WO2019057189A1 - Vr眼镜和vr眼镜的声音播放方法 - Google Patents

Vr眼镜和vr眼镜的声音播放方法 Download PDF

Info

Publication number
WO2019057189A1
WO2019057189A1 PCT/CN2018/107270 CN2018107270W WO2019057189A1 WO 2019057189 A1 WO2019057189 A1 WO 2019057189A1 CN 2018107270 W CN2018107270 W CN 2018107270W WO 2019057189 A1 WO2019057189 A1 WO 2019057189A1
Authority
WO
WIPO (PCT)
Prior art keywords
glasses
speakers
mobile terminal
channel
audio signal
Prior art date
Application number
PCT/CN2018/107270
Other languages
English (en)
French (fr)
Inventor
刘波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019057189A1 publication Critical patent/WO2019057189A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present disclosure relates to, but is not limited to, the field of communications.
  • 3D glasses and virtual reality (VR) glasses the concept of 3D visual experience has gradually spread to people's lives.
  • VR virtual reality
  • 3D Imax is an example of 3D vision
  • Dolby Atmos is an example of 3D sound.
  • the present disclosure provides a virtual reality (VR) glasses.
  • the VR glasses include: a glasses body configured to play a video based on a video signal transmitted by a mobile terminal connected to the VR glasses; and at least two VR speakers configured to play a sound based on an audio signal transmitted by the mobile terminal.
  • the present disclosure also provides a sound playing method for virtual reality (VR) glasses, comprising: connecting VR glasses to a mobile terminal, wherein the VR glasses include at least two VR speakers; receiving through the VR glasses An audio signal transmitted by the mobile terminal; playing sound based on the audio signal at least through the at least two VR speakers.
  • VR virtual reality
  • the present disclosure also provides a storage medium having stored thereon a program that executes the methods described herein when executed.
  • the present disclosure also provides a processor for running a program that executes the methods described herein while the program is running.
  • FIG. 1 is a flowchart of a sound playing method of VR glasses according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a speaker layout in a Dolby multi-channel surround sound scheme according to the related art
  • FIG. 3 is a schematic diagram of VR glasses that implement multi-channel sound effects in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of VR glasses that implement multi-channel sound effects in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of VR glasses implementing multi-channel sound effects in accordance with an embodiment of the present disclosure
  • FIG. 6 is a flow diagram of a method of implementing 4.1 channel sound effects through VR glasses in accordance with an embodiment of the present disclosure
  • FIG. 7 is a hardware block diagram of implementing 4.1 channel sound effects in accordance with an embodiment of the present disclosure
  • FIG. 8 is a flow diagram of a method of implementing 5.1 channel sound effects through VR glasses in accordance with an embodiment of the present disclosure
  • FIG. 9 is a hardware block diagram of implementing multi-channel sound effects in accordance with an embodiment of the present disclosure.
  • FIG. 10 is a flow diagram of a method of implementing 7.1 channel sound effects through VR glasses in accordance with an embodiment of the present disclosure.
  • the VR glasses technology in the related art is mainly used for a 3D visual experience, and its audio playback is mainly dependent on a speaker or a headphone of a connected device (for example, a mobile phone or the like).
  • the monophonic sound source played by the speaker can only achieve the normal playback effect, and the virtual stereo effect of the earphone can only virtualize the sense of space, and cannot achieve the 3D presence feeling.
  • the quality of the two-channel stereo sound and sound field is better than mono, but its limitations in home theater applications are also exposed.
  • the two-channel stereo system can only reproduce the spatial sense of a two-dimensional plane, that is, the entire sound field is flat, and does not give the listener a sense of presence in the room. Therefore, the advantages of the multi-channel technology proposed in the related art are reflected.
  • the 5.1 channel is an audio player that uses 5 speakers and a subwoofer to achieve an immersive feel, developed by Dolby.
  • the channel is the channel through which the audio signal passes through the speaker.
  • the sound from the subwoofer is nothing to hear, so since this channel is not an independent channel, it is habitually represented as 0.1 channel. If you add a subwoofer to a stereo that contains only two left and right speakers, it is called 2.1 channel.
  • the five speakers are based on the usual front left and front right two stereo speakers, and three speakers are arranged in three directions, namely, the center, the left rear, and the right rear. Because there are speakers on the front, back, left and right, there is a sense of reality surrounded by sound.
  • the subwoofer is only used to represent subwoofers below 120Hz. Since the performance of the subwoofer has little to do with the directionality of the sound, this subwoofer does not specify a specific orientation.
  • Dolby Surround 7.1 is an audio format developed by Dolby Laboratories, Inc., based on 5.1 channels, by adding two separate channels (for example, adding two rear channels) Improve sound effects.
  • the present disclosure particularly provides a method of sound playback of VR glasses and VR glasses that substantially obviates one or more of the problems due to the limitations and disadvantages of the related art.
  • a VR glasses including a glasses body and at least two VR speakers, and at least two VR speakers are used to form a multi-channel sound effect.
  • FIG. 1 is a flowchart of a sound playing method of VR glasses according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps S102 to S106.
  • step S102 the VR glasses are connected to the mobile terminal, wherein the VR glasses include at least two VR speakers.
  • step S104 the audio signal transmitted by the mobile terminal is received through the VR glasses.
  • step S106 sound based on the audio signal is played at least through the at least two VR speakers.
  • the VR glasses are provided with at least two VR speakers, and when the video is viewed using the VR glasses, a multi-channel sound effect can be created in conjunction with the speaker of the mobile terminal itself.
  • VR glasses according to the present disclosure may separately create multi-channel sound effects. Therefore, according to the embodiment of the present disclosure, the problem that the multi-channel sound effect cannot be realized when the video is viewed using the VR glasses in the related art is solved, and the multi-channel sound effect of the VR video is realized, and the viewing experience of the user is improved.
  • the VR glasses include two VR speakers
  • the mobile terminal connected to the VR glasses includes two mobile terminal speakers
  • at least the sound based on the audio signal is played through the at least two VR speakers, Including: four-channel playback through the two VR speakers and the two mobile terminal speakers.
  • the audio signals transmitted by the mobile terminal are received by the VR glasses, and the sound based on the audio signals is played at least through the at least two VR speakers, including : receiving a multi-channel audio signal processed by the mobile terminal, parsing the audio signal and transmitting to the more than two VR speakers for playback.
  • the audio signals transmitted by the mobile terminal are received by the VR glasses, and the sound based on the audio signals is played at least through the at least two VR speakers, including Receiving an audio signal transmitted by the mobile terminal, performing multi-channel sound processing on the audio signal, and transmitting the processed audio signal to the more than two VR speakers for playing.
  • a Dolby 5.1 channel layout is implemented by the five VR speakers.
  • the Dolby 7.1 channel layout is implemented by the seven VR speakers.
  • the method further comprises: receiving a video signal transmitted by the mobile terminal; and playing a video based on the video signal through the VR glasses.
  • a VR glasses in another aspect, also provides a VR glasses.
  • a VR glasses includes: a glasses body configured to play a video based on a video signal transmitted by a mobile terminal connected to the VR glasses; at least two VR speakers configured to be based on an audio signal transmitted by the mobile terminal Play sound.
  • the VR glasses include two VR speakers
  • the mobile terminal connected to the VR glasses includes two mobile terminal speakers
  • four sounds are made through the two VR speakers and the two mobile terminal speakers The channel plays.
  • the distance between the two VR speakers and the glasses of the VR glasses is greater than a preset value.
  • the VR glasses further include: a play chip (VR glasses chip) disposed in the VR glasses, configured to receive processing by the mobile terminal A multi-channel audio signal that is parsed and transmitted to the more than two VR speakers for playback.
  • a play chip VR glasses chip
  • the VR glasses further include: a play chip disposed in the VR glasses, configured to receive an audio signal transmitted by the mobile terminal, the audio The signal is multi-channel audio processed and the processed audio signal is transmitted to the more than two VR speakers for playback.
  • the VR glasses include: 5 VR speakers configured to play audio signal based sounds to achieve a Dolby 5.1 channel layout.
  • the VR glasses include: 7 VR speakers configured to play audio signal based sounds to achieve a Dolby 7.1 channel layout.
  • the present disclosure proposes a series of portable VR glasses that can be loaded into a smart phone and can play 3D sound effects while the user watches the video through VR glasses (for example, 3D video, VR video, etc.) to achieve a 3D visual and sound experience.
  • VR glasses for example, 3D video, VR video, etc.
  • the VR glasses of the present disclosure can also play only sounds based on audio signals to achieve 3D sound effects.
  • a smart phone is not necessary, for example, the glasses body of the VR glasses itself can implement the function of playing video.
  • FIG. 2 is a schematic diagram of a speaker layout in a Dolby multi-channel surround sound scheme according to the related art.
  • the user is in the center of the room, and a plurality of speakers are arranged around the user for forming a multi-channel surround sound effect.
  • left front, right front, front, left, right, left rear, right rear and subwoofer are provided, that is, the speaker layout in Fig. 2 can realize Dolby 7.1 surround sound.
  • VR glasses implement 4.1 channel sound through a headphone interface in conjunction with a dual speaker handset.
  • a dual-speaker phone loaded with special Dolby sound software
  • a VR eyeglass that can hold a mobile phone
  • VR glasses with 2 speakers on the belt after the phone is attached to the VR glasses,
  • the two speakers on the VR glasses are connected to the mobile phone circuit through the earphone interface of the mobile phone.
  • 3 is a schematic diagram of VR glasses that implement multi-channel sound effects in accordance with an embodiment of the present disclosure.
  • the Dolby sound software in the mobile phone converts the Dolby 5.1 channel audio source (audio signal) into a 4-channel sound source and outputs it to the 2 speakers of the mobile phone and the VR glasses.
  • Two speakers which are simultaneously played by the two speakers of the mobile phone and the two speakers on the VR glasses, achieving the closest effect to the Dolby 4.1 channel sound field reduction.
  • the speaker of the VR glasses needs to be set according to the left rear and right rear layout positions. As shown in FIG. 3, two speakers are provided on the eyeglass belt of the VR glasses.
  • VR glasses are transmitted through a USB (Universal Serial Bus) Type C/Bluetooth interface for data transmission, and dual-channel, 5.1-channel or 7.1-channel audio effects are implemented in conjunction with a mobile phone.
  • USB Universal Serial Bus
  • a Dolby sound algorithm is built into the player chip.
  • the mobile phone transmits the audio signal to the playing chip set on the VR glasses through the USB Type C interface.
  • the playback chip performs the 5.1 channel algorithm processing, and delivers the sound to the 5 channels of 5 channels, and the 5 speakers play the sound of the respective channels.
  • 4 is a schematic diagram of VR glasses that implement multi-channel sound effects in accordance with an embodiment of the present disclosure. As shown in FIG. 4, five speakers are arranged on the VR glasses, and five speakers are arranged according to the layout positions of the front, the front left, the front right, the left rear, and the right rear, and finally achieve a high-definition stereo playback effect.
  • a 4.1 channel sound source, a 2.1 channel sound source, a mono sound source, or the like can also be played.
  • FIG. 5 is a schematic diagram of VR glasses that implement multi-channel sound effects in accordance with an embodiment of the present disclosure. As shown in Figure 5, there are 7 speakers on the VR glasses, and the seven speakers are arranged according to the left front, right front, front, left, right, left rear, and right rear layout positions, and finally achieve ultra high definition. Stereo playback effect.
  • a 5.1 channel sound source a 4.1 channel sound source, a 2.1 channel sound source, a mono sound source, and the like can also be played.
  • Embodiments of the present disclosure also provide a method of implementing 4.1 channel sound effects through VR glasses, which can be applied to the VR glasses shown in FIG. 6 is a flow diagram of a method of implementing 4.1 channel sound effects through VR glasses in accordance with an embodiment of the present disclosure.
  • the VR glasses include two speakers and the mobile phone connected to the VR glasses also includes two speakers (as shown in FIG. 3), and the VR glasses are connected to the mobile phone circuit through the earphone interface of the mobile phone.
  • the method may include the following steps S601 to S604.
  • step S601 the video is played through the mobile phone.
  • step S602 an audio signal is played through the handset speaker unit.
  • step S603 an audio signal is played through the handset earphone path.
  • step S604 the sound sources of the left front, right front, left rear, and right rear four channels are respectively played by the left speaker of the mobile phone, the right speaker, and the left rear speaker and the right rear speaker of the VR glasses.
  • the speaker unit refers to a circuit associated with the speaker, such as a power amplifier module, a conversion circuit, and the like.
  • Dolby sound effects software can be integrated in the mobile phone.
  • Dolby 4.1 channel sound processing is implemented in the Dolby sound effect software.
  • the four-channel sound sources are respectively assigned to the handset speaker unit and the headphone jack (and thus to the speaker unit of the VR glasses).
  • the speaker unit of the mobile phone completes left front and right front two-channel playback; meanwhile, the speaker unit of the VR glasses completes left rear and right rear two-channel playback, and finally completes 4-channel playback.
  • the Dolby sound effect software mentioned in this embodiment decodes the sound source in the video into a 4-channel sound source by using Dolby sound processing technology during video playback; and simultaneously controls the mobile phone headphone interface and the speaker channel to be simultaneously turned on, completing 4 sounds. The play of the road.
  • FIG. 7 is a hardware block diagram of implementing 4.1 channel sound effects in accordance with an embodiment of the present disclosure.
  • the top speaker unit of the mobile phone is connected to the first speaker
  • the bottom speaker unit of the mobile phone is connected to the second speaker, thereby performing left front and right front two-channel playback through the mobile phone speaker.
  • the sound source signal for the VR speaker is transmitted to the first VR speaker unit and the second VR speaker unit through the analog headphone path (headphone interface), which are respectively connected to the third speaker and the fourth speaker, thereby realizing the VR speaker Left rear, right rear and dual channel playback.
  • the speaker unit on the VR glasses comes with a power amplifier module, you need to use the USB cable (or other connection method) to connect the mobile phone and VR glasses at the same time, so that the power supply module can be powered by the 5V voltage of the mobile phone (for example, powered by Vbus).
  • Embodiments of the present disclosure provide a method of realizing 5.1 channel sound effects through VR glasses, which can be applied to the VR glasses shown in FIG. 8 is a flow diagram of a method of implementing 5.1 channel sound effects through VR glasses in accordance with an embodiment of the present disclosure.
  • the VR glasses include five speakers (as shown in FIG. 4).
  • the method may include the following steps S801 to S803.
  • step S801 the video is played by the mobile phone.
  • step S802 the 5.1 channel audio processing is completed by the playing chip of the VR glasses to generate a 5-channel sound source
  • step S803 5.1-channel 5-channel sound source playback is completed by 5 speakers of the VR glasses.
  • the Dolby sound effect software can be integrated in the mobile phone, or the Dolby sound effect algorithm can be solidified in the play chip of the VR glasses.
  • step S801 when the Dolby sound effect software is integrated in the mobile phone, in step S801, the Dolby 5.1 channel sound effect processing can be completed in the Dolby sound effect software, and the processed sound source data is transmitted to the VR through, for example, the Type C interface. glasses. Subsequently, in step S802, the sound source data transmitted from the mobile phone is received by the playing chip of the VR glasses, and the 5-channel sound source stream is parsed. Finally, in step S803, the playback chip of the VR glasses respectively distributes the 5-channel sound sources to the speaker unit, and completes the playback of the left front, right front, front, left rear, and right rear five channels.
  • the mobile phone transmits the sound source data to the play chip of the VR glasses through, for example, the Type C interface, in step S801.
  • step S802 Dolby 5.1 channel sound processing is implemented in the playback chip of the VR glasses to generate a 5-channel sound source.
  • step S803 the playback chip of the VR glasses respectively distributes the 5-channel sound sources to the speaker unit, and completes the playback of the left front, right front, front, left rear, and right rear five channels.
  • FIG. 9 is a hardware block diagram of implementing multi-channel sound effects in accordance with an embodiment of the present disclosure.
  • the mobile phone transmits the sound source data to the VR glasses through a USB interface (for example, a Type C interface).
  • the speaker unit on the VR glasses (the first to seventh speaker units respectively connected to the first to seventh speakers and more speakers, and more speaker units) are provided with a power amplifier module (if any) and a playback chip. It can be powered by a 5V voltage via a USB interface (eg via Vbus).
  • the embodiment of the present disclosure further provides a method for realizing 7.1 channel sound through VR glasses, which can be applied to the VR glasses shown in FIG. 5.
  • 10 is a flow diagram of a method of implementing 7.1 channel sound effects through VR glasses in accordance with an embodiment of the present disclosure.
  • the VR glasses include seven speakers (as shown in FIG. 5).
  • the method may include the following steps S1001 to S1003.
  • step S1001 the video is played by the mobile phone.
  • step S1002 the 7.1 channel sound effect processing is completed by the playing chip of the VR glasses to generate a 7-channel sound source;
  • step S1003 the 7-channel 7-channel sound source playback is completed by the 7 speakers of the VR glasses.
  • the Dolby sound effect software can be integrated in the mobile phone, or the Dolby sound effect algorithm can be solidified in the play chip of the VR glasses.
  • the Dolby sound processing technology integrated in the phone to use the Dolby sound processing technology to complete the 7.1 channel decoding of the audio source in the video; at the same time, the 7-channel audio source is assigned to the 7 through the playback chip of the VR glasses. Speakers.
  • step S1001 when the Dolby sound effect software is integrated in the mobile phone, in step S1001, the sound processing of the Dolby 7.1 channel can be completed in the Dolby sound effect software, and the processed sound source data is transmitted to, for example, the Type C interface. VR glasses. Subsequently, in step S1002, the sound source data transmitted from the mobile phone is received by the playing chip of the VR glasses, and the 7-channel sound source stream is parsed. Finally, in step S1003, the playback chip of the VR glasses respectively assigns the 7-channel sound source to the speaker unit, and completes the playback of the left front, right front, front, left, right, left rear, and right rear 7 channels.
  • the mobile phone transmits the sound source data to the play chip of the VR glasses through, for example, the Type C interface in step S1001.
  • step S1002 Dolby 7.1-channel sound processing is implemented in the playback chip of the VR glasses to generate a 7-channel sound source.
  • step S1003 the playback chip of the VR glasses respectively assigns the 7-channel sound source to the speaker unit, and completes the playback of the left front, right front, front, left, right, left rear, and right rear 7 channels.
  • the multi-channel hardware implementation block diagram in this embodiment can also refer to FIG. 9.
  • the phone transmits the source data to the VR glasses via a USB interface (eg, Type C interface).
  • a USB interface eg, Type C interface
  • the power amplifier module (if any) and the playback chip included with the speaker unit on the VR glasses can be powered by a 5V voltage via a USB interface (eg, via Vbus).
  • the present disclosure also provides a processor for running a program, wherein the program executes to perform the methods described herein.
  • the present disclosure also provides a storage medium having stored thereon a program, wherein the program executes to perform the methods described herein.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种VR眼镜和VR眼镜的声音播放方法。VR眼镜包括眼镜本体,配置为基于与VR眼镜连接的移动终端所传输的视频信号播放视频;至少两个VR扬声器,配置为播放基于移动终端传输的音频信号的声音,可避免长时间采用耳机造成的疲劳并实现3D音效。

Description

VR眼镜和VR眼镜的声音播放方法 技术领域
本公开涉及但不限于通信领域。
背景技术
在相关技术中,随着3D眼镜、虚拟现实(Virtual Reality,简称为VR)眼镜的出现,3D视觉体验的概念已经慢慢普及到了人们的生活中,为达到更加良好的听觉体验,人们开始追求更完美的3D音效。3D Imax是3D视觉的一个的实例,杜比全景声影院是3D音效的一个实例。
然而,前面提到的3D音效需要在固有场所(家庭影院、电影院等)体验。另一方面,可以通过耳机来实现虚拟环绕音效,然而,长时间使用耳机会让人耳产生疲劳,且耳机无法实现真正的3D音效。
发明内容
一方面,本公开提供了一种虚拟现实(VR)眼镜。所述VR眼镜包括:眼镜本体,配置为基于与所述VR眼镜连接的移动终端所传输的视频信号播放视频;至少两个VR扬声器,配置为基于所述移动终端传输的音频信号播放声音。
另一方面,本公开还提供了一种虚拟现实(VR)眼镜的声音播放方法,包括:将VR眼镜连接至移动终端,其中,所述VR眼镜包括至少两个VR扬声器;通过VR眼镜接收所述移动终端传输的音频信号;至少通过所述至少两个VR扬声器播放基于所述音频信号的声音。
另一方面,本公开还提供了一种存储介质,所述存储介质上存储有程序,所述程序运行时执行本文所述的方法。
另一方面,本公开还提供了一种处理器,所述处理器用于运行程序,所述程序运行时执行本文所述的方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种VR眼镜的声音播放方法的流程图;
图2是根据相关技术中的杜比多声道环绕立体声方案中的扬声器布局的示意图;
图3是根据本公开实施例的实现多声道音效的VR眼镜的示意图;
图4是根据本公开实施例的实现多声道音效的VR眼镜的示意图;
图5是根据本公开实施例的实现多声道音效的VR眼镜的示意图;
图6是根据本公开实施例通过VR眼镜实现4.1声道音效的方法的流程示意图;
图7是根据本公开实施例的实现4.1声道音效的硬件结构图;
图8是根据本公开实施例的通过VR眼镜实现5.1声道音效的方法的流程示意图;
图9是根据本公开实施例的实现多声道音效的硬件结构图;
图10是根据本公开实施例的通过VR眼镜实现7.1声道音效的方法的流程示意图。
具体实施方式
相关技术中的VR眼镜技术主要用于3D视觉体验,而其音频播放主要是依赖于所连接设备(例如,手机等)的扬声器或者耳机。扬声器播放的单声道音源只能达到普通的播放效果,耳机的虚拟立体声的效果也只能虚拟出空间感,无法达到3D临场感。
双声道立体声的音质和声场效果好于单声道,但在家庭影院应用方面,它的局限性也暴露了出来。双声道立体声系统只能再现一个二维平面的空间感,即整个声场是平的,并不能使听众有置身其中的现场感。因此,相关技术中提出的多声道技术的优势才得以体现出来。
5.1声道是使用5个扬声器和1个超低音扬声器来达到一种身临 其境感觉的音频播放方式,由杜比公司开发。声道是指音频信号通过扬声器的通道。超低音扬声器发出的声音是听不出什么内容的,所以既然这个声道并不是一个独立声道,也就习惯性地将其表示成0.1声道。如果在只包含左右两个扬声器的立体声音响上再加上一个超低音扬声器,就称作2.1声道。
在5.1声道方式中,5个扬声器是在通常的前左、前右的2个立体声扬声器的基础上,再分别在正中和左后、右后等三个方位配置三个扬声器。因为前后左右都有扬声器,就会产生被声音包围的真实感。超低音扬声器只用来表现120Hz以下的超低音。由于超低音的表现与声音的方向性关系不大,因此这个超低音扬声器并没有规定特定的放置方位。
杜比7.1环绕声(Dolby Surround 7.1)是由美国杜比实验室研发的音响格式,在5.1声道的基础上,通过增加两个分离式声道(例如,增加两个后置声道)来提高声音效果。
然而,针对相关技术中使用VR眼镜观看视频时无法真正实现3D音效的问题,目前还没有有效的解决方案。期望能有一款便携式的设备可以支持3D音效,从而可以随时随地的体验到3D音效。
因此,本公开特别提供了一种VR眼镜和VR眼镜的声音播放方法,其实质上避免了由于相关技术的局限和缺点所导致的问题中的一个或多个。
本申请实施例中提供了一种VR眼镜,包括眼镜本体和至少两个VR扬声器,至少两个VR扬声器用于形成多声道音效。
一方面,本公开提供了一种VR眼镜的声音播放方法。图1是根据本公开实施例的一种VR眼镜的声音播放方法的流程图。如图1所示,所述方法包括如下步骤S102至S106。
在步骤S102,将VR眼镜连接至移动终端,其中,该VR眼镜包括至少两个VR扬声器。
在步骤S104,通过VR眼镜接收该移动终端传输的音频信号。
在步骤S106,至少通过该至少两个VR扬声器播放基于该音频信号的声音。
根据本公开,VR眼镜设置有至少两个VR扬声器,使用该VR眼镜观看视频时,配合移动终端自身的扬声器,可以营造出多声道音效。或者,根据本公开的VR眼镜可以单独营造出多声道音效。因此,根据本公开实施例,解决了相关技术中使用VR眼镜观看视频时无法实现多声道音效的问题,实现了VR视频的多声道音效,提升了用户的观看体验。
在一些实施例中,在该VR眼镜包括两个VR扬声器,连接至该VR眼镜的移动终端包括两个移动终端扬声器的情况下,至少通过该至少两个VR扬声器播放基于该音频信号的声音,包括:通过该两个VR扬声器和该两个移动终端扬声器进行四声道播放。
在一些实施例中,在该VR眼镜包括多于两个VR扬声器的情况下,通过VR眼镜接收该移动终端传输的音频信号,至少通过该至少两个VR扬声器播放基于该音频信号的声音,包括:接收经过该移动终端处理的多声道的音频信号,解析该音频信号并传输至该多于两个VR扬声器进行播放。
在一些实施例中,在该VR眼镜包括多于两个VR扬声器的情况下,通过VR眼镜接收该移动终端传输的音频信号,至少通过该至少两个VR扬声器播放基于该音频信号的声音,包括:接收该移动终端传输的音频信号,对该音频信号进行多声道音效处理,并将处理后的音频信号传输至该多于两个VR扬声器进行播放。
在一些实施例中,在该VR眼镜包括5个VR扬声器时,通过该5个VR扬声器实现杜比5.1声道布局。
在一些实施例中,在该VR眼镜包括7个VR扬声器时,通过该7个VR扬声器实现杜比7.1声道布局。
在一些实施例中,所述方法还包括:接收所述移动终端传输的视频信号;以及,通过VR眼镜播放基于该视频信号的视频。
另一方面,本公开还提供了一种VR眼镜。根据本公开的一个实施例,VR眼镜包括:眼镜本体,配置为基于与该VR眼镜连接的移动终端所传输的视频信号播放视频;至少两个VR扬声器,配置为基于 该移动终端传输的音频信号播放声音。
在一些实施例中,在该VR眼镜包括两个VR扬声器,连接至该VR眼镜的移动终端包括两个移动终端扬声器的情况下,通过该两个VR扬声器和该两个移动终端扬声器进行四声道播放。
在一些实施例中,该两个VR扬声器与该VR眼镜的眼镜之间的眼镜带距离均大于预设值。
在一些实施例中,在该VR眼镜包括多于两个VR扬声器的情况下,该VR眼镜还包括:设置在VR眼镜中的播放芯片(VR眼镜芯片),配置为接收经过该移动终端处理的多声道的音频信号,解析该音频信号并传输至该多于两个VR扬声器进行播放。
在一些实施例中,在该VR眼镜包括多于两个VR扬声器的情况下,该VR眼镜还包括:设置在VR眼镜中的播放芯片,配置为接收该移动终端传输的音频信号,对该音频信号进行多声道音效处理,并将处理后的音频信号传输至该多于两个VR扬声器进行播放。
在一些实施例中,该VR眼镜包括:5个VR扬声器,配置为播放基于音频信号的声音以实现杜比5.1声道布局。
在一些实施例中,该VR眼镜包括:7个VR扬声器,配置为播放基于音频信号的声音以实现杜比7.1声道布局。
下面结合本公开的各种实施例对本公开的技术方案进一步说明。
本公开提出一系列便携式VR眼镜,能装载智能手机使用,可以在使用者通过VR眼镜观看视频(例如,3D视频、VR视频等)的同时,播放3D音效的声音,达到3D视觉和音效的体验。当然,本公开的VR眼镜也可以仅播放基于音频信号的声音以实现3D音效。此外,需要注意的是,在本公开的一些实施例中,智能手机不是必须的,比如,VR眼镜的眼镜本体自身可以实现播放视频的功能。
下面详细描述多声道音效在VR眼镜上的实现方式。
图2是根据相关技术中的杜比多声道环绕立体声方案中的扬声器布局的示意图。如图2所示,用户处于房间中央,环绕用户的周围设置有多个扬声器,用于形成多声道环绕立体声效果。在图2中,设置有左前、右前、前方、左侧、右侧、左后、右后和超低音扬声器, 即,图2中的扬声器布局可以实现杜比7.1环绕声。
根据本公开的一个实施例,VR眼镜通过耳机接口,配合双扬声器手机实现4.1声道音效。
在一个示例中,需要一款双扬声器手机(装载特制的杜比音效软件),一款可以装载手机的VR眼镜,VR眼镜的眼镜带上有2颗扬声器,在把手机装置到VR眼镜之后,VR眼镜上的两颗扬声器通过手机的耳机接口连通到手机电路上。图3是根据本公开实施例的实现多声道音效的VR眼镜的示意图。参照图3,在播放视频时,手机中的杜比音效软件将杜比5.1声道音源(音频信号)转换成4声道音源,并将其分别输出至手机的2颗扬声器和VR眼镜上的2颗扬声器,从而分别由手机的2颗扬声器和VR眼镜上的2颗扬声器同时播放出来,达到最接近杜比4.1声道声场还原的效果。VR眼镜的扬声器需要按照左后、右后的布局位置设置。如图3所示,在VR眼镜的眼镜带上设置有2颗扬声器。
根据本公开的另一个实施例,VR眼镜通过USB(通用串行总线)Type C/蓝牙接口的数据传输,配合手机实现双声道、5.1声道或7.1声道音效。
在一个示例中,需要一款支持OTG(On-The-Go)的手机,一款可以装载手机的VR眼镜,VR眼镜上设置有5个或7个扬声器和播放芯片(例如音频播放芯片),在该播放芯片中内置有杜比音效算法。在佩戴VR眼镜并在观看视频时,手机通过USB Type C接口把音频信号传递给VR眼镜上设置的播放芯片。
在5.1声道音源并且VR眼镜上设置有5个扬声器的情况下,播放芯片完成5.1声道的算法处理,传递给5个扬声器5个声道的音源,5个扬声器播放各自声道的声音。图4是根据本公开实施例的实现多声道音效的VR眼镜的示意图。如图4所示,VR眼镜上设置有5颗扬声器,并且5颗扬声器按照前方、左前、右前、左后、右后的布局位置设置,最终达到高清晰度的立体声回放效果。这里,本领域技术人员可以理解的是,在VR眼镜设置有5个扬声器的情况下,也可以播放4.1声道音源、2.1声道音源、单声道音源等。
在7.1声道音源并且VR眼镜上设置有7个扬声器的情况下,播放芯片完成7.1声道的算法处理,传递给7个扬声器7个声道的音源,7个扬声器播放各自声道的声音。图5是根据本公开实施例的实现多声道音效的VR眼镜的示意图。如图5所示,VR眼镜上设置有7颗扬声器,并且该七颗扬声器按照左前、右前、前方、左侧、右侧、左后、右后的布局位置设置,最终达到超高清晰度的立体声回放效果。这里,可以理解的是,在VR眼镜设置有7个扬声器的情况下,也可以播放5.1声道音源、4.1声道音源、2.1声道音源、单声道音源等。
本公开的实施例还提供了一种通过VR眼镜实现4.1声道音效的方法,可以应用于图3所示的VR眼镜。图6是根据本公开实施例的通过VR眼镜实现4.1声道音效的方法的流程示意图。在本实施例中,假设VR眼镜包括两个扬声器并且与VR眼镜连接的手机也包括两个扬声器(如图3所示),并且VR眼镜通过手机的耳机接口连通到手机电路上。如图6所示,所述方法可以包括以下步骤S601至S604。
在步骤S601,通过手机播放视频。
在步骤S602,通过手机扬声器单元播放音频信号。
在步骤S603,通过手机耳机通路播放音频信号。
在步骤S604,通过手机左扬声器、右扬声器以及VR眼镜左后扬声器、右后扬声器分别播放左前、右前、左后、右后四个声道的音源。
这里,扬声器单元指的是扬声器相关联的电路,例如,功放模块,转换电路等。
在本实施例中,可以在手机中集成杜比音效软件。在步骤S601中,在杜比音效软件中实现杜比4.1声道的音效处理。在步骤S602、S603中,将4声道的音源分别分配给手机扬声器单元和耳机接口(进而分配给VR眼镜的扬声器单元)。在步骤S604,手机扬声器单元完成左前、右前双声道播放;同时,VR眼镜的扬声器单元完成左后、右后双声道播放,最终完成4声道播放。
本实施例中提到的杜比音效软件,在视频播放时,利用杜比音效处理技术把视频中的音源解码成4声道的音源;同时控制手机耳机接口和扬声器通路同时打开,完成4声道的播放。
本实施例中的硬件实现框图请参考图7。图7是根据本公开实施例的实现4.1声道音效的硬件结构图。如图7所示,手机的顶部扬声器单元连接第一扬声器、手机的底部扬声单元连接第二扬声器,从而通过手机扬声器完成左前、右前双声道播放。另一方面,用于VR扬声器的音源信号通过模拟耳机通路(耳机接口)传输至第一VR扬声器单元和第二VR扬声器单元,其分别连接至第三扬声器和第四扬声器,从而通过VR扬声器实现左后、右后双声道播放。此外,如果VR眼镜上的扬声器单元附带功放模块,则需要同时使用USB线(或其他连接方式)连接手机与VR眼镜,从而使用手机的5V电压供电(例如,通过Vbus供电)给功放模块供电。
本公开的实施例提供了一种通过VR眼镜实现5.1声道音效的方法,可以应用于图4所示的VR眼镜。图8是根据本公开实施例的通过VR眼镜实现5.1声道音效的方法的流程示意图。在本实施例中,假设VR眼镜包括5个扬声器(如图4所示)。如图8所示,所述方法可以包括以下步骤S801至S803。
在步骤S801,通过手机播放视频。
在步骤S802,通过VR眼镜的播放芯片完成5.1声道音效处理,生成5声道音源;
在步骤S803,通过VR眼镜的5个扬声器完成5.1声道的5声道音源播放。
在本实施例,可以在手机中集成杜比音效软件,或者在VR眼镜的播放芯片中固化杜比音效算法。在视频播放时,可以通过手机中集成的杜比音效软件,利用杜比的音效处理技术对视频中的音源完成5.1声道的解码;同时通过VR眼镜的播放芯片把5声道音源分配给5个扬声器。
具体地,当在手机中集成杜比音效软件时,在步骤S801中,可以在杜比音效软件中完成杜比5.1声道音效处理,并通过例如Type C接口将处理后的音源数据传给VR眼镜。随后,在步骤S802,通过VR眼镜的播放芯片接收从手机传输的音源数据,并解析出5声道的音源码流。最后,在步骤S803,VR眼镜的播放芯片将5声道音源分别分 配给扬声器单元,完成左前、右前、前方、左后、右后5个声道的播放。
当在VR眼镜的播放芯片中集成杜比音效算法时,在步骤S801,手机通过例如Type C接口将音源数据传输给VR眼镜的播放芯片。随后,在步骤S802,在VR眼镜的播放芯片中实现杜比5.1声道的音效处理,生成5声道音源。最后,在步骤S803,VR眼镜的播放芯片将5声道音源分别分配给扬声器单元,完成左前、右前、前方、左后、右后5个声道的播放。
本实施例中多声道硬件实现框图请参考图9。图9是根据本公开实施例的实现多声道音效的硬件结构图。如图9所示,手机通过USB接口(例如,Type C接口)将音源数据传输至VR眼镜。此外,VR眼镜上的扬声器单元(分别与第一至第七扬声器以及更多的扬声器连接的第一至第七扬声器单元以及更多的扬声器单元)附带的功放模块(如有)以及播放芯片均可以通过USB接口(例如,通过Vbus)的5V电压供电。
需要提到的是,由于多声道需要用到多个扬声器单元且每个扬声器单元也需要相应的功放驱动,如果选用模拟功放,则需要增加一个多路模拟输出的DAC芯片,而选用数字功放,则只需要AP处理器(应用处理器)和多个数字功放即可实现相应功能。
本公开实施例还提供了一种通过VR眼镜实现7.1声道音效的方法,可以应用于图5所示的VR眼镜。图10是根据本公开实施例的通过VR眼镜实现7.1声道音效的方法的流程示意图。在本实施例中,假设VR眼镜包括7个扬声器(如图5所示)。如图10所示,所述方法可以包括以下步骤S1001至S1003。
在步骤S1001,通过手机播放视频。
在步骤S1002,通过VR眼镜的播放芯片完成7.1声道音效处理,生成7声道音源;
在步骤S1003,通过VR眼镜的7个扬声器完成7.1声道的7声道音源播放。
在本实施例,可以在手机中集成杜比音效软件,或者在VR眼镜 的播放芯片中固化杜比音效算法。在视频播放时,可以通过手机中集成的杜比音效软件,利用杜比的音效处理技术对视频中的音源完成7.1声道的解码;同时通过VR眼镜的播放芯片把7声道音源分配给7个扬声器。
具体地,当在手机中集成杜比音效软件时,在步骤S1001中,可以在杜比音效软件中完成杜比7.1声道的音效处理,并通过例如Type C接口将处理后的音源数据传给VR眼镜。随后,在步骤S1002,通过VR眼镜的播放芯片接收从手机传输的音源数据,并解析出7声道的音源码流。最后,在步骤S1003,VR眼镜的播放芯片将7声道音源分别分配给扬声器单元,完成左前、右前、前方、左侧、右侧、左后、右后7个声道的播放。
当在VR眼镜的播放芯片中集成杜比音效算法时,在步骤S1001,手机通过例如Type C接口将音源数据传输给VR眼镜的播放芯片。随后,在步骤S1002,在VR眼镜的播放芯片中实现杜比7.1声道的音效处理,生成7声道音源。最后,在步骤S1003,VR眼镜的播放芯片将7声道音源分别分配给扬声器单元,完成左前、右前、前方、左侧、右侧、左后、右后7个声道的播放。
本实施例中的多声道硬件实现框图也可以参考图9。手机通过USB接口(例如,Type C接口)将音源数据传输至VR眼镜。此外,VR眼镜上的扬声器单元附带的功放模块(如有)以及播放芯片均可以通过USB接口(例如,通过Vbus)的5V电压供电。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
另一方面,本公开还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行本文所述的方法。
另一方面,本公开还提供了一种存储介质,所述存储介质上存储有程序,其中,所述程序运行时执行本文所述的方法。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种虚拟现实(VR)眼镜,包括:
    眼镜本体,配置为基于与所述VR眼镜连接的移动终端所传输的视频信号播放视频;
    至少两个VR扬声器,配置为播放基于所述移动终端传输的音频信号的声音。
  2. 根据权利要求1所述的VR眼镜,其中,在所述VR眼镜包括两个VR扬声器,连接至所述VR眼镜的移动终端包括两个移动终端扬声器的情况下,通过所述两个VR扬声器和所述两个移动终端扬声器进行四声道播放。
  3. 根据权利要求2所述的VR眼镜,其中,所述两个VR扬声器与所述VR眼镜的眼镜之间的眼镜带距离均大于预设值。
  4. 根据权利要求1所述的VR眼镜,其中,在所述VR眼镜包括多于两个VR扬声器的情况下,所述VR眼镜还包括:
    VR眼镜芯片,其配置为接收经过所述移动终端处理的多声道的音频信号,解析所述音频信号并传输至所述多于两个VR扬声器进行播放。
  5. 根据权利要求1所述的VR眼镜,其中,在所述VR眼镜包括多于两个VR扬声器的情况下,所述VR眼镜还包括:
    VR眼镜芯片,其配置为接收所述移动终端传输的音频信号,对所述音频信号进行多声道音效处理,并将处理后的音频信号传输至所述多于两个VR扬声器进行播放。
  6. 根据权利要求4或5所述的VR眼镜,其中,
    所述VR眼镜包括:5个VR扬声器,配置为播放基于音频信号的 声音以实现杜比5.1声道布局。
  7. 根据权利要求4或5所述的VR眼镜,其中,所述VR眼镜包括:7个VR扬声器,配置为播放基于音频信号的声音以实现杜比7.1声道布局。
  8. 一种虚拟现实(VR)眼镜的声音播放方法,包括:
    将VR眼镜连接至移动终端,其中,所述VR眼镜包括至少两个VR扬声器;
    通过VR眼镜接收所述移动终端传输的音频信号;以及
    至少通过所述至少两个VR扬声器播放基于所述音频信号的声音。
  9. 根据权利要求8所述的方法,其中,在所述VR眼镜包括两个VR扬声器,连接至所述VR眼镜的移动终端包括两个移动终端扬声器的情况下,至少通过所述至少两个VR扬声器播放基于所述音频信号的声音,包括:
    通过所述两个VR扬声器和所述两个移动终端扬声器进行四声道播放。
  10. 根据权利要求8所述的方法,其中,在所述VR眼镜包括多于两个VR扬声器的情况下,通过VR眼镜接收所述移动终端传输的音频信号,至少通过所述至少两个VR扬声器播放基于所述音频信号的声音,包括:
    接收经过所述移动终端处理的多声道的音频信号,解析所述音频信号并传输至所述多于两个VR扬声器进行播放。
  11. 根据权利要求8所述的方法,其中,在所述VR眼镜包括多于两个VR扬声器的情况下,通过VR眼镜接收所述移动终端传输的音频信号,至少通过所述至少两个VR扬声器播放基于所述音频信号的声音,包括:
    接收所述移动终端传输的音频信号,对所述音频信号进行多声道音效处理,并将处理后的音频信号传输至所述多于两个VR扬声器进行播放。
  12. 根据权利要求10或11所述的方法,其中,
    在所述VR眼镜包括5个VR扬声器时,通过所述5个VR扬声器实现杜比5.1声道布局。
  13. 根据权利要求10或11所述的方法,其中,
    在所述VR眼镜包括7个VR扬声器时,通过所述7个VR扬声器实现杜比7.1声道布局。
  14. 根据权利要求8至13中任一项所述的方法,还包括:
    接收所述移动终端传输的视频信号;以及
    通过VR眼镜播放基于所述视频信号的视频。
  15. 一种存储介质,其上存储有程序,所述程序运行时执行权利要求8至14中任一项所述的方法。
  16. 一种处理器,其配置为运行程序,所述程序运行时执行权利要求8至14中任一项所述的方法。
PCT/CN2018/107270 2017-09-25 2018-09-25 Vr眼镜和vr眼镜的声音播放方法 WO2019057189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710875555.4A CN109557665A (zh) 2017-09-25 2017-09-25 Vr眼镜和观看vr视频的方法
CN201710875555.4 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019057189A1 true WO2019057189A1 (zh) 2019-03-28

Family

ID=65809540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107270 WO2019057189A1 (zh) 2017-09-25 2018-09-25 Vr眼镜和vr眼镜的声音播放方法

Country Status (2)

Country Link
CN (1) CN109557665A (zh)
WO (1) WO2019057189A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070280484A1 (en) * 2003-11-27 2007-12-06 Anderson Yul L Vsr surround sound tube headphone
CN205071236U (zh) * 2015-11-02 2016-03-02 徐文波 一种头戴式音视频处理设备
CN205142495U (zh) * 2015-11-02 2016-04-06 徐文波 一种头戴式环绕音箱
CN105629471A (zh) * 2016-01-20 2016-06-01 翁志彬 一种头戴式显示器
CN205608327U (zh) * 2015-12-23 2016-09-28 广州市花都区秀全外国语学校 一种多功能眼镜
CN205844637U (zh) * 2016-07-13 2016-12-28 肖敦金 一种vr全景声头戴影院

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841498A (zh) * 2014-02-24 2014-06-04 宇龙计算机通信科技(深圳)有限公司 一种终端、立体声播放系统及方法
CN106210312A (zh) * 2016-07-11 2016-12-07 深圳天珑无线科技有限公司 一种基于移动终端的立体声播放方法、移动终端及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070280484A1 (en) * 2003-11-27 2007-12-06 Anderson Yul L Vsr surround sound tube headphone
CN205071236U (zh) * 2015-11-02 2016-03-02 徐文波 一种头戴式音视频处理设备
CN205142495U (zh) * 2015-11-02 2016-04-06 徐文波 一种头戴式环绕音箱
CN205608327U (zh) * 2015-12-23 2016-09-28 广州市花都区秀全外国语学校 一种多功能眼镜
CN105629471A (zh) * 2016-01-20 2016-06-01 翁志彬 一种头戴式显示器
CN205844637U (zh) * 2016-07-13 2016-12-28 肖敦金 一种vr全景声头戴影院

Also Published As

Publication number Publication date
CN109557665A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
TWI489887B (zh) 用於喇叭或耳機播放之虛擬音訊處理技術
US6118876A (en) Surround sound speaker system for improved spatial effects
US5708719A (en) In-home theater surround sound speaker system
CN102144410B (zh) 增强多个音频通道的再现的方法和设备
TW200301663A (en) Method for improving spatial perception in virtual surround
US9332349B2 (en) Sound image localization apparatus
CN206117991U (zh) 音频处理设备
CN108650592B (zh) 一种实现颈带式环绕立体声的方法及立体声控制系统
CN112840678B (zh) 立体声播放方法、装置、存储介质及电子设备
JP2021516900A (ja) インナーイヤースピーカーとオーバーイヤースピーカーとを有するヘッドフォンスピーカーシステム
WO2019057189A1 (zh) Vr眼镜和vr眼镜的声音播放方法
JPH114500A (ja) ホームシアターサラウンドサウンドスピーカシステム
WO2018160776A1 (en) Multiple dispersion standalone stereo loudspeakers
JP2002291100A (ja) オーディオ信号再生方法、及びパッケージメディア
CN112255791A (zh) Vr眼镜和观赏vr视频的方法
CN105578329A (zh) 头戴式耳机
CN217849651U (zh) 全景声耳机
KR200252620Y1 (ko) 5.1 채널 헤드폰
US20220038838A1 (en) Lower layer reproduction
CN220653508U (zh) 三维立体声耳机
KR200256726Y1 (ko) 5.1 채널 헤드폰
KR200272047Y1 (ko) 4 채널 헤드폰
US20230077689A1 (en) Speaker driver arrangement for implementing cross-talk cancellation
US11445299B2 (en) Rendering binaural audio over multiple near field transducers
US11544032B2 (en) Audio connection and transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18858529

Country of ref document: EP

Kind code of ref document: A1