WO2019058905A1 - Parameter estimation method for hydraulic system - Google Patents

Parameter estimation method for hydraulic system Download PDF

Info

Publication number
WO2019058905A1
WO2019058905A1 PCT/JP2018/031865 JP2018031865W WO2019058905A1 WO 2019058905 A1 WO2019058905 A1 WO 2019058905A1 JP 2018031865 W JP2018031865 W JP 2018031865W WO 2019058905 A1 WO2019058905 A1 WO 2019058905A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic system
estimation
parameter
value
state
Prior art date
Application number
PCT/JP2018/031865
Other languages
French (fr)
Japanese (ja)
Inventor
山田 崇
西田 吉晴
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2019058905A1 publication Critical patent/WO2019058905A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential

Definitions

  • the present invention relates to a parameter estimation method of a hydraulic system in which a physical quantity affecting dynamic characteristics of the hydraulic system is estimated as a parameter.
  • the dynamic characteristics of a hydraulic system largely depend on various physical quantities such as bulk modulus, viscosity and Reynolds number of hydraulic fluid. And some of these physical quantities depend on parameters that dynamically change during operation of the hydraulic system.
  • the bulk modulus of the hydraulic oil depends on the bubble mixing ratio to the hydraulic oil, the temperature and pressure of the hydraulic oil, and the like. Therefore, it is desirable to acquire the value of the physical quantity that affects the dynamic characteristics of the hydraulic system in real time.
  • system identification theory can be considered as a method for acquiring the bulk modulus of hydraulic oil in real time.
  • a parameter identification method using system identification theory there is, for example, a least squares method.
  • Patent Document 1 discloses a parameter identification method based on the least squares method.
  • the parameter identification method described in Patent Document 1 defines a state space equation representing a nonlinear model of a vertical articulated hydraulic manipulator, and applies a new sequential identification method in which the conventional sequential identification method is modified to the state space equation. And to do.
  • this sequential identification method in each step, using measured parameters and known parameters, a linear equation is established for unknown parameters including bulk modulus and flow coefficient, based on the state space equation. Identification calculation using is not performed.
  • two normal equations are derived by strictly integrating the linear equations for the unknown parameters into two linear equations across all the steps and combining them over time. Then, by solving these two normal equations, unknown parameters including the bulk modulus and the flow coefficient are identified.
  • An object of the present invention is to provide a method of estimating a physical quantity that affects the dynamic characteristics of a hydraulic system as a parameter, and a method with a wide range of application.
  • the inventor of the present application has conceived of setting a state vector that includes a physical quantity to be estimated as a parameter to be estimated, in order to achieve the above object. Then, by applying the state estimation method based on Bayesian estimation or the sequential estimation method to the equation using the state vector, new findings have been obtained that the application range of the parameter estimation method can be expanded. . The present invention has been completed based on such findings.
  • the parameter estimation method for a hydraulic system sets the state vector by selecting the state quantity of the state vector including the state quantity of the hydraulic system and the estimation target parameter and the estimation target parameter.
  • a parameter estimation method for a hydraulic system includes the steps of: deriving a first equation indicating the dynamic characteristic of the hydraulic system; and second equation using a state vector including the estimation target parameter as the first equation And estimating the value of the estimation target parameter included in the state vector by applying a sequential estimation method to the second equation.
  • FIG. 1 is a circuit diagram showing a hydraulic system to which a parameter estimation method of a hydraulic system according to a first embodiment of the present invention is applied.
  • F hin used in the first embodiment of the present invention (x v), f hout ( x v), is a graph showing the f rin (x v) and f rout (x v).
  • FIG. 7 is a graph showing the time change of the spool position of the directional flow control valve as an input to the hydraulic system.
  • a graph showing estimation results of the first embodiment of the present invention is a graph showing temporal changes of the estimated value of the pressure P p from the start of the estimation of the value of the pressure Pp.
  • a graph showing estimation results of the first embodiment of the present invention is a graph showing temporal changes of the estimated value of the pressure P h from the start of the estimation of the value of the pressure Ph.
  • a graph showing estimation results of the first embodiment of the present invention is a graph showing temporal changes of the estimated value of the pressure P r from the start of the estimation of the value of the pressure Pr.
  • a graph showing estimation results of the first embodiment of the present invention is a graph showing temporal changes of the estimated value of the spool position x c from the start of the estimation of the value of the spool position Xc.
  • FIG. 1 is a flowchart showing a method of estimating a parameter of a hydraulic system according to a first embodiment.
  • the parameter estimation method of the hydraulic system according to the first embodiment selects a physical quantity that affects the dynamic characteristics of the hydraulic system as the estimation target parameter, and estimates the value of the estimation target parameter.
  • the parameter estimation method for a hydraulic system according to the first embodiment includes the step of setting an equation indicating the dynamic characteristic of the hydraulic system (step S10), and the state of the state vector including the state quantity of the hydraulic system and the estimation target parameter.
  • Such a parameter estimation method is executed by, for example, a control CPU or a simulator.
  • the control CPU controls, for example, a real machine system.
  • the parameter estimation method of the hydraulic system according to the first embodiment selects the bulk modulus K of the hydraulic oil of the hydraulic system 10 shown in FIG. 2 as the estimation target parameter and estimates the value of the bulk modulus K Is applied to the hydraulic system 10 concerned.
  • the hydraulic system to which the parameter estimation method of the hydraulic system according to the first embodiment is applied is not limited to the hydraulic system 10 shown in FIG.
  • the estimation target parameter estimated by the parameter estimation method of the hydraulic system according to the first embodiment is not limited to the bulk modulus K of the hydraulic oil of the hydraulic system 10.
  • FIG. 2 is a circuit diagram showing the hydraulic system 10.
  • the spool displacement Xv of the spool type directional flow control valve 14 is input to the hydraulic system 10 as a control input.
  • the hydraulic system 10 controls the operation of the hydraulic cylinder 16 based on the control input.
  • the hydraulic system 10 includes a hydraulic pump 12, a directional flow control valve 14, a hydraulic cylinder 16, a hydraulic oil tank 18, and a relief valve 20.
  • the hydraulic pump 12 discharges hydraulic oil.
  • the directional flow control valve 14 opens and closes so as to change the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 12 to the hydraulic cylinder 16.
  • the hydraulic cylinder 16 has a head side chamber 161, which is a liquid chamber on the cylinder head side, and a rod side chamber 162, which is a liquid chamber on the rod side, and the hydraulic oil discharged by the hydraulic pump 12 is It is driven by being supplied to the head side chamber 161 or the rod side chamber 162.
  • the hydraulic oil tank 18 stores hydraulic oil to be discharged from the hydraulic pump 12.
  • the relief valve 20 performs an opening and closing operation so that the pressure of the hydraulic fluid discharged from the hydraulic pump 12 does not exceed a predetermined pressure.
  • the hydraulic pump 12 and the directional flow control valve 14 are connected by a pipe 22.
  • the directional flow control valve 14 and the head side chamber 161 of the hydraulic cylinder 16 are connected by a pipe 24.
  • the rod side chamber 162 of the hydraulic cylinder 16 and the directional flow control valve 14 are connected by a pipe 26.
  • step S10 an equation indicating the dynamic characteristic of the hydraulic system 10 is set.
  • the dynamic characteristics of the hydraulic system 10 are represented by the following equation.
  • m is the mass of the hydraulic cylinder 16 and the load object
  • x c is the cylinder position (the position of the cylinder head in the hydraulic cylinder 16)
  • a h is the cross-sectional area of the head side chamber 161
  • a r is The cross-sectional area of the rod side chamber 162
  • P p is the pressure in the pipe 22 and is the pump pressure which is the discharge pressure of the hydraulic pump 12
  • P h is the pressure in the pipe 24 and the head pressure of the hydraulic cylinder 16.
  • P r is the pressure in the pipe 26 and the rod pressure of the hydraulic cylinder 16
  • P t is the tank pressure which is the pressure in the hydraulic oil tank 18
  • K is the bulk modulus of the hydraulic oil
  • V p is the volume of the pipe 22
  • V h is the volume of the pipe 24
  • V r is the volume of the pipe 26
  • l is the total length of the hydraulic cylinder 16
  • Q p is the flow rate of hydraulic fluid discharged from the hydraulic pump 12
  • Q hin passes the directional flow control valve 14 Work that flows into the head side chamber 161 Oil flow rate, Q hout is operated to inlet flow of the hydraulic fluid passing through the directional flow control valve 14 is discharged from the head-side chamber 161 to the, Q rin passes through the directional flow control valve 14 to the rod side chamber 162
  • the flow rate of oil, Qrout is the flow rate of the hydraulic fluid discharged from the rod side chamber 162 and passing through the directional flow control valve 14, and QpR is the flow rate of the hydraulic fluid passing
  • Each of the flow rates Q p , Q hin , Q hout , Q rin , Q rout , and Q pR is expressed by the following equation.
  • x v is the spool position is the position of the spool in the directional flow control valve 14
  • C is contraction coefficient
  • [rho is the density of the hydraulic fluid
  • a hin is a the flow path forming said directional flow control valve 14
  • Opening area of the head side meter-in flow passage for allowing hydraulic oil to flow toward the head side chamber 161, where A hout is a flow passage formed by the directional flow control valve 14, and the head side chamber The opening area of the head-side meter-out flow passage which allows the hydraulic fluid discharged from 161 to flow into the tank
  • a rin is the flow passage formed by the directional flow control valve 14 and the hydraulic fluid is in the rod side chamber
  • Arout is a flow passage formed by the directional flow control valve 14 and hydraulic oil discharged from the head side chamber 161 flows into the tank of The opening area of the head-side meter-out flow passage
  • a pR is the opening
  • the state quantities of the state vector including the plurality of state quantities of the hydraulic system 10 and the estimation target parameter and the estimation target parameter are selected in step S11. .
  • the pressure P p, the pressure P h, the pressure P r, the spool speed x c (1 is the time differential value of the spool position x c and the spool position x c ) is selected.
  • the rank of the time derivative is indicated by the number of dots placed above the letter in each equation, and the rank of the time derivative is indicated by the parenthesized numbers attached to the right shoulder of the letter throughout the specification.
  • the bulk elastic modulus K is selected as the estimation target parameter.
  • the state vector x of the hydraulic system 10, which is set by selecting such state quantities and estimation target parameters, is expressed as follows.
  • step S12 the state equation and the observation equation of the hydraulic system 10 are set using the state vector x.
  • the state equation of the hydraulic system 10 is expressed in the form of a first-order differential equation.
  • v ⁇ R 6 ⁇ 1 in the above equation of state represents a white noise vector whose mean vector is 0 ⁇ R 6 ⁇ 1 and whose variance-covariance matrix is Q ⁇ R 6 ⁇ 6 . That is, the above equation of state includes a noise term.
  • w ⁇ R 4 ⁇ 4 in the above observation equation represents a white noise vector whose mean vector is 0 ⁇ R 4 ⁇ 4 and whose variance-covariance matrix is R ⁇ R 4 ⁇ 4 .
  • the unscented Kalman filter (that is, a nonlinear state estimation method) as a state estimation method based on Bayesian estimation is applied to the state equation in step S13.
  • the value of each element constituting the state vector x is estimated.
  • the value of the bulk elastic modulus K of the hydraulic oil which is the estimation target parameter included in the state vector x is estimated.
  • FIG. 3 shows the relationship between the functions f hin (x v ), f hout (x v ), f rin (x v ) and f rout (x v ) used in the present embodiment and the spool position x v .
  • the functions f hin (x v ) and f rout (x v ) are respectively zero (ie, the opening area is zero) when the spool position xv is negative, as shown by the solid line in FIG.
  • x v is positive, it increases as the spool position x v increases (ie, the opening area increases).
  • the time change f K of the bulk modulus K of the hydraulic fluid may be zero or may be a positive value (for example, 50). If the temporal change f K of the bulk modulus K of the hydraulic fluid is zero, an estimation is performed on the assumption that the bulk modulus K of the hydraulic fluid is a constant. On the other hand, if the time variation f K of the bulk modulus K of the hydraulic fluid is a positive value, bulk modulus K of the hydraulic oil becomes variable parameter, it is possible to simulate the modeling error. In the present embodiment, the time change f K of the bulk elastic modulus K of the hydraulic oil is 50.
  • the estimated value of the volume elastic modulus K of the hydraulic oil changes from the initial value (500 MPa) to near the true value (1500 MPa) within 0.1 second after the estimation is started. This indicates that these values can be estimated even though the bulk modulus K of the hydraulic fluid and the cylinder speed are not directly measured.
  • FIG. 5 also shows that the estimated value can follow the time change of the true value shown by the thick solid line, which is not considered in the estimated model. This indicates that a practical estimation can be realized by appropriately setting the variance-covariance matrix Q of the noise vector v even if the state equation contains a modeling error.
  • the reliability of the estimation can be evaluated by using the standard deviation of the estimated value as an index.
  • the standard deviations of the estimated values shown in FIG. 5 change from moment to moment according to the state of the oil flow, and can be used as a quantitative index when designing a controller taking into account the estimation error.
  • an Unscented Kalman filter is used as a state estimation method based on Bayesian estimation.
  • a linear Kalman filter an extended Kalman filter, a particle filter, an ensemble Kalman filter, or the like may be used.
  • the state equation must be linear.
  • a nonlinear state equation is approximated to a linear state equation within that range.
  • a linear Kalman filter can be applied.
  • a limited assumption for example, assuming that the flow of hydraulic oil is laminar flow, or assuming that a hydraulic motor is used instead of a hydraulic cylinder, it is possible to linearly represent a state equation of a hydraulic system it can.
  • the estimation target parameter dynamically changes, known characteristics of the estimation target parameter may be reflected in the state equation.
  • the bulk modulus K of hydraulic fluid is proportional to the pressure under isothermal conditions, so this may be reflected in the equation of state.
  • the equation of state may be derived not by first principle modeling but by black box modeling, and the coefficients thereof may be estimated.
  • the estimated value obtained by the parameter estimation method of the hydraulic system according to the first embodiment may be used for control of the hydraulic system, or may be used to control the hydraulic system by presenting it to the operator of the hydraulic system. It may be provided for support and / or guidance.
  • FIG. 11 is a flowchart showing a method of estimating a parameter of a hydraulic system according to the second embodiment.
  • the parameter estimation method of the hydraulic system according to the second embodiment uses the successive estimation method instead of the state estimation method based on Bayesian estimation used in the parameter estimation method of the hydraulic system according to the first embodiment. It differs from the method according to the first embodiment in that the point and the state vector may include only the estimation target parameter.
  • the parameter estimation method for a hydraulic system comprises the steps of setting a first equation indicating the dynamic characteristic of the hydraulic system (step S20), and a second equation using a state vector including a parameter to be estimated.
  • the step of deriving from one equation (step S21) and the sequential estimation method are applied to the second equation to estimate the values of the respective elements constituting the state vector, and thereby the values contained in the state vector And S (step S22) of estimating the value of the estimation target parameter.
  • Such a parameter estimation method is executed by, for example, a control CPU or a simulator.
  • the control CPU controls, for example, a real machine system.
  • step S20 is the same as the process of step S10 in the first embodiment, the detailed description thereof is omitted. Details of steps S21 and S22 will be described later.
  • the parameter estimation method of the hydraulic system according to the second embodiment is similar to the parameter estimation method of the hydraulic system according to the first embodiment, for example, in the volume modulus K of the hydraulic oil of the hydraulic system 10 shown in FIG. It is applied to the hydraulic system 10 in order to estimate the value.
  • the hydraulic system to which the parameter estimation method of the hydraulic system according to the second embodiment is applied is not limited to the hydraulic system 10 shown in FIG.
  • the estimation object parameter estimated by the parameter estimation method of the hydraulic system according to the second embodiment is not limited to the bulk modulus K of the hydraulic oil of the hydraulic system 10.
  • the successive estimation method is not particularly limited as long as the estimated value at each time step can be derived as a function of the estimated value at the previous time step.
  • the successive estimation method includes a successive least squares method and a Kalman filter. The computational cost can be reduced by applying the successive estimation method.
  • Table 2 shows a combination of the sequential estimation method adopted in the present embodiment and the estimation target parameter.
  • the aspect which concerns on the combination of (1) shows the case where the value of the volume modulus K of hydraulic fluid is estimated by the successive least squares method.
  • the equations for the derivatives of the pressures P p , P h and P r are compared to the bulk modulus K of the hydraulic oil as the estimation target parameter Discretize in a linear fashion.
  • k represents a time step discretized by the time interval ⁇ t. Parameters other than K are assumed to be observable.
  • step S22 is performed.
  • the calculation start time step a is a parameter adjusted in accordance with the characteristics of the hydraulic system 10.
  • FIG. 12 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid.
  • FIG. 12 shows that, as time passes, the estimated value of the bulk modulus K approaches the true value, and the accuracy of the estimation is improved.
  • the reason why the estimated value does not coincide with the true value is due to an approximation error caused by differential approximation of the derivatives of Pp, Ph and Pr by the first-order Euler method.
  • the equations for the derivatives of P p , P h and P r are linear with respect to K and K C as estimation target parameters It is discretized.
  • K and KC are expressed explicitly as follows.
  • k represents a time step discretized by the time interval ⁇ t.
  • step S22 is performed.
  • the calculation start time step a is a parameter adjusted in accordance with the characteristics of the hydraulic system 10.
  • FIG. 13 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid.
  • FIG. 14 is a graph showing the estimation result of the value of the contraction coefficient C.
  • the measured value P p, P h not only the estimation result if there is no noise P r, measured value P p, P h, even estimation results when there is noise P r It shows.
  • Noise is added to the measured values P p , P h and P r with white noise having a mean of zero and a standard deviation of 0.04 [MPa], and a standard of zero with respect to the measured value x c and a standard White noise with a deviation of 10 mm is added.
  • FIG. 13 shows that the value of the contraction coefficient C is also correctly estimated.
  • step S21 is the same as the aspect according to the combination of (2).
  • x LS (n) is derived that minimizes the weighted sum of the squared errors shown in Equation 13 below. Then, the value of contraction coefficient C is estimated by dividing KC by K. Thereby, step S22 is performed.
  • W (k) is a weighting matrix at time step k, and is set according to known properties such as the reliability of the measurement value. As the magnitude of the noise with respect to the true value of the measurement value increases, the estimation accuracy decreases significantly. Therefore, as the absolute value of the measurement value increases, the weight is increased to increase the reliability of the measurement value. An estimate is made. W (k) is set, for example, as follows.
  • ⁇ p , ⁇ h and ⁇ r are tuning parameters for adjusting the size of the weight. Note that the setting of W (k) is not limited to this.
  • FIG. 15 is a graph showing the estimation result of the value of the bulk modulus K of hydraulic fluid.
  • FIG. 16 is a graph showing an estimation result of the value of the contraction coefficient C.
  • FIGS. 15 and 16 show that the estimation accuracy is improved in spite of the fact that the measurement value includes noise, as compared with the cases shown in FIGS. 13 and 14.
  • weighting matrix W (k) is different compared with the aspect which concerns on the combination of (3).
  • the weight matrix W (k) is set such that the weight decreases as the change in pressure in one time step increases. That is, when the change in pressure is larger than the value assumed for the operation of the hydraulic system 10, the measured value is regarded as noise, and the contribution to the estimation is reduced.
  • the weight matrix W (k) is set, for example, as follows.
  • is a tuning parameter for adjusting the assumed change amount. Note that the setting of W (k) is not limited to this.
  • FIG. 17 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid.
  • FIG. 18 is a graph showing an estimation result of the value of the contraction coefficient C. It can be seen that the estimation accuracy is improved compared to FIGS. 13 and 14 despite the fact that the measurement value includes noise.
  • the frequency filter used is a moving average filter as follows.
  • P filtered is a pressure value after application of a filter
  • P is a pressure measurement value (P p , P h , P r in this embodiment).
  • the frequency filter to be used is not limited to a moving average filter, For example, a linear filter, a Butterworth filter, a Chebyshev filter etc. may be sufficient.
  • FIG. 19 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid.
  • This aspect is a case where the value of the bulk elastic modulus K of the hydraulic fluid is estimated by the Unscented Kalman filter in order to reduce the decrease in estimation accuracy due to the noise contained in the measurement value.
  • the method of estimating the value of the bulk elastic modulus K of the hydraulic oil by this Unscented Kalman filter is the same as that described in the first embodiment, and thus the detailed description thereof is omitted.
  • This aspect estimates the pressure dependency of the bulk modulus K of hydraulic oil based on the successive least squares method.
  • the bulk modulus K of hydraulic fluid changes in accordance with the pressure of the hydraulic fluid.
  • the bulk modulus K of hydraulic fluid can be approximated as a function proportional to pressure as follows.
  • K 0 is a bulk modulus at atmospheric pressure
  • K p is a proportional coefficient
  • P is a gauge pressure (pressure measurement value).
  • K 0 and K p depend on dynamically changing parameters such as temperature of hydraulic fluid and bubble content of hydraulic fluid. Therefore, it is estimated by the successive estimation method.
  • step S21 among the equations representing the dynamic characteristics of the hydraulic system 10, the equations for derivatives of the pressures P p , P h and P r are discretely linear with respect to K 0 and K p as estimation target parameters Be
  • the left side that is, the differentials of the pressures P p , P h and P r are subjected to time difference ⁇ t and the difference approximation is as follows.
  • k represents a time step discretized by the time interval ⁇ t.
  • step S22 is performed.
  • the calculation start time step a is a parameter adjusted in accordance with the characteristics of the hydraulic system 10.
  • FIG. 21 is a graph showing the estimation result of the value of bulk modulus K 0 at atmospheric pressure.
  • FIG. 22 is a graph showing the estimation result of the value of the proportional coefficient Kp.
  • the pressure measurement P p, P h not only the estimation result if there is no noise P r, the pressure measurement P p, P h, even estimation results when there is noise P r It shows.
  • the pressure measurements P p, P h, added white noise average relative P r is the standard deviation at zero is 0.02 [MPa], and that the average relative measurements x c This is the case where white noise with a standard deviation of 10 mm is added at zero.
  • step S21 a state equation and an observation equation of the hydraulic system 10 are set. Specifically, it is as follows.
  • a hydraulic system 10 is obtained by adding estimated parameters K 0 and K p to the state quantities (pressure P p , pressure P h , pressure P r , cylinder position x c , cylinder speed x c (1)) of the hydraulic system 10
  • the ten state vectors x are set as follows.
  • the state equation of the hydraulic system 10 is expressed in the form of a first-order differential equation.
  • v ⁇ ⁇ ⁇ ⁇ R 7 ⁇ 1 has an average vector of 0 ⁇ R 7 ⁇ 1 , Represents a white noise vector whose variance covariance matrix is Q ⁇ R 7 ⁇ 7 .
  • the time variation f Kp time variation f K0 and K p of K 0 will be zero.
  • w ⁇ R 4 ⁇ 4 in the above observation equation represents a white noise vector whose mean vector is 0 ⁇ R 4 ⁇ 4 and whose variance-covariance matrix is R ⁇ R 4 ⁇ 4 .
  • step S22 After the state equation and the observation equation of the hydraulic system 10 are set, in step S22, by applying an Unscented Kalman filter to the state equation, the state quantity of the estimated hydraulic system 10 and the estimation target parameters included in the state vector x The value is estimated.
  • FIG. 23 is a graph showing the estimation result of the value of bulk modulus K 0 at atmospheric pressure.
  • Figure 24 is a graph showing estimation results of the value of the proportionality factor K p.
  • FIGS. 23 and 24 show not only the estimation result when there is no noise in the pressure measurement values P p , P h and P r but also the estimation result when there is noise in the measurement values P p , P h and P r ing. In the latter case, white noise with an average of zero and a standard deviation of 0.02 [MPa] is added to the measured values P p , P h and P r , and the average is zero with respect to the measured value x c The standard deviation is 10 [mm] when white noise is added.
  • the second embodiment can be modified as follows.
  • the weight of the past measurement value may be reduced exponentially using a forgetting factor. It may be done.
  • the second embodiment includes setting a weight according to the absolute value of the measurement value, but instead, excludes the measurement value having an absolute value smaller than a predetermined threshold value from the measurement values used for estimation. May be included.
  • the second embodiment includes approximating the bulk modulus of hydraulic oil as a linear function with respect to pressure, the bulk modulus may be approximated as a non-linear function with respect to pressure.
  • the second embodiment includes modeling the bulk modulus of hydraulic fluid as a function of pressure, but modeling the bulk modulus as a function of an arbitrary parameter and determining its coefficient is performed. May be
  • the bulk modulus of hydraulic fluid may be modeled as a function of temperature or as a function of temperature and pressure.
  • a linear Kalman filter for example, a linear Kalman filter, an extended Kalman filter, a particle filter or the like may be used instead of the Unscented Kalman filter used in the second embodiment.
  • the state equation must be linear, but for example, in a hydraulic system with a limited operating range, by approximating a nonlinear state equation within that range to a linear state equation , Linear Kalman filter can be applied.
  • Linear Kalman filter can be applied.
  • a limited assumption for example, assuming that the flow of hydraulic fluid is laminar flow, or assuming that a hydraulic motor is used instead of a hydraulic cylinder, it is possible to linearly represent the state equation of the hydraulic system it can.
  • the equation of state may be derived not by first principle modeling but by black box modeling, and its coefficients may be estimated.
  • the estimated value obtained by the parameter estimation method of the hydraulic system according to the second embodiment can also be used for control of the hydraulic system, or can be presented to the operator of the hydraulic system to operate the hydraulic system by the operator. It can also be provided for support and / or guidance.
  • the parameter estimation method for a hydraulic system sets the state vector by selecting the state quantity of the state vector including the state quantity of the hydraulic system and the estimation target parameter and the estimation target parameter.
  • the parameter estimation method of the hydraulic system applies the state estimation method based on Bayesian estimation, even if all the state quantities of the hydraulic system included in the state vector are not observable, the state vector is included in the state vector It is possible to estimate the value of the estimated parameter to be estimated. This makes it possible to extend the application range of the parameter estimation method.
  • the estimation target parameter is a bulk modulus of hydraulic oil in the hydraulic system. This method makes it possible to obtain the bulk modulus of the hydraulic fluid without stopping the operation of the hydraulic system.
  • the state equation may be non-linear.
  • the value of the estimation target parameter included in the state vector is estimated by applying a non-linear state estimation method to the state equation.
  • the application range of the parameter estimation method can be expanded.
  • the state equation includes a noise term
  • the Kalman filter is applied to the state equation.
  • the value of the estimation target parameter is estimated. This makes it possible to estimate the value of the estimation target parameter in consideration of the influence of noise and the like that the hydraulic system has.
  • a parameter estimation method for a hydraulic system includes the steps of: deriving a first equation indicating the dynamic characteristic of the hydraulic system; and second equation using a state vector including the estimation target parameter as the first equation And estimating the value of the estimation target parameter included in the state vector by applying a sequential estimation method to the second equation.
  • the parameter estimation method of the hydraulic system according to the second aspect makes it possible to suppress an increase in calculation cost when estimating the value of the estimation target parameter by applying the successive estimation method. Thereby, the application range of the parameter estimation method can be expanded.
  • the state vector is included by applying the least squares method to the second equation one by one.
  • the value of the estimation target parameter is estimated.
  • the estimated value of the estimation target parameter at a certain time step can be derived sequentially (with less computational cost) as a function of the estimation value of the estimation target parameter at the previous time step.
  • the parameter estimation method for a hydraulic system preferably further comprises the step of measuring the state quantity of the hydraulic system, and in the step of estimating the value of the estimation target parameter, the measured value of the state quantity
  • the measurement value of the state quantity is corrected when the successive least squares method is applied to the second equation.
  • the estimation accuracy of the estimation target parameter can be improved by estimating the value of the estimation target parameter using the corrected measurement value of the state quantity.
  • the weight of the state quantity is increased as the absolute value of the measurement value of the state quantity is larger.
  • the measured values may be corrected. This correction makes it possible to adjust the influence of the measurement of the state quantity on the estimation error of the estimation target parameter according to the magnitude of the absolute value of the measurement of the state quantity, whereby the value of the estimation target parameter is obtained.
  • the estimation accuracy of can be improved.
  • the weight of the state quantity is decreased as the change amount of the measurement value of the state quantity increases.
  • the measured values may be corrected. This correction makes it possible to adjust the influence of the measured value of the state quantity on the estimation error of the estimation target parameter according to the magnitude of the change amount of the measured value of the state quantity, thereby estimating the estimation target parameter Accuracy can be improved.
  • the measured value of the state quantity may be corrected by removing the noise with a filter.
  • the filter removal of the noise contained in the measured value of the state quantity makes it possible to improve the estimation accuracy of the value of the estimation target parameter.
  • the second equation includes a noise term
  • a Kalman filter is applied to the second equation.
  • the value of the estimation target parameter included in the state vector is estimated. This makes it possible to estimate the value of the estimation target parameter in consideration of the influence of noise and the like that the hydraulic system has.
  • the estimation target parameter is a bulk modulus of hydraulic oil in the hydraulic system. This method makes it possible to obtain the bulk modulus of the hydraulic fluid without stopping the operation of the hydraulic system.
  • the estimation target parameter is a bulk modulus and a contraction flow coefficient of hydraulic oil in the hydraulic system. According to this method, it is possible to estimate not only the value of the bulk modulus of the hydraulic oil but also the value of the contraction coefficient.
  • the estimation target parameter indicates the pressure dependency of the bulk modulus of the hydraulic oil in the hydraulic system. According to this method, it is possible to estimate the degree to which the bulk modulus of hydraulic fluid depends on the pressure of hydraulic fluid.

Abstract

Provided is a parameter estimation method by which a physical quantity affecting the dynamic characteristics of a hydraulic system is estimated as a parameter, and which can be widely applied. This method is provided with: a step for selecting, from a state vector including a state quantity of a hydraulic system and a parameter of an estimation target, a corresponding state quantity and a corresponding estimation target parameter, thereby setting a corresponding state vector; a step for using the set state vector to set a state equation of the hydraulic system; and a step for applying a state estimation method based on Bayes estimation to the state equation, thereby estimating the value of the estimation target parameter included in the state vector.

Description

油圧システムのパラメータ推定方法Parameter estimation method of hydraulic system
 本発明は、油圧システムの動特性に影響を与える物理量をパラメータとして推定する油圧システムのパラメータ推定方法に関する。 The present invention relates to a parameter estimation method of a hydraulic system in which a physical quantity affecting dynamic characteristics of the hydraulic system is estimated as a parameter.
 油圧システムの制御において、油圧システムの動特性を正確にモデル化することは重要である。油圧システムの動特性は、作動油の体積弾性率や粘度、レイノルズ数等の様々な物理量に大きく依存する。そして、これらの物理量には、油圧システムの稼働中に動的に変化するパラメータに依存するものがある。例えば、作動油の体積弾性率は、作動油への気泡混入率、作動油の温度や圧力等に依存する。そのため、油圧システムの動特性に影響を与える物理量については、その値をリアルタイムで取得することが望ましい。 In hydraulic system control, it is important to accurately model the dynamics of the hydraulic system. The dynamic characteristics of a hydraulic system largely depend on various physical quantities such as bulk modulus, viscosity and Reynolds number of hydraulic fluid. And some of these physical quantities depend on parameters that dynamically change during operation of the hydraulic system. For example, the bulk modulus of the hydraulic oil depends on the bubble mixing ratio to the hydraulic oil, the temperature and pressure of the hydraulic oil, and the like. Therefore, it is desirable to acquire the value of the physical quantity that affects the dynamic characteristics of the hydraulic system in real time.
 例えば、作動油の体積弾性率をリアルタイムで取得する方法として、油圧システムの作動油の体積変化とそれに対する発生圧力を測定し、その比率(つまり、体積弾性率の定義そのもの)を計算することが考えられる。しかしながら、一般的な油圧システムにおいて、作動油の体積変化を正確に測定するためには、通常の作業の中断や、作動油の体積変化とそれに対する発生圧力を測定するための特別な回路を設けることを要する。これらのことは、油圧システムの運用効率の低下や運用コストの増大を招く。 For example, as a method of acquiring the bulk modulus of the hydraulic oil in real time, measuring the volume change of the hydraulic oil of the hydraulic system and the generated pressure to it, and calculating the ratio (that is, the definition itself of the bulk modulus) Conceivable. However, in a general hydraulic system, in order to accurately measure the volume change of the hydraulic fluid, a special circuit is provided to measure the interruption of the normal operation and the volume change of the hydraulic fluid and the pressure generated thereto. I need to These things cause the fall of the operation efficiency of a hydraulic system, and increase of operation cost.
 作動油の体積弾性率をリアルタイムで取得する他の方法として、体積弾性率を数学関数でモデル化し、その関数の変数である物理パラメータをセンサにて測定し、代入することが考えられる。しかしながら、作動油の体積弾性率が依存する作動油への気泡混入率をセンサによって直接測定することは難しい。従って、全ての状態に対して十分な精度を保証する数学モデルを構築することは困難である。 As another method for acquiring the bulk elastic modulus of hydraulic oil in real time, it is conceivable to model the bulk elastic modulus with a mathematical function and measure and substitute physical parameters which are variables of the function with a sensor. However, it is difficult to directly measure the bubbling rate into the hydraulic oil by which the bulk modulus of the hydraulic oil is dependent by a sensor. Therefore, it is difficult to construct a mathematical model that guarantees sufficient accuracy for all states.
 そこで、作動油の体積弾性率をリアルタイムで取得する方法として、システム同定理論の適用が考えられる。システム同定理論を用いたパラメータ同定法として、例えば、最小二乗法がある。 Therefore, application of system identification theory can be considered as a method for acquiring the bulk modulus of hydraulic oil in real time. As a parameter identification method using system identification theory, there is, for example, a least squares method.
 下記特許文献1には、最小二乗法に基づくパラメータ同定法が開示されている。特許文献1に記載のパラメータ同定法は、鉛直多関節油圧マニピュレータの非線形モデルを表す状態空間方程式を定めることと、当該状態空間方程式に、従来の逐次同定法を修正した新たな逐次同定法を適用することと、を含む。この逐次同定法では、各ステップにおいて、測定したパラメータ及び既知のパラメータを用いて、状態空間方程式に基づき、体積弾性率及び流量係数を含む未知のパラメータについての線形方程式が立てられるが、当該線形方程式を用いた同定計算は行われない。各ステップの終了後に、未知のパラメータについての線形方程式を全ステップを横断して2つの線形方程式に厳密に統合し、これらを各時刻に亘って連立することにより、2つの正規方程式が導かれる。そして、これら2つの正規方程式を解くことで、体積弾性率及び流量係数を含む未知のパラメータが、同定される。 Patent Document 1 below discloses a parameter identification method based on the least squares method. The parameter identification method described in Patent Document 1 defines a state space equation representing a nonlinear model of a vertical articulated hydraulic manipulator, and applies a new sequential identification method in which the conventional sequential identification method is modified to the state space equation. And to do. In this sequential identification method, in each step, using measured parameters and known parameters, a linear equation is established for unknown parameters including bulk modulus and flow coefficient, based on the state space equation. Identification calculation using is not performed. At the end of each step, two normal equations are derived by strictly integrating the linear equations for the unknown parameters into two linear equations across all the steps and combining them over time. Then, by solving these two normal equations, unknown parameters including the bulk modulus and the flow coefficient are identified.
 しかしながら、特許文献1に記載のパラメータ同定法は、状態の全てが観測可能であるとともに状態方程式が同定パラメータに対して線形に変形できる場合にしか、適用できない。加えて、同定パラメータの数が増えると、計算コストが指数関数的に増加してしまい、リアルタイムでの推定が困難になる。したがって、パラメータ同定法の適用範囲が著しく限定される。 However, the parameter identification method described in Patent Document 1 can be applied only when all of the states are observable and the state equation can be linearly deformed with respect to the identification parameters. In addition, as the number of identification parameters increases, the computational cost increases exponentially, making real-time estimation difficult. Therefore, the scope of application of the parameter identification method is extremely limited.
特開2015-77643号公報JP, 2015-77643, A
 本発明の目的は、油圧システムの動特性に影響を与える物理量をパラメータとして推定するパラメータ推定方法であって適用範囲の広い方法を提供することである。 An object of the present invention is to provide a method of estimating a physical quantity that affects the dynamic characteristics of a hydraulic system as a parameter, and a method with a wide range of application.
 本願の発明者は、上記の目的を達成するために、推定対象の物理量を推定対象パラメータとして含む状態ベクトルを設定することに想到した。そして、当該状態ベクトルを用いた方程式に対して、ベイズ推定に基づく状態推定手法又は逐次推定手法を適用することにより、パラメータ推定手法の適用範囲を広げることができるという新たな知見を得るに至った。本発明は、このような知見に基づいて完成されたものである。 The inventor of the present application has conceived of setting a state vector that includes a physical quantity to be estimated as a parameter to be estimated, in order to achieve the above object. Then, by applying the state estimation method based on Bayesian estimation or the sequential estimation method to the equation using the state vector, new findings have been obtained that the application range of the parameter estimation method can be expanded. . The present invention has been completed based on such findings.
 提供されるのは、油圧システムの動特性に影響を与える物理量を推定対象パラメータに選定して当該推定対象パラメータの値を推定する油圧システムのパラメータ推定方法である。 What is provided is a parameter estimation method of a hydraulic system in which a physical quantity that affects the dynamic characteristics of the hydraulic system is selected as the estimation target parameter, and the value of the estimation target parameter is estimated.
 第1の態様に係る油圧システムのパラメータ推定方法は、前記油圧システムの状態量と前記推定対象パラメータとを含む状態ベクトルの当該状態量及び当該推定対象パラメータを選定することにより当該状態ベクトルを設定する工程と、設定された前記状態ベクトルを用いて、前記油圧システムの状態方程式を設定する工程と、ベイズ推定に基づく状態推定手法を前記状態方程式に適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程と、を備える。 The parameter estimation method for a hydraulic system according to the first aspect sets the state vector by selecting the state quantity of the state vector including the state quantity of the hydraulic system and the estimation target parameter and the estimation target parameter. The step of setting a state equation of the hydraulic system using the set state vector, and applying the state estimation method based on Bayesian estimation to the state equation, the estimation included in the state vector Estimating the value of the target parameter.
 第2の態様に係る油圧システムのパラメータ推定方法は、前記油圧システムの動特性を示す第1方程式を導出する工程と、前記推定対象パラメータを含む状態ベクトルを用いた第2方程式を前記第1方程式から導出する工程と、逐次推定手法を前記第2方程式に適用することにより前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程と、を含む。 A parameter estimation method for a hydraulic system according to a second aspect includes the steps of: deriving a first equation indicating the dynamic characteristic of the hydraulic system; and second equation using a state vector including the estimation target parameter as the first equation And estimating the value of the estimation target parameter included in the state vector by applying a sequential estimation method to the second equation.
本発明の第1の実施の形態による油圧システムのパラメータ推定方法を示すフローチャートである。It is a flowchart which shows the parameter estimation method of the hydraulic system by the 1st Embodiment of this invention. 本発明の第1の実施の形態による油圧システムのパラメータ推定方法が適用される油圧システムを示す回路図である。FIG. 1 is a circuit diagram showing a hydraulic system to which a parameter estimation method of a hydraulic system according to a first embodiment of the present invention is applied. 本発明の第1の実施の形態で用いるfhin(x)、fhout(x)、frin(x)及びfrout(x)を示すグラフである。 F hin used in the first embodiment of the present invention (x v), f hout ( x v), is a graph showing the f rin (x v) and f rout (x v). 油圧システムへの入力としての方向流量制御弁のスプール位置の時間変化を示すグラフである。FIG. 7 is a graph showing the time change of the spool position of the directional flow control valve as an input to the hydraulic system. 本発明の第1の実施の形態での推定結果を示すグラフであって、作動油の体積弾性率Kの値の推定を開始してからの当該体積弾性率Kの推定値の時間変化を示すグラフである。It is a graph which shows the presumed result in the 1st embodiment of the present invention, and shows the time change of the estimated value of the said bulk modulus K after starting estimation of the value of the bulk modulus K of hydraulic fluid. It is a graph. 本発明の第1の実施の形態での推定結果を示すグラフであって、圧力Ppの値の推定を開始してからの当該圧力Pの推定値の時間変化を示すグラフである。A graph showing estimation results of the first embodiment of the present invention, is a graph showing temporal changes of the estimated value of the pressure P p from the start of the estimation of the value of the pressure Pp. 本発明の第1の実施の形態での推定結果を示すグラフであって、圧力Phの値の推定を開始してからの当該圧力Pの推定値の時間変化を示すグラフである。A graph showing estimation results of the first embodiment of the present invention, is a graph showing temporal changes of the estimated value of the pressure P h from the start of the estimation of the value of the pressure Ph. 本発明の第1の実施の形態での推定結果を示すグラフであって、圧力Prの値の推定を開始してからの当該圧力Pの推定値の時間変化を示すグラフである。A graph showing estimation results of the first embodiment of the present invention, is a graph showing temporal changes of the estimated value of the pressure P r from the start of the estimation of the value of the pressure Pr. 本発明の第1の実施の形態での推定結果を示すグラフであって、スプール位置Xcの値の推定を開始してからの当該スプール位置xの推定値の時間変化を示すグラフである。A graph showing estimation results of the first embodiment of the present invention, is a graph showing temporal changes of the estimated value of the spool position x c from the start of the estimation of the value of the spool position Xc. 本発明の第1の実施の形態での推定結果を示すグラフであって、スプール位置xの時間変化率であるスプール速度の値の推定を開始してからの当該スプール速度の推定値の時間変化を示すグラフである。A graph showing estimation results of the first embodiment of the present invention, the time estimate of the spool speed from the start of the estimation of the spool speed value which is the time rate of change of the spool position x c It is a graph which shows change. 本発明の第2の実施の形態による油圧システムのパラメータ推定方法を示すフローチャートである。It is a flowchart which shows the parameter estimation method of the hydraulic system by the 2nd Embodiment of this invention. 逐次最小二乗法によって作動油の体積弾性率Kの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of bulk modulus K of hydraulic fluid by the successive least squares method. 逐次最小二乗法によって作動油の体積弾性率Kの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of bulk modulus K of hydraulic fluid by the successive least squares method. 逐次最小二乗法によって縮流係数Cの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of contraction flow coefficient C by the successive least squares method. 重み付き逐次最小二乗法によって作動油の体積弾性率Kの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of bulk modulus K of hydraulic fluid by a weighted successive least squares method. 重み付き逐次最小二乗法によって縮流係数Cの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of contraction coefficient C by the weighted successive least squares method. 重み付き逐次最小二乗法によって作動油の体積弾性率Kの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of bulk modulus K of hydraulic fluid by a weighted successive least squares method. 重み付き逐次最小二乗法によって縮流係数Cの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of contraction coefficient C by the weighted successive least squares method. 周波数フィルタと逐次最小二乗法によって作動油の体積弾性率Kの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of bulk modulus K of hydraulic fluid by the frequency filter and the successive least squares method. 周波数フィルタと逐次最小二乗法によって縮流係数Cの値を推定した結果を示すグラフである。It is a graph which shows the result of having estimated the value of contraction flow coefficient C by the frequency filter and the successive least squares method. 大気圧における体積弾性率Kの値の推定結果を示すグラフである。Is a graph showing an estimation result value bulk modulus K 0 at atmospheric pressure. 比例係数Kの値の推定結果を示すグラフである。Is a graph showing estimation results of a value of the proportional coefficient K p. 大気圧における体積弾性率Kの値の推定結果を示すグラフである。Is a graph showing an estimation result value bulk modulus K 0 at atmospheric pressure. 比例係数Kpの値の推定結果を示すグラフである。It is a graph which shows the presumed result of the value of proportionality coefficient Kp.
 以下、添付図面を参照しながら、本発明の実施の形態について詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
 図1を参照して、本発明の第1の実施の形態による油圧システムのパラメータ推定方法について説明する。図1は、第1の実施の形態による油圧システムのパラメータ推定方法を示すフローチャートである。 A parameter estimation method of a hydraulic system according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing a method of estimating a parameter of a hydraulic system according to a first embodiment.
 第1の実施の形態による油圧システムのパラメータ推定方法は、油圧システムの動特性に影響を与える物理量を推定対象パラメータに選定して当該推定対象パラメータの値を推定するものである。第1の実施の形態による油圧システムのパラメータ推定方法は、油圧システムの動特性を示す方程式を設定する工程(ステップS10)と、油圧システムの状態量と推定対象パラメータとを含む状態ベクトルの当該状態量及び当該推定対象パラメータを選定することにより当該状態ベクトルを設定する工程(ステップS11)と、設定された状態ベクトルを用いて油圧システムの状態方程式と観測方程式を設定する工程(ステップS12)と、ベイズ推定に基づく状態推定手法を前記状態方程式に適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程(ステップS13)と、を備える。 The parameter estimation method of the hydraulic system according to the first embodiment selects a physical quantity that affects the dynamic characteristics of the hydraulic system as the estimation target parameter, and estimates the value of the estimation target parameter. The parameter estimation method for a hydraulic system according to the first embodiment includes the step of setting an equation indicating the dynamic characteristic of the hydraulic system (step S10), and the state of the state vector including the state quantity of the hydraulic system and the estimation target parameter. A step of setting the state vector by selecting an amount and the estimation target parameter (step S11), and setting a state equation and an observation equation of the hydraulic system using the set state vector (step S12); Estimating the value of the estimation target parameter included in the state vector by applying a state estimation method based on Bayesian estimation to the state equation (step S13).
 このようなパラメータ推定手法は、例えば、制御CPUやシミュレータによって実行される。制御CPUは、例えば、実機システムを制御する。 Such a parameter estimation method is executed by, for example, a control CPU or a simulator. The control CPU controls, for example, a real machine system.
 第1の実施の形態による油圧システムのパラメータ推定方法は、例えば、図2に示す油圧システム10の作動油の体積弾性率Kを推定対象パラメータに選定して当該体積弾性率Kの値を推定するために当該油圧システム10に適用される。第1の実施の形態による油圧システムのパラメータ推定方法が適用される油圧システムは、図2に示す油圧システム10に限定されない。また、第1の実施の形態による油圧システムのパラメータ推定方法によって推定される推定対象パラメータは、油圧システム10の作動油の体積弾性率Kに限定されない。 The parameter estimation method of the hydraulic system according to the first embodiment, for example, selects the bulk modulus K of the hydraulic oil of the hydraulic system 10 shown in FIG. 2 as the estimation target parameter and estimates the value of the bulk modulus K Is applied to the hydraulic system 10 concerned. The hydraulic system to which the parameter estimation method of the hydraulic system according to the first embodiment is applied is not limited to the hydraulic system 10 shown in FIG. Further, the estimation target parameter estimated by the parameter estimation method of the hydraulic system according to the first embodiment is not limited to the bulk modulus K of the hydraulic oil of the hydraulic system 10.
 図2を参照して、第1の実施の形態による油圧システムのパラメータ推定方法が適用される前記油圧システム10について説明する。図2は、当該油圧システム10を示す回路図である。 The hydraulic system 10 to which the parameter estimation method of the hydraulic system according to the first embodiment is applied will be described with reference to FIG. FIG. 2 is a circuit diagram showing the hydraulic system 10.
 前記油圧システム10には、スプール式の方向流量制御弁14のスプール変位Xvが制御入力として入力される。前記油圧システム10は、当該制御入力に基づいて油圧シリンダ16の動作を制御する。当該油圧システム10は、油圧ポンプ12と、方向流量制御弁14と、油圧シリンダ16と、作動油タンク18と、リリーフ弁20とを備える。 The spool displacement Xv of the spool type directional flow control valve 14 is input to the hydraulic system 10 as a control input. The hydraulic system 10 controls the operation of the hydraulic cylinder 16 based on the control input. The hydraulic system 10 includes a hydraulic pump 12, a directional flow control valve 14, a hydraulic cylinder 16, a hydraulic oil tank 18, and a relief valve 20.
 前記油圧ポンプ12は、作動油を吐出する。前記方向流量制御弁14は、前記油圧ポンプ12から前記油圧シリンダ16に供給される作動油の方向及び流量を変化させるような開閉動作をする。前記油圧シリンダ16は、シリンダへッド側の液室であるへッド側室161と、ロッド側の液室であるロッド側室162と、を有し、前記油圧ポンプ12により吐出される作動油が前記へッド側室161または前記ロッド側室162に供給されることにより駆動される。前記作動油タンク18は、油圧ポンプ12から吐出されるべき作動油を貯留する。前記リリーフ弁20は、油圧ポンプ12から吐出される作動油の圧力が所定の圧力を超えないように、開閉動作を行う。前記油圧ポンプ12と前記方向流量制御弁14とは、配管22によって接続されている。前記方向流量制御弁14と前記油圧シリンダ16の前記へッド側室161とは、配管24によって接続されている。前記油圧シリンダ16の前記ロッド側室162と前記方向流量制御弁14とは、配管26によって接続されている。 The hydraulic pump 12 discharges hydraulic oil. The directional flow control valve 14 opens and closes so as to change the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 12 to the hydraulic cylinder 16. The hydraulic cylinder 16 has a head side chamber 161, which is a liquid chamber on the cylinder head side, and a rod side chamber 162, which is a liquid chamber on the rod side, and the hydraulic oil discharged by the hydraulic pump 12 is It is driven by being supplied to the head side chamber 161 or the rod side chamber 162. The hydraulic oil tank 18 stores hydraulic oil to be discharged from the hydraulic pump 12. The relief valve 20 performs an opening and closing operation so that the pressure of the hydraulic fluid discharged from the hydraulic pump 12 does not exceed a predetermined pressure. The hydraulic pump 12 and the directional flow control valve 14 are connected by a pipe 22. The directional flow control valve 14 and the head side chamber 161 of the hydraulic cylinder 16 are connected by a pipe 24. The rod side chamber 162 of the hydraulic cylinder 16 and the directional flow control valve 14 are connected by a pipe 26.
 再び、図1を参照しながら、第1の実施の形態による前記油圧システム10のパラメータの推定方法の各工程について説明する。 Each step of the method of estimating the parameters of the hydraulic system 10 according to the first embodiment will be described with reference to FIG. 1 again.
 先ず、ステップS10において、前記油圧システム10の動特性を示す方程式が設定される。当該油圧システム10の動特性は、以下に示す方程式によって表される。 First, in step S10, an equation indicating the dynamic characteristic of the hydraulic system 10 is set. The dynamic characteristics of the hydraulic system 10 are represented by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、mは油圧シリンダ16及び負荷対象の質量、xはシリンダ位置(油圧シリンダ16内でのシリンダヘッドの位置)、Aは前記へッド側室161の断面積を示し、Aは前記ロッド側室162の断面積、Pは配管22内の圧力であって油圧ポンプ12の吐出圧であるポンプ圧、Pは配管24内の圧力であって油圧シリンダ16のへッド圧、Pは配管26内の圧力であって油圧シリンダ16のロッド圧、Pは作動油タンク18内の圧力であるタンク圧、Kは作動油の体積弾性率、Vは配管22の容積、Vは配管24の容積、Vは配管26の容積、lは油圧シリンダ16の全長、Qは油圧ポンプ12から吐出される作動油の流量、Qhinは方向流量制御弁14を通過して前記へッド側室161へ流入する作動油の流量、Qhoutは前記へッド側室161から排出されて方向流量制御弁14を通過する作動油の流量、Qrinは方向流量制御弁14を通過して前記ロッド側室162へ流入する作動油の流量、Qroutは前記ロッド側室162から排出されて方向流量制御弁14を通過する作動油の流量、QpRはリリーフ弁20を通過する作動油の流量である。 Here, m is the mass of the hydraulic cylinder 16 and the load object, x c is the cylinder position (the position of the cylinder head in the hydraulic cylinder 16), A h is the cross-sectional area of the head side chamber 161, and A r is The cross-sectional area of the rod side chamber 162, P p is the pressure in the pipe 22 and is the pump pressure which is the discharge pressure of the hydraulic pump 12, and P h is the pressure in the pipe 24 and the head pressure of the hydraulic cylinder 16. P r is the pressure in the pipe 26 and the rod pressure of the hydraulic cylinder 16, P t is the tank pressure which is the pressure in the hydraulic oil tank 18, K is the bulk modulus of the hydraulic oil, and V p is the volume of the pipe 22 V h is the volume of the pipe 24, V r is the volume of the pipe 26, l is the total length of the hydraulic cylinder 16, Q p is the flow rate of hydraulic fluid discharged from the hydraulic pump 12, and Q hin passes the directional flow control valve 14 Work that flows into the head side chamber 161 Oil flow rate, Q hout is operated to inlet flow of the hydraulic fluid passing through the directional flow control valve 14 is discharged from the head-side chamber 161 to the, Q rin passes through the directional flow control valve 14 to the rod side chamber 162 The flow rate of oil, Qrout, is the flow rate of the hydraulic fluid discharged from the rod side chamber 162 and passing through the directional flow control valve 14, and QpR is the flow rate of the hydraulic fluid passing through the relief valve 20.
 前記流量Q、Qhin、Qhout、Qrin、Qrout、QpRのそれぞれは、以下に示す方程式によって表される。 Each of the flow rates Q p , Q hin , Q hout , Q rin , Q rout , and Q pR is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、xは前記方向流量制御弁14におけるスプールの位置であるスプール位置、Cは縮流係数、ρは作動油の密度、Ahinは前記方向流量制御弁14が形成する流路であって作動油が前記へッド側室161に向かって流れるのを許容するへッド側メータイン流路の開口面積、Ahoutは方向流量制御弁14が形成する流路であって前記へッド側室161から排出される作動油がタンクに流れるのを許容するへッド側メータアウト流路の開口面積、Arinは前記方向流量制御弁14が形成する流路であって作動油が前記ロッド側室162に向かって流れるのを許容するロッド側メータイン流路の開口面積、Aroutは方向流量制御弁14が形成する流路であって前記へッド側室161から排出される作動油がタンクに流れるのを許容するへッド側メータアウト流路の開口面積、ApRは前記リリーフ弁20の開口面積、fhin(x)は前記へッド側メータイン流路の開口面積Ahinと前記スプール位置xとの関係を示す任意の関数、fhout(x)は前記へッド側メータアウト流路の開口面積Ahoutと前記スプール位置xとの関係を示す任意の関数、frin(x)は前記ロッド側メータイン流路の開口面積Arinと前記スプール位置xとの関係を示す任意の関数、frout(x)は前記ロッド側メータアウト流路の開口面積Aroutと前記スプール位置xとの関係を示す任意の関数、fpR(P-P)は、前記リリーフ弁開口面積ApRと差圧(P-P)すなわち前記ポンプ圧と前記タンク圧との差との関係を示す任意の関数である。 Here, x v is the spool position is the position of the spool in the directional flow control valve 14, C is contraction coefficient, [rho is the density of the hydraulic fluid, A hin is a the flow path forming said directional flow control valve 14 Opening area of the head side meter-in flow passage for allowing hydraulic oil to flow toward the head side chamber 161, where A hout is a flow passage formed by the directional flow control valve 14, and the head side chamber The opening area of the head-side meter-out flow passage which allows the hydraulic fluid discharged from 161 to flow into the tank, and A rin is the flow passage formed by the directional flow control valve 14 and the hydraulic fluid is in the rod side chamber An opening area of the rod-side meter-in flow passage which allows the flow toward 162, Arout is a flow passage formed by the directional flow control valve 14 and hydraulic oil discharged from the head side chamber 161 flows into the tank of The opening area of the head-side meter-out flow passage, A pR is the opening area of the relief valve 20, and f hin (x v ) is the opening area A hin of the head-side meter-in flow passage and the spool position An arbitrary function showing a relation with x v , f hout (x v ) is an arbitrary function showing a relation between an opening area A hout of the head side meter-out flow path and the spool position x v , f rin ( x v ) is an arbitrary function showing the relationship between the opening area A rin of the rod side meter-in flow path and the spool position x v, and frout (x v ) is the opening area Arout of the rod side meter out flow path any function indicating the relationship between the spool position x v, f pR (P p -P t) , the relief valve opening area a pR and the differential pressure (P p -P t) that the tank pressure and the pump pressure Is an arbitrary function indicating the relationship between the difference.
 前記油圧システム10の動特性を示す方程式が設定された後、ステップS11において、油圧システム10の複数の状態量と推定対象パラメータとを含む状態ベクトルの当該状態量及び当該推定対象パラメータが選定される。 After the equation indicating the dynamic characteristic of the hydraulic system 10 is set, the state quantities of the state vector including the plurality of state quantities of the hydraulic system 10 and the estimation target parameter and the estimation target parameter are selected in step S11. .
 前記油圧システム10の複数の状態量には、前記圧力P、前記圧力P、前記圧力P、前記スプール位置x及び当該スプール位置xの時間微分値であるスプール速度x (1)が選定される。便宜上、それぞれの式においては文字の上に付されるドットの数によって時間微分の階数が示され、明細書中では文字の右肩に付されるカッコ付数字によって時間微分の階数が示される。また、前述のとおり、推定対象パラメータには体積弾性率Kが選定される。このような状態量及び推定対象パラメータの選定により設定される、前記油圧システム10の状態ベクトルxは、以下のように表される。 Wherein the plurality of state quantities of the hydraulic system 10, the pressure P p, the pressure P h, the pressure P r, the spool speed x c (1 is the time differential value of the spool position x c and the spool position x c ) is selected. For convenience, the rank of the time derivative is indicated by the number of dots placed above the letter in each equation, and the rank of the time derivative is indicated by the parenthesized numbers attached to the right shoulder of the letter throughout the specification. Further, as described above, the bulk elastic modulus K is selected as the estimation target parameter. The state vector x of the hydraulic system 10, which is set by selecting such state quantities and estimation target parameters, is expressed as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このように前記油圧システム10の状態ベクトルxが設定された後、ステップS12において、前記状態ベクトルxを用いて、前記油圧システム10の状態方程式と観測方程式が設定される。 Thus, after the state vector x of the hydraulic system 10 is set, in step S12, the state equation and the observation equation of the hydraulic system 10 are set using the state vector x.
 前記油圧システム10の状態方程式は、非線形であり、以下のように表される。 The equation of state of the hydraulic system 10 is non-linear and is expressed as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 つまり、油圧システム10の状態方程式は、1階の微分方程式の形で表される。 That is, the state equation of the hydraulic system 10 is expressed in the form of a first-order differential equation.
 なお、上記状態方程式におけるv∈R6×1は、平均ベクトルが0∈R6×1であり、分散共分散行列がQ∈R6×6である白色雑音ベクトルを表す。つまり、上記状態方程式は、雑音項を含む。 Note that vεR 6 × 1 in the above equation of state represents a white noise vector whose mean vector is 0εR 6 × 1 and whose variance-covariance matrix is QεR 6 × 6 . That is, the above equation of state includes a noise term.
 ここで、前記油圧システム10の状態量のうちの前記圧力P、前記圧力P、前記圧力P及び前記スプール位置xが圧力センサや位置センサにより観測可能であるとする。このとき、油圧システム10の観測方程式は、以下のように表される。 Here, it is assumed that the pressure P p , the pressure P h , the pressure P r and the spool position x c among the state quantities of the hydraulic system 10 can be observed by a pressure sensor or a position sensor. At this time, the observation equation of the hydraulic system 10 is expressed as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、上記観測方程式におけるw∈R4×4は、平均ベクトルが0∈R4×4であり、分散共分散行列がR∈R4×4である白色雑音ベクトルを表す。 Note that w 方程式 R 4 × 4 in the above observation equation represents a white noise vector whose mean vector is 0∈R 4 × 4 and whose variance-covariance matrix is R∈R 4 × 4 .
 前記油圧システム10の状態方程式と観測方程式が設定された後、ステップS13において、ベイズ推定に基づく状態推定手法としてのUnscentedカルマンフィルタ(つまり、非線形の状態推定手法)を状態方程式に適用することにより、前記状態ベクトルxを構成する各要素の値が推定される。これにより、前記状態ベクトルxに含まれる推定対象パラメータである作動油の体積弾性率Kの値が推定される。 After the state equation and the observation equation of the hydraulic system 10 are set, the unscented Kalman filter (that is, a nonlinear state estimation method) as a state estimation method based on Bayesian estimation is applied to the state equation in step S13. The value of each element constituting the state vector x is estimated. Thereby, the value of the bulk elastic modulus K of the hydraulic oil which is the estimation target parameter included in the state vector x is estimated.
 [第1の実施の形態での推定に用いる条件]
 以下、本実施の形態での推定に用いる条件及び当該条件を用いて推定した結果について説明する。
[Conditions used for estimation in the first embodiment]
Hereinafter, conditions used for estimation in the present embodiment and results of estimation using the conditions will be described.
 次の表1は本実施の形態で用いられる物理定数を示す。 The following Table 1 shows physical constants used in the present embodiment.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図3は、本実施の形態で用いられる関数fhin(x)、fhout(x)、frin(x)及びfrout(x)とスプール位置xとの関係を示す。関数fhin(x)及びfrout(x)は、それぞれ、図3において実線で示されるように、スプール位置xvが負である場合はゼロ(すなわち開口面積がゼロ)であり、スプール位置xが正である場合は、スプール位置xが大きくなるに従って大きくなる(すなわち開口面積が大きくなる。)。関数frin(x)とfhout(x)は、それぞれ、図3において破線で示されるように、スプール位置xが負である場合は、スプール位置xの絶対値が小さくなるに従って小さくなり(すなわち開口面積が小さくなり)、スプール位置xvが正である場合はゼロ(すなわち開口面積がゼロ)である。油圧システム10には、その入力として、方向流量制御弁14のスプール位置xが図4に示すように与えられる。 FIG. 3 shows the relationship between the functions f hin (x v ), f hout (x v ), f rin (x v ) and f rout (x v ) used in the present embodiment and the spool position x v . The functions f hin (x v ) and f rout (x v ) are respectively zero (ie, the opening area is zero) when the spool position xv is negative, as shown by the solid line in FIG. When x v is positive, it increases as the spool position x v increases (ie, the opening area increases). The functions f rin (x v ) and f hout (x v ), respectively, as shown by the broken line in FIG. 3, decrease as the absolute value of the spool position x v decreases when the spool position x v is negative. Smaller (i.e. smaller opening area) and zero (i.e. zero opening area) if the spool position xv is positive. The hydraulic system 10, as its input, the spool position x v of directional flow control valve 14 is provided as shown in FIG.
 作動油の体積弾性率Kの時間変化fは、ゼロであってもよいし、正の値(例えば50)であってもよい。作動油の体積弾性率Kの時間変化fがゼロである場合、作動油の体積弾性率Kが定数であると仮定した推定が行われる。一方、作動油の体積弾性率Kの時間変化fが正の値である場合、作動油の体積弾性率Kは変動パラメータとなり、モデル化誤差を模擬することができる。なお、本実施の形態では、作動油の体積弾性率Kの時間変化fが50である。 The time change f K of the bulk modulus K of the hydraulic fluid may be zero or may be a positive value (for example, 50). If the temporal change f K of the bulk modulus K of the hydraulic fluid is zero, an estimation is performed on the assumption that the bulk modulus K of the hydraulic fluid is a constant. On the other hand, if the time variation f K of the bulk modulus K of the hydraulic fluid is a positive value, bulk modulus K of the hydraulic oil becomes variable parameter, it is possible to simulate the modeling error. In the present embodiment, the time change f K of the bulk elastic modulus K of the hydraulic oil is 50.
 このような条件の下で、作動油の体積弾性率Kの値が推定されることにより、図5~図10に示すような結果が得られた。 Under such conditions, the value of the bulk modulus K of the hydraulic oil was estimated, and the results shown in FIGS. 5 to 10 were obtained.
 図5に示すように、推定を開始してから0.1秒以内に、作動油の体積弾性率Kの推定値が初期値(500MPa)から真値(1500MPa)付近まで変化している。このことは、作動油の体積弾性率K及びシリンダ速度が直接計測されていないにも関わらず、これらの数値を推定できていることを示す。 As shown in FIG. 5, the estimated value of the volume elastic modulus K of the hydraulic oil changes from the initial value (500 MPa) to near the true value (1500 MPa) within 0.1 second after the estimation is started. This indicates that these values can be estimated even though the bulk modulus K of the hydraulic fluid and the cylinder speed are not directly measured.
 また、図5は、推定モデルでは考慮されていない、太い実線で示される真値の時間変化に推定値が追従できていることも示している。このことは、状態方程式にモデル化誤差が含まれていても、雑音ベクトルvの分散共分散行列Qを適切に設定することで実用的な推定が実現されることを示す。 Moreover, FIG. 5 also shows that the estimated value can follow the time change of the true value shown by the thick solid line, which is not considered in the estimated model. This indicates that a practical estimation can be realized by appropriately setting the variance-covariance matrix Q of the noise vector v even if the state equation contains a modeling error.
 また、本実施の形態では、推定値の標準偏差を指標として、推定の信頼度を評価することができる。図5に示される推定値の標準偏差は、油流の状態に応じて時々刻々変化しており、推定誤差を考慮に入れた制御器を設計する際の定量的な指標として利用できる。 Further, in the present embodiment, the reliability of the estimation can be evaluated by using the standard deviation of the estimated value as an index. The standard deviations of the estimated values shown in FIG. 5 change from moment to moment according to the state of the oil flow, and can be used as a quantitative index when designing a controller taking into account the estimation error.
 また、図6~図10に示すように、雑音ベクトルwの分散共分散行列Rを適切に設定することにより、作動油の体積弾性率Kの値の推定のみならず、雑音の入った測定値から状態ベクトルxの真値も推定することが可能である。 Further, as shown in FIG. 6 to FIG. 10, by setting the variance-covariance matrix R of the noise vector w appropriately, not only estimation of the value of the bulk elastic modulus K of the hydraulic oil but also the measurement value containing noise It is possible to estimate the true value of the state vector x from.
 [第1の実施の形態の応用例]
 第1の実施の形態では、ベイズ推定に基づいた状態推定手法として、Unscentedカルマンフィルタを用いているが、例えば、線形カルマンフィルタや拡張カルマンフィルタ、粒子フィルタ、アンサンブルカルマンフィルタ等を用いてもよい。なお、線形カルマンフィルタを用いる場合には、状態方程式は線形でなければならないが、例えば、動作範囲が限られた油圧システムであれば、その範囲内で非線形な状態方程式を線形な状態方程式に近似することにより、線形カルマンフィルタを適用することができる。また、限定的な仮定、例えば、作動油の流れが層流であるとの仮定や、油圧シリンダに代えて油圧モータを採用するという仮定、の下では油圧システムの状態方程式を線形に表すことができる。
[Application Example of First Embodiment]
In the first embodiment, an Unscented Kalman filter is used as a state estimation method based on Bayesian estimation. However, for example, a linear Kalman filter, an extended Kalman filter, a particle filter, an ensemble Kalman filter, or the like may be used. In the case of using a linear Kalman filter, the state equation must be linear. For example, in the case of a hydraulic system having a limited operating range, a nonlinear state equation is approximated to a linear state equation within that range. Thus, a linear Kalman filter can be applied. In addition, under a limited assumption, for example, assuming that the flow of hydraulic oil is laminar flow, or assuming that a hydraulic motor is used instead of a hydraulic cylinder, it is possible to linearly represent a state equation of a hydraulic system it can.
 推定対象パラメータが動的に変化する場合、当該推定対象パラメータに関する既知の特性を状態方程式に反映させてもよい。例えば、作動油の体積弾性率Kは、等温条件において、圧力に比例するので、これを状態方程式に反映させてもよい。 When the estimation target parameter dynamically changes, known characteristics of the estimation target parameter may be reflected in the state equation. For example, the bulk modulus K of hydraulic fluid is proportional to the pressure under isothermal conditions, so this may be reflected in the equation of state.
 状態方程式を第1原理モデリングではなく、ブラックボックスモデリングで導出し、その係数を推定するようにしてもよい。 The equation of state may be derived not by first principle modeling but by black box modeling, and the coefficients thereof may be estimated.
 第1の実施の形態による油圧システムのパラメータ推定方法によって得られる推定値は、油圧システムの制御に利用されてもよいし、油圧システムのオペレータへ提示されることにより、オペレータによる油圧システムの操作の支援及び/又はガイダンスに供されてもよい。 The estimated value obtained by the parameter estimation method of the hydraulic system according to the first embodiment may be used for control of the hydraulic system, or may be used to control the hydraulic system by presenting it to the operator of the hydraulic system. It may be provided for support and / or guidance.
 図11を参照しながら、本発明の第2の実施の形態による油圧システムのパラメータ推定方法について説明する。図11は、第2の実施の形態による油圧システムのパラメータ推定方法を示すフローチャートである。 A parameter estimation method of a hydraulic system according to a second embodiment of the present invention will be described with reference to FIG. FIG. 11 is a flowchart showing a method of estimating a parameter of a hydraulic system according to the second embodiment.
 第2の実施の形態による油圧システムのパラメータ推定方法は、第1の実施の形態による油圧システムのパラメータ推定方法で用いられているベイズ推定に基づく状態推定手法に代えて逐次推定手法を用いている点、及び、状態ベクトルが推定対象パラメータのみを含む場合もあり得る点において、当該第1の実施の形態に係る方法と異なる。 The parameter estimation method of the hydraulic system according to the second embodiment uses the successive estimation method instead of the state estimation method based on Bayesian estimation used in the parameter estimation method of the hydraulic system according to the first embodiment. It differs from the method according to the first embodiment in that the point and the state vector may include only the estimation target parameter.
 第2の実施の形態による油圧システムのパラメータ推定方法は、油圧システムの動特性を示す第1方程式を設定する工程(ステップS20)と、推定対象パラメータを含む状態ベクトルを用いた第2方程式を第1方程式から導出する工程(ステップS21)と、逐次推定手法を第2方程式に適用することにより、前記状態ベクトルを構成するそれぞれの要素の値を推定し、これにより、当該状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程(ステップS22)と、を備える。 The parameter estimation method for a hydraulic system according to the second embodiment comprises the steps of setting a first equation indicating the dynamic characteristic of the hydraulic system (step S20), and a second equation using a state vector including a parameter to be estimated. The step of deriving from one equation (step S21) and the sequential estimation method are applied to the second equation to estimate the values of the respective elements constituting the state vector, and thereby the values contained in the state vector And S (step S22) of estimating the value of the estimation target parameter.
 このようなパラメータ推定方法は、例えば、制御CPUやシミュレータによって実行される。制御CPUは、例えば、実機システムを制御する。 Such a parameter estimation method is executed by, for example, a control CPU or a simulator. The control CPU controls, for example, a real machine system.
 ここで、ステップS20の工程は、第1の実施の形態におけるステップS10の工程と同じであるから、その詳細な説明は省略する。ステップS21及びステップS22の工程の詳細については、後述する。 Here, since the process of step S20 is the same as the process of step S10 in the first embodiment, the detailed description thereof is omitted. Details of steps S21 and S22 will be described later.
 第2の実施の形態による油圧システムのパラメータ推定方法は、第1の実施の形態による油圧システムのパラメータ推定方法と同様に、例えば、図2に示す油圧システム10の作動油の体積弾性率Kの値を推定するために当該油圧システム10に適用される。この第2の実施の形態による油圧システムのパラメータ推定方法が適用される油圧システムも、図2に示す油圧システム10に限定されない。また、第2の実施の形態による油圧システムのパラメータ推定方法によって推定される推定対象パラメータも、前記油圧システム10の作動油の体積弾性率Kに限定されない。 The parameter estimation method of the hydraulic system according to the second embodiment is similar to the parameter estimation method of the hydraulic system according to the first embodiment, for example, in the volume modulus K of the hydraulic oil of the hydraulic system 10 shown in FIG. It is applied to the hydraulic system 10 in order to estimate the value. The hydraulic system to which the parameter estimation method of the hydraulic system according to the second embodiment is applied is not limited to the hydraulic system 10 shown in FIG. Moreover, the estimation object parameter estimated by the parameter estimation method of the hydraulic system according to the second embodiment is not limited to the bulk modulus K of the hydraulic oil of the hydraulic system 10.
 前記逐次推定手法は、各タイムステップでの推定値がその前のタイムステップでの推定値の関数として導出できるものであれば、特に限定されない。逐次推定手法は、逐次最小二乗法やカルマンフィルタを含む。逐次推定手法を適用することにより、計算コストを少なくすることができる。 The successive estimation method is not particularly limited as long as the estimated value at each time step can be derived as a function of the estimated value at the previous time step. The successive estimation method includes a successive least squares method and a Kalman filter. The computational cost can be reduced by applying the successive estimation method.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2は、本実施の形態にて採用される逐次推定手法と推定対象パラメータとの組み合わせを示す。例えば、(1)の組み合わせに係る態様は、逐次最小二乗法によって作動油の体積弾性率Kの値を推定する場合を示す。 Table 2 shows a combination of the sequential estimation method adopted in the present embodiment and the estimation target parameter. For example, the aspect which concerns on the combination of (1) shows the case where the value of the volume modulus K of hydraulic fluid is estimated by the successive least squares method.
 以下、表2に示す(1)~(8)の組み合わせに係る態様について説明する。なお、表2における空欄は、他の組み合わせに係る態様にて説明する逐次推定手法を適用することで実施できるため、その詳細な説明を省略していることを示しているだけであり、実施が不可能であることを意味しているのではない。例えば、(5)の組み合わせに係る態様にて説明する周波数フィルタ付の逐次最小二乗法を適用しても、作動油の体積弾性率Kの値を推定することができる。 Hereinafter, an aspect according to the combination of (1) to (8) shown in Table 2 will be described. In addition, since the blank in Table 2 can be implemented by applying the sequential estimation method demonstrated in the aspect which concerns on the other combination, it has only shown that the detailed description is abbreviate | omitted, and implementation It does not mean that it is impossible. For example, even if applying the successive least squares method with a frequency filter described in the aspect according to the combination of (5), it is possible to estimate the value of the bulk modulus K of the hydraulic oil.
 また、以下では、表2に示す(1)~(8)の組み合わせに係る態様の推定結果についても説明する。なお、推定に用いた条件は、第1の実施の形態での条件、つまり、表1、図3及び図4に示すものと同じであるから、その詳細な説明は省略する。 In addition, in the following, estimation results of aspects according to the combination of (1) to (8) shown in Table 2 will be described. The conditions used for estimation are the same as the conditions in the first embodiment, that is, those shown in Table 1 and FIGS. 3 and 4, and thus detailed description thereof will be omitted.
 (1)の組み合わせに係る態様について
 先ず、逐次最小二乗法によって作動油の体積弾性率Kの値を推定する場合について説明する。
About the aspect which concerns on the combination of (1) First, the case where the value of the volume elastic modulus K of hydraulic fluid is estimated by a successive least squares method is demonstrated.
 この場合、ステップS21において、油圧システム10の動特性を表す方程式のうち、圧力P,P及びPを微分したものについての方程式を推定対象パラメータとしての作動油の体積弾性率Kに対して線形な形で離散化する。 In this case, of the equations representing the dynamic characteristics of the hydraulic system 10 in step S21, the equations for the derivatives of the pressures P p , P h and P r are compared to the bulk modulus K of the hydraulic oil as the estimation target parameter Discretize in a linear fashion.
 先ず、P、P及びPを微分したものについての方程式の右辺を、Kとそれ以外の項a、a、aの積として陽に表すと、以下のようになる。 First, the right side of the equation for the derivative of P p , P h and P r is explicitly expressed as the product of K and the other terms a p , a h and a r as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 これらの式の左辺、つまり、P、P及びPを微分したものを時間区切りΔtで差分近似すると、以下のようになる。 When the left side of these expressions, that is, the derivatives of P p , P h and P r are subjected to difference approximation with time division Δt, the following is obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、kは時間区切りΔtで離散化されたタイムステップを表す。K以外のパラメータは、観測可能であるとする。 Here, k represents a time step discretized by the time interval Δt. Parameters other than K are assumed to be observable.
 各タイムステップnの時点での上記式の両辺の二乗誤差の総和は、以下のようになる。 The sum of squared errors on both sides of the above equation at each time step n is as follows.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このような二乗誤差の総和を最小化するK(n)が逐次最小二乗法によって導出される。これにより、ステップS22が実行される。上記式において、計算開始タイムステップaは、油圧システム10の特性に応じて調整されるパラメータである。 K (n) which minimizes such a sum of squared errors is derived by successive least squares method. Thereby, step S22 is performed. In the above equation, the calculation start time step a is a parameter adjusted in accordance with the characteristics of the hydraulic system 10.
 図12は、作動油の体積弾性率Kの値の推定結果を示すグラフである。図12は、時間が経過するに従って、前記体積弾性率Kの推定値が真値に近づいており、推定の精度が向上していることを示している。なお、推定値が真値に一致していないのは、Pp、Ph及びPrを微分したものを1次のオイラー法で差分近似したことで生じる近似誤差が原因である。 FIG. 12 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid. FIG. 12 shows that, as time passes, the estimated value of the bulk modulus K approaches the true value, and the accuracy of the estimation is improved. The reason why the estimated value does not coincide with the true value is due to an approximation error caused by differential approximation of the derivatives of Pp, Ph and Pr by the first-order Euler method.
 (2)の組み合わせに係る態様について
 続いて、逐次最小二乗法によって作動油の体積弾性率K及び縮流係数Cの値を推定する場合について説明する。
About the aspect which concerns on the combination of (2) Then, the case where the value of the volume modulus K and hydraulic contraction coefficient C of hydraulic fluid is estimated by a successive least squares method is demonstrated.
 この場合、ステップS21において、油圧システム10の動特性を表す方程式のうち、P、P及びPを微分したものについての方程式が推定対象パラメータとしてのK及びKCに対して線形な形で離散化される。 In this case, in the step S21, among the equations representing the dynamic characteristics of the hydraulic system 10, the equations for the derivatives of P p , P h and P r are linear with respect to K and K C as estimation target parameters It is discretized.
 先ず、P、P及びPを微分したものについての方程式の右辺のうち、Kの項とKCの項とを陽に表すと、以下のようになる。 First, among the right sides of the equation for P p , P h and P r differentiated, the terms K and KC are expressed explicitly as follows.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 これらの式の左辺、つまり、P、P及びPを微分したものを時間区切りΔtで差分近似すると、以下のようになる。 When the left side of these expressions, that is, the derivatives of P p , P h and P r are subjected to difference approximation with time division Δt, the following is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、kは時間区切りΔtで離散化されたタイムステップを表す。 Here, k represents a time step discretized by the time interval Δt.
 左辺のベクトルをyLS(k)、右辺のベクトルをxLS、行列をA(k)とすると、上記式は、以下のようになる。 Assuming that the vector on the left side is y LS (k), the vector on the right side is x LS , and the matrix is A (k), the above equation is as follows.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、xLS以外のパラメータは観測可能であるとする。 Here, it is assumed that parameters other than x LS are observable.
 各タイムステップnの時点での上記式の両辺の二乗誤差の総和は、以下のようになる。 The sum of squared errors on both sides of the above equation at each time step n is as follows.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 このような二乗誤差の総和を最小化するxLS(n)が逐次最小二乗法によって導出される。その後、KCをKで除することにより、縮流係数Cの値が推定される。これにより、ステップS22が実行される。なお、上記式において、計算開始タイムステップaは、油圧システム10の特性に応じて調整されるパラメータである。 An x LS (n) that minimizes such a sum of squared errors is derived by successive least squares method. Then, the value of contraction coefficient C is estimated by dividing KC by K. Thereby, step S22 is performed. In the above equation, the calculation start time step a is a parameter adjusted in accordance with the characteristics of the hydraulic system 10.
 図13は、作動油の体積弾性率Kの値の推定結果を示すグラフである。図14は、縮流係数Cの値の推定結果を示すグラフである。なお、図13及び図14では、計測値P、P、Pにノイズがない場合の推定結果だけでなく、計測値P、P、Pにノイズがある場合の推定結果も示している。ノイズは、計測値P、P、Pに対して平均がゼロで標準偏差が0.04[MPa]であるホワイトノイズが加わり、且つ、計測値xに対して平均がゼロで標準偏差が10[mm]のホワイトノイズが加わったものである。 FIG. 13 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid. FIG. 14 is a graph showing the estimation result of the value of the contraction coefficient C. In FIG 13 and FIG 14, the measured value P p, P h, not only the estimation result if there is no noise P r, measured value P p, P h, even estimation results when there is noise P r It shows. Noise is added to the measured values P p , P h and P r with white noise having a mean of zero and a standard deviation of 0.04 [MPa], and a standard of zero with respect to the measured value x c and a standard White noise with a deviation of 10 mm is added.
 図13は、作動油の体積弾性率Kの推定値が(1)の場合と同様に時間が経過するに従って、太い破線で示される真値に近づいており、推定の精度が向上していることを示している。図14は、縮流係数Cの値も正しく推定されていることを示している。 In FIG. 13, as the estimated value of the bulk elastic modulus K of the hydraulic oil approaches the true value shown by the thick broken line as time passes similarly to the case of (1), the accuracy of the estimation is improved Is shown. FIG. 14 shows that the value of the contraction coefficient C is also correctly estimated.
 これに対して、計測値にノイズがある場合は、細い破線で示されるようにK及びCの推定結果の精度が低下している。これは、計測値P、P、Pに含まれるノイズが流量Q、Qhin、Qhout、Qrin、Qrout、QpRについての方程式中の非線形関数(平方根)を通ることで当該流量の平均値にずれを生み出すことが主な原因である。推定精度の低下は、油圧システム10の動特性を示す方程式の非線形性が大きくなるほど、また、計測データの真値に対するノイズの大きさが大きくなるほど、顕著になる。このことは、計測値にノイズがある油圧システムに対しては単純に逐次最小二乗法を適用することが好ましくないことを、教示する。 On the other hand, when there is noise in the measurement value, the accuracy of the estimation results of K and C is lowered as shown by the thin broken line. This is because noise contained in the measured values P p , P h and P r passes through a non-linear function (square root) in the equation for the flow rate Q p , Q hin , Q hout , Q rin , Q rout and Q pR The main cause is to create a deviation in the average value of the flow rate. The decrease in the estimation accuracy becomes remarkable as the nonlinearity of the equation indicating the dynamic characteristic of the hydraulic system 10 increases and the magnitude of the noise with respect to the true value of the measurement data increases. This teaches that simply applying the successive least squares method is not preferable for hydraulic systems where the measurements have noise.
 (3)の組み合わせに係る態様について
 続いて、計測値に含まれるノイズによる推定精度の低下を軽減するために、重み付き逐次最小二乗法によって作動油の体積弾性率K及び縮流係数Cの値を推定する場合について説明する。なお、この態様では、ステップS21の工程は、(2)の組み合わせに係る態様と同じである。
About the aspect which concerns on the combination of (3) Then, in order to reduce the fall of the estimation precision by the noise contained in measurement value, the value of the volume modulus K and contraction flow coefficient C of hydraulic fluid by a weighted successive least squares method The case of estimating. In this aspect, the process of step S21 is the same as the aspect according to the combination of (2).
 この態様では、以下の数式13に示す二乗誤差の重み付き総和を最小化するxLS(n)が導出される。その後、KCをKで除することにより、縮流係数Cの値が推定される。これにより、ステップS22が実行される。 In this aspect, x LS (n) is derived that minimizes the weighted sum of the squared errors shown in Equation 13 below. Then, the value of contraction coefficient C is estimated by dividing KC by K. Thereby, step S22 is performed.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、W(k)はタイムステップkにおける重み行列であり、計測値の信頼度等、既知の性質に応じて設定される。計測値の真値に対するノイズの大きさが大きくなるほど、推定の精度が顕著に低下することから、計測値の絶対値が大きいほど、重みを大きくして、その計測値に対する信頼度を上げるような推定が行われる。W(k)は、例えば、以下のように設定される。 Here, W (k) is a weighting matrix at time step k, and is set according to known properties such as the reliability of the measurement value. As the magnitude of the noise with respect to the true value of the measurement value increases, the estimation accuracy decreases significantly. Therefore, as the absolute value of the measurement value increases, the weight is increased to increase the reliability of the measurement value. An estimate is made. W (k) is set, for example, as follows.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、α、α、αは、重みの大きさを調整するためのチューニングパラメータである。なお、W(k)の設定はこれに限定されない。 Here, α p , α h and α r are tuning parameters for adjusting the size of the weight. Note that the setting of W (k) is not limited to this.
 図15は、作動油の体積弾性率Kの値の推定結果を示すグラフである。図16は、縮流係数Cの値の推定結果を示すグラフである。図15及び図16は、図13及び図14に示される場合と比べて、計測値にノイズが含まれているにも関わらず推定精度が向上していることを示している。 FIG. 15 is a graph showing the estimation result of the value of the bulk modulus K of hydraulic fluid. FIG. 16 is a graph showing an estimation result of the value of the contraction coefficient C. FIGS. 15 and 16 show that the estimation accuracy is improved in spite of the fact that the measurement value includes noise, as compared with the cases shown in FIGS. 13 and 14.
 (4)の組み合わせに係る態様について
 続いて、計測値に含まれるノイズによる推定精度の低下を軽減するために、重み付き逐次最小二乗法によって作動油の体積弾性率K及び縮流係数Cの値を推定する場合について説明する。(4)の組み合わせに係る態様では、(3)の組み合わせに係る態様と比べて、重み行列W(k)が異なっている。この重み行列W(k)は、1タイムステップにおける圧力の変化が大きいほど、重みが小さくなるように、設定されている。つまり、圧力の変化が油圧システム10の動作として想定される値よりも大きい場合、その計測値をノイズとみなし、推定への寄与を低減させる。重み行列W(k)は、例えば、以下のように設定される。
About the aspect which concerns on the combination of (4) Then, in order to reduce the fall of the estimation precision by the noise contained in measurement value, the value of the volume elastic modulus K of hydraulic fluid and the contraction flow coefficient C by a weighted successive least squares method The case of estimating. In the aspect which concerns on the combination of (4), weighting matrix W (k) is different compared with the aspect which concerns on the combination of (3). The weight matrix W (k) is set such that the weight decreases as the change in pressure in one time step increases. That is, when the change in pressure is larger than the value assumed for the operation of the hydraulic system 10, the measured value is regarded as noise, and the contribution to the estimation is reduced. The weight matrix W (k) is set, for example, as follows.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ここで、αは、想定変化量を調整するチューニングパラメータである。なお、W(k)の設定はこれに限定されない。 Here, α is a tuning parameter for adjusting the assumed change amount. Note that the setting of W (k) is not limited to this.
 図17は、作動油の体積弾性率Kの値の推定結果を示すグラフである。図18は、縮流係数Cの値の推定結果を示すグラフである。図13及び図14と比べて、計測値にノイズが含まれているにも関わらず、推定精度が向上していることが判る。 FIG. 17 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid. FIG. 18 is a graph showing an estimation result of the value of the contraction coefficient C. It can be seen that the estimation accuracy is improved compared to FIGS. 13 and 14 despite the fact that the measurement value includes noise.
 (5)の組み合わせに係る態様について
 続いて、計測値に含まれるノイズによる推定精度の低下を軽減するために、周波数フィルタと逐次最小二乗法によって作動油の体積弾性率K及び縮流係数Cの値を推定する場合について説明する。
About the aspect which concerns on the combination of (5) Then, in order to reduce the fall of the estimation precision by the noise contained in measurement value, it is a frequency filter and successive least squares method by the volume elastic modulus K and contraction flow coefficient C of hydraulic fluid. The case of estimating the value will be described.
 この場合、圧力計測値の周波数成分のうち、油圧システム10の動作として想定される周波数成分以外の成分がノイズとみなしてフィルタにより除去され、フィルタ処理後の計測値に対して逐次最小二乗法が適用される。使用する周波数フィルタは、以下のような移動平均フィルタである。 In this case, among the frequency components of the pressure measurement value, components other than the frequency component assumed as the operation of the hydraulic system 10 are regarded as noise and removed by the filter, and the least squares method is sequentially applied to the measurement value after the filter processing. Applied. The frequency filter used is a moving average filter as follows.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、Pfilteredはフィルタ適用後の圧力値であり、Pは圧力計測値(この実施の形態ではP,P,P)である。 Here, P filtered is a pressure value after application of a filter, and P is a pressure measurement value (P p , P h , P r in this embodiment).
 なお、使用する周波数フィルタは、移動平均フィルタに限定されず、例えば、線形フィルタ、バターワースフィルタ、チェビシェフフィルタ等であってもよい。 In addition, the frequency filter to be used is not limited to a moving average filter, For example, a linear filter, a Butterworth filter, a Chebyshev filter etc. may be sufficient.
 図19は、作動油の体積弾性率Kの値の推定結果を示すグラフである。図20は、縮流係数Cの値の推定結果を示すグラフである。図19及び図20では、上記式においてN=21とした移動平均フィルタを用いた推定結果を示している。当該推定結果は、図13及び図14と比べて、計測値にノイズが含まれているにも関わらず、推定精度が向上していることを示している。 FIG. 19 is a graph showing the estimation result of the value of bulk modulus K of hydraulic fluid. FIG. 20 is a graph showing the estimation result of the value of the contraction coefficient C. 19 and 20 show estimation results using the moving average filter with N = 21 in the above equation. The estimation result indicates that the estimation accuracy is improved as compared to FIGS. 13 and 14 despite the fact that the measurement value includes noise.
 (6)の組み合わせに係る態様について
 続いて、(6)の組み合わせに係る態様について説明する。この態様は、計測値に含まれるノイズによる推定精度の低下を軽減するために、Unscentedカルマンフィルタによって作動油の体積弾性率Kの値を推定する場合である。このUnscentedカルマンフィルタによって作動油の体積弾性率Kの値を推定する手法は、第1の実施の形態で説明したものと同様であるから、その詳細な説明は省略する。
About the aspect which concerns on the combination of (6) Then, the aspect which concerns on the combination of (6) is demonstrated. This aspect is a case where the value of the bulk elastic modulus K of the hydraulic fluid is estimated by the Unscented Kalman filter in order to reduce the decrease in estimation accuracy due to the noise contained in the measurement value. The method of estimating the value of the bulk elastic modulus K of the hydraulic oil by this Unscented Kalman filter is the same as that described in the first embodiment, and thus the detailed description thereof is omitted.
 この手法によれば、油圧システム10の状態量及び推定対象パラメータ(作動油の体積弾性率K)の値を同時に推定することができるので、油圧システム10の状態量の全てを計測する必要がなくなる。また、ノイズの大きさ等、既知の特性を考慮した推定を行うので、推定精度に優れる。 According to this method, it is possible to simultaneously estimate the state quantity of the hydraulic system 10 and the value of the estimation target parameter (volume elastic modulus K of the hydraulic fluid), so that it is not necessary to measure all the state quantities of the hydraulic system 10 . In addition, since estimation is performed in consideration of known characteristics such as the magnitude of noise, the estimation accuracy is excellent.
 (7)の組み合わせに係る態様について
 続いて、(7)の組み合わせに係る態様について説明する。この態様は、逐次最小二乗法に基づく作動油の体積弾性率Kの圧力依存性を推定するものである。
About the aspect which concerns on the combination of (7) Then, the aspect which concerns on the combination of (7) is demonstrated. This aspect estimates the pressure dependency of the bulk modulus K of hydraulic oil based on the successive least squares method.
 作動油の体積弾性率Kは、作動油の圧力に応じて変化することが知られている。例えば、等温且つ低圧領域では、作動油の体積弾性率Kは、以下のように、圧力に比例する関数として近似することができる。 It is known that the bulk modulus K of hydraulic fluid changes in accordance with the pressure of the hydraulic fluid. For example, in the isothermal and low pressure region, the bulk modulus K of hydraulic fluid can be approximated as a function proportional to pressure as follows.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 ここで、Kは大気圧における体積弾性率であり、Kは比例係数であり、Pはゲージ圧(圧力計測値)である。K及びKpは作動油の温度や作動油の気泡含有率等、動的に変化するパラメータに依存する。したがって、逐次推定手法によって推定される。 Here, K 0 is a bulk modulus at atmospheric pressure, K p is a proportional coefficient, and P is a gauge pressure (pressure measurement value). K 0 and K p depend on dynamically changing parameters such as temperature of hydraulic fluid and bubble content of hydraulic fluid. Therefore, it is estimated by the successive estimation method.
 ステップS21において、油圧システム10の動特性を表す方程式のうち、圧力P、P及びPを微分したものについての方程式が推定対象パラメータとしてのK及びKpに対して線形な形で離散化される。 In step S21, among the equations representing the dynamic characteristics of the hydraulic system 10, the equations for derivatives of the pressures P p , P h and P r are discretely linear with respect to K 0 and K p as estimation target parameters Be
 先ず、油圧システム10の動特性を表す方程式のうち、P、P及びPを微分したものについての方程式に対して、上記式を代入し、Kの項とKの項を陽に示すと、以下のようになる。 First, among the equations representing the dynamic characteristics of the hydraulic system 10, the above equations are substituted for the equations for the derivatives of P p , P h and P r , and the terms of K 0 and K p are If it shows, it becomes as follows.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 左辺、つまり、圧力P、P及びPを微分したものを時間区切りΔtで差分近似すると、以下のようになる。 The left side, that is, the differentials of the pressures P p , P h and P r are subjected to time difference Δt and the difference approximation is as follows.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 ここで、kは時間区切りΔtで離散化されたタイムステップを表す。 Here, k represents a time step discretized by the time interval Δt.
 左辺のベクトルをyLS(k)、右辺のベクトルをxLS、行列をA(k)とすると、上記式は、以下のようになる。 Assuming that the vector on the left side is y LS (k), the vector on the right side is x LS , and the matrix is A (k), the above equation is as follows.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 ここで、xLS以外のパラメータは観測可能であるとする。 Here, it is assumed that parameters other than x LS are observable.
 各タイムステップnの時点での上記式の両辺の二乗誤差の総和は、以下のようになる。 The sum of squared errors on both sides of the above equation at each time step n is as follows.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 このような二乗誤差の総和を最小化するxLS(n)が逐次最小二乗法によって導出される。これにより、ステップS22が実行される。上記式において、計算開始タイムステップaは、油圧システム10の特性に応じて調整されるパラメータである。 An x LS (n) that minimizes such a sum of squared errors is derived by successive least squares method. Thereby, step S22 is performed. In the above equation, the calculation start time step a is a parameter adjusted in accordance with the characteristics of the hydraulic system 10.
 図21は、大気圧における体積弾性率Kの値の推定結果を示すグラフである。図22は、比例係数Kpの値の推定結果を示すグラフである。図21及び図22で、圧力計測値P、P、Pにノイズがない場合の推定結果だけでなく、圧力計測値P、P、Pにノイズがある場合の推定結果も示している。後者の場合は、圧力計測値P、P、Pに対して平均がゼロで標準偏差が0.02[MPa]であるホワイトノイズが加わり、且つ、計測値xに対して平均がゼロで標準偏差が10[mm]のホワイトノイズが加わった場合である。 FIG. 21 is a graph showing the estimation result of the value of bulk modulus K 0 at atmospheric pressure. FIG. 22 is a graph showing the estimation result of the value of the proportional coefficient Kp. In FIGS. 21 and 22, the pressure measurement P p, P h, not only the estimation result if there is no noise P r, the pressure measurement P p, P h, even estimation results when there is noise P r It shows. In the latter case, the pressure measurements P p, P h, added white noise average relative P r is the standard deviation at zero is 0.02 [MPa], and that the average relative measurements x c This is the case where white noise with a standard deviation of 10 mm is added at zero.
 図21及び図22は、ノイズがない場合は十分な推定精度が確保されるのに対し、計測値にノイズがある場合は、K及びKの値の推定結果の精度が低下していることを示している。このことは、後者の場合において単純に逐次最小二乗法を適用することが好ましくないことを教示する。 In FIGS. 21 and 22, while sufficient estimation accuracy is ensured when there is no noise, the accuracy of the estimation results of the values of K 0 and K p is reduced when there is noise in the measurement value It is shown that. This teaches that simply applying the successive least squares method in the latter case is not preferred.
 (8)の組み合わせに係る態様について
 続いて、(8)の組み合わせに係る態様について説明する。この態様は、(7)と同様に、作動油の体積弾性率Kの圧力依存性を推定するものであるが、逐次最小二乗法ではなく、Unscentedカルマンフィルタが適用される。
About the aspect which concerns on the combination of (8) Then, the aspect which concerns on the combination of (8) is demonstrated. This aspect, like (7), estimates the pressure dependence of the bulk modulus K of hydraulic oil, but an unscented Kalman filter is applied instead of the successive least squares method.
 先ず、ステップS21において、油圧システム10の状態方程式及び観測方程式が設定される。具体的には、以下のとおりである。 First, in step S21, a state equation and an observation equation of the hydraulic system 10 are set. Specifically, it is as follows.
 油圧システム10の状態量(圧力P、圧力P、圧力P、シリンダ位置x、シリンダ速度x (1)に推定対象パラメータであるK及びKを追加したものが、油圧システム10の状態ベクトルxとして、以下のように設定される。 A hydraulic system 10 is obtained by adding estimated parameters K 0 and K p to the state quantities (pressure P p , pressure P h , pressure P r , cylinder position x c , cylinder speed x c (1)) of the hydraulic system 10 The ten state vectors x are set as follows.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 このとき、油圧システム10の状態方程式は、以下のように表される。 At this time, the state equation of the hydraulic system 10 is expressed as follows.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 つまり、油圧システム10の状態方程式は、1階の微分方程式の形で表される。 That is, the state equation of the hydraulic system 10 is expressed in the form of a first-order differential equation.
 なお、上記状態方程式におけるv∈R7×1は、平均ベクトルが0∈R7×1であり、
分散共分散行列がQ∈R7×7である白色雑音ベクトルを表す。
In the above equation of state, v に お け る R 7 × 1 has an average vector of 0∈R 7 × 1 ,
Represents a white noise vector whose variance covariance matrix is QεR 7 × 7 .
 ここで、Kの時間変化fK0及びKの時間変化fKpは、ゼロとする。 The time variation f Kp time variation f K0 and K p of K 0 will be zero.
 また、圧力センサや位置センサにより、油圧システム10の状態量のうち、圧力P、圧力P、圧力P及びスプール位置xが観測可能であるとする。このとき、油圧システム10の観測方程式は、以下のように表される。 Further, it is assumed that among the state quantities of the hydraulic system 10, the pressure P p , the pressure P h , the pressure P r and the spool position x c can be observed by the pressure sensor or the position sensor. At this time, the observation equation of the hydraulic system 10 is expressed as follows.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 なお、上記観測方程式におけるw∈R4×4は、平均ベクトルが0∈R4×4であり、分散共分散行列がR∈R4×4である白色雑音ベクトルを表す。 Note that w 方程式 R 4 × 4 in the above observation equation represents a white noise vector whose mean vector is 0∈R 4 × 4 and whose variance-covariance matrix is R∈R 4 × 4 .
 油圧システム10の状態方程式と観測方程式が設定された後、ステップS22において、Unscentedカルマンフィルタを状態方程式に適用することにより、前記状態ベクトルxに含まれる、推定油圧システム10の状態量及び推定対象パラメータの値が推定される。 After the state equation and the observation equation of the hydraulic system 10 are set, in step S22, by applying an Unscented Kalman filter to the state equation, the state quantity of the estimated hydraulic system 10 and the estimation target parameters included in the state vector x The value is estimated.
 図23は、大気圧における体積弾性率Kの値の推定結果を示すグラフである。図24は、比例係数Kの値の推定結果を示すグラフである。図23及び図24は、圧力計測値P、P、Pにノイズがない場合の推定結果だけでなく、計測値P、P、Pにノイズがある場合の推定結果も示している。後者の場合は、計測値P、P、Pに対して平均がゼロで標準偏差が0.02[MPa]であるホワイトノイズが加わり、且つ、計測値xに対して平均がゼロで標準偏差が10[mm]のホワイトノイズが加わった場合である。 FIG. 23 is a graph showing the estimation result of the value of bulk modulus K 0 at atmospheric pressure. Figure 24 is a graph showing estimation results of the value of the proportionality factor K p. FIGS. 23 and 24 show not only the estimation result when there is no noise in the pressure measurement values P p , P h and P r but also the estimation result when there is noise in the measurement values P p , P h and P r ing. In the latter case, white noise with an average of zero and a standard deviation of 0.02 [MPa] is added to the measured values P p , P h and P r , and the average is zero with respect to the measured value x c The standard deviation is 10 [mm] when white noise is added.
 図23及び図24は、図21及び図22に示される場合と比べて、推定対象パラメータK、K及びシリンダ速度xが直接計測されていないにも関わらず、推定精度が向上していることを示している。 23 and 24, as compared with the case shown in FIGS. 21 and 22, despite the estimation target parameter K 0, K p and cylinder speed x c is not measured directly, and improves estimation accuracy Show that.
 前記第2の実施の形態は、以下のように変形されることが可能である。 The second embodiment can be modified as follows.
 前記第2の実施の形態は、過去の計測値への依存性を調整するパラメータとして計算開始ステップaを用いるが、忘却係数を用いて指数関数的に過去の計測値の重みを減少させることが行われてもよい。 In the second embodiment, although the calculation start step a is used as a parameter for adjusting the dependency on the past measurement value, the weight of the past measurement value may be reduced exponentially using a forgetting factor. It may be done.
 第2の実施の形態は、測定値の絶対値に応じた重みを設定することを含むが、これに代え、所定の閾値よりも小さい絶対値を有する測定値を推定に用いる測定値から除外することを含んでもよい。 The second embodiment includes setting a weight according to the absolute value of the measurement value, but instead, excludes the measurement value having an absolute value smaller than a predetermined threshold value from the measurement values used for estimation. May be included.
 第2の実施の形態は、作動油の体積弾性率を圧力に関して線形な関数で近似することを含むが、当該体積弾性率は圧力に関して非線形な関数で近似されてもよい。 Although the second embodiment includes approximating the bulk modulus of hydraulic oil as a linear function with respect to pressure, the bulk modulus may be approximated as a non-linear function with respect to pressure.
 第2の実施の形態は、作動油の体積弾性率を圧力の関数としてモデル化することを含むが、当該体積弾性率を任意のパラメータの関数としてモデル化し、その係数を求めること、が行われてもよい。例えば、作動油の体積弾性率が温度の関数として、或いは、温度及び圧力の関数として、モデル化されてもよい。 The second embodiment includes modeling the bulk modulus of hydraulic fluid as a function of pressure, but modeling the bulk modulus as a function of an arbitrary parameter and determining its coefficient is performed. May be For example, the bulk modulus of hydraulic fluid may be modeled as a function of temperature or as a function of temperature and pressure.
 第2の実施の形態で用いられているUnscentedカルマンフィルタに代えて、例えば、線形カルマンフィルタや拡張カルマンフィルタ、粒子フィルタ等が用いられてもよい。線形カルマンフィルタを用いる場合には、状態方程式は線形でなければならないが、例えば、動作範囲が限られた油圧システムであれば、その範囲内で非線形な状態方程式を線形な状態方程式に近似することにより、線形カルマンフィルタを適用することができる。また、限定的な仮定、例えば、作動油の流れが層流であるとの仮定や、油圧シリンダの代わりに油圧モータを採用するという仮定、の下では油圧システムの状態方程式を線形に表すことができる。 For example, a linear Kalman filter, an extended Kalman filter, a particle filter or the like may be used instead of the Unscented Kalman filter used in the second embodiment. When using a linear Kalman filter, the state equation must be linear, but for example, in a hydraulic system with a limited operating range, by approximating a nonlinear state equation within that range to a linear state equation , Linear Kalman filter can be applied. In addition, under a limited assumption, for example, assuming that the flow of hydraulic fluid is laminar flow, or assuming that a hydraulic motor is used instead of a hydraulic cylinder, it is possible to linearly represent the state equation of the hydraulic system it can.
 前記状態方程式が第1原理モデリングではなくブラックボックスモデリングで導出され、その係数が推定されてもよい。 The equation of state may be derived not by first principle modeling but by black box modeling, and its coefficients may be estimated.
 第2の実施の形態による油圧システムのパラメータ推定方法によって得られる推定値は、油圧システムの制御に利用されることも可能であるし、油圧システムのオペレータに提示されてオペレータによる油圧システムの操作の支援及び/又はガイダンスに供されることも可能である。 The estimated value obtained by the parameter estimation method of the hydraulic system according to the second embodiment can also be used for control of the hydraulic system, or can be presented to the operator of the hydraulic system to operate the hydraulic system by the operator. It can also be provided for support and / or guidance.
 以上、本発明の実施の形態について詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施の形態の記載によって、何等、限定的に解釈されるものではない。 As mentioned above, although the embodiment of the present invention has been described in detail, these are merely examples, and the present invention is not construed as being limited in any way by the description of the embodiment described above.
 以上のように、油圧システムの動特性に影響を与える物理量をパラメータとして推定するパラメータ推定方法であって適用範囲が広い方法が提供される。 As described above, a method of estimating a physical quantity that affects the dynamic characteristics of a hydraulic system as a parameter is provided, and a method with a wide range of application is provided.
 提供されるのは、油圧システムの動特性に影響を与える物理量を推定対象パラメータに選定して当該推定対象パラメータの値を推定する油圧システムのパラメータ推定方法である。 What is provided is a parameter estimation method of a hydraulic system in which a physical quantity that affects the dynamic characteristics of the hydraulic system is selected as the estimation target parameter, and the value of the estimation target parameter is estimated.
 第1の態様に係る油圧システムのパラメータ推定方法は、前記油圧システムの状態量と前記推定対象パラメータとを含む状態ベクトルの当該状態量及び当該推定対象パラメータを選定することにより当該状態ベクトルを設定する工程と、設定された前記状態ベクトルを用いて、前記油圧システムの状態方程式を設定する工程と、ベイズ推定に基づく状態推定手法を前記状態方程式に適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程と、を備える。 The parameter estimation method for a hydraulic system according to the first aspect sets the state vector by selecting the state quantity of the state vector including the state quantity of the hydraulic system and the estimation target parameter and the estimation target parameter. The step of setting a state equation of the hydraulic system using the set state vector, and applying the state estimation method based on Bayesian estimation to the state equation, the estimation included in the state vector Estimating the value of the target parameter.
 上記第1の態様による油圧システムのパラメータ推定方法は、ベイズ推定に基づく状態推定手法を適用するので、状態ベクトルに含まれる油圧システムの状態量の全てが観測可能でなくても当該状態ベクトルに含まれる推定対象パラメータの値を推定することがてきる。このことは、当該パラメータ推定方法の適用範囲を広げることを可能にする。 Since the parameter estimation method of the hydraulic system according to the first aspect applies the state estimation method based on Bayesian estimation, even if all the state quantities of the hydraulic system included in the state vector are not observable, the state vector is included in the state vector It is possible to estimate the value of the estimated parameter to be estimated. This makes it possible to extend the application range of the parameter estimation method.
 上記第1の態様による油圧システムのパラメータ推定方法において、好ましくは、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率である。この方法は、油圧システムの動作を停止することなく作動油の体積弾性率を得ることを可能にする。 In the parameter estimation method of the hydraulic system according to the first aspect, preferably, the estimation target parameter is a bulk modulus of hydraulic oil in the hydraulic system. This method makes it possible to obtain the bulk modulus of the hydraulic fluid without stopping the operation of the hydraulic system.
 上記第1の態様による油圧システムのパラメータ推定方法において、前記状態方程式が非線形であってもよい。この場合、前記推定対象パラメータを推定する工程では、好ましくは、前記状態方程式に非線形の状態推定手法を適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値が推定される。この態様では、前記状態方程式が非線形であっても推定対象パラメータの値を推定することができるので、パラメータ推定方法の適用範囲を広げることができる。 In the parameter estimation method for a hydraulic system according to the first aspect, the state equation may be non-linear. In this case, in the step of estimating the estimation target parameter, preferably, the value of the estimation target parameter included in the state vector is estimated by applying a non-linear state estimation method to the state equation. In this aspect, since the value of the estimation target parameter can be estimated even if the state equation is non-linear, the application range of the parameter estimation method can be expanded.
 上記第1の態様による油圧システムのパラメータ推定方法において、好ましくは、前記状態方程式が雑音項を含み、前記推定対象パラメータの値を推定する工程では、前記状態方程式にカルマンフィルタを適用することにより、前記推定対象パラメータの値が推定される。このことは、油圧システムが有する雑音等の影響を考慮して推定対象パラメータの値を推定することを可能にする。 In the parameter estimation method for a hydraulic system according to the first aspect, preferably, the state equation includes a noise term, and in the step of estimating the value of the estimation target parameter, the Kalman filter is applied to the state equation. The value of the estimation target parameter is estimated. This makes it possible to estimate the value of the estimation target parameter in consideration of the influence of noise and the like that the hydraulic system has.
 第2の態様に係る油圧システムのパラメータ推定方法は、前記油圧システムの動特性を示す第1方程式を導出する工程と、前記推定対象パラメータを含む状態ベクトルを用いた第2方程式を前記第1方程式から導出する工程と、逐次推定手法を前記第2方程式に適用することにより前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程と、を含む。 A parameter estimation method for a hydraulic system according to a second aspect includes the steps of: deriving a first equation indicating the dynamic characteristic of the hydraulic system; and second equation using a state vector including the estimation target parameter as the first equation And estimating the value of the estimation target parameter included in the state vector by applying a sequential estimation method to the second equation.
 上記第2の態様による油圧システムのパラメータ推定方法は、逐次推定手法を適用することにより、推定対象パラメータの値を推定する際の計算コストの増加を抑制することを可能にする。これにより、パラメータ推定手法の適用範囲を広げることができる。 The parameter estimation method of the hydraulic system according to the second aspect makes it possible to suppress an increase in calculation cost when estimating the value of the estimation target parameter by applying the successive estimation method. Thereby, the application range of the parameter estimation method can be expanded.
 上記第2の態様による油圧システムのパラメータ推定方法において、好ましくは、前記推定対象パラメータの値を推定する工程では、前記第2方程式に逐次最小二乗法を適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値が推定される。この態様では、あるタイムステップでの推定対象パラメータの推定値をその前のタイムステップでの推定対象パラメータの推定値の関数として逐次的に(少ない計算コストで)導出することができる。 In the parameter estimation method for a hydraulic system according to the second aspect, preferably, in the step of estimating the value of the estimation target parameter, the state vector is included by applying the least squares method to the second equation one by one. The value of the estimation target parameter is estimated. In this aspect, the estimated value of the estimation target parameter at a certain time step can be derived sequentially (with less computational cost) as a function of the estimation value of the estimation target parameter at the previous time step.
 上記第2の態様による油圧システムのパラメータ推定方法は、好ましくは、前記油圧システムの状態量を測定する工程をさらに備え、前記推定対象パラメータの値を推定する工程では、前記状態量の測定値に含まれるノイズに起因する前記推定対象パラメータの推定誤差を小さくするために、前記逐次最小二乗法を前記第2方程式に適用するに際して前記状態量の測定値を補正することが行われる。このように、補正した状態量の測定値を用いて推定対象パラメータの値を推定することにより、推定対象パラメータの推定精度を向上させることができる。 The parameter estimation method for a hydraulic system according to the second aspect preferably further comprises the step of measuring the state quantity of the hydraulic system, and in the step of estimating the value of the estimation target parameter, the measured value of the state quantity In order to reduce an estimation error of the estimation target parameter caused by the included noise, the measurement value of the state quantity is corrected when the successive least squares method is applied to the second equation. As described above, the estimation accuracy of the estimation target parameter can be improved by estimating the value of the estimation target parameter using the corrected measurement value of the state quantity.
 上記第2の態様による油圧システムのパラメータ推定方法において、前記推定対象パラメータの値を推定する工程では、前記状態量の測定値の絶対値が大きいほどその重みを大きくするように、前記状態量の測定値が補正されてもよい。この補正は、状態量の測定値の絶対値の大きさに応じて、状態量の測定値が推定対象パラメータの推定誤差に与える影響を調整することを可能にし、これにより、推定対象パラメータの値の推定精度を向上させることができる。 In the parameter estimation method for a hydraulic system according to the second aspect, in the step of estimating the value of the estimation target parameter, the weight of the state quantity is increased as the absolute value of the measurement value of the state quantity is larger. The measured values may be corrected. This correction makes it possible to adjust the influence of the measurement of the state quantity on the estimation error of the estimation target parameter according to the magnitude of the absolute value of the measurement of the state quantity, whereby the value of the estimation target parameter is obtained. The estimation accuracy of can be improved.
 上記第2の態様による油圧システムのパラメータ推定方法において、前記推定対象パラメータの値を推定する工程では、前記状態量の測定値の変化量が大きいほどその重みを小さくするように、前記状態量の測定値が補正されてもよい。この補正は、状態量の測定値の変化量の大きさに応じて、状態量の測定値が推定対象パラメータの推定誤差に与える影響を調整することを可能にし、これにより、推定対象パラメータの推定精度を向上させることができる。 In the parameter estimation method for a hydraulic system according to the second aspect, in the step of estimating the value of the estimation target parameter, the weight of the state quantity is decreased as the change amount of the measurement value of the state quantity increases. The measured values may be corrected. This correction makes it possible to adjust the influence of the measured value of the state quantity on the estimation error of the estimation target parameter according to the magnitude of the change amount of the measured value of the state quantity, thereby estimating the estimation target parameter Accuracy can be improved.
 上記第2の態様による油圧システムのパラメータ推定方法において、前記推定対象パラメータの値を推定する工程では、前記ノイズをフィルタによって除去することにより、前記状態量の測定値が補正されてもよい。このような状態量の測定値に含まれるノイズのフィルタによる除去は、推定対象パラメータの値の推定精度を向上させることを可能にする。 In the parameter estimation method of the hydraulic system according to the second aspect, in the step of estimating the value of the estimation target parameter, the measured value of the state quantity may be corrected by removing the noise with a filter. The filter removal of the noise contained in the measured value of the state quantity makes it possible to improve the estimation accuracy of the value of the estimation target parameter.
 上記第2の態様による油圧システムのパラメータ推定方法において、好ましくは、前記第2方程式が雑音項を含み、前記推定対象パラメータの値を推定する工程では、前記第2方程式にカルマンフィルタを適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値が推定される。このことは、油圧システムが有する雑音等の影響を考慮して推定対象パラメータの値を推定することを可能にする。 In the parameter estimation method for a hydraulic system according to the second aspect, preferably, the second equation includes a noise term, and in the step of estimating the value of the estimation target parameter, a Kalman filter is applied to the second equation. The value of the estimation target parameter included in the state vector is estimated. This makes it possible to estimate the value of the estimation target parameter in consideration of the influence of noise and the like that the hydraulic system has.
 上記第2の態様による油圧システムのパラメータ推定方法において、好ましくは、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率である。この方法は、油圧システムの動作を停止しなくても作動油の体積弾性率を得ることを可能にする。 In the parameter estimation method of the hydraulic system according to the second aspect, preferably, the estimation target parameter is a bulk modulus of hydraulic oil in the hydraulic system. This method makes it possible to obtain the bulk modulus of the hydraulic fluid without stopping the operation of the hydraulic system.
 上記第2の態様による油圧システムのパラメータ推定方法において、好ましくは、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率と縮流係数である。この方法によれば、作動油の体積弾性率の値だけでなく、縮流係数の値も推定することができる。 In the parameter estimation method of the hydraulic system according to the second aspect, preferably, the estimation target parameter is a bulk modulus and a contraction flow coefficient of hydraulic oil in the hydraulic system. According to this method, it is possible to estimate not only the value of the bulk modulus of the hydraulic oil but also the value of the contraction coefficient.
 上記第2の態様による油圧システムのパラメータ推定方法において、好ましくは、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率の圧力依存性を示すものである。この方法によれば、作動油の体積弾性率が作動油の圧力に依存する度合いを推定することができる。 In the parameter estimation method for a hydraulic system according to the second aspect, preferably, the estimation target parameter indicates the pressure dependency of the bulk modulus of the hydraulic oil in the hydraulic system. According to this method, it is possible to estimate the degree to which the bulk modulus of hydraulic fluid depends on the pressure of hydraulic fluid.

Claims (14)

  1.  油圧システムの動特性に影響を与える物理量を推定対象パラメータに選定して当該推定対象パラメータの値を推定する油圧システムのパラメータ推定方法であって、
     前記油圧システムの状態量と前記推定対象パラメータとを含む状態ベクトルの当該状態量及び当該推定対象パラメータを選定することにより当該状態ベクトルを設定する工程と、
     設定された前記状態ベクトルを用いて、前記油圧システムの状態方程式を設定する工程と、
     ベイズ推定に基づく状態推定手法を前記状態方程式に適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程と、を備える、油圧システムのパラメータ推定方法。
    A parameter estimation method for a hydraulic system, which selects a physical quantity affecting dynamic characteristics of a hydraulic system as an estimation target parameter and estimates a value of the estimation target parameter,
    Setting the state vector by selecting the state amount of the state vector including the state amount of the hydraulic system and the estimation target parameter, and the estimation target parameter;
    Setting a state equation of the hydraulic system using the set state vector;
    Estimating the value of the estimation target parameter included in the state vector by applying a state estimation method based on Bayesian estimation to the state equation.
  2.  請求項1に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率である、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 1, wherein the estimation target parameter is a bulk modulus of hydraulic oil in the hydraulic system.
  3.  請求項1又は2に記載の油圧システムのパラメータ推定方法であって、前記状態方程式が非線形であり、前記推定対象パラメータの値を推定する工程では、前記状態方程式に非線形の状態推定手法を適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値が推定される、油圧システムのパラメータ推定方法。 The parameter estimation method for a hydraulic system according to claim 1 or 2, wherein the state equation is non-linear, and in the step of estimating the value of the estimation target parameter, a non-linear state estimation method is applied to the state equation. The parameter estimation method of a hydraulic system by which the value of the said estimation object parameter contained in the said state vector is estimated.
  4.  請求項1又は2に記載の油圧システムのパラメータ推定方法であって、前記状態方程式が雑音項を含み、前記推定対象パラメータの値を推定する工程では、前記状態方程式にカルマンフィルタを適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値が推定される、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 1 or 2, wherein the state equation includes a noise term, and in the step of estimating the value of the estimation target parameter, a Kalman filter is applied to the state equation. A parameter estimation method of a hydraulic system, wherein a value of the estimation target parameter included in the state vector is estimated.
  5.  油圧システムの動特性に影響を与える物理量を推定対象パラメータに選定して当該推定対象パラメータの値を推定する油圧システムのパラメータ推定方法であって、
     前記油圧システムの動特性を示す第1方程式を導出する工程と、
     前記推定対象パラメータを含む状態ベクトルを用いた第2方程式を前記第1方程式から導出する工程と、
     逐次推定手法を前記第2方程式に適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値を推定する工程と、を備える、油圧システムのパラメータ推定方法。
    A parameter estimation method for a hydraulic system, which selects a physical quantity affecting dynamic characteristics of a hydraulic system as an estimation target parameter and estimates a value of the estimation target parameter,
    Deriving a first equation indicative of the dynamic characteristics of the hydraulic system;
    Deriving a second equation using a state vector including the estimation target parameter from the first equation;
    Estimating a value of the estimation target parameter included in the state vector by applying a successive estimation method to the second equation.
  6.  請求項5に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータの値を推定する工程では、前記第2方程式に逐次最小二乗法を適用することにより、前記推定対象パラメータの値が推定される、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 5, wherein in the step of estimating the value of the estimation target parameter, the value of the estimation target parameter is obtained by applying the least squares method to the second equation one by one. Method of estimating parameters of hydraulic system estimated.
  7.  請求項6に記載の油圧システムのパラメータ推定方法であって、前記油圧システムの状態量を測定する工程をさらに備え、前記推定対象パラメータの値を推定する工程では、前記状態量の測定値に含まれるノイズに起因する前記推定対象パラメータの推定誤差を小さくするために、前記逐次最小二乗法を前記状態方程式に適用するに際して前記状態量の測定値が補正される、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 6, further comprising the step of measuring a state amount of the hydraulic system, wherein the step of estimating the value of the estimation target parameter includes the measured value of the state amount. A parameter estimation method of a hydraulic system, wherein the measured value of the state quantity is corrected when applying the successive least squares method to the state equation in order to reduce an estimation error of the estimation target parameter caused by noise.
  8.  請求項7に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータの値を推定する工程では、前記状態量の測定値の絶対値が大きいほどその重みを大きくするように、前記状態量の測定値が補正される、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 7, wherein in the step of estimating the value of the estimation target parameter, the state is such that the weight is increased as the absolute value of the measured value of the state quantity is larger. Method of estimating parameters of a hydraulic system, wherein the measurement of quantity is corrected.
  9.  請求項7に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータの値を推定する工程では、前記状態量の測定値の変化量が大きいほどその重みを小さくするように、前記状態量の測定値が補正される、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 7, wherein in the step of estimating the value of the estimation target parameter, the state is such that the weight decreases as the amount of change of the measured value of the state amount increases. Method of estimating parameters of a hydraulic system, wherein the measurement of quantity is corrected.
  10.  請求項7に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータの値を推定する工程では、前記ノイズをフィルタによって除去することにより、前記状態量の測定値が補正される、油圧システムのパラメータ推定方法。 The hydraulic system parameter estimation method according to claim 7, wherein in the step of estimating the value of the estimation target parameter, the measured value of the state quantity is corrected by removing the noise with a filter. Parameter estimation method of the system.
  11.  請求項5に記載の油圧システムのパラメータ推定方法であって、前記第2方程式が雑音項を含み、前記推定対象パラメータの値を推定する工程では、前記第2方程式にカルマンフィルタを適用することにより、前記状態ベクトルに含まれる前記推定対象パラメータの値が推定される、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to claim 5, wherein the second equation includes a noise term, and in the step of estimating the value of the estimation target parameter, a Kalman filter is applied to the second equation. A parameter estimation method of a hydraulic system, wherein a value of the estimation target parameter included in the state vector is estimated.
  12.  請求項5~11の何れか1項に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率である、油圧システムのパラメータ推定方法。 The method of estimating a parameter of a hydraulic system according to any one of claims 5 to 11, wherein the estimation target parameter is a bulk modulus of hydraulic oil in the hydraulic system.
  13.  請求項5~11の何れか1項に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率と縮流係数である、油圧システムのパラメータ推定方法。 The parameter estimation method of a hydraulic system according to any one of claims 5 to 11, wherein the estimation target parameter is a bulk modulus and a contraction coefficient of hydraulic oil in the hydraulic system. Estimation method.
  14.  請求項5~11の何れか1項に記載の油圧システムのパラメータ推定方法であって、前記推定対象パラメータは、前記油圧システムにおける作動油の体積弾性率の圧力依存性を示すものである、油圧システムのパラメータ推定方法。 The parameter estimation method for a hydraulic system according to any one of claims 5 to 11, wherein the estimation target parameter indicates the pressure dependency of the bulk modulus of hydraulic fluid in the hydraulic system. Parameter estimation method of the system.
PCT/JP2018/031865 2017-09-22 2018-08-29 Parameter estimation method for hydraulic system WO2019058905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182179A JP6815299B2 (en) 2017-09-22 2017-09-22 Method of estimating parameters of hydraulic system
JP2017-182179 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019058905A1 true WO2019058905A1 (en) 2019-03-28

Family

ID=65810868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031865 WO2019058905A1 (en) 2017-09-22 2018-08-29 Parameter estimation method for hydraulic system

Country Status (2)

Country Link
JP (1) JP6815299B2 (en)
WO (1) WO2019058905A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138936B2 (en) 2018-10-23 2022-09-20 国立大学法人信州大学 A method for creating a model-based lookup table for estimating the control flow rate of a hydraulic system, a model-based lookup table for estimating the control flow rate, and a method for estimating pressure
WO2023223461A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Causal association estimation device, causal association estimation method, and causal association estimation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528662A (en) * 2006-03-02 2009-08-06 エルジー・ケム・リミテッド System and method for determining an estimated battery state vector and an estimated battery parameter vector
US20150171640A1 (en) * 2013-12-18 2015-06-18 Ford Global Technologies, Llc Battery parameter estimation
WO2015186845A1 (en) * 2015-06-29 2015-12-10 株式会社小松製作所 Control system for work machine, and control method for work machine
JP2016089961A (en) * 2014-11-05 2016-05-23 国立大学法人 東京大学 Electrostatic hydraulic actuator and parameter estimation method in electrostatic hydraulic actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034341A (en) * 1999-07-19 2001-02-09 Toyota Motor Corp Device for estimating quantity of state of vehicle and vehicle steering controller using the device
JP2012132713A (en) * 2010-12-20 2012-07-12 Yamaha Corp State estimation device, state estimation method, and state estimation program
EP2799902A1 (en) * 2013-04-30 2014-11-05 Baselabs GmbH Method and apparatus for the tracking of multiple objects
JP6226320B2 (en) * 2013-10-16 2017-11-08 国立大学法人信州大学 Parameter identification method, identification device and identification program for vertical articulated hydraulic manipulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528662A (en) * 2006-03-02 2009-08-06 エルジー・ケム・リミテッド System and method for determining an estimated battery state vector and an estimated battery parameter vector
US20150171640A1 (en) * 2013-12-18 2015-06-18 Ford Global Technologies, Llc Battery parameter estimation
JP2016089961A (en) * 2014-11-05 2016-05-23 国立大学法人 東京大学 Electrostatic hydraulic actuator and parameter estimation method in electrostatic hydraulic actuator
WO2015186845A1 (en) * 2015-06-29 2015-12-10 株式会社小松製作所 Control system for work machine, and control method for work machine

Also Published As

Publication number Publication date
JP6815299B2 (en) 2021-01-20
JP2019057198A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
Hasan et al. Boundary observer design for hyperbolic PDE–ODE cascade systems
CN110928182B (en) Robust self-adaptive repetitive control method of hydraulic servo system based on state estimation
US7124047B2 (en) Mathematical model useful for determining and calibrating output of a linear sensor
Guo et al. Parametric adaptive estimation and backstepping control of electro-hydraulic actuator with decayed memory filter
WO2019058905A1 (en) Parameter estimation method for hydraulic system
EP1779073A1 (en) System and method for calibration of a flow device
EP2985907B1 (en) Motor drive device
JPH07509048A (en) Control device for hydraulic drives or actuators
US10370945B2 (en) Method and apparatus for estimating down-hole process variables of gas lift system
US20160333902A1 (en) Hydraulic cylinder displacement measurement system
CN107703761B (en) Estimation method for viscous characteristic parameter of pneumatic regulating valve
US10852177B2 (en) Calibration apparatus and sensitivity determining module for virtual flow meter and associated methods
EP1406136A1 (en) Estimation of process variables
JP2019039527A (en) Hydraulic system, rubber kneader and control method for hydraulic system
JP7210268B2 (en) Thermal displacement compensation method for machine tool, thermal displacement compensation program, thermal displacement compensation device
JP6372217B2 (en) Method and apparatus for estimating state of molten metal level in continuous casting mold
JP5037443B2 (en) Flow control method
Mahulkar et al. Adaptive fault tolerant control for hydraulic actuators
Bakhshande et al. Robust control approach for a hydraulic differential cylinder system using a proportional-integral-observer-based backstepping control
Liu et al. Investigation of temperature influence on flow mapping of electrohydraulic valves and corresponding application
JPH09128009A (en) Method for detection of state parameter of reactor by using neural network
JP6966062B2 (en) Frequency response analysis algorithm
JP2021189514A (en) Mass flow controller and hunting suppressing method
Xu et al. Effective model based fault detection scheme for rudder servo system
Müller et al. Compensation techniques for iterative rig control in multi-axial durability testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859662

Country of ref document: EP

Kind code of ref document: A1