WO2019058654A1 - Press system - Google Patents

Press system Download PDF

Info

Publication number
WO2019058654A1
WO2019058654A1 PCT/JP2018/022064 JP2018022064W WO2019058654A1 WO 2019058654 A1 WO2019058654 A1 WO 2019058654A1 JP 2018022064 W JP2018022064 W JP 2018022064W WO 2019058654 A1 WO2019058654 A1 WO 2019058654A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide
height
press
work
feedable
Prior art date
Application number
PCT/JP2018/022064
Other languages
French (fr)
Japanese (ja)
Inventor
桜井 均
広陽 山崎
篤夫 桶谷
俊宏 南
Original Assignee
コマツ産機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ産機株式会社 filed Critical コマツ産機株式会社
Priority to US16/615,540 priority Critical patent/US20200171561A1/en
Priority to CN201880025786.9A priority patent/CN110520227B/en
Priority to DE112018001445.2T priority patent/DE112018001445T5/en
Publication of WO2019058654A1 publication Critical patent/WO2019058654A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/021Control or correction devices in association with moving strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/04Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
    • B21D43/08Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by rollers
    • B21D43/09Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by rollers by one or more pairs of rollers for feeding sheet or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/02Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by lever mechanism
    • B30B1/06Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by lever mechanism operated by cams, eccentrics, or cranks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses

Definitions

  • the present invention relates to a press system.
  • Patent Document 1 discloses a method of setting rotational motion when a crankshaft is rotated by a servomotor in a conventional press.
  • An object of the present invention is to provide a press system capable of improving the production speed.
  • a press system includes a press unit, a transport unit, and a control unit.
  • the press unit has an electric motor, an eccentric mechanism, a slide, and a bolster.
  • the eccentric mechanism converts rotational movement by the electric motor into movement in the vertical direction.
  • the slide is mountable to the upper mold and is driven to move up and down through an eccentric mechanism.
  • the lower mold can be attached to the bolster.
  • the press unit press-works the work by the elevation operation of the slide relative to the bolster.
  • the transport unit transports the work.
  • the control unit controls the press unit and the transport unit.
  • the control unit raises and lowers the slide based on a predetermined press motion.
  • the slide position at which the workpiece can be transported without interfering with the upper mold is a transportable height, which is higher than the transportable height, and the highest position of the press motion is a standby height.
  • the control unit also transports the workpiece while the slide is moving between the feedable height and the standby height.
  • the production speed can be improved.
  • FIG. 1 is a diagram for explaining the configuration of a press system based on the embodiment.
  • the press system includes an uncoiler 100, a leveler feeder (conveyor unit) 200, a press device (press unit) 10, and a conveyor 120.
  • a coil material (band plate) is wound around the uncoiler 100.
  • the coil material unwound from the uncoiler 100 is conveyed to the press device 10 through the leveler feeder 200.
  • the leveler feeder 200 adjusts the position of the feeding height of the coil material to be transported from the uncoiler 100 to the pressing device 10, and also applies the coil material to the pressing device 10 according to the set operating condition (feeder motion) in the transport direction. Transport
  • the press device 10 press-processes the coil material conveyed from the leveler feeder 200.
  • the conveyer 120 conveys the work formed by press processing in the press device 10.
  • the transfer conveyor 120 can also transfer the formed work to the next pressing device.
  • the parts of the press system are synchronized, and a series of operations are sequentially and continuously performed.
  • the coil material is conveyed from the uncoiler 100 to the press device 10 via the leveler feeder 200. Then, the work pressed and processed by the press device 10 is transported by the transport conveyor 120. The above series of processing is repeated.
  • the structure of the said press system is an example, and in particular it is not restricted to the said structure.
  • the leveler feeder 200 operates in accordance with an instruction from the press device 10.
  • a control unit that controls the leveler feeder 200 is provided in the press device 10.
  • a control unit for controlling the leveler feeder 200 will be described in the press 10.
  • a controller for controlling the press 10 is provided on the leveler feeder 200. It may be done.
  • the control unit that controls the press device 10 and the leveler feeder 200 may be disposed at a position different from the press device 10 and the leveler feeder 200, and the press device 10 and the leveler feeder 200 may be configured to be remotely operated. In the embodiment, a case where one control unit controls both the leveler feeder 200 and the press device 10 will be described.
  • FIG. 2 is a perspective view of the press device 10 based on the embodiment.
  • FIG. 2 As shown in FIG. 2, as an example, a progressive press without a plunger is shown.
  • the press device 10 includes a body frame 2, a slide 20, a bed 4, a bolster 5, a control panel 6, and a control unit 40.
  • a slide 20 is vertically movably supported at a substantially central portion of the main body frame 2 of the press device 10. Below the slide 20, a bolster 5 mounted on a bed 4 is arranged.
  • a control unit 40 is provided on the side of the main body frame 2.
  • a control panel 6 connected to the control unit 40 is provided in front of the control unit 40 on the side of the main body frame 2.
  • an upper mold of the mold for processing a work is detachably mounted on the lower surface of the slide 20, an upper mold of the mold for processing a work is detachably mounted.
  • the lower mold of the molds for processing the work is detachably mounted on the upper surface of the bolster 5.
  • a predetermined work corresponding to these molds is positioned on the lower mold, the upper mold is lowered together with the slide 20, and the work is sandwiched and pressed between the upper mold and the lower mold.
  • a remote controller (remote control unit) 70 which can be remotely controlled from the outside provided to be communicable with the main body of the press device 10 is provided.
  • the operator can perform various setting operations by operating the remote control 70.
  • the remote control 70 communicates with the control unit 40, and can operate the press device 10 in accordance with an instruction from the remote control 70.
  • the remote controller 70 there is shown a case where an upper button 72 and a lower button 74 capable of moving the slide 20 up and down, and a determination button 76 are provided.
  • the control panel 6 is used to input various data necessary to control the press device 10, and switches and numeric keys for inputting data, a setting screen, and a display for displaying data output from the press device 10. Have a bowl.
  • a programmable display in which a transparent touch switch panel is mounted on the front of a graphic display such as a liquid crystal display or a plasma display is adopted.
  • the control panel 6 may be provided with a data input device from an external storage medium such as an IC (Integrated Circuit) card storing data set in advance, or a communication device for transmitting and receiving data via a wireless or communication line. Good.
  • an external storage medium such as an IC (Integrated Circuit) card storing data set in advance, or a communication device for transmitting and receiving data via a wireless or communication line. Good.
  • the configuration of the press device 10 is an example and is not limited to the configuration.
  • only one of the control panel 6 and the remote control 70 may be provided for the press device 10.
  • FIG. 3 is a side sectional view showing the main part of the pressing device 10. As shown in FIG. As shown in FIG. 3, the press device 10 is a servo press.
  • the press device 10 includes a servomotor 121, a spherical hole 33A, a screw shaft 37, a spherical portion 37A, a screw portion 37B, and a connecting rod main body 38. Further, the press device 10 transmits the female screw portion 38A, the connecting rod 39, the main shaft 110, the eccentric portion 110A, the side frame 111, the bearings 112 to 114, the main gear 115, the power transmission shaft 116, A gear 116 A, bearings 117 and 118, and a pulley 119 are provided.
  • the slide 20 is driven by the servomotor 121.
  • the servomotor 121 is an example of an electric motor.
  • the spherical portion 37A provided at the lower end of the screw shaft 37 for die height adjustment is rotatably inserted into the spherical hole 33A formed in the upper portion of the slide 20 in a state in which the spherical portion 37A is prevented from coming off.
  • a spherical joint is constituted by the spherical hole 33A and the spherical portion 37A.
  • the screw portion 37B of the screw shaft 37 is exposed upward from the slide 20 and is screwed with the female screw portion 38A of the connecting rod main body 38 provided above the screw shaft 37.
  • the screw shaft 37 and the connecting rod body 38 constitute an expandable connecting rod 39.
  • the die height refers to the distance from the lower surface of the slide 20 to the upper surface of the bolster 5 when the slide 20 is disposed at the bottom dead center.
  • An upper portion of the connecting rod 39 is rotatably connected to a crank-shaped eccentric portion 110A provided on the main shaft 110.
  • the main shaft 110 is supported by three bearing portions 112, 113 and 114 at the front and rear, between the pair of left and right thick plate-like side frames 111 that constitute the main body frame 2.
  • a main gear 115 is attached to the rear side of the main shaft 110.
  • the main gear 115 meshes with the transmission gear 116A of the power transmission shaft 116 provided below the main gear 115.
  • the power transmission shaft 116 is supported by two front and rear bearing portions 117 and 118 between the side frames 111.
  • the driven pulley 119 is attached to the rear end of the power transmission shaft 116.
  • the pulley 119 is driven by a servomotor 121 disposed below it.
  • the press device 10 includes a bracket 122, an output shaft 121A, a pulley 123, a belt 124, a bracket 125, a position detector 126, a rod 127, a position sensor 128, an auxiliary frame 129, and bolts 131 and 132. And further.
  • the servomotor 121 is supported between the side frames 111 via a substantially L-shaped bracket 122.
  • the output shaft 121A of the servomotor 121 protrudes along the back and forth direction of the press device 10, and power is obtained by the belt 124 wound around the drive side pulley 123 and the driven side pulley 119 provided on the output shaft 121A. It is transmitted.
  • a pair of brackets 125 projecting backward from two upper and lower positions toward the side frame 111 are attached.
  • a rod 127 constituting a position detector 126 such as a linear scale is attached.
  • the rod 127 is provided with a scale for detecting the vertical position of the slide 20, and is fitted in the position sensor 128, which similarly constitutes the position detector 126, so as to be movable up and down.
  • the position sensor 128 is fixed to an auxiliary frame 129 provided on one side frame 111.
  • the auxiliary frame 129 is vertically formed in the vertical direction, the lower part is attached to the side frame 111 by the bolt 131, and the upper part is slidable in the vertical direction by the bolt 132 inserted in the long hole in the vertical direction. It is supported. As described above, the auxiliary frame 129 is fixed to the side frame 111 only at one of the upper and lower sides (in the present embodiment, the lower side), and the other side is supported so as to be movable up and down. Not to be affected by Thus, the position sensor 128 can accurately detect the slide position and the die height position without being affected by such expansion and contraction of the side frame 111.
  • FIG. 4 is a plan view of a partial cross section showing another essential part of the pressing device 10. As shown in FIG.
  • the slide position adjusting mechanism 133 is provided at the worm wheel 134 attached to the outer periphery of the spherical portion 37A via a pin 37C, the worm gear 135 meshing with the worm wheel 134, and the end of the worm gear 135. It comprises an attached input gear 136 and an induction motor 138 having an output gear 137 (FIG. 3) meshing with the input gear 136.
  • the induction motor 138 has a flat shape with a short axial length, and is configured to be compact. It is possible to rotate the screw shaft 37 via the worm wheel 134 by the rotational movement of the induction motor 138. Thus, the screwing length between the screw portion 37B of the screw shaft 37 and the female screw portion 38A of the connecting rod main body 38 is changed, and the slide position of the slide 20 and the die height are adjusted.
  • FIG. 5 is a view for explaining an outline of a drive system of a press system based on the embodiment.
  • the leveler feeder 200 includes a conveyance roller 63, a servomotor 62, an encoder 64, a feed completion detection unit 68, and a servo amplifier 60.
  • the press device 10 includes a control unit 40, a servo amplifier 66, a servomotor 121, an encoder 65, a main gear 115, a main shaft 110, an eccentric portion 110A, a slide 20, and an upper mold 22A.
  • the mold 22 B and the bolster 5 are included.
  • the control unit 40 includes a central processing unit (CPU) 42, a memory 44, a communication circuit 46, and an input unit 48.
  • CPU central processing unit
  • the communication circuit 46 is provided to be able to communicate with the remote control 70.
  • the CPU 42 outputs a target value to the servo amplifier 60.
  • the servo amplifier 60 instructs the servomotor 62 on the basis of the target value.
  • the conveyance roller 63 executes the conveyance operation of the work W in accordance with the drive of the servomotor 62.
  • the feed completion detection unit 68 determines whether the transport operation of the workpiece W is completed, and when it is detected that the transport operation is completed and the workpiece W is stopped, the detection result is used as a transport completion signal. It outputs to CPU42.
  • the encoder 64 outputs a feedback signal to the servo amplifier 60 in accordance with the number of rotations of the servomotor 62 in accordance with the speed instruction.
  • the servo amplifier 60 adjusts the number of rotations of the servomotor 62 to a value according to the target value by controlling the power supply to the servomotor 62 based on the feedback signal from the encoder 64.
  • the CPU 42 controls the transport speed in the transport operation of the workpiece W by the processing. Similarly, the CPU 42 outputs a target value to the servo amplifier 66.
  • the servo amplifier 66 instructs the servomotor 121 on the basis of the target value.
  • the main gear 115 drives the main shaft 110 in accordance with the drive of the servomotor 121. According to the drive of the main shaft 110, the eccentric part 110A rotates.
  • the eccentric part 110A is connected to the slide 20, and the slide 20 on which the upper mold 22A is mounted is moved up and down according to the rotational movement of the eccentric part 110A.
  • the eccentric part 110A constitutes an eccentric mechanism that converts the rotational movement of the servomotor 121 into the movement of the slide 20 in the elevating direction.
  • the workpiece 20 transported between the upper mold 22A and the lower mold 22B by the slide 20 being driven to move up and down according to the set operating condition (press motion) in the moving direction, and the slide 20 being lowered to the bottom dead center position. Pressing is performed on W.
  • the upper mold 22A is a movable mold that is mounted on the slide 20 and that reciprocates in the vertical direction integrally with the slide 20 as the slide 20 moves up and down.
  • the lower mold 22B is a fixed mold mounted on the bolster 5 and mounted and fixed on the bolster 5.
  • the work W is sandwiched between the upper mold 22A and the lower mold 22B by the elevating operation of the slide 20 with respect to the bolster 5, and the work W is pressed.
  • the encoder 65 outputs a feedback signal to the servo amplifier 66 according to the number of rotations of the servomotor 121 in accordance with the speed instruction.
  • the servo amplifier 66 adjusts the number of rotations of the servomotor 121 to a value according to the target value by controlling the power supply to the servomotor 121 based on the feedback signal from the encoder 65.
  • the CPU 42 controls the speed of the elevating operation of the slide 20 by the processing. Based on the control data stored in the memory 44, the CPU 42 based on the embodiment executes processing in which the transport operation by the leveler feeder 200 (also referred to simply as a feeder) and the elevating operation of the slide 20 of the press device 10 are synchronized.
  • the leveler feeder 200 also referred to simply as a feeder
  • the memory 44 stores control data in which the elevation operation of the slide 20 and the conveyance operation of the work by the leveler feeder 200 are associated with each other.
  • the input unit 48 receives input of various parameters.
  • the input unit 48 receives input of parameters via the control panel 6 or the remote control 70.
  • the operator inputs various parameters by operating the switches of the control panel 6 and the ten keys or the buttons of the remote control 70.
  • the control panel 6 and the remote control 70 constitute an operation unit of the embodiment.
  • the parameters received by the input unit 48 include slide position parameters relating to the position of the slide 20 in the lifting and lowering direction with respect to the bolster 5.
  • the parameters received by the input unit 48 include transport parameters related to the operation of the leveler feeder 200.
  • FIG. 6 is a functional block diagram of the CPU 42 based on the embodiment. As shown in FIG. 6, the CPU 42 includes a touch velocity generation unit 51, a press motion generation unit 53, a feeder motion generation unit 55, a motion synthesis unit 56, and an execution unit 58.
  • Each of the functional block diagrams is realized in cooperation with each unit (such as the communication circuit 46) by the CPU 42 executing a predetermined application program stored in the memory 44.
  • the touch speed generation unit 51 determines the speed (touch speed) of the slide 20 when the slide 20 descends and the upper mold 22A contacts the work W based on the material and thickness of the work W input to the input unit 48. Set).
  • the press motion generation unit 53 automatically generates a press motion based on the slide position parameter input to the input unit 48.
  • the slide position parameters include the feedable height, the touch position, and the processing end position.
  • the feeder motion generation unit 55 automatically generates a feeder motion based on the transport parameter input to the input unit 48.
  • the transport parameters include the feed length.
  • the motion synthesizing unit 56 automatically generates a synthesized motion by automatically synthesizing the press motion generated by the press motion generating unit 53 and the feeder motion generated by the feeder motion generating unit 55.
  • the feedable height indicates the lower limit of the position of the slide 20 where the upper mold 22A does not interfere with the workpiece W being transported.
  • FIG. 7 is a schematic view showing the arrangement of the mold and the work W when the slide 20 is at the feedable height. If the slide 20 is separated from the bolster 5 more than the feedable height, the workpiece W can be transported without interfering with the upper mold 22A.
  • the touch position indicates the position of the slide 20 when the upper mold 22A contacts the workpiece W.
  • FIG. 8 is a schematic view showing the arrangement of the mold and the work W when the slide 20 is in the touch position.
  • the processing end position indicates the position of the slide 20 when the pressing of the work W is completed.
  • FIG. 9 is a schematic view showing the arrangement of the mold and the work W when the slide 20 is at the processing end position. When the slide 20 that descends toward the bolster 5 reaches the processing end position, pressing of the workpiece W is completed.
  • the feed length indicates the length by which the leveler feeder 200 transports the workpiece W after the end of the pressing of the workpiece W in the transport direction of the workpiece W and before the start of the next pressing.
  • the transport speed of the workpiece W transported by the leveler feeder 200 is referred to as a feed speed.
  • the feed rate is stored in the memory 44. Alternatively, the feed rate may be included in the transport parameters input to the input unit 48.
  • an operation mode for maximizing the production amount per unit time is set.
  • a production speed (unit: SPM (Shot per minute)) is set.
  • the operation modes include rotational motion, reverse motion, and pendulum motion.
  • the rotational motion is an operation mode in which the slide 20 is driven for one cycle by rotating the eccentric part 110A (FIG. 3) in one direction.
  • the reverse motion is a downward stroke and a rise between two rotation angles corresponding to the predetermined lower limit position and the upper limit position set between the rotation angles of the eccentric portion 110A corresponding to the top dead center and the bottom dead center of the slide 20, respectively. It is an operation mode in which reverse drive is performed in the stroke.
  • the pendulum motion takes two upper limit positions as two upper limit positions with two rotation angles separated by a predetermined angle in the forward rotation direction and the reverse rotation direction from the lower dead rotation angle of the eccentric portion 110A corresponding to the lower dead center of the slide 20.
  • the slide 20 is driven to reciprocate across the bottom dead center by rotationally driving in one direction from the upper limit position to the other upper limit position after passing through the bottom dead rotation angle.
  • the execution unit 58 controls the transport operation of the leveler feeder 200 and the press processing of the press device 10 based on the combined motion generated by the motion combining unit 56. Specifically, the execution unit 58 outputs target values for driving the servomotors 62 and 121 to the servo amplifiers 60 and 66 based on the combined motion, and synchronizes the press motion and the feeder motion. Run.
  • FIG. 10 is a first diagram for explaining the rotation angle of the main shaft 110 corresponding to each position of the slide position parameter.
  • the top dead center TDC, bottom dead center BDC, standby height P0, monitoring position Pa, feedable height P1, touch position P2, processing end position P3, jump prevention height P4, slide 20 for slide 20 The rotation angle of the main shaft 110 corresponding to the height P5 and the standby height P6 is shown.
  • FIG. 10 shows each position of the slide position parameter when the main shaft 110 rotates in the clockwise direction in the drawing.
  • the slide 20 sets the pendulum motion in the operation mode, which is reciprocally driven across the bottom dead center BDC with the standby height P0 and the standby height P6 as upper limit positions.
  • the slide 20 starts to descend from the standby height P0, passes the monitoring position Pa, the feedable height P1, the touch position P2 and the processing end position P3 in order, reaches the bottom dead center BDC, and rises from the bottom dead center BDC. And jumps to the standby height P6 by passing sequentially through the jumping prevention height P4 and the feedable height P5. Since the waiting heights P0 and P6 are lower than the top dead center TDC, the slide 20 does not pass through the top dead center TDC.
  • the waiting height P0 is higher than the feedable height P1.
  • the waiting height P6 is at a position higher than the feedable height P5.
  • the standby heights P0 and P6 are the highest position of the press motion.
  • the monitoring position Pa is set at a position higher than the feedable height P1 in the elevating direction of the slide 20 and lower than the standby height P0.
  • the processing end position P3 is set as a position above the bottom dead center BDC.
  • the descending slide 20 passes the processing end position P3 before reaching the bottom dead center BDC.
  • the jumping prevention height P4 is set as a position above the bottom dead center BDC. After passing the bottom dead center BDC, the slide 20 starts rising and passes the anti-jump height P4. Jump prevention from the processing end position P3 so that the workpiece W can be prevented from fluttering between the upper mold 22A and the lower mold 22B when the upper mold 22A is lifted after the pressing of the work W is completed The speed of the slide 20 while moving to the height P4 is set to a low speed.
  • a different position may be set for the jumping prevention height P4 depending on the material of the workpiece W, the plate thickness, and the conditions of the processing method.
  • the set anti-jump height P4 is stored in the memory 44 (FIG. 5).
  • the processing is started several times before starting processing. By the trial, the jumping prevention height P4 is set.
  • FIG. 11 is a second diagram for explaining the rotation angle of the main shaft 110 corresponding to each position of the slide position parameter. 11, the top dead center TDC, bottom dead center BDC of the slide 20, standby height P0, monitoring position Pa, feedable height P1, touch position P2, processing end position P3, jumping prevention as in FIG.
  • the rotation angle of the main shaft 110 corresponding to the height P4, the feedable height P5, and the waiting height P6 is shown.
  • FIG. 11 shows the positions of the slide position parameters when the main shaft 110 rotates in the counterclockwise direction in the drawing.
  • the standby height P0 shown in FIG. 11 is the same position as the standby height P6 which is the stop position of the slide 20 shown in FIG.
  • the monitoring position Pa shown in FIGS. 10 and 11, the feedable height P 1, the touch position P 2, the processing end position P 3, the jump prevention height P 4 and the feedable height P 5 are the top dead center TDC and the lower in FIGS.
  • the straight line passing through the dead point BDC is set as a line of symmetry.
  • the waiting height P6 shown in FIG. 11 is the same position as the waiting height P0 which is the movement start position of the slide 20 shown in FIG.
  • the slide 20 starts to descend from the standby height P0, passes the monitoring position Pa, the feedable height P1, the touch position P2 and the processing end position P3 in order, reaches the bottom dead center BDC, and rises from the bottom dead center BDC. And jumps to the standby height P6 by passing sequentially through the jumping prevention height P4 and the feedable height P5.
  • FIG. 12 is a flow diagram for describing motion generation of the press system based on the embodiment.
  • step S1 various parameters are input to the input unit. Specifically, the operator inputs each parameter necessary for motion generation by operating the control panel 6 or the remote control 70 (FIG. 2).
  • step S2 the touch speed is set.
  • the touch speed generation unit 51 is a touch speed table for each material of the work W stored in the memory 44 (FIG. 5) of the control unit 40 based on the material and thickness of the input work W. Refer to to set the touch speed.
  • step S3 a feeder motion is generated.
  • the feeder motion generation unit 55 generates a feeder motion based on the input feed length and feed rate.
  • FIG. 13 is a diagram showing press motions and feeder motions generated by the press system according to the embodiment.
  • the horizontal axis of the graph in FIG. 13A indicates time, and the vertical axis indicates the angular velocity ⁇ of the main shaft 110 based on rotational drive by the servomotor 121.
  • the angular velocity ⁇ max represents a value set as the maximum value of the angular velocity of the main shaft 110.
  • the angular velocity ⁇ 1 indicates the angular velocity of the main shaft 110 corresponding to the touch velocity set in step S2. By rotating the main shaft 110 at the angular velocity ⁇ 1, the processing speed of the slide 20 is set to the touch speed.
  • FIG. 13A shows time
  • the vertical axis indicates the angular velocity ⁇ of the main shaft 110 based on rotational drive by the servomotor 121.
  • the angular velocity ⁇ max represents a value set as the maximum value of the angular velocity of the main shaft 110.
  • the angular velocity ⁇ 1 indicates
  • the horizontal axis of the graph in FIG. 13B indicates time, and the vertical axis indicates the transport speed v of the work W.
  • the predetermined value of the acceleration when the transport speed increases or decreases is stored in the memory 44.
  • the workpiece W is decelerated from the set feed speed by a predetermined acceleration, and when the workpiece W is transported by the set transport length, the transport speed v becomes 0, and the transport of the workpiece W is completed. As described above, the feeder motion is generated.
  • step S4 press motion is generated.
  • the press motion generation unit 53 performs the press based on the input feedable height (P1), the touch position (P2) and the processing end position (P3), and the touch speed set in step S2. Generate motion.
  • the waiting height P0 is the position at which the slide 20 is at rest, so the angular velocity ⁇ of the main shaft 110 at the waiting height P0 is zero.
  • the waiting height P0 is set as a position that can be accelerated to the maximum angular velocity ⁇ max at a rotation angle corresponding to the feedable height P1 by accelerating with a predetermined acceleration.
  • the slide 20 starts to descend from the standby height P0 toward the bottom dead center BDC, and accelerates at a predetermined acceleration until the main shaft 110 reaches the maximum angular velocity ⁇ max.
  • the main shaft 110 reaches the maximum angular velocity ⁇ max when the slide 20 passes the feedable height P1.
  • the slide 20 passes the feedable height P1 at the maximum speed.
  • the main shaft 110 completes acceleration before the slide 20 passes the feedable height P1 when the slide 20 descends.
  • the rotation of the main shaft 110 at the maximum angular velocity ⁇ max continues to a position where it can be decelerated to the touch velocity ⁇ 1 at a rotation angle corresponding to the touch position P2 by decelerating with a predetermined acceleration.
  • the maximum angular velocity ⁇ max of the main shaft 110 and predetermined values of acceleration when decelerating are stored in the memory 44.
  • the main shaft 110 decelerates from the maximum angular velocity ⁇ max and rotates at the angular velocity ⁇ 1 when the slide 20 reaches the touch position P2. Thereafter, the main shaft 110 rotates at the same angular velocity ⁇ 1 until the slide 20 reaches the processing end position P3. Thereby, the slide 20 is lowered at the touch speed from the touch position P2 to the processing end position P3.
  • the main shaft 110 (and the slide 20) starts to accelerate. While the slide 20 is moving between the processing end position P3 and the jump prevention height P4, the slide 20 moves at a speed slightly higher than the touch speed to prevent the work W from fluttering, and the main shaft 110 Rotates at a speed slightly larger than the angular velocity ⁇ 1.
  • the main shaft 110 re-accelerates at a predetermined acceleration until reaching the maximum angular velocity ⁇ max. After reaching the maximum velocity ⁇ max, the rotation of the main shaft 110 at the maximum angular velocity ⁇ max continues until the slide 20 reaches the feedable height P5. The slide 20 passes the feedable height P5 at the maximum speed.
  • the main shaft 110 decelerates at a predetermined acceleration from the maximum angular velocity ⁇ max.
  • the main shaft 110 starts decelerating after passing through the feedable height P5 when the slide 20 ascends.
  • the main shaft 110 stops its rotation when the slide 20 reaches the standby height P6.
  • the slide 20 stops at the standby height P6.
  • the standby height P6 is set as a position to be decelerated to zero angular velocity by decelerating from the rotation angle corresponding to the feedable height P5 at a predetermined acceleration. As described above, press motion is generated.
  • step S5 a synthetic motion is generated.
  • the motion synthesis unit 56 synthesizes the feeder motion generated in step S3 and the press motion generated in step S4 to generate a synthesized motion.
  • the transport of the workpiece W is started.
  • the transport speed v of the workpiece W is 0.
  • the slide 20 is moved from the feedable height P5 to the waiting height P6. While the slide 20 is transported between the feedable height P5 and the waiting height P6, the workpiece W is also transported. During deceleration of the slide 20, transport of the work W by the leveler feeder 200 is started.
  • the slide 20 stopped at the standby height P6 starts to descend after a predetermined time.
  • the time elapsed from the start of conveyance of the workpiece W to the completion of the feeding when the workpiece W is normally conveyed by a feeding length at a predetermined acceleration and a set feeding speed is referred to as a feeder movement time.
  • the main shaft 110 starts rotating so that the slide 20 reaches the monitoring position Pa after the press waiting time (margin) ts elapses from the time when the feeder movement time has elapsed.
  • the leveler feeder 200 is stopped while the slide 20 is accelerating.
  • the work W has been completely fed before the press waiting time (margin) ts before the slide 20 which descends from the waiting height P0 reaches the monitoring position Pa which is a position higher than the feedable height P1.
  • the workpiece W has been fed.
  • FIG. 14 is a diagram showing a method of setting the monitoring position Pa.
  • the horizontal axes of the graphs of FIGS. 14 (A) and 14 (B) indicate time.
  • the vertical axis of the graph in FIG. 14A indicates the position P of the slide 20.
  • the vertical axis of the graph in FIG. 14B indicates the angular velocity ⁇ of the main shaft 110 based on the rotational drive by the servomotor 121.
  • the solid line in FIG. 14 (A) shows the position of the slide 20 when it descends while accelerating with a predetermined acceleration until time Ta, and the forced stop of the slide 20 is started at time Ta;
  • the solid line indicates the angular velocity of the main shaft 110 when it is rotated while accelerating at a predetermined angular acceleration until time Ta, and the forced stop of the rotation of the main shaft 110 is started at time Ta.
  • the broken line in FIG. 14A indicates the position of the slide 20 after time Ta when the slide 20 is lowered in the normal operation
  • the broken line in FIG. 14B indicates the main shaft 110 in the normal operation. Indicates the angular velocity of the main shaft 110 after time Ta.
  • the standby height P0 is the position at which the slide 20 is at rest, so the angular velocity ⁇ of the main shaft 110 at the standby height P0 is zero.
  • the main shaft 110 accelerates with a predetermined acceleration so as to reach the maximum angular velocity ⁇ when the slide 20 passes the feedable height P1.
  • the slide 20 reaches the monitoring position Pa.
  • the control unit 40 determines whether or not the completion of the feed of the work W is detected. That is, at time Ta after a predetermined time after the slide 20 starts to descend from the standby height P0, the control unit 40 completes the conveyance of the work W from the feed completion detection unit 68 (FIG. 5). It is determined whether or not the input of the feed completion signal indicating.
  • the control unit 40 forcibly stops the slide 20.
  • the main shaft 110 decelerates at a predetermined acceleration after time Ta.
  • the main shaft 110 stops its rotation, the angular velocity ⁇ shown in FIG. 14B becomes zero, and the slide 20 stops.
  • the stop position Pb at which the slide 20 stops is a position higher than the feedable height P1 as shown in FIG. 14 (A).
  • the slide 20 which has started to descend from the standby height P0 and reached the monitoring position Pa does not detect the completion of the feed of the workpiece W, the slide 20 starts decelerating at the monitoring position Pa and the feedable height P1
  • the monitoring position Pa is set so as to be able to stop at a higher stop position Pb.
  • step S6 the workpiece W is processed in accordance with the generated combined motion.
  • the execution unit 58 executes the pressing of the workpiece W based on the generated combined motion.
  • step S7 it is determined whether the result at the time of processing of the workpiece W based on the combined motion generated in step S5 is appropriate.
  • the torque required for the rotation of the main shaft 110 is calculated from the current value of the servomotor 121, and when the torque exceeds the allowable value, it is determined that the result at the time of processing is unsuitable.
  • the vibration generated at the time of processing is measured, and when the vibration exceeds the allowable value, it is determined that the result at the time of processing is unsuitable. Tolerance values such as torque or vibration are stored in the memory 44.
  • step S8 the combined motion is corrected. For example, a correction is performed to reduce the speed other than the speed during press processing (that is, the touch speed of the slide 20 (angular velocity ⁇ 1 of the main shaft 110)).
  • step S6 After correcting the combined motion, the process returns to step S6, and the workpiece W is processed in accordance with the corrected combined motion. Subsequently, in step S7, it is determined whether or not the result at the time of processing the workpiece W based on the corrected combined motion is appropriate.
  • step S7 If it is determined that the result at the time of processing is appropriate (YES in step S7), the process proceeds to step S9, and the combined motion is stored in the memory 44.
  • step S10 the result is output.
  • the values input as the slide position parameter and the transport parameter, and the values set and calculated according to the automatic generation of motion are displayed on the display unit of the control panel 6.
  • the operator can easily grasp the operating condition of the press system by looking at the corresponding screen of the display.
  • the standby height P0 higher than the feedable height P1 is set, and the standby higher than the feedable height P5
  • the height P6 is set.
  • the work W is started to be transported while the slide 20 is moving between the feedable height P5 and the waiting height P6, and the slide 20 can be fed with the waiting height P0 and the feeding possible height
  • the transfer is completed while moving between P1.
  • the transport of the work W and the movement of the slide 20 overlap in time.
  • the speed of the slide 20 needs to be zero at the feedable heights P1 and P5.
  • the point at which the slide 20 is to be stopped is not the feedable heights P1 and P5 but the standby heights P0 and P6 which are higher than the feedable heights P1 and P5, and the point at which the feedable heights P1 and P5 are passed
  • the slide 20 is moving at a speed greater than zero.
  • the time for the slide 20 to descend from the feedable height P1 and the time for the slide 20 to rise and reach the feedable height P5 can be shortened. More specifically, the time for the slide 20 to move from the feedable height P1 to the feedable height P5 via the bottom dead center BDC can be shortened.
  • the workpiece W can be transported without interference with the mold. Since the time for the slide 20 to move from the bottom dead center BDC to the feedable height P5 is shortened, it is possible to accelerate the timing to start the transfer of the work W. By shortening the time required for one cycle of press working, the production speed of the press system can be improved.
  • the main shaft 110 decelerates from the maximum angular velocity ⁇ max to zero before the slide 20 passes the feedable height P5 and reaches the standby height P6. Therefore, the servomotor 121 also decelerates between the time when the slide 20 passes the feedable height P5 and the time the standby height P6 is reached. During deceleration of the servomotor 121, conveyance of the work W by the leveler feeder 200 is started.
  • the transfer time of the work W and the moving time of the slide 20 can be reliably overlapped.
  • the main shaft 110 starts to decelerate after the slide 20 has passed the feedable height P5. Therefore, when the slide 20 ascends, deceleration of the servomotor 121 is started after the slide 20 has passed the feedable height P5. At the time of passing the feedable height P5, the servomotor 121 is not decelerating. The slide 20 passes the feedable height P5 at the highest speed. In this way, the time for moving the slide 20 from the sendable height P1 to the sendable height P5 via the bottom dead center BDC can be reliably shortened.
  • the main shaft 110 accelerates from zero angular velocity to the maximum angular velocity ⁇ max while the slide 20 starts moving from the standby height P0 until it reaches the feedable height P1.
  • the servomotor 121 also accelerates during the movement from the standby height P0 of the slide 20 to the feedable height P1. During acceleration of the servomotor 121, conveyance of the work W by the leveler feeder 200 is completed.
  • the transfer time of the work W and the moving time of the slide 20 can be reliably overlapped.
  • the waiting height P0 at a position closer to the feedable height P1
  • the servomotor 121 is accelerating and less than the maximum speed. By setting to move at the speed, it is possible to easily lower the slide 20 from the standby height P0 closer to the feedable height P1.
  • the main shaft 110 completes the acceleration before the slide 20 passes the feedable height P1. Therefore, when the slide 20 is lowered, the acceleration of the servomotor 121 is completed before the slide 20 passes the feedable height P1. At the time of passing the feedable height P1, the servomotor 121 has reached the maximum speed. The slide 20 passes the feedable height P1 at the maximum speed. In this way, the time for moving the slide 20 from the sendable height P1 to the sendable height P5 via the bottom dead center BDC can be reliably shortened.
  • the standby height P0 and the monitoring position Pa are set so that the slide 20 can be stopped at Thereby, even when abnormality in conveyance of the workpiece
  • the example in which the operation mode of the slide 20 is pendulum motion has been described.
  • the idea of the embodiment described above is not limited to the case where the operation mode is pendulum motion, and the slide 20 may be bolstered by alternately rotating the servomotor 121 forward and reverse each time the work W is pressed.
  • the present invention is applicable when moving up and down. For example, even when the operation mode is reverse motion, it is possible to apply the idea of the above-described embodiment.
  • the pressing device is not limited to the configuration described in the embodiment, and for example, the plunger and the plunger holder may be interposed between the connecting rod and the slide.
  • the eccentric mechanism may be a crankshaft structure or a drum structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Control Of Presses (AREA)

Abstract

A press system which can improve production speed is provided. A control unit drives a slide up and down on the basis of a prescribed press motion. The position of the slide to which a workpiece can be conveyed without interfering with an upper die is the feedable height (P1, P5). The standby height (P0, P6) is above the feedable height and is the highest position of press motion. While the slide moves between the feedable height (P5) and the standby height (P6), the control unit also conveys the workpiece.

Description

プレスシステムPress system
 本発明は、プレスシステムに関する。 The present invention relates to a press system.
 従来のプレスにおいて、クランク軸がサーボモータによって回転されるときの回転モーションを設定する方法が、たとえば特開2013-184222号公報(特許文献1)に開示されている。 For example, Japanese Patent Application Laid-Open No. 2013-184222 (Patent Document 1) discloses a method of setting rotational motion when a crankshaft is rotated by a servomotor in a conventional press.
特開2013-184222号公報JP, 2013-184222, A
 従来のサーボプレスにおいて、振子モーションで運転されるスライドの動作と、フィーダの動作とは、交互に行なわれている。一方、サーボプレスでは、さらなる生産速度の向上が求められている。 In the conventional servo press, the operation of the slide operated by the pendulum motion and the operation of the feeder are alternately performed. On the other hand, servo press is required to further improve production speed.
 本発明の目的は、生産速度を向上できるプレスシステムを提供することである。 An object of the present invention is to provide a press system capable of improving the production speed.
 従来のサーボプレスでは、振子モーションの場合、ワークを金型と干渉させず搬送可能な下限位置をスライドの停止位置とし、スライドの移動距離を最短にすることで、生産速度を向上する方策が採られていた。本発明者らは、サーボプレスの生産速度をさらに向上させるための検討を進める上で、スライドの停止位置を上方に移動させてスライドの移動距離を長くすることで生産速度の向上を実現できることを見出し、本発明を以下のような構成とした。 In the case of a conventional servo press, in the case of pendulum motion, a measure is taken to improve the production speed by setting the lower limit of the transportable position without causing the workpiece to interfere with the mold as the slide stop position and minimizing the slide movement distance. It was being done. The inventors of the present invention have been able to realize the improvement of the production speed by moving the slide stop position upward to extend the slide movement distance in advancing the study for further improving the production speed of the servo press. The present invention was configured as follows.
 すなわち、本発明に係るプレスシステムは、プレス部と、搬送部と、制御部とを備えている。プレス部は、電動モータと、偏心機構と、スライドと、ボルスタとを有している。偏心機構は、電動モータによる回転運動を昇降方向運動に変換する。スライドは、上金型を装着可能であり、偏心機構を介して昇降駆動する。ボルスタには、下金型を装着可能である。プレス部は、ボルスタに対するスライドの昇降動作によってワークをプレス加工する。搬送部は、ワークを搬送する。制御部は、プレス部および搬送部を制御する。制御部は、所定のプレスモーションに基づき、スライドを昇降駆動する。ワークを上金型と干渉せず搬送可能なスライドの位置が送り可能高さであり、送り可能高さよりも高く、プレスモーションの最高位置が待機高さである。制御部は、スライドが送り可能高さと待機高さとの間を移動している間に、ワークの搬送も行なっている。 That is, a press system according to the present invention includes a press unit, a transport unit, and a control unit. The press unit has an electric motor, an eccentric mechanism, a slide, and a bolster. The eccentric mechanism converts rotational movement by the electric motor into movement in the vertical direction. The slide is mountable to the upper mold and is driven to move up and down through an eccentric mechanism. The lower mold can be attached to the bolster. The press unit press-works the work by the elevation operation of the slide relative to the bolster. The transport unit transports the work. The control unit controls the press unit and the transport unit. The control unit raises and lowers the slide based on a predetermined press motion. The slide position at which the workpiece can be transported without interfering with the upper mold is a transportable height, which is higher than the transportable height, and the highest position of the press motion is a standby height. The control unit also transports the workpiece while the slide is moving between the feedable height and the standby height.
 本発明のプレスシステムによれば、生産速度を向上することができる。 According to the press system of the present invention, the production speed can be improved.
実施形態に基づくプレスシステムの構成を説明する図である。It is a figure explaining composition of a press system based on an embodiment. 実施形態に基づくプレス装置の斜視図である。It is a perspective view of a press device based on an embodiment. プレス装置の要部を示す側断面図である。It is a sectional side view which shows the principal part of a press apparatus. プレス装置の別の要部を示す一部断面の平面図である。It is the top view of a partial cross section which shows another principal part of a press apparatus. 実施形態に基づくプレスシステムの駆動系の概要を説明する図である。It is a figure explaining an outline of a drive system of a press system based on an embodiment. 実施形態に基づくCPUの機能ブロック図である。It is a functional block diagram of CPU based on an embodiment. スライドが送り可能高さにあるときの金型およびワークの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of a metal mold | die and a workpiece | work when a slide is in a feedable height. スライドがタッチ位置にあるときの金型およびワークの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of a metal mold | die and a workpiece | work when a slide is in a touch position. スライドが加工終了位置にあるときの金型およびワークの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of a metal mold | die and a workpiece | work when a slide is in a process end position. スライド位置パラメータの各位置に対応するメインシャフトの回転角度を説明する第1の図である。It is a 1st figure explaining the rotation angle of the main shaft corresponding to each position of a slide position parameter. スライド位置パラメータの各位置に対応するメインシャフトの回転角度を説明する第2の図である。It is a 2nd figure explaining the rotation angle of the main shaft corresponding to each position of a slide position parameter. 実施形態に基づくプレスシステムのモーション生成について説明するフロー図である。It is a flow figure explaining motion generation of a press system based on an embodiment. 実施形態に基づくプレスシステムにより生成されたプレスモーションおよびフィーダモーションを示す図である。It is a figure which shows the press motion and feeder motion which were produced | generated by the press system based on embodiment. 監視位置の設定手法を示す図である。It is a figure which shows the setting method of a monitoring position.
 本実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。 The present embodiment will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters, and the description thereof will not be repeated.
 本例においては、プレス装置に関し、順送型のプレス装置を例に挙げて説明する。
 <全体構成>
 図1は、実施形態に基づくプレスシステムの構成を説明する図である。図1に示されるように、プレスシステムは、アンコイラ100と、レベラーフィーダ(搬送部)200と、プレス装置(プレス部)10と、搬送コンベア120とを備えている。
In this example, the press apparatus will be described by taking a progressive-type press apparatus as an example.
<Overall configuration>
FIG. 1 is a diagram for explaining the configuration of a press system based on the embodiment. As shown in FIG. 1, the press system includes an uncoiler 100, a leveler feeder (conveyor unit) 200, a press device (press unit) 10, and a conveyor 120.
 アンコイラ100には、コイル材(帯板)が巻き付けられている。本実施形態においては、ワーク(材料)としてコイル材をプレス加工する場合について説明する。アンコイラ100から巻き出されたコイル材が、レベラーフィーダ200を介して、プレス装置10に搬送される。 A coil material (band plate) is wound around the uncoiler 100. In the present embodiment, the case of pressing a coil material as a work (material) will be described. The coil material unwound from the uncoiler 100 is conveyed to the press device 10 through the leveler feeder 200.
 レベラーフィーダ200は、アンコイラ100からプレス装置10に搬送するコイル材の送り高さの位置を調整するとともに、設定された搬送方向の動作条件(フィーダモーション)に従って、プレス装置10に対してコイル材を搬送する。 The leveler feeder 200 adjusts the position of the feeding height of the coil material to be transported from the uncoiler 100 to the pressing device 10, and also applies the coil material to the pressing device 10 according to the set operating condition (feeder motion) in the transport direction. Transport
 プレス装置10は、レベラーフィーダ200から搬送されたコイル材をプレス加工する。 The press device 10 press-processes the coil material conveyed from the leveler feeder 200.
 搬送コンベア120は、プレス装置10においてプレス加工により成形されたワークを搬送する。たとえば、搬送コンベア120は、成形されたワークを次のプレス装置に搬送することも可能である。 The conveyer 120 conveys the work formed by press processing in the press device 10. For example, the transfer conveyor 120 can also transfer the formed work to the next pressing device.
 プレスシステムの各部は同期しており、一連の作業が順次連続して実行される。アンコイラ100からコイル材がレベラーフィーダ200を介してプレス装置10に搬送される。そして、プレス装置10でプレス加工され、加工されたワークは搬送コンベア120により搬送される。上記一連の処理が繰り返される。 The parts of the press system are synchronized, and a series of operations are sequentially and continuously performed. The coil material is conveyed from the uncoiler 100 to the press device 10 via the leveler feeder 200. Then, the work pressed and processed by the press device 10 is transported by the transport conveyor 120. The above series of processing is repeated.
 なお、上記プレスシステムの構成は、一例であり、特に当該構成に限られるものではない。 In addition, the structure of the said press system is an example, and in particular it is not restricted to the said structure.
 レベラーフィーダ200は、プレス装置10からの指示に従って動作する。この点で、レベラーフィーダ200を制御する制御部は、プレス装置10に設けられる。 The leveler feeder 200 operates in accordance with an instruction from the press device 10. In this regard, a control unit that controls the leveler feeder 200 is provided in the press device 10.
 なお、本例においては、レベラーフィーダ200を制御する制御部がプレス装置10に設けられる構成について説明するが、これに限られず、たとえば、プレス装置10を制御する制御部がレベラーフィーダ200側に設けられていても良い。プレス装置10およびレベラーフィーダ200を制御する制御部が、プレス装置10およびレベラーフィーダ200とは別の位置に配置され、プレス装置10およびレベラーフィーダ200は遠隔操作される仕様であってもよい。実施形態においては、1つの制御部がレベラーフィーダ200およびプレス装置10をともに制御する場合について説明する。 In the present embodiment, a control unit for controlling the leveler feeder 200 will be described in the press 10. However, the present invention is not limited to this. For example, a controller for controlling the press 10 is provided on the leveler feeder 200. It may be done. The control unit that controls the press device 10 and the leveler feeder 200 may be disposed at a position different from the press device 10 and the leveler feeder 200, and the press device 10 and the leveler feeder 200 may be configured to be remotely operated. In the embodiment, a case where one control unit controls both the leveler feeder 200 and the press device 10 will be described.
 <プレス装置>
 図2は、実施形態に基づくプレス装置10の斜視図である。
<Press device>
FIG. 2 is a perspective view of the press device 10 based on the embodiment.
 図2に示されるように、一例としてプランジャが設けられていない順送型のプレス装置が示されている。 As shown in FIG. 2, as an example, a progressive press without a plunger is shown.
 プレス装置10は、本体フレーム2と、スライド20と、ベッド4と、ボルスタ5と、コントロールパネル6と、制御部40とを備えている。 The press device 10 includes a body frame 2, a slide 20, a bed 4, a bolster 5, a control panel 6, and a control unit 40.
 プレス装置10の本体フレーム2の略中央部には、スライド20が上下動自在に支承されている。スライド20に対する下方には、ベッド4上に取り付けられたボルスタ5が配置されている。本体フレーム2の側方には、制御部40が設けられている。本体フレーム2の側方の、制御部40に対して前方には、制御部40に接続されたコントロールパネル6が設けられている。 A slide 20 is vertically movably supported at a substantially central portion of the main body frame 2 of the press device 10. Below the slide 20, a bolster 5 mounted on a bed 4 is arranged. A control unit 40 is provided on the side of the main body frame 2. A control panel 6 connected to the control unit 40 is provided in front of the control unit 40 on the side of the main body frame 2.
 スライド20の下面には、ワークを加工するための金型のうちの、上金型が着脱可能に装着されている。ボルスタ5の上面には、ワークを加工するための金型のうちの、下金型が着脱可能に装着されている。これらの金型に対応する所定のワークを下金型に位置させ、上金型をスライド20と共に降下させて、上金型と下金型との間にワークを挟み込んでプレス加工する。 On the lower surface of the slide 20, an upper mold of the mold for processing a work is detachably mounted. The lower mold of the molds for processing the work is detachably mounted on the upper surface of the bolster 5. A predetermined work corresponding to these molds is positioned on the lower mold, the upper mold is lowered together with the slide 20, and the work is sandwiched and pressed between the upper mold and the lower mold.
 また、プレス装置10本体と通信可能に設けられた外部から遠隔操作可能なリモコン(リモート制御部)70が設けられている。オペレータ(運転者)はリモコン70を操作することにより各種の設定操作を行うことが可能である。リモコン70は、制御部40と通信し、リモコン70からの指示に従ってプレス装置10を動作させることが可能である。 In addition, a remote controller (remote control unit) 70 which can be remotely controlled from the outside provided to be communicable with the main body of the press device 10 is provided. The operator (driver) can perform various setting operations by operating the remote control 70. The remote control 70 communicates with the control unit 40, and can operate the press device 10 in accordance with an instruction from the remote control 70.
 本例においては、リモコン70において、スライド20を上下動作させることが可能な上ボタン72および下ボタン74と、決定ボタン76とが設けられている場合が示されている。 In this example, in the remote controller 70, there is shown a case where an upper button 72 and a lower button 74 capable of moving the slide 20 up and down, and a determination button 76 are provided.
 コントロールパネル6は、プレス装置10を制御するために必要な各種データを入力するものであり、データを入力するためのスイッチやテンキー、および設定画面やプレス装置10から出力されるデータを表示する表示器を有している。 The control panel 6 is used to input various data necessary to control the press device 10, and switches and numeric keys for inputting data, a setting screen, and a display for displaying data output from the press device 10. Have a bowl.
 表示器としては、透明タッチスイッチパネルを液晶表示器またはプラズマ表示器などのグラフィック表示器の前面に装着した、プログラマブル表示器が採用されている。 As a display, a programmable display in which a transparent touch switch panel is mounted on the front of a graphic display such as a liquid crystal display or a plasma display is adopted.
 このコントロールパネル6は、予め設定されたデータを記憶したIC(Integrated Circuit)カードなどの外部記憶媒体からのデータ入力装置、または無線や通信回線を介してデータを送受信する通信装置を備えていてもよい。 The control panel 6 may be provided with a data input device from an external storage medium such as an IC (Integrated Circuit) card storing data set in advance, or a communication device for transmitting and receiving data via a wireless or communication line. Good.
 本例においては、プレス装置10に対してコントロールパネル6およびリモコン70の双方が設けられる構成について説明するが、上記プレス装置10の構成は一例であって当該構成に限定されるものではない。プレス装置10に対して、たとえばコントロールパネル6およびリモコン70の一方のみが設けられてもよい。 In the present embodiment, a configuration in which both the control panel 6 and the remote control 70 are provided for the press device 10 will be described, but the configuration of the press device 10 is an example and is not limited to the configuration. For example, only one of the control panel 6 and the remote control 70 may be provided for the press device 10.
 図3は、プレス装置10の要部を示す側断面図である。図3に示されるように、プレス装置10は、サーボプレスである。 FIG. 3 is a side sectional view showing the main part of the pressing device 10. As shown in FIG. As shown in FIG. 3, the press device 10 is a servo press.
 プレス装置10は、サーボモータ121と、球面孔33Aと、ねじ軸37と、球体部37Aと、ねじ部37Bと、コンロッド本体38とを有している。さらに、プレス装置10は、雌ねじ部38Aと、コンロッド39と、メインシャフト110と、エキセン部110Aと、サイドフレーム111と、軸受部112~114と、メインギア115と、動力伝達軸116と、伝達ギア116Aと、軸受部117,118と、プーリ119とを有している。 The press device 10 includes a servomotor 121, a spherical hole 33A, a screw shaft 37, a spherical portion 37A, a screw portion 37B, and a connecting rod main body 38. Further, the press device 10 transmits the female screw portion 38A, the connecting rod 39, the main shaft 110, the eccentric portion 110A, the side frame 111, the bearings 112 to 114, the main gear 115, the power transmission shaft 116, A gear 116 A, bearings 117 and 118, and a pulley 119 are provided.
 プレス装置10では、サーボモータ121によりスライド20を駆動している。サーボモータ121は、電動モータの一例である。スライド20の上部に形成された球面孔33A内には、ダイハイト調整用のねじ軸37の下端に設けられた球体部37Aが抜け止めされた状態で回動自在に挿入されている。球面孔33Aおよび球体部37Aにより、球状継手が構成されている。ねじ軸37のねじ部37Bは、上方に向けてスライド20から露出し、ねじ軸37の上方に設けたコンロッド本体38の雌ねじ部38Aに螺合している。ねじ軸37およびコンロッド本体38により、伸縮自在なコンロッド39が構成されている。 In the press device 10, the slide 20 is driven by the servomotor 121. The servomotor 121 is an example of an electric motor. The spherical portion 37A provided at the lower end of the screw shaft 37 for die height adjustment is rotatably inserted into the spherical hole 33A formed in the upper portion of the slide 20 in a state in which the spherical portion 37A is prevented from coming off. A spherical joint is constituted by the spherical hole 33A and the spherical portion 37A. The screw portion 37B of the screw shaft 37 is exposed upward from the slide 20 and is screwed with the female screw portion 38A of the connecting rod main body 38 provided above the screw shaft 37. The screw shaft 37 and the connecting rod body 38 constitute an expandable connecting rod 39.
 なお、ダイハイトとは、スライド20を下死点に配置したときのスライド20の下面からボルスタ5の上面の距離をいう。 The die height refers to the distance from the lower surface of the slide 20 to the upper surface of the bolster 5 when the slide 20 is disposed at the bottom dead center.
 コンロッド39の上部は、メインシャフト110に設けられたクランク状のエキセン部110Aに回動自在に連結されている。メインシャフト110は、本体フレーム2を構成する左右一対の厚板状のサイドフレーム111間において、前後3箇所の軸受部112,113,114で支承されている。メインシャフト110の後部側には、メインギア115が取り付けられている。 An upper portion of the connecting rod 39 is rotatably connected to a crank-shaped eccentric portion 110A provided on the main shaft 110. The main shaft 110 is supported by three bearing portions 112, 113 and 114 at the front and rear, between the pair of left and right thick plate-like side frames 111 that constitute the main body frame 2. A main gear 115 is attached to the rear side of the main shaft 110.
 メインギア115は、その下方に設けられた動力伝達軸116の伝達ギア116Aと噛合している。動力伝達軸116は、サイドフレーム111間において、前後2箇所の軸受部117,118で支承されている。動力伝達軸116の後端には、従動側のプーリ119が取り付けられている。プーリ119は、その下方に配置されたサーボモータ121により駆動される。 The main gear 115 meshes with the transmission gear 116A of the power transmission shaft 116 provided below the main gear 115. The power transmission shaft 116 is supported by two front and rear bearing portions 117 and 118 between the side frames 111. The driven pulley 119 is attached to the rear end of the power transmission shaft 116. The pulley 119 is driven by a servomotor 121 disposed below it.
 プレス装置10は、ブラケット122と、出力軸121Aと、プーリ123と、ベルト124と、ブラケット125と、位置検出器126と、ロッド127と、位置センサ128と、補助フレーム129と、ボルト131,132とをさらに有している。 The press device 10 includes a bracket 122, an output shaft 121A, a pulley 123, a belt 124, a bracket 125, a position detector 126, a rod 127, a position sensor 128, an auxiliary frame 129, and bolts 131 and 132. And further.
 サーボモータ121は、略L字形状のブラケット122を介してサイドフレーム111間に支持されている。サーボモータ121の出力軸121Aは、プレス装置10の前後方向に沿って突出しており、出力軸121Aに設けられた駆動側のプーリ123と従動側のプーリ119に巻回されたベルト124により動力が伝達される。 The servomotor 121 is supported between the side frames 111 via a substantially L-shaped bracket 122. The output shaft 121A of the servomotor 121 protrudes along the back and forth direction of the press device 10, and power is obtained by the belt 124 wound around the drive side pulley 123 and the driven side pulley 119 provided on the output shaft 121A. It is transmitted.
 また、スライド20の背面側には、上下2箇所からサイドフレーム111間に向けて後方に突出した一対のブラケット125が取り付けられている。上下のブラケット125間には、リニアスケールなどの位置検出器126を構成するロッド127が取り付けられている。このロッド127には、スライド20の上下位置を検出するためのスケールが設けられており、同じく位置検出器126を構成する位置センサ128に上下動自在に嵌挿されている。位置センサ128は、一方のサイドフレーム111に設けられた補助フレーム129に固定されている。 In addition, on the back side of the slide 20, a pair of brackets 125 projecting backward from two upper and lower positions toward the side frame 111 are attached. Between the upper and lower brackets 125, a rod 127 constituting a position detector 126 such as a linear scale is attached. The rod 127 is provided with a scale for detecting the vertical position of the slide 20, and is fitted in the position sensor 128, which similarly constitutes the position detector 126, so as to be movable up and down. The position sensor 128 is fixed to an auxiliary frame 129 provided on one side frame 111.
 補助フレーム129は、上下方向に縦長に形成されており、下部がボルト131によりサイドフレーム111に取り付けられ、上部が上下方向に長い長孔内に挿入されたボルト132により上下方向に摺動自在に支持されている。このように補助フレーム129は、上下いずれか一方側(本実施形態では下側)のみがサイドフレーム111に固定され、他方側が上下動自在に支持されているため、サイドフレーム111の温度変化による伸縮の影響を受けないようになっている。これにより、位置センサ128は、サイドフレーム111のそのような伸縮の影響を受けずに、スライド位置およびダイハイト位置を正確に検出可能としている。 The auxiliary frame 129 is vertically formed in the vertical direction, the lower part is attached to the side frame 111 by the bolt 131, and the upper part is slidable in the vertical direction by the bolt 132 inserted in the long hole in the vertical direction. It is supported. As described above, the auxiliary frame 129 is fixed to the side frame 111 only at one of the upper and lower sides (in the present embodiment, the lower side), and the other side is supported so as to be movable up and down. Not to be affected by Thus, the position sensor 128 can accurately detect the slide position and the die height position without being affected by such expansion and contraction of the side frame 111.
 一方、スライド20のスライド位置およびダイハイトは、スライド20内に設けられたスライド位置調整機構133(図4)によって調整される。図4は、プレス装置10の別の要部を示す一部断面の平面図である。 On the other hand, the slide position of the slide 20 and the die height are adjusted by the slide position adjustment mechanism 133 (FIG. 4) provided in the slide 20. FIG. 4 is a plan view of a partial cross section showing another essential part of the pressing device 10. As shown in FIG.
 スライド位置調整機構133は、図4に示されるように、球体部37Aの外周にピン37Cを介して取り付けられたウォームホイール134と、ウォームホイール134と噛合するウォームギア135と、ウォームギア135の端部に取り付けられた入力ギア136と、入力ギア136に噛合する出力ギア137(図3)を有したインダクションモータ138とで構成される。インダクションモータ138は、軸方向長さが短いフラット形状とされ、コンパクトに構成されている。インダクションモータ138の回転動によりウォームホイール134を介してねじ軸37を回動させることが可能である。これによってねじ軸37のねじ部37Bとコンロッド本体38の雌ねじ部38Aとの螺合長さが変化し、スライド20のスライド位置およびダイハイトが調整される。 As shown in FIG. 4, the slide position adjusting mechanism 133 is provided at the worm wheel 134 attached to the outer periphery of the spherical portion 37A via a pin 37C, the worm gear 135 meshing with the worm wheel 134, and the end of the worm gear 135. It comprises an attached input gear 136 and an induction motor 138 having an output gear 137 (FIG. 3) meshing with the input gear 136. The induction motor 138 has a flat shape with a short axial length, and is configured to be compact. It is possible to rotate the screw shaft 37 via the worm wheel 134 by the rotational movement of the induction motor 138. Thus, the screwing length between the screw portion 37B of the screw shaft 37 and the female screw portion 38A of the connecting rod main body 38 is changed, and the slide position of the slide 20 and the die height are adjusted.
 <プレスシステムの駆動系の構成>
 図5は、実施形態に基づくプレスシステムの駆動系の概要を説明する図である。
<Configuration of Drive System of Press System>
FIG. 5 is a view for explaining an outline of a drive system of a press system based on the embodiment.
 図5に示されるように、レベラーフィーダ200は、搬送ローラ63と、サーボモータ62と、エンコーダ64と、送り完了検出部68と、サーボアンプ60とを含んでいる。 As shown in FIG. 5, the leveler feeder 200 includes a conveyance roller 63, a servomotor 62, an encoder 64, a feed completion detection unit 68, and a servo amplifier 60.
 プレス装置10は、制御部40と、サーボアンプ66と、サーボモータ121と、エンコーダ65と、メインギア115と、メインシャフト110と、エキセン部110Aと、スライド20と、上金型22Aと、下金型22Bと、ボルスタ5とを含んでいる。 The press device 10 includes a control unit 40, a servo amplifier 66, a servomotor 121, an encoder 65, a main gear 115, a main shaft 110, an eccentric portion 110A, a slide 20, and an upper mold 22A. The mold 22 B and the bolster 5 are included.
 制御部40は、CPU(Central Processing Unit)42と、メモリ44と、通信回路46と、入力部48とを含んでいる。 The control unit 40 includes a central processing unit (CPU) 42, a memory 44, a communication circuit 46, and an input unit 48.
 通信回路46は、リモコン70と通信可能に設けられている。
 CPU42は、サーボアンプ60に目標値を出力する。サーボアンプ60は、目標値に基づいてサーボモータ62に速度指示する。搬送ローラ63は、サーボモータ62の駆動に従ってワークWの搬送動作を実行する。送り完了検出部68は、ワークWの搬送動作が完了しているか判断し、搬送動作が完了しておりワークWが停止していることを検出した場合には、その検出結果を送り完了信号としてCPU42に出力する。
The communication circuit 46 is provided to be able to communicate with the remote control 70.
The CPU 42 outputs a target value to the servo amplifier 60. The servo amplifier 60 instructs the servomotor 62 on the basis of the target value. The conveyance roller 63 executes the conveyance operation of the work W in accordance with the drive of the servomotor 62. The feed completion detection unit 68 determines whether the transport operation of the workpiece W is completed, and when it is detected that the transport operation is completed and the workpiece W is stopped, the detection result is used as a transport completion signal. It outputs to CPU42.
 エンコーダ64は、サーボアンプ60に速度指示に従うサーボモータ62の回転数に応じたフィードバック信号を出力する。 The encoder 64 outputs a feedback signal to the servo amplifier 60 in accordance with the number of rotations of the servomotor 62 in accordance with the speed instruction.
 サーボアンプ60は、エンコーダ64からのフィードバック信号に基づいてサーボモータ62への電力供給を制御することによりサーボモータ62の回転数を目標値に従う値に調節する。 The servo amplifier 60 adjusts the number of rotations of the servomotor 62 to a value according to the target value by controlling the power supply to the servomotor 62 based on the feedback signal from the encoder 64.
 当該処理によりCPU42は、ワークWの搬送動作における搬送速度を制御する。
 また、同様に、CPU42は、サーボアンプ66に目標値を出力する。サーボアンプ66は、目標値に基づいてサーボモータ121に速度指示する。メインギア115は、サーボモータ121の駆動に従いメインシャフト110を駆動する。メインシャフト110の駆動に従って、エキセン部110Aは回動する。エキセン部110Aは、スライド20と連結されており、エキセン部110Aの回動動作に従い上金型22Aが装着されたスライド20は昇降動作する。エキセン部110Aは、サーボモータ121による回転運動をスライド20の昇降方向運動に変換する偏心機構を構成している。設定された昇降方向の動作条件(プレスモーション)に従ってスライド20が昇降駆動され、スライド20が下死点位置に下降することにより、上金型22Aと下金型22Bとの間に搬送されたワークWに対してプレス加工が実行される。
The CPU 42 controls the transport speed in the transport operation of the workpiece W by the processing.
Similarly, the CPU 42 outputs a target value to the servo amplifier 66. The servo amplifier 66 instructs the servomotor 121 on the basis of the target value. The main gear 115 drives the main shaft 110 in accordance with the drive of the servomotor 121. According to the drive of the main shaft 110, the eccentric part 110A rotates. The eccentric part 110A is connected to the slide 20, and the slide 20 on which the upper mold 22A is mounted is moved up and down according to the rotational movement of the eccentric part 110A. The eccentric part 110A constitutes an eccentric mechanism that converts the rotational movement of the servomotor 121 into the movement of the slide 20 in the elevating direction. The workpiece 20 transported between the upper mold 22A and the lower mold 22B by the slide 20 being driven to move up and down according to the set operating condition (press motion) in the moving direction, and the slide 20 being lowered to the bottom dead center position. Pressing is performed on W.
 上金型22Aは、スライド20に装着されており、スライド20の昇降動作に伴ってスライド20と一体に上下方向に往復移動する、可動金型である。下金型22Bは、ボルスタ5に装着されており、ボルスタ5上に載置され固定されている、固定金型である。ボルスタ5に対するスライド20の昇降動作によって、上金型22Aと下金型22Bとの間にワークWが挟み込まれ、ワークWがプレス加工される。 The upper mold 22A is a movable mold that is mounted on the slide 20 and that reciprocates in the vertical direction integrally with the slide 20 as the slide 20 moves up and down. The lower mold 22B is a fixed mold mounted on the bolster 5 and mounted and fixed on the bolster 5. The work W is sandwiched between the upper mold 22A and the lower mold 22B by the elevating operation of the slide 20 with respect to the bolster 5, and the work W is pressed.
 エンコーダ65は、サーボアンプ66に速度指示に従うサーボモータ121の回転数に応じたフィードバック信号を出力する。 The encoder 65 outputs a feedback signal to the servo amplifier 66 according to the number of rotations of the servomotor 121 in accordance with the speed instruction.
 サーボアンプ66は、エンコーダ65からのフィードバック信号に基づいてサーボモータ121への電力供給を制御することにより、サーボモータ121の回転数を目標値に従う値に調節する。 The servo amplifier 66 adjusts the number of rotations of the servomotor 121 to a value according to the target value by controlling the power supply to the servomotor 121 based on the feedback signal from the encoder 65.
 当該処理によりCPU42は、スライド20の昇降動作における速度を制御する。
 実施形態に基づくCPU42は、メモリ44に格納された制御データに基づいてレベラーフィーダ200(単にフィーダとも称する)による搬送動作とプレス装置10のスライド20の昇降動作とを同期させた処理を実行する。
The CPU 42 controls the speed of the elevating operation of the slide 20 by the processing.
Based on the control data stored in the memory 44, the CPU 42 based on the embodiment executes processing in which the transport operation by the leveler feeder 200 (also referred to simply as a feeder) and the elevating operation of the slide 20 of the press device 10 are synchronized.
 具体的には、メモリ44は、スライド20の昇降動作とレベラーフィーダ200によるワークの搬送動作とが関連付けられた制御データを記憶する。 Specifically, the memory 44 stores control data in which the elevation operation of the slide 20 and the conveyance operation of the work by the leveler feeder 200 are associated with each other.
 入力部48は、各種のパラメータの入力を受け付ける。本例においては、入力部48は、コントロールパネル6またはリモコン70を介して、パラメータの入力を受け付ける。オペレータは、コントロールパネル6のスイッチおよびテンキー、またはリモコン70の各ボタンを操作することにより、各種のパラメータを入力する。コントロールパネル6とリモコン70とは、実施形態の操作部を構成している。 The input unit 48 receives input of various parameters. In the present example, the input unit 48 receives input of parameters via the control panel 6 or the remote control 70. The operator inputs various parameters by operating the switches of the control panel 6 and the ten keys or the buttons of the remote control 70. The control panel 6 and the remote control 70 constitute an operation unit of the embodiment.
 入力部48が受けるパラメータは、スライド20のボルスタ5に対する昇降方向における位置に関するスライド位置パラメータを含んでいる。入力部48が受けるパラメータは、レベラーフィーダ200の動作に関する搬送パラメータを含んでいる。 The parameters received by the input unit 48 include slide position parameters relating to the position of the slide 20 in the lifting and lowering direction with respect to the bolster 5. The parameters received by the input unit 48 include transport parameters related to the operation of the leveler feeder 200.
 <モーション生成>
 次に、実施形態に基づくモーションの生成方法について説明する。
<Motion generation>
Next, a method of generating motion based on the embodiment will be described.
 図6は、実施形態に基づくCPU42の機能ブロック図である。
 図6に示されるようにCPU42は、タッチ速度生成部51と、プレスモーション生成部53と、フィーダモーション生成部55と、モーション合成部56と、実行部58とを含んでいる。
FIG. 6 is a functional block diagram of the CPU 42 based on the embodiment.
As shown in FIG. 6, the CPU 42 includes a touch velocity generation unit 51, a press motion generation unit 53, a feeder motion generation unit 55, a motion synthesis unit 56, and an execution unit 58.
 機能ブロック図の各々は、メモリ44に格納されている所定のアプリケーションプログラムをCPU42が実行することにより、各部(通信回路46など)と連携して実現される。 Each of the functional block diagrams is realized in cooperation with each unit (such as the communication circuit 46) by the CPU 42 executing a predetermined application program stored in the memory 44.
 タッチ速度生成部51は、入力部48に入力されたワークWの材質および板厚に基づいて、スライド20が下降して上金型22AがワークWに接触するときのスライド20の速度(タッチ速度)を設定する。 The touch speed generation unit 51 determines the speed (touch speed) of the slide 20 when the slide 20 descends and the upper mold 22A contacts the work W based on the material and thickness of the work W input to the input unit 48. Set).
 プレスモーション生成部53は、入力部48に入力されたスライド位置パラメータに基づいて、プレスモーションを自動生成する。スライド位置パラメータは、送り可能高さと、タッチ位置と、加工終了位置とを含んでいる。 The press motion generation unit 53 automatically generates a press motion based on the slide position parameter input to the input unit 48. The slide position parameters include the feedable height, the touch position, and the processing end position.
 フィーダモーション生成部55は、入力部48に入力された搬送パラメータに基づいて、フィーダモーションを自動生成する。搬送パラメータは、送り長さを含んでいる。 The feeder motion generation unit 55 automatically generates a feeder motion based on the transport parameter input to the input unit 48. The transport parameters include the feed length.
 モーション合成部56は、プレスモーション生成部53が生成したプレスモーションと、フィーダモーション生成部55が生成したフィーダモーションとを自動で合成して、合成モーションを自動生成する。 The motion synthesizing unit 56 automatically generates a synthesized motion by automatically synthesizing the press motion generated by the press motion generating unit 53 and the feeder motion generated by the feeder motion generating unit 55.
 送り可能高さは、搬送されるワークWに上金型22Aが干渉しないスライド20の位置の下限を示す。図7は、スライド20が送り可能高さにあるときの金型およびワークWの配置を示す模式図である。スライド20が送り可能高さよりもボルスタ5から離れていれば、ワークWを上金型22Aと干渉せず搬送可能である。 The feedable height indicates the lower limit of the position of the slide 20 where the upper mold 22A does not interfere with the workpiece W being transported. FIG. 7 is a schematic view showing the arrangement of the mold and the work W when the slide 20 is at the feedable height. If the slide 20 is separated from the bolster 5 more than the feedable height, the workpiece W can be transported without interfering with the upper mold 22A.
 タッチ位置は、上金型22AがワークWに接触するときのスライド20の位置を示す。図8は、スライド20がタッチ位置にあるときの金型およびワークWの配置を示す模式図である。ボルスタ5に向かって降下するスライド20がタッチ位置に到達するとき、下金型22B上に載置されているワークWに上金型22Aが接触する。 The touch position indicates the position of the slide 20 when the upper mold 22A contacts the workpiece W. FIG. 8 is a schematic view showing the arrangement of the mold and the work W when the slide 20 is in the touch position. When the slide 20 lowered toward the bolster 5 reaches the touch position, the upper mold 22A contacts the workpiece W placed on the lower mold 22B.
 加工終了位置は、ワークWのプレス加工が終了する時点でのスライド20の位置を示す。図9は、スライド20が加工終了位置にあるときの金型およびワークWの配置を示す模式図である。ボルスタ5に向かって降下するスライド20が加工終了位置に到達すると、ワークWのプレス加工が終了する。 The processing end position indicates the position of the slide 20 when the pressing of the work W is completed. FIG. 9 is a schematic view showing the arrangement of the mold and the work W when the slide 20 is at the processing end position. When the slide 20 that descends toward the bolster 5 reaches the processing end position, pressing of the workpiece W is completed.
 送り長さは、ワークWの搬送方向における、ワークWのプレス加工終了後、次回のプレス加工開始前に、レベラーフィーダ200がワークWを搬送する長さを示す。レベラーフィーダ200により搬送されるワークWの搬送速度は、送り速度と称される。送り速度は、メモリ44に保存されている。または送り速度は、入力部48に入力される搬送パラメータに含まれていてもよい。 The feed length indicates the length by which the leveler feeder 200 transports the workpiece W after the end of the pressing of the workpiece W in the transport direction of the workpiece W and before the start of the next pressing. The transport speed of the workpiece W transported by the leveler feeder 200 is referred to as a feed speed. The feed rate is stored in the memory 44. Alternatively, the feed rate may be included in the transport parameters input to the input unit 48.
 プレスモーション生成部53がプレスモーションを生成すると、単位時間当たりの生産量を最大にするための運転モードが設定される。また、生産速度(単位:SPM(Shot per minute))が設定される。 When the press motion generation unit 53 generates the press motion, an operation mode for maximizing the production amount per unit time is set. In addition, a production speed (unit: SPM (Shot per minute)) is set.
 運転モードは、回転モーション、反転モーション、および振子モーションを含んでいる。 The operation modes include rotational motion, reverse motion, and pendulum motion.
 回転モーションは、エキセン部110A(図3)を一方向に1回転してスライド20を1サイクル駆動する運転モードである。 The rotational motion is an operation mode in which the slide 20 is driven for one cycle by rotating the eccentric part 110A (FIG. 3) in one direction.
 反転モーションは、スライド20の上死点および下死点にそれぞれ対応するエキセン部110Aの回転角度の間に設定した所定の下限位置、上限位置に対応する2つの回転角度間で、下降行程と上昇行程とで反転駆動する運転モードである。 The reverse motion is a downward stroke and a rise between two rotation angles corresponding to the predetermined lower limit position and the upper limit position set between the rotation angles of the eccentric portion 110A corresponding to the top dead center and the bottom dead center of the slide 20, respectively. It is an operation mode in which reverse drive is performed in the stroke.
 振子モーションは、スライド20の下死点に対応するエキセン部110Aの下死回転角度からそれぞれ正転方向および逆転方向に所定角度離れた2つの回転角度を2つの上限位置とし、このうちの一方の上限位置から下死回転角度を通過して他方の上限位置まで一方向に回転駆動して、スライド20を下死点をはさんで往復駆動する運転モードである。 The pendulum motion takes two upper limit positions as two upper limit positions with two rotation angles separated by a predetermined angle in the forward rotation direction and the reverse rotation direction from the lower dead rotation angle of the eccentric portion 110A corresponding to the lower dead center of the slide 20. In this operation mode, the slide 20 is driven to reciprocate across the bottom dead center by rotationally driving in one direction from the upper limit position to the other upper limit position after passing through the bottom dead rotation angle.
 実行部58は、モーション合成部56により生成された合成モーションに基づいて、レベラーフィーダ200の搬送動作およびプレス装置10のプレス加工を制御する。具体的には、実行部58は、合成モーションに基づいてサーボアンプ60,66にそれぞれサーボモータ62,121を駆動するための目標値を出力し、プレスモーションとフィーダモーションとが同期する同期処理を実行する。 The execution unit 58 controls the transport operation of the leveler feeder 200 and the press processing of the press device 10 based on the combined motion generated by the motion combining unit 56. Specifically, the execution unit 58 outputs target values for driving the servomotors 62 and 121 to the servo amplifiers 60 and 66 based on the combined motion, and synchronizes the press motion and the feeder motion. Run.
 図10は、スライド位置パラメータの各位置に対応するメインシャフト110の回転角度を説明する第1の図である。図10には、スライド20の上死点TDC、下死点BDC、待機高さP0、監視位置Pa、送り可能高さP1、タッチ位置P2、加工終了位置P3、飛び跳ね防止高さP4、送り可能高さP5、および待機高さP6に対応する、メインシャフト110の回転角度が示されている。図10には、メインシャフト110が図中の時計回り方向に回転するときの、スライド位置パラメータの各位置が示されている。 FIG. 10 is a first diagram for explaining the rotation angle of the main shaft 110 corresponding to each position of the slide position parameter. In FIG. 10, the top dead center TDC, bottom dead center BDC, standby height P0, monitoring position Pa, feedable height P1, touch position P2, processing end position P3, jump prevention height P4, slide 20 for slide 20 The rotation angle of the main shaft 110 corresponding to the height P5 and the standby height P6 is shown. FIG. 10 shows each position of the slide position parameter when the main shaft 110 rotates in the clockwise direction in the drawing.
 スライド20は、待機高さP0と待機高さP6とを上限位置として、下死点BDCをはさんで往復駆動する、振子モーションを運転モードとする。スライド20は、待機高さP0から降下を始め、監視位置Pa、送り可能高さP1、タッチ位置P2および加工終了位置P3を順に通過して下死点BDCに至り、下死点BDCから上昇して飛び跳ね防止高さP4、送り可能高さP5を順に通過して待機高さP6まで移動して停止する。待機高さP0,P6は上死点TDCよりは低い位置にあるため、スライド20が上死点TDCを通過することはない。 The slide 20 sets the pendulum motion in the operation mode, which is reciprocally driven across the bottom dead center BDC with the standby height P0 and the standby height P6 as upper limit positions. The slide 20 starts to descend from the standby height P0, passes the monitoring position Pa, the feedable height P1, the touch position P2 and the processing end position P3 in order, reaches the bottom dead center BDC, and rises from the bottom dead center BDC. And jumps to the standby height P6 by passing sequentially through the jumping prevention height P4 and the feedable height P5. Since the waiting heights P0 and P6 are lower than the top dead center TDC, the slide 20 does not pass through the top dead center TDC.
 図10に示されるように、待機高さP0は、送り可能高さP1よりも高い位置にある。待機高さP6は、送り可能高さP5よりも高い位置にある。待機高さP0,P6は、プレスモーションの最高位置である。監視位置Paは、スライド20の昇降方向において送り可能高さP1よりも高く待機高さP0よりも低い位置に、設定されている。 As shown in FIG. 10, the waiting height P0 is higher than the feedable height P1. The waiting height P6 is at a position higher than the feedable height P5. The standby heights P0 and P6 are the highest position of the press motion. The monitoring position Pa is set at a position higher than the feedable height P1 in the elevating direction of the slide 20 and lower than the standby height P0.
 加工終了位置P3は、下死点BDCよりも上方の位置として設定されている。降下するスライド20は、下死点BDCに到達するよりも前に、加工終了位置P3を通過する。 The processing end position P3 is set as a position above the bottom dead center BDC. The descending slide 20 passes the processing end position P3 before reaching the bottom dead center BDC.
 飛び跳ね防止高さP4は、下死点BDCよりも上方の位置として設定されている。スライド20は、下死点BDCを通過した後に上昇を開始して、飛び跳ね防止高さP4を通過する。ワークWのプレス加工が終了した後に上金型22Aを上昇させるときにワークWが上金型22Aと下金型22Bとの間でバタつくことを防止できるように、加工終了位置P3から飛び跳ね防止高さP4まで移動する間のスライド20の速度は、低速に設定される。 The jumping prevention height P4 is set as a position above the bottom dead center BDC. After passing the bottom dead center BDC, the slide 20 starts rising and passes the anti-jump height P4. Jump prevention from the processing end position P3 so that the workpiece W can be prevented from fluttering between the upper mold 22A and the lower mold 22B when the upper mold 22A is lifted after the pressing of the work W is completed The speed of the slide 20 while moving to the height P4 is set to a low speed.
 飛び跳ね防止高さP4は、ワークWの材質、板厚および加工方法の条件毎に、異なる位置が設定され得る。設定された飛び跳ね防止高さP4は、メモリ44(図5)に保存されている。プレス加工されるワークWの材質、板厚、または加工方法を変更する場合に、当該ワークWに対応する飛び跳ね防止高さP4がメモリ44に保存されていなければ、加工を開始する前に複数回試行することにより、飛び跳ね防止高さP4が設定される。 A different position may be set for the jumping prevention height P4 depending on the material of the workpiece W, the plate thickness, and the conditions of the processing method. The set anti-jump height P4 is stored in the memory 44 (FIG. 5). When changing the material, thickness, or processing method of the workpiece W to be pressed, if the jump prevention height P4 corresponding to the workpiece W is not stored in the memory 44, the processing is started several times before starting processing. By the trial, the jumping prevention height P4 is set.
 図11は、スライド位置パラメータの各位置に対応するメインシャフト110の回転角度を説明する第2の図である。図11には、図10と同様に、スライド20の上死点TDC、下死点BDC、待機高さP0、監視位置Pa、送り可能高さP1、タッチ位置P2、加工終了位置P3、飛び跳ね防止高さP4、送り可能高さP5、および待機高さP6に対応する、メインシャフト110の回転角度が示されている。図11には、メインシャフト110が図中の反時計回り方向に回転するときの、スライド位置パラメータの各位置が示されている。 FIG. 11 is a second diagram for explaining the rotation angle of the main shaft 110 corresponding to each position of the slide position parameter. 11, the top dead center TDC, bottom dead center BDC of the slide 20, standby height P0, monitoring position Pa, feedable height P1, touch position P2, processing end position P3, jumping prevention as in FIG. The rotation angle of the main shaft 110 corresponding to the height P4, the feedable height P5, and the waiting height P6 is shown. FIG. 11 shows the positions of the slide position parameters when the main shaft 110 rotates in the counterclockwise direction in the drawing.
 図11に示す待機高さP0は、図10に示すスライド20の停止位置である待機高さP6と同じ位置である。図10,11に示す監視位置Pa、送り可能高さP1、タッチ位置P2、加工終了位置P3、飛び跳ね防止高さP4および送り可能高さP5は、図10,11中の上死点TDCおよび下死点BDCを通る直線を対称軸として、線対称に設定されている。図11に示す待機高さP6は、図10に示すスライド20の移動開始位置である待機高さP0と同じ位置である。スライド20は、待機高さP0から降下を始め、監視位置Pa、送り可能高さP1、タッチ位置P2および加工終了位置P3を順に通過して下死点BDCに至り、下死点BDCから上昇して飛び跳ね防止高さP4、送り可能高さP5を順に通過して待機高さP6まで移動して停止する。 The standby height P0 shown in FIG. 11 is the same position as the standby height P6 which is the stop position of the slide 20 shown in FIG. The monitoring position Pa shown in FIGS. 10 and 11, the feedable height P 1, the touch position P 2, the processing end position P 3, the jump prevention height P 4 and the feedable height P 5 are the top dead center TDC and the lower in FIGS. The straight line passing through the dead point BDC is set as a line of symmetry. The waiting height P6 shown in FIG. 11 is the same position as the waiting height P0 which is the movement start position of the slide 20 shown in FIG. The slide 20 starts to descend from the standby height P0, passes the monitoring position Pa, the feedable height P1, the touch position P2 and the processing end position P3 in order, reaches the bottom dead center BDC, and rises from the bottom dead center BDC. And jumps to the standby height P6 by passing sequentially through the jumping prevention height P4 and the feedable height P5.
 図12は、実施形態に基づくプレスシステムのモーション生成について説明するフロー図である。 FIG. 12 is a flow diagram for describing motion generation of the press system based on the embodiment.
 図12に示されるように、まずステップS1において、入力部48へ各種パラメータを入力する。具体的には、オペレータは、コントロールパネル6またはリモコン70(図2)を操作することにより、モーション生成のために必要な各パラメータを入力する。 As shown in FIG. 12, first, in step S1, various parameters are input to the input unit. Specifically, the operator inputs each parameter necessary for motion generation by operating the control panel 6 or the remote control 70 (FIG. 2).
 次にステップS2において、タッチ速度を設定する。具体的には、タッチ速度生成部51は、入力されたワークWの材質および板厚に基づいて、制御部40のメモリ44(図5)に記憶されているワークWの材質毎のタッチ速度テーブルを参照して、タッチ速度を設定する。 Next, in step S2, the touch speed is set. Specifically, the touch speed generation unit 51 is a touch speed table for each material of the work W stored in the memory 44 (FIG. 5) of the control unit 40 based on the material and thickness of the input work W. Refer to to set the touch speed.
 次にステップS3において、フィーダモーションを生成する。具体的には、フィーダモーション生成部55は、入力された送り長さおよび送り速度に基づいて、フィーダモーションを生成する。 Next, in step S3, a feeder motion is generated. Specifically, the feeder motion generation unit 55 generates a feeder motion based on the input feed length and feed rate.
 図13は、実施形態に基づくプレスシステムにより生成されたプレスモーションおよびフィーダモーションを示す図である。図13(A)のグラフの横軸は時間を示し、縦軸はサーボモータ121による回転駆動に基づくメインシャフト110の角速度ωを示す。角速度ωmaxは、メインシャフト110の角速度の最大値として設定されている値を示す。角速度ω1は、ステップS2で設定されたタッチ速度に対応するメインシャフト110の角速度を示す。メインシャフト110が角速度ω1で回転することにより、スライド20の加工速度はタッチ速度に設定される。図13(A)中には、待機高さP0、監視位置Pa、送り可能高さP1、タッチ位置P2、加工終了位置P3、飛び跳ね防止高さP4、送り可能高さP5および待機高さP6がプロットされている。図13(B)のグラフの横軸は時間を示し、縦軸はワークWの搬送速度vを示す。 FIG. 13 is a diagram showing press motions and feeder motions generated by the press system according to the embodiment. The horizontal axis of the graph in FIG. 13A indicates time, and the vertical axis indicates the angular velocity ω of the main shaft 110 based on rotational drive by the servomotor 121. The angular velocity ωmax represents a value set as the maximum value of the angular velocity of the main shaft 110. The angular velocity ω1 indicates the angular velocity of the main shaft 110 corresponding to the touch velocity set in step S2. By rotating the main shaft 110 at the angular velocity ω1, the processing speed of the slide 20 is set to the touch speed. In FIG. 13A, the standby height P0, the monitoring position Pa, the feedable height P1, the touch position P2, the processing end position P3, the jump prevention height P4, the feedable height P5, and the standby height P6 It is plotted. The horizontal axis of the graph in FIG. 13B indicates time, and the vertical axis indicates the transport speed v of the work W.
 図13(B)に示されるように、ワークWが停止した状態(搬送速度v=0)から、設定された送り速度に到達するまで、所定の加速度で加速する。送り速度に達した後、所定の加速度で減速することで設定された搬送長さだけワークWが搬送された時点において搬送速度v=0まで減速され得る位置まで、設定された送り速度でのワークWの搬送が継続する。搬送速度が増大または減少するときの加速度の所定値は、メモリ44に保存されている。 As shown in FIG. 13B, acceleration is performed with a predetermined acceleration until the set feed speed is reached from the state where the work W is stopped (conveying speed v = 0). After reaching the feed speed, the workpiece at the set feed speed up to a position where it can be decelerated to the feed speed v = 0 at the time when the work W is transported by the transport length set by decelerating at a predetermined acceleration. The transport of W continues. The predetermined value of the acceleration when the transport speed increases or decreases is stored in the memory 44.
 ワークWは、設定された送り速度から所定の加速度で減速して、設定された搬送長さだけワークWが搬送された時点で搬送速度v=0になり、ワークWの搬送が完了する。以上のようにして、フィーダモーションが生成される。 The workpiece W is decelerated from the set feed speed by a predetermined acceleration, and when the workpiece W is transported by the set transport length, the transport speed v becomes 0, and the transport of the workpiece W is completed. As described above, the feeder motion is generated.
 図12に戻って、次にステップS4において、プレスモーションを生成する。具体的には、プレスモーション生成部53は、入力された送り可能高さ(P1)、タッチ位置(P2)および加工終了位置(P3)、ならびにステップS2で設定されたタッチ速度に基づいて、プレスモーションを生成する。 Referring back to FIG. 12, in step S4, press motion is generated. Specifically, the press motion generation unit 53 performs the press based on the input feedable height (P1), the touch position (P2) and the processing end position (P3), and the touch speed set in step S2. Generate motion.
 図13(A)に示されるように、待機高さP0はスライド20が停止している位置であり、そのため待機高さP0におけるメインシャフト110の角速度ωはゼロである。待機高さP0は、所定の加速度で加速することで送り可能高さP1に対応する回転角度において最大角速度ωmaxにまで加速され得る位置として、設定される。 As shown in FIG. 13A, the waiting height P0 is the position at which the slide 20 is at rest, so the angular velocity ω of the main shaft 110 at the waiting height P0 is zero. The waiting height P0 is set as a position that can be accelerated to the maximum angular velocity ωmax at a rotation angle corresponding to the feedable height P1 by accelerating with a predetermined acceleration.
 スライド20は、待機高さP0から下死点BDCへ向けて下降を開始し、メインシャフト110が最大角速度ωmaxに達するまで所定の加速度で加速する。メインシャフト110は、スライド20が送り可能高さP1を通過するときに、速度が最大角速度ωmaxに達する。スライド20は、最大の速度で送り可能高さP1を通過する。メインシャフト110は、スライド20の下降時に、スライド20が送り可能高さP1を通過する前に、加速を完了する。 The slide 20 starts to descend from the standby height P0 toward the bottom dead center BDC, and accelerates at a predetermined acceleration until the main shaft 110 reaches the maximum angular velocity ωmax. The main shaft 110 reaches the maximum angular velocity ωmax when the slide 20 passes the feedable height P1. The slide 20 passes the feedable height P1 at the maximum speed. The main shaft 110 completes acceleration before the slide 20 passes the feedable height P1 when the slide 20 descends.
 最大角速度ωmaxに達した後、所定の加速度で減速することでタッチ位置P2に対応する回転角度においてタッチ速度ω1にまで減速され得る位置まで、最大角速度ωmaxでのメインシャフト110の回転が継続する。メインシャフト110の最大角速度ωmaxおよび加減速するときの加速度の所定値は、メモリ44に保存されている。 After reaching the maximum angular velocity ωmax, the rotation of the main shaft 110 at the maximum angular velocity ωmax continues to a position where it can be decelerated to the touch velocity ω1 at a rotation angle corresponding to the touch position P2 by decelerating with a predetermined acceleration. The maximum angular velocity ωmax of the main shaft 110 and predetermined values of acceleration when decelerating are stored in the memory 44.
 メインシャフト110は、最大角速度ωmaxから減速して、スライド20がタッチ位置P2に到達する時点で角速度ω1で回転する。その後、メインシャフト110は、スライド20が加工終了位置P3に到達するまで、等しい角速度ω1で回転する。これにより、スライド20は、タッチ位置P2から加工終了位置P3まで、タッチ速度で下降する。 The main shaft 110 decelerates from the maximum angular velocity ωmax and rotates at the angular velocity ω1 when the slide 20 reaches the touch position P2. Thereafter, the main shaft 110 rotates at the same angular velocity ω1 until the slide 20 reaches the processing end position P3. Thereby, the slide 20 is lowered at the touch speed from the touch position P2 to the processing end position P3.
 スライド20が加工終了位置P3に到達すると、メインシャフト110(およびスライド20)は加速を開始する。スライド20が加工終了位置P3と飛び跳ね防止高さP4との間を移動中は、ワークWのバタつきを防止するために、スライド20はタッチ速度よりも僅かに大きい速度で移動し、メインシャフト110は角速度ω1よりも僅かに大きい速度で回転する。 When the slide 20 reaches the processing end position P3, the main shaft 110 (and the slide 20) starts to accelerate. While the slide 20 is moving between the processing end position P3 and the jump prevention height P4, the slide 20 moves at a speed slightly higher than the touch speed to prevent the work W from fluttering, and the main shaft 110 Rotates at a speed slightly larger than the angular velocity ω1.
 スライド20が飛び跳ね防止高さP4に到達すると、メインシャフト110は、最大角速度ωmaxに到達するまで、所定の加速度で再加速する。最大速度ωmaxに達した後、スライド20が送り可能高さP5に到達するまで、最大角速度ωmaxでのメインシャフト110の回転が継続する。スライド20は、最大の速度で送り可能高さP5を通過する。 When the slide 20 reaches the jumping prevention height P4, the main shaft 110 re-accelerates at a predetermined acceleration until reaching the maximum angular velocity ωmax. After reaching the maximum velocity ωmax, the rotation of the main shaft 110 at the maximum angular velocity ωmax continues until the slide 20 reaches the feedable height P5. The slide 20 passes the feedable height P5 at the maximum speed.
 スライド20が送り可能高さP5を通過すると、メインシャフト110は、最大角速度ωmaxから所定の加速度で減速する。メインシャフト110は、スライド20の上昇時に、送り可能高さP5を通過してから、減速を開始する。メインシャフト110は、スライド20が待機高さP6に到達する時点で、回転を停止する。スライド20は、待機高さP6の位置で、停止する。待機高さP6は、送り可能高さP5に対応する回転角度から所定の加速度で減速することで角速度ゼロにまで減速される位置として、設定される。以上のようにして、プレスモーションが生成される。 When the slide 20 passes the feedable height P5, the main shaft 110 decelerates at a predetermined acceleration from the maximum angular velocity ωmax. The main shaft 110 starts decelerating after passing through the feedable height P5 when the slide 20 ascends. The main shaft 110 stops its rotation when the slide 20 reaches the standby height P6. The slide 20 stops at the standby height P6. The standby height P6 is set as a position to be decelerated to zero angular velocity by decelerating from the rotation angle corresponding to the feedable height P5 at a predetermined acceleration. As described above, press motion is generated.
 次にステップS5において、合成モーションを生成する。具体的には、モーション合成部56は、ステップS3で生成されたフィーダモーションと、ステップS4で生成されたプレスモーションとを合成して、合成モーションを生成する。 Next, in step S5, a synthetic motion is generated. Specifically, the motion synthesis unit 56 synthesizes the feeder motion generated in step S3 and the press motion generated in step S4 to generate a synthesized motion.
 図13に示されるように、スライド20が最高速で送り可能高さP5を通過した後、ワークWの搬送を開始する。スライド20が送り可能高さP5を通過する時点では、ワークWの搬送速度v=0である。ワークWの搬送を開始する時点で、スライド20は、送り可能高さP5から待機高さP6までの間を移動している。スライド20が送り可能高さP5と待機高さP6との間を搬送している間に、ワークWの搬送も行なわれる。スライド20の減速中に、レベラーフィーダ200によるワークWの搬送が開始される。 As shown in FIG. 13, after the slide 20 passes the feedable height P5 at the highest speed, the transport of the workpiece W is started. When the slide 20 passes the feedable height P5, the transport speed v of the workpiece W is 0. At the time of starting conveyance of the work W, the slide 20 is moved from the feedable height P5 to the waiting height P6. While the slide 20 is transported between the feedable height P5 and the waiting height P6, the workpiece W is also transported. During deceleration of the slide 20, transport of the work W by the leveler feeder 200 is started.
 待機高さP6で停止したスライド20は、所定時間後、降下を開始する。スライド20が待機高さP6に到達したときに回転を停止したメインシャフト110は、所定時間後、逆方向への回転を開始する。 The slide 20 stopped at the standby height P6 starts to descend after a predetermined time. The main shaft 110, which has stopped rotating when the slide 20 reaches the standby height P6, starts rotating in the reverse direction after a predetermined time.
 ワークWが所定の加速度および設定された送り速度で送り長さだけ通常通り搬送されるときの、ワークWの搬送開始から送り完了までに経過する時間は、フィーダ移動時間と称される。メインシャフト110は、フィーダ移動時間が経過した時点からプレス待ち時間(マージン)ts経過後、スライド20が監視位置Paに到達するように、回転を開始する。レベラーフィーダ200は、スライド20の加速中に停止される。ワークWは、待機高さP0から降下するスライド20が送り可能高さP1よりも高い位置である監視位置Paに到達する時点よりもプレス待ち時間(マージン)ts前に、送り完了している。スライド20が送り可能高さP1に到達する時点で、ワークWは送り完了している。 The time elapsed from the start of conveyance of the workpiece W to the completion of the feeding when the workpiece W is normally conveyed by a feeding length at a predetermined acceleration and a set feeding speed is referred to as a feeder movement time. The main shaft 110 starts rotating so that the slide 20 reaches the monitoring position Pa after the press waiting time (margin) ts elapses from the time when the feeder movement time has elapsed. The leveler feeder 200 is stopped while the slide 20 is accelerating. The work W has been completely fed before the press waiting time (margin) ts before the slide 20 which descends from the waiting height P0 reaches the monitoring position Pa which is a position higher than the feedable height P1. When the slide 20 reaches the feedable height P1, the workpiece W has been fed.
 このようにして、ワークWの搬送動作と上金型22Aの昇降動作との干渉が起こらない合成モーションが生成される。 In this manner, a combined motion that does not cause interference between the transport operation of the workpiece W and the elevating operation of the upper mold 22A is generated.
 監視位置Paの設定手法について説明する。図14は、監視位置Paの設定手法を示す図である。図14(A)(B)のグラフの横軸は時間を示す。図14(A)のグラフの縦軸はスライド20の位置Pを示す。図14(B)のグラフの縦軸はサーボモータ121による回転駆動に基づくメインシャフト110の角速度ωを示す。 The setting method of the monitoring position Pa will be described. FIG. 14 is a diagram showing a method of setting the monitoring position Pa. The horizontal axes of the graphs of FIGS. 14 (A) and 14 (B) indicate time. The vertical axis of the graph in FIG. 14A indicates the position P of the slide 20. The vertical axis of the graph in FIG. 14B indicates the angular velocity ω of the main shaft 110 based on the rotational drive by the servomotor 121.
 図14(A)中の実線は、時刻Taまで所定の加速度で加速しながら下降し、時刻Taでスライド20の強制停止を開始した場合のスライド20の位置を示し、図14(B)中の実線は、時刻Taまで所定の角加速度で加速しながら回転し、時刻Taでメインシャフト110の回転の強制停止を開始した場合のメインシャフト110の角速度を示す。図14(A)中の破線は、通常の動作でスライド20が降下する場合の、時刻Ta以降のスライド20の位置を示し、図14(B)中の破線は、通常の動作でメインシャフト110が回転する場合の、時刻Ta以降のメインシャフト110の角速度を示す。 The solid line in FIG. 14 (A) shows the position of the slide 20 when it descends while accelerating with a predetermined acceleration until time Ta, and the forced stop of the slide 20 is started at time Ta; The solid line indicates the angular velocity of the main shaft 110 when it is rotated while accelerating at a predetermined angular acceleration until time Ta, and the forced stop of the rotation of the main shaft 110 is started at time Ta. The broken line in FIG. 14A indicates the position of the slide 20 after time Ta when the slide 20 is lowered in the normal operation, and the broken line in FIG. 14B indicates the main shaft 110 in the normal operation. Indicates the angular velocity of the main shaft 110 after time Ta.
 上述した通り、待機高さP0はスライド20が停止している位置であり、そのため待機高さP0におけるメインシャフト110の角速度ωはゼロである。メインシャフト110は、スライド20が送り可能高さP1を通過するときに最大角速度ωに達するように、所定の加速度で加速する。時刻Taにおいて、図14(A)に示すように、スライド20は監視位置Paに到達する。 As described above, the standby height P0 is the position at which the slide 20 is at rest, so the angular velocity ω of the main shaft 110 at the standby height P0 is zero. The main shaft 110 accelerates with a predetermined acceleration so as to reach the maximum angular velocity ω when the slide 20 passes the feedable height P1. At time Ta, as shown in FIG. 14A, the slide 20 reaches the monitoring position Pa.
 スライド20が待機高さP0から下降して監視位置Paに到達した時刻Taの時点で、制御部40は、ワークWの送り完了が検出されているかどうかを判断する。つまり制御部40は、スライド20が待機高さP0から下降を開始してから所定時間後の時刻Taの時点で、送り完了検出部68(図5)からワークWの搬送が完了していることを示す送り完了信号の入力を受けているかどうかを判断する。 At time Ta when the slide 20 descends from the standby height P0 and reaches the monitoring position Pa, the control unit 40 determines whether or not the completion of the feed of the work W is detected. That is, at time Ta after a predetermined time after the slide 20 starts to descend from the standby height P0, the control unit 40 completes the conveyance of the work W from the feed completion detection unit 68 (FIG. 5). It is determined whether or not the input of the feed completion signal indicating.
 時刻TaにおいてワークWの送り完了が検出されていない場合に、制御部40は、スライド20を強制停止させる。図14(B)に示すように、メインシャフト110は、時刻Ta以降、所定の加速度で減速する。時刻Tbにおいて、メインシャフト110は回転を停止し図14(B)に示す角速度ωがゼロになり、スライド20が停止する。スライド20が停止する停止位置Pbは、図14(A)に示すように、送り可能高さP1よりも高い位置である。 When the feed completion of the work W is not detected at time Ta, the control unit 40 forcibly stops the slide 20. As shown in FIG. 14 (B), the main shaft 110 decelerates at a predetermined acceleration after time Ta. At time Tb, the main shaft 110 stops its rotation, the angular velocity ω shown in FIG. 14B becomes zero, and the slide 20 stops. The stop position Pb at which the slide 20 stops is a position higher than the feedable height P1 as shown in FIG. 14 (A).
 このように、待機高さP0から下降を開始し監視位置Paに到達したスライド20が、ワークWの送り完了が検出されていない場合に、監視位置Paにおいて減速を開始して送り可能高さP1よりも高い停止位置Pbで停止できるように、監視位置Paが設定される。 As described above, when the slide 20 which has started to descend from the standby height P0 and reached the monitoring position Pa does not detect the completion of the feed of the workpiece W, the slide 20 starts decelerating at the monitoring position Pa and the feedable height P1 The monitoring position Pa is set so as to be able to stop at a higher stop position Pb.
 図12に戻って、次にステップS6において、生成された合成モーションに従って、ワークWを加工する。実行部58は、生成された合成モーションに基づいて、ワークWのプレス加工を実行する。 Referring back to FIG. 12, in step S6, the workpiece W is processed in accordance with the generated combined motion. The execution unit 58 executes the pressing of the workpiece W based on the generated combined motion.
 次にステップS7において、ステップS5で生成された合成モーションに基づくワークWの加工時の結果が、適切であるか否かを判断する。たとえば、サーボモータ121の電流値からメインシャフト110の回転に要するトルクを算出し、当該トルクが許容値を超えている場合、加工時の結果が不適であると判断される。またたとえば、加工時に発生する振動を測定し、その振動が許容値を超えている場合、加工時の結果が不適であると判断される。トルクまたは振動などの許容値は、メモリ44に保存されている。 Next, in step S7, it is determined whether the result at the time of processing of the workpiece W based on the combined motion generated in step S5 is appropriate. For example, the torque required for the rotation of the main shaft 110 is calculated from the current value of the servomotor 121, and when the torque exceeds the allowable value, it is determined that the result at the time of processing is unsuitable. For example, the vibration generated at the time of processing is measured, and when the vibration exceeds the allowable value, it is determined that the result at the time of processing is unsuitable. Tolerance values such as torque or vibration are stored in the memory 44.
 加工時の結果が不適であると判断された場合(ステップS7においてNO)、次にステップS8において、合成モーションを修正する。たとえば、プレス加工中の速度(すなわち、スライド20のタッチ速度(メインシャフト110の角速度ω1))以外の速度を小さくする修正が行われる。 If it is determined that the result at the time of processing is not appropriate (NO in step S7), then in step S8, the combined motion is corrected. For example, a correction is performed to reduce the speed other than the speed during press processing (that is, the touch speed of the slide 20 (angular velocity ω1 of the main shaft 110)).
 合成モーションの修正後、ステップS6に戻り、修正された合成モーションに従って、ワークWを加工する。続いてステップS7において、修正された合成モーションに基づくワークWの加工時の結果が、適切であるか否かを判断する。 After correcting the combined motion, the process returns to step S6, and the workpiece W is processed in accordance with the corrected combined motion. Subsequently, in step S7, it is determined whether or not the result at the time of processing the workpiece W based on the corrected combined motion is appropriate.
 加工時の結果が適切であると判断された場合(ステップS7においてYES)、ステップS9に進み、合成モーションがメモリ44に保存される。 If it is determined that the result at the time of processing is appropriate (YES in step S7), the process proceeds to step S9, and the combined motion is stored in the memory 44.
 次にステップS10において、結果を出力する。スライド位置パラメータおよび搬送パラメータとして入力された値と、モーションの自動生成に伴って定められた設定および算出された値とが、コントロールパネル6の表示部に表示される。オペレータは、表示器の該当の画面を見ることによって、プレスシステムの運転状態を容易に把握することができる。 Next, in step S10, the result is output. The values input as the slide position parameter and the transport parameter, and the values set and calculated according to the automatic generation of motion are displayed on the display unit of the control panel 6. The operator can easily grasp the operating condition of the press system by looking at the corresponding screen of the display.
 そして、処理を終了する(エンド)。
 <作用・効果>
 次に、本実施形態の作用効果について説明する。
Then, the process ends (end).
<Operation and effect>
Next, the operation and effect of the present embodiment will be described.
 実施形態に基づくプレスシステムによれば、図10,11に示すように、送り可能高さP1よりも高い位置にある待機高さP0が設定され、送り可能高さP5よりも高い位置にある待機高さP6が設定される。図13に示すように、ワークWは、スライド20が送り可能高さP5と待機高さP6との間を移動している間に搬送を開始され、スライド20が待機高さP0と送り可能高さP1との間を移動している間に搬送を完了する。ワークWの搬送と、スライド20の移動とが、時間的に重なっている。 According to the press system based on the embodiment, as shown in FIGS. 10 and 11, the standby height P0 higher than the feedable height P1 is set, and the standby higher than the feedable height P5 The height P6 is set. As shown in FIG. 13, the work W is started to be transported while the slide 20 is moving between the feedable height P5 and the waiting height P6, and the slide 20 can be fed with the waiting height P0 and the feeding possible height The transfer is completed while moving between P1. The transport of the work W and the movement of the slide 20 overlap in time.
 スライド20を送り可能高さP1,P5で停止させる場合、送り可能高さP1,P5でスライド20の速度がゼロである必要がある。スライド20を停止させる位置を、送り可能高さP1,P5ではなく、送り可能高さP1,P5よりも高い待機高さP0,P6とすることで、送り可能高さP1,P5を通過する時点で、スライド20はゼロよりも大きい速度で移動している。これにより、スライド20が送り可能高さP1から下降する時間、および、スライド20が上昇して送り可能高さP5に到達するまでの時間を短縮できる。より具体的には、スライド20が送り可能高さP1から下死点BDCを経由して送り可能高さP5まで移動する時間を短縮できる。 When the slide 20 is stopped at the feedable heights P1 and P5, the speed of the slide 20 needs to be zero at the feedable heights P1 and P5. The point at which the slide 20 is to be stopped is not the feedable heights P1 and P5 but the standby heights P0 and P6 which are higher than the feedable heights P1 and P5, and the point at which the feedable heights P1 and P5 are passed The slide 20 is moving at a speed greater than zero. As a result, the time for the slide 20 to descend from the feedable height P1 and the time for the slide 20 to rise and reach the feedable height P5 can be shortened. More specifically, the time for the slide 20 to move from the feedable height P1 to the feedable height P5 via the bottom dead center BDC can be shortened.
 スライド20が送り可能高さP1を通過する前、およびスライド20が送り可能高さP5を通過した後は、金型と干渉することなくワークWを搬送できる。スライド20が下死点BDCから送り可能高さP5まで移動する時間が短縮されているので、ワークWの搬送を開始するタイミングを早めることが可能になる。プレス加工の1サイクルに要する時間が短縮されることにより、プレスシステムの生産速度を向上することができる。 Before the slide 20 passes the feedable height P1 and after the slide 20 passes the feedable height P5, the workpiece W can be transported without interference with the mold. Since the time for the slide 20 to move from the bottom dead center BDC to the feedable height P5 is shortened, it is possible to accelerate the timing to start the transfer of the work W. By shortening the time required for one cycle of press working, the production speed of the press system can be improved.
 また図13に示すように、メインシャフト110は、スライド20が送り可能高さP5を通過してから待機高さP6に到達するまでの間に、最大角速度ωmaxからゼロにまで減速している。したがってサーボモータ121も、スライド20が送り可能高さP5を通過してから待機高さP6に到達するまでの間に減速している。サーボモータ121の減速中に、レベラーフィーダ200によるワークWの搬送が開始される。 Further, as shown in FIG. 13, the main shaft 110 decelerates from the maximum angular velocity ωmax to zero before the slide 20 passes the feedable height P5 and reaches the standby height P6. Therefore, the servomotor 121 also decelerates between the time when the slide 20 passes the feedable height P5 and the time the standby height P6 is reached. During deceleration of the servomotor 121, conveyance of the work W by the leveler feeder 200 is started.
 このようにすれば、ワークWの搬送時間とスライド20の移動時間とを確実に重ねることができる。スライド20の移動距離を短くする観点からは送り可能高さP5により近い位置に待機高さP6を設定するのが望ましく、ワークWの搬送開始時点では既にサーボモータ121が減速している設定とすることで、より送り可能高さP5に近い待機高さP6にスライド20を容易に停止させることが可能になる。 In this way, the transfer time of the work W and the moving time of the slide 20 can be reliably overlapped. From the viewpoint of shortening the moving distance of the slide 20, it is desirable to set the standby height P6 at a position closer to the feedable height P5, and the servomotor 121 has already been decelerated at the start of conveyance of the workpiece W. This makes it possible to easily stop the slide 20 at the standby height P6 closer to the feedable height P5.
 また図13に示すように、メインシャフト110は、スライド20が送り可能高さP5を通過してから減速を開始している。したがって、スライド20の上昇時に、スライド20が送り可能高さP5を通過してから、サーボモータ121の減速を開始している。送り可能高さP5を通過する時点では、サーボモータ121は減速していない。スライド20は、最高速度で送り可能高さP5を通過する。このようにすれば、スライド20が送り可能高さP1から下死点BDCを経由して送り可能高さP5まで移動する時間を、確実に短縮することができる。 Further, as shown in FIG. 13, the main shaft 110 starts to decelerate after the slide 20 has passed the feedable height P5. Therefore, when the slide 20 ascends, deceleration of the servomotor 121 is started after the slide 20 has passed the feedable height P5. At the time of passing the feedable height P5, the servomotor 121 is not decelerating. The slide 20 passes the feedable height P5 at the highest speed. In this way, the time for moving the slide 20 from the sendable height P1 to the sendable height P5 via the bottom dead center BDC can be reliably shortened.
 また図13に示すように、メインシャフト110は、スライド20が待機高さP0より移動を開始してから送り可能高さP1に到達するまでの間に、角速度ゼロから最大角速度ωmaxにまで加速している。したがってサーボモータ121も、スライド20の待機高さP0から送り可能高さP1までの移動中に加速している。サーボモータ121の加速中に、レベラーフィーダ200によるワークWの搬送が完了する。 Further, as shown in FIG. 13, the main shaft 110 accelerates from zero angular velocity to the maximum angular velocity ωmax while the slide 20 starts moving from the standby height P0 until it reaches the feedable height P1. ing. Accordingly, the servomotor 121 also accelerates during the movement from the standby height P0 of the slide 20 to the feedable height P1. During acceleration of the servomotor 121, conveyance of the work W by the leveler feeder 200 is completed.
 このようにすれば、ワークWの搬送時間とスライド20の移動時間とを確実に重ねることができる。スライド20の移動距離を短くする観点からは送り可能高さP1により近い位置に待機高さP0を設定するのが望ましく、ワークWの送り完了時点ではサーボモータ121は加速中であり最高速度未満の速度で移動する設定とすることで、より送り可能高さP1に近い待機高さP0からスライド20を降下させることが容易に可能になる。 In this way, the transfer time of the work W and the moving time of the slide 20 can be reliably overlapped. From the viewpoint of shortening the moving distance of the slide 20, it is desirable to set the waiting height P0 at a position closer to the feedable height P1, and at the completion of the workpiece W feeding, the servomotor 121 is accelerating and less than the maximum speed. By setting to move at the speed, it is possible to easily lower the slide 20 from the standby height P0 closer to the feedable height P1.
 また図13に示すように、メインシャフト110は、スライド20が送り可能高さP1を通過するよりも前に、加速を完了している。したがって、スライド20の下降時に、スライド20が送り可能高さP1を通過する前に、サーボモータ121の加速を完了している。送り可能高さP1を通過する時点では、サーボモータ121は最高速度に達している。スライド20は、最高速度で送り可能高さP1を通過する。このようにすれば、スライド20が送り可能高さP1から下死点BDCを経由して送り可能高さP5まで移動する時間を、確実に短縮することができる。 Further, as shown in FIG. 13, the main shaft 110 completes the acceleration before the slide 20 passes the feedable height P1. Therefore, when the slide 20 is lowered, the acceleration of the servomotor 121 is completed before the slide 20 passes the feedable height P1. At the time of passing the feedable height P1, the servomotor 121 has reached the maximum speed. The slide 20 passes the feedable height P1 at the maximum speed. In this way, the time for moving the slide 20 from the sendable height P1 to the sendable height P5 via the bottom dead center BDC can be reliably shortened.
 また図14に示すように、待機高さP0から下降するスライド20が監視位置Paに到達した時点でワークWの送り完了が検出されていない場合に、送り可能高さP1よりも高い停止位置Pbでスライド20を停止できるように、待機高さP0および監視位置Paが設定されている。これにより、ワークWの搬送に異状が発生した場合でも、ワークWと金型との干渉を確実に回避することができる。 Further, as shown in FIG. 14, when the completion of the feed of the workpiece W is not detected when the slide 20 moving down from the standby height P0 reaches the monitoring position Pa, the stop position Pb higher than the feedable height P1. The standby height P0 and the monitoring position Pa are set so that the slide 20 can be stopped at Thereby, even when abnormality in conveyance of the workpiece | work W generate | occur | produces, interference with the workpiece | work W and a metal mold | die can be avoided reliably.
 なおこれまでの説明においては、スライド20の運転モードが振子モーションである例について説明した。上述した実施形態の思想は、運転モードが振子モーションである場合に限られず、プレス加工時にサーボモータ121をワークWのプレス加工一回毎に交互に正逆回転させることによってスライド20をボルスタ5に対して昇降動作させる場合に、適用可能である。たとえば、運転モードが反転モーションである場合にも、上述した実施形態の思想を適用することが可能である。 In the above description, the example in which the operation mode of the slide 20 is pendulum motion has been described. The idea of the embodiment described above is not limited to the case where the operation mode is pendulum motion, and the slide 20 may be bolstered by alternately rotating the servomotor 121 forward and reverse each time the work W is pressed. The present invention is applicable when moving up and down. For example, even when the operation mode is reverse motion, it is possible to apply the idea of the above-described embodiment.
 プレス装置は、実施の形態で説明した構成に限られるものではなく、たとえば、コンロッドとスライドとの間にプランジャとプランジャホルダとが介在する構成であってもよい。偏心機構は、クランクシャフト構造でもよいし、ドラム構造でもよい。 The pressing device is not limited to the configuration described in the embodiment, and for example, the plunger and the plunger holder may be interposed between the connecting rod and the slide. The eccentric mechanism may be a crankshaft structure or a drum structure.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 2 本体フレーム、4 ベッド、5 ボルスタ、6 コントロールパネル、10 プレス装置、20 スライド、22A 上金型、22B 下金型、37 ねじ軸、38 コンロッド本体、39 コンロッド、40 制御部、42 CPU、44 メモリ、46 通信回路、48 入力部、51 タッチ速度生成部、53 プレスモーション生成部、55 フィーダモーション生成部、56 モーション合成部、58 実行部、60,66 サーボアンプ、61 表示器、62,121 サーボモータ、63 搬送ローラ、64,65 エンコーダ、68 送り完了検出部、70 リモコン、72,74 ボタン、76 決定ボタン、100 アンコイラ、110 メインシャフト、110A エキセン部、115 メインギア、200 レベラーフィーダ。 Reference Signs List 2 body frame, 4 bed, 5 bolster, 6 control panel, 10 pressing device, 20 slide, 22A upper mold, 22B lower mold, 37 screw shaft, 38 connecting rod main body, 39 connecting rod, 40 control unit, 42 CPU, 44 Memory, 46 communication circuit, 48 input unit, 51 touch speed generation unit, 53 press motion generation unit, 55 feeder motion generation unit, 56 motion synthesis unit, 58 execution unit, 60, 66 servo amplifier, 61 display, 62, 121 Servo motor, 63 transport rollers, 64, 65 encoders, 68 feed completion detection units, 70 remote controls, 72, 74 buttons, 76 decision buttons, 100 uncoilers, 110 main shafts, 110 A eccentric parts, 115 main gears, 200 Bellah feeder.

Claims (10)

  1.  電動モータと、前記電動モータによる回転運動を昇降方向運動に変換する偏心機構と、上金型を装着可能で、前記偏心機構を介して昇降駆動するスライドと、下金型を装着可能なボルスタとを有し、前記ボルスタに対する前記スライドの昇降動作によってワークをプレス加工する、プレス部と、
     前記ワークを搬送する搬送部と、
     前記プレス部および前記搬送部を制御する制御部とを備え、
     前記制御部は、所定のプレスモーションに基づき、前記スライドを昇降駆動し、
     前記ワークを前記上金型と干渉せず搬送可能な前記スライドの位置が送り可能高さであり、前記送り可能高さよりも高く、前記プレスモーションの最高位置が待機高さであり、
     前記制御部は、前記スライドが前記送り可能高さと前記待機高さとの間を移動している間に、前記ワークの搬送も行なっている、プレスシステム。
    Electric motor, Eccentric mechanism for converting rotational movement by the electric motor to movement in the vertical direction, Slide capable of mounting the upper mold, movable up and down through the eccentric mechanism, Bolster capable of mounting the lower mold A press unit for pressing a work by raising and lowering movement of the slide relative to the bolster;
    A transport unit for transporting the work;
    And a control unit that controls the press unit and the transport unit.
    The control unit raises and lowers the slide based on a predetermined press motion,
    The position of the slide capable of transporting the work without interference with the upper mold is a height that can be fed, is higher than the height that can be fed, and the highest position of the press motion is a standby height.
    The control system is also performing conveyance of the work while the slide is moving between the feedable height and the standby height.
  2.  前記制御部は、前記電動モータの減速中に、前記搬送部による前記ワークの搬送を開始する、請求項1に記載のプレスシステム。 The press system according to claim 1, wherein the control unit starts conveyance of the work by the conveyance unit during deceleration of the electric motor.
  3.  前記制御部は、前記スライドが前記送り可能高さから前記待機高さまでの間を移動している間に、前記搬送部による前記ワークの搬送を開始する、請求項1に記載のプレスシステム。 2. The press system according to claim 1, wherein the control unit starts conveyance of the workpiece by the conveyance unit while the slide is moving between the feedable height and the standby height.
  4.  前記制御部は、前記スライドの上昇時に前記送り可能高さを通過してから前記電動モータの減速を開始する、請求項2または3に記載のプレスシステム。 The press system according to claim 2 or 3, wherein the controller starts deceleration of the electric motor after passing through the feedable height when the slide ascends.
  5.  前記制御部は、前記電動モータの加速中に、前記搬送部による前記ワークの搬送を完了する、請求項1に記載のプレスシステム。 The press system according to claim 1, wherein the control unit completes conveyance of the work by the conveyance unit during acceleration of the electric motor.
  6.  前記制御部は、前記スライドが前記待機高さから前記送り可能高さまでの間を移動している間に、前記搬送部による前記ワークの搬送を完了する、請求項1に記載のプレスシステム。 2. The press system according to claim 1, wherein the control unit completes the conveyance of the work by the conveyance unit while the slide is moving between the standby height and the feedable height.
  7.  前記制御部は、前記スライドの下降時に前記送り可能高さを通過する前に前記電動モータの加速を完了する、請求項5または6に記載のプレスシステム。 The press system according to claim 5 or 6, wherein the control unit completes the acceleration of the electric motor before passing the feedable height when the slide is lowered.
  8.  前記搬送部は、前記ワークの搬送が完了していることを検出する送り完了検出部を有し、
     前記制御部は、前記スライドの前記昇降方向において前記送り可能高さよりも高く前記待機高さよりも低い位置に、監視位置を設定し、
     前記制御部は、前記待機高さから下降する前記スライドが前記監視位置に到達した時点で前記ワークの搬送完了が検出されていない場合に、前記送り可能高さよりも高い位置で前記スライドを停止できるように、前記待機高さおよび前記監視位置を設定する、請求項5~7のいずれか1項に記載のプレスシステム。
    The transfer unit has a feed completion detection unit that detects that the transfer of the work is completed.
    The control unit sets a monitoring position at a position higher than the feedable height and lower than the standby height in the elevating direction of the slide.
    The control unit can stop the slide at a position higher than the feedable height when the conveyance completion of the work is not detected when the slide lowered from the standby height reaches the monitoring position. The press system according to any one of claims 5 to 7, wherein the standby height and the monitoring position are set.
  9.  前記制御部は、プレス加工一回毎に、前記電動モータを交互に正逆回転させる、請求項1に記載のプレスシステム。 2. The press system according to claim 1, wherein the control unit alternately rotates the electric motor forward and reverse each time pressing is performed.
  10.  前記電動モータは、サーボモータである、請求項1~9のいずれか1項に記載のプレスシステム。 The press system according to any one of claims 1 to 9, wherein the electric motor is a servomotor.
PCT/JP2018/022064 2017-09-22 2018-06-08 Press system WO2019058654A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/615,540 US20200171561A1 (en) 2017-09-22 2018-06-08 Press system
CN201880025786.9A CN110520227B (en) 2017-09-22 2018-06-08 Punching system
DE112018001445.2T DE112018001445T5 (en) 2017-09-22 2018-06-08 Press system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182584A JP7080612B2 (en) 2017-09-22 2017-09-22 Press system
JP2017-182584 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019058654A1 true WO2019058654A1 (en) 2019-03-28

Family

ID=65809673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022064 WO2019058654A1 (en) 2017-09-22 2018-06-08 Press system

Country Status (5)

Country Link
US (1) US20200171561A1 (en)
JP (1) JP7080612B2 (en)
CN (1) CN110520227B (en)
DE (1) DE112018001445T5 (en)
WO (1) WO2019058654A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474189B2 (en) * 2020-12-18 2024-04-24 アイダエンジニアリング株式会社 SERVO PRESS MACHINE AND METHOD FOR CONTROLLING SERVO PRESS MACHINE
JP7220485B2 (en) * 2021-02-15 2023-02-10 大野精工株式会社 Press device
DE102021126436B3 (en) * 2021-10-12 2023-01-05 Textor Maschinenbau GmbH pressing device
IT202200004682A1 (en) * 2022-03-11 2023-09-11 Polytech Lab S R L PROGRESSIVE MOLD FOR THE PRODUCTION OF METAL COMPONENTS WITH TRIPLE SAFETY CONTROL

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277791A (en) * 1997-03-31 1998-10-20 Komatsu Ltd Controller for plurality of points servo press
JP2004058152A (en) * 2002-06-05 2004-02-26 Komatsu Ltd Setting method and displaying method for slide position of servo press, synchronizing method with external peripheral equipment, and its control device
JP2013184222A (en) * 2012-03-12 2013-09-19 Amada Co Ltd Rotating motion setting method and press
JP2016123990A (en) * 2014-12-26 2016-07-11 コマツ産機株式会社 Press machine
JP2017013093A (en) * 2015-07-01 2017-01-19 コマツ産機株式会社 Press system and control method for the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818748B2 (en) * 1997-08-19 2006-09-06 株式会社小松製作所 Servo press starting position setting device and method
JP2000084632A (en) * 1998-09-11 2000-03-28 Amada Co Ltd Press machine
JP4604288B2 (en) 2005-01-12 2011-01-05 アイダエンジニアリング株式会社 Drive device for movable plate and slide drive device for press machine
JP5826236B2 (en) 2013-11-25 2015-12-02 アイダエンジニアリング株式会社 Servo press system and control method of servo press system
CN105033084B (en) * 2015-09-11 2018-03-23 苏州华源控股股份有限公司 A kind of bimodulus splicing hand structure of gaily decorated basket lid
CN105729851B (en) * 2016-02-24 2017-12-05 上海工程技术大学 A kind of electric screw press intelligent observing and controlling system
CN106113566B (en) * 2016-06-29 2017-09-19 宁波固安力机械科技有限公司 Opening-type single-point guide pillar accurate punching machine
CN205869187U (en) * 2016-07-22 2017-01-11 温州冠威汽车配件有限公司 A novel punch press for making ABS ring gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277791A (en) * 1997-03-31 1998-10-20 Komatsu Ltd Controller for plurality of points servo press
JP2004058152A (en) * 2002-06-05 2004-02-26 Komatsu Ltd Setting method and displaying method for slide position of servo press, synchronizing method with external peripheral equipment, and its control device
JP2013184222A (en) * 2012-03-12 2013-09-19 Amada Co Ltd Rotating motion setting method and press
JP2016123990A (en) * 2014-12-26 2016-07-11 コマツ産機株式会社 Press machine
JP2017013093A (en) * 2015-07-01 2017-01-19 コマツ産機株式会社 Press system and control method for the same

Also Published As

Publication number Publication date
JP2019055426A (en) 2019-04-11
US20200171561A1 (en) 2020-06-04
JP7080612B2 (en) 2022-06-06
CN110520227A (en) 2019-11-29
CN110520227B (en) 2021-12-07
DE112018001445T5 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019058654A1 (en) Press system
JP6739145B2 (en) Press machine and method of controlling press machine
WO2019058653A1 (en) Press system
JP5019250B2 (en) Servo press equipment and control method
JP4370623B2 (en) Servo motor driven tandem press line
JP6649133B2 (en) Roll feeder, press system, and hoop material conveying method
JP6581823B2 (en) Press system and control method of press system
JP3818730B2 (en) Servo press motion control device and control method thereof
JP6605808B2 (en) Press machine
WO2019064693A1 (en) Press system and method for controlling press system
JP3818748B2 (en) Servo press starting position setting device and method
JP5136847B2 (en) Servo press equipment and control method
JP3815861B2 (en) Servo press peripheral device control apparatus and method
JP3789211B2 (en) Servo press upper limit position setting device and method
JP2009061509A (en) Servomotor driving type tandem press line
WO2022158414A1 (en) Press system and method for controlling press system
JP2023057319A (en) Press system and control method of press system
JP2009214159A (en) Press machine, and control device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857869

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18857869

Country of ref document: EP

Kind code of ref document: A1