WO2019057068A1 - 彩膜基板及显示面板 - Google Patents

彩膜基板及显示面板 Download PDF

Info

Publication number
WO2019057068A1
WO2019057068A1 PCT/CN2018/106453 CN2018106453W WO2019057068A1 WO 2019057068 A1 WO2019057068 A1 WO 2019057068A1 CN 2018106453 W CN2018106453 W CN 2018106453W WO 2019057068 A1 WO2019057068 A1 WO 2019057068A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
thin film
film transistor
scan line
row
Prior art date
Application number
PCT/CN2018/106453
Other languages
English (en)
French (fr)
Inventor
单剑锋
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2019057068A1 publication Critical patent/WO2019057068A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present application relates to the field of display technologies, and in particular, to a color film substrate and a display panel.
  • the liquid crystal display has the advantages of high image quality, small size, light weight, low voltage driving, low power consumption and wide application range. Therefore, it has been widely used in medium and small portable TVs, mobile phones, and video recording. Consumer electronics or computer products such as computers, notebook computers, desktop displays and projection TVs, and gradually replaced the cathode ray tube (CRT) to become the mainstream of the display.
  • CRT cathode ray tube
  • liquid crystal displays still have problems such as narrow viewing angle range and high price. Therefore, how to increase the range of viewing angles is one of the urgent problems to be improved.
  • Embodiments of the present application provide a color film substrate and a display panel to increase the viewing angle.
  • a color film substrate provided by an embodiment of the present application includes: a substrate; a first color filter including a first color filter, wherein the first color filter has a first end in a column direction and An opposite second end; a second row of color filters adjacent to the first row of color filter structures, the second row of color filters comprising a second color filter, in the column direction
  • the second color filter has a third end and an opposite fourth end, and the second color filter and the first color filter are inclined to each other, wherein the first color filter passes through the first An angle formed between a first line of the end and the second end and a second line passing through the third end and the fourth end of the second color filter is an obtuse angle; wherein the first color filter is a first projection in the row direction coincides with a second projection portion of the second color filter in the row direction; wherein the first color filter is a red filter, a green filter or a blue filter sheet.
  • a first color filter comprising a first color filter, the first color filter having a first end and an opposite second end in a column direction;
  • the sheet has a third end and an opposite fourth end, and the second color filter and the first color filter are inclined to each other, wherein the first end and the second end of the first color filter pass through An angle formed between a straight line and a second straight line passing through the third end and the fourth end of the second color filter is an obtuse angle.
  • the first projection of the first color filter in the row direction coincides with the second projection of the second color filter in the row direction.
  • the first color filter is a red color filter, a green color filter, or a blue color filter.
  • a display panel including:
  • An array substrate having a plurality of pixel structures
  • the color filter substrate comprising:
  • a first color filter comprising a first color filter, the first color filter having a first end and an opposite second end in a column direction;
  • the second row of color filters adjacent to the first row of color filter structures, the second row of color filters comprising a second color filter, the second color filter in a column direction
  • the sheet has a third end and an opposite fourth end, and the second color filter and the first color filter are inclined to each other, wherein the first end and the second end of the first color filter pass through An angle formed between a straight line and a second straight line passing through the third end and the fourth end of the second color filter is an obtuse angle;
  • a liquid crystal layer is disposed between the array substrate and the color filter substrate.
  • the pixel structure includes a first scan line, a second scan line adjacent to the first scan line, a first data line, and a first pixel adjacent to the first data line a second data line and a pixel electrode, wherein the first scan line and the second scan line are disposed to intersect with the first data line and the second data line to form a pixel unit area, where the pixel electrode is located In the pixel unit region and electrically connecting the first scan line and the first data line, the pixel electrode is provided with at least one slit extending from the first scan line to the second scan line, One end of the slit adjacent to the second scan line is closer to or away from the first data line with respect to an end of the slit adjacent to the first scan line.
  • the angle of inclination of the longitudinal direction of the slit relative to the longitudinal direction of the first scanning line ranges from 75° to 85°.
  • the pixel structure further includes a first thin film transistor and a second thin film transistor, a source of the first thin film transistor is connected to the first data line, and a gate of the first thin film transistor
  • the first scan line is connected to the first scan line
  • the drain of the first thin film transistor is connected to the source of the second thin film transistor
  • the gate of the second thin film transistor is connected to the first scan line
  • the second A drain of the thin film transistor is connected to the pixel electrode.
  • a length direction of the first color filter is parallel to a length direction of the slit of a pixel electrode of a pixel structure corresponding to the color filter.
  • the first projection of the first color filter in the row direction coincides with the second projection of the second color filter in the row direction.
  • the first color filter is a red color filter, a green color filter, or a blue color filter.
  • FIG. 1 is a schematic layout diagram of a pixel structure in an embodiment of the present application.
  • FIG. 2 is a schematic structural view of an array substrate according to an embodiment of the present application.
  • FIG 3 is another schematic diagram of an array substrate according to an embodiment of the present application.
  • FIG. 4 is a schematic structural view of an array substrate according to another embodiment of the present application.
  • FIG. 5 is another schematic diagram of an array substrate according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display panel in still another embodiment of the present application.
  • FIG. 7 is a schematic structural view of a color filter substrate according to still another embodiment of the present application.
  • FIG. 8 is a partial schematic view of a color filter substrate in still another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a liquid crystal display according to an embodiment of the present application.
  • a pixel structure 100 provided in an embodiment of the present invention includes: adjacently disposed scan lines 111 and scan lines 112 , adjacently disposed data lines 121 and data lines 122 , and pixel electrodes 130 . .
  • the scan lines 111 and 112 are arranged to intersect with the data line 121 and the data line 122 to form a pixel unit area, and the pixel electrode 130 is located in the pixel unit area.
  • the pixel electrode 130 is provided with at least one slit 131 extending from the scanning line 111 to the scanning line 112, and the longitudinal direction of the slit 131 is inclined with respect to the longitudinal direction of the scanning line 111 (for example, the horizontal direction of FIG. 1).
  • the scan line 111 and the scan line 112 are disposed substantially in parallel, and the data line 121 and the data line 122 are also disposed substantially in parallel, so that the scan line 111, the scan line 112, the data line 121, and the data line 122 together form a
  • the pixel unit region is substantially quadrangular, and the pixel electrode 130 is located in the pixel unit region and electrically connects the scan line 111 and the data line 121.
  • at least one slit for example, two slits 131 are provided on the pixel electrode 130, and if there are a plurality of slits 131, the slits 131 are, for example, substantially parallel to each other.
  • Each slit 131 extends from the scanning line 111 to the scanning line 112 and penetrates through the pixel electrode 130, or in other words, the slit 131 has a hollow structure and is closed at both ends. Of course, it may be a hollow structure with one end closed and the other end open.
  • the pixel electrode 130 is typically a transparent electrode such as an ITO (Indium Tin Oxide) electrode, and the length direction of the slit 131 is inclined with respect to the length direction of the scanning line 111, specifically, the slit 131 and the scanning line.
  • the angle ⁇ of 111 ranges from 75° to 85°.
  • the pixel structure 100 further includes a thin film transistor 140 and a thin film transistor 150.
  • the source 141 of the thin film transistor 140 is connected to the data line 121
  • the gate 142 of the thin film transistor 140 is connected to the scan line 111
  • the drain 143 of the thin film transistor 140 is connected to the source 151 of the thin film transistor 150
  • the gate 152 of the thin film transistor 150 is connected to the scan line.
  • 111 and the drain 153 of the thin film transistor 150 are connected to the pixel electrode 130.
  • the thin film transistor 140 and the thin film transistor 150 are connected in series between the data line 121 and the pixel electrode 130 and the gates 142, 153 of both are connected to the same scan line 111; by passing the thin film transistor 140 and the thin film transistor
  • the series connection of 150 can reduce the leakage current of the pixel structure 100 and maintain the voltage of the pixel electrode 130.
  • the drain electrode 143 of the thin film transistor 140 extends from one side of the data line 121 across the data line 121 and is connected to the source 151 of the thin film transistor 150.
  • the source 141 of the thin film transistor 140 and the drain 153 of the thin film transistor 150 are located on the same side of the scan line 111 (for example, the upper side of the scan line 111 in FIG. 1), and the drain 143 of the thin film transistor 140 and the thin film transistor 150
  • the source 151 is located on the other opposite side of the scan line 111 (for example, the lower side of the scan line 111 in FIG. 1), so that the overall layout structure of the thin film transistor 140 and the thin film transistor 150 is substantially U-shaped, and the layout manner can be greatly improved. Increase the pixel aperture ratio.
  • the thin film transistors 140, 150 may be NMOS transistors or PMOS transistors; of course, the thin film transistors 140, 150 may also be replaced with other three-terminal active devices.
  • the pixel structure 100 provided in this embodiment has one or more slits extending from one scan line 111 of the adjacent two scan lines 111, 112 to the other scan line 112 in the pixel electrode 130.
  • 131, and the length direction of the slit 131 is inclined with respect to the length direction of the scanning line 111/112, which can preset a certain inclination angle for the arrangement of the liquid crystal molecules, thereby being able to significantly improve the display device having the pixel structure 100. View angle.
  • the double thin film transistors 140 and 150 are disposed in series to reduce the leakage current of the pixel structure 100 and maintain the voltage of the pixel electrode 130.
  • the layout structure of the dual thin film transistors 140, 150 can effectively increase the pixel aperture ratio.
  • an array substrate 200 includes: a transparent substrate 250, and scan lines 211, scan lines 212, scan lines 213, and data lines disposed on the transparent substrate 250.
  • the data line 222, the pixel electrode 230, and the pixel electrode 240 are disposed between the scan line 211 and the scan line 213.
  • the scan line 211 is disposed adjacent to the scan line 212 and the scan line 212 is disposed adjacent to the scan line 213.
  • the scan line 211 and the scan line 212 intersect with the data line 221 and the data line 222 to form a first pixel unit area.
  • the scan line 212 and the scan line 213 are intersected with the data line 221 and the data line 222 to form a second. a pixel unit region, the first pixel unit region being adjacent to the second pixel unit region.
  • the pixel electrode 230 is located in the first pixel unit region and electrically connects the scan line 211 and the data line 221, and the pixel electrode 230 is provided with at least one slit 231 extending from the scan line 211 to the scan line 212.
  • the pixel electrode 240 is located in the second pixel unit region and electrically connects the scan line 212 and the data line 221, and the pixel electrode 240 is provided with at least one slit 241 extending from the scan line 212 to the scan line 213.
  • Each slit 231 on the pixel electrode 230 is adjacent to one end of the scan line 212 closer to the data line 221 with respect to an end thereof adjacent to the scan line 211.
  • Each of the slits 241 on the pixel electrode 240 is adjacent to the data line 221 adjacent to one end of the scanning line 212 with respect to an end thereof adjacent to the scanning line 213.
  • the inclination angle ⁇ of the longitudinal direction of each slit 241 with respect to the longitudinal direction of the scanning line 212 ranges from 75° to 85°; similarly, the length direction of each slit 231 is relative to the scanning.
  • the angle of inclination of the line 212 in the longitudinal direction also ranges from 75° to 85°.
  • the electrical connection between the pixel electrode 230 located in the first pixel unit region and the scan line 211 and the data line 221 may be similar to the pixel electrode 130 in FIG. 1 by two series-connected three-terminal active
  • the device is implemented, for example, by two thin-film transistors connected in series; the electrical connection method in which the double thin film transistors are connected in series can reduce the leakage current of the pixel structure and maintain the voltage of the pixel electrode 230; further, the dual thin film transistor
  • the layout structure can also be U-shaped as shown in FIG. 1, or even other shapes such as a V-shape to increase the pixel aperture ratio.
  • the electrical connection between the pixel electrode 240 located in the second pixel unit region and the scan line 212 and the data line 221 may be similar to the pixel electrode 130 in FIG. 1 by two serially connected three-terminal active devices.
  • two thin film transistors connected in series are used; the electrical connection method in which the double thin film transistors are connected in series can reduce the leakage current of the pixel structure and maintain the voltage of the pixel electrode 240; further, the layout of the double thin film transistor
  • the structure may also be U-shaped as shown in FIG. 1, or even other shapes such as V-type to increase the pixel aperture ratio.
  • the array substrate 200 further includes a common electrode 260.
  • the common electrode 260 is disposed on the transparent substrate 250 in the same layer as the pixel electrode 230 and the pixel electrode 240. Therefore, the technical solution of the embodiment is applicable to a liquid crystal display device of an IPS (In Plane Switching) mode, and has a viewing angle. Large, fine colors and other advantages.
  • IPS In Plane Switching
  • the common electrode 260 and the pixel electrode 230/240 are alternately arranged in the horizontal direction shown in FIG. 3, so that a plane can be formed between the pixel electrode 230/240 and the common electrode 260 adjacent thereto. An electric field or transverse electric field.
  • an array substrate 300 includes: a transparent substrate 350, and scan lines 311, scan lines 312, scan lines 313, and data disposed on the transparent substrate 350.
  • the scan line 312 is located between the scan line 311 and the scan line 313.
  • the scan line 311 is disposed adjacent to the scan line 312 and the scan line 312 is adjacent to the scan line 313.
  • the scan line 311 and the scan line 312 are intersected with the data line 321 and the data line 322 to form a first pixel unit area.
  • the scan line 312 and the scan line 313 are intersected with the data line 321 and the data line 322 to form a second. a pixel unit region, the first pixel unit region being adjacent to the second pixel unit region.
  • the pixel electrode 330 is located in the first pixel unit region and electrically connects the scan line 311 and the data line 321 , and the pixel electrode 330 is provided with at least one slit 331 extending from the scan line 311 to the scan line 312 .
  • the pixel electrode 340 is located in the second pixel unit region and electrically connects the scan line 312 and the data line 321 , and the pixel electrode 340 is provided with at least one narrow slit 341 extending from the scan line 312 to the scan line 313 .
  • Each of the slits 331 on the pixel electrode 330 is adjacent to the data line 321 adjacent to one end of the scanning line 312 with respect to an end thereof adjacent to the scanning line 311.
  • Each of the slits 341 on the pixel electrode 340 is adjacent to the data line 321 adjacent to one end of the scanning line 312 with respect to an end thereof adjacent to the scanning line 313.
  • the inclination angle ⁇ of the longitudinal direction of each slit 331 with respect to the longitudinal direction of the scanning line 312 ranges from 75° to 85°, and similarly, the length direction of each slit 341 is relative to the scanning.
  • the angle of inclination of the line 312 in the longitudinal direction is also ⁇ .
  • the electrical connection between the pixel electrode 330 located in the first pixel unit region and the scan line 311 and the data line 321 may be similar to the pixel electrode 130 in FIG.
  • the device is implemented, for example, by two thin-film transistors connected in series; the electrical connection method in which the double thin film transistors are connected in series can reduce the leakage current of the pixel structure and maintain the voltage of the pixel electrode 330; further, the double thin film transistor
  • the layout structure can also be U-shaped as shown in FIG. 1, or even other shapes such as a V-shape to increase the pixel aperture ratio.
  • the electrical connection between the pixel electrode 340 located in the second pixel unit region and the scan line 312 and the data line 321 may be similar to the pixel electrode 130 in FIG.
  • the structure may also be U-shaped as shown in FIG. 1, or even other shapes such as V-type to increase the pixel aperture ratio.
  • the technical solution of the present embodiment is similar to the foregoing technical solution of the second embodiment, except that the common electrode 360 in the embodiment is disposed between the pixel electrode 330 and the pixel electrode 340 and the transparent substrate 350, and Typically, the common electrode 360 is disposed entirely under the pixel electrodes 330, 340 such that the pixel electrodes 330, 340 can form a fringing electric field with the underlying common electrode 360.
  • the scheme is suitable for a liquid crystal display device of FFS (Fringe Field Switching) mode.
  • FFS Flexible Field Switching
  • the FFS technology rotates the liquid crystal molecules which are almost homogeneously arranged in the surface on the surface of the electrode by the fringe electric field, and has a wide viewing angle and high penetration. , low power consumption and other advantages, can achieve high penetration and large viewing angle requirements.
  • a display panel 400 includes a thin film transistor substrate 410 , a color filter substrate 420 , and a liquid crystal interposed between the thin film transistor 410 and the color filter substrate 420 .
  • Layer 440 The thin film transistor substrate 410 , a color filter substrate 420 , and a liquid crystal interposed between the thin film transistor 410 and the color filter substrate 420 .
  • the array substrate 410 includes a plurality of pixel structures (refer to the pixel structure 100 described in FIG. 1), and three pixel electrodes 411 (corresponding to three pixel structures) are illustrated in FIG. 6 as an example. show.
  • each of the pixel structures includes, for example, a first scan line, a second scan line adjacent to the first scan line, a first data line, a second data line adjacent to the first data line, and a pixel electrode 411
  • the first scan line and the second scan line are disposed to intersect with the first data line and the second data line to form a pixel unit area, and the pixel electrode 411 is located in the pixel unit area and is electrically Connecting the first scan line and the first data line, the pixel electrode 411 is provided with at least one slit extending from the first scan line to the second scan line, and each slit is adjacent to the One end of the second scan line is closer to or farther from the first data line with respect to an end thereof adjacent to the first scan line.
  • the color filter substrate 420 is disposed opposite to the array substrate 410.
  • the color filter substrate 420 includes a substrate 421, and a plurality of color filters 430 respectively corresponding to the plurality of pixel structures having the pixel electrodes 411 are formed on the substrate 421, and each color filter is formed.
  • the longitudinal direction of the light sheet 430 is parallel to the longitudinal direction of the slit of the pixel electrode 411 of the pixel structure corresponding to the color filter 430.
  • each of the color filters 430 on the color filter substrate 420 is, for example, one of a red (R) filter, a green (G) filter, and a blue (B) filter, and each In the one-line color filter 430, the color filters 430 of the three colors are sequentially spaced and each of the color filters 430 corresponds to one pixel electrode 411. Based on such a structure, the display panel 400 can achieve a large viewing angle.
  • the inclination angle of the longitudinal direction of the slit on the pixel electrode 411 with respect to the longitudinal direction of the second scanning line (refer to ⁇ in FIGS. 2 and 4) may be selected from the range of 75° to 85°. To achieve a better viewing angle.
  • the adjacent two color filters 430 include a first color filter 431 and a second color filter 432
  • the first color filter 431 includes a first end 4311 and a second The end 4312 extends obliquely from the first end 4311 to the second end 4312.
  • the second color filter 432 includes a third end 4321 and a fourth end 4322 and extends obliquely from the third end 4321 to the fourth end 4322, and the second The end 4312 is adjacent to the third end 4321.
  • the first straight line passing through the first end 4311 and the second end 4312 of the first color filter 431 and the second end passing through the third end 4321 and the fourth end 4322 of the second color filter 432 The angle ⁇ formed between the straight lines is an obtuse angle.
  • the first projection 4313 of the first color filter 431 and the second projection 4323 of the second color filter 432 partially overlap in the row direction, in other words, the color filter substrate.
  • the color filters 430 between adjacent rows on 420 are staggered in the row direction. Based on the arrangement, the color filter substrate 420 of the display panel 400 can be better matched with the array substrate 410 to achieve a larger viewing angle, increase the light transmittance, and also change the chromatic aberration to make the display effect more it is good.
  • the "row direction" and the "column direction” described in the embodiments of the present application may be interchanged.
  • the present application provides a liquid crystal display 500.
  • the backlight module 510 and the display panel 520 are included.
  • the display panel 520 can adopt the display panel 400 of the above embodiment. Specifically, the light emitted by the backlight module 510 is sequentially passed through the array substrate 521 of the display panel 520 and the color filter substrate 522, and then converted into an image for display to the user.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩膜基板(420)及显示面板(400),该彩膜基板(420)包括:基板(410);第一行彩色滤光片,其包括多个第一彩色滤光片(431),在列方向上第一彩色滤光片(431)具有第一端(4311)及相对的第二端(4312);第二行彩色滤光片,其与第一行彩色滤光结构相邻,第二行彩色滤光片包括第二彩色滤光片(432),在列方向上第二彩色滤光片(432)具有第三端(4321)及相对的第四端(4322),第二彩色滤光片(432)与第一彩色滤光片(431)相互倾斜,其中经过第一彩色滤光片(431)第一端(4311)及第二端(4312)的第一直线与经过第二彩色滤光片(432)第三端(4321)及第四端(4322)的第二直线之间所形成的夹角为钝角。

Description

彩膜基板及显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种彩膜基板及显示面板。
背景技术
液晶显示器具有高画质、体积小、重量轻、低电压驱动、低消耗功率及应用范围广等优点,因此,已被广泛的应用在中、小型可携式电视、行动电话、摄录放影机、笔记型电脑、桌上型显示器以及投影电视等消费性电子或电脑产品,并且更逐渐取代阴极射线管(Cathode Ray Tube,CRT)而成为显示器的主流。然而,液晶显示器仍有视角范围狭窄与价格偏高等问题,因此如何增加其视角范围,是目前急需改善的课题之一。
发明内容
本申请的实施例提供一种彩膜基板及一种显示面板,以增大可视角度。
本申请实施例提供的一种彩膜基板,包括:基板;第一行彩色滤光片,其包括第一彩色滤光片,在列方向上所述第一彩色滤光片具有第一端及相对的第二端;第二行彩色滤光片,其与所述第一行彩色滤光结构相邻,所述第二行彩色滤光片包括第二彩色滤光片,在列方向上所述第二彩色滤光片具有第三端及相对的第四端,所述第二彩色滤光片与所述第一彩色滤光片相互倾斜,其中经过所述第一彩色滤光片第一端及第二端的第一直线与经过所述第二彩色滤光片第三端及第四端的第二直线之间所形成的夹角为 钝角;其中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合;其中,所述第一彩色滤光片为红色滤光片、绿色滤光片或蓝色滤光片。
本申请实施例提供的一种彩膜基板,包括:
基板;
第一行彩色滤光片,其包括第一彩色滤光片,在列方向上所述第一彩色滤光片具有第一端及相对的第二端;
第二行彩色滤光片,其与所述第一行彩色滤光结构相邻,所述第二行彩色滤光片包括第二彩色滤光片,在列方向上所述第二彩色滤光片具有第三端及相对的第四端,所述第二彩色滤光片与所述第一彩色滤光片相互倾斜,其中经过所述第一彩色滤光片第一端及第二端的第一直线与经过所述第二彩色滤光片第三端及第四端的第二直线之间所形成的夹角为钝角。
在本申请的一个实施例中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合。
在本申请的一个实施例中,所述第一彩色滤光片为红色滤光片、绿色滤光片或蓝色滤光片。
另外,本申请提供了一种显示面板,包括:
阵列基板,其具有多个像素结构;
彩膜基板,其与所述阵列基板相对设置,所述彩膜基板包括:
基板;
第一行彩色滤光片,其包括第一彩色滤光片,在列方向上所述第 一彩色滤光片具有第一端及相对的第二端;
第二行彩色滤光片,其与所述第一行彩色滤光结构相邻,所述第二行彩色滤光片包括第二彩色滤光片,在列方向上所述第二彩色滤光片具有第三端及相对的第四端,所述第二彩色滤光片与所述第一彩色滤光片相互倾斜,其中经过所述第一彩色滤光片第一端及第二端的第一直线与经过所述第二彩色滤光片第三端及第四端的第二直线之间所形成的夹角为钝角;
液晶层,设置在所述阵列基板和所述彩膜基板之间。
在本申请的一个实施例中,所述像素结构包括第一扫描线、与所述第一扫描线相邻的第二扫描线、第一数据线、与所述第一数据线相邻的第二数据线以及像素电极,所述第一扫描线及所述第二扫描线与所述第一数据线及所述第二数据线交叉设置共同围成一个像素单元区域,所述像素电极位于所述像素单元区域内且电连接所述第一扫描线和所述第一数据线,所述像素电极上开设有从所述第一扫描线向所述第二扫描线延伸的至少一条狭隙,所述狭隙邻近所述第二扫描线的一端相对于所述狭隙邻近所述第一扫描线的一端更靠近或更远离所述第一数据线。
在本申请的一个实施例中,所述狭隙的长度方向相对于所述第一扫描线的长度方向的倾斜夹角的取值范围为75°~85°。
在本申请的一个实施例中,所述像素结构还包括第一薄膜晶体管和第二薄膜晶体管,所述第一薄膜晶体管的源极连接所述第一数据线,所述第一薄膜晶体管的栅极连接所述第一扫描线,所述第一薄膜晶体管的漏极连 接所述第二薄膜晶体管的源极,所述第二薄膜晶体管的栅极连接所述第一扫描线,所述第二薄膜晶体管的漏极连接所述像素电极。
在本申请的一个实施例中,所述第一彩色滤光片的长度方向和与所述彩色滤光片相对应的像素结构的像素电极的所述狭隙的长度方向平行。
在本申请的一个实施例中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合。
在本申请的一个实施例中,所述第一彩色滤光片为红色滤光片、绿色滤光片或蓝色滤光片。
通过在彩膜基板上设有多行彩色滤光片,且在行方向上相邻的两个彩色滤光片的长度方向夹角为钝角,从而增大了具有该彩膜基板的显示设备的可视角度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的像素结构的布局示意图;
图2为本申请一实施例中的阵列基板的结构示意图;
图3为本申请一实施例中的阵列基板的另一示意图;
图4为本申请另一实施例中的阵列基板的结构示意图;
图5为本申请另一实施例中的阵列基板的另一示意图;
图6为本申请再一实施例中的显示面板的结构示意图;
图7为本申请再一实施例中的彩膜基板的结构示意图;
图8为本申请再一实施例中的彩膜基板的局部示意图;
图9为本申请一实施例中的液晶显示器的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请一实施例中提供的一种像素结构100,包括:相邻设置的扫描线111和扫描线112、相邻设置的数据线121和数据线122、以及像素电极130。扫描线111及112与数据线121及数据线122交叉设置共同围成一个像素单元区域,像素电极130位于所述像素单元区域内。此外,像素电极130上设有从扫描线111向扫描线112延伸的至少一条狭隙131,狭隙131的长度方向相对于扫描线111的长度方向(例如图1的水平方向)倾斜。
本实施例中,扫描线111和扫描线112大致平行设置,而数据线121和数据线122也是大致平行设置,因此扫描线111、扫描线112、数据线121和数据线122共同围成了一个大致呈四边形的像素单元区域,而像素电极130位于所述像素单元区域内并电连接扫描线111和数据线121。再 者,在像素电极130上设有至少一条例如两条狭隙131,如果为多条狭隙131则各条狭隙131例如大致互相平行。每一条狭隙131为从扫描线111向扫描线112延伸并贯穿像素电极130,或换而言之狭缝131为镂空结构且两端封闭,当然也可以是一端封闭而另一端开口的镂空结构;像素电极130典型地为透明电极例如ITO(Indium Tin Oxide,铟锡氧化物)电极,狭隙131的长度方向相对于扫描线111的长度方向是倾斜,具体来说,狭隙131和扫描线111的夹角α取值范围为75°~85°。
承上述,像素结构100还包括薄膜晶体管140和薄膜晶体管150。薄膜晶体管140的源极141连接数据线121,薄膜晶体管140的栅极142连接扫描线111,薄膜晶体管140的漏极143连接薄膜晶体管150的源极151,薄膜晶体管150的栅极152连接扫描线111以及薄膜晶体管150的漏极153连接像素电极130。换而言之,薄膜晶体管140和薄膜晶体管150串联连接在数据线121和像素电极130之间并且两者的栅极142、153均连接至同一条扫描线111;通过将薄膜晶体管140和薄膜晶体管150串联,既能够减小像素结构100的漏电流,又能够保持像素电极130的电压。再者,从图1的像素结构100的布局(Layout)结构还可以得知:薄膜晶体管140的漏极143自数据线121的一侧延伸跨越数据线121后与薄膜晶体管150的源极151相连,薄膜晶体管140的源极141和薄膜晶体管150的漏极153位于扫描线111的同一侧(例如图1中的扫描线111的上侧),而薄膜晶体管140的漏极143和薄膜晶体管150的源极151均位于扫描线111的另一相对侧(例如图1中的扫描线111的下侧),从而使得薄膜晶体管140和薄 膜晶体管150整体布局结构大致呈U型,该种布局方式可以大大提升像素开口率。此外,值得一提的是,薄膜晶体管140、150可以是NMOS晶体管,也可以是PMOS晶体管;当然,薄膜晶体管140、150也可以替换成其他三端有源器件。
综上所述,本实施例提供的像素结构100通过在像素电极130中开设一条或多条从相邻两条扫描线111、112中的一条扫描线111向另一条扫描线112延伸的狭隙131,且使狭隙131的长度方向相对于扫描线111/112的长度方向倾斜,其可以为液晶分子的排布预置一定的倾斜角度,从而能够显著提高具有像素结构100的显示设备的可视角度。此外,双薄膜晶体管140、150串联设置,既能够减小像素结构100的漏电流,又能够保持像素电极130的电压。另外,双薄膜晶体管140、150的布局结构可以有效提升像素开口率。
如图2及图3所示,本申请一实施例中提供的一种阵列基板200,包括:透明基板250以及设置在透明基板250上的扫描线211、扫描线212、扫描线213、数据线221、数据线222、像素电极230和像素电极240,扫描线212位于扫描线211和扫描线213之间,扫描线211与扫描线212相邻设置且扫描线212与扫描线213相邻设置。扫描线211及扫描线212与数据线221及数据线222交叉设置共同围成一个第一像素单元区域,扫描线212及扫描线213与数据线221及数据线222交叉设置共同围成一个第二像素单元区域,所述第一像素单元区域与所述第二像素单元区域相邻。
像素电极230位于所述第一像素单元区域内并电连接扫描线211和数 据线221,像素电极230上设有从扫描线211向扫描线212延伸的至少一条狭隙231。像素电极240位于所述第二像素单元区域内并电连接扫描线212和数据线221,像素电极240上设有从扫描线212向扫描线213延伸的至少一条狭隙241。
像素电极230上的每一条狭隙231邻近扫描线212的一端相对于其邻近扫描线211的一端更靠近数据线221。像素电极240上的每一条狭隙241邻近扫描线212的一端相对于其邻近扫描线213的一端更靠近数据线221。可选地,各条狭隙241的长度方向相对于扫描线212的长度方向的倾斜夹角α的取值范围为75°~85°;类似地,各条狭缝231的长度方向相对于扫描线212的长度方向的倾斜夹角的取值范围也为75°~85°。
更具体地,位于所述第一像素单元区域内的像素电极230与扫描线211及数据线221之间形成电连接可以类似于图1中的像素电极130,由两个串联的三端有源器件例如两个串联的薄膜晶体管来完成;该种采用双薄膜晶体管串联的电连接方式既能够减小像素结构的漏电流,又能够保持像素电极230的电压;再者,这种双薄膜晶体管的布局结构也可以如图1所示的U型,甚至是其他形状例如V型,以提升像素开口率。同理,位于所述第二像素单元区域内的像素电极240与扫描线212及数据线221之间形成电连接可以类似于图1中的像素电极130,由两个串联的三端有源器件例如两个串联的薄膜晶体管来完成;该种采用双薄膜晶体管串联的电连接方式既能够减小像素结构的漏电流,又能够保持像素电极240的电压;再者,这种双薄膜晶体管的布局结构也可以如图1所示的U型,甚至是其他形状 例如V型,以提升像素开口率。
承上述,如图3所示,阵列基板200还包括公共电极260。其中,公共电极260与像素电极230及像素电极240同层设置在透明基板250上,因而本实施例的技术方案适用于IPS(In Plane Switching内平面切换)模式的液晶显示设备,具有可视角度大、颜色细腻等优点。再者,从图3中可以得知:公共电极260与像素电极230/240在图3所示水平方向上交替排列,从而像素电极230/240和与其相邻的公共电极260之间可以形成平面电场或称横向电场。
如图4及图5所示,本申请另一实施例中提供的一种阵列基板300,包括:透明基板350以及设置在透明基板350上的扫描线311、扫描线312、扫描线313、数据线321、数据线322、像素电极330和像素电极340,扫描线312位于扫描线311和扫描线313之间,扫描线311与扫描线312相邻设置且扫描线312与扫描线313相邻设置。扫描线311及扫描线312与数据线321及数据线322交叉设置共同围成一个第一像素单元区域,扫描线312及扫描线313与数据线321及数据线322交叉设置共同围成一个第二像素单元区域,所述第一像素单元区域与所述第二像素单元区域相邻。
像素电极330位于第一像素单元区域内并电连接扫描线311和数据线321,像素电极330上设有从扫描线311向扫描线312延伸的至少一条狭隙331。像素电极340位于所述第二像素单元区域内并电连接扫描线312和数据线321,像素电极340上设有从扫描线312向扫描线313延伸的至少一条狭隙341。
像素电极330上的每一条狭隙331邻近扫描线312的一端相对于其邻近扫描线311的一端更靠近数据线321。像素电极340上的每一条狭隙341邻近扫描线312的一端相对于其邻近扫描线313的一端更靠近数据线321。可选地,各条狭隙331的长度方向相对于扫描线312的长度方向的倾斜夹角α的取值范围为75°~85°,类似地,各条狭隙341的长度方向相对于扫描线312的长度方向的倾斜夹角也为α。
更具体地,位于所述第一像素单元区域内的像素电极330与扫描线311及数据线321之间形成电连接可以类似于图1中的像素电极130,由两个串联的三端有源器件例如两个串联的薄膜晶体管来完成;该种采用双薄膜晶体管串联的电连接方式既能够减小像素结构的漏电流,又能够保持像素电极330的电压;再者,这种双薄膜晶体管的布局结构也可以如图1所示的U型,甚至是其他形状例如V型,以提升像素开口率。同理,位于所述第二像素单元区域内的像素电极340与扫描线312及数据线321之间形成电连接可以类似于图1中的像素电极130,由两个串联的三端有源器件例如两个串联的薄膜晶体管来完成;该种采用双薄膜晶体管串联的电连接方式既能够减小像素结构的漏电流,又能够保持像素电极340的电压;再者,这种双薄膜晶体管的布局结构也可以如图1所示的U型,甚至是其他形状例如V型,以提升像素开口率。
承上述,本实施例技术方案与前述的第二实施例技术方案类似,所不同之处在于,本实施例中的公共电极360设置在像素电极330及像素电极340和透明基板350之间,且典型的是公共电极360整片设置在像素电极 330、340下方,从而像素电极330、340可以与下方的公共电极360形成边缘电场。该方案适合于FFS(Fringe Field Switching,边缘场切换)模式的液晶显示设备,FFS技术是藉由边缘电场使面内几乎均质排列的液晶分子在电极表层旋转,具有视角宽广、高穿透性、低功耗等优点,能同时实现高穿透性与大视角等要求。
如图6及图7所示,本申请再一实施例中提供的一种显示面板400包括:薄膜晶体管基板410、彩膜基板420和夹设在薄膜晶体管410和彩膜基板420之间的液晶层440。
其中,阵列基板410包括多个像素结构(可参考图1所述的像素结构100),图6中示出三个像素电极411(对应三个像素结构)作为举例,此图中公共电极并未示出。具体而言,每一个像素结构例如包括第一扫描线、与第一扫描线相邻的第二扫描线、第一数据线、与第一数据线相邻的第二数据线、以及像素电极411,所述第一扫描线及所述第二扫描线与所述第一数据线及所述第二数据线交叉设置共同围成一个像素单元区域,像素电极411位于所述像素单元区域内且电连接所述第一扫描线和所述第一数据线,像素电极411上设有从所述第一扫描线向所述第二扫描线延伸的至少一条狭隙,且每一条狭隙邻近所述第二扫描线的一端相对于其邻近所述第一扫描线的一端更靠近或更远离所述第一数据线。可以理解的是,本实施例的阵列基板410的具体结构与第二、第三实施例所述的阵列基板410类似,在此不作赘述;
彩膜基板420与阵列基板410相对设置,彩膜基板420包括基板421, 在基板421上形成有与具有像素电极411的多个像素结构分别对应的多个彩色滤光片430,每一个彩色滤光片430的长度方向和与该彩色滤光片430相对应的像素结构的像素电极411的狭隙的长度方向平行。
具体地,彩膜基板420上的每一个彩色滤光片430例如为红色(R)滤光片、绿色(G)滤光片和蓝色(B)滤光片中的一种,且在每一行彩色滤光片430中,三种颜色的彩色滤光片430依次间隔排列且每一个彩色滤光片430分别对应一个像素电极411。基于此种结构,该显示面板400能够实现较大的可视角度。
此外,像素电极411上的狭隙的长度方向相对于所述第二扫描线的长度方向的倾斜夹角(参考图2和图4中的α)的取值范围可选为75°~85°,以实现较好的可视角度。
承上述,如图7所示,相邻两个彩色滤光片430包括第一彩色滤光片431和第二彩色滤光片432,第一彩色滤光片431包括第一端4311和第二端4312且自第一端4311向第二端4312倾斜延伸,第二彩色滤光片432包括第三端4321和第四端4322且自第三端4321向第四端4322倾斜延伸,且第二端4312和第三端4321相邻。具体而言,经过第一彩色滤光片431的第一端4311及第二端4312第一直线与经过所述第二彩色滤光片432的第三端4321及第四端4322的第二直线之间所形成的夹角β为钝角。
在其他实施例中,例如图8所示,第一彩色滤光片431的第一投影4313与第二彩色滤光片432的第二投影4323在行方向上部分重合,换句话说,彩膜基板420上的相邻行之间的彩色滤光片430在行方向上交错排列。基 于该排布方式,显示面板400的彩膜基板420可以更好地和阵列基板410适配,以实现较大的可视角度、增大透光率,同时还能改变色差,使显示效果更好。此外,值得一提的是,本申请实施例所述的“行方向”和“列方向”可以互换。
在上述实施例的基础上,本申请提供了一种液晶显示器500,例如图9所示,该包括背光模组510及显示面板520;其中显示面板520可以采用上述实施例的显示面板400。具体地,由背光模组510发出的光线依次经过显示面板520的阵列基板521、彩膜基板522后转换成图像显示给用户。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多路单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多路网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种彩膜基板,包括:
    基板;
    第一行彩色滤光片,其包括第一彩色滤光片,在列方向上所述第一彩色滤光片具有第一端及相对的第二端;
    第二行彩色滤光片,其与所述第一行彩色滤光结构相邻,所述第二行彩色滤光片包括第二彩色滤光片,在列方向上所述第二彩色滤光片具有第三端及相对的第四端,所述第二彩色滤光片与所述第一彩色滤光片相互倾斜,其中经过所述第一彩色滤光片第一端及第二端的第一直线与经过所述第二彩色滤光片第三端及第四端的第二直线之间所形成的夹角为钝角;
    其中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合;
    其中,所述第一彩色滤光片为红色滤光片、绿色滤光片或蓝色滤光片。
  2. 一种彩膜基板,包括:
    基板;
    第一行彩色滤光片,其包括第一彩色滤光片,在列方向上所述第一彩色滤光片具有第一端及相对的第二端;
    第二行彩色滤光片,其与所述第一行彩色滤光结构相邻,所述第二行彩色滤光片包括第二彩色滤光片,在列方向上所述第二彩色滤光片具有第三端及相对的第四端,所述第二彩色滤光片与所述第一彩色滤光片相互倾斜,其中经过所述第一彩色滤光片第一端及第二端的第一直线与经过所述 第二彩色滤光片第三端及第四端的第二直线之间所形成的夹角为钝角。
  3. 根据权利要求2所述的彩膜基板,其中,所述第一彩色滤光片为红色滤光片、绿色滤光片或蓝色滤光片。
  4. 根据权利要求2所述的彩膜基板,其中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合。
  5. 根据权利要求4所述的彩膜基板,其中,经过第一彩色滤光片的第一端及第二端的第一直线,与经过所述第二彩色滤光片的第三端及第四端的第二直线之间所形成的夹角为钝角。
  6. 一种显示面板,包括:
    阵列基板,其具有多个像素结构;
    彩膜基板,其与所述阵列基板相对设置,所述彩膜基板包括:
    基板;
    第一行彩色滤光片,其包括第一彩色滤光片,在列方向上所述第一彩色滤光片具有第一端及相对的第二端;
    第二行彩色滤光片,其与所述第一行彩色滤光结构相邻,所述第二行彩色滤光片包括第二彩色滤光片,在列方向上所述第二彩色滤光片具有第三端及相对的第四端,所述第二彩色滤光片与所述第一彩色滤光片相互倾斜,其中经过所述第一彩色滤光片第一端及第二端的第一直线与经过所述第二彩色滤光片第三端及第四端的第二直线之间所形成的夹角为钝角;
    液晶层,设置在所述阵列基板和所述彩膜基板之间。
  7. 根据权利要求5所述的显示面板,其中,所述像素结构包括第一扫描线、与所述第一扫描线相邻的第二扫描线、第一数据线、与所述第一数据线相邻的第二数据线以及像素电极,所述第一扫描线及所述第二扫描线与所述第一数据线及所述第二数据线交叉设置共同围成一个像素单元区域,所述像素电极位于所述像素单元区域内且电连接所述第一扫描线和所述第一数据线,所述像素电极上开设有从所述第一扫描线向所述第二扫描线延伸的至少一条狭隙,所述狭隙邻近所述第二扫描线的一端相对于所述狭隙邻近所述第一扫描线的一端更靠近或更远离所述第一数据线。
  8. 根据权利要求7所述的显示面板,其中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合。
  9. 根据权利要求7所述的显示面板,其中,所述像素电极为ITO电极。
  10. 根据权利要求7所述的显示面板,其中,所述狭隙的长度方向相对于所述第一扫描线的长度方向的倾斜夹角的取值范围为75°~85°。
  11. 根据权利要求10所述的像素结构,其中,所述像素结构还包括第一薄膜晶体管和第二薄膜晶体管,所述第一薄膜晶体管的源极连接所述第一数据线,所述第一薄膜晶体管的栅极连接所述第一扫描线,所述第一薄膜晶体管的漏极连接所述第二薄膜晶体管的源极,所述第二薄膜晶体管的栅极连接所述第一扫描线,所述第二薄膜晶体管的漏极连接所述像素电极。
  12. 根据权利要求10所述的显示面板,其中,所述第一薄膜晶体管为 NMOS晶体管或者PMOS晶体管,所述第二薄膜晶体管为NMOS晶体管或者PMOS晶体管。
  13. 根据权利要求10所述的显示面板,其中,经过第一彩色滤光片的第一端及第二端的第一直线,与经过所述第二彩色滤光片的第三端及第四端的第二直线之间所形成的夹角为钝角。
  14. 根据权利要求7所述的像素结构,其中,所述像素结构还包括第一薄膜晶体管和第二薄膜晶体管,所述第一薄膜晶体管的源极连接所述第一数据线,所述第一薄膜晶体管的栅极连接所述第一扫描线,所述第一薄膜晶体管的漏极连接所述第二薄膜晶体管的源极,所述第二薄膜晶体管的栅极连接所述第一扫描线,所述第二薄膜晶体管的漏极连接所述像素电极。
  15. 根据权利要求14所述的显示面板,其中,所述第一彩色滤光片的长度方向和与所述彩色滤光片相对应的像素结构的像素电极的所述狭隙的长度方向平行。
  16. 根据权利要求14所述的显示面板,其中,所述第一薄膜晶体管为NMOS晶体管或者PMOS晶体管,所述第二薄膜晶体管为NMOS晶体管或者PMOS晶体管。
  17. 根据权利要求7所述的显示面板,其中,所述第一彩色滤光片的长度方向和与所述彩色滤光片相对应的像素结构的像素电极的所述狭隙的长度方向平行。
  18. 根据权利要求17所述的显示面板,其中,所述像素电极为ITO电极。
  19. 根据权利要求6所述的显示面板,其中,所述第一彩色滤光片在行方向上的第一投影与所述第二彩色滤光片在行方向上的第二投影部分重合。
  20. 根据权利要求6所述的显示面板,其中,所述第一彩色滤光片为红色滤光片、绿色滤光片或蓝色滤光片。
PCT/CN2018/106453 2017-09-22 2018-09-19 彩膜基板及显示面板 WO2019057068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710868152.7A CN107422524B (zh) 2017-09-22 2017-09-22 彩膜基板及显示面板
CN201710868152.7 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019057068A1 true WO2019057068A1 (zh) 2019-03-28

Family

ID=60435740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106453 WO2019057068A1 (zh) 2017-09-22 2018-09-19 彩膜基板及显示面板

Country Status (2)

Country Link
CN (1) CN107422524B (zh)
WO (1) WO2019057068A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107422523A (zh) * 2017-09-22 2017-12-01 惠科股份有限公司 彩膜基板及显示面板
CN107422524B (zh) * 2017-09-22 2020-09-04 惠科股份有限公司 彩膜基板及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061721A (ko) * 2006-12-28 2008-07-03 엘지디스플레이 주식회사 시야각 제어가 가능한 컬러 필터 기판 및 이를 이용한 액정표시 장치
US20120257269A1 (en) * 2011-04-07 2012-10-11 E Ink Corporation Tetrachromatic color filter array for reflective display
CN103676326A (zh) * 2013-12-10 2014-03-26 合肥京东方光电科技有限公司 一种彩膜基板、显示面板及显示装置
CN107422524A (zh) * 2017-09-22 2017-12-01 惠科股份有限公司 彩膜基板及显示面板
CN107422523A (zh) * 2017-09-22 2017-12-01 惠科股份有限公司 彩膜基板及显示面板
CN107589585A (zh) * 2017-09-22 2018-01-16 惠科股份有限公司 液晶显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206273A (zh) * 2006-12-22 2008-06-25 群康科技(深圳)有限公司 彩色滤光片及采用该彩色滤光片的液晶显示面板
JP5826084B2 (ja) * 2012-03-21 2015-12-02 株式会社ジャパンディスプレイ 表示装置、製造方法、電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061721A (ko) * 2006-12-28 2008-07-03 엘지디스플레이 주식회사 시야각 제어가 가능한 컬러 필터 기판 및 이를 이용한 액정표시 장치
US20120257269A1 (en) * 2011-04-07 2012-10-11 E Ink Corporation Tetrachromatic color filter array for reflective display
CN103676326A (zh) * 2013-12-10 2014-03-26 合肥京东方光电科技有限公司 一种彩膜基板、显示面板及显示装置
CN107422524A (zh) * 2017-09-22 2017-12-01 惠科股份有限公司 彩膜基板及显示面板
CN107422523A (zh) * 2017-09-22 2017-12-01 惠科股份有限公司 彩膜基板及显示面板
CN107589585A (zh) * 2017-09-22 2018-01-16 惠科股份有限公司 液晶显示面板

Also Published As

Publication number Publication date
CN107422524A (zh) 2017-12-01
CN107422524B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2019057076A1 (zh) 彩膜基板及显示面板
WO2019057071A1 (zh) 像素结构及主动开关阵列基板
US9239503B2 (en) Array substrate and display device including pixel units with multiple display regions
US9151994B2 (en) Display panel
US9442333B2 (en) Pixel electrode, array substrate and display device
WO2016107098A1 (zh) 触控基板以及触控装置
WO2019057069A1 (zh) 显示面板及液晶显示器
US9195100B2 (en) Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped
US8111364B2 (en) In-plane switching mode liquid crystal display capable of improving an aperture ratio and fabrication method thereof
US20060028604A1 (en) Liquid crystal display device
WO2019057065A1 (zh) 像素结构和阵列基板
TW202014776A (zh) 顯示裝置
WO2019057063A1 (zh) 阵列基板和显示面板
US20230213830A1 (en) Display Substrate and Display Device
CN107422562A (zh) 主动开关阵列基板
WO2013007187A1 (zh) 阵列基板、液晶面板及显示设备
WO2019057064A1 (zh) 阵列基板和显示面板
WO2019057068A1 (zh) 彩膜基板及显示面板
US20170205672A1 (en) Liquid crystal display panel and display device
US20190258123A1 (en) Display panel, display apparatus and driving method thereof
US9354474B2 (en) Array substrate and liquid crystal display device
CN110879499B (zh) 显示装置
US20180307108A1 (en) Liquid crystal display panel, liquid crystal display apparatus and operating method thereof
WO2017124790A1 (zh) 像素结构、显示面板及显示装置
US20130278862A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859608

Country of ref document: EP

Kind code of ref document: A1