WO2019056940A1 - 一种导电粉末涂料以及导电涂层 - Google Patents

一种导电粉末涂料以及导电涂层 Download PDF

Info

Publication number
WO2019056940A1
WO2019056940A1 PCT/CN2018/103720 CN2018103720W WO2019056940A1 WO 2019056940 A1 WO2019056940 A1 WO 2019056940A1 CN 2018103720 W CN2018103720 W CN 2018103720W WO 2019056940 A1 WO2019056940 A1 WO 2019056940A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder coating
conductive
powder
graphene
parts
Prior art date
Application number
PCT/CN2018/103720
Other languages
English (en)
French (fr)
Inventor
陈文浩
徐坤
危遥义
Original Assignee
老虎表面技术新材料(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 老虎表面技术新材料(苏州)有限公司 filed Critical 老虎表面技术新材料(苏州)有限公司
Publication of WO2019056940A1 publication Critical patent/WO2019056940A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Definitions

  • the invention belongs to the field of powder coatings, in particular to a conductive powder coating, and to a conductive coating using the conductive powder coating.
  • Powder coatings are known to be a new type of solvent-free 100% solid powder coating. It is solvent-free, non-polluting, recyclable, environmentally friendly, saves energy and resources, reduces labor intensity and high mechanical strength of coating film.
  • the conductive powder coating has the advantages of low price, environmental protection, simple construction process, and broad application prospects in the fields of anti-corrosion, electromagnetic shielding and anti-static.
  • Cipheral Patent No. CN103497635A discloses an electrically conductive powder coating which is composed of the following raw materials by weight: E-42 epoxy resin 70-80, carbon black 10-15, dicyandiamide 10- 20, phenolic resin 6-10, nano-silica 10-15, conductive barium sulfate 10-15, conductive polyaniline 4-6, polysorbate 802.0-3.5, triallyl isocyanurate 1-2, Tetramethoxymethyl glycoluril 2-3, composite filler 10-20; as disclosed in Chinese Patent No.
  • a high-conductivity material for conductive powder coatings is disclosed, the raw materials and the parts thereof are respectively : 10-50 parts of conductive material, 0.3-5 parts of cosolvent, 0.5-5 parts of coupling agent, 2-10 parts of wetting agent.
  • These technologies use various types of conductive materials to achieve the conductive effect of the powder coating.
  • the conductive material is added in a high amount, the conductive performance is low, the preparation process is complicated, the application cost is high, and in addition, when the conductive material used is gray black or transparent Poor lightness, its range of powder coatings for color applications is limited, and its universality is poor.
  • Graphene is a new type of material discovered in the 21st century. It has good permeability, high strength and high electrical conductivity. It can promote the coating's resistance to aging, scratching and electrical conductivity, so it is more and more widely used.
  • some published technologies have been shown to apply graphene to powder coatings to improve the properties of the coating film. These open technologies are:
  • the Chinese invention patent with the publication number CN104194585A discloses a graphene-modified resin powder coating and a production process thereof, and the resin powder coating comprises a resin, a filler, an auxiliary agent, a pigment and graphene; the mass percentage is as follows Resin: 50%-80%; filler: 0%-40%; auxiliary: 5%-7%; pigment: 0.2%-3%; graphene: 0.005-30%.
  • the graphene-modified resin powder coating provided by the invention greatly improves the mechanical, electrical conductivity, thermal conductivity, flame retardancy, corrosion resistance and weather resistance of the resin powder coating by adding a proper amount of graphene on the basis of the conventional resin powder coating. Sex.
  • a Chinese invention patent with the publication number CN106318155A which discloses a high anticorrosive graphene powder coating and a preparation method thereof, the coating comprising the following components: unsaturated polyester resin, ⁇ -alkyl amide, ring Oxygen resin E-51, trimethylhexamethylenediamine, benzoin, polyether modified polysiloxane, benzotriazole ultraviolet absorber, composite filler and graphene.
  • the graphene powder coating of the invention has strong anti-corrosion performance, the coating has strong adhesion to the substrate, the coating hardness is high, the indentation hardness is more than 5H, the coating surface is dense, smooth, scratch resistant and friction resistant. The performance is better, the coating has good ultraviolet shielding function, the anti-aging function is more stable and durable, and the good electrical conductivity and thermal conductivity are suitable for further popularization and application.
  • a Chinese invention patent with the publication number CN106634468A which discloses a graphene transparent powder coating for spraying a MDF board with a friction gun.
  • the graphene transparent powder coating is made of the following components and component percentage raw materials: polyester resin 30-60%; epoxy resin 24-48%; leveling agent 0.8-1.2%; lightening agent 0.5-1.0% Wax powder 0.5-1.0%; benzoin 0.3-0.8%; frictional electrification agent 1.0-2.0%; graphene 0.02-0.1%.
  • the invention adopts a friction gun for powder coating by adding a frictional electrifier, and the method of spraying the powder coating by using a friction gun does not produce a Faraday effect, and does not generate free ions, and the charged powder ions do not mutually repel each other, and the formed film leveling property is formed.
  • the addition of graphene can improve the gloss, adhesion, water resistance, electrical conductivity and flexibility of transparent powder coatings.
  • the Chinese invention patent with the authorization bulletin number CN104109450B discloses a graphene anticorrosive powder coating whose mass parts of the components are: 25-70 parts of epoxy resin and 25-70 parts of polyester resin. 5-40 parts of titanium dioxide, 5-40 parts of barium sulfate, 3-10 parts of auxiliary agent, 0.5-10 parts of graphene, and the rest are other pigments.
  • the powder coating has excellent anti-corrosion performance, the powder has good penetrating power, and the surface scratch resistance reaches 2H or more.
  • the preparation process is simple, the coating process is convenient, and the comprehensive performance is excellent.
  • Chinese invention patent No. CN106811011A which discloses a powder coating having the function of absorbing and shielding electromagnetic wave radiation, which is made of the following mass percentage components: 56-65 parts of outdoor polyester resin, hydroxyalkyl group
  • the amide curing agent is 3-4 parts
  • the smoothing deaerator is 1-2 parts
  • the leveling agent is 1-2 parts
  • the graphene is 1-2 parts
  • the pigment filler is 25-38 parts.
  • the above components are put together in a high-speed mixing tank for pre-mixing, extruder extrusion, tableting, pulverization, sieving, and the powder coating of the present invention is obtained.
  • the powder coating provided by the invention has the functions of absorbing and shielding electromagnetic wave radiation, can significantly reduce the interference of electromagnetic wave radiation to communication signals and harm to the human body, and can be widely applied to the coating of equipment facilities which are prone to electromagnetic radiation radiation hazards.
  • the object of the present invention is to provide an electroconductive powder coating and a conductive coating, which realizes excellent electrical conductivity, high electrical conductivity, low preparation cost, simple preparation process, and is very advantageous for production scale application.
  • a conductive powder coating comprising graphene or graphene oxide and a powder coating base powder, wherein the graphene particles or graphene oxide particles are bonded and compounded in the powder coating base powder particles On the surface.
  • the conductive powder coating comprises 0.01-10 parts by mass of graphene or graphene oxide and 99.99-90 parts by mass of the powder coating base powder; the mass fraction range can effectively ensure the invention
  • Conductive powder coatings have excellent electrical conductivity while the cost of preparation is also within acceptable limits for scale production.
  • the graphene or graphene oxide has a particle size distribution D50 ranging from 1 to 20 micrometers; and the powder coating base powder has a particle size distribution D50 ranging from 25 to 50 micrometers; more preferably, the graphene Or the graphene oxide has a particle size distribution D50 ranging from 5 to 15 microns; the powder coating base powder has a particle size distribution D50 ranging from 25 to 45 microns; still more preferably, the graphene or graphene oxide particle size distribution The D50 ranges from 8 to 10 microns, the graphene or graphene oxide has a particle size distribution D99 ranging from less than 20 microns, and the powder coating base powder has a particle size distribution D50 ranging from 30 to 40 microns; such graphene or oxidation
  • the particle size distribution range of graphene and the particle size distribution of the powder coating base powder can improve the bonding effect of the bonding process, and effectively ensure that the graphene particles or the graphene oxide particles can be effectively and quickly bonded and
  • the conductive powder coating is prepared by a bonding process.
  • the bonding process comprises the following steps:
  • the bonding device is heated to a bonding temperature and maintained at the bonding temperature
  • the powder coating bottom powder is in a high elastic state.
  • the high elastic state in the entire patent means that the segment of the powder coating base powder generates motion but the entire molecular chain does not move, and at this time, a large deformation can be caused by a small force.
  • the powder coating bottom powder is in a high elastic state, when the mixing and stirring force is received, it is very advantageous for the graphene particles or the graphene oxide particles to be bonded and laminated on the surface of the powder coating base powder particles. The bonding process can be completed.
  • the bonding temperature is determined according to the softening point temperature of the powder coating base powder, and the softening point temperature of the powder coating base powder prepared by using different resins is It is different, therefore, those skilled in the art can determine the setting of the bonding temperature according to the type of resin used, which are conventional choices, and the present invention will not be described one by one.
  • the bonding temperature is usually higher than the softening point temperature of the powder coating base powder and less than the melting temperature. After the softening point temperature, the powder coating bottom powder is in a high elastic state, and when the bonding temperature is high, At the melting temperature, the powder coating will enter the molten state from a high elastic state, and the bonding process cannot be completed.
  • the bonding temperature is higher than the softening point temperature of the powder coating base powder. 1-10 ° C high. More preferably, the bonding temperature is 2-8 ° C higher than the softening point temperature of the powder coating base powder.
  • the softening point temperature throughout the patent refers to the temperature at which the powder coating base powder begins to soften, i.e., the temperature at which it transitions to a high elastic state. It has been verified that the bonding process has the best effect when the bonding temperature selection is higher than the softening point temperature of the powder coating base powder.
  • the step S31) is further included, and the bonding device is cooled and cooled to prevent the conductive powder coating from agglomerating, and the bonding efficiency is also improved, and the preparation time is saved.
  • a wax powder having a mass fraction of 0.1 to 3% by mass of the powder coating base powder is added to the bonding device to increase the lubrication during the bonding process. , dispersion and heat transfer to prevent agglomeration of powder coatings.
  • the bonding device realizes the temperature rise by means of high-speed rotation, and the range of the rotation speed at the time of temperature rise can be selected from 500 rpm to 2000 rpm, and the specific rotation speed can be actually selected by a person skilled in the art according to the condition of the bonding equipment. .
  • the bonding device realizes uniform mixing of the graphene or graphene oxide with the powder coating base powder by means of high-speed rotation, and the rotation speed range during mixing can be selected at 500 rpm- 800 rpm; preferably, in step S30), the mixing time ranges from 1 to 20 minutes; further preferably, the mixing time ranges from 2 to 10 minutes; these parameter ranges are set to facilitate graphene particles or graphene oxide
  • the bonding of the particles on the surface of the powder coating base powder particles achieves the most excellent bonding effect.
  • a flow aid is added to the bonding device in an amount of 0.01-2% by mass of the powder coating base powder; more preferably, the flow is The auxiliary agent is added to the bonding device during the process of step S31); the preferred embodiment can increase the chargeability of the conductive powder coating provided by the present invention, which is advantageous for the subsequent electrostatic spray application of the present invention.
  • the powder coating base powder is a thermosetting powder coating.
  • thermosetting powder coating is prepared by a melt extrusion process and comprises the following mass parts of raw materials:
  • Thermosetting resin 40-90 parts are Thermosetting resin 40-90 parts;
  • the thermosetting resin is a mixture of any one or more of a polyester resin or an epoxy resin or a polyurethane resin or an acrylic resin or a fluorocarbon resin; more preferably, the thermosetting resin is an epoxy resin.
  • the insulation performance is good, which further contributes to the improvement of the electrical conductivity of the present invention.
  • a person skilled in the art can select a specific type and a mass of the curing agent depending on the type of the resin, which are conventional choices by those skilled in the art, and the present invention will not be specifically described.
  • the auxiliary agent is a mixture of any one or more of a leveling agent, a benzoin, a wetting agent and an electric increasing agent, which is advantageous for adjusting the leveling effect, the surface effect and the conductive property of the present invention; more preferably
  • the auxiliary agent is a mixture of a leveling agent, a benzoin, a wetting agent, and an electric increasing agent.
  • the pigment filler may be selected from a prior art pigment filler such as titanium dioxide, barium sulfate, carbon black, or a mixture of several.
  • the powder coating base powder is a thermoplastic powder coating.
  • the thermoplastic powder coating is prepared by a melt extrusion process and comprises 40 to 100 parts by mass of a thermoplastic resin; further preferably, the thermoplastic powder coating may also be added to a suitable mass part of the stabilizer, Lubricants, plasticizers or other auxiliaries are conventional choices for those skilled in the art and will not be specifically described herein.
  • thermoplastic resin is a mixture of any one or a combination of polyethylene, polypropylene, thermoplastic polyester, polyvinyl chloride, polyvinyl chloride, polyamide, and polytetrafluoroethylene.
  • a conductive coating is obtained by coating and curing a conductive powder coating on a substrate, wherein the conductive powder coating uses the conductive powder coating as described above.
  • the substrate may be a metal plate or a wood plate or other type of plate.
  • a conductive coating is a thermosetting powder coating obtained by spray-molding a conductive powder coating on a substrate. It should be noted that, for the spray curing process of the conductive powder coating prepared by using the thermosetting powder coating base powder, the preparation process of any of the existing thermosetting powder coating layers can be used, and the present invention will not be further described.
  • a conductive coating layer is a thermoplastic powder coating obtained by melt-cooling and solidifying a conductive powder coating. It should be noted that, for the melt-cooling solidification molding process of the conductive powder coating made of the thermoplastic powder coating base powder, any preparation process of the thermoplastic powder coating coating can be used, and the present invention will not be further described.
  • the graphene oxide according to the present invention refers to an oxide of graphene. According to the test of the present applicant, in the present invention, graphene oxide has substantially the same characteristics as graphene, and therefore, graphene oxide is also the same.
  • the core idea of the present invention is within the scope of the present invention.
  • the graphene or graphene oxide having other functional groups obtained by functionalizing the graphene and the graphene oxide according to the present invention also has the same characteristics as the graphene group of the present invention. These functionalized materials are also within the scope of the present invention.
  • D50 in the present invention refers to a particle diameter value corresponding to a cumulative particle size distribution percentage of 50%
  • D99 in the present invention refers to a particle diameter value corresponding to a cumulative particle size distribution percentage of 99%.
  • the rpm appearing throughout the invention refers to the number of revolutions per revolution.
  • the melt extrusion process throughout the present invention generally includes process steps such as premixing, melt extrusion, and milling of the raw materials, so that the raw materials can be well dispersed uniformly.
  • the present invention provides a conductive powder coating comprising graphene or graphene oxide and a powder coating base powder, and bonding the graphene particles or graphite oxide particles to the surface of the powder coating base powder particles.
  • the conductive powder coating of the structure distribution can be realized by using a bonding process;
  • the conductive powder coating of the above structure obtained by the present invention is coated and cured on a substrate to obtain a conductive coating, and the graphene flake particles located on the surface of the powder coating base powder particles can rapidly migrate to the surface of the coating layer, and the coating is cured. After that, the graphene flake particles are concentrated and stacked on the surface of the coating to form a dense conductive graphene layer, so the conductive coating exhibits excellent electrical conductivity, and the present invention also improves the conductive coating due to the formation of the conductive graphene layer.
  • the hardness and scratch resistance of the layer since graphene has many functional advantages, the conductive coating obtained after the implementation of the present invention can bring other excellent properties, and those skilled in the art can apply the present invention to different needs according to actual needs. Technical field;
  • the conductive powder coating and the conductive coating provided by the invention achieve excellent electrical conductivity, high hardness, good scratch resistance, high electrical conductivity, low preparation cost, simple preparation process, and completely realize the existing preparation process.
  • the realization of the preparation of the conductive coating and the conductive film does not require the development of a new process, and is very advantageous for the production scale to promote the application.
  • the graphene itself is excellent in light transmittance, it is added as a conductive material to the powder coating, and powder coating of any color type can be applied, and the universality is good.
  • FIG. 1 is a block diagram of a bonding process flow in accordance with an embodiment of the present invention.
  • the embodiment of the invention discloses a conductive powder coating comprising graphene or graphene oxide and a powder coating base powder, wherein the graphene particles or the graphene oxide particles are bonded and composited on the surface of the powder coating base powder particles.
  • the embodiment of the invention also discloses a conductive coating obtained by coating and curing a conductive powder coating on a substrate, wherein the conductive powder coating adopts the conductive powder coating as described above.
  • the conductive powder coating and the conductive coating provided by the embodiments of the invention have excellent electrical conductivity, high hardness, good scratch resistance, high electrical conductivity, low preparation cost, simple preparation process, and completely realize the existing preparation process.
  • the preparation of the conductive coating and the conductive film can be realized, and it is not necessary to develop a new process, which is very advantageous for the production scale to promote the application.
  • a conductive powder coating comprising 0.15 parts by mass of graphene (provided by Changzhou Sixth Element Materials Technology Co., Ltd., mass fraction of 99%) and 98.24 parts by mass of powder coating base powder;
  • the powder coating base powder is a thermosetting powder coating prepared by a melt extrusion process, and the thermosetting powder coating comprises the following mass parts of raw materials:
  • polyester resin provided by ALLNEX, the mass fraction is 99%
  • TGIC isocyanuric acid triglycidyl ester (provided by Changzhou Niutang Chemical Co., Ltd., with a mass fraction of 99%), used for curing polyester resin;
  • the pigment filler includes 28 parts of titanium dioxide (provided by Sichuan Longyan Company, the mass fraction is 99%), and 5.55 parts of barium sulfate (provided by Foshan Anyi Nano Materials Co., Ltd., the mass fraction is 99%);
  • Additives include 1 part of leveling agent (provided by ESTRON, 60% by mass), 0.3 parts of benzoin (provided by the company, 99% by mass), and 0.5 part of wetting agent (provided by Ningbo Nanhai Chemical Co., Ltd., quality score) 99%), 0.15 parts of electricity booster (provided by Shanghai Suo is Chemical Co., Ltd., the quality score is 99%);
  • the graphene has a particle size distribution D50 of 10 ⁇ m
  • the graphene or graphene oxide has a particle size distribution D99 of less than 20 ⁇ m
  • the powder coating base powder has a particle size distribution D50 of 35 ⁇ m
  • the melt extrusion process of the thermosetting powder coating is prepared by weighing the raw materials in the above mass parts, premixing the above-mentioned mass parts of the raw materials, preferably, premixing
  • the time can be selected between 2-10 minutes, and then the premixed mixture is extruded and pressed into a sheet by a screw extruder.
  • the length to diameter ratio of the extruder can be selected from 15:1 to 50:1.
  • the extruder is also set to a number of different heating temperature zones (generally 3), the screw speed is selected at 200-800 rpm Finally, the sheet is pulverized into small pieces and then ground into a powder coating of a certain particle size by a mill. Preferably, the rotation speed of the mill is selected at 50-150 rpm, and then classified and sieved to obtain a powder coating base having the above particle size distribution. powder.
  • the temperature of the softening point of the powder coating base powder is 60.99 ° C by differential thermal scanner (DSC);
  • the bonding process is used to bond the graphene particles to the surface of the powder coating base powder particles; in the embodiment of the invention, the bonding process comprises the following steps:
  • the powder coating base powder having the mass fraction of 98.24 parts prepared above and the wax powder of 0.2 parts by mass (provided by Clariant, the mass fraction is 99%) are placed in the bonding equipment;
  • the bonding device in an inert gas protection atmosphere, the bonding device is heated to a bonding temperature of 63 ° C by a high-speed rotation and maintained at the bonding temperature of 63 ° C; specifically, in the embodiment of the invention, the rotation speed is 1200 rpm,
  • the inert gas is nitrogen;
  • the bonding equipment opens the cooling water switch and reduces the rotation speed of the bonding equipment for cooling and cooling, which is used to prevent the conductive powder coating from agglomerating. After the temperature is lowered to 40 ° C, the mass fraction is added to the bonding equipment to be 0.06 parts.
  • Flow aid (provided by Evonik Degussa, with a quality score of 99%);
  • the embodiment of the invention further provides a conductive coating obtained by coating and curing a conductive powder coating on a substrate, wherein the conductive powder coating adopts the conductive powder coating as described above.
  • the substrate may be selected from a metal substrate such as aluminum, iron or steel, or may be selected from a wood substrate or a carbon fiber substrate, and may be selected according to practical applications.
  • the coating method may employ electrostatic spraying or any other coating method of the prior art.
  • the conductive powder coating comprises 0.3 parts by mass of graphene and 98.09 parts by mass of the powder coating base powder.
  • the conductive powder coating material comprises 0.5 parts by mass of graphene and 97.89 parts by mass of the powder coating base powder.
  • the conductive powder coating comprises 1 part by mass of graphene and 97.39 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 3 parts by mass of graphene and 95.39 parts by mass of the powder coating base powder.
  • the conductive powder coating contains 5 parts by mass of graphene and 93.39 parts by mass of the powder coating base powder.
  • the conductive powder coating comprises 8 parts by mass of graphene and 90.39 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 10 parts by mass of graphene and 88.39 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 13 parts by mass of graphene and 85.39 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 15 parts by mass of graphene and 82.39 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 18 parts by mass of graphene and 79.39 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 0.1 parts by mass of graphene and 98.29 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 0.05 parts by mass of graphene and 98.34 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 0.01 parts by mass of graphene and 98.38 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 0.005 parts by mass of graphene and 98.385 parts by mass of the powder coating base powder.
  • the conductive powder coating material contains 0.001 parts by mass of graphene and 98.389 parts by mass of the powder coating base powder.
  • Comparative Example 1 the powder coating base powder of Example 1 was directly used as the conductive powder coating.
  • Comparative Example 2 The remaining technical solutions of Comparative Example 2 are the same as those of Embodiment 1, except that in the comparative example, graphene is added in a premixing stage in the preparation of the powder coating base powder, and is subjected to melt extrusion, tablet cooling, and then crushing. And pulverizing, and then grading and sieving to obtain a conductive powder coating.
  • Comparative Example 3 The rest of the technical solution of Comparative Example 3 is the same as that of Example 2, except that in the comparative example, graphene is added in a premixing stage in the preparation of the powder coating base powder, and is subjected to melt extrusion, tablet cooling, and then crushing. And pulverizing, and then grading and sieving to obtain a conductive powder coating.
  • the remaining technical solutions of the comparative example 4 are the same as those of the third embodiment, except that in the comparative example, the graphene is added in the premixing stage when preparing the powder coating base powder, and is jointly melt-extruded, tablet-cooled, and then crushed. And pulverizing, and then grading and sieving to obtain a conductive powder coating.
  • Comparative Example 5 The rest of the technical solution of Comparative Example 5 is the same as that of Example 4, except that in the comparative example, the graphene is added in the premixing stage when preparing the powder coating base powder, and is jointly melt-extruded, tablet-cooled, and then crushed. And pulverizing, and then grading and sieving to obtain a conductive powder coating.
  • the present invention and the conductive powder coating prepared by the examples and the comparative examples are uniformly processed according to the following steps to obtain a QUV aluminum plate sample with a conductive coating, and the test results are compared. 1:
  • the conductive powder coating powder is sieved, and 100 g of the sample powder is placed in a spray gun. Under the action of the wind, the sample powder is electrostatically sprayed on the QUV aluminum plate, placed in an oven, and baked at 200 ° C for 10 minutes. After curing, the sample was taken out and cooled to room temperature.
  • the film thickness described in the entire patent is the result obtained by the ISO2360-2003 standard; the gloss 60° is the result obtained by the ISO2813-2014 standard; the impact strength is the ISO6272-1-2 standard.
  • the result obtained by the test is the cup protrusion is a result obtained by the ISO 1520-2006 standard; the cross-hatch adhesion is a result obtained by the ISO 2409-2013 standard; the pencil hardness is ASTM D3363- The results of the 2005 (R2011) standard test; the resistance is obtained by a resistance test.
  • thermosetting resins such as polyester resin, epoxy resin or polyurethane resin or a mixture of any one or more of an acrylic resin or a fluorocarbon resin
  • a suitable curing agent may be employed.
  • auxiliaries and pigment fillers as needed, as well as achieving a significantly improved electrical conductivity as in Examples 1-17 relative to the prior art, since the insulating properties of the epoxy resin are relatively better, when the epoxy resin is used as the thermosetting resin, the improvement of the conductive effect is more obvious.
  • the epoxy resin is used as the thermosetting resin, the improvement of the conductive effect is more obvious.
  • graphene also has other excellent properties, those skilled in the art can apply the powder coatings having the special structure of the present invention to different technical fields according to actual needs.
  • the powder coating base powder is a thermoplastic powder coating
  • the thermoplastic powder coating comprises the following mass parts of raw materials: 82 parts of polyethylene, 3 parts. Stabilizer, 5 parts lubricant, 10 parts plasticizer.
  • the step of preparing the melt extrusion process of the thermoplastic powder coating is the same as the melting extrusion process of the thermosetting powder coating of Example 1, except that the heating temperature of the extruder is selected at 110-130. Between °C.
  • the temperature of the softening point of the powder coating base powder was 95.3 ° C by differential thermal scanner (DSC);
  • the bonding temperature is set to 100 °C.
  • the embodiment of the invention further provides a conductive coating obtained by coating and curing a conductive powder coating on a substrate, wherein the conductive powder coating adopts the conductive powder coating as described above.
  • the substrate may be selected from a metal substrate such as aluminum, iron or steel, or may be selected from a wood substrate or a carbon fiber substrate, and may be selected according to practical applications.
  • the coating method may employ electrostatic spraying or fluidized bed spraying or any other coating method of the prior art.
  • the powder coating base powder is a thermoplastic powder coating
  • the thermoplastic powder coating comprises the following mass parts of raw materials: 82 parts of polypropylene, 3 parts. Stabilizer, 5 parts lubricant, 10 parts plasticizer.
  • the melt extrusion process of the thermoplastic powder coating process is the same as the melt extrusion process of the thermosetting powder coating of the embodiment 1, except that the heating temperature of the extruder is selected at 150-180. Between °C.
  • the temperature of the softening point of the powder coating base powder is 135.5 ° C by differential thermal scanner (DSC);
  • the bonding temperature was set to 143 °C.
  • Comparative Example 6 the powder coating base powder of Example 18 was directly used as the conductive powder coating.
  • Example 7 the powder coating base powder of Example 19 was directly used as the conductive powder coating.
  • the conductive powder coatings prepared in Examples 18 and 19 and Comparative Examples 6-7 were uniformly processed according to the following steps to obtain a QUV aluminum plate sample having a conductive coating, and the test was compared.
  • the specific results are shown in Table 2 below:
  • the conductive powder coating powder is sieved, and 100 g of the sample powder is placed in a spray gun. Under the action of the wind, the sample powder is electrostatically sprayed on the QUV aluminum plate, then placed in an oven to be heated and melted, and then the sample plate is taken out to be cooled and solidified.
  • the present invention can also significantly improve the electrical conductivity of thermoplastic powder coatings.
  • any one or more of other types of thermoplastic resins such as polyethylene, polypropylene, thermoplastic polyester, polyvinyl chloride, polyvinyl chloride, polyamide, and polytetrafluoroethylene
  • suitable auxiliaries can also achieve a significant improvement in electrical conductivity compared to the prior art as in Examples 18 and 19. It is believed that one skilled in the art can combine common general knowledge with conventional techniques in accordance with embodiments of the present invention. In order to obtain other embodiments, the present invention will not be described in detail.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)

Abstract

一种导电粉末涂料,所述的导电粉末涂料包含石墨烯或氧化石墨烯和粉末涂料底粉,其中,所述的石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒表面上;还涉及一种导电涂层,采用上述导电粉末涂料在基材上涂覆固化成型得到;该方案实现了优异的导电性能,导电效能高,而且制备成本低,制备工艺简单,非常利于生产规模推广应用。

Description

一种导电粉末涂料以及导电涂层
本申请要求于2017年09月20日提交中国国家知识产权局专利局,申请号为201710854699.1、发明名称为“一种导电粉末涂料以及导电涂层”的中国专利申请优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于粉末涂料领域,具体涉及了一种导电粉末涂料,本发明还涉及了应用该导电粉末涂料的导电涂层。
背景技术
众所周知,粉末涂料指的是一种新型的不含溶剂100%固体粉末状涂料。具有无溶剂、无污染、可回收、环保、节省能源和资源、减轻劳动强度和涂膜机械强度高等特点。而导电粉末涂料,具有价格低廉,环保,施工工艺简单,在防腐、电磁屏蔽、抗静电等领域有着广阔的应用前景。
现有的导电粉末涂料通常均是采用在粉末涂料中添加各种类型的导电材料使粉末涂料实现导电的功能性。如公开号为CN103497635A的中国发明专利公开了一种导电粉末涂料,它是由下述重量份的原料组成的:E-42环氧树脂70-80、炭黑10-15、双氰胺10-20、酚醛树脂6-10、纳米二氧化硅10-15、导电硫酸钡10-15、导电聚苯胺4-6、聚山梨酯802.0-3.5、三烯丙基异氰脲酸酯1-2、四甲氧基甲基甘脲2-3、复合填料10-20;又如授权公告号为CN104356737B的中国发明专利公开了一种导电粉末涂料专用高导电材料,其原料及其重量份数分别为:导电材料10-50份,助溶剂0.3-5份,偶联剂0.5-5份,润湿剂2-10份。这些技术采用各类导电材料实现粉末涂料的导电效果,导电材料的添加量高,所实现的导电效能低,而且制备工艺复杂,应用成本高,此外,当其采用的导电材料为灰黑色或透光性差,其适用其颜色应用的 粉末涂料的范围有限,普适性差。
石墨烯是二十一世纪被发现的新型材料,它透性好、强度高、导电性高,可促使涂层耐老化、耐刮擦、具备导电等性能,因此得到越来越广泛的应用。目前,已有一些公开技术表明将石墨烯应用到粉末涂料中,用来改善涂膜的相关性能。这些公开技术有:
(1)、公开号为CN104194585A的中国发明专利,其公开了一种石墨烯改性的树脂粉末涂料及其生产工艺,树脂粉末涂料包括树脂、填料、助剂、颜料以及石墨烯;质量百分比如下:树脂:50%-80%;填料:0%-40%;助剂:5%-7%;颜料:0.2%-3%;石墨烯:0.005-30%。该发明提供的石墨烯改性树脂粉末涂料,通过在传统树脂粉末涂料的基础上适量加入石墨烯,大大提高了树脂粉末涂料的机械性、导电性、导热性、阻燃性、防腐性以及耐候性。
(2)、公开号为CN106318155A的中国发明专利,其公开了一种高防腐型石墨烯粉末涂料及其制备方法,该涂料包括如下组分:不饱和聚酯树脂、β-烷基酰胺、环氧树脂E-51、三甲基六亚甲基二胺、安息香、聚醚改性聚硅氧烷、苯并三唑类紫外吸收剂、复合填料和石墨烯。本发明的石墨烯粉末涂料具有较强的防腐性能,涂层与基材附着力较强、涂层硬度较高,压痕硬度达5H以上,涂层表面致密、光洁,抗划痕和耐摩擦性能较好,涂层具有良好的屏蔽紫外线功能,抗老化功能更加稳定持久,良好的导电性和导热性,适宜进一步推广应用。
(3)、公开号为CN106634468A的中国发明专利,其公开了一种摩擦枪喷涂MDF板的石墨烯透明粉末涂料。所述的石墨烯透明粉末涂料由以下组分及组分百分比原料制成:聚酯树脂30-60%;环氧树脂24-48%;流平剂0.8-1.2%;增光剂0.5-1.0%;蜡粉0.5-1.0%;安息香0.3-0.8%;摩擦带电剂1.0-2.0%;石墨烯0.02-0.1%。本发明通过添加摩擦带电剂用摩擦枪进行粉末涂装,采用摩擦枪喷涂粉末涂料的方法不会产生法拉第效应,而且不产生游 离离子,带电粉末离子不会相互排斥,形成的涂膜流平性好,通过添加石墨烯可以提高透明粉末涂料的光泽度、附着力、耐水性、导电性以及柔韧性等。
(4)、授权公告号为CN104109450B的中国发明专利,其公开了一种石墨烯防腐粉末涂料,其各组分的质量份数组成为:环氧树脂25-70份,聚酯树脂25-70份,钛白粉5-40份,硫酸钡5-40份,助剂3-10份,石墨烯0.5-10份,其余为其他颜料。这种粉末涂料具有优异的防腐性能,粉末的上粉穿透力好,表面抗划伤达到2H以上。并且制备工艺简单,涂装工艺方便,综合性能优异。
(5)公开号为CN106811011A的中国发明专利,其公开了一种具有吸收及屏蔽电磁波辐射功能的粉末涂料,由以下质量百分比的组分制成:户外聚酯树脂56-65份,羟烷基酰胺固化剂3-4份,平滑除气剂1-2份,流平剂1-2份,石墨烯1-2份,颜填料25-38份。将上述各组分一起投入高速混料釜中进行预混合、挤出机挤出、压片、粉碎、过筛、制得本发明所述的粉末涂料。本发明提供的粉末涂料具有吸收及屏蔽电磁波辐射的功能,能显著降低电磁波辐射对通信信号干扰及对人体危害等,可广泛应用于容易产生电磁波辐射危害的设备设施的涂装。
这些公开技术均披露了将石墨烯添加到粉末涂料中,但这些技术均采用将石墨烯与粉末涂料的原料进行共混熔融挤出工艺(行业内通常称为“共挤法”)制备而成,其所需要添加的石墨烯用量高,应用成本高昂,不利于生产规模推广应用,尤其当应用于需要导电性强的领域时,石墨烯的添加成本无法被接受,因此,无法实现产业化。
因此,寻求一种导电效能高、制备成本低,适用规模产业化的导电粉末涂料是十分必要的。
发明内容
有鉴于此,本发明的目的在于提供一种导电粉末涂料以及导电涂层,实现了优异的导电性能,导电效能高,而且制备成本低,制备工艺简单,非常利于生产规模推广应用。
本发明采用的技术方案如下:
一种导电粉末涂料,所述的导电粉末涂料包含石墨烯或氧化石墨烯和粉末涂料底粉,其中,所述的石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒表面上。
优选地,所述的导电粉末涂料包含质量份数为0.01-10份的石墨烯或氧化石墨烯和质量份数为99.99-90份的粉末涂料底粉;该质量份数范围可以有效确保本发明导电粉末涂料具有优异的导电性能,同时制备成本也在规模生产时的可接受范围内。
优选地,所述的石墨烯或氧化石墨烯的粒度分布D50范围为1-20微米;所述的粉末涂料底粉的粒度分布D50范围为25-50微米;更优选地,所述的石墨烯或氧化石墨烯的粒度分布D50范围为5-15微米;所述的粉末涂料底粉的粒度分布D50范围为25-45微米;更进一步优选地,所述的石墨烯或氧化石墨烯的粒度分布D50范围为8-10微米,所述的石墨烯或氧化石墨烯的粒度分布D99范围小于20微米,所述的粉末涂料底粉的粒度分布D50范围为30-40微米;这样的石墨烯或氧化石墨烯的粒度分布范围以及粉末涂料底粉的粒度分布可以提高邦定工艺的邦定效果,有效确保石墨烯颗粒或氧化石墨烯颗粒能够得到有效快速地粘接复合在所述的粉末涂料底粉颗粒表面上,还可以进一步利于后续制成导电涂层或导电膜时石墨烯层在其表面的成型,因而大大提高导电效能。
优选地,所述的导电粉末涂料采用邦定工艺制备得到。
优选地,所述的邦定工艺包括如下步骤:
S10)、将所述的粉末涂料底粉置于邦定设备中;
S20)、所述的邦定设备升温至邦定温度并保持在该邦定温度;
S30)、向所述的邦定设备内添加石墨烯或氧化石墨烯,将所述的石墨烯或氧化石墨烯与所述的粉末涂料底粉在所述的邦定温度下混合均匀,使得所述的石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒表面上,得到导电粉末涂料;
S40)、从所述的邦定设备中取出所述的导电粉末涂料;
其中,在所述的邦定温度下,所述的粉末涂料底粉处于高弹态。本专利全文中的高弹态是指:粉末涂料底粉的链段产生运动但整个分子链不产生移动,在此时受较小的力就可发生很大的形变。在本发明中,当粉末涂料底粉处于高弹态时,当收到混合搅拌力时,非常有利于石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒表面上,可以完成邦定工艺过程。
需要特别说明的是,本发明中的邦定工艺中,邦定温度的选择是依据粉末涂料底粉的软化点温度来决定的,采用不同树脂制备而成的粉末涂料底粉的软化点温度都是不同的,因此,本领域的技术人员可以根据所采用的树脂类型来决定邦定温度的设置,这些都是常规选择,本发明不做一一开展说明。本发明通常在实施时,邦定温度会高于粉末涂料底粉的软化点温度且小于其熔融温度,高于软化点温度后,粉末涂料底粉会处于高弹态,而当邦定温度高于熔融温度时,粉末涂料会从高弹态进入熔融状态,无法完成邦定工艺过程。
为了实现石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒上的优异邦定效果,优选地,所述的邦定温度比所述的粉末涂料底粉的软化点温度高1-10℃。更优选地,所述的邦定温度比所述的粉末涂料底粉的软化点温度高2-8℃。本专利全文中的软化点温度是指粉末涂料底粉开始变软 时的温度,即向高弹态转变的温度。经验证,当邦定温度选择比粉末涂料底粉的软化点温度高于本参数范围时,邦定工艺的效果最佳。
优选地,在所述的步骤S30)之后还包括步骤S31)、邦定设备冷却降温,用于防止所述的导电粉末涂料结块,同时也可提高邦定效率,节省制备时间。
优选地,在所述的邦定工艺过程中,向邦定设备中添加占所述的粉末涂料底粉质量份数占比为0.1-3%的蜡粉,增加在邦定工艺过程中的润滑、分散和热传导,防止粉末涂料结块。
优选地,在步骤S20)中,邦定设备采用高速旋转的方式实现升温,升温时的旋转速度范围可选择在500rpm-2000rpm,具体旋转速度本领域技术人员可以根据邦定设备的情况进行实际选择。
优选地,在步骤S30)中,邦定设备采用高速旋转的方式实现所述的石墨烯或氧化石墨烯与所述的粉末涂料底粉的混合均匀,混合时的旋转速度范围可选择在500rpm-800rpm;优选地,在步骤S30)中,混合时间范围为1-20分钟;进一步优选地,混合时间范围为2-10分钟;这些参数范围的设定都是为了利于石墨烯颗粒或氧化石墨烯颗粒在粉末涂料底粉颗粒表面的粘接复合,实现最优异的邦定效果。
优选地,在所述的邦定工艺过程中,向邦定设备中添加占所述的粉末涂料底粉质量份数占比为0.01-2%的流动助剂;更优选地,所述的流动助剂在步骤S31)的过程中添加到邦定设备中;本优选方案可以增加本发明提供的导电粉末涂料的带电性,利于本发明的后续静电喷涂施工应用。
优选地,所述的粉末涂料底粉为热固性粉末涂料。
优选地,所述的热固性粉末涂料采用熔融挤出工艺制备而成,包含下述质量份数的原料:
热固性树脂  40-90份;
固化剂  2-25份,用于所述的热固性树脂的固化;
颜填料  0-50份;
助剂    0-10份。
优选地,所述的热固性树脂为聚酯树脂或环氧树脂或聚氨酯树脂或丙烯酸树脂或氟碳树脂中的任意一种或几种的混合;更优选地,所述的热固性树脂为环氧树脂,绝缘性能好,进一步利于本发明的导电效能的提高。本领域的技术人员可以根据树脂的类型来选择具体类型和质量份数的固化剂,这些都是本领域技术人员的常规选择,本发明不再具体展开说明。
优选地,所述的助剂为流平剂、安息香、润湿剂、增电剂的任意一种或几种的混合,利于调整本发明的流平效果、表面效果以及导电性能;更优选地,所述的助剂为流平剂、安息香、润湿剂、增电剂的的混合。
优选地,颜填料可以选用现有技术的颜填料,如钛白粉、硫酸钡、炭黑的任意一种和几种的混合。
优选地,所述的粉末涂料底粉为热塑性粉末涂料。
优选地,所述的热塑性粉末涂料采用熔融挤出工艺制备而成,包含质量份数为40-100份的热塑性树脂;进一步优选地,热塑性粉末涂料还可以添加入合适质量份数的稳定剂、润滑剂、增塑剂或其他助剂,这些都是本领域技术人员的常规选择,本发明不再具体展开说明。
优选地,所述的热塑性树脂为聚乙烯、聚丙烯、热塑性聚酯、聚氯乙烯、聚氯乙醚、聚酰胺、聚四氟乙烯中的任意一种或几种的混合。
优选地,一种导电涂层,采用导电粉末涂料在基材上涂覆固化成型得到,其中,所述的导电粉末涂料采用如上所述的导电粉末涂料。在本发明具体实施时,基材可以选用金属板材或木质板材或其他类型的板材。
进一步优选地,一种导电涂层,所述粉末涂料底粉为热固性粉末涂料,采用导电粉末涂料在基材上喷涂固化成型得到。需要说明的是,对于采用热固性粉末涂料底粉制成的导电粉末涂料的喷涂固化工艺可以采用现有任意一 种热固性粉末涂料涂层的制备工艺,本发明不再展开赘述。
进一步优选地,一种导电涂层,所述粉末涂料底粉为热塑性粉末涂料,采用导电粉末涂料熔融冷却固化成型得到。需要说明的是,对于采用热塑性粉末涂料底粉制成的导电粉末涂料的熔融冷却固化成型工艺可以采用现有任意一种热塑性粉末涂料涂层的制备工艺,本发明不再展开赘述。
需要说明的是,本发明涉及的氧化石墨烯是指石墨烯的氧化物,根据本申请人的测试,在本发明中,氧化石墨烯与石墨烯具有基本相同的特性,因此,氧化石墨烯同样为本发明的核心思路,属于本发明的保护范围之内。还需要说明的是,在本发明涉及的石墨烯以及氧化石墨烯的基础上进行了功能化后得到的带有其他官能团的石墨烯或氧化石墨烯,同样具有本发明石墨烯基本相同的特性,这些功能化得到的材料同样属于本发明的保护范围之内。
本发明全文中的D50是指累计粒度分布百分数达到50%时所对应的粒径值,本发明全文中的D99是指累计粒度分布百分数达到99%时所对应的粒径值。
本发明全文中出现的rpm是指每分钟内的旋转的转数。
本发明全文中的熔融挤出工艺通常包括原料预混、熔融挤出、磨粉等工序步骤,可以将原料实现良好的均匀分散。
本发明通过提供一种导电粉末涂料,包含石墨烯或氧化石墨烯和粉末涂料底粉,将所述的石墨烯颗粒或氧化石墨颗粒烯粘接复合在所述的粉末涂料底粉颗粒表面上,一般采用邦定工艺即可实现该结构分布的导电粉末涂料;
将本发明得到的以上结构分布的导电粉末涂料在基材上涂覆固化成型得到导电涂层,位于粉末涂料底粉颗粒表面上的石墨烯薄片颗粒可快速迁移至涂层表面,涂层固化成型后,石墨烯薄片颗粒在涂层表面富集、堆叠,形成致密的导电石墨烯层,因此导电涂层呈现出优异的导电性,由于导电石墨烯层的成型,本发明同时还会提高导电涂层的硬度和耐刮擦性能,由于石墨烯 具有很多功能优点,实施本发明后得到导电涂层还会有带来其他优异的性能,本领域的技术人员可以根据实际需要将本发明应用到不同的技术领域;
本发明提供的导电粉末涂料以及导电涂层实现了优异的导电性能,硬度高、耐刮擦性能好,导电效能高,而且制备成本低,制备工艺简单,完全实现了采用现有制备工艺即可实现导电涂层和导电膜的制备,不需要开发新工艺,非常利于生产规模推广实施应用。此外,当由于石墨烯本身透光性好,将其作为导电材料添加到粉末涂料中,任何颜色种类的粉末涂料都可适用,普适性好。
附图说明
附图1是本发明具体实施方式下的邦定工艺流程框图。
具体实施方式
本发明实施例公开了一种导电粉末涂料,导电粉末涂料包含石墨烯或氧化石墨烯和粉末涂料底粉,其中,石墨烯颗粒或氧化石墨烯颗粒粘接复合在粉末涂料底粉颗粒表面上。
本发明实施例还公开了一种导电涂层,采用导电粉末涂料在基材上涂覆固化成型得到,其中,导电粉末涂料采用如上所述的导电粉末涂料。
本发明实施例提供的导电粉末涂料以及导电涂层实现了优异的导电性能,硬度高、耐刮擦性能好,导电效能高,而且制备成本低,制备工艺简单,完全实现了采用现有制备工艺即可实现导电涂层和导电膜的制备,不需要开发新工艺,非常利于生产规模推广实施应用。
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例1:
一种导电粉末涂料,导电粉末涂料包含质量份数为0.15份的石墨烯(常州第六元素材料科技股份有限公司提供,质量分数为99%)和质量份数为98.24份的粉末涂料底粉;
在本发明实施例中,粉末涂料底粉为热固性粉末涂料,采用熔融挤出工艺制备而成,热固性粉末涂料包含下述质量份数的原料:
聚酯树脂60份(ALLNEX公司提供,质量分数为99%);
异氰尿酸三缩水甘油酯TGIC4.5份(常州市牛塘化工厂有限公司提供,质量分数为99%),用于聚酯树脂的固化;
颜填料包括钛白粉28份(四川龙蟒公司提供,质量分数为99%),硫酸钡5.55份(佛山安亿纳米材料有限公司提供,质量分数为99%);
助剂包括流平剂1份(ESTRON公司提供,质量分数为60%)、安息香0.3份(致胜公司提供,质量分数为99%)、润湿剂0.5份(宁波南海化学有限公司提供,质量分数为99%)、增电剂0.15份(上海索是化工有限公司提供,质量分数为99%);
在本发明实施例中,石墨烯的粒度分布D50为10微米,石墨烯或氧化石墨烯的粒度分布D99小于20微米;粉末涂料底粉的粒度分布D50为35微米;
具体地,在本发明实施例中,热固性粉末涂料的熔融挤出工艺制备方法为:将按上述质量份数的原料进行称量,将上述质量份数的原料进行预混,优选地,预混时间可以选择在2-10分钟之间,然后将预混后的混合物用螺杆挤出机挤出并压成薄片,优选地,挤出机的长径比可以选择在15∶1-50∶1之间,挤出机的加热温度选择在80-120℃之间,为了利于挤出效果,挤出机还设置成数个不同加热温度区(一般为3个),螺杆转速选择在200-800rpm;最后将薄片粉碎成小片料进入磨粉机磨成一定粒径的粉末涂料,优选地,磨 粉机的转速选择在50-150rpm,然后再分级、过筛制备得到上述粒度分布的粉末涂料底粉。
经差示热量扫描仪(DSC)检测,粉末涂料底粉的软化点温度为60.99℃;
其中,采用邦定工艺将石墨烯颗粒粘接复合在粉末涂料底粉颗粒表面上;在本发明实施例中,邦定工艺包括如下步骤:
S10)、将上述制备得到的质量份数为98.24份的粉末涂料底粉以及质量份数为0.2份的蜡粉(科莱恩公司提供,质量分数为99%)置于邦定设备中;
S20)、在惰性气体保护氛围中,邦定设备采用高速旋转的方式升温至邦定温度63℃并保持在该邦定温度63℃;具体地,在本发明实施例中,旋转速度为1200rpm,惰性气体为氮气;
S30)、向邦定设备内添加质量份数为0.15份的石墨烯,将石墨烯与粉末涂料底粉在邦定温度63℃环境下通过高速旋转的方式实现混合均匀,混合时间为2分钟,使得石墨烯颗粒粘接复合在粉末涂料底粉颗粒表面上,得到导电粉末涂料;具体地,在本发明实施例中,旋转速度为600rpm;
S31)、邦定设备打开冷却水开关同时降低邦定设备旋转速度进行冷却降温,用于防止导电粉末涂料结块,待温度降低至40℃后,向邦定设备中添加质量份数为0.06份的流动助剂(赢创德固赛公司提供,质量分数为99%);
S40)、从邦定设备中取出导电粉末涂料。
本发明实施例还提出一种导电涂层,采用导电粉末涂料在基材上涂覆固化成型得到,其中,导电粉末涂料采用如上所述的导电粉末涂料。基材具体可选择为铝、铁、钢等金属基材,也可以选择为木材基材或碳纤维基材等,具体可以根据实际应用来选择。涂覆方法可以采用静电喷涂或其他现有技术的任意一种涂覆方式。
实施例2:
本实施例2其余技术方案与实施例1相同,区别仅在于:在本实施例中, 导电粉末涂料包含质量份数为0.3份的石墨烯和质量份数为98.09份的粉末涂料底粉。
实施例3:
本实施例3其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为0.5份的石墨烯和质量份数为97.89份的粉末涂料底粉。
实施例4:
本实施例4其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为1份的石墨烯和质量份数为97.39份的粉末涂料底粉。
实施例5:
本实施例5其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为3份的石墨烯和质量份数为95.39份的粉末涂料底粉。
实施例6:
本实施例6其余技术方案与实施例1相同,区别仅在于:导电粉末涂料包含质量份数为5份的石墨烯和质量份数为93.39份的粉末涂料底粉。
实施例7:
本实施例7其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为8份的石墨烯和质量份数为90.39份的粉末涂料底粉。
实施例8:
本实施例8其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为10份的石墨烯和质量份数为88.39份的粉末涂料底粉。
实施例9:
本实施例9其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为13份的石墨烯和质量份数为85.39份的粉末涂料底粉。
实施例10:
本实施例10其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为15份的石墨烯和质量份数为82.39份的粉末涂料底粉。
实施例11:
本实施例11其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为18份的石墨烯和质量份数为79.39份的粉末涂料底粉。
实施例12:
本实施例12其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为0.1份的石墨烯和质量份数为98.29份的粉末涂料底粉。
实施例13:
本实施例13其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为0.05份的石墨烯和质量份数为98.34份的粉末涂料底粉。
实施例14:
本实施例14其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为0.01份的石墨烯和质量份数为98.38份的粉末涂料底粉。
实施例15:
本实施例15其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为0.005份的石墨烯和质量份数为98.385份的粉末涂料底粉。
实施例16:
本实施例16其余技术方案与实施例1相同,区别仅在于:在本实施例中,导电粉末涂料包含质量份数为0.001份的石墨烯和质量份数为98.389份的粉末涂料底粉。
实施例17:
本实施例17其余技术方案与实施例2相同,区别仅在于:在本实施例中,采用氧化石墨烯替代石墨烯。
比较例1:
本比较例1直接采用实施例1中的粉末涂料底粉作为导电粉末涂料。
比较例2:
本比较例2其余技术方案与实施例1相同,区别在于:在本比较例中,石墨烯在制备粉末涂料底粉时的预混阶段加入,共同经过熔融挤出,压片冷却,再经过破碎及粉碎,然后再分级、过筛制备得到导电粉末涂料。
比较例3:
本比较例3其余技术方案与实施例2相同,区别在于:在本比较例中,石墨烯在制备粉末涂料底粉时的预混阶段加入,共同经过熔融挤出,压片冷却,再经过破碎及粉碎,然后再分级、过筛制备得到导电粉末涂料。
比较例4:
本比较例4其余技术方案与实施例3相同,区别在于:在本比较例中,石墨烯在制备粉末涂料底粉时的预混阶段加入,共同经过熔融挤出,压片冷却,再经过破碎及粉碎,然后再分级、过筛制备得到导电粉末涂料。
比较例5:
本比较例5其余技术方案与实施例4相同,区别在于:在本比较例中,石墨烯在制备粉末涂料底粉时的预混阶段加入,共同经过熔融挤出,压片冷却,再经过破碎及粉碎,然后再分级、过筛制备得到导电粉末涂料。
为了验证本发明各个实施例的技术效果,本发明将实施例以及比较例制备得到导电粉末涂料统一按如下步骤处理得到具有导电涂层的QUV铝板样板,并通过测试对比,具体结果请参见下表1:
将导电粉末涂料样粉筛分,取100g样粉置于喷枪中,在引风作用下,将样粉静电喷涂在QUV铝板上,再置于烤箱中,在200℃条件下烘烤10min,完成固化后,取出样板冷却至室温。
表1 实施例1-17与比较例1-5的实施效果对比
Figure PCTCN2018103720-appb-000001
本专利全文所述的膜厚是通过ISO2360-2003标准检测得到的结果;所述的光泽度60°是通过ISO2813-2014标准检测得到的结果;所述的冲击强度是 通过ISO6272-1-2标准检测得到的结果;所述的杯凸是通过ISO 1520-2006标准检测得到的结果;所述的划格法附着力是通过ISO2409-2013标准检测得到的结果;所述的铅笔硬度是ASTM D3363-2005(R2011)标准检测得到的结果;所述的电阻是采用电阻仪测试得到。
从上表1可得知,本发明的导电性能以及硬度性能明显优于现有技术,当石墨烯的添加质量份数占比大于10%以上时,导电性能、硬度的变化不再明显;当石墨烯的添加质量份数占比在0.001%时,仍然可提高其导电性能,当采用本发明核心思路,添加石墨烯质量份数的比本发明建议的优选范围高或低来改善导电性能时,这些仍然属于本发明的保护范围。还可以从表1得知的是,将石墨烯与粉末涂料为共混熔融挤出时,添加质量份数占比在0.5%时未能发现有导电性能的改善,当其添加质量份数占在1%时,方能发现有导电性能的改善,且改善效果远远差于本发明的实施效果。
在本发明其他实施例中,可以采用其他类型的热固性树脂(如聚酯树脂、环氧树脂或聚氨酯树脂或丙烯酸树脂或氟碳树脂中的任意一种或几种的混合)、合适的固化剂以及根据需要添加合适类型和份量的助剂和颜填料,同样可以取得如实施例1-17中相对于现有技术有显著提高的导电效果,由于环氧树脂的绝缘性能相对更好,当本发明采用环氧树脂作为热固性树脂时,其导电效果的提高会更加明显,相信本领域技术人员可以依据本发明的实施例结合公知常识和常规技术手段来获得其他实施例,本发明不再一一展开实施例说明。由于石墨烯还具有其他优异性能,因此本领域的技术人员可以根据实际需要将本发明得到具有特殊结构的粉末涂料应用到不同的技术领域。
实施例18:
本实施例18其余技术方案与实施例2相同,区别在于:在本实施例中,粉末涂料底粉为热塑性粉末涂料,热塑性粉末涂料包含下述质量份数的原料:82份聚乙烯、3份稳定剂、5份润滑剂、10份增塑剂。
具体地,在本发明实施例中,热塑性粉末涂料的熔融挤出工艺制备方法步骤同实施例1中的热固性粉末涂料的熔融挤出工艺,区别在于:挤出机的加热温度选择在110-130℃之间。
经差示热量扫描仪(DSC)检测,粉末涂料底粉的软化点温度为95.3℃;
在邦定工艺过程中,邦定温度设置为100℃。
本发明实施例还提出一种导电涂层,采用导电粉末涂料在基材上涂覆固化成型得到,其中,导电粉末涂料采用如上所述的导电粉末涂料。基材具体可选择为铝、铁、钢等金属基材,也可以选择为木材基材或碳纤维基材等,具体可以根据实际应用来选择。涂覆方法可以采用静电喷涂或流化床喷涂或其他现有技术的任意一种涂覆方式。
实施例19:
本实施例19其余技术方案与实施例18相同,区别在于:在本实施例中,粉末涂料底粉为热塑性粉末涂料,热塑性粉末涂料包含下述质量份数的原料:82份聚丙烯、3份稳定剂、5份润滑剂、10份增塑剂。
具体地,在本发明实施例中,热塑性粉末涂料的熔融挤出工艺制备方法步骤同实施例1中的热固性粉末涂料的熔融挤出工艺,区别在于:挤出机的加热温度选择在150-180℃之间。
经差示热量扫描仪(DSC)检测,粉末涂料底粉的软化点温度为135.5℃;
在邦定工艺过程中,邦定温度设置为143℃。
比较例6:
本比较例6直接采用实施例18中的粉末涂料底粉作为导电粉末涂料。
比较例7:
本比较例7直接采用实施例19中的粉末涂料底粉作为导电粉末涂料。
本发明将实施例18、19以及比较例6-7制备得到导电粉末涂料统一按如下步骤处理得到具有导电涂层的QUV铝板样板,并通过测试对比,具体结果 请参见下表2:
将导电粉末涂料样粉筛分,取100g样粉置于喷枪中,在引风作用下,将样粉静电喷涂在QUV铝板上,再置于烤箱中加热熔融,然后取出样板冷却固化。
表2 实施例18-19与比较例6-7的实施效果对比
Figure PCTCN2018103720-appb-000002
同样可从表2看出,本发明也可以明显改善采用热塑性粉末涂料的导电性能。在本发明其他实施例中,可以采用其他类型的热塑性树脂(如聚乙烯、聚丙烯、热塑性聚酯、聚氯乙烯、聚氯乙醚、聚酰胺、聚四氟乙烯中的任意一种或几种的混合)、合适的助剂,同样可以取得如实施例18和19中相对于现有技术有显著提高的导电效果,相信本领域技术人员可以依据本发明的实施例结合公知常识和常规技术手段来获得其他实施例,本发明不再一一展开实施例说明。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实 施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (14)

  1. 一种导电粉末涂料,其特征在于,所述的导电粉末涂料包含石墨烯或氧化石墨烯和粉末涂料底粉,其中,所述的石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒表面上。
  2. 如权利要求1所述的导电粉末涂料,其特征在于,所述的导电粉末涂料包含质量份数为0.01-10份的石墨烯或氧化石墨烯和质量份数为99.99-90份的粉末涂料底粉。
  3. 如权利要求1所述的导电粉末涂料,其特征在于,所述的石墨烯或氧化石墨烯的粒度分布D50范围为1-20微米;所述的粉末涂料底粉的粒度分布D50范围为25-50微米。
  4. 如权利要求1所述的一种导电粉末涂料,其特征在于,所述的导电粉末涂料采用邦定工艺制备得到。
  5. 如权利要求4所述的导电粉末涂料,其特征在于,所述的邦定工艺包括如下步骤:
    S10)、将所述的粉末涂料底粉置于邦定设备中;
    S20)、所述的邦定设备升温至邦定温度并保持在该邦定温度;
    S30)、向所述的邦定设备内添加石墨烯或氧化石墨烯,将所述的石墨烯或氧化石墨烯与所述的粉末涂料底粉在所述的邦定温度下混合均匀,使得所述的石墨烯颗粒或氧化石墨烯颗粒粘接复合在所述的粉末涂料底粉颗粒表面上,得到导电粉末涂料;
    S40)、从所述的邦定设备中取出所述的导电粉末涂料;
    其中,在所述的邦定温度下,所述的粉末涂料底粉处于高弹态。
  6. 如权利要求5所述的导电粉末涂料,其特征在于,所述的邦定温度比所述的粉末涂料底粉的软化点温度高1-10℃。
  7. 如权利要求5所述的导电粉末涂料,其特征在于,在所述的步骤S30)之后还包括步骤S31)、邦定设备冷却降温,用于防止所述的导电粉末涂料结块。
  8. 如权利要求4或5所述的导电粉末涂料,其特征在于,在所述的邦定工艺过程中,向邦定设备中添加占所述的粉末涂料底粉质量份数占比为0.1-3%的蜡粉。
  9. 如权利要求4或5所述的导电粉末涂料,其特征在于,在所述的邦定工艺过程中,向邦定设备中添加占所述的粉末涂料底粉质量份数占比为0.01-2%的流动助剂。
  10. 如权利要求1所述的导电粉末涂料,其特征在于,所述的粉末涂料底粉为热固性粉末涂料。
  11. 如权利要求10所述的导电粉末涂料,其特征在于,所述的热固性粉末涂料采用熔融挤出工艺制备而成,包含下述质量份数的原料:
    热固性树脂  40-90份;
    固化剂  2-25份,用于所述的热固性树脂的固化;
    颜填料  0-50份;
    助剂    0-10份。
  12. 如权利要求1所述的导电粉末涂料,其特征在于,所述的粉末涂料底粉为热塑性粉末涂料。
  13. 如权利要求12所述的导电粉末涂料,其特征在于,所述的热塑性粉末涂料采用熔融挤出工艺制备而成,包含质量份数为40-100份的热塑性树脂。
  14. 一种导电涂层,采用导电粉末涂料在基材上涂覆固化成型得到,其特征在于,所述的导电粉末涂料采用如权利要求1-13之一所述的导电粉末涂料。
PCT/CN2018/103720 2017-09-20 2018-09-02 一种导电粉末涂料以及导电涂层 WO2019056940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710854699.1A CN108329742A (zh) 2017-09-20 2017-09-20 一种导电粉末涂料以及导电涂层
CN201710854699.1 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019056940A1 true WO2019056940A1 (zh) 2019-03-28

Family

ID=62922328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103720 WO2019056940A1 (zh) 2017-09-20 2018-09-02 一种导电粉末涂料以及导电涂层

Country Status (2)

Country Link
CN (1) CN108329742A (zh)
WO (1) WO2019056940A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724776A (zh) * 2020-12-25 2021-04-30 广东西敦千江粉漆科学研究有限公司 一种抗静电粉末涂料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329742A (zh) * 2017-09-20 2018-07-27 老虎表面技术新材料(苏州)有限公司 一种导电粉末涂料以及导电涂层
CN109535945A (zh) * 2018-12-21 2019-03-29 六安科瑞达新型材料有限公司 一种户外耐盐雾粉末涂料
CN110359131B (zh) * 2019-06-14 2020-07-31 佛山宜可居新材料有限公司 一种碳纤维丝及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775887A (zh) * 2012-08-23 2012-11-14 广东华江粉末科技有限公司 一种铝型材用高耐候金属型粉末涂料及其制备方法
CN106675360A (zh) * 2017-01-25 2017-05-17 山东凯盛新材料股份有限公司 抗静电聚醚酮酮粉末涂料及其制备方法
CN106752804A (zh) * 2017-01-25 2017-05-31 山东凯盛新材料股份有限公司 耐高温、抗静电聚醚酮酮粉末涂料及其制备方法
CN108329742A (zh) * 2017-09-20 2018-07-27 老虎表面技术新材料(苏州)有限公司 一种导电粉末涂料以及导电涂层

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254729B (zh) * 2013-06-07 2016-07-06 廊坊市新立粉末涂料有限公司 一种抗静电、阻燃型粉末涂料及生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775887A (zh) * 2012-08-23 2012-11-14 广东华江粉末科技有限公司 一种铝型材用高耐候金属型粉末涂料及其制备方法
CN106675360A (zh) * 2017-01-25 2017-05-17 山东凯盛新材料股份有限公司 抗静电聚醚酮酮粉末涂料及其制备方法
CN106752804A (zh) * 2017-01-25 2017-05-31 山东凯盛新材料股份有限公司 耐高温、抗静电聚醚酮酮粉末涂料及其制备方法
CN108329742A (zh) * 2017-09-20 2018-07-27 老虎表面技术新材料(苏州)有限公司 一种导电粉末涂料以及导电涂层

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724776A (zh) * 2020-12-25 2021-04-30 广东西敦千江粉漆科学研究有限公司 一种抗静电粉末涂料及其制备方法
WO2022134568A1 (zh) * 2020-12-25 2022-06-30 广东西敦千江粉漆科学研究有限公司 一种抗静电粉末涂料及其制备方法

Also Published As

Publication number Publication date
CN108329742A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019056940A1 (zh) 一种导电粉末涂料以及导电涂层
CN110832138B (zh) 光伏组件用复合封装材料及该复合封装材料的制备方法
KR101128033B1 (ko) 전면도포 방식의 플라스틱필름 탄소발열체 제조 방법
US20080233300A1 (en) Thermosetting powders comprising curing agent adducts of polyesters and strong, flexible powder coatings made therefrom
CN101851460A (zh) 太阳能热水器用聚酯粉末涂料
WO2021103989A1 (zh) 一种具有超高耐候消光效果的粉末涂料
CN111201614A (zh) 一种光伏组件的层压结构及其制备方法、光伏组件
CN112920638A (zh) 一种MXene基水性纳米电热复合涂料及制备方法
KR102374055B1 (ko) 가전 코일재용 분말도료 및 그 제조방법
CN105315872A (zh) 一种防静电涂料
CN103627268A (zh) 耐磨高导热性的氟碳涂料
CN110885458A (zh) 一种具有自修复功能的聚合物蜡粉及其制备方法
CN108384409A (zh) 一种汽车底盘用氟碳粉末涂料及其制备方法
CN109762449B (zh) 一种高光自清洁粉末涂料及其制备方法
CN110724444A (zh) 一种超耐候粉末涂料及其制备方法
CN113930130A (zh) 一种热固性粉末涂料
CN116875103B (zh) 一种纳米导热吸波助剂、低温固化热固性粉末涂料及其制备方法和应用
JP6163110B2 (ja) 粉体混合塗料及び塗装部材
JPWO2019131636A1 (ja) 粉体塗料の製造方法
JP6060667B2 (ja) 粉体塗料及び塗装部材の製造方法
CN106675360A (zh) 抗静电聚醚酮酮粉末涂料及其制备方法
US10738198B2 (en) Powder coating material, method for producing powder coating material, and coated article
CN103448344A (zh) 一种pvdf复合薄膜的制备方法
WO2023116652A1 (zh) 一种防滑粉末涂料组合物及其涂层
US11203686B2 (en) Polymer wax powder having a self-repairing function and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859060

Country of ref document: EP

Kind code of ref document: A1