowed to react at 50.degree. C. for 6 and a half hours, and then cooled to 25.degree. C. to obtain a crosslinked dispersion. Next, ion-exchanged water is added to the obtained cross-linked dispersion, and ultrafiltration is performed using a stirring ultra holder (manufactured by ADVANTEC) and an ultrafiltration filter (manufactured by ADVANTEC, molecular weight cut off 50,000, Q0500076 E ultra filter). It filtered. After refine | purifying so that the dipropylene glycol density | concentration in a crosslinked dispersion may be 0.1 mass% or less, the black pigment dispersion was obtained by concentrating until a pigment concentration becomes 15 mass%. The pigment contained in the black pigment dispersion is a polymer-coated pigment (encapsulated pigment) whose surface is coated with a crosslinked polymer in which the water-soluble polymer dispersant Q-1 is crosslinked by a crosslinking agent.
 - ブラックインク組成物K-1の調製 -
 下記組成となるように各成分を混合し、各ポリマー含有インク組成物を調液した。調液後、1μmフィルターを用いて粗大粒子を除去し、ブラックインク組成物K-1を調製した。ブラックインク組成物K-1中の樹脂微粒子P-1の含有量は5質量%であった。
〔組成〕
 ブラック顔料分散物:ブラック顔料の濃度が4質量部となる量
 水溶性有機溶剤1:ジエチレングリコールモノヘキシルエーテル(和光純薬工業(株)社製):3質量部
 水溶性有機溶剤2:ジエチレングリコール(和光純薬工業(株)社製):15質量部
 上記樹脂微粒子P-1の水性分散物(固形分濃度24質量%):21質量部
 界面活性剤CapstoneFS-3100(DuPont社製):0.1質量部
 水:残部
 合計:100質量部
-Preparation of Black Ink Composition K-1-
Each component was mixed so that it might become the following composition, and each polymer containing ink composition was adjusted. After the preparation, coarse particles were removed using a 1 μm filter to prepare a black ink composition K-1. The content of the resin fine particles P-1 in the black ink composition K-1 was 5% by mass.
〔composition〕
Black pigment dispersion: An amount that the concentration of black pigment is 4 parts by mass Water-soluble organic solvent 1: Diethylene glycol monohexyl ether (manufactured by Wako Pure Chemical Industries, Ltd.): 3 parts by mass Water-soluble organic solvent 2: Diethylene glycol (sum Kojun Pharmaceutical Co., Ltd. product: 15 parts by mass Aqueous dispersion of the above resin fine particles P-1 (solid content concentration: 24 mass%): 21 parts by mass Surfactant Capstone FS-3100 (manufactured by DuPont): 0.1 Parts by weight Water: balance Total: 100 parts by weight
(ブラックインク組成物K-2~K-15及びCK-1~CK-8の調製)
 ブラックインク組成物K-1の調製において、樹脂微粒子P-1の水性分散物に代えて樹脂微粒子P-2~P-15及びCP-1~CP-8の各水性分散物を用いたこと(各ブラックインク組成物の樹脂微粒子の含有量は5質量%に設定した。)以外は、ブラックインク組成物K-1と同様にして、水性インク組成物としてのブラックインク組成物K-2~K-15及びCK-1~CK-8をそれぞれ調製した。
 上記で調製したブラックインク組成物の粘度は、30℃においていずれも3~15mPa・sの範囲内にあった。この粘度は、VISCOMETER TV-22(TOKI SANGYO CO.LTD 製)にて測定した。
 また、表面張力は、協和界面科学社製CBVP-Zを用いて、白金プレート法で測定した。上記で調製したブラックインク組成物の表面張力は、いずれも20~60mN/mの範囲内にあった。
(Preparation of Black Ink Compositions K-2 to K-15 and CK-1 to CK-8)
In preparation of the black ink composition K-1, each aqueous dispersion of resin fine particles P-2 to P-15 and CP-1 to CP-8 was used in place of the aqueous dispersion of resin fine particles P-1 The content of resin fine particles in each black ink composition was set to 5% by mass.) Black ink composition K-2 to K as an aqueous ink composition in the same manner as black ink composition K-1 -15 and CK-1 to CK-8 were prepared respectively.
The viscosities of the black ink compositions prepared above were all within the range of 3 to 15 mPa · s at 30 ° C. This viscosity was measured by VISCOMETER TV-22 (manufactured by TOKI SANGYO CO. LTD).
The surface tension was measured by platinum plate method using CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. The surface tensions of the black ink compositions prepared above were all in the range of 20 to 60 mN / m.
[試験例]
 上記の如く調製した各ブラックインク組成物(以下、単に「インク」ということがある)について、下記試験を行った。結果を下記表2に示す。
[Test example]
The following tests were conducted on each of the black ink compositions prepared as described above (hereinafter sometimes simply referred to as "ink"). The results are shown in Table 2 below.
<レイテンシ(放置回復性)試験>
 下記インク付与条件により、記録媒体(「画彩 写真仕上げPro」、富士フイルム社製)上に画像を直接描画し、乾燥させた。その後、ノズルチェックパターン画像を1枚描画した(ここでの画像を「初期画像サンプル」とする。)。その後、記録ヘッドノズル部の環境を25℃、50%RHの環境に保ち、30分放置及び15時間放置した。所定時間放置後、再び上記で用いたものと同じ記録媒体上に、上記と同じノズルチェックパターン画像を1枚描画した(ここでの画像を、「30分放置後画像サンプル」及び「15時間放置後画像サンプル」とし、両者を併せて「放置後画像サンプル」とする。)。
 放置後画像サンプルそれぞれについて、光学顕微鏡によりノズルチェックパターン画像でノズルの抜け(画像抜け)を観察し、吐出率を求め、下記の評価基準に従って不吐出の有無を評価した。本試験においては、30分放置後及び15時間放置後のいずれにおいても、「B」以上が合格レベルである。
 なお、吐出率(%)は、「(放置後画像サンプルでの吐出ノズル数/初期画像サンプルでの吐出ノズル数)×100」から求めた。
Latency test
An image was drawn directly on a recording medium ("painting photo finishing Pro" manufactured by Fujifilm Corporation) under the following ink application conditions, and dried. Thereafter, one nozzle check pattern image was drawn (the image here is taken as an "initial image sample"). Thereafter, the environment of the recording head nozzle portion was maintained at 25 ° C. and 50% RH, and left for 30 minutes and for 15 hours. After leaving for a predetermined time, one sheet of the same nozzle check pattern image as described above was drawn again on the same recording medium as used above (here, the image after leaving for 30 minutes and leaving for 15 hours Let them be “post-image samples”, and put both together into “post-standing image samples”.
For each of the image samples after standing, nozzle missing (image missing) was observed with a nozzle check pattern image with an optical microscope to determine the ejection rate, and the presence or absence of non-ejection was evaluated according to the following evaluation criteria. In this test, "B" or more is a pass level also after leaving for 30 minutes and after leaving for 15 hours.
The ejection rate (%) was determined from “(number of ejection nozzles in image sample after standing / number of ejection nozzles in initial image sample) × 100”.
~インク付与条件~
 ・ヘッド  :1,200dpi(dot per inch)/20inch幅ピエゾフルラインヘッドを用いた。
 ・吐出液滴量:2.4pLとした。
 ・駆動周波数:24kHz(記録媒体搬送速度500mm/sec)とした。
~ Ink application condition ~
Head: A 1,200 dpi (dot per inch) / 20 inch wide piezo full line head was used.
The amount of discharged droplets: 2.4 pL.
Drive frequency: 24 kHz (recording medium conveyance speed 500 mm / sec).
~評価基準~
 AA:吐出率が95%以上である。
  A:吐出率が90%以上95%未満である。
  B:吐出率が85%以上90%未満である。
  C:吐出率が80%以上85%未満である。
  D:吐出率が80%未満である。
Evaluation criteria
AA: The discharge rate is 95% or more.
A: The ejection rate is 90% or more and less than 95%.
B: The ejection rate is 85% or more and less than 90%.
C: Discharge rate is 80% or more and less than 85%.
D: Discharge rate is less than 80%.
<耐擦性試験>
 耐擦性試験は、上記<レイテンシ(放置回復性)試験>において、30分放置後のレイテンシの結果が評価ランク「B」以上である各インクについて、行った。すなわち、30分放置後のレイテンシの結果が評価ランク「C」又は「D」である比較例1、2及び4については、既にインク性能が悪いため、耐擦性試験を行っていない(表2において「-」で示す。)。
 下記インク付与条件により、記録媒体としてコート紙(商品名「OKトップコート+」、王子製紙社製)上に、所定の各ブラックインクによりブラック色の、記録デューティ100%のベタ画像を直接形成した。記録デューティ100%とは、解像度1200dpi×1200dpiで1/1200インチ×1/1200インチ(1インチ=2.54cm)の単位領域(1画素)に約2.4pLのインクを1滴付与する条件で記録された画像をいう。
~インク付与条件~
 ・ヘッド:1,200dpi(dot per inch)/20inch幅ピエゾフルラインヘッド
 ・吐出量:2.4pL
 ・駆動周波数:30kHz(記録媒体搬送速度635mm/sec)
 ・シングルパス方式
 こうにして形成したベタ画像を、24時間25℃、相対湿度50%の環境下に放置した。ベタ画像の表面を2×10N/mの荷重をかけたシルホン紙により50回擦過した。ベタ画像の擦過表面の状態を目視で確認し、以下に示す評価基準に従って画像の耐擦性を評価した。本試験においては、「B」以上が合格レベルである。
<Abrasion resistance test>
The abrasion resistance test was performed on each ink of which the result of the latency after leaving for 30 minutes is the evaluation rank "B" or more in the above-mentioned <latency (restorability to recover from standing) test>. That is, in Comparative Examples 1, 2 and 4 in which the result of latency after leaving for 30 minutes is the evaluation rank “C” or “D”, the ink resistance is not performed because the ink performance is already poor (Table 2) In “.”)).
Under the following ink application conditions, a solid black image with a recording duty of 100% was formed directly on coated paper (trade name "OK Top Coat +", manufactured by Oji Paper Co., Ltd.) as a recording medium using predetermined black inks. . The recording duty of 100% is based on the condition that one drop of approximately 2.4 pL of ink is applied to a unit area (one pixel) of 1/1200 inch × 1/1200 inch (1 inch = 2.54 cm) at a resolution of 1200 dpi × 1200 dpi. Refers to a recorded image.
~ Ink application condition ~
-Head: 1,200 dpi (dot per inch) / 20 inch wide piezo full line head-Discharge amount: 2.4 pL
Drive frequency: 30 kHz (recording medium conveyance speed 635 mm / sec)
Single Pass Method The solid image thus formed was left under an environment of 25 ° C. and 50% relative humidity for 24 hours. The surface of the solid image was rubbed 50 times with a Silon paper loaded at 2 × 10 4 N / m 2 . The condition of the abraded surface of the solid image was visually confirmed, and the abrasion resistance of the image was evaluated according to the evaluation criteria shown below. In this test, "B" or more is a pass level.
~評価基準~
 AA:擦過表面に擦過痕が確認できず、擦り紙(シルホン紙)にも画像(インク)の転写が認められなかった。
  A:擦過表面に擦過痕が確認できないが、擦り紙に接触面積の5%未満の面積率で画像の転写が認められた。
  B:擦過表面にわずかに擦過痕が確認できた。
  C:擦過表面に擦過痕が確認でき、記録媒体の白地(表面)が見えていた。
Evaluation criteria
AA: No abrasion marks were observed on the abraded surface, and no transfer of the image (ink) was observed on the rubbed paper (silphone paper).
A: Although no abrasion marks were observed on the abraded surface, image transfer was observed on the rubbed paper at an area rate of less than 5% of the contact area.
B: A slight abrasion mark was observed on the abraded surface.
C: An abrasion mark was confirmed on the abraded surface, and a white background (surface) of the recording medium was seen.
<耐ブロッキング性試験>
 耐ブロッキング性試験は、上記<レイテンシ(放置回復性)試験>において、30分放置後のレイテンシの結果が評価ランク「B」以上である各インクについて、行った。すなわち、30分放置後のレイテンシの結果が評価ランク「C」又は「D」である比較例1、2及び4については、既にインク性能が悪いため、耐ブロッキング性試験を行っていない(表2において「-」で示す。)。
 上記<耐擦性試験>におけるインク付与条件と同じインク付与条件にて、記録媒体としてコート紙(商品名「OKトップコート+」、王子製紙社製)上に、所定の各ブラックインクによりブラック色の、記録デューティ100%のベタ画像を直接印字した。印字直後、60℃の温風で2秒乾燥させ、印字サンプルとした。
 印字サンプルを3cm四方のサイズで2枚に裁断した。次に2枚の印字面同士が向かい合うように、4角を合わせて重ねた。これを、80℃のホットプレート上に載置した。その上に2.0cm×2.0cmの面を紙側に向けて2.0cm×2.0cm×0.3cmの平板のゴム版を置き、更にその上に2.0cm×2.0cmの面をゴム版に向けて2.0cm×2.0cm×0.3cmの平板のプラスチック版を置いた。プラスチック版の上に500gの分銅を載せて1時間静置した後、重ね合わせた2枚の紙を剥がして、下記評価基準に従って耐ブロッキング性を評価した。本試験においては、「B」以上が合格レベルである。
<Blocking resistance test>
The blocking resistance test was performed on each ink of which the result of the latency after leaving for 30 minutes is the evaluation rank "B" or more in the above-mentioned <latency (restorability to recover from standing) test>. That is, for Comparative Examples 1, 2 and 4 in which the result of latency after leaving for 30 minutes is the evaluation rank "C" or "D", the ink resistance is already poor, so the blocking resistance test was not conducted (Table 2) In “.”)).
On the coated paper (trade name "OK Top Coat +", manufactured by Oji Paper Co., Ltd.) as a recording medium under the same ink application conditions as the ink application conditions in the above <abrasion resistance test>, the black color is given by each predetermined black ink The solid image with a recording duty of 100% was directly printed. Immediately after printing, it was dried with warm air of 60 ° C. for 2 seconds to obtain a print sample.
The print sample was cut into two pieces of 3 cm square size. Next, the four corners were aligned and overlapped so that the two printed surfaces face each other. This was placed on an 80 ° C. hot plate. A 2.0 cm × 2.0 cm × 0.3 cm flat rubber plate is placed with the 2.0 cm × 2.0 cm face on the paper side, and a 2.0 cm × 2.0 cm face on it. The plastic plate of 2.0 cm × 2.0 cm × 0.3 cm was placed on the rubber plate. A 500 g weight was placed on a plastic plate and allowed to stand for 1 hour, and then the two superposed sheets of paper were peeled off and the blocking resistance was evaluated according to the following evaluation criteria. In this test, "B" or more is a pass level.
~評価基準~
 A:自然に剥がれた。又は、剥がすときに抵抗があったが、印字サンプルの色移りはなかった。
 B:印字面の面積の10%未満の範囲に印字サンプルの色移りが認められたが、実用上問題のないレベルであった。
 C:印字面の面積の10%以上の広い範囲に印字サンプルの色移りが認められ、実用上問題になるレベルであった。
Evaluation criteria
A: Peeled off naturally. Or, although there was resistance at the time of peeling, there was no color transfer of the print sample.
B: Color transfer of the print sample was observed in the range of less than 10% of the area of the print surface, but it was at a level causing no problem in practical use.
C: Color transfer of the print sample was observed in a wide range of 10% or more of the area of the print surface, which was a level at which problems in practical use occur.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表2に示されるように、本発明で規定する樹脂微粒子を含有しない比較例のインクジェット記録用水性インク組成物(CK-1~CK-8)は、いずれも、レイテンシ、耐擦性及び耐ブロッキング性を兼ね備えるものではなかった。
 これに対して、本発明で規定する樹脂微粒子を含有する実施例のインクジェット記録用水性インク組成物(K-1~K-15)は、いずれも、レイテンシ、耐擦性及び耐ブロッキング性を高い水準で兼ね備える。すなわち、実施例のインクジェット記録用水性インク組成物は、優れたレイテンシを示すにもかかわらず、記録媒体上に吐出(着弾)されると、記録媒体が上記低吸水性記録媒体又は非吸水性記録媒体であっても、高い耐擦性及び耐ブロッキング性を示す画像を記録媒体上に直接形成できることが分かる。
As shown in Table 2, each of the aqueous ink compositions (CK-1 to CK-8) for inkjet recording of the comparative example not containing the resin fine particles specified in the present invention has latency, abrasion resistance and blocking resistance. It was not something that had sex.
On the other hand, all of the aqueous ink compositions (K-1 to K-15) for inkjet recording of the examples containing the resin fine particles defined in the present invention have high latency, abrasion resistance and blocking resistance. It combines in the level. That is, although the water-based ink composition for ink jet recording of the example exhibits excellent latency, when it is discharged (landed) onto the recording medium, the recording medium is the above-mentioned low water absorption recording medium or non-water absorbing recording medium It can be seen that even a medium can be formed directly on the recording medium with an image showing high abrasion and blocking resistance.
 また、シアン顔料及びマゼンタ顔料を用いて調製したシアンインク組成物及びマゼンタインク組成物を用いて、上記ブラックインク組成物と同様にして、試験したところ、同様の結果を示した。 In addition, the cyan ink composition and the magenta ink composition prepared using the cyan pigment and the magenta pigment were tested in the same manner as the above black ink composition, and the same results were shown.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While the present invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think that it should be interpreted broadly without.
 本願は、2017年9月20日に日本国で特許出願された特願2017-180192に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 The present application claims priority based on Japanese Patent Application No. 2017-180192 filed in Japan on September 20, 2017, the contents of which are incorporated herein by reference. Capture as part.

Claims (13)

  1.  水性媒体と樹脂微粒子とを含むインクジェット記録用水性インク組成物であって、
     前記樹脂微粒子が、コアポリマーと、該コアポリマーを被覆するシェルポリマーとを含有するコアシェル構造を有し、
     前記シェルポリマーが、下記式(1)で表される構造単位と、下記式(2A)若しくは式(2B)で表される構造単位とを有し、
     前記コアポリマーのガラス転移温度が前記シェルポリマーのガラス転移温度より高く、かつ、前記シェルポリマーのガラス転移温度が20~130℃である、インクジェット記録用水性インク組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは水素原子又は炭素数1~4のアルキル基を示す。Rは、水素原子、炭素数1~20の直鎖状若しくは分岐鎖状のアルキル基、又は、芳香族環基を示す。Aは炭素数2~20のアルキレン基を示す。mは1~100の整数である。
     式(2A)及び式(2B)中、Rは水素原子又は炭素数1~4のアルキル基を示す。L1Aは、単結合、又は式中のカルボニル炭素原子とY1Aとを連結する最少原子数が6以下の連結基を示す。Y1Aは、L1Aが単結合である場合、-OMを示し、L1Aが連結基である場合、-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Y1Bは-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Mは水素原子、アルカリ金属イオン又はアンモニウムイオンを示す。
    An aqueous ink composition for ink jet recording comprising an aqueous medium and resin fine particles,
    The resin fine particles have a core-shell structure containing a core polymer and a shell polymer covering the core polymer,
    The shell polymer has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2A) or the formula (2B),
    An aqueous ink composition for ink jet recording, wherein the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20 to 130 ° C.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group. A 1 represents an alkylene group having 2 to 20 carbon atoms. m 1 is an integer of 1 to 100.
    In formulas (2A) and (2B), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula and Y 1A . Y 1A represents —OM when L 1A is a single bond, and —C (= O) OM, —S (= O) 2 OM or —OS (= O) when L 1A is a linking group 2 indicates OM. Y 1B represents —C (= O) OM, —S (= O) 2 OM or —OS (= O) 2 OM. M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
  2.  前記式(1)で表される構造単位が、下記式(3)で表される構造単位である、請求項1に記載のインクジェット記録用水性インク組成物。
    Figure JPOXMLDOC01-appb-C000002
     式中、R及びRは前記の通りである。mは2~100の整数である。
    The aqueous ink composition for inkjet recording according to claim 1, wherein the structural unit represented by the formula (1) is a structural unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000002
    In the formula, R 1 and R 2 are as described above. m 2 is an integer of 2 to 100.
  3.  前記コアポリマーのガラス転移温度と前記シェルポリマーのガラス転移温度との差の絶対値が20℃以上である請求項1又は2に記載のインクジェット記録用水性インク組成物。 The aqueous ink composition for ink jet recording according to claim 1 or 2, wherein the absolute value of the difference between the glass transition temperature of the core polymer and the glass transition temperature of the shell polymer is 20 ° C or more.
  4.  前記シェルポリマー中の、前記式(1)で表される構造単位の含有率が30質量%以下である、請求項1~3のいずれか1項に記載のインクジェット記録用水性インク組成物。 The aqueous ink composition for inkjet recording according to any one of claims 1 to 3, wherein the content of the structural unit represented by the formula (1) in the shell polymer is 30% by mass or less.
  5.  前記コアポリマー及び前記シェルポリマーの少なくとも一方が、芳香族環又は脂肪族環を有するエチレン性不飽和化合物由来の構造単位を有する請求項1~4のいずれか1項に記載のインクジェット記録用水性インク組成物。 The aqueous ink for ink jet recording according to any one of claims 1 to 4, wherein at least one of the core polymer and the shell polymer has a structural unit derived from an ethylenically unsaturated compound having an aromatic ring or an aliphatic ring. Composition.
  6.  前記、芳香族環又は脂肪族環を有するエチレン性不飽和化合物由来の構造単位が、下記一般式(A)~(E)のいずれかで表される請求項5に記載のインクジェット記録用水性インク組成物。
    Figure JPOXMLDOC01-appb-C000003
     一般式(A)~(E)中、R11及びR12はメチル又は水素原子を示す。R13は炭素数1~10の直鎖状若しくは分岐鎖状のアルキル基を示す。一般式(A)及び一般式(B)中のnは0~5の整数であり、一般式(C)中のnは0~11の整数である。L11は単結合、炭素数1~18の直鎖状、分岐鎖状若しくは環状のアルキレン基、炭素数6~18のアリーレン基、-O-、-NH-、-S-若しくは-C(=O)-、又は、これらを2個以上連結して形成される2価の連結基を示す。
    The aqueous ink for inkjet recording according to claim 5, wherein the structural unit derived from the ethylenically unsaturated compound having an aromatic ring or an aliphatic ring is represented by any one of the following general formulas (A) to (E). Composition.
    Figure JPOXMLDOC01-appb-C000003
    In formulas (A) to (E), R 11 and R 12 each represent a methyl or hydrogen atom. R 13 represents a linear or branched alkyl group having 1 to 10 carbon atoms. N in the general formula (A) and the general formula (B) is an integer of 0 to 5, and n in the general formula (C) is an integer of 0 to 11. L 11 represents a single bond, a linear, branched or cyclic alkylene group having 1 to 18 carbon atoms, an arylene group having 6 to 18 carbon atoms, -O-, -NH-, -S- or -C (= O)-or a divalent linking group formed by linking two or more of these.
  7.  前記コアポリマー中の、前記一般式(A)~(E)のいずれかで表される構造単位の含有量が10~90質量%であり、
     前記シェルポリマー中の、前記一般式(A)~(E)のいずれかで表される構造単位の含有量が70質量%以下である、請求項6に記載のインクジェット記録用水性インク組成物。
    The content of the structural unit represented by any one of the general formulas (A) to (E) in the core polymer is 10 to 90% by mass.
    The aqueous ink composition for inkjet recording according to claim 6, wherein the content of the structural unit represented by any one of the general formulas (A) to (E) in the shell polymer is 70% by mass or less.
  8.  前記樹脂微粒子の含有量が、インクジェット記録用水性インク組成物の全質量に対して1~15質量%である請求項1~7のいずれか1項に記載のインクジェット記録用水性インク組成物。 The aqueous ink composition for ink jet recording according to any one of claims 1 to 7, wherein the content of the resin fine particles is 1 to 15% by mass with respect to the total mass of the aqueous ink composition for ink jet recording.
  9.  顔料を含有する請求項1~8のいずれか1項に記載のインクジェット記録用水性インク組成物。 The aqueous ink composition for ink jet recording according to any one of claims 1 to 8, which contains a pigment.
  10.  請求項9に記載のインクジェット記録用水性インク組成物をインクジェット法により記録媒体上に付与して画像を形成するインク付与工程を含む、画像形成方法。 An image forming method, comprising: applying the aqueous ink composition for inkjet recording according to claim 9 onto a recording medium by an inkjet method to form an image.
  11.  前記インクジェット記録用水性インク組成物を、低吸水性記録媒体又は非吸水性記録媒体上に直接付与する請求項10に記載の画像形成方法。 The image forming method according to claim 10, wherein the aqueous ink composition for inkjet recording is directly applied onto a low water absorption recording medium or a non-water absorption recording medium.
  12.  コアポリマーと、該コアポリマーを被覆するシェルポリマーとを含有するコアシェル構造を有する樹脂微粒子であって、
     前記シェルポリマーが、下記式(1)で表される構造単位と、下記式(2A)若しくは式(2B)で表される構造単位とを有し、
     前記コアポリマーのガラス転移温度が前記シェルポリマーのガラス転移温度より高く、かつ、前記シェルポリマーのガラス転移温度が20~130℃である、樹脂微粒子。
    Figure JPOXMLDOC01-appb-C000004
     式(1)中、Rは水素原子又は炭素数1~4のアルキル基を示す。Rは、水素原子、炭素数1~20の直鎖状若しくは分岐鎖状のアルキル基、又は、芳香族環基を示す。Aは炭素数2~20のアルキレン基を示す。mは1~100の整数である。
     式(2A)及び式(2B)中、Rは水素原子又は炭素数1~4のアルキル基を示す。L1Aは、単結合、又は式中のカルボニル炭素原子とY1Aとを連結する最少原子数が6以下の連結基を示す。Y1Aは、L1Aが単結合である場合、-OMを示し、L1Aが連結基である場合、-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Y1Bは-C(=O)OM、-S(=O)OM又は-OS(=O)OMを示す。Mは水素原子、アルカリ金属イオン又はアンモニウムイオンを示す。
    A fine resin particle having a core-shell structure containing a core polymer and a shell polymer coating the core polymer,
    The shell polymer has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2A) or the formula (2B),
    Resin fine particles, wherein the glass transition temperature of the core polymer is higher than the glass transition temperature of the shell polymer, and the glass transition temperature of the shell polymer is 20 to 130 ° C.
    Figure JPOXMLDOC01-appb-C000004
    In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or an aromatic ring group. A 1 represents an alkylene group having 2 to 20 carbon atoms. m 1 is an integer of 1 to 100.
    In formulas (2A) and (2B), R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. L 1A represents a single bond or a linking group having a minimum number of 6 or less linking the carbonyl carbon atom in the formula and Y 1A . Y 1A represents —OM when L 1A is a single bond, and —C (= O) OM, —S (= O) 2 OM or —OS (= O) when L 1A is a linking group 2 indicates OM. Y 1B represents —C (= O) OM, —S (= O) 2 OM or —OS (= O) 2 OM. M represents a hydrogen atom, an alkali metal ion or an ammonium ion.
  13.  前記式(1)で表される構造単位が下記式(3)で表される構造単位である、請求項12に記載の樹脂微粒子。
    Figure JPOXMLDOC01-appb-C000005
     式中、R及びRは前記の通りである。mは2~100の整数である。
    The resin fine particle of Claim 12 whose structural unit represented by said Formula (1) is a structural unit represented by following formula (3).
    Figure JPOXMLDOC01-appb-C000005
    In the formula, R 1 and R 2 are as described above. m 2 is an integer of 2 to 100.
PCT/JP2018/032170 2017-09-20 2018-08-30 Aqueous ink composition for inkjet recording, image forming method, and resin fine particles WO2019058920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019543515A JP6795704B2 (en) 2017-09-20 2018-08-30 Water-based ink composition for inkjet recording, image formation method and resin fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017180192 2017-09-20
JP2017-180192 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019058920A1 true WO2019058920A1 (en) 2019-03-28

Family

ID=65811311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032170 WO2019058920A1 (en) 2017-09-20 2018-08-30 Aqueous ink composition for inkjet recording, image forming method, and resin fine particles

Country Status (2)

Country Link
JP (1) JP6795704B2 (en)
WO (1) WO2019058920A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301121A (en) * 2002-04-11 2003-10-21 Konica Minolta Holdings Inc Coloring composition, colored fine particle dispersion, ink for inkjet and inkjet recording method
JP2007231214A (en) * 2006-03-03 2007-09-13 Seiko Epson Corp Encapsulated resin particle
JP2011011449A (en) * 2009-07-02 2011-01-20 Canon Inc Clear ink, inkjet recording method, ink set, ink cartridge, recording unit, and inkjet recording apparatus
JP2011144334A (en) * 2010-01-18 2011-07-28 Toyo Ink Sc Holdings Co Ltd Aqueous gravure ink composition for paper container
JP2011161871A (en) * 2010-02-12 2011-08-25 Mitsubishi Chemicals Corp Multi-layered body
JP2013060565A (en) * 2011-09-15 2013-04-04 Ricoh Co Ltd Inkjet ink and inkjet recording method using the same
JP2014208738A (en) * 2012-11-26 2014-11-06 セイコーエプソン株式会社 Ink composition for inkjet recording and inkjet recording method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301121A (en) * 2002-04-11 2003-10-21 Konica Minolta Holdings Inc Coloring composition, colored fine particle dispersion, ink for inkjet and inkjet recording method
JP2007231214A (en) * 2006-03-03 2007-09-13 Seiko Epson Corp Encapsulated resin particle
JP2011011449A (en) * 2009-07-02 2011-01-20 Canon Inc Clear ink, inkjet recording method, ink set, ink cartridge, recording unit, and inkjet recording apparatus
JP2011144334A (en) * 2010-01-18 2011-07-28 Toyo Ink Sc Holdings Co Ltd Aqueous gravure ink composition for paper container
JP2011161871A (en) * 2010-02-12 2011-08-25 Mitsubishi Chemicals Corp Multi-layered body
JP2013060565A (en) * 2011-09-15 2013-04-04 Ricoh Co Ltd Inkjet ink and inkjet recording method using the same
JP2014208738A (en) * 2012-11-26 2014-11-06 セイコーエプソン株式会社 Ink composition for inkjet recording and inkjet recording method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COMPREHENSIVE CATALOG OF OLEO PRODUCTS, March 2017 (2017-03-01), pages 51 - 52, Retrieved from the Internet <URL:https://www.nof.co.jp/businees/oleo/pdf/comprehensive.pdf> [retrieved on 20181011] *

Also Published As

Publication number Publication date
JPWO2019058920A1 (en) 2020-05-28
JP6795704B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6475316B2 (en) Ink set and image forming method
JP6432895B2 (en) Aqueous ink composition, ink set, image forming method, and resin fine particles
JP5554302B2 (en) Black ink composition, ink set, and image forming method
JP5295284B2 (en) Ink composition and image forming method.
JP5108422B2 (en) Cross-linked core-shell polymer particles
JP5166845B2 (en) Ink set for inkjet recording
JP2018035270A (en) Ink set and image formation method
JP2014070201A (en) Ink set for inkjet recording, and image forming method
JP6651676B2 (en) Aqueous ink composition for inkjet recording and image forming method
JP5808684B2 (en) Water-based ink composition and image forming method
WO2018062212A1 (en) Aqueous ink composition for ink-jet recording, and image formation method
JP6831313B2 (en) Water-based ink composition for inkjet recording and image formation method
WO2019065071A1 (en) Ink composition for inkjet recording and inkjet recording method
JP6621566B2 (en) Water-based ink composition for inkjet recording and image forming method
JP5328409B2 (en) Ink set for ink jet recording and image recording method
CN112752657B (en) Pretreatment liquid, ink set, and image recording method
JP6235978B2 (en) Aqueous ink composition, ink set and image forming method
JP6766252B2 (en) Aqueous ink composition, ink set, image forming method, and resin fine particles for ink
JP5885968B2 (en) Black ink composition, ink set, and image forming method
JP5112040B2 (en) Ink set for inkjet recording
WO2019058920A1 (en) Aqueous ink composition for inkjet recording, image forming method, and resin fine particles
WO2016052119A1 (en) Aqueous ink composition, ink set, and image formation method
JP5473417B2 (en) Ink set for inkjet recording
JP2012144644A (en) Ink composition and image forming method
JP2006124557A (en) Water-based ink for ink-jet printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857952

Country of ref document: EP

Kind code of ref document: A1