WO2019054749A1 - Method for measuring on the basis of csi-rs in wireless communication system and apparatus therefor - Google Patents

Method for measuring on the basis of csi-rs in wireless communication system and apparatus therefor Download PDF

Info

Publication number
WO2019054749A1
WO2019054749A1 PCT/KR2018/010688 KR2018010688W WO2019054749A1 WO 2019054749 A1 WO2019054749 A1 WO 2019054749A1 KR 2018010688 W KR2018010688 W KR 2018010688W WO 2019054749 A1 WO2019054749 A1 WO 2019054749A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
bandwidth
terminal
csi
network
Prior art date
Application number
PCT/KR2018/010688
Other languages
French (fr)
Korean (ko)
Inventor
송화월
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019054749A1 publication Critical patent/WO2019054749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method of performing measurement based on a CSI-RS (channel state information-reference signal) and a device supporting the same.
  • CSI-RS channel state information-reference signal
  • the mobile communication system has been developed to provide voice service while ensuring the user 's activity.
  • the mobile communication system has expanded the area from voice to data service.
  • Due to an explosion of traffic a shortage of resources is caused and users demand a higher speed service. Therefore, a more advanced mobile communication system is required .
  • next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to.
  • a dual connectivity a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
  • MIMO massive multiple input multiple output
  • NOMA non-orthogonal multiple access
  • the present disclosure is directed to providing a method of performing measurements based on CSI-RS.
  • the present disclosure provides a method for performing measurements based on CSI-RS in a wireless communication system.
  • a method performed by a terminal includes transmitting a capability information element (IE) to a network, the capability information element including information on a measurement gap supported by the terminal; Receiving from the network information about a starting position for performing the measurement in a measurement bandwidth (measurement BW); And based on the CSI-RS in the measurement bandwidth (measurement BW) for the measurement gap from the start position when the active bandwidth part and the measurement bandwidth (measurement BW) are set differently. and performing a measurement of the measurement result.
  • IE capability information element
  • the method further comprises retuning a radio frequency (RF) from the active bandwidth part to the measured bandwidth.
  • RF radio frequency
  • the measurement bandwidth is a bandwidth in which the CSI-RS is set.
  • the measured bandwidth is not included in the maximum bandwidth supported by the terminal, and the center frequency of the active bandwidth part and the measured bandwidth are different from each other do.
  • the measurement gap is determined according to a subcarrier spacing.
  • the method further comprises receiving data from the network on the active bandwidth part.
  • the data is received based on a first RF of the terminal, and the measurement is performed based on a second RF of the terminal.
  • the present invention relates to a terminal performing a measurement based on a CSI-RS (Channel State Information-Reference Signal) in a wireless communication system
  • the terminal comprising: a Radio Frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively connected to the RF module, wherein the processor is operable to transmit a capability information element (IE), including information on a measurement gap supported by the terminal, Lt; / RTI > From the network, information about a starting position for performing the measurement in a measurement bandwidth (measurement BW); And based on the CSI-RS on the measurement bandwidth (measurement BW) for the measurement gap from the start position when the active bandwidth part and the measurement bandwidth (measurement BW) are set differently. and to perform a measurement of the measurement result.
  • IE capability information element
  • the processor is configured to retune a radio frequency (RF) from the active bandwidth part to the measured bandwidth.
  • RF radio frequency
  • the processor is configured to receive data from the network on the active bandwidth part.
  • the present specification has the effect of enabling the measurement to be performed efficiently based on the CSI-RS using the measurement start point and the measurement gap for performing the measurement.
  • FIG. 1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
  • FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
  • FIG. 4 shows an example of a self-contained subframe structure to which the method proposed herein can be applied.
  • FIG. 5 is a flowchart showing an example of an operation method of a terminal performing the measurement proposed in the present specification.
  • FIG. 6 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • FIG. 7 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • FIG. 9 is a diagram showing another example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the particular operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
  • 'base station' refers to a term such as a fixed station, a Node B, an evolved NodeB, a base transceiver system (BTS), an access point (AP), a gNB (general NB) Lt; / RTI >
  • a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
  • UE mobile station
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS Subscriber station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • a downlink means communication from a base station to a terminal
  • an uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal and the receiver may be part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC- single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G NR new radio
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • V2X vehicle-to-everything
  • the 5G NR standard distinguishes between standalone (SA) and non-standalone (NSA) depending on the co-existence between the NR system and the LTE system.
  • the 5G NR supports various subcarrier spacing, CP-OFDM in the downlink, CP-OFDM in the uplink, and DFT-s-OFDM (SC-OFDM).
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention which are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • 3GPP LTE / LTE-A / NR New Radio
  • 3GPP LTE / LTE-A / NR New Radio
  • the eLTE eNB is an eNB evolution that supports connectivity to EPC and NGC.
  • gNB node that supports NR as well as connection to NGC.
  • New RAN A wireless access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice is a network defined by an operator to provide an optimized solution for a specific market scenario that requires specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for NG2 reference point between new RAN and NGC.
  • NG-U User plane interface used for NG3 reference points between new RAN and NGC.
  • Non-standalone NR A configuration in which gNB requests an LTE eNB as an anchor for EPC control plane connection or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-stand-alone E-UTRA A deployment configuration in which the eLTE eNB requires the gNB as an anchor for the control plane connection to the NGC.
  • User plane gateway Endpoint of the NG-U interface.
  • FIG. 1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
  • the NG-RAN comprises gNBs providing a control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE do.
  • RRC control plane
  • the gNBs are interconnected via the Xn interface.
  • the gNB is also connected to the NGC via the NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a UPF (User Plane Function) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the memoryless can be defined by the subcarrier spacing and the CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier intervals are set to a constant N (or alternatively, ) ≪ / RTI >
  • the utilized memoryless can be chosen independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of OFDM neuron rolls supported in the NR system can be defined as shown in Table 1.
  • the size of the various fields in the time domain is Lt; / RTI > units of time. From here, ego, to be.
  • the downlink and uplink transmissions are And a radio frame having a duration of.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
  • the transmission of the uplink frame number i from the User Equipment (UE) is shorter than the start of the corresponding downlink frame in the corresponding UE You have to start before.
  • Not all terminals can transmit and receive at the same time, meaning that not all OFDM symbols of a downlink slot or an uplink slot can be used.
  • Table 2 & , And Table 3 shows the number of OFDM symbols per slot for a normal CP Represents the number of OFDM symbols per slot for an extended CP in the slot.
  • An antenna port, a resource grid, a resource element, a resource block, a carrier part, and the like are associated with a physical resource in the NR system. Can be considered.
  • the antenna port is defined such that the channel on which the symbols on the antenna port are carried can be deduced from the channel on which the other symbols on the same antenna port are carried. If a large-scale property of a channel on which a symbol on one antenna port is carried can be deduced from a channel on which symbols on another antenna port are carried, the two antenna ports may be quasi co-located (QC / QCL) quasi co-location relationship.
  • the broad characteristics include at least one of a delay spread, a Doppler spread, a frequency shift, an average received power, and a received timing.
  • FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
  • Subcarriers if the resource grid is in the frequency domain Subcarriers, and one subframe consists of 14 x 2 u OFDM symbols, but is not limited thereto.
  • antenna port p can be set to one resource grid.
  • each element of the resource grid for antenna port p is referred to as a resource element, ≪ / RTI > From here, Is an index in the frequency domain, Quot; refers to the position of a symbol in a subframe.
  • a resource element in a slot From here, to be.
  • a physical resource block is a block in the frequency domain Are defined as consecutive subcarriers. On the frequency domain, .
  • a terminal may be configured to receive or transmit using only a subset of the resource grid. At this time, a set of resource blocks set to be received or transmitted by the UE is set to 0 .
  • a time division duplexing (TDD) structure considered in the NR system is a structure that processes both an uplink (UL) and a downlink (DL) in one subframe. This is to minimize the latency of data transmission in the TDD system, and the structure is referred to as a self-contained subframe structure.
  • FIG. 4 shows an example of a self-contained subframe structure to which the method proposed in this specification can be applied.
  • Fig. 4 is merely for convenience of explanation and does not limit the scope of the present invention.
  • one subframe is composed of 14 orthogonal frequency division multiplexing (OFDM) symbols as in legacy LTE.
  • OFDM orthogonal frequency division multiplexing
  • an area 402 refers to a downlink control region
  • an area 404 refers to an uplink control region.
  • an area other than the area 402 and the area 404 that is, an area without a separate mark
  • the uplink control information and the downlink control information are transmitted in one self-contained subframe.
  • uplink data or downlink data is transmitted in one self-contained subframe.
  • downlink transmission and uplink transmission proceed sequentially, and downlink data transmission and uplink ACK / NACK reception can be performed .
  • a base station eNodeB, eNB, gNB
  • UE terminal
  • a time gap is required for the process of switching from the reception mode to the transmission mode.
  • some OFDM symbol may be set as a guard period (GP).
  • the mmW is shortened in wavelength, so that a plurality of antennas can be installed in the same area. That is, in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimensional array of 0.5 lambda (wavelength, ⁇ ) intervals on a panel of 5 by 5 cm with a wavelength of 1 cm.
  • the mmW uses a number of antenna elements to increase the beamforming (BF) gain to increase the coverage or increase the throughput.
  • BF beamforming
  • TXRU transmitter unit
  • the TXRU is not effective in terms of cost in installing all of the antenna elements of 100 or more.
  • This analog beamforming method has a disadvantage that it can not perform frequency selective beaming because it can make only one beam direction in all bands.
  • a hybrid BF with B TXRUs, which are fewer than Q antenna elements, is considered as an intermediate form of digital BF and analog BF.
  • the direction of the beam that can be transmitted at the same time is limited to B or less.
  • a New Radio (NR) system includes terminals (e.g., UEs, hereinafter referred to as UEs for convenience) that support various bandwidths (BWs).
  • terminals e.g., UEs, hereinafter referred to as UEs for convenience
  • BWs bandwidths
  • One of the goals of the NR system is to allow a network (NW) to flexibly schedule all UEs.
  • CSI-RS Channel State Information-Reference Signal
  • the UE may be configured to configure one or more bandwidth parts (BWPs) from the network.
  • BWPs bandwidth parts
  • each UE can increase the power utilization efficiency on the RF side or baseband side by setting RF (Radio Frequency) according to its active BWP size.
  • RF Radio Frequency
  • the active BWP means the BWP activated (by the network) among the set BWPs.
  • the UE may retune (or reset) the RF to measure the CSI-RS.
  • Measurement bandwidth (measurement BW) and UE activation BWP (active BWP ) or UE Relationship to maximum bandwidth (maximum BW)
  • the measurement bandwidth may refer to the BW for which the CSI-RS is configured.
  • active BWP means BWP in which activation is instructed among the BWPs set by the UE.
  • the UE maximum BW means the maximum BW that the UE can support.
  • a measurement gap indicates a period that the UE can use to perform the measurement. In this period, UL and DL transmissions are not scheduled.
  • the UE can configure the active BWP from the network (Network, NW).
  • NW Network, NW
  • the network may be expressed as a base station or the like.
  • receiving an active BWP configuration can be interpreted in the same sense as receiving activation for a specific BWP among the set BWPs.
  • the UE may transmit data to and receive data from the network in the active BWP, and may receive signaling related to CSI-RS measurement for other frequency ranges in the process.
  • the other frequency range may include an active BWP of the UE.
  • data reception and CSI-RS measurement may be performed differently depending on the relationship between the CSI-RS measurement BW and the active BWP of the UE or the maximum BW that can be supported by the UE, and the following cases (cases 1 to 3) We will look at it more specifically.
  • Case 1 is a method of performing data reception and CSI-RS measurement when the CSI-RS measurement BW and the active BWP have the same center frequency.
  • the UE may not need an RF retuning time.
  • the UE may require an RF transition time depending on the implementation aspect.
  • the RF transition time may be a maximum of 20 us.
  • the RF retuning time used herein is the time required for the UE to switch or reset the RF, and can be interpreted in the same meaning as the RF transition time.
  • the UE can measure the CSI-RS and receive data at the active BWP.
  • the NW may switch the active BWP of the UE to measurement BW so that it can receive data in the measurement BW.
  • the UE performs measurement only for the corresponding BW according to signaling of the NW, or the NW signals the active BWP of the UE to switch to the measurement BW, It is possible to perform both the performance and the data reception.
  • Case 2 is a method of performing data reception and CSI-RS measurement when CSI-RS measurement BW and active BWP have different center frequencies.
  • the UE needs to perform RF retuning.
  • the CSI-RS measurement BW and the active BWP have different center frequencies, which means that the measurement BW deviates from the UE cover BW.
  • the UE can measure the CSI-RS using the measurement gap received from the NW.
  • the UE may operate.
  • Case 3 is a method for performing measurement using data reception and CSI-RS when the UE has multiple RFs (multiple RFs).
  • the UE may operate differently in the same circumstances as case 1 or case 2 above.
  • the UE can operate according to the given CSI-RS measurement BW size as follows.
  • the UE shall continue to receive data from the active BWP and use the remaining RF (s) To process the CSI-RS measurement BW.
  • the NW may activate the measurement BW to cause the UE to switch to the multiple active BWP mode.
  • the UE performs the same process as the case 1 or case 2 using multiple RFs can do.
  • the NW may configure the UE with an appropriate measurement gap, and the UE may perform various operations accordingly (option 1, option 2).
  • NW can define a measurement gap corresponding to each case (case 1, case 2, case 3).
  • the UE performs CSI-RS measurement using the measurement gap received from the network according to each case, and does not receive data during the measurement gap.
  • Option 1 has the advantage that both NW and UE can perform processing without additional signaling overhead, but it may not be effective for some UEs because the measurement gap utilization efficiency is different on the UE side.
  • the NW can predefine the measurement gap table according to the capability of the terminal.
  • the NW may indicate an adaptive measurement gap to the corresponding UE according to the capability and state of the UE.
  • a measurement gap table may be defined by defining measurement gaps for each UE, or a measurement gap table may be formed by grouping UEs based on specific criteria and defining measurement gaps for each group.
  • another measurement gap can be defined according to the subcarrier spacing of the BW processed by the UE.
  • Option 2 has the effect of increasing UE utilization efficiency by configuring the optimal measurement gap for each UE.
  • the UE may perform the CSI-RS measurement according to its capability without a measurement gap or considering a predetermined time delay.
  • the NW signals the UE to the CSI-RS measurement configuration while the UE knows the capability of the UE, if the timing for preparing the process does not affect other processes, You can proceed without gap signaling.
  • the UE can perform the corresponding processing and then perform the normal data / control processing.
  • the time delay due to the CSI-RS measurement can be known.
  • FIG. 5 is a flowchart showing an example of an operation method of a terminal performing the measurement proposed in the present specification.
  • the terminal transmits a capability information element (IE) including information on a measurement gap supported by the terminal to the network (S510).
  • IE capability information element
  • the terminal receives from the network information on a starting position at which the measurement is performed on a measurement bandwidth (measurement BW) (S520).
  • the measurement bandwidth refers to a bandwidth at which the CSI-RS is set.
  • the measurement gap may be determined according to a subcarrier spacing.
  • the terminal may transmit the CSI-RS (BW) on the measurement bandwidth (measurement BW) during the measurement gap from the start position. (Step S530).
  • the active bandwidth part and the measured bandwidth are set differently, it may mean that the measured bandwidth is not included in the maximum bandwidth supported by the terminal, and the center frequency of the active bandwidth part and the measured bandwidth are different from each other.
  • the terminal may retune the radio frequency (RF) from the active bandwidth part to the measurement bandwidth before step S530.
  • RF radio frequency
  • the following steps can be additionally performed.
  • the terminal may receive data from the network on the active bandwidth part in addition to steps S510 to S530.
  • the data is received based on a first RF of the terminal, and the measurement can be performed based on a second RF of the terminal.
  • the same measurement gap is set regardless of the terminal performance in the network.
  • the measurement performed based on the CSI-RS proposed in the present specification uses a measurement gap according to the performance of the terminal, It is effective.
  • FIG. 6 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a plurality of terminals 620 located within a region of a base station 610 and a base station 610.
  • the BS and the MS may be represented by wireless devices, respectively.
  • the base station 610 includes a processor 611, a memory 612, and a radio frequency module 613.
  • the processor 611 implements the functions, processes and / or methods suggested in Figs. 1-5 above.
  • the layers of the air interface protocol may be implemented by a processor.
  • the memory 612 is coupled to the processor and stores various information for driving the processor.
  • the RF module 613 is coupled to the processor to transmit and / or receive wireless signals.
  • the terminal 620 includes a processor 621, a memory 622, and an RF module 623.
  • the processor 621 implements the functions, processes and / or methods suggested in Figs. 1-5 above.
  • the layers of the air interface protocol may be implemented by a processor.
  • the memory 622 is coupled to the processor and stores various information for driving the processor.
  • the RF module 623 is coupled to the processor to transmit and / or receive wireless signals.
  • the memories 612 and 622 may be internal or external to the processors 611 and 621 and may be coupled to the processors 611 and 621 by various well known means.
  • the base station 610 and / or the terminal 620 may have a single antenna or multiple antennas.
  • FIG. 7 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 7 illustrates the terminal of FIG. 6 in more detail.
  • a terminal includes a processor (or a digital signal processor (DSP) 710, an RF module (or RF unit) 735, a power management module 705
  • An antenna 740 a battery 755, a display 715, a keypad 720, a memory 730, a SIM (Subscriber Identification Module ) card 725 (this configuration is optional), a speaker 745 and a microphone 750.
  • the terminal may also include a single antenna or multiple antennas .
  • Processor 710 implements the functions, processes and / or methods suggested in FIGS. 1-6 above.
  • the layer of the air interface protocol may be implemented by a processor.
  • Memory 730 is coupled to the processor and stores information related to the operation of the processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by any of a variety of well known means.
  • the user inputs command information such as a telephone number or the like by, for example, pressing (or touching) a button on the keypad 720 or voice activation using the microphone 750.
  • the processor receives such command information and processes it to perform appropriate functions, such as dialing a telephone number. Operational data may be extracted from the sim card 725 or memory.
  • the processor may also display command information or drive information on the display 715 for the user to perceive and for convenience.
  • the RF module 735 is coupled to the processor to transmit and / or receive RF signals.
  • the processor communicates command information to the RF module to transmit, for example, a radio signal that constitutes voice communication data, to initiate communication.
  • the RF module consists of a receiver and a transmitter for receiving and transmitting radio signals.
  • the antenna 740 functions to transmit and receive radio signals. When receiving a radio signal, the RF module can transmit the signal for processing by the processor and convert the signal to baseband. The processed signal can be converted to audible or readable information output via the speaker 745.
  • FIG. 8 is a diagram showing an example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • FIG. 8 shows an example of an RF module that can be implemented in an FDD (Frequency Division Duplex) system.
  • FDD Frequency Division Duplex
  • the processor described in FIGS. 6 and 7 processes the data to be transmitted and provides an analog output signal to the transmitter 810.
  • the analog output signal is filtered by a low pass filter (LPF) 811 to remove images caused by a digital-to-analog conversion (ADC) And amplified by a Variable Gain Amplifier (VGA) 813.
  • the amplified signal is filtered by a filter 814 and amplified by a power amplifier (PA) 815 and is routed through the duplexer (s) 850 / antenna switch (s) 860 and transmitted via the antenna 870.
  • LPF low pass filter
  • ADC digital-to-analog conversion
  • VGA Variable Gain Amplifier
  • antenna 870 receives signals from the outside and provides received signals that are routed through antenna switch (s) 860 / duplexers 850, .
  • the received signals are amplified by a Low Noise Amplifier (LNA) 823, filtered by a bandpass filter 824, and filtered by a down converter (Mixer) 825 And downconverted to the baseband.
  • LNA Low Noise Amplifier
  • McMixer down converter
  • the down-converted signal is filtered by a low pass filter (LPF) 826 and amplified by VGA 827 to obtain an analog input signal, which is provided to the processor described in FIGS.
  • LPF low pass filter
  • a local oscillator (LO) generator 840 also generates and provides transmit and receive LO signals to up-converter 812 and down-converter 825, respectively.
  • phase locked loop (PLL) 830 receives control information from the processor to generate transmit and receive LO signals at appropriate frequencies and provides control signals to the LO generator 840.
  • circuits shown in Fig. 8 may be arranged differently from the configuration shown in Fig.
  • FIG. 9 is a diagram showing another example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • FIG. 9 shows an example of an RF module that can be implemented in a TDD (Time Division Duplex) system.
  • TDD Time Division Duplex
  • the transmitter 910 and receiver 920 of the RF module in the TDD system are identical in structure to the transmitter and receiver of the RF module in the FDD system.
  • the signal amplified by the power amplifier (PA) 915 of the transmitter is routed through a Band Select Switch 950, a band pass filter (BPF) 960 and an antenna switch (s) And transmitted via the antenna 980.
  • PA power amplifier
  • BPF band pass filter
  • antenna 980 receives signals from the outside and provides received signals that are coupled to antenna switch (s) 970, band pass filter 960, and band select switch 950 And is provided to the receiver 920.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
  • the software code can be stored in memory and driven by the processor.
  • the memory is located inside or outside the processor and can exchange data with the processor by various means already known.
  • the present invention is applicable to various wireless communication systems It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present specification provides a method for measuring on the basis of a channel state information-reference signal (CSI-RS) in a wireless communication system. More specifically, the method performed by a terminal comprises: a step of transmitting, to a network, a capability information element (IE) including information on a measurement gap supported by the terminal; a step of receiving, from the network, information on a starting position for the measurement in a measurement bandwidth (measurement BW); and, when an active bandwidth part and the measurement bandwidth (measurement BW) are set to be different, a step of performing the measurement, on the basis of the CSI-RS, in the measurement bandwidth (measurement BW), during the measurement gap and from the starting position.

Description

무선 통신 시스템에서 CSI-RS에 기초하여 측정을 수행하는 방법 및 이를 위한 장치Method and apparatus for performing measurements based on CSI-RS in a wireless communication system
본 명세서는 무선 통신 시스템에 관한 것으로써, 특히 CSI-RS(channel state information-reference signal)에 기초하여 측정(measurement)를 수행하는 방법 및 이를 지원하는 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to a method of performing measurement based on a CSI-RS (channel state information-reference signal) and a device supporting the same.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다. The mobile communication system has been developed to provide voice service while ensuring the user 's activity. However, the mobile communication system has expanded the area from voice to data service. At present, due to an explosion of traffic, a shortage of resources is caused and users demand a higher speed service. Therefore, a more advanced mobile communication system is required .
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.The requirements of the next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to. For this purpose, a dual connectivity, a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
본 명세서는 CSI-RS에 기초하여 측정(measurement)을 수행하는 방법을 제공함에 목적이 있다.The present disclosure is directed to providing a method of performing measurements based on CSI-RS.
또한, 본 명세서는 측정 대역폭(measurement BW)에서 측정을 시작하는 시점에 대한 정보를 단말로 제공하는 방법을 제공함에 목적이 있다.It is another object of the present invention to provide a method of providing information on a time point at which measurement is started in a measurement bandwidth (measurement BW) to a terminal.
또한, 본 명세서는 단말이 지원하는 측정 간격(measurement gap)에 대한 정보를 네트워크로 전송하는 방법을 제공함에 목적이 있다.It is another object of the present invention to provide a method of transmitting information on a measurement gap supported by a terminal to a network.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical objects to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical subjects which are not mentioned are described in the following description, which will be clearly understood by those skilled in the art to which the present invention belongs It will be possible.
본 명세서는 무선 통신 시스템에서 CSI-RS에 기초하여 measurement를 수행하는 방법을 제공한다.The present disclosure provides a method for performing measurements based on CSI-RS in a wireless communication system.
구체적으로, 단말에 의해 수행되는 방법은 상기 단말이 지원하는 측정 간격(measurement gap)에 대한 정보를 포함하는 능력(capability) 정보 요소(information element, IE)를 네트워크로 전송하는 단계; 측정 대역폭 (measurement BW)에서 상기 측정(measurement)를 수행하는 시작 위치에 대한 정보를 상기 네트워크로부터 수신하는 단계; 및 활성 대역폭 파트(active bandwidth part)와 상기 측정 대역폭(measurement BW)가 다르게 설정된 경우, 상기 시작 위치부터 상기 측정 간격(measurement gap) 동안 상기 측정 대역폭(measurement BW)에서 상기 CSI-RS에 기초하여 측정(measurement)를 수행하는 단계를 포함하는 것을 특징으로 한다.More specifically, a method performed by a terminal includes transmitting a capability information element (IE) to a network, the capability information element including information on a measurement gap supported by the terminal; Receiving from the network information about a starting position for performing the measurement in a measurement bandwidth (measurement BW); And based on the CSI-RS in the measurement bandwidth (measurement BW) for the measurement gap from the start position when the active bandwidth part and the measurement bandwidth (measurement BW) are set differently. and performing a measurement of the measurement result.
또한, 본 명세서에서 상기 방법은 상기 활성 대역폭 파트에서 상기 측정 대역폭으로 RF(radio frequency)를 리튜닝(retuning)하는 단계를 더 포함하는 것을 특징으로 한다.In addition, the method further comprises retuning a radio frequency (RF) from the active bandwidth part to the measured bandwidth.
또한, 본 명세서에서 상기 측정 대역폭은 상기 CSI-RS가 설정되는 대역폭인 것을 특징으로 한다.Also, in this specification, the measurement bandwidth is a bandwidth in which the CSI-RS is set.
또한, 본 명세서에서 상기 활성 대역폭 파트와 상기 측정 대역폭이 다르게 설정된 경우는 상기 측정 대역폭이 단말이 지원하는 최대 대역폭에 포함되지 않고, 상기 활성 대역폭 파트와 상기 측정 대역폭의 중심 주파수가 서로 다른 것을 특징으로 한다.In the present invention, when the active bandwidth part and the measured bandwidth are set differently, the measured bandwidth is not included in the maximum bandwidth supported by the terminal, and the center frequency of the active bandwidth part and the measured bandwidth are different from each other do.
또한, 본 명세서에서 상기 측정 간격(measurement gap)은 서브캐리어 간격(subcarrier spacing)에 따라 결정되는 것을 특징으로 한다.Also, in this specification, the measurement gap is determined according to a subcarrier spacing.
또한, 본 명세서에서 상기 방법은 상기 활성 대역폭 파트 상에서 데이터를 네트워크로부터 수신하는 단계를 더 포함하는 것을 특징으로 한다.In addition, the method further comprises receiving data from the network on the active bandwidth part.
또한, 본 명세서에서 상기 데이터는 상기 단말의 제 1 RF에 기초하여 수신되며, 상기 측정(measurement)는 상기 단말의 제 2 RF에 기초하여 수행되는 것을 특징으로 한다.Further, in the present specification, the data is received based on a first RF of the terminal, and the measurement is performed based on a second RF of the terminal.
또한, 본 명세서는 무선 통신 시스템에서 CSI-RS(Channel State Information-Reference Signal)에 기초하여 측정(measurement)을 수행하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 상기 단말이 지원하는 측정 간격(measurement gap)에 대한 정보를 포함하는 능력(capability) 정보 요소(information element, IE)를 네트워크로 전송하며; 측정 대역폭 (measurement BW)에서 상기 측정(measurement)를 수행하는 시작 위치에 대한 정보를 상기 네트워크로부터 수신하며; 및 활성 대역폭 파트(active bandwidth part)와 상기 측정 대역폭(measurement BW)가 다르게 설정된 경우, 상기 시작 위치부터 상기 측정 간격(measurement gap) 동안 상기 측정 대역폭(measurement BW) 상에서 상기 CSI-RS에 기초하여 측정(measurement)를 수행하도록 설정되는 것을 특징으로 한다.In addition, the present invention relates to a terminal performing a measurement based on a CSI-RS (Channel State Information-Reference Signal) in a wireless communication system, the terminal comprising: a Radio Frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively connected to the RF module, wherein the processor is operable to transmit a capability information element (IE), including information on a measurement gap supported by the terminal, Lt; / RTI > From the network, information about a starting position for performing the measurement in a measurement bandwidth (measurement BW); And based on the CSI-RS on the measurement bandwidth (measurement BW) for the measurement gap from the start position when the active bandwidth part and the measurement bandwidth (measurement BW) are set differently. and to perform a measurement of the measurement result.
또한, 본 명세서에서 상기 프로세서는, 상기 활성 대역폭 파트에서 상기 측정 대역폭으로 RF(radio frequency)를 리튜닝(retuning)하도록 설정되는 것을 특징으로 한다.Also, the processor is configured to retune a radio frequency (RF) from the active bandwidth part to the measured bandwidth.
또한, 본 명세서에서 상기 프로세서는, 상기 활성 대역폭 파트 상에서 데이터를 네트워크로부터 수신하도록 설정되는 것을 특징으로 한다.Also, in this specification, the processor is configured to receive data from the network on the active bandwidth part.
본 명세서는 측정을 수행하기 위한 측정 시작 시점 및 measurement gap을 이용하여 CSI-RS에 기초하여 측정을 효율적으로 수행할 수 있도록 하는 효과가 있다.The present specification has the effect of enabling the measurement to be performed efficiently based on the CSI-RS using the measurement start point and the measurement gap for performing the measurement.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtained in the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the following description .
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the technical features of the invention.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다.4 shows an example of a self-contained subframe structure to which the method proposed herein can be applied.
도 5는 본 명세서에서 제안하는 measurement를 수행하는 단말의 동작 방법의 일례를 나타낸 순서도이다.5 is a flowchart showing an example of an operation method of a terminal performing the measurement proposed in the present specification.
도 6은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.6 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
도 7은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.7 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.8 is a diagram showing an example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.9 is a diagram showing another example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description, together with the accompanying drawings, is intended to illustrate exemplary embodiments of the invention and is not intended to represent the only embodiments in which the invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. In some instances, well-known structures and devices may be omitted or may be shown in block diagram form, centering on the core functionality of each structure and device, to avoid obscuring the concepts of the present invention.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.In this specification, a base station has a meaning as a terminal node of a network that directly communicates with a terminal. The particular operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station. The term 'base station' refers to a term such as a fixed station, a Node B, an evolved NodeB, a base transceiver system (BTS), an access point (AP), a gNB (general NB) Lt; / RTI > Also, a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.Hereinafter, a downlink (DL) means communication from a base station to a terminal, and an uplink (UL) means communication from a terminal to a base station. In the downlink, the transmitter may be part of the base station, and the receiver may be part of the terminal. In the uplink, the transmitter may be part of the terminal and the receiver may be part of the base station.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.The specific terminology used in the following description is provided to aid understanding of the present invention, and the use of such specific terminology may be changed into other forms without departing from the technical idea of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.The following techniques may be used in various wireless communication systems such as code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC- (non-orthogonal multiple access), and the like. CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE). OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA). UTRA is part of the universal mobile telecommunications system (UMTS). 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink. LTE-A (advanced) is the evolution of 3GPP LTE.
5G NR(new radio)은 usage scenario에 따라 eMBB(enhanced Mobile Broadband), mMTC(massive Machine Type Communications), URLLC(Ultra-Reliable and Low Latency Communications), V2X(vehicle-to-everything)을 정의한다.5G NR (new radio) defines enhanced mobile broadband (eMBB), massive machine type communications (mMTC), ultra-reliable low latency communications (URLLC), and vehicle-to-everything (V2X) according to the usage scenario.
그리고, 5G NR 규격(standard)는 NR 시스템과 LTE 시스템 사이의 공존(co-existence)에 따라 standalone(SA)와 non-standalone(NSA)으로 구분한다.The 5G NR standard distinguishes between standalone (SA) and non-standalone (NSA) depending on the co-existence between the NR system and the LTE system.
그리고, 5G NR은 다양한 서브캐리어 간격(subcarrier spacing)을 지원하며, 하향링크에서 CP-OFDM을, 상향링크에서 CP-OFDM 및 DFT-s-OFDM(SC-OFDM)을 지원한다.The 5G NR supports various subcarrier spacing, CP-OFDM in the downlink, CP-OFDM in the uplink, and DFT-s-OFDM (SC-OFDM).
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention which are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New Radio)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.For clarity of description, 3GPP LTE / LTE-A / NR (New Radio) is mainly described, but the technical features of the present invention are not limited thereto.
용어 정의Term Definition
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.eLTE eNB: The eLTE eNB is an eNB evolution that supports connectivity to EPC and NGC.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.gNB: node that supports NR as well as connection to NGC.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.New RAN: A wireless access network that supports NR or E-UTRA or interacts with NGC.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.Network slice: A network slice is a network defined by an operator to provide an optimized solution for a specific market scenario that requires specific requirements with end-to-end coverage.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.Network function: A network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.NG-C: Control plane interface used for NG2 reference point between new RAN and NGC.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.NG-U: User plane interface used for NG3 reference points between new RAN and NGC.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.Non-standalone NR: A configuration in which gNB requests an LTE eNB as an anchor for EPC control plane connection or an eLTE eNB as an anchor for control plane connection to NGC.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.Non-stand-alone E-UTRA: A deployment configuration in which the eLTE eNB requires the gNB as an anchor for the control plane connection to the NGC.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.User plane gateway: Endpoint of the NG-U interface.
시스템 일반System General
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.Referring to FIG. 1, the NG-RAN comprises gNBs providing a control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE do.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.The gNBs are interconnected via the Xn interface.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.The gNB is also connected to the NGC via the NG interface.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a UPF (User Plane Function) through an N3 interface.
NRNR (New Rat) (New Rat) 뉴머롤로지Nemerologie (Numerology) 및 프레임(frame) 구조(Numerology) and frame structure
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2018010688-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
Numerous numerology can be supported in NR systems. Here, the memoryless can be defined by the subcarrier spacing and the CP (Cyclic Prefix) overhead. At this time, the plurality of subcarrier intervals are set to a constant N (or alternatively,
Figure PCTKR2018010688-appb-I000001
) ≪ / RTI > Also, although it is assumed that at very high carrier frequencies, the very low subcarrier spacing is not used, the utilized memoryless can be chosen independently of the frequency band.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.In the NR system, various frame structures according to a plurality of memorylogies can be supported.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.Hereinafter, an Orthogonal Frequency Division Multiplexing (OFDM) neighbors and frame structure that can be considered in an NR system will be described.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.The number of OFDM neuron rolls supported in the NR system can be defined as shown in Table 1.
Figure PCTKR2018010688-appb-T000001
Figure PCTKR2018010688-appb-T000001
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2018010688-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2018010688-appb-I000003
이고,
Figure PCTKR2018010688-appb-I000004
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2018010688-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2018010688-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
With respect to the frame structure in the NR system, the size of the various fields in the time domain is
Figure PCTKR2018010688-appb-I000002
Lt; / RTI > units of time. From here,
Figure PCTKR2018010688-appb-I000003
ego,
Figure PCTKR2018010688-appb-I000004
to be. The downlink and uplink transmissions are
Figure PCTKR2018010688-appb-I000005
And a radio frame having a duration of. Here, the radio frames are
Figure PCTKR2018010688-appb-I000006
And 10 subframes having a duration of < RTI ID = 0.0 > In this case, there may be a set of frames for the uplink and a set of frames for the downlink.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2018010688-appb-I000007
이전에 시작해야 한다.
As shown in FIG. 2, the transmission of the uplink frame number i from the User Equipment (UE) is shorter than the start of the corresponding downlink frame in the corresponding UE
Figure PCTKR2018010688-appb-I000007
You have to start before.
뉴머롤로지
Figure PCTKR2018010688-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2018010688-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2018010688-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2018010688-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2018010688-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2018010688-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2018010688-appb-I000014
의 시작과 시간적으로 정렬된다.
Nemerologie
Figure PCTKR2018010688-appb-I000008
, Slots are arranged in a subframe
Figure PCTKR2018010688-appb-I000009
In an increasing order of < RTI ID = 0.0 >
Figure PCTKR2018010688-appb-I000010
Lt; / RTI > One slot
Figure PCTKR2018010688-appb-I000011
Of consecutive OFDM symbols,
Figure PCTKR2018010688-appb-I000012
Is determined according to the used program and the slot configuration. In the subframe,
Figure PCTKR2018010688-appb-I000013
Lt; RTI ID = 0.0 > OFDM < / RTI &
Figure PCTKR2018010688-appb-I000014
And is temporally aligned.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.Not all terminals can transmit and receive at the same time, meaning that not all OFDM symbols of a downlink slot or an uplink slot can be used.
표 2는 뉴머롤로지
Figure PCTKR2018010688-appb-I000015
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure PCTKR2018010688-appb-I000016
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Table 2 &
Figure PCTKR2018010688-appb-I000015
, And Table 3 shows the number of OFDM symbols per slot for a normal CP
Figure PCTKR2018010688-appb-I000016
Represents the number of OFDM symbols per slot for an extended CP in the slot.
Figure PCTKR2018010688-appb-T000002
Figure PCTKR2018010688-appb-T000002
Figure PCTKR2018010688-appb-T000003
Figure PCTKR2018010688-appb-T000003
NR 물리 자원(NR Physical Resource)NR Physical Resource (NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.An antenna port, a resource grid, a resource element, a resource block, a carrier part, and the like are associated with a physical resource in the NR system. Can be considered.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.Hereinafter, the physical resources that can be considered in the NR system will be described in detail.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.Firstly, with respect to the antenna port, the antenna port is defined such that the channel on which the symbols on the antenna port are carried can be deduced from the channel on which the other symbols on the same antenna port are carried. If a large-scale property of a channel on which a symbol on one antenna port is carried can be deduced from a channel on which symbols on another antenna port are carried, the two antenna ports may be quasi co-located (QC / QCL) quasi co-location relationship. Herein, the broad characteristics include at least one of a delay spread, a Doppler spread, a frequency shift, an average received power, and a received timing.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2018010688-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
3, if the resource grid is in the frequency domain
Figure PCTKR2018010688-appb-I000017
Subcarriers, and one subframe consists of 14 x 2 u OFDM symbols, but is not limited thereto.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2018010688-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2018010688-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2018010688-appb-I000020
이다. 상기
Figure PCTKR2018010688-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
In the NR system, the transmitted signal is
Figure PCTKR2018010688-appb-I000018
One or more resource grids comprised of subcarriers and /
Figure PCTKR2018010688-appb-I000019
RTI ID = 0.0 > OFDM < / RTI > From here,
Figure PCTKR2018010688-appb-I000020
to be. remind
Figure PCTKR2018010688-appb-I000021
Represents the maximum transmission bandwidth, which may vary not only between the uplink and downlink as well as the neighbors.
이 경우, 도 3과 같이, 뉴머롤로지
Figure PCTKR2018010688-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
In this case, as shown in Fig. 3,
Figure PCTKR2018010688-appb-I000022
And antenna port p can be set to one resource grid.
뉴머롤로지
Figure PCTKR2018010688-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2018010688-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2018010688-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2018010688-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2018010688-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2018010688-appb-I000028
이다.
Nemerologie
Figure PCTKR2018010688-appb-I000023
And each element of the resource grid for antenna port p is referred to as a resource element,
Figure PCTKR2018010688-appb-I000024
≪ / RTI > From here,
Figure PCTKR2018010688-appb-I000025
Is an index in the frequency domain,
Figure PCTKR2018010688-appb-I000026
Quot; refers to the position of a symbol in a subframe. When referring to a resource element in a slot,
Figure PCTKR2018010688-appb-I000027
. From here,
Figure PCTKR2018010688-appb-I000028
to be.
뉴머롤로지
Figure PCTKR2018010688-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2018010688-appb-I000030
는 복소 값(complex value)
Figure PCTKR2018010688-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2018010688-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2018010688-appb-I000033
또는
Figure PCTKR2018010688-appb-I000034
이 될 수 있다.
Nemerologie
Figure PCTKR2018010688-appb-I000029
And the resource element for the antenna port p
Figure PCTKR2018010688-appb-I000030
Is a complex value,
Figure PCTKR2018010688-appb-I000031
. If there is no risk of confusion or if no particular antenna port or neuromolecule is specified, the indexes p and < RTI ID = 0.0 >
Figure PCTKR2018010688-appb-I000032
Can be dropped, resulting in a complex value of < RTI ID = 0.0 >
Figure PCTKR2018010688-appb-I000033
or
Figure PCTKR2018010688-appb-I000034
.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2018010688-appb-I000035
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure PCTKR2018010688-appb-I000036
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure PCTKR2018010688-appb-I000037
와 자원 요소들
Figure PCTKR2018010688-appb-I000038
간의 관계는 수학식 1과 같이 주어진다.
In addition, a physical resource block is a block in the frequency domain
Figure PCTKR2018010688-appb-I000035
Are defined as consecutive subcarriers. On the frequency domain,
Figure PCTKR2018010688-appb-I000036
. In this case, the physical resource block number in the frequency domain,
Figure PCTKR2018010688-appb-I000037
And resource elements
Figure PCTKR2018010688-appb-I000038
Is given by Equation (1).
Figure PCTKR2018010688-appb-M000001
Figure PCTKR2018010688-appb-M000001
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure PCTKR2018010688-appb-I000039
까지 번호가 매겨진다.
Also, with respect to a carrier part, a terminal may be configured to receive or transmit using only a subset of the resource grid. At this time, a set of resource blocks set to be received or transmitted by the UE is set to 0
Figure PCTKR2018010688-appb-I000039
.
Self-contained 서브프레임 구조Self-contained subframe structure
NR 시스템에서 고려되는 TDD(Time Division Duplexing) 구조는 상향링크(Uplink, UL)와 하향링크(Downlink, DL)를 하나의 서브프레임(subframe)에서 모두 처리하는 구조이다. 이는, TDD 시스템에서 데이터 전송의 지연(latency)을 최소화하기 위한 것이며, 상기 구조는 self-contained 서브프레임(self-contained subframe) 구조로 지칭된다. A time division duplexing (TDD) structure considered in the NR system is a structure that processes both an uplink (UL) and a downlink (DL) in one subframe. This is to minimize the latency of data transmission in the TDD system, and the structure is referred to as a self-contained subframe structure.
도 4 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다. 도 4는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.FIG. 4 shows an example of a self-contained subframe structure to which the method proposed in this specification can be applied. Fig. 4 is merely for convenience of explanation and does not limit the scope of the present invention.
도 4를 참고하면, legacy LTE의 경우와 같이, 하나의 서브프레임이 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(symbol)들로 구성되는 경우가 가정된다. Referring to FIG. 4, it is assumed that one subframe is composed of 14 orthogonal frequency division multiplexing (OFDM) symbols as in legacy LTE.
도 4에서, 영역 402는 하향링크 제어 영역(downlink control region)을 의미하고, 영역 404는 상향링크 제어 영역(uplink control region)을 의미한다. 또한, 영역 402 및 영역 404 이외의 영역(즉, 별도의 표시가 없는 영역)은 하향링크 데이터(downlink data) 또는 상향링크 데이터(uplink data)의 전송을 위해 이용될 수 있다.In FIG. 4, an area 402 refers to a downlink control region, and an area 404 refers to an uplink control region. Further, an area other than the area 402 and the area 404 (that is, an area without a separate mark) can be used for transmission of downlink data or uplink data.
즉, 상향링크 제어 정보(uplink control information) 및 하향링크 제어 정보(downlink control information)는 하나의 self-contained 서브프레임에서 전송된다. 반면, 데이터(data)의 경우, 상향링크 데이터 또는 하향링크 데이터가 하나의 self-contained 서브프레임에서 전송된다. That is, the uplink control information and the downlink control information are transmitted in one self-contained subframe. On the other hand, in the case of data, uplink data or downlink data is transmitted in one self-contained subframe.
도 4에 나타난 구조를 이용하는 경우, 하나의 self-contained 서브프레임 내에서, 하향링크 전송과 상향링크 전송이 순차적으로 진행되며, 하향링크 데이터의 전송 및 상향링크 ACK/NACK의 수신이 수행될 수 있다. In the case of using the structure shown in FIG. 4, in one self-contained subframe, downlink transmission and uplink transmission proceed sequentially, and downlink data transmission and uplink ACK / NACK reception can be performed .
결과적으로, 데이터 전송의 에러가 발생하는 경우, 데이터의 재전송까지 소요되는 시간이 감소할 수 있다. 이를 통해, 데이터 전달과 관련된 지연이 최소화될 수 있다.As a result, when an error occurs in data transmission, the time required until data retransmission can be reduced. This allows the delay associated with data transfer to be minimized.
도 4와 같은 self-contained 서브프레임 구조에서, 기지국(eNodeB, eNB, gNB) 및/또는 단말(terminal, UE(User Equipment))이 전송 모드(transmission mode)에서 수신 모드(reception mode)로 전환하는 과정 또는 수신 모드에서 전송 모드로 전환하는 과정을 위한 시간 갭(time gap)이 요구된다. 상기 시간 갭과 관련하여, 상기 self-contained 서브프레임에서 하향링크 전송 이후에 상향링크 전송이 수행되는 경우, 일부 OFDM 심볼(들)이 보호 구간(Guard Period, GP)으로 설정될 수 있다.In the self-contained subframe structure as shown in FIG. 4, when a base station (eNodeB, eNB, gNB) and / or a terminal (UE) shifts from a transmission mode to a reception mode A time gap is required for the process of switching from the reception mode to the transmission mode. With respect to the time gap, when uplink transmission is performed after downlink transmission in the self-contained subframe, some OFDM symbol (s) may be set as a guard period (GP).
아날로그 빔포밍(Analog beamforming)Analog beamforming
mmW는 파장이 짧아져서 동일 면적에 다수 개의 안테나들을 설치할 수 있다. 즉 30GHz 대역에서 파장은 1cm로써, 5 by 5 cm의 panel에 0.5 lambda(파장, λ) 간격으로 2-dimension 배열 형태로 총 100개의 안테나 요소(element)들이 설치될 수 있다.The mmW is shortened in wavelength, so that a plurality of antennas can be installed in the same area. That is, in the 30 GHz band, a total of 100 antenna elements can be installed in a 2-dimensional array of 0.5 lambda (wavelength, λ) intervals on a panel of 5 by 5 cm with a wavelength of 1 cm.
그러므로 mmW는 다수 개의 안테나 element들을 사용하여 beamforming(BF) 이득을 높여 커버리지를 증가시키거나, throughput을 높인다.Therefore, the mmW uses a number of antenna elements to increase the beamforming (BF) gain to increase the coverage or increase the throughput.
이 경우, 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(transceiver unit)을 가지면 주파수 자원 별로 독립적인 beamforming을 수행할 수 있다.In this case, if a TXRU (transceiver unit) is provided so that transmission power and phase can be adjusted for each antenna element, independent beamforming can be performed for each frequency resource.
그러나 100여 개의 안테나 element들 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제가 있다.However, there is a problem in that the TXRU is not effective in terms of cost in installing all of the antenna elements of 100 or more.
그러므로, 하나의 TXRU에 다수 개의 안테나 element들을 mapping하고, analog phase shifter로 beam의 방향을 조절하는 방식이 고려되고 있다.Therefore, a method of mapping a plurality of antenna elements to one TXRU and adjusting the direction of a beam with an analog phase shifter is considered.
이러한 analog beamforming 방식은 전 대역에 있어서 하나의 beam 방향만을 만들 수 있어 주파수 선택적 beaming을 해줄 수 없는 단점을 갖는다.This analog beamforming method has a disadvantage that it can not perform frequency selective beaming because it can make only one beam direction in all bands.
Digital BF와 analog BF의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF가 고려되고 있다.A hybrid BF with B TXRUs, which are fewer than Q antenna elements, is considered as an intermediate form of digital BF and analog BF.
이 경우에 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.In this case, although there is a difference depending on the connection method of B TXRU and Q antenna elements, the direction of the beam that can be transmitted at the same time is limited to B or less.
NR(New Radio) 시스템은 다양한 대역폭(bandwidth, BW)들을 지원하는 단말(예: UE, 이하 편의상 UE라 표현하기로 함)들을 포함한다.A New Radio (NR) system includes terminals (e.g., UEs, hereinafter referred to as UEs for convenience) that support various bandwidths (BWs).
NR 시스템의 목표 중 하나는, 네트워크(network, NW)가 모든 UE들을 유연하게(flexible) 스케쥴링(scheduling)하는 것이다.One of the goals of the NR system is to allow a network (NW) to flexibly schedule all UEs.
또한, CSI-RS (Channel State Information - Reference Signal) 측정(measurement)에 대한 configuration도 유연하고(flexible), 효율적으로 진행될 필요가 있다. Also, the configuration for CSI-RS (Channel State Information-Reference Signal) measurement needs to be flexible and efficient.
이를 위해, UE는 네트워크로부터 하나 또는 그 이상의 대역폭 파트(bandwidth part, BWP)들을 설정(configure)받을 수 있다.To this end, the UE may be configured to configure one or more bandwidth parts (BWPs) from the network.
이러한 NR system에서 각 UE는 자신의 active BWP 크기에 맞게 RF(Radio Frequency)를 설정함으로써 RF측 또는 baseband측의 파워 이용 효율을 높일 수 있다. In this NR system, each UE can increase the power utilization efficiency on the RF side or baseband side by setting RF (Radio Frequency) according to its active BWP size.
여기서, active BWP는 설정된 BWP들 중에서 (네트워크에 의해) activation된 BWP를 의미한다.Here, the active BWP means the BWP activated (by the network) among the set BWPs.
이런 경우, CSI-RS measurement configuration에 따라 UE는 CSI-RS를 측정(measure)하기 위하여 RF를 retuning(또는 재설정)할 수 있다.In this case, according to the CSI-RS measurement configuration, the UE may retune (or reset) the RF to measure the CSI-RS.
또는, baseband측의 구현에 따라 processing 상의 변경이 있을 수 있다. Or, there may be processing changes depending on the implementation of the baseband.
이하에서, 본 명세서 제안하는 다양한 BWP 상태(state)에서 processing을 진행하고 있는 UE들로 적합한 CSI-RS measurement configuration을 signaling하고, UE들이 해당 signaling에 기초하여 가질 수 있는 동작들에 대하여 상세하게 설명한다.In the following, signaling CSI-RS measurement configurations suitable for UEs processing in various BWP states proposed in the present specification, and operations that UEs can have based on signaling will be described in detail .
측정 대역폭 (measurement BW)과 Measurement bandwidth (measurement BW) and UEUE 활성  activation BWPBWP (active  (active BWPBWP ) 또는 ) or UEUE 최대 대역폭(maximum BW)과의 관계 Relationship to maximum bandwidth (maximum BW)
이하에서 사용되는 용어에 대해 간략히 정의한다.The terms used below are briefly defined.
먼저, 측정 대역폭(measurement BW)는 CSI-RS가 설정(configure)되어 있는 BW를 의미할 수 있다.First, the measurement bandwidth (measurement BW) may refer to the BW for which the CSI-RS is configured.
그리고, active BWP는 앞서 설명한 바와 같이, 단말이 설정받은 BWP 중에서 activation이 지시된 BWP를 의미한다.As described above, active BWP means BWP in which activation is instructed among the BWPs set by the UE.
그리고, UE maximum BW는 단말이 지원할 수 있는 최대 BW를 의미한다.The UE maximum BW means the maximum BW that the UE can support.
그리고, 측정 간격(measurement gap)은 UE가 측정을 수행하는데 사용할 수 있는 기간(period)를 나타내는 것으로, 해당 기간에서는 UL 및 DL 전송이 스케쥴되지 않는다.And, a measurement gap indicates a period that the UE can use to perform the measurement. In this period, UL and DL transmissions are not scheduled.
UE는 네트워크(Network, NW)로부터 active BWP를 configure받을 수 있다.The UE can configure the active BWP from the network (Network, NW).
여기서, 네트워크는 기지국 등으로 표현될 수 있다.Here, the network may be expressed as a base station or the like.
또한, active BWP를 configure 받는다는 것은 설정된 BWP 중에서 특정 BWP에 대한 activation을 수신하는 것과 동일한 의미로 해석될 수 있다.Also, receiving an active BWP configuration can be interpreted in the same sense as receiving activation for a specific BWP among the set BWPs.
UE는 상기 active BWP에서 네트워크와 데이터를 송수신할 수 있으며, 해당 과정에서 기타 주파수 범위(frequency range)에 대한 CSI-RS measurement 관련 signaling을 수신할 수 있다.The UE may transmit data to and receive data from the network in the active BWP, and may receive signaling related to CSI-RS measurement for other frequency ranges in the process.
상기 기타 frequency range는 UE의 active BWP를 포함할 수 있다. The other frequency range may include an active BWP of the UE.
다음으로, CSI-RS measurement BW와 UE의 active BWP 또는 UE가 지원할 수 있는 maximum BW사이의 관계에 따라 데이터 수신과 CSI-RS measurement가 다르게 수행될 수 있으며, 아래 case들(case 1 내지 3)을 통해 보다 구체적으로 살펴본다.Next, data reception and CSI-RS measurement may be performed differently depending on the relationship between the CSI-RS measurement BW and the active BWP of the UE or the maximum BW that can be supported by the UE, and the following cases (cases 1 to 3) We will look at it more specifically.
(Case 1)(Case 1)
Case 1은 CSI-RS measurement BW와 Active BWP가 동일한 중심 주파수 (center frequency) 를 가질 때, data 수신과 CSI-RS measurement를 수행하는 방법이다. Case 1 is a method of performing data reception and CSI-RS measurement when the CSI-RS measurement BW and the active BWP have the same center frequency.
UE의 active BWP가 CSI-RS measurement BW보다 큰 경우, UE는 RF retuning time이 필요하지 않을 수 있다.If the active BWP of the UE is greater than the CSI-RS measurement BW, the UE may not need an RF retuning time.
한편, UE의 active BWP는 CSI-RS measurement BW보다 작지만 UE의 maximum BW가 measurement BW보다 큰 경우, UE는 구현 측면에 따라 RF transition time이 필요할 수 있다.On the other hand, if the active BWP of the UE is smaller than the CSI-RS measurement BW, but the UE's maximum BW is larger than the measurement BW, the UE may require an RF transition time depending on the implementation aspect.
이 때, 상기 RF transition time은 최대 20us일 수 있다.At this time, the RF transition time may be a maximum of 20 us.
본 명세서에서 사용되는 RF retuning time은 단말이 RF를 switching하거나 재설정하는데 소요되는 시간으로, RF transition time과 동일한 의미로 해석될 수 있다.The RF retuning time used herein is the time required for the UE to switch or reset the RF, and can be interpreted in the same meaning as the RF transition time.
위와 같은 환경에서, active BWP와 measurement BW가 동일한 뉴머롤러지 (numerology)를 가지는 경우, UE는 CSI-RS를 measure하는 동시에 active BWP에서 data를 수신할 수 있다.In such an environment, if the active BWP and the measurement BW have the same numerology, the UE can measure the CSI-RS and receive data at the active BWP.
또는, 위와 같은 경우, NW는 UE의 active BWP를 measurement BW로 스위칭 (switching)하게 하여 measurement BW에서도 data를 수신할 수 있도록 할 수 있다.Alternatively, in such a case, the NW may switch the active BWP of the UE to measurement BW so that it can receive data in the measurement BW.
한편, active BWP와 measurement BW가 서로 다른 numerology를 가질 경우, UE는 NW의 signaling에 따라 해당 BW에 대하여 measurement만 수행하거나, 또는 NW는 UE의 active BWP를 measurement BW로 switching하도록 signaling하여, UE가 measurement 수행과 data 수신을 모두 진행하도록 할 수 있다.If the active BWP and the measurement BW have different numerology, the UE performs measurement only for the corresponding BW according to signaling of the NW, or the NW signals the active BWP of the UE to switch to the measurement BW, It is possible to perform both the performance and the data reception.
(Case 2)(Case 2)
Case 2는 CSI-RS measurement BW와 active BWP가 서로 다른 중심 주파수를 가지는 경우, data 수신과 CSI-RS measurement를 수행하는 방법이다. Case 2 is a method of performing data reception and CSI-RS measurement when CSI-RS measurement BW and active BWP have different center frequencies.
CSI-RS measurement BW와 active BWP가 서로 다른 중심 주파수를 가지고 있는 경우, UE는 RF retuning을 할 필요가 있다.If the CSI-RS measurement BW and the active BWP have different center frequencies, the UE needs to perform RF retuning.
여기서, CSI-RS measurement BW와 active BWP가 서로 다른 중심 주파수를 가지고 있다는 의미는 measurement BW가 UE cover BW 내에서 벗어나는 경우를 의미한다.Here, the CSI-RS measurement BW and the active BWP have different center frequencies, which means that the measurement BW deviates from the UE cover BW.
이런 경우, UE는 NW으로부터 수신하는 측정 간격(measurement gap)을 이용하여 CSI-RS를 측정할 수 있다. In this case, the UE can measure the CSI-RS using the measurement gap received from the NW.
하지만, CSI-RS measurement BW가 UE의 maximum BW에 포함 되지만, active BWP와 서로 다른 중심 주파수를 가지는 경우, 데이터 수신 여부 및 power saving 측면에서 trade-off가 존재하므로, NW의 지시(indication)에 따라 UE가 동작할 수 있다.However, if the CSI-RS measurement BW is included in the maximum BW of the UE but has a different center frequency from the active BWP, there is a trade-off in terms of data reception and power saving, The UE may operate.
(Case 3)(Case 3)
Case 3은, UE가 다수의 RF(multiple RF)들을 가지는 경우, data 수신 및 CSI-RS를 이용하여 측정을 수행하는 방법이다. Case 3 is a method for performing measurement using data reception and CSI-RS when the UE has multiple RFs (multiple RFs).
UE가 다수의 RF들을 가지는 경우, UE는 상기 case 1 또는 case 2와 동일한 환경에서도 다르게 동작할 수 있다.If the UE has multiple RFs, the UE may operate differently in the same circumstances as case 1 or case 2 above.
active BWP가 한 개인 경우, 주어진 CSI-RS measurement BW 크기에 따라 UE는 다음과 같이 동작할 수 있다. If there is one active BWP, the UE can operate according to the given CSI-RS measurement BW size as follows.
(1) CSI-RS measurement BW가 active BWP에 사용하는 RF를 제외한 나머지 RF(들)을 이용하여 cover할 수 있는 경우, UE는 active BWP에서 data 수신을 계속 진행하고, 나머지 RF(들)을 이용하여 CSI-RS measurement BW에 대한 processing을 진행할 수 있다. (1) If the CSI-RS measurement BW can be covered using the remaining RF (s) except for the RF used for active BWP, the UE shall continue to receive data from the active BWP and use the remaining RF (s) To process the CSI-RS measurement BW.
또는, NW이 해당 measurement BW를 active시켜서 UE가 multiple active BWP mode로 전환되게 할 수도 있다. Alternatively, the NW may activate the measurement BW to cause the UE to switch to the multiple active BWP mode.
(2) CSI-RS measurement BW가 active BWP에 사용하는 RF를 제외한 나머지 RF를 이용하여 cover할 수 없는 경우, UE는 multiple RF들을 이용하여 상기 case 1 또는 case 2에서 진행하는 과정과 동일한 과정을 수행할 수 있다. (2) If the CSI-RS measurement BW can not cover with the remaining RF except for the RF used in the active BWP, the UE performs the same process as the case 1 or case 2 using multiple RFs can do.
측정 간격 설정과 단말 동작 (measurement gap configuration and Measurement gap configuration and measurement UEUE behaviors) behaviors)
다음으로, 측정 간격 설정과 UE 동작에 대해 보다 구체적으로 살펴본다.Next, the measurement interval setting and the UE operation will be described in more detail.
상기 서술된 각 case에서 UE BWP의 상태 (state)에 따라, NW는 적절한 measurement gap을 UE에게 configure해줄 수 있고, UE는 이에 따라 다양한 동작(option 1, option 2)를 수행할 수 있다.Depending on the state of the UE BWP in each case described above, the NW may configure the UE with an appropriate measurement gap, and the UE may perform various operations accordingly (option 1, option 2).
옵션 1(Option 1)Option 1 (Option 1)
NW는 상기 각 case(case 1, case 2, case 3)에 해당하는 measurement gap을 정의할 수 있다.NW can define a measurement gap corresponding to each case (case 1, case 2, case 3).
이 때, UE는 각 case에 따라 NW로부터 수신한 measurement gap을 이용하여 CSI-RS measurement를 수행하고, measurement gap 동안 data를 수신하지 않는다.At this time, the UE performs CSI-RS measurement using the measurement gap received from the network according to each case, and does not receive data during the measurement gap.
Option 1은 추가적인 signaling overhead 없이 NW와 UE 모두가 processing을 진행할 수 있는 장점은 있으나, UE 측에서 measurement gap 이용 효율이 상이하기 때문에, 일부 UE에게는 효율적이지 못할 수 있다. Option 1 has the advantage that both NW and UE can perform processing without additional signaling overhead, but it may not be effective for some UEs because the measurement gap utilization efficiency is different on the UE side.
옵션 2(Option 2)Option 2 (Option 2)
NW는 단말의 능력(capability)에 따라 measurement gap table을 미리 정의할 수 있다.The NW can predefine the measurement gap table according to the capability of the terminal.
그리고, NW는 단말의 capability와 state에 따라 adaptive한 measurement gap을 해당 UE로 indication해줄 수 있다.The NW may indicate an adaptive measurement gap to the corresponding UE according to the capability and state of the UE.
이 때, UE 별로 measurement gap을 각각 정의하여 measurement gap table을 구성할 수도 있고, 또는 특정 기준에 기초하여 UE를 그룹핑한 후 그룹 별로 measurement gap을 정의하여 measurement gap table을 구성할 수도 있다.At this time, a measurement gap table may be defined by defining measurement gaps for each UE, or a measurement gap table may be formed by grouping UEs based on specific criteria and defining measurement gaps for each group.
또한, UE가 processing하는 BW의 subcarrier spacing에 따라 또 다른 measurement gap이 정의될 수 있다.In addition, another measurement gap can be defined according to the subcarrier spacing of the BW processed by the UE.
Option 2는 각 UE에게 최적의 measurement gap을 configure함으로써, UE의 gap 이용효율을 높일 수 있다는 효과가 있다. Option 2 has the effect of increasing UE utilization efficiency by configuring the optimal measurement gap for each UE.
옵션 3(Option 3)Option 3 (Option 3)
NW의 indication이 없을 경우, UE는 자신의 capability에 따라 measurement gap 없이 또는 일정의 시간 지연(time delay)를 고려하여 CSI-RS measurement를 수행할 수 있다. If there is no indication of the NW, the UE may perform the CSI-RS measurement according to its capability without a measurement gap or considering a predetermined time delay.
예를 들어, NW가 단말의 capability를 알고 있는 상태에서 CSI-RS measurement configuration을 UE로 signaling한 경우, UE는 해당 processing을 준비하기 위한 timing이 기타 process에 영향을 주지 않는 범위인 경우, 별도의 measurement gap signaling 없이 진행 할 수 있다.For example, if the NW signals the UE to the CSI-RS measurement configuration while the UE knows the capability of the UE, if the timing for preparing the process does not affect other processes, You can proceed without gap signaling.
또는, UE는 CSI-RS measurement configuration에 따라 processing을 준비하는 timing이 기타 process에 영향을 주지만 NW의 measurement gap signaling이 없는 경우, 해당 processing을 진행하고, 뒤이어 normal data/control processing을 진행할 수 있다.Alternatively, if the timing of preparing the processing according to the CSI-RS measurement configuration affects other processes but the UE does not have the measurement gap signaling of the NW, the UE can perform the corresponding processing and then perform the normal data / control processing.
여기서, NW측에서도 단말의 capability을 알고 있으므로 CSI-RS measurement 진행으로 인한 time delay를 알 수 있게 된다.Here, since the capability of the UE is known on the NW side, the time delay due to the CSI-RS measurement can be known.
다음으로, 본 명세서에서 제안하는 CSI-RS에 기초하여 측정(measurement)를 수행하는 방법에 대해 관련 도면(도 5, 도 6)을 참조하여 더 구체적으로 살펴본다.Next, a method of performing measurement based on the CSI-RS proposed in the present specification will be described in more detail with reference to the related drawings (FIGS. 5 and 6).
도 5는 본 명세서에서 제안하는 measurement를 수행하는 단말의 동작 방법의 일례를 나타낸 순서도이다.5 is a flowchart showing an example of an operation method of a terminal performing the measurement proposed in the present specification.
먼저, 단말은 상기 단말이 지원하는 측정 간격(measurement gap)에 대한 정보를 포함하는 능력(capability) 정보 요소(information element, IE)를 네트워크로 전송한다(S510).First, the terminal transmits a capability information element (IE) including information on a measurement gap supported by the terminal to the network (S510).
그리고, 상기 단말은 측정 대역폭 (measurement BW) 상에서 상기 측정(measurement)를 수행하는 시작 위치에 대한 정보를 상기 네트워크로부터 수신한다(S520).Then, the terminal receives from the network information on a starting position at which the measurement is performed on a measurement bandwidth (measurement BW) (S520).
상기 측정 대역폭은 상기 CSI-RS가 설정되는 대역폭을 의미한다.The measurement bandwidth refers to a bandwidth at which the CSI-RS is set.
그리고, 상기 측정 간격(measurement gap)은 서브캐리어 간격(subcarrier spacing)에 따라 결정될 수 있다.The measurement gap may be determined according to a subcarrier spacing.
그리고, 활성 대역폭 파트(active bandwidth part)와 상기 측정 대역폭(measurement BW)가 다르게 설정된 경우, 상기 단말은 상기 시작 위치부터 상기 측정 간격(measurement gap) 동안 상기 측정 대역폭(measurement BW) 상에서 상기 CSI-RS에 기초하여 측정(measurement)를 수행한다(S530).If the active bandwidth part and the measurement bandwidth BW are set differently, the terminal may transmit the CSI-RS (BW) on the measurement bandwidth (measurement BW) during the measurement gap from the start position. (Step S530).
여기서, 상기 활성 대역폭 파트와 상기 측정 대역폭이 다르게 설정된 경우는 상기 측정 대역폭이 단말이 지원하는 최대 대역폭에 포함되지 않고, 상기 활성 대역폭 파트와 상기 측정 대역폭의 중심 주파수가 서로 다르다는 것을 의미할 수 있다.Here, when the active bandwidth part and the measured bandwidth are set differently, it may mean that the measured bandwidth is not included in the maximum bandwidth supported by the terminal, and the center frequency of the active bandwidth part and the measured bandwidth are different from each other.
추가적으로, 상기 단말은 S530 단계 이전에 상기 활성 대역폭 파트에서 상기 측정 대역폭으로 RF(radio frequency)를 리튜닝(retuning)할 수 있다.Additionally, the terminal may retune the radio frequency (RF) from the active bandwidth part to the measurement bandwidth before step S530.
그리고, 상기 단말이 다수의 RF를 가지는 경우, 아래 단계를 추가적으로 수행할 수 있다.If the terminal has a plurality of RFs, the following steps can be additionally performed.
즉, 상기 단말은 S510 내지 S530 단계 이외에도 상기 활성 대역폭 파트 상에서 데이터를 네트워크로부터 수신할 수 있다.That is, the terminal may receive data from the network on the active bandwidth part in addition to steps S510 to S530.
이 경우, 상기 데이터는 상기 단말의 제 1 RF에 기초하여 수신되며, 상기 측정(measurement)는 상기 단말의 제 2 RF에 기초하여 수행될 수 있다.In this case, the data is received based on a first RF of the terminal, and the measurement can be performed based on a second RF of the terminal.
기존에는 네트워크에서 단말 성능과 무관하게 동일한 measurement gap을 설정하였으나, 본 명세서에서 제안하는 CSI-RS에 기초하여 수행되는 측정은 단말의 성능에 따른 measurement gap을 이용함으로써, 보다 효율적인 측정을 수행할 수 있는 효과가 있다.In the prior art, the same measurement gap is set regardless of the terminal performance in the network. However, the measurement performed based on the CSI-RS proposed in the present specification uses a measurement gap according to the performance of the terminal, It is effective.
본 발명이 적용될 수 있는 장치 일반Apparatus to which the present invention may be applied
도 6은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.6 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
도 6을 참조하면, 무선 통신 시스템은 기지국(610)과 기지국(610) 영역 내에 위치한 다수의 단말(620)을 포함한다.Referring to FIG. 6, a wireless communication system includes a plurality of terminals 620 located within a region of a base station 610 and a base station 610.
상기 기지국과 단말은 각각 무선 장치로 표현될 수도 있다.The BS and the MS may be represented by wireless devices, respectively.
기지국(610)은 프로세서(processor, 611), 메모리(memory, 612) 및 RF 모듈(radio frequency module, 613)을 포함한다. The base station 610 includes a processor 611, a memory 612, and a radio frequency module 613.
프로세서(611)는 앞서 도 1 내지 도 5에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리(612)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈(613)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.The processor 611 implements the functions, processes and / or methods suggested in Figs. 1-5 above. The layers of the air interface protocol may be implemented by a processor. The memory 612 is coupled to the processor and stores various information for driving the processor. The RF module 613 is coupled to the processor to transmit and / or receive wireless signals.
단말(620)은 프로세서(621), 메모리(622) 및 RF 모듈(623)을 포함한다. The terminal 620 includes a processor 621, a memory 622, and an RF module 623.
프로세서(621)는 앞서 도 1 내지 도 5에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다. 메모리(622)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다. RF 모듈(623)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.The processor 621 implements the functions, processes and / or methods suggested in Figs. 1-5 above. The layers of the air interface protocol may be implemented by a processor. The memory 622 is coupled to the processor and stores various information for driving the processor. The RF module 623 is coupled to the processor to transmit and / or receive wireless signals.
메모리(612, 622)는 프로세서(611, 621) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(611, 621)와 연결될 수 있다. The memories 612 and 622 may be internal or external to the processors 611 and 621 and may be coupled to the processors 611 and 621 by various well known means.
또한, 기지국(610) 및/또는 단말(620)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.Also, the base station 610 and / or the terminal 620 may have a single antenna or multiple antennas.
도 7은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.7 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
특히, 도 7에서는 앞서 도 6의 단말을 보다 상세히 예시하는 도면이다. Particularly, FIG. 7 illustrates the terminal of FIG. 6 in more detail.
도 7을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(710), RF 모듈(RF module)(또는 RF 유닛)(735), 파워 관리 모듈(power management module)(705), 안테나(antenna)(740), 배터리(battery)(755), 디스플레이(display)(715), 키패드(keypad)(720), 메모리(memory)(730), 심카드(SIM(Subscriber Identification Module) card)(725)(이 구성은 선택적임), 스피커(speaker)(745) 및 마이크로폰(microphone)(750)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다. 7, a terminal includes a processor (or a digital signal processor (DSP) 710, an RF module (or RF unit) 735, a power management module 705 An antenna 740, a battery 755, a display 715, a keypad 720, a memory 730, a SIM (Subscriber Identification Module ) card 725 (this configuration is optional), a speaker 745 and a microphone 750. The terminal may also include a single antenna or multiple antennas .
프로세서(710)는 앞서 도 1 내지 도 6에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서에 의해 구현될 수 있다. Processor 710 implements the functions, processes and / or methods suggested in FIGS. 1-6 above. The layer of the air interface protocol may be implemented by a processor.
메모리(730)는 프로세서와 연결되고, 프로세서의 동작과 관련된 정보를 저장한다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. Memory 730 is coupled to the processor and stores information related to the operation of the processor. The memory may be internal or external to the processor and may be coupled to the processor by any of a variety of well known means.
사용자는 예를 들어, 키패드(720)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(750)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(725) 또는 메모리로부터 추출할 수 있다. 또한, 프로세서는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(715) 상에 디스플레이할 수 있다. The user inputs command information such as a telephone number or the like by, for example, pressing (or touching) a button on the keypad 720 or voice activation using the microphone 750. The processor receives such command information and processes it to perform appropriate functions, such as dialing a telephone number. Operational data may be extracted from the sim card 725 or memory. The processor may also display command information or drive information on the display 715 for the user to perceive and for convenience.
RF 모듈(735)는 프로세서에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈에 전달한다. RF 모듈은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(740)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈은 프로세서에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(745)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.The RF module 735 is coupled to the processor to transmit and / or receive RF signals. The processor communicates command information to the RF module to transmit, for example, a radio signal that constitutes voice communication data, to initiate communication. The RF module consists of a receiver and a transmitter for receiving and transmitting radio signals. The antenna 740 functions to transmit and receive radio signals. When receiving a radio signal, the RF module can transmit the signal for processing by the processor and convert the signal to baseband. The processed signal can be converted to audible or readable information output via the speaker 745.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.8 is a diagram showing an example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
구체적으로, 도 8은 FDD(Frequency Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.Specifically, FIG. 8 shows an example of an RF module that can be implemented in an FDD (Frequency Division Duplex) system.
먼저, 전송 경로에서, 도 6 및 도 7에서 기술된 프로세서는 전송될 데이터를 프로세싱하여 아날로그 출력 신호를 송신기(810)에 제공한다.First, in the transmission path, the processor described in FIGS. 6 and 7 processes the data to be transmitted and provides an analog output signal to the transmitter 810.
송신기(810) 내에서, 아날로그 출력 신호는 디지털-대-아날로그 변환(ADC)에 의해 야기되는 이미지들을 제거하기 위해 저역 통과 필터(Low Pass Filter,LPF)(811)에 의해 필터링되고, 상향 변환기(Mixer, 812)에 의해 기저대역으로부터 RF로 상향 변환되고, 가변이득 증폭기(Variable Gain Amplifier,VGA)(813)에 의해 증폭되며, 증폭된 신호는 필터(814)에 의해 필터링되고, 전력 증폭기(Power Amplifier,PA)(815)에 의해 추가로 증폭되며, 듀플렉서(들)(850)/안테나 스위치(들)(860)을 통해 라우팅되고, 안테나(870)을 통해 전송된다.Within the transmitter 810, the analog output signal is filtered by a low pass filter (LPF) 811 to remove images caused by a digital-to-analog conversion (ADC) And amplified by a Variable Gain Amplifier (VGA) 813. The amplified signal is filtered by a filter 814 and amplified by a power amplifier (PA) 815 and is routed through the duplexer (s) 850 / antenna switch (s) 860 and transmitted via the antenna 870.
또한, 수신 경로에서, 안테나(870)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(860)/듀플렉서들 (850)을 통해 라우팅되고, 수신기(820)으로 제공된다.In addition, in the receive path, antenna 870 receives signals from the outside and provides received signals that are routed through antenna switch (s) 860 / duplexers 850, .
수신기(820)내에서, 수신된 신호들은 저잡음 증폭기(Low Noise Amplifier, LNA)(823)에 의해 증폭되며, 대역통과 필터(824)에 의해 필터링되고, 하향 변환기(Mixer,825)에 의해 RF로부터 기저대역으로 하향 변환된다.Within the receiver 820, the received signals are amplified by a Low Noise Amplifier (LNA) 823, filtered by a bandpass filter 824, and filtered by a down converter (Mixer) 825 And downconverted to the baseband.
상기 하향 변환된 신호는 저역 통과 필터(LPF,826)에 의해 필터링되며, VGA(827)에 의해 증폭되어 아날로그 입력 신호를 획득하고, 이는 도 6 및 도 7에서 기술된 프로세서에 제공된다.The down-converted signal is filtered by a low pass filter (LPF) 826 and amplified by VGA 827 to obtain an analog input signal, which is provided to the processor described in FIGS.
또한, 로컬 오실레이터 (local oscillator, LO) 발생기(840)는 전송 및 수신 LO 신호들을 발생 및 상향 변환기(812) 및 하향 변환기(825)에 각각 제공한다.A local oscillator (LO) generator 840 also generates and provides transmit and receive LO signals to up-converter 812 and down-converter 825, respectively.
또한, 위상 고정 루프(Phase Locked Loop,PLL)(830)은 적절한 주파수들에서 전송 및 수신 LO 신호들을 생성하기 위해 프로세서로부터 제어 정보를 수신하고, 제어 신호들을 LO 발생기(840)에 제공한다.In addition, a phase locked loop (PLL) 830 receives control information from the processor to generate transmit and receive LO signals at appropriate frequencies and provides control signals to the LO generator 840.
또한, 도 8에 도시된 회로들은 도 8에 도시된 구성과 다르게 배열될 수도 있다.Further, the circuits shown in Fig. 8 may be arranged differently from the configuration shown in Fig.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.9 is a diagram showing another example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
구체적으로, 도 9는 TDD(Time Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.Specifically, FIG. 9 shows an example of an RF module that can be implemented in a TDD (Time Division Duplex) system.
TDD 시스템에서의 RF 모듈의 송신기(910) 및 수신기(920)은 FDD 시스템에서의 RF 모듈의 송신기 및 수신기의 구조와 동일하다.The transmitter 910 and receiver 920 of the RF module in the TDD system are identical in structure to the transmitter and receiver of the RF module in the FDD system.
이하, TDD 시스템의 RF 모듈은 FDD 시스템의 RF 모듈과 차이가 나는 구조에 대해서만 살펴보기로 하고, 동일한 구조에 대해서는 도 8의 설명을 참조하기로 한다.Hereinafter, only the structure of the RF module of the TDD system that differs from the RF module of the FDD system will be described, and the same structure will be described with reference to FIG.
송신기의 전력 증폭기(Power Amplifier,PA)(915)에 의해 증폭된 신호는 밴드 선택 스위치(Band Select Switch,950), 밴드 통과 필터(BPF,960) 및 안테나 스위치(들)(970)을 통해 라우팅되고, 안테나(980)을 통해 전송된다.The signal amplified by the power amplifier (PA) 915 of the transmitter is routed through a Band Select Switch 950, a band pass filter (BPF) 960 and an antenna switch (s) And transmitted via the antenna 980. [
또한, 수신 경로에서, 안테나(980)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(970), 밴드 통과 필터(960) 및 밴드 선택 스위치(950)을 통해 라우팅되고, 수신기(920)으로 제공된다.In addition, in the receive path, antenna 980 receives signals from the outside and provides received signals that are coupled to antenna switch (s) 970, band pass filter 960, and band select switch 950 And is provided to the receiver 920. [
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which the elements and features of the present invention are combined in a predetermined form. Each component or feature shall be considered optional unless otherwise expressly stated. Each component or feature may be implemented in a form that is not combined with other components or features. It is also possible to construct embodiments of the present invention by combining some of the elements and / or features. The order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of certain embodiments may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments. It is clear that the claims that are not expressly cited in the claims may be combined to form an embodiment or be included in a new claim by an amendment after the application.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above. The software code can be stored in memory and driven by the processor. The memory is located inside or outside the processor and can exchange data with the processor by various means already known.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential characteristics thereof. Accordingly, the foregoing detailed description is to be considered in all respects illustrative and not restrictive. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.
본 발명의 무선 통신 시스템에서 측정(measurement)를 수행하는 방안은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.Although the method for performing measurement in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system and the 5G system (New RAT system), the present invention is applicable to various wireless communication systems It is possible.

Claims (11)

  1. 무선 통신 시스템에서 CSI-RS (Channel State Information - Reference Signal)에 기초하여 측정(measurement)을 수행하는 방법에 있어서, 단말에 의해 수행되는 방법은,A method of performing a measurement based on a CSI-RS (Channel State Information-Reference Signal) in a wireless communication system,
    상기 단말이 지원하는 측정 간격(measurement gap)에 대한 정보를 포함하는 능력(capability) 정보 요소(information element, IE)를 네트워크로 전송하는 단계;Transmitting a capability information element (IE) including information on a measurement gap supported by the terminal to a network;
    측정 대역폭 (measurement BW) 상에서 상기 측정(measurement)를 수행하는 시작 위치에 대한 정보를 상기 네트워크로부터 수신하는 단계; 및Receiving from the network information about a starting position for performing the measurement on a measurement bandwidth (measurement BW); And
    활성 대역폭 파트(active bandwidth part)와 상기 측정 대역폭(measurement BW)가 다르게 설정된 경우, 상기 시작 위치부터 상기 측정 간격(measurement gap) 동안 상기 측정 대역폭(measurement BW) 상에서 상기 CSI-RS에 기초하여 측정(measurement)를 수행하는 단계를 포함하는 것을 특징으로 하는 방법.A measurement based on the CSI-RS on the measurement bandwidth (measurement BW) during the measurement gap from the start position, when the active bandwidth part and the measurement bandwidth (measurement BW) are set differently < / RTI > wherein the method comprises performing a measurement.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 활성 대역폭 파트에서 상기 측정 대역폭으로 RF(radio frequency)를 리튜닝(retuning)하는 단계를 더 포함하는 것을 특징으로 하는 방법.Further comprising retuning a radio frequency (RF) from the active bandwidth part to the measured bandwidth.
  3. 제 1항에 있어서,The method according to claim 1,
    상기 측정 대역폭은 상기 CSI-RS가 설정되는 대역폭인 것을 특징으로 하는 방법.Wherein the measured bandwidth is a bandwidth at which the CSI-RS is set.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 활성 대역폭 파트와 상기 측정 대역폭이 다르게 설정된 경우는 상기 측정 대역폭이 단말이 지원하는 최대 대역폭에 포함되지 않고, 상기 활성 대역폭 파트와 상기 측정 대역폭의 중심 주파수가 서로 다른 것을 특징으로 하는 방법.Wherein if the active bandwidth part and the measured bandwidth are set differently, the measured bandwidth is not included in the maximum bandwidth supported by the terminal, and the center frequency of the active bandwidth part and the measured bandwidth are different.
  5. 제 1항에 있어서,The method according to claim 1,
    상기 측정 간격(measurement gap)은 서브캐리어 간격(subcarrier spacing)에 따라 결정되는 것을 특징으로 하는 방법.Wherein the measurement gap is determined according to a subcarrier spacing.
  6. 제 1항에 있어서,The method according to claim 1,
    상기 활성 대역폭 파트 상에서 데이터를 네트워크로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.Further comprising receiving data from the network on the active bandwidth part.
  7. 제 6항에 있어서,The method according to claim 6,
    상기 데이터는 상기 단말의 제 1 RF에 기초하여 수신되며,Wherein the data is received based on a first RF of the terminal,
    상기 측정(measurement)는 상기 단말의 제 2 RF에 기초하여 수행되는 것을 특징으로 하는 방법.Wherein the measurement is performed based on a second RF of the terminal.
  8. 무선 통신 시스템에서 CSI-RS(Channel State Information-Reference Signal)에 기초하여 측정(measurement)을 수행하는 단말에 있어서,A terminal for performing a measurement based on a CSI-RS (Channel State Information-Reference Signal) in a wireless communication system,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및An RF (Radio Frequency) module for transmitting and receiving a radio signal; And
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,And a processor operatively coupled to the RF module,
    상기 단말이 지원하는 측정 간격(measurement gap)에 대한 정보를 포함하는 능력(capability) 정보 요소(information element, IE)를 네트워크로 전송하며;Transmitting a capability information element (IE) including information on a measurement gap supported by the terminal to a network;
    측정 대역폭 (measurement BW) 상에서 상기 측정(measurement)를 수행하는 시작 위치에 대한 정보를 상기 네트워크로부터 수신하며; 및From the network, information about a starting position for performing the measurement on a measurement bandwidth (measurement BW); And
    활성 대역폭 파트(active bandwidth part)와 상기 측정 대역폭(measurement BW)가 다르게 설정된 경우, 상기 시작 위치부터 상기 측정 간격(measurement gap) 동안 상기 측정 대역폭(measurement BW) 상에서 상기 CSI-RS에 기초하여 측정(measurement)를 수행하도록 설정되는 것을 특징으로 하는 단말.A measurement based on the CSI-RS on the measurement bandwidth (measurement BW) during the measurement gap from the start position, when the active bandwidth part and the measurement bandwidth (measurement BW) are set differently wherein the terminal is configured to perform a measurement.
  9. 제 8항에 있어서, 상기 프로세서는,9. The apparatus of claim 8,
    상기 활성 대역폭 파트에서 상기 측정 대역폭으로 RF(radio frequency)를 리튜닝(retuning)하도록 설정되는 것을 특징으로 하는 단말.And to retune the radio frequency (RF) from the active bandwidth part to the measured bandwidth.
  10. 제 8항에 있어서, 상기 프로세서는,9. The apparatus of claim 8,
    상기 활성 대역폭 파트 상에서 데이터를 네트워크로부터 수신하도록 설정되는 것을 특징으로 하는 단말.And to receive data from the network on the active bandwidth part.
  11. 제 10항에 있어서,11. The method of claim 10,
    상기 데이터는 상기 단말의 제 1 RF에 기초하여 수신되며,Wherein the data is received based on a first RF of the terminal,
    상기 측정(measurement)는 상기 단말의 제 2 RF에 기초하여 수행되는 것을 특징으로 하는 단말.Wherein the measurement is performed based on a second RF of the terminal.
PCT/KR2018/010688 2017-09-12 2018-09-12 Method for measuring on the basis of csi-rs in wireless communication system and apparatus therefor WO2019054749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762557149P 2017-09-12 2017-09-12
US62/557,149 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019054749A1 true WO2019054749A1 (en) 2019-03-21

Family

ID=65723767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010688 WO2019054749A1 (en) 2017-09-12 2018-09-12 Method for measuring on the basis of csi-rs in wireless communication system and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2019054749A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098568A1 (en) * 2019-11-19 2021-05-27 华为技术有限公司 Capability information sending method and apparatus, and capability information receiving method and apparatus
WO2022007746A1 (en) * 2020-07-06 2022-01-13 维沃移动通信有限公司 Measurement gap configuration request method and apparatus, and terminal and network-side device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117928A1 (en) * 2015-01-20 2016-07-28 엘지전자(주) Method for activating/deactivating cell in wireless communication system and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117928A1 (en) * 2015-01-20 2016-07-28 엘지전자(주) Method for activating/deactivating cell in wireless communication system and device therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Further Discussion on Measurement Gap for NR", R4-1709307, 3GPP TSG-RAN WG4 MEETING AH NR#3, 11 September 2017 (2017-09-11), Nagoya, Japan, XP051331431 *
"RRM Measurement for Bandwidth Part Operation", R2-1708001, 3GPP TSG-RAN WG2 MEETING #99, 11 August 2017 (2017-08-11), Berlin, Germany, XP051317915 *
LG ELECTRONICS ET AL.: "CSI-RS Based RRM Measurement for L3 Mobility", RL-1713133, 3GPP TSG RAN WG1 MEETING #90, 12 August 2017 (2017-08-12), Prague, Czech, XP051315942 *
LG ELECTRONICS: "Further Remaining Details on Wider Bandwidth Operation", R1-1713204, 3GPP TSG RAN WG1 MEETING #90, 12 August 2017 (2017-08-12), Prague, Czech, XP051316013 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021098568A1 (en) * 2019-11-19 2021-05-27 华为技术有限公司 Capability information sending method and apparatus, and capability information receiving method and apparatus
WO2022007746A1 (en) * 2020-07-06 2022-01-13 维沃移动通信有限公司 Measurement gap configuration request method and apparatus, and terminal and network-side device

Similar Documents

Publication Publication Date Title
WO2018026182A1 (en) Method for transmitting and receiving signal in wireless communication system supporting unlicensed band, and devices supporting same
WO2019093823A1 (en) Method for transmitting/receiving data in wireless communication system, and apparatus therefor
WO2018062841A1 (en) Method for transmitting and receiving signal between terminal and base station in wireless communication system, and apparatus for supporting same
WO2018030841A1 (en) Method for reporting reference signal measurement information by terminal in wireless communication system, and apparatus supporting same
WO2019088787A1 (en) Method for transmitting and receiving plurality of slot-based long pucchs in wireless communication system and apparatus therefor
WO2019088676A1 (en) Method for determining resource area to be allocated to bandwidth part in wireless communication system, and apparatus therefor
WO2019050329A1 (en) Method for transmitting uplink signal on basis of codebook in wireless communication system, and device therefor
WO2018199584A1 (en) Method for receiving phase tracking reference signal by terminal in wireless communication system, and device supporting same
WO2018084660A1 (en) Physical uplink control channel transmission/reception method between terminal and base station in wireless communication system and device supporting same
WO2017213420A1 (en) Method for obtaining information about cyclic prefix in wireless communication system and device for same
WO2018182256A1 (en) Method for reporting channel state information in wireless communication system and apparatus therefor
WO2019066560A1 (en) Method for performing uplink transmission in wireless communication system and device therefor
WO2018182248A1 (en) Method for terminal to receive phase tracking reference signal in wireless communication system, and device supporting same
WO2019004756A1 (en) Method for transmitting and receiving channel state information-reference signal in wireless communication system, and apparatus therefor
WO2019050370A1 (en) Method and device for transmitting or receiving signal by using carrier aggregation in wireless communication system
WO2019017755A9 (en) Method for multiplexing between reference signals in wireless communication system, and apparatus for same
WO2019022456A2 (en) Method for transmitting/receiving data in wireless communication system, and apparatus therefor
WO2018062891A1 (en) Method for transmitting and receiving synchronization signal in wireless communication system and apparatus for method
WO2019022473A1 (en) Method for performing bwp operation in wireless communication system and apparatus therefor
WO2019070101A1 (en) Method and device for transmitting or receiving data in wireless communication system
WO2022005187A1 (en) Mechanisms and conditions for supporting repetitions for a pucch transmission
WO2019168354A1 (en) Method by which terminal transmits srs in wireless communication system, and apparatus therefor
WO2019050359A1 (en) Method for handling collision between csi-rs and dmrs in wireless communication system, and device therefor
WO2018231017A1 (en) Method for mapping reference signal to physical resource in wireless communication system and apparatus therefor
WO2018016919A1 (en) Method whereby terminal measures rrm in wireless communication system, and devices for supporting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855713

Country of ref document: EP

Kind code of ref document: A1