WO2019058786A1 - 試料支持体 - Google Patents

試料支持体 Download PDF

Info

Publication number
WO2019058786A1
WO2019058786A1 PCT/JP2018/029300 JP2018029300W WO2019058786A1 WO 2019058786 A1 WO2019058786 A1 WO 2019058786A1 JP 2018029300 W JP2018029300 W JP 2018029300W WO 2019058786 A1 WO2019058786 A1 WO 2019058786A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sample
ionized
support
ionization
Prior art date
Application number
PCT/JP2018/029300
Other languages
English (en)
French (fr)
Inventor
孝幸 大村
小谷 政弘
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201880060435.1A priority Critical patent/CN111094964B/zh
Priority to JP2019517999A priority patent/JP6535150B1/ja
Priority to US16/647,426 priority patent/US11658018B2/en
Priority to EP18857458.6A priority patent/EP3686585A4/en
Publication of WO2019058786A1 publication Critical patent/WO2019058786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls

Definitions

  • the present disclosure relates to a sample support.
  • Patent Document 1 a fixing plate provided with a plurality of through holes (on the order of mm) is disposed on a holding plate, a sample is dropped on the holding plate through the through holes, and the sample is irradiated with laser light.
  • Patent Document 2 a sample having a matrix added thereto is dropped on a substrate provided with a plurality of non-through holes (on the order of ⁇ m), and laser light is irradiated to the sample that has penetrated the inside of the non-through holes.
  • a technique for performing ionization of a sample is described.
  • the sample is dropped from above to a plurality of measurement points (recesses) as in the above method
  • continuous measurement of the sample becomes possible.
  • the amount of dropped sample to the recess is too large, the sample overflows from the recess and the so-called unevenness effect (the effect that the energy of the laser light is easily transmitted to the sample by the unevenness structure) is lost.
  • the ionization efficiency of the sample may be reduced. That is, there is a risk that the components in the sample can not be appropriately ionized, or the amount of detected ions decreases. As a result, sufficient signal intensity can not be obtained in the above-mentioned mass spectrometry, and there is a possibility that the component in a sample can not be detected appropriately.
  • this indication aims at providing the sample support which can perform continuous measurement of a sample, controlling a fall of ionization efficiency resulting from the amount of dripping of a sample.
  • the sample support ionizes the substrate such that the substrate, the ionized substrate disposed on the substrate, and the first surface of the ionized substrate facing the substrate and the substrate are separated from each other And a support for supporting the substrate.
  • the ionization substrate has a plurality of measurement areas for dropping a sample on a second surface opposite to the first surface. At least each measurement region of the ionization substrate is formed with a plurality of through holes that open to the first surface and the second surface. A conductive layer is provided on at least the peripheral edge of the through hole on the second surface.
  • the support portion is a first support portion provided between the peripheral portion of each measurement area on the first surface and the substrate so as to separate a plurality of measurement areas as viewed from the direction in which the substrate and the ionization substrate face each other. Have.
  • the support forms a gap between the first surface of the ionized substrate and the substrate.
  • the excess of the sample is transferred between the first surface of the ionized substrate and the substrate via the through holes provided in the ionized substrate. Can be missed in the gap between. For this reason, it is suppressed that the excess of a sample overflows on the 2nd surface, and the fall of the ionization efficiency at the time of ionizing the component of a sample by irradiation of the laser beam with respect to the 2nd surface is suppressed.
  • this sample support it is possible to perform continuous measurement of the sample by using a plurality of measurement areas divided by the first support portion. As described above, according to this sample support, it is possible to perform continuous measurement of the sample while suppressing the decrease in ionization efficiency caused by the dropped amount of the sample.
  • the first support may be an adhesive member that adheres the ionized substrate to the substrate.
  • the ionized substrate can be fixed to the substrate while securing the gap between the first surface of the ionized substrate and the substrate by the first support portion.
  • the support may have a second support provided between the periphery of the ionization substrate and the substrate. In this case, it is possible to stably support the ionized substrate with respect to the substrate while securing a gap between the first surface of the ionized substrate and the substrate by the second support portion.
  • the second support may be an adhesive member that adheres the ionized substrate to the substrate.
  • the ionized substrate can be fixed to the substrate while securing a gap between the first surface of the ionized substrate and the substrate by the second support portion.
  • the substrate may be formed of conductive glass slide or metal.
  • electrical connection for applying a voltage to the conductive layer can be made through the substrate.
  • the configuration for the electrical connection can be simplified.
  • the ionized substrate may be formed by anodizing valve metal or silicon.
  • the anodic oxidation of the valve metal or silicon can appropriately and easily realize the ionized substrate provided with a plurality of fine through holes.
  • the width of the through holes may be 1 nm to 700 nm.
  • the excess of the sample dropped onto the second surface of the ionized substrate is irradiated with the laser beam to the second surface while being moved to the gap between the first surface of the ionized substrate and the substrate through the through holes.
  • the sample for ionization can be suitably retained in the through hole.
  • the sample support may further include a fixing member having conductivity and fixing the ionized substrate and the substrate to each other in contact with the conductive layer.
  • the ionized substrate can be reliably fixed to the substrate by the fixing member (for example, a conductive tape or the like).
  • electrical connection electrical connection for applying a voltage to the conductive layer
  • the configuration for the electrical connection can be simplified.
  • the sample support has a substrate, an electroconductive substrate, an ionization substrate disposed on the substrate, and a first surface facing the substrate in the ionization substrate and the substrate being separated from each other And a support for supporting the ionized substrate relative to the substrate.
  • the ionization substrate has a plurality of measurement areas for dropping a sample on a second surface opposite to the first surface. At least each measurement region of the ionization substrate is formed with a plurality of through holes that open to the first surface and the second surface.
  • the support portion is a first support portion provided between the peripheral portion of each measurement area on the first surface and the substrate so as to separate a plurality of measurement areas as viewed from the direction in which the substrate and the ionization substrate face each other. Have.
  • the conductive layer can be omitted in the sample support, and as described above, similarly to the sample support having the conductive layer, the decrease in ionization efficiency due to the dropped amount of the sample is suppressed. While doing so, continuous measurements of the sample can be made.
  • a sample support capable of performing continuous measurement of a sample while suppressing a decrease in ionization efficiency caused by the amount of dropped sample.
  • FIG. 2 is a cross-sectional view of the sample support taken along the line II-II shown in FIG. It is a principal part expanded sectional view which shows schematic structure of the ionization board
  • FIG. 1 It is a principal part expanded sectional view which shows schematic structure of the part enclosed with the broken line A shown by FIG. It is a figure which shows the sample support body which concerns on 3rd Embodiment. It is a figure which shows the sample support body which concerns on 4th-6th embodiment.
  • FIG. 1 is a plan view of a sample support 1.
  • FIG. 2 is a cross-sectional view of the sample support 1 taken along the line II-II shown in FIG.
  • FIG. 3 is an enlarged sectional view of an essential part showing a schematic configuration of the ionized substrate 3 and the conductive layer 4 of the sample support 1.
  • the sample support 1 includes a substrate 2, an ionization substrate 3, a conductive layer 4, a support portion 5, and a tape 6 (fixing member).
  • the substrate 2 is formed, for example, in a rectangular plate shape.
  • the direction along the long side of the substrate 2 may be referred to as the X direction, the direction along the short side of the substrate 2 as the Y direction, and the thickness direction of the substrate 2 as the Z direction.
  • the Z direction is also the direction in which the substrate 2 and the ionization substrate 3 face each other.
  • the substrate 2 is formed of, for example, a conductive material.
  • the substrate 2 is made of, for example, a conductive slide glass, metal or the like.
  • the slide glass having conductivity is, for example, a glass substrate (ITO slide glass) on which a transparent conductive film such as an ITO (Indium Tin Oxide) film is formed.
  • ITO Indium Tin Oxide
  • the lengths of the short side and the long side of the substrate 2 are, for example, about several centimeters.
  • the thickness of the substrate 2 is, for example, about 1 mm.
  • the substrate 2 is a portion that comes in contact with the sample table when the sample support 1 is placed on a sample table (stage) of a mass spectrometer (not shown).
  • the ionized substrate 3 is formed in, for example, a rectangular plate shape by an insulating material.
  • the ionized substrate 3 can be formed, for example, by anodizing valve metal or silicon.
  • the length of the short side (side along the Y direction) of the ionization substrate 3 is the same as the length of the short side of the substrate 2, and the long side (side along the X direction) of the ionization substrate 3 Is made shorter than the length of the long side of the substrate 2.
  • the thickness of the ionized substrate 3 is, for example, about 1 ⁇ m to 50 ⁇ m.
  • the ionized substrate 3 is disposed on the substrate 2 and has a first surface 3 a facing the substrate 2 and a second surface 3 b opposite to the first surface 3 a.
  • the ionized substrate 3 is disposed on the substrate 2 so that the long side of the ionized substrate 3 and the long side of the substrate 2 overlap and the center of the ionized substrate 3 and the center of the substrate 2 overlap when viewed from the Z direction. It is done.
  • the ionization substrate 3 has a plurality of measurement areas R for dropping a sample on the second surface 3b.
  • the shape of the measurement area R is, for example, a circle having a diameter of about several mm (for example, 3 mm).
  • seven measurement areas R are arranged at equal intervals along the X direction, and four measurement areas R are arranged at equal intervals along the Y direction on the ionization substrate 3.
  • a mark (mark) or the like for the operator to identify each measurement region R may be added to the ionization substrate 3, but such a mark or the like may not be added. That is, the second surface 3 b of the ionization substrate 3 may have a region of a size that can set a plurality of measurement regions R.
  • each measurement area R is recognized by an operator who performs measurement using the sample support 1, for example, by dividing each measurement area R by a member other than the ionization substrate 3 such as the first support 5b described later. obtain.
  • a plurality of through holes 3 c are formed uniformly (with a uniform distribution).
  • the plurality of through holes 3 c are uniformly formed on the entire second surface 3 b of the ionization substrate 3.
  • Each through hole 3c extends along the Z direction (the direction perpendicular to the first surface 3a and the second surface 3b), and is open to the first surface 3a and the second surface 3b.
  • the shape of the through hole 3c when viewed from the Z direction is, for example, substantially circular.
  • the width of the through hole 3c is, for example, about 1 nm to 700 nm.
  • the width of the through hole 3c means the diameter of the through hole 3c when the shape of the through hole 3c when viewed from the Z direction is substantially circular, and when the shape is other than substantially circular, It means the diameter (effective diameter) of the virtual maximum cylinder that fits in the through hole 3c.
  • FIG. 4 is a view showing a magnified image of the ionized substrate 3 as viewed from the thickness direction of the ionized substrate 3.
  • the black part corresponds to the through hole 3c
  • the white part corresponds to the partition between the through holes 3c.
  • a plurality of through holes 3 c having a substantially constant width are uniformly formed in the ionization substrate 3.
  • the aperture ratio of the through holes 3c in the measurement area R (the ratio of all the through holes 3c to the measurement area R when viewed from the thickness direction of the ionization substrate 3) is 10 to 80% in practical use. And particularly preferably 60 to 80%.
  • the sizes of the plurality of through holes 3c may be uneven, or the plurality of through holes 3c may be partially connected to each other.
  • the ionized substrate 3 shown in FIG. 4 is an alumina porous film formed by anodizing Al (aluminum). Specifically, the ionized substrate 3 can be obtained by anodizing the Al substrate and peeling the oxidized surface portion from the Al substrate.
  • the ionized substrate 3 is made of Ta (tantalum), Nb (niobium), Ti (titanium), Hf (hafnium), Zr (zirconium), Zn (zinc), W (tungsten), Bi (bismuth), Sb (antimony) And the like may be formed by anodizing a valve metal other than Al, or may be formed by anodizing Si (silicon).
  • the conductive layer 4 is a layer made of a conductive material provided to impart conductivity to the insulating ionized substrate 3. However, even when the ionized substrate 3 is made of a conductive material, the provision of the conductive layer 4 is not hindered.
  • the conductive layer 4 is provided at least on the peripheral portion of the through hole 3 c on the second surface 3 b. As shown in FIG. 3, the conductive layer 4 covers a portion of the second surface 3 b where the through hole 3 c is not formed. That is, the opening on the second surface 3 b side of each through hole 3 c is not blocked by the conductive layer 4.
  • the material of the conductive layer 4 it is preferable to use a metal having a low affinity (reactivity) with the sample and a high conductivity for the reasons described below.
  • the conductive layer 4 is formed of a metal such as Cu (copper) having a high affinity to a sample such as a protein
  • the sample adheres to a sample molecule in a state where a Cu atom is attached in the process of ionization of the sample
  • detection results may shift in mass spectrometry described later. Therefore, as the material of the conductive layer 4, it is preferable to use a metal having a low affinity to the sample.
  • the higher the conductivity of the metal the easier and more stable the application of a constant voltage becomes. Therefore, when the conductive layer 4 is formed of a metal having high conductivity, it is possible to apply a voltage uniformly to the second surface 3 b of the ionized substrate 3 in the measurement region R. Also, the higher the conductivity of the metal, the higher the thermal conductivity. Therefore, when the conductive layer 4 is formed of a metal having high conductivity, the energy of the laser beam irradiated to the ionized substrate 3 can be efficiently transmitted to the sample through the conductive layer 4 . Therefore, as a material of the conductive layer 4, it is preferable to use a metal with high conductivity.
  • Au gold
  • Pt platinum
  • the conductive layer 4 is formed to a thickness of about 1 nm to 350 nm by, for example, a plating method, an atomic layer deposition (ALD), an evaporation method, a sputtering method, or the like.
  • ALD atomic layer deposition
  • evaporation method evaporation method
  • sputtering method evaporation method
  • a material of the conductive layer 4 for example, Cr (chromium), Ni (nickel), Ti (titanium) or the like may be used.
  • the support portion 5 is a member for supporting the ionized substrate 3 with respect to the substrate 2 such that the first surface 3 a of the ionized substrate 3 and the substrate 2 are separated from each other.
  • the support portion 5 functions as a gap forming member for forming a gap between the first surface 3 a of the ionization substrate 3 and the surface 2 a of the substrate 2 facing the ionization substrate 3.
  • the outer shape of the support portion 5 is in the form of a rectangular plate having substantially the same size as the ionized substrate 3 when viewed from the Z direction.
  • the thickness of the support part 5 is about 40 micrometers, for example.
  • a through hole 5a having a shape (here, a circle having a diameter of 3 mm) corresponding to the measurement area R is formed in a portion overlapping the plurality of measurement areas R in the support portion 5 when viewed from the Z direction. That is, the first support 5b is provided between the substrate 2 and the peripheral portion of each measurement area R on the first surface 3a so as to separate the plurality of measurement areas R when viewed from the Z direction. (The peripheral portion of each through hole 5a) is provided.
  • the support portion 5 is a second support portion provided between the peripheral portion of the ionization substrate 3 (a portion outside the region where the plurality of measurement regions R are provided when viewed from the Z direction) and the substrate 2 5c (portion overlapping with the peripheral portion of the ionization substrate 3) is also included.
  • the first support 5 b is a portion corresponding to a partition between the plurality of through holes 5 a and is formed to define a plurality of measurement areas R.
  • the first support 5 b is formed of, for example, an adhesive member that adheres the first surface 3 a of the ionized substrate 3 and the surface 2 a of the substrate 2.
  • the first support 5b is, for example, a conductive double-sided tape, a vacuum adhesive, or the like.
  • the ionization substrate 3 is fixed to the surface 2a of the substrate 2 while securing a gap between the first surface 3a of the ionization substrate 3 and the surface 2a of the substrate 2. be able to.
  • the ionized substrate 3 is provided with a plurality of through holes 3c, and the ionized substrate 3 and the conductive layer 4 are very thin. For this reason, when the sample support 1 is viewed from the second surface 3b side of the ionized substrate 3, the boundary between the through hole 5a and the first support portion 5b is seen through. Thereby, the operator who performs measurement using the sample support 1 can visually recognize each measurement area R. Further, according to the first support portion 5b, the excess of the sample dropped into one measurement region R is measured through the gap between the first surface 3a of the ionization substrate 3 and the surface 2a of the substrate 2 It is also possible to prevent movement to the region R (that is, mixing of samples dropped to different measurement regions).
  • the second support 5 c is a portion corresponding to the outer peripheral frame of the support 5, and is formed to surround a plurality of measurement areas R. According to such a second support portion 5c, the ionization substrate 3 is stably supported on the substrate 2 while securing a gap between the first surface 3a of the ionization substrate 3 and the surface 2a of the substrate 2. be able to.
  • the second support 5 c is formed of, for example, an adhesive member that adheres the first surface 3 a of the ionized substrate 3 and the surface 2 a of the substrate 2.
  • the second support 5c is, for example, a conductive double-sided tape, a vacuum adhesive, or the like. In this case, the ionized substrate 3 can be fixed to the surface 2 a of the substrate 2 by the second support 5 c.
  • the tape 6 is a member having conductivity and fixing an edge along the short side of the ionized substrate 3 to the substrate 2.
  • the tape 6 functions as a fixing member for fixing the ionized substrate 3 and the substrate 2 to each other in a state of being in contact with the conductive layer 4.
  • the tape 6 is provided along the short side of the second surface 3 b of the conductive substrate 4 (here, the second surface 3 b of the ionized substrate 3 so as to press the ionized substrate 3 against the substrate 2. It adheres to the surface 2a of the substrate 2 and the portion covering the upper surface of the edge portion.
  • the tape 6 can securely fix the ionized substrate 3 to the substrate 2.
  • electrical connection between the substrate 2 and the conductive layer 4 electrical connection for applying a voltage to the conductive layer 4 can be performed via the tape 6 .
  • the configuration for the electrical connection can be simplified.
  • FIG. 5 is a schematic view showing the steps of the mass spectrometry method according to the present embodiment.
  • illustration of the conductive layer 4 is omitted.
  • the sample support 1 described above is prepared (first step).
  • the sample support 1 may be prepared by being manufactured by a person who implements the mass spectrometry method, or may be prepared by being obtained from a manufacturer or a seller of the sample support 1 or the like.
  • the sample S is dropped onto one measurement region R in the ionized substrate 3 (second step).
  • a gap is formed between the first surface 3 a of the ionized substrate 3 and the surface 2 a of the substrate 2 by the support 5 described above.
  • the dropping amount of the sample S on the second surface 3b of the ionized substrate 3 is larger than the appropriate amount, the excess of the sample S is obtained through gravity through the through holes 3c provided in the ionized substrate 3. It flows into the gap between the first surface 3 a of the ionized substrate 3 and the surface 2 a of the substrate 2.
  • the sample S to be ionized by irradiating the second surface 3b with the laser light can be suitably kept in the through hole 3c.
  • the excess of the sample S is the first surface 3a of the ionized substrate 3 and the substrate While being escaped to the gap between the second surface 2a and the second surface 2a, an appropriate amount of the sample S necessary for ionization remains in the through hole 3c.
  • the sample support 1 and the sample S are placed, for example, on a stage of a mass spectrometer (not shown).
  • the voltage application unit 101 of the mass spectrometer causes the conductive layer 4 of the sample support 1 (the surface 2a of the substrate 2 and the tape 6 (see FIG. 2)). Voltage) is applied (third step).
  • the laser beam L is irradiated to the second surface 3 b of the ionization substrate 3 by the laser beam emitting unit 102 of the mass spectrometer (third step). That is, the laser beam L is irradiated to the measurement region R in which the sample S is dropped.
  • the second surface 3 b of the ionized substrate 3 is irradiated with the laser light L while a voltage is applied to the conductive layer 4, whereby the sample S (remaining in the through holes 3 c formed in the ionized substrate 3)
  • the component of the sample S) in the vicinity of the opening on the second surface 3 b side of the through hole 3 c is ionized, and the sample ion SI (ionized component) is released (fourth step).
  • energy is transmitted from the conductive layer 4 (see FIG.
  • the above first to fourth steps correspond to the laser desorption ionization method using the sample support 1.
  • the released sample ions SI move while accelerating toward a ground electrode (not shown) provided between the sample support 1 and the detector 103 of the mass spectrometer. That is, the sample ions SI move toward the ground electrode while accelerating due to the potential difference generated between the conductive layer 4 to which the voltage is applied and the ground electrode. Then, the sample ion SI is detected by the detector 103 (fifth step).
  • the mass spectrometer here is a mass spectrometer that uses time-of-flight mass spectrometry (TOF-MS). The above first to fifth steps correspond to a mass spectrometry method using the sample support 1.
  • FIG. 6 is a schematic view showing the steps of the laser desorption ionization method according to the comparative example. Specifically, FIG. 6 shows an outline of conventional surface-assisted laser desorption / ionization (SALDI: Laser Desorption / Ionization).
  • SALDI Laser Desorption / Ionization
  • a substrate 300 having a fine uneven structure on the surface is used. Specifically, first, the sample S is dropped onto one measurement spot of the substrate 300 (the surface on which the concavo-convex structure of the substrate 300 is provided) ((A) in FIG. 6).
  • the substrate 300 is not provided with a space for releasing the excess of the sample S.
  • the support 5 forms a gap between the first surface 3 a of the ionized substrate 3 and the substrate 2.
  • the excess of the sample S is removed from the ionized substrate 3 through the through holes 3 c provided in the ionized substrate 3. It can be released into the gap between the first surface 3 a and the substrate 2. Therefore, the excess of the sample S is suppressed from overflowing on the second surface 3b, and the decrease in ionization efficiency at the time of ionizing the components of the sample S is suppressed by the irradiation of the laser light L to the second surface 3b.
  • continuous measurement of the sample S can be performed by using a plurality of measurement areas R divided by the first support portion 5 b. As described above, according to the sample support 1, the continuous measurement of the sample S can be performed while suppressing the decrease in the ionization efficiency caused by the dropping amount of the sample S.
  • the substrate 2 is formed of slide glass or metal having conductivity, electrical connection for applying a voltage to the conductive layer 4 can be performed through the substrate 2. As a result, the configuration for the electrical connection can be simplified.
  • the ionized substrate 3 is formed by anodizing a valve metal or silicon.
  • the ionization substrate 3 provided with the plurality of fine through holes 3 c can be appropriately and easily realized by the anodic oxidation of the valve metal or silicon.
  • the width of the through hole 3c is 1 nm to 700 nm.
  • the sample support 1 is also provided with a tape 6 which has conductivity and fixes the ionized substrate 3 and the substrate 2 in contact with the conductive layer 4. Therefore, the ionization substrate 3 can be reliably fixed to the substrate 2 by the tape 6.
  • electrical connection between the substrate 2 and the conductive layer 4 electrical connection for applying a voltage to the conductive layer 4 can be performed via the tape 6 .
  • the configuration for the electrical connection can be simplified.
  • the support 5 forms a gap between the first surface 3 a of the ionized substrate 3 and the substrate 2.
  • the decrease in ionization efficiency at the time of ionizing the components of the sample S by the irradiation of the laser light L to the second surface 3 b is suppressed.
  • the fall of the ionization efficiency resulting from the dripping amount of a sample can be suppressed.
  • FIG. 7A is a plan view of the sample support 1A.
  • FIG. 7B is a cross-sectional view of the sample support 1A taken along the line B-B in FIG.
  • FIG. 8 is a main part enlarged sectional view showing a schematic configuration of a portion surrounded by a broken line A shown in FIG.
  • the sample support 1A is different from the sample support 1 in that the sample support 1A includes a frame 7 and the arrangement of the conductive layer 4 and the tape 6 is partially changed.
  • the other configuration is the same as that of the sample support 1.
  • the frame 7 is formed at least on the peripheral portion of the second surface 3 b of the ionized substrate 3 when viewed from the direction (Z direction) in which the substrate 2 and the ionized substrate 3 face each other.
  • the outer shape of the frame 7 is in the form of a rectangular plate having substantially the same size as the ionized substrate 3 when viewed from the Z direction.
  • the thickness of the frame 7 is, for example, 1 mm or less.
  • the frame 7 is formed of, for example, a metal.
  • a through hole 7a having a shape (here, a circle having a diameter of 3 mm) corresponding to the measurement region R is formed in a portion overlapping the plurality of measurement regions R in the frame 7 when viewed from the Z direction. That is, the frame 7 is provided with the wall portion 7b provided on the peripheral portion of each measurement area R on the second surface 3b so as to divide the plurality of measurement areas R when viewed from the Z direction (peripheral portion of each through hole 7a )have.
  • the frame 7 is provided on the outer edge 7 c (ionization) provided on the peripheral portion of the second surface 3 b of the ionization substrate 3 (portion outside the region where the plurality of measurement regions R are provided when viewed from the Z direction). It also has a portion overlapping the peripheral portion of the substrate 3).
  • the wall 7 b is a portion corresponding to a partition between the plurality of through holes 7 a and is formed to define a plurality of measurement regions R. Thereby, the operator who performs measurement using the sample support 1 can visually recognize each measurement area R. Further, according to the wall portion 7b, it is also possible to prevent scattering of a part of the sample into another measurement area R adjacent to the one measurement area R when dropping the sample into the one measurement area R or the like. it can.
  • the outer edge portion 7 c is a portion corresponding to the outer peripheral frame of the rectangular plate-shaped frame 7 and is formed to surround a plurality of measurement regions R.
  • the frame 7 (the wall 7 b and the outer edge 7 c) is fixed to the second surface 3 b of the ionized substrate 3 by the adhesive layer 8.
  • the adhesive layer 8 it is preferable to use an adhesive material (eg, low melting point glass, an adhesive for vacuum, etc.) with a small amount of released gas.
  • the conductive layer 4 is a region (that is, measurement region R) corresponding to the opening (through hole 7a) of the frame 7 in the second surface 3b of the ionized substrate 3, the inner surface of the through hole 7a,
  • the frame 7 is formed continuously (integrally) on the surface 7 d opposite to the ionized substrate 3.
  • the conductive layer 4 is formed to further cover the surface 7 d of the frame 7. Thereby, as described later, electrical connection for applying a voltage to the conductive layer 4 can be made on the frame 7.
  • the conductive layer 4 covers a portion of the second surface 3 b where the through hole 3 c is not formed, as in the sample support 1. That is, the opening on the second surface 3 b side of each through hole 3 c is not blocked by the conductive layer 4.
  • the tape 6 functions as a fixing member for fixing the ionized substrate 3 and the substrate 2 to each other in a state in which the tape 6 contacts the portion covering the surface 7d of the frame 7 in the conductive layer 4.
  • the tape 6 is such that the conductive layer 4 (here, a portion covering the surface 7 d) and the surface 2 a of the substrate 2 so as to press the ionized substrate 3 against the substrate 2 from above the outer edge 7 c of the frame 7. And glued to.
  • the tape 6 can securely fix the substrate 2, the ionized substrate 3 and the frame 7 to each other.
  • electrical connection between the substrate 2 and the conductive layer 4 (electrical connection for applying a voltage to the conductive layer 4) can be performed via the tape 6 .
  • the configuration for the electrical connection can be simplified.
  • the electrical connection can be made on the surface 7 d of the frame 7, the electrical connection can be realized without eroding the effective area (that is, the measurement area R) on the ionization substrate 3.
  • the support 5 forms a gap between the first surface 3 a of the ionized substrate 3 and the substrate 2.
  • the excess of the sample S is removed from the ionized substrate 3 through the through holes 3 c provided in the ionized substrate 3. It can be released into the gap between the first surface 3 a and the substrate 2.
  • sample support 1A continuous measurement of the sample S can be performed by using a plurality of measurement areas R divided by the wall 7b of the frame 7. As described above, according to the sample support 1A, the continuous measurement of the sample S can be performed while suppressing the decrease in ionization efficiency caused by the dropping amount of the sample S.
  • FIG. 9A is a plan view of the sample support 1B.
  • FIG. 9B is a cross-sectional view of the sample support 1B (plan view of the substrate 12) taken along the line BB in FIG.
  • the sample support 1 B is different from the sample support 1 in that the sample support 1 B includes the substrate 12 instead of the substrate 2, and the other configuration is the same as the sample support 1.
  • the substrate 12 is provided with a plurality of through holes 12 a extending along the direction (Z direction) in which the substrate 12 and the ionization substrate 3 face each other so as to correspond to the plurality of measurement regions R.
  • the through holes 12a have a circular shape of the same size as the corresponding measurement area R when viewed in the Z direction. That is, the through holes 12 a overlap with the corresponding through holes 5 a of the support portion 5 when viewed in the Z direction.
  • the through holes 12a do not necessarily have to completely overlap the corresponding measurement regions R and the through holes 5a when viewed in the Z direction.
  • the outer shape of the through hole 12a viewed from the Z direction may not necessarily coincide with the corresponding outer shape of the measurement region R and the through hole 5a (here, a circle having a diameter of 3 mm). That is, the outer shape of the through hole 12a viewed from the Z direction may be smaller or larger than the outer shape of the corresponding measurement region R and the through hole 5a.
  • the sample support 1 ⁇ / b> B at least a part of the substrate 12 on the ionization substrate 3 side is formed so as to be able to move the sample S to the inside of the substrate 12.
  • a plurality of through holes 12a are formed in the substrate 12. For this reason, it is possible to move the sample S that has flowed out to the substrate 12 side from the opening on the first surface 3 a side of the through hole 3 c of the ionized substrate 3 into the through hole 12 a of the substrate 12. That is, the excess of the sample S can be released to the through holes 12 a provided in the substrate 12 so as to correspond to the respective measurement regions R.
  • the dropping amount of the sample S on the second surface 3 b of the ionized substrate 3 is larger than the appropriate amount, the excess of the sample S flowing into the substrate 12 through the through holes 3 c provided in the ionized substrate 3 is It can be released to the inside of the substrate 12 (here, the inside of the through hole 12a). Therefore, the excess of the sample S is suppressed from overflowing on the second surface 3b, and the decrease in ionization efficiency at the time of ionizing the components of the sample S is suppressed by the irradiation of the laser light L to the second surface 3b.
  • the fall of the ionization efficiency resulting from the dripping amount of the sample S can be suppressed.
  • continuous measurement of the sample S can be performed by using a plurality of measurement areas R prepared on the second surface 3 b of the ionization substrate 3.
  • the excess of the sample S can be released to the outside of the substrate 12 (opposite to the ionized substrate 3 side) through the through holes 12 a formed in the substrate 12. Excess can be discharged more effectively.
  • the amount of dropped sample S on the second surface 3b of the ionized substrate 3 is the second step. Even if the amount is larger than the appropriate amount, the excess of the sample S flowing into the substrate 2 through the through hole 3c provided in the ionization substrate 3 can be released to the inside of the substrate 12 (here, inside the through hole 12a). . For this reason, it is suppressed that the excess of sample S overflows on the 2nd surface 3b.
  • the decrease in ionization efficiency at the time of ionizing the components of the sample S by the irradiation of the laser light L to the second surface 3 b is suppressed.
  • the laser desorption / ionization method using the sample support 1B it is possible to suppress the decrease in ionization efficiency caused by the dropped amount of the sample S.
  • FIG. 10A is a view showing a sample support 1C according to the fourth embodiment.
  • the sample support 1C is different from the sample support 1B in that the sample support 1C includes the substrate 22 instead of the substrate 12, and the other configuration is the same as the sample support 1B.
  • a plurality of recesses 22 b are provided on the surface 22 a on the ionization substrate 3 side of the substrate 22 so as to correspond to the plurality of measurement regions R.
  • the opening of the recess 22 b has a circular shape of the same size as the corresponding measurement area R when viewed from the Z direction. That is, when viewed from the Z direction, the recess 22 b overlaps the corresponding through hole 5 a of the support 5.
  • the recess 22 b may not necessarily completely overlap the corresponding measurement region R and the through hole 5 a when viewed from the Z direction.
  • the outer shape of the recess 22b viewed from the Z direction may not necessarily coincide with the corresponding measurement region R and the outer shape of the through hole 5a (here, a circle having a diameter of 3 mm). That is, the outer shape of the recess 22b viewed from the Z direction may be smaller or larger than the outer shape of the corresponding measurement region R and the through hole 5a.
  • the sample support 1C as in the sample support 1B, at least a part of the substrate 22 on the side of the ionized substrate 3 is formed so as to be able to move the sample S to the inside of the substrate 22.
  • a plurality of recesses 22 b are provided on the surface 22 a of the substrate 22 facing the ionized substrate 3. For this reason, it is possible to move the sample S which has flowed out to the substrate 22 side from the opening on the first surface 3 a side of the through hole 3 c of the ionized substrate 3 into the recess 22 b of the substrate 22. That is, the excess of the sample S can be released to each concave portion 22 b provided in the substrate 22 so as to correspond to each measurement region R. Thereby, the same effect as the sample support 1B described above can be obtained.
  • FIG. 10B is a view showing a sample support 1D according to the fifth embodiment.
  • the sample support 1D is different from the sample support 1B in that the sample support 1D includes the substrate 32 instead of the substrate 12, and the other configuration is the same as the sample support 1B.
  • the substrate 32 on the side of the ionized substrate 3 is formed so as to be able to move the sample S to the inside of the substrate 32.
  • the substrate 32 is formed of a material having water absorbency.
  • the substrate 32 is formed of, for example, a resin such as urethane, a porous metal, a ceramic or the like. Therefore, by absorbing the sample S that has reached the substrate 32 through the through holes 3 c of the ionization substrate 3 into the inside of the substrate 32, the excess of the sample S can be released to the inside of the substrate 32. Thereby, the same effect as the sample supports 1B and 1C described above can be obtained.
  • FIG. 10C is a view showing a sample support 1E according to the sixth embodiment.
  • the sample support 1E is different from the sample support 1B in that the sample support 1E does not have the support portion 5 and the first surface 3a of the ionized substrate 3 is in contact with the surface of the substrate 12. Is the same as that of the sample support 1B.
  • no gap is formed between the first surface 3a of the ionized substrate 3 and the substrate 12 because the support portion 5 is omitted.
  • the through holes 12a formed in the substrate 12 flow out from the opening on the first surface 3a side of the through hole 3c of the ionized substrate 3 to the substrate 12 side.
  • the sample S can be moved into the through hole 12 a of the substrate 12. That is, even with such a sample support 1E, as in the case of the sample supports 1B to 1D described above, the excess of the sample S is prevented from overflowing on the second surface 3b, and the drop amount of the sample S is attributed It is possible to suppress the decrease in ionization efficiency.
  • the support 5 may be omitted. Even in such a case, by providing the substrate 22 or the substrate 32 described above, the excess of the sample S is prevented from overflowing on the second surface 3 b, and the ionization efficiency caused by the dropped amount of the sample S Can be suppressed. However, even in the case of using the above-described substrates 12, 22 and 32 as in the sample supports 1 B to 1 D, the supporting portion 5 is between the first surface 3 a of the ionized substrate 3 and the substrates 12, 22 and 32.
  • a gap may be formed in the In this case, the excess of the sample S can be further released to the gap between the first surface 3a of the ionized substrate 3 and the substrates 12, 22, and 32, so the excess of the sample S overflows on the first surface 3a. It can suppress more effectively.
  • sample supports 1, 1A to 1E may be omitted as appropriate.
  • the tape 6 may be omitted.
  • a voltage may be applied to the conductive layer 4 without interposing the substrates 2, 12, 22 and 32 and the tape 6. In that case, the substrates 2, 12, 22, 32 and the tape 6 may not have conductivity.
  • the ionization substrate 3 may have conductivity.
  • the ionization substrate 3 may be made of, for example, a conductive material such as a semiconductor.
  • a voltage may be applied to the ionized substrate 3 in the third step.
  • the conductive layer 4 can be omitted in the sample supports 1, 1A to 1E, and as in the case of using the sample supports 1, 1A to 1E provided with the conductive layer 4 as described above, dropping of the sample It is possible to suppress the decrease in ionization efficiency caused by the amount.
  • a configuration for dividing the plurality of measurement areas R (in the above embodiment, the first support 5 b Alternatively, the wall 7b) of the frame 7 may be omitted.
  • a plurality of measurement areas R may be divided by at least one of the first support 5b and the wall 7b.
  • the ionization substrate 3 may not necessarily have a plurality of measurement areas R, and the number of measurement areas R may be one.
  • the first support 5b and the second support 5c may not be integrally formed.
  • the first support corresponding to one measurement area R may be a member provided independently of the first support corresponding to the other measurement area R.
  • the first support corresponding to one measurement area R may be, for example, a cylindrical member formed so as to overlap the peripheral edge of the measurement area R when viewed from the Z direction.
  • the second support may be a member provided independently of the first support.
  • the second support portion may be, for example, a rectangular frame-shaped member formed so as to overlap the peripheral portion of the ionized substrate 3 when viewed in the Z direction.
  • the wall 7 b and the outer edge 7 c may not be integrally formed.
  • the wall corresponding to one measurement area R may be a member provided independently of the wall corresponding to the other measurement area R.
  • the wall corresponding to one measurement area R may be, for example, a cylindrical member formed so as to overlap the peripheral edge of the measurement area R when viewed from the Z direction.
  • the outer edge portion may be a member provided independently of the wall portion.
  • the outer edge portion may be, for example, a rectangular frame-shaped member formed so as to overlap the peripheral portion of the ionized substrate 3 when viewed from the Z direction.
  • At least one measurement region R among the plurality of measurement regions R may be used as a region for mass calibration (mass calibration).
  • a sample for mass calibration for example, peptide etc.
  • the laser desorption ionization method (the first to third steps) can be used not only for mass analysis of the sample S described in the present embodiment but also for other measurements and experiments such as ion mobility measurement.
  • the application of the sample supports 1, 1A to 1E is not limited to the ionization of the sample S by the irradiation of the laser beam L.
  • the sample supports 1, 1A to 1E may be used for ionization of the sample S by irradiation of energy beams other than the laser light L (for example, ion beam, electron beam, etc.). That is, in the above-mentioned laser desorption ionization method, energy beams other than the laser beam L may be irradiated instead of the laser beam L.
  • 1, 1A, 1B, 1C, 1D, 1E sample support, 2, 12, 22, 32: substrate, 3: ionized substrate, 3a: first surface, 3b: second surface, 3c: through hole, 4: Conductive layer 5 support portion 5a through hole 5b first support portion 5c second support portion 6 tape (fixed member) 7 frame 7a through hole 7b wall portion 7c ... outer edge portion, L ... laser light, R ... measurement region, S ... sample.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

試料支持体(1)は、基板(2)と、イオン化基板(3)と、支持部(5)と、を備える。イオン化基板(3)は、第2表面(3b)において試料を滴下するための複数の測定領域(R)を有する。イオン化基板(3)の少なくとも各測定領域(R)には、第1表面(3a)及び第2表面(3b)に開口する複数の貫通孔(3c)が形成されている。少なくとも第2表面(3b)における貫通孔(3c)の周縁部には、導電層(4)が設けられている。支持部(5)は、基板(2)とイオン化基板(3)とが対向する方向から見て、複数の測定領域(R)を区切るように、第1表面(3a)における各測定領域(R)の周縁部と基板(2)との間に設けられた第1支持部(5b)を有する。

Description

試料支持体
 本開示は、試料支持体に関する。
 従来、試料にレーザ光を照射して試料中の化合物をイオン化し、イオン化された試料を検出することによって質量分析を行う手法が知られている。特許文献1には、複数の貫通孔(mmオーダー)が設けられた固定板を保持板上に配置し、当該貫通孔を通して保持板上に試料を滴下し、当該試料に対してレーザ光を照射することにより、試料のイオン化を行う手法が記載されている。特許文献2には、複数の非貫通孔(μmオーダー)が設けられた基板にマトリックスを加えた試料を滴下し、当該非貫通孔の内部に浸透した試料に対してレーザ光を照射することにより、試料のイオン化を行う手法が記載されている。
特開2014-21048号公報 米国特許第7695978号公報
 上記手法のように複数の測定ポイント(凹部)に対して試料を上から滴下する方式によれば、試料の連続測定が可能となる。しかしながら、上記手法においては、凹部に対する試料の滴下量が多過ぎた場合、当該凹部から試料が溢れ出し、いわゆる凹凸効果(凹凸構造によりレーザ光のエネルギーが試料に伝わり易くなる効果)が失われ、試料のイオン化効率が低下するおそれがある。すなわち、試料中の成分を適切にイオン化できなかったり、検出されるイオンの量が低下したりするおそれがある。その結果、上述した質量分析において十分な信号強度を得ることができず、試料中の成分を適切に検出できないおそれがある。
 そこで、本開示は、試料の滴下量に起因するイオン化効率の低下を抑制しつつ、試料の連続測定を行うことができる試料支持体を提供することを目的とする。
 本発明の一側面に係る試料支持体は、基板と、基板上に配置されるイオン化基板と、イオン化基板における基板に対向する第1表面と基板とが互いに離間するように、基板に対してイオン化基板を支持する支持部と、を備える。イオン化基板は、第1表面とは反対側の第2表面において試料を滴下するための複数の測定領域を有する。イオン化基板の少なくとも各測定領域には、第1表面及び第2表面に開口する複数の貫通孔が形成されている。少なくとも第2表面における貫通孔の周縁部には、導電層が設けられている。支持部は、基板とイオン化基板とが対向する方向から見て、複数の測定領域を区切るように、第1表面における各測定領域の周縁部と基板との間に設けられた第1支持部を有する。
 この試料支持体では、支持部により、イオン化基板の第1表面と基板との間に隙間が形成される。これにより、イオン化基板の第2表面に対する試料の滴下量が適量よりも多かったとしても、イオン化基板に設けられた貫通孔を介して、試料の過剰分をイオン化基板の第1表面と基板との間の隙間に逃すことができる。このため、試料の過剰分が第2表面上に溢れ出すことが抑制され、第2表面に対するレーザ光の照射によって試料の成分をイオン化する際のイオン化効率の低下が抑制される。また、この試料支持体では、第1支持部によって区切られた複数の測定領域を用いることにより、試料の連続測定を行うことが可能となっている。以上により、この試料支持体によれば、試料の滴下量に起因するイオン化効率の低下を抑制しつつ、試料の連続測定を行うことができる。
 第1支持部は、イオン化基板と基板とを接着する接着部材であってもよい。この場合、第1支持部により、イオン化基板の第1表面と基板との間の隙間を確保しつつ、基板に対してイオン化基板を固定することができる。
 支持部は、イオン化基板の周縁部と基板との間に設けられた第2支持部を有してもよい。この場合、第2支持部により、イオン化基板の第1表面と基板との間の隙間を確保しつつ、基板に対してイオン化基板を安定的に支持することができる。
 第2支持部は、イオン化基板と基板とを接着する接着部材であってもよい。この場合、第2支持部により、イオン化基板の第1表面と基板との間の隙間を確保しつつ、基板に対してイオン化基板を固定することができる。
 基板は、導電性を有するスライドガラス又は金属により形成されていてもよい。この場合、導電層に電圧を印加するための電気的接続を基板を介して行うことが可能となる。その結果、上記電気的接続のための構成を簡素化することができる。
 イオン化基板は、バルブ金属又はシリコンを陽極酸化することにより形成されていてもよい。この場合、バルブ金属又はシリコンの陽極酸化によって、複数の微細な貫通孔が設けられたイオン化基板を適切かつ容易に実現できる。
 貫通孔の幅は、1nm~700nmであってもよい。この場合、イオン化基板の第2表面に滴下された試料の過剰分については貫通孔を介してイオン化基板の第1表面と基板との間の隙間に移動させつつ、第2表面に対するレーザ光の照射によりイオン化させるための試料を貫通孔内に好適に留めることができる。
 試料支持体は、導電性を有し、導電層に接触した状態でイオン化基板と基板とを互いに固定する固定部材を更に備えてもよい。この場合、固定部材(例えば導電性を有するテープ等)により、基板に対してイオン化基板を確実に固定することができる。また、基板が導電性を有する場合に、固定部材を介して基板と導電層との間の電気的接続(導電層に電圧を印加するための電気的接続)を行うことができる。これにより、上記電気的接続のための構成を簡素化することができる。
 本発明の他の側面に係る試料支持体は、基板と、導電性を有し、基板上に配置されるイオン化基板と、イオン化基板における基板に対向する第1表面と基板とが互いに離間するように、基板に対してイオン化基板を支持する支持部と、を備える。イオン化基板は、第1表面とは反対側の第2表面において試料を滴下するための複数の測定領域を有する。イオン化基板の少なくとも各測定領域には、第1表面及び第2表面に開口する複数の貫通孔が形成されている。支持部は、基板とイオン化基板とが対向する方向から見て、複数の測定領域を区切るように、第1表面における各測定領域の周縁部と基板との間に設けられた第1支持部を有する。
 この試料支持体によれば、試料支持体において導電層を省略することができると共に、上述したように導電層を備える試料支持体と同様に、試料の滴下量に起因するイオン化効率の低下を抑制しつつ、試料の連続測定を行うことができる。
 本開示によれば、試料の滴下量に起因するイオン化効率の低下を抑制しつつ、試料の連続測定を行うことができる試料支持体を提供することができる。
第1実施形態に係る試料支持体の平面図である。 図1に示されるII-II線に沿った試料支持体の断面図である。 図1に示される試料支持体のイオン化基板及び導電層の概略構成を示す要部拡大断面図である。 図1に示される試料支持体のイオン化基板の拡大像を示す図である。 一実施形態に係る質量分析方法の工程を示す概略図である。 比較例に係るレーザ脱離イオン化法の工程を示す概略図である。 第2実施形態に係る試料支持体を示す図である。 図7に示される破線Aで囲まれた部分の概略構成を示す要部拡大断面図である。 第3実施形態に係る試料支持体を示す図である。 第4~第6実施形態に係る試料支持体を示す図である。
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。また、各図に示される各部材(又は部位)の寸法又は寸法の比率は、説明をわかり易くするために、実際の寸法又は寸法の比率とは異なることがある。
[第1実施形態]
 図1~図3を参照して、第1実施形態に係る試料支持体1について説明する。図1は、試料支持体1の平面図である。図2は、図1に示されるII-II線に沿った試料支持体1の断面図である。図3は、試料支持体1のイオン化基板3及び導電層4の概略構成を示す要部拡大断面図である。図1~図3に示されるように、試料支持体1は、基板2と、イオン化基板3と、導電層4と、支持部5と、テープ6(固定部材)と、を備えている。基板2は、例えば長方形板状に形成されている。以下では、便宜上、基板2の長辺に沿った方向をX方向、基板2の短辺に沿った方向をY方向、基板2の厚み方向をZ方向と言う場合がある。Z方向は、基板2とイオン化基板3とが対向する方向でもある。
 基板2は、例えば、導電性材料によって形成されている。基板2は、例えば、導電性を有するスライドガラス、金属等により形成されている。導電性を有するスライドガラスは、例えば、ITO(Indium Tin Oxide)膜等の透明導電膜が形成されたガラス基板(ITOスライドガラス)である。基板2の短辺及び長辺の長さは、例えば数cm程度である。基板2の厚さは、例えば1mm程度である。基板2は、試料支持体1を図示しない質量分析装置の試料台(ステージ)に載置する際に、試料台に接触する部分である。
 イオン化基板3は、例えば、絶縁性材料によって長方形板状に形成されている。イオン化基板3は、例えば、バルブ金属又はシリコンを陽極酸化することにより形成され得る。本実施形態では、イオン化基板3の短辺(Y方向に沿った辺)の長さは、基板2の短辺の長さと同一であり、イオン化基板3の長辺(X方向に沿った辺)の長さは、基板2の長辺の長さよりも短くされている。イオン化基板3の厚さは、例えば1μm~50μm程度である。イオン化基板3は、基板2上に配置されており、基板2に対向する第1表面3aと、第1表面3aとは反対側の第2表面3bと、を有している。イオン化基板3は、Z方向から見て、イオン化基板3の長辺と基板2の長辺とが重なり、且つ、イオン化基板3の中心と基板2の中心とが重なるように、基板2上に配置されている。
 図1に示されるように、イオン化基板3は、第2表面3bにおいて、試料を滴下するための複数の測定領域Rを有している。測定領域Rの形状は、例えば直径数mm程度(例えば3mm)の円形である。本実施形態では、イオン化基板3には、X方向に沿って7つの測定領域Rが等間隔に配置されると共に、Y方向に沿って4つの測定領域Rが等間隔に配置されている。イオン化基板3には、オペレータが各測定領域Rを識別するための目印(マーク)等が付加されていてもよいが、このような目印等が付加されていなくてもよい。すなわち、イオン化基板3の第2表面3bは、複数の測定領域Rを設定可能な大きさの領域を有していればよい。この場合、例えば後述する第1支持部5b等のイオン化基板3以外の部材によって各測定領域Rが区切られることにより、各測定領域Rは、試料支持体1を用いて測定を行うオペレータによって認識され得る。
 図3に示されるように、イオン化基板3の少なくとも各測定領域Rには、複数の貫通孔3cが一様に(均一な分布で)形成されている。本実施形態では、イオン化基板3の第2表面3b全体において、複数の貫通孔3cが一様に形成されている。各貫通孔3cは、Z方向(第1表面3a及び第2表面3bに垂直な方向)に沿って延在しており、第1表面3a及び第2表面3bに開口している。Z方向から見た場合における貫通孔3cの形状は、例えば略円形である。貫通孔3cの幅は、例えば1nm~700nm程度である。貫通孔3cの幅とは、Z方向から見た場合における貫通孔3cの形状が略円形である場合には、貫通孔3cの直径を意味し、当該形状が略円形以外である場合には、貫通孔3cに収まる仮想的な最大円柱の直径(有効径)を意味する。
 図4は、イオン化基板3の厚さ方向から見た場合におけるイオン化基板3の拡大像を示す図である。図4において、黒色の部分は貫通孔3cに相当し、白色の部分は貫通孔3c間の隔壁部に相当する。図4に示されるように、イオン化基板3には、略一定の幅を有する複数の貫通孔3cが一様に形成されている。測定領域Rにおける貫通孔3cの開口率(イオン化基板3の厚さ方向から見た場合に当該測定領域Rに対して全ての貫通孔3cが占める割合)は、実用上は10~80%であり、特に60~80%であることが好ましい。複数の貫通孔3cの大きさは互いに不揃いであってもよいし、部分的に複数の貫通孔3c同士が互いに連結していてもよい。
 図4に示されるイオン化基板3は、Al(アルミニウム)を陽極酸化することにより形成されたアルミナポーラス皮膜である。具体的には、Al基板に対して陽極酸化処理を施し、酸化された表面部分をAl基板から剥離することにより、イオン化基板3を得ることができる。なお、イオン化基板3は、Ta(タンタル)、Nb(ニオブ)、Ti(チタン)、Hf(ハフニウム)、Zr(ジルコニウム)、Zn(亜鉛)、W(タングステン)、Bi(ビスマス)、Sb(アンチモン)等のAl以外のバルブ金属を陽極酸化することにより形成されてもよいし、Si(シリコン)を陽極酸化することにより形成されてもよい。
 導電層4は、絶縁性のイオン化基板3に導電性を付与するために設けられた導電性材料からなる層である。ただし、イオン化基板3が導電性材料からなる場合であっても導電層4を設けることは妨げられない。導電層4は、少なくとも第2表面3bにおける貫通孔3cの周縁部に設けられている。図3に示されるように、導電層4は、第2表面3bのうち貫通孔3cが形成されていない部分を覆っている。つまり、各貫通孔3cの第2表面3b側の開口は、導電層4によって塞がれていない。
 導電層4の材料としては、以下に述べる理由により、試料との親和性(反応性)が低く且つ導電性が高い金属が用いられることが好ましい。例えば、タンパク質等の試料と親和性が高いCu(銅)等の金属によって導電層4が形成されていると、後述する試料のイオン化の過程において、試料分子にCu原子が付着した状態で試料がイオン化され、Cu原子が付着した分だけ、後述する質量分析法において検出結果がずれるおそれがある。したがって、導電層4の材料としては、試料との親和性が低い金属が用いられることが好ましい。
 一方、導電性の高い金属ほど一定の電圧を容易に且つ安定して印加し易くなる。そのため、導電性が高い金属によって導電層4が形成されていると、測定領域Rにおいてイオン化基板3の第2表面3bに均一に電圧を印加することが可能となる。また、導電性の高い金属ほど熱伝導性も高い傾向にある。そのため、導電性が高い金属によって導電層4が形成されていると、イオン化基板3に対して照射されたレーザ光のエネルギーを、導電層4を介して試料に効率的に伝えることが可能となる。したがって、導電層4の材料としては、導電性の高い金属が用いられることが好ましい。
 以上の観点から、導電層4の材料としては、例えば、Au(金)、Pt(白金)等が用いられることが好ましい。導電層4は、例えば、メッキ法、原子層堆積法(ALD:Atomic Layer Deposition)、蒸着法、スパッタ法等によって、厚さ1nm~350nm程度に形成される。なお、導電層4の材料としては、例えば、Cr(クロム)、Ni(ニッケル)、Ti(チタン)等が用いられてもよい。
 支持部5は、イオン化基板3の第1表面3aと基板2とが互いに離間するように、基板2に対してイオン化基板3を支持する部材である。支持部5は、イオン化基板3の第1表面3aと基板2におけるイオン化基板3に対向する表面2aとの間に隙間を形成するための隙間形成部材として機能する。本実施形態では、支持部5の外形は、Z方向から見て、イオン化基板3とほぼ同じ大きさの長方形板状をなしている。また、支持部5の厚さは、例えば40μm程度である。
 Z方向から見て、支持部5における複数の測定領域Rと重なる部分には、測定領域Rに対応する形状(ここでは直径3mmの円形)の貫通孔5aが形成されている。すなわち、支持部5は、Z方向から見て、複数の測定領域Rを区切るように、第1表面3aにおける各測定領域Rの周縁部と基板2との間に設けられた第1支持部5b(各貫通孔5aの周縁部分)を有している。また、支持部5は、イオン化基板3の周縁部(Z方向から見て、複数の測定領域Rが設けられた領域よりも外側の部分)と基板2との間に設けられた第2支持部5c(イオン化基板3の周縁部と重なる部分)も有している。
 第1支持部5bは、複数の貫通孔5a間の隔壁部に相当する部分であり、複数の測定領域Rを規定するように形成されている。第1支持部5bは、例えば、イオン化基板3の第1表面3aと基板2の表面2aとを接着する接着部材により形成されている。具体的には、第1支持部5bは、例えば、導電性を有する両面テープ、真空接着剤等である。このような第1支持部5bによれば、イオン化基板3の第1表面3aと基板2の表面2aとの間の隙間を確保しつつ、基板2の表面2aに対してイオン化基板3を固定することができる。ここで、イオン化基板3には複数の貫通孔3cが設けられており、且つ、イオン化基板3及び導電層4は非常に薄い。このため、イオン化基板3の第2表面3b側から試料支持体1を見た場合に、貫通孔5a及び第1支持部5bの境界が透けて見える。これにより、試料支持体1を用いて測定を実施するオペレータは、各測定領域Rを視認することができる。また、第1支持部5bによれば、一の測定領域Rに滴下された試料の過剰分がイオン化基板3の第1表面3aと基板2の表面2aとの間の隙間を介して他の測定領域Rに移動してしまうこと(すなわち、異なる測定領域に滴下された試料同士が混ざってしまうこと)を防止することもできる。
 第2支持部5cは、支持部5の外周枠に相当する部分であり、複数の測定領域Rを包囲するように形成されている。このような第2支持部5cによれば、イオン化基板3の第1表面3aと基板2の表面2aとの間の隙間を確保しつつ、基板2に対してイオン化基板3を安定的に支持することができる。第2支持部5cは、例えば、イオン化基板3の第1表面3aと基板2の表面2aとを接着する接着部材により形成されている。具体的には、第2支持部5cは、例えば、導電性を有する両面テープ、真空接着剤等である。この場合、第2支持部5cにより、基板2の表面2aに対してイオン化基板3を固定することができる。
 テープ6は、導電性を有しており、イオン化基板3の短辺に沿った縁部を基板2に対して固定する部材である。テープ6は、導電層4に接触した状態でイオン化基板3と基板2とを互いに固定する固定部材として機能する。図2に示されるように、本実施形態では、テープ6は、イオン化基板3を基板2に対して押さえこむように、導電層4(ここでは、イオン化基板3の第2表面3bの短辺に沿った縁部の上面を覆う部分)と基板2の表面2aとに接着している。テープ6により、基板2に対してイオン化基板3を確実に固定することができる。また、基板2が導電性を有する場合に、テープ6を介して基板2と導電層4との間の電気的接続(導電層4に電圧を印加するための電気的接続)を行うことができる。これにより、上記電気的接続のための構成を簡素化することができる。
 次に、試料支持体1を用いた質量分析方法(レーザ脱離イオン化法を含む)について説明する。図5は、本実施形態に係る質量分析方法の工程を示す概略図である。図5においては、導電層4の図示が省略されている。
 まず、上述した試料支持体1が用意される(第1工程)。試料支持体1は、質量分析方法を実施する者によって製造されることで用意されてもよいし、試料支持体1の製造者又は販売者等から取得されることで用意されてもよい。
 続いて、図5の(A)に示されるように、イオン化基板3における1つの測定領域Rに対して試料Sが滴下される(第2工程)。ここで、上述した支持部5によって、イオン化基板3の第1表面3aと基板2の表面2aとの間に隙間が形成されている。このため、イオン化基板3の第2表面3bに対する試料Sの滴下量が適量よりも多かった場合には、重力により、イオン化基板3に設けられた貫通孔3cを介して、試料Sの過剰分がイオン化基板3の第1表面3aと基板2の表面2aとの間の隙間に流れ込むことになる。一方、貫通孔3cの幅が1nm~700nmと非常に小さいことにより、第2表面3bに対するレーザ光の照射によりイオン化させるための試料Sを貫通孔3c内に好適に留めることができる。これにより、図5の(B)に示されるように、試料Sがイオン化基板3に浸透した後(試料Sの乾燥後)において、試料Sの過剰分がイオン化基板3の第1表面3aと基板2の表面2aとの間の隙間に逃されている一方で、イオン化に必要な適量の試料Sが貫通孔3c内に留まった状態となる。
 続いて、試料支持体1及び試料Sは、例えば、図示しない質量分析装置のステージ上に載置される。続いて、図5の(C)に示されるように、質量分析装置の電圧印加部101によって、基板2の表面2a及びテープ6(図2参照)を介して試料支持体1の導電層4(図2参照)に電圧が印加される(第3工程)。続いて、質量分析装置のレーザ光出射部102によって、イオン化基板3の第2表面3bに対してレーザ光Lが照射される(第3工程)。つまり、レーザ光Lは、試料Sが滴下された測定領域Rに対して照射される。
 このように、導電層4に電圧が印加されつつイオン化基板3の第2表面3bに対してレーザ光Lが照射されることにより、イオン化基板3に形成された貫通孔3cに留まった試料S(特に、貫通孔3cの第2表面3b側の開口付近の試料S)の成分がイオン化され、試料イオンSI(イオン化された成分)が放出される(第4工程)。具体的には、レーザ光Lのエネルギーを吸収した導電層4(図3参照)から、イオン化基板3に形成された貫通孔3cに留まった試料Sの成分にエネルギーが伝達され、エネルギーを獲得した成分が気化すると共に電荷を獲得して、試料イオンSIとなる。以上の第1工程~第4工程が、試料支持体1を用いたレーザ脱離イオン化法に相当する。
 放出された試料イオンSIは、試料支持体1と質量分析装置の検出器103との間に設けられたグランド電極(図示省略)に向かって加速しながら移動する。つまり、試料イオンSIは、電圧が印加された導電層4とグランド電極との間に生じた電位差によって、グランド電極に向かって加速しながら移動する。そして、検出器103によって試料イオンSIが検出される(第5工程)。なお、ここでの質量分析装置は、飛行時間型質量分析法(TOF-MS:Time-of-Flight Mass Spectrometry)を利用する質量分析装置である。以上の第1工程~第5工程が、試料支持体1を用いた質量分析方法に相当する。
 図6は、比較例に係るレーザ脱離イオン化法の工程を示す概略図である。具体的には、図6は、従来の表面支援レーザ脱離イオン化法(SALDI:Surface-Assisted Laser Desorption/Ionization)の概略を示している。比較例に係るレーザ脱離イオン化法では、表面に微細な凹凸構造を有する基板300が使用される。具体的には、まず、基板300の1つの測定スポット(基板300の凹凸構造が設けられた面)に対して試料Sが滴下される(図6の(A))。ここで、基板300には、試料支持体1のように、試料Sの過剰分を逃すための空間が設けられていない。このため、試料Sの滴下量が適量よりも多い場合、試料Sが基板300の表面に浸透した後(試料Sの乾燥後)、試料Sの過剰分が基板300の凹凸構造から溢れ出た状態(すなわち、凹凸構造が試料S中に埋没した状態)となる(図6の(B))。このため、いわゆる凹凸効果(凹凸構造によりレーザ光のエネルギーが試料に伝わり易くなる効果)が発揮されず、レーザ光を基板300の表面に対して照射した際の試料Sのイオン化効率が低下してしまう(図6の(C))。一方、上述したように、試料支持体1を用いたレーザ脱離イオン化法によれば、試料Sの過剰分がイオン化基板3の第2表面3b上に溢れることが防止されるため、試料Sのイオン化効率の低下を抑制することができる。
 以上説明したように、試料支持体1では、支持部5により、イオン化基板3の第1表面3aと基板2との間に隙間が形成される。これにより、イオン化基板3の第2表面3bに対する試料Sの滴下量が適量よりも多かったとしても、イオン化基板3に設けられた貫通孔3cを介して、試料Sの過剰分をイオン化基板3の第1表面3aと基板2との間の隙間に逃すことができる。このため、試料Sの過剰分が第2表面3b上に溢れ出すことが抑制され、第2表面3bに対するレーザ光Lの照射によって試料Sの成分をイオン化する際のイオン化効率の低下が抑制される。また、試料支持体1では、第1支持部5bによって区切られた複数の測定領域Rを用いることにより、試料Sの連続測定を行うことが可能となっている。以上により、試料支持体1によれば、試料Sの滴下量に起因するイオン化効率の低下を抑制しつつ、試料Sの連続測定を行うことができる。
 また、基板2が導電性を有するスライドガラス又は金属により形成されているため、導電層4に電圧を印加するための電気的接続を基板2を介して行うことが可能となる。その結果、上記電気的接続のための構成を簡素化することができる。
 また、イオン化基板3は、バルブ金属又はシリコンを陽極酸化することにより形成されている。この場合、バルブ金属又はシリコンの陽極酸化によって、複数の微細な貫通孔3cが設けられたイオン化基板3を適切かつ容易に実現できる。
 また、貫通孔3cの幅は、1nm~700nmである。これにより、イオン化基板3の第2表面3bに滴下された試料Sの過剰分については貫通孔3cを介してイオン化基板3の第1表面3aと基板2との間の隙間に移動させつつ、第2表面3bに対するレーザ光Lの照射によりイオン化させるための試料Sを貫通孔3c内に好適に留めることができる。
 また、試料支持体1は、導電性を有し、導電層4に接触した状態でイオン化基板3と基板2とを互いに固定するテープ6を備えている。このため、テープ6により、基板2に対してイオン化基板3を確実に固定することができる。また、基板2が導電性を有する場合に、テープ6を介して基板2と導電層4との間の電気的接続(導電層4に電圧を印加するための電気的接続)を行うことができる。これにより、上記電気的接続のための構成を簡素化することができる。
 また、上述したレーザ脱離イオン化法の第1工程において用意される試料支持体1では、支持部5により、イオン化基板3の第1表面3aと基板2との間に隙間が形成される。これにより、第2工程において、イオン化基板3の第2表面3bに対する試料Sの滴下量が適量よりも多かったとしても、イオン化基板3に設けられた貫通孔3cを介して、試料Sの過剰分をイオン化基板3の第1表面3aと基板2との間の隙間に逃すことができる。このため、試料Sの過剰分が第2表面3b上に溢れ出すことが抑制される。その結果、第3工程において、第2表面3bに対するレーザ光Lの照射によって試料Sの成分をイオン化する際のイオン化効率の低下が抑制される。以上により、このレーザ脱離イオン化法によれば、試料の滴下量に起因するイオン化効率の低下を抑制することができる。
[第2実施形態]
 図7及び図8を参照して、第2実施形態に係る試料支持体1Aについて説明する。図7の(A)は、試料支持体1Aの平面図である。図7の(B)は、(A)におけるB-B線に沿った試料支持体1Aの断面図である。図8は、図7に示される破線Aで囲まれた部分の概略構成を示す要部拡大断面図である。図7及び図8に示されるように、試料支持体1Aは、フレーム7を備えると共に導電層4及びテープ6の配置が一部変更されている点において、試料支持体1と相違しており、その他の構成については試料支持体1と同様である。
 フレーム7は、基板2とイオン化基板3とが対向する方向(Z方向)から見て、イオン化基板3における第2表面3bの周縁部上に少なくとも形成されている。本実施形態では、フレーム7の外形は、Z方向から見て、イオン化基板3とほぼ同じ大きさの長方形板状をなしている。また、フレーム7の厚さは、例えば1mm以下である。フレーム7は、例えば金属によって形成されている。
 Z方向から見て、フレーム7における複数の測定領域Rと重なる部分には、測定領域Rに対応する形状(ここでは直径3mmの円形)の貫通孔7aが形成されている。すなわち、フレーム7は、Z方向から見て、複数の測定領域Rを区切るように、第2表面3bにおける各測定領域Rの周縁部上に設けられた壁部7b(各貫通孔7aの周縁部分)を有している。また、フレーム7は、イオン化基板3の第2表面3bの周縁部(Z方向から見て、複数の測定領域Rが設けられた領域よりも外側の部分)上に設けられた外縁部7c(イオン化基板3の周縁部と重なる部分)も有している。
 壁部7bは、複数の貫通孔7a間の隔壁部に相当する部分であり、複数の測定領域Rを規定するように形成されている。これにより、試料支持体1を用いて測定を実施するオペレータは、各測定領域Rを視認することができる。また、壁部7bによれば、一の測定領域Rに試料を滴下した際等において、試料の一部が一の測定領域Rに隣接する他の測定領域Rに飛散することを防止することもできる。外縁部7cは、長方形板状のフレーム7の外周枠に相当する部分であり、複数の測定領域Rを包囲するように形成されている。
 図8に示されるように、フレーム7(壁部7b及び外縁部7c)は、接着層8によってイオン化基板3の第2表面3bに固定されている。接着層8の材料としては、放出ガスの少ない接着材料(例えば、低融点ガラス、真空用接着剤等)が用いられることが好ましい。また、試料支持体1Aでは、導電層4は、イオン化基板3の第2表面3bのうちフレーム7の開口(貫通孔7a)に対応する領域(すなわち、測定領域R)、貫通孔7aの内面、及びフレーム7におけるイオン化基板3とは反対側の表面7dに一続きに(一体的に)形成されている。すなわち、導電層4は、フレーム7の表面7dを更に覆うように形成されている。これにより、後述するように、導電層4に電圧を印加するための電気的接続をフレーム7上で行うことができる。なお、測定領域Rにおいては、試料支持体1と同様に、導電層4は第2表面3bのうち貫通孔3cが形成されていない部分を覆っている。すなわち、各貫通孔3cの第2表面3b側の開口は、導電層4によって塞がれていない。
 また、試料支持体1Aでは、テープ6は、導電層4におけるフレーム7の表面7dを覆う部分に接触した状態でイオン化基板3と基板2とを互いに固定する固定部材として機能する。具体的には、テープ6は、フレーム7の外縁部7cの上からイオン化基板3を基板2に対して押さえこむように、導電層4(ここでは、表面7dを覆う部分)と基板2の表面2aとに接着している。テープ6により、基板2、イオン化基板3、及びフレーム7を確実に互いに固定することができる。また、基板2が導電性を有する場合に、テープ6を介して基板2と導電層4との間の電気的接続(導電層4に電圧を印加するための電気的接続)を行うことができる。これにより、上記電気的接続のための構成を簡素化することができる。特に、上記電気的接続をフレーム7の表面7d上で行うことができるため、イオン化基板3上の実効領域(すなわち測定領域R)を侵食することなく、上記電気的接続を実現することができる。
 試料支持体1Aでは、試料支持体1と同様に、支持部5により、イオン化基板3の第1表面3aと基板2との間に隙間が形成される。これにより、イオン化基板3の第2表面3bに対する試料Sの滴下量が適量よりも多かったとしても、イオン化基板3に設けられた貫通孔3cを介して、試料Sの過剰分をイオン化基板3の第1表面3aと基板2との間の隙間に逃すことができる。このため、試料Sの過剰分が第2表面3b上に溢れ出すことが抑制され、第2表面3bに対するレーザ光Lの照射によって試料Sの成分をイオン化する際のイオン化効率の低下が抑制される。また、この試料支持体1Aでは、フレーム7の壁部7bによって区切られた複数の測定領域Rを用いることにより、試料Sの連続測定を行うことが可能となっている。以上により、試料支持体1Aによれば、試料Sの滴下量に起因するイオン化効率の低下を抑制しつつ、試料Sの連続測定を行うことができる。
[第3実施形態]
 図9を参照して、第3実施形態に係る試料支持体1Bについて説明する。図9の(A)は、試料支持体1Bの平面図である。図9の(B)は、(A)におけるB-B線に沿った試料支持体1Bの断面図(基板12の平面図)である。図9に示されるように、試料支持体1Bは、基板2の代わりに基板12を備える点において、試料支持体1と相違しており、その他の構成については試料支持体1と同様である。
 基板12には、複数の測定領域Rに対応するように、基板12とイオン化基板3とが対向する方向(Z方向)に沿って延びる複数の貫通孔12aが設けられている。本実施形態では、貫通孔12aは、Z方向から見て、対応する測定領域Rと同一の大きさの円形形状をなしている。すなわち、貫通孔12aは、Z方向から見て、対応する支持部5の貫通孔5aと重なっている。ただし、貫通孔12aは、必ずしもZ方向から見て対応する測定領域R及び貫通孔5aと完全に重なっていなくてもよい。また、Z方向から見た貫通孔12aの外形は、必ずしも対応する測定領域R及び貫通孔5aの外形(ここでは直径3mmの円形)と一致していなくてもよい。すなわち、Z方向から見た貫通孔12aの外形は、対応する測定領域R及び貫通孔5aの外形よりも小さくてもよいし、或いは大きくてもよい。
 試料支持体1Bでは、基板12のイオン化基板3側の少なくとも一部が、試料Sを基板12の内側に移動させることが可能なように形成されている。具体的には、基板12において、複数の貫通孔12aが形成されている。このため、イオン化基板3の貫通孔3cの第1表面3a側の開口から基板12側に流れ出た試料Sを、基板12の貫通孔12a内に移動させることが可能となっている。すなわち、各測定領域Rに対応するように基板12に設けられた貫通孔12aに試料Sの過剰分を逃すことができる。これにより、イオン化基板3の第2表面3bに対する試料Sの滴下量が適量よりも多かったとしても、イオン化基板3に設けられた貫通孔3cを介して基板12に流れ込んだ試料Sの過剰分を基板12の内側(ここでは貫通孔12aの内部)に逃すことができる。このため、試料Sの過剰分が第2表面3b上に溢れ出すことが抑制され、第2表面3bに対するレーザ光Lの照射によって試料Sの成分をイオン化する際のイオン化効率の低下が抑制される。以上により、試料支持体1Bによれば、試料Sの滴下量に起因するイオン化効率の低下を抑制することができる。また、試料支持体1Bでは、イオン化基板3の第2表面3b上に用意された複数の測定領域Rを用いることにより、試料Sの連続測定を行うことが可能となっている。
 また、試料支持体1Bでは、基板12に形成された貫通孔12aを介して試料Sの過剰分を基板12の外側(イオン化基板3側とは反対側)に逃すことができるため、試料Sの過剰分を一層効果的に排出することができる。
 また、上述したレーザ脱離イオン化法において、試料支持体1の代わりに試料支持体1Bを用いた場合には、上記第2工程において、イオン化基板3の第2表面3bに対する試料Sの滴下量が適量よりも多かったとしても、イオン化基板3に設けられた貫通孔3cを介して基板2に流れ込んだ試料Sの過剰分を基板12の内側(ここでは貫通孔12aの内部)に逃すことができる。このため、試料Sの過剰分が第2表面3b上に溢れ出すことが抑制される。その結果、上記第3工程において、第2表面3bに対するレーザ光Lの照射によって試料Sの成分をイオン化する際のイオン化効率の低下が抑制される。以上により、試料支持体1Bを用いたレーザ脱離イオン化法によれば、試料Sの滴下量に起因するイオン化効率の低下を抑制することができる。
[第4実施形態]
 図10の(A)は、第4実施形態に係る試料支持体1Cを示す図である。試料支持体1Cは、基板12の代わりに基板22を備える点において、試料支持体1Bと相違しており、その他の構成については試料支持体1Bと同様である。
 基板22のイオン化基板3側の面22aには、複数の測定領域Rに対応するように、複数の凹部22bが設けられている。本実施形態では、凹部22bの開口は、Z方向から見て、対応する測定領域Rと同一の大きさの円形形状をなしている。すなわち、凹部22bは、Z方向から見て、対応する支持部5の貫通孔5aと重なっている。ただし、凹部22bは、必ずしもZ方向から見て対応する測定領域R及び貫通孔5aと完全に重なっていなくてもよい。また、Z方向から見た凹部22bの外形は、必ずしも対応する測定領域R及び貫通孔5aの外形(ここでは直径3mmの円形)と一致していなくてもよい。すなわち、Z方向から見た凹部22bの外形は、対応する測定領域R及び貫通孔5aの外形よりも小さくてもよいし、或いは大きくてもよい。
 試料支持体1Cにおいても、試料支持体1Bと同様に、基板22のイオン化基板3側の少なくとも一部が、試料Sを基板22の内側に移動させることが可能なように形成されている。具体的には、基板22のイオン化基板3に対向する面22aにおいて、複数の凹部22bが設けられている。このため、イオン化基板3の貫通孔3cの第1表面3a側の開口から基板22側に流れ出た試料Sを、基板22の凹部22b内に移動させることが可能となっている。すなわち、各測定領域Rに対応するように基板22に設けられた各凹部22bに試料Sの過剰分を逃すことができる。これにより、上述した試料支持体1Bと同様の効果が得られる。
[第5実施形態]
 図10の(B)は、第5実施形態に係る試料支持体1Dを示す図である。試料支持体1Dは、基板12の代わりに基板32を備える点において、試料支持体1Bと相違しており、その他の構成については試料支持体1Bと同様である。
 試料支持体1Dにおいても、試料支持体1Bと同様に、基板32のイオン化基板3側の少なくとも一部が、試料Sを基板32の内側に移動させることが可能なように形成されている。具体的には、基板32は、吸水性を有する材料によって形成されている。基板32は、例えばウレタン等の樹脂、ポーラス金属、セラミック等により形成されている。このため、イオン化基板3の貫通孔3cを介して基板32に到達した試料Sを基板32の内部に吸収することによって、試料Sの過剰分を基板32の内側に逃すことができる。これにより、上述した試料支持体1B及び1Cと同様の効果が得られる。
[第6実施形態]
 図10の(C)は、第6実施形態に係る試料支持体1Eを示す図である。試料支持体1Eは、支持部5を備えておらず、イオン化基板3の第1表面3aが基板12の表面に接触している点において、試料支持体1Bと相違しており、その他の構成については試料支持体1Bと同様である。試料支持体1Eにおいては、支持部5が省略されたことにより、イオン化基板3の第1表面3aと基板12との間に隙間が形成されていない。このような試料支持体1Eにおいても、試料支持体1Bと同様に、基板12に形成された貫通孔12aにより、イオン化基板3の貫通孔3cの第1表面3a側の開口から基板12側に流れ出た試料Sを、基板12の貫通孔12a内に移動させることができる。すなわち、このような試料支持体1Eによっても、上述した試料支持体1B~1Dと同様に、試料Sの過剰分が第2表面3b上に溢れ出すことを抑制し、試料Sの滴下量に起因するイオン化効率の低下を抑制することができる。
 なお、試料支持体1C又は1Dにおいても、支持部5は省略されてもよい。そのような場合であっても、上述した基板22又は基板32を備えることにより、試料Sの過剰分が第2表面3b上に溢れ出すことを抑制し、試料Sの滴下量に起因するイオン化効率の低下を抑制することができる。ただし、試料支持体1B~1Dのように、上述した基板12,22,32を用いる場合であっても、支持部5によってイオン化基板3の第1表面3aと基板12,22,32との間に隙間が形成されてもよい。この場合、試料Sの過剰分をイオン化基板3の第1表面3aと基板12,22,32との間の隙間に更に逃すことができるため、試料Sの過剰分が第1表面3a上に溢れ出すことをより一層効果的に抑制することができる。
[変形例]
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、上述した試料支持体1,1A~1Eの構成は、適宜組み合わせられてもよい。例えば、試料支持体1Aのフレーム7は、基板に加工が施された試料支持体1B~1Eにも設けられてもよい。
 また、試料支持体1,1A~1Eの一部の構成は、適宜省略されてもよい。例えば、試料支持体1において、支持部5が接着部材であり、支持部5によってイオン化基板3と基板2とが十分に固定される場合には、テープ6は省略されてもよい。また、レーザ脱離イオン化法の第3工程においては、基板2,12,22,32及びテープ6を介さずに導電層4に電圧が印加されてもよい。その場合、基板2,12,22,32及びテープ6は、導電性を有していなくてもよい。
 また、イオン化基板3は、導電性を有していてもよい。具体的には、イオン化基板3は、例えば半導体等の導電性材料からなっていてもよい。この場合、第3工程においてイオン化基板3に電圧が印加されてもよい。その場合、試料支持体1,1A~1Eにおいて導電層4を省略することができると共に、上述したように導電層4を備える試料支持体1,1A~1Eを用いる場合と同様に、試料の滴下量に起因するイオン化効率の低下を抑制することができる。
 また、例えばイオン化基板3の第2表面3bに測定領域Rの境界を示すマーキングがされるような場合には、複数の測定領域Rを区切るための構成(上記実施形態では、第1支持部5b又はフレーム7の壁部7b)は省略されてもよい。また、試料支持体1Aのように支持部5及びフレーム7の両方が設けられる場合、第1支持部5b及び壁部7bの少なくとも一方によって複数の測定領域Rが区切られていてもよい。また、イオン化基板3は、必ずしも複数の測定領域Rを有していなくてもよく、測定領域Rの数は1つでもよい。
 また、第1支持部5b及び第2支持部5cは、一体的に形成されていなくてもよい。例えば、1つの測定領域Rに対応する第1支持部は、他の測定領域Rに対応する第1支持部とは独立して設けられた部材であってもよい。具体的には、1つの測定領域Rに対応する第1支持部は、例えば、Z方向から見て当該測定領域Rの周縁部に重なるように形成された円筒状の部材であってもよい。また、第2支持部は、第1支持部とは独立して設けられた部材であってもよい。具体的には、第2支持部は、例えば、Z方向から見てイオン化基板3の周縁部に重なるように形成された矩形枠状の部材であってもよい。
 また、壁部7b及び外縁部7cは、一体的に形成されていなくてもよい。例えば、1つの測定領域Rに対応する壁部は、他の測定領域Rに対応する壁部とは独立して設けられた部材であってもよい。具体的には、1つの測定領域Rに対応する壁部は、例えば、Z方向から見て当該測定領域Rの周縁部に重なるように形成された円筒状の部材であってもよい。また、外縁部は、壁部とは独立して設けられた部材であってもよい。具体的には、外縁部は、例えば、Z方向から見てイオン化基板3の周縁部に重なるように形成された矩形枠状の部材であってもよい。
 また、複数の測定領域Rのうち少なくとも1つの測定領域Rは、質量校正(マスキャリブレーション)のための領域として用いられてもよい。測定対象試料の測定(上述した質量分析方法)を開始する前に、質量校正用の領域として設定された測定領域Rに質量校正用の試料(例えばペプチド等)を滴下して測定を実施することにより、マススペクトルの補正を行うことが可能となる。このようなマススペクトルの補正を測定対象試料の測定前に行うことにより、当該測定対象試料を測定した際に当該測定対象試料の正確なマススペクトルを得ることが可能となる。
 また、上記レーザ脱離イオン化法(第1~第3工程)は、本実施形態で説明した試料Sの質量分析だけでなく、イオンモビリティ測定等の他の測定・実験にも利用され得る。
 また、試料支持体1,1A~1Eの用途は、レーザ光Lの照射による試料Sのイオン化に限定されない。試料支持体1,1A~1Eは、レーザ光L以外のエネルギー線(例えば、イオンビーム、電子線等)の照射による試料Sのイオン化に用いられてもよい。すなわち、上記レーザ脱離イオン化法において、レーザ光Lの代わりにレーザ光L以外のエネルギー線が照射されてもよい。
 1,1A,1B,1C,1D,1E…試料支持体、2,12,22,32…基板、3…イオン化基板、3a…第1表面、3b…第2表面、3c…貫通孔、4…導電層、5…支持部、5a…貫通孔、5b…第1支持部、5c…第2支持部、6…テープ(固定部材)、7…フレーム、7a…貫通孔、7b…壁部、7c…外縁部、L…レーザ光、R…測定領域、S…試料。

Claims (9)

  1.  基板と、
     前記基板上に配置されるイオン化基板と、
     前記イオン化基板における前記基板に対向する第1表面と前記基板とが互いに離間するように、前記基板に対して前記イオン化基板を支持する支持部と、
    を備え、
     前記イオン化基板は、前記第1表面とは反対側の第2表面において試料を滴下するための複数の測定領域を有し、
     前記イオン化基板の少なくとも各前記測定領域には、前記第1表面及び前記第2表面に開口する複数の貫通孔が形成されており、
     少なくとも前記第2表面における前記貫通孔の周縁部には、導電層が設けられており、
     前記支持部は、前記基板と前記イオン化基板とが対向する方向から見て、前記複数の測定領域を区切るように、前記第1表面における各前記測定領域の周縁部と前記基板との間に設けられた第1支持部を有する、
    試料支持体。
  2.  前記第1支持部は、前記イオン化基板と前記基板とを接着する接着部材である、
    請求項1に記載の試料支持体。
  3.  前記支持部は、前記イオン化基板の周縁部と前記基板との間に設けられた第2支持部を有する、
    請求項1又は2に記載の試料支持体。
  4.  前記第2支持部は、前記イオン化基板と前記基板とを接着する接着部材である、
    請求項3に記載の試料支持体。
  5.  前記基板は、導電性を有するスライドガラス又は金属により形成されている、
    請求項1~4のいずれか一項に記載の試料支持体。
  6.  前記イオン化基板は、バルブ金属又はシリコンを陽極酸化することにより形成されている、
    請求項1~5のいずれか一項に記載の試料支持体。
  7.  前記貫通孔の幅は、1nm~700nmである、
    請求項1~6のいずれか一項に記載の試料支持体。
  8.  導電性を有し、前記導電層に接触した状態で前記イオン化基板と前記基板とを互いに固定する固定部材を更に備える、
    請求項1~7のいずれか一項に記載の試料支持体。
  9.  基板と、
     導電性を有し、前記基板上に配置されるイオン化基板と、
     前記イオン化基板における前記基板に対向する第1表面と前記基板とが互いに離間するように、前記基板に対して前記イオン化基板を支持する支持部と、
    を備え、
     前記イオン化基板は、前記第1表面とは反対側の第2表面において試料を滴下するための複数の測定領域を有し、
     前記イオン化基板の少なくとも各前記測定領域には、前記第1表面及び前記第2表面に開口する複数の貫通孔が形成されており、
     前記支持部は、前記基板と前記イオン化基板とが対向する方向から見て、前記複数の測定領域を区切るように、前記第1表面における各前記測定領域の周縁部と前記基板との間に設けられた第1支持部を有する、
    試料支持体。
PCT/JP2018/029300 2017-09-21 2018-08-03 試料支持体 WO2019058786A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880060435.1A CN111094964B (zh) 2017-09-21 2018-08-03 试样支撑体
JP2019517999A JP6535150B1 (ja) 2017-09-21 2018-08-03 試料支持体
US16/647,426 US11658018B2 (en) 2017-09-21 2018-08-03 Sample support body
EP18857458.6A EP3686585A4 (en) 2017-09-21 2018-08-03 SAMPLE HOLDER BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017181596 2017-09-21
JP2017-181596 2017-09-21

Publications (1)

Publication Number Publication Date
WO2019058786A1 true WO2019058786A1 (ja) 2019-03-28

Family

ID=65810450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029300 WO2019058786A1 (ja) 2017-09-21 2018-08-03 試料支持体

Country Status (5)

Country Link
US (1) US11658018B2 (ja)
EP (1) EP3686585A4 (ja)
JP (1) JP6535150B1 (ja)
CN (1) CN111094964B (ja)
WO (1) WO2019058786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116695A4 (en) * 2020-03-06 2024-04-24 Hamamatsu Photonics K.K. SAMPLE CARRIER, IONIZATION METHODS AND MASS SPECTROMETRY METHODS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11047827B2 (en) 2017-09-21 2021-06-29 Hamamatsu Photonics K.K. Sample support body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3122331U (ja) * 2006-03-30 2006-06-08 株式会社島津製作所 サンプルプレート及びこれを備えた質量分析装置
US20060266941A1 (en) * 2005-05-26 2006-11-30 Vestal Marvin L Method and apparatus for interfacing separations techniques to MALDI-TOF mass spectrometry
JP2007192673A (ja) * 2006-01-19 2007-08-02 Shimadzu Corp サンプルプレート
US7695978B2 (en) 2007-01-31 2010-04-13 Burle Technologies, Inc. MALDI target plate utilizing micro-wells
JP2014021048A (ja) 2012-07-23 2014-02-03 Jeol Ltd サンプルプレートおよび質量分析装置
WO2017038710A1 (ja) * 2015-09-03 2017-03-09 浜松ホトニクス株式会社 試料支持体、及び試料支持体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9922837D0 (en) * 1999-09-27 1999-11-24 Ludwig Inst Cancer Res Modified ion source targets for use in liquid maldi ms
EP4257966A3 (en) 2015-09-03 2023-11-29 Hamamatsu Photonics K.K. Mass spectrometry device
US11355333B2 (en) * 2017-09-21 2022-06-07 Hamamatsu Photonics K.K. Sample support body
US11047827B2 (en) * 2017-09-21 2021-06-29 Hamamatsu Photonics K.K. Sample support body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060266941A1 (en) * 2005-05-26 2006-11-30 Vestal Marvin L Method and apparatus for interfacing separations techniques to MALDI-TOF mass spectrometry
JP2007192673A (ja) * 2006-01-19 2007-08-02 Shimadzu Corp サンプルプレート
JP3122331U (ja) * 2006-03-30 2006-06-08 株式会社島津製作所 サンプルプレート及びこれを備えた質量分析装置
US7695978B2 (en) 2007-01-31 2010-04-13 Burle Technologies, Inc. MALDI target plate utilizing micro-wells
JP2014021048A (ja) 2012-07-23 2014-02-03 Jeol Ltd サンプルプレートおよび質量分析装置
WO2017038710A1 (ja) * 2015-09-03 2017-03-09 浜松ホトニクス株式会社 試料支持体、及び試料支持体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686585A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4116695A4 (en) * 2020-03-06 2024-04-24 Hamamatsu Photonics K.K. SAMPLE CARRIER, IONIZATION METHODS AND MASS SPECTROMETRY METHODS

Also Published As

Publication number Publication date
JP6535150B1 (ja) 2019-06-26
EP3686585A1 (en) 2020-07-29
US20200273688A1 (en) 2020-08-27
JPWO2019058786A1 (ja) 2019-11-14
EP3686585A4 (en) 2021-06-09
CN111094964A (zh) 2020-05-01
US11658018B2 (en) 2023-05-23
CN111094964B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP6539801B1 (ja) 試料支持体
JP6535151B1 (ja) レーザ脱離イオン化法及び質量分析方法
WO2019058783A1 (ja) 試料支持体
JP7181901B2 (ja) 試料支持体、イオン化法及び質量分析方法
JP6535150B1 (ja) 試料支持体
JPWO2019155835A1 (ja) 試料支持体、イオン化法及び質量分析方法
JP7236295B2 (ja) 試料支持体、イオン化方法、及び質量分析方法
JP7233268B2 (ja) 試料支持体、イオン化方法、及び質量分析方法
JP7278894B2 (ja) 試料支持体、アダプタ、イオン化法及び質量分析方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517999

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857458

Country of ref document: EP

Effective date: 20200421