WO2019054690A1 - Orthopedic artificial metal article and manufacturing method therefor - Google Patents

Orthopedic artificial metal article and manufacturing method therefor Download PDF

Info

Publication number
WO2019054690A1
WO2019054690A1 PCT/KR2018/010338 KR2018010338W WO2019054690A1 WO 2019054690 A1 WO2019054690 A1 WO 2019054690A1 KR 2018010338 W KR2018010338 W KR 2018010338W WO 2019054690 A1 WO2019054690 A1 WO 2019054690A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial metal
nano
protrusions
metal material
orthopedic
Prior art date
Application number
PCT/KR2018/010338
Other languages
French (fr)
Korean (ko)
Inventor
서정목
이순혁
장우영
한승범
Original Assignee
고려대학교 산학협력단
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 한국과학기술연구원 filed Critical 고려대학교 산학협력단
Publication of WO2019054690A1 publication Critical patent/WO2019054690A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30925Special external or bone-contacting surface, e.g. coating for improving bone ingrowth etched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30962Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using stereolithography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser

Definitions

  • embodiments relate to an orthopedic artificial metal material and a method of manufacturing the same.
  • Infections that occur after orthopedic surgery are one of the important complications that can lead to prolongation of the patient's treatment time, increase the cost of treatment, and lead to death of the patient. In terms of treating the patient, And the like.
  • the causes of infections after orthopedic surgery are diabetes, immune deficiency, malnutrition, and other external environmental factors.
  • a biomembrane When the microorganisms are attached to the surface of the prosthesis, a biomembrane can be formed by combining the substances produced and secreted by the attached microorganisms and the proliferated microorganisms.
  • an antibiotic or the like is administered to remove the microorganisms existing in the formed biological membrane, but a large amount of antibiotics or the like can not reach the microorganism so that the microorganisms existing inside the biological membrane can be removed by the already formed biological membrane can not do it.
  • a method of manufacturing an artificial implant considering the above difficulties have been developed.
  • Korean Patent Laid-Open Publication No. 10-2008-0068853 discloses a method of depositing nanoparticles that are distinct on the surface of an implant.
  • An object of the present invention is to provide an orthopedic artificial metal object in which microorganisms are not adhered to the surface of an orthopedic artificial metal object and a method of manufacturing the same.
  • An orthopedic artificial metal object includes a nano-micro structure having a plurality of protrusions formed on a surface of a artificial metal object made of a metal material; A self-assembled monolayer adhered on the nano-microstructure to form a monolayer of a predetermined thickness of a nanometer scale, the molecules in the monolayer being aligned with each other, and contacting a setting fluid capable of sliding contact with the microorganism; And a lubricant layer formed on the self-assembled monolayer and containing a setting fluid capable of sliding contact with the microorganism.
  • the plurality of protrusions may increase in width in a direction away from the surface of the artificial metal object.
  • Each of the plurality of protrusions may include a first substructure formed on a surface of the artificial metal object and a second substructure formed to surround the first substructure.
  • the plurality of protrusions may be between 50 and 300 nanometers in diameter in diameter and the spacing between adjacent protrusions of the plurality of protrusions may be between 100 and 500 nanometers.
  • the plurality of protrusions may be comprised of a first set of protrusions having a diameter size between 50 and 300 nanometers and a second set of protrusions having a diameter size between 3 and 30 micrometers (mu m).
  • the self-assembled monolayer has a setting function configured to convert the properties of the surface of the artificial metal object to hydrophobic, and the setting function may be a fluorinated silane group.
  • the set functionalities include heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane, trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.
  • the setting fluid may have a viscosity between 0.1 and 0.8 cm 2 / s and a density between 1500 and 2000 kg / m 3 .
  • the settling fluids were selected from the group consisting of FC-70, Krytox-100, Krytox-103, Flutec PP6, FC-40, FC-72, PF5080, 1-Bromofluorooctane, Vitreon, FluoroMed APF-215HP, HFE-7500, Krytox FG -40, Krytox-105, Krytox-107, and Perfluorodecalin.
  • a method of fabricating an orthopedic artificial metal object comprising: a surface structure forming step of forming a nano-microstructure by modifying a surface of an artificial metal object made of a metal material; Forming a monolayer on the nano-microstructure; And a lubricating layer forming step of forming a lubricating layer having a set surface energy on the self-assembled monolayer.
  • the metal material comprises a first metal and a second metal
  • the surface structure forming step comprises wet etching the surface of the artificial metal material composed of the first metal with an aqueous solution of hydrogen fluoride, And a wet etching step of wet-etching the surface of the artificial metal material with a mixed solution of an aqueous solution of hydrogen fluoride and an aqueous solution of nitric acid.
  • the surface structure forming step may include a dry etching step of nano-micropatterning by using photolithography and patterning by engraving with a reactive ion etching method.
  • the surface structure forming step may include a mechanical etching step of mechanically etching using sand particles or a laser etching step of forming a micro pattern or a nano pattern using a nano laser.
  • the orthopedic artificial metal material and the method of manufacturing the same can prevent the artificial metal material from being removed from the object such as the human body and the animal even if the infection occurs around the artificial metal material, Can be treated.
  • the orthopedic artificial metal material and the method of manufacturing the same according to an embodiment do not use a method of depositing metal atoms on the surface of the artificial metal material during the manufacture of the artificial metal material. Therefore, the complication .
  • the antibiotic agent is used to prevent infection of the microorganism, and then the antibiotic agent is attached to the surface of the artificial metal material There is no need to remove artificial metal from the object.
  • FIG. 1 is an enlarged view of a part (A) of a surface of an orthopedic artificial metal object, schematically showing a state in which an orthopedic artificial metal object according to an embodiment is inserted into a target object.
  • Fig. 2 is an enlarged view showing a part (A) of the surface of the orthopedic artificial metal object of Fig.
  • Fig. 3 schematically shows an example of a nano-microstructure in part (A) of the surface of the orthopedic artificial metal object of Fig. 1;
  • FIG. 4 is a perspective view schematically showing another example of the nano-microstructure according to one embodiment.
  • FIG. 5 is an enlarged view of a cross section of the nano-microstructure according to the state of FIG.
  • FIG. 6 is an enlarged view of a cross section of the nano-microstructure according to another state of FIG.
  • FIG. 7 is a schematic view of an example of a self-assembled monolayer in a portion (A) of the surface of the orthopedic artificial metal object of Fig.
  • FIG. 8 is a flowchart schematically showing a method of manufacturing an orthopedic artificial metal object according to an embodiment.
  • FIG. 9 is a flowchart schematically illustrating an example of a method of forming a structure on the surface of an orthopedic artificial metal object in a method of manufacturing an orthopedic artificial metal object according to an embodiment.
  • FIG. 10 is a flowchart schematically showing another example of a method of manufacturing an orthopedic artificial metal object according to an embodiment.
  • FIG. 11 is a view showing the degree of microbial production of the artificial metal material produced by the conventional artificial metal material and the method of manufacturing orthopedic artificial metal material according to one embodiment with time.
  • FIG. 12 is an illustration of an experiment for screening bioproduct constructs in a tissue culture plate according to the TCP scheme.
  • 13 is a diagram showing an experiment for comparing the degree of biological film formation according to the tube method.
  • first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements.
  • FIG. 1 is an enlarged view of a portion (A) of a surface of an orthopedic artificial metal object, schematically showing a state in which an orthopedic artificial metal object according to an embodiment is inserted into a target object
  • FIG. 2 is a cross- (A) of the surface of the artificial metal object.
  • an orthopedic artificial metal object 1 includes a stem 10 inserted into a cavity of a first portion of a subject, a stem 10 attached to the stem 10, And a cup 30 coupled to the connection 20 and to the recess of the second portion of the object.
  • the subject may be a human, an animal, etc.
  • the first portion may be a femur
  • the second portion may be a acetabulum.
  • the present invention is not limited thereto, and in some cases, the orthopedic artificial metal object 1 may have a shape conforming to a region of the object. That is, orthopedic artificial metal (1) can be used in various parts of the object such as the hip, elbow joint, ankle joint, and knee joint.
  • an orthopedic artificial metal object 1 includes a nano-microstructure 110, a self-assembled monolayer 120 formed on the nano-microstructure 110, And a lubricant layer 130 formed on the fabricated monolayer 120.
  • the nano-microstructure 110 may be formed on the surface of the orthopedic artificial metal object 1, for example, on the surface of the stem 10.
  • the surface of the orthopedic artificial metal object 1 may be made of at least one metal material.
  • the metal material forming the surface of the orthopedic artificial metal object 1 may be titanium (Ti), stainless steel, or the like.
  • the surface of the orthopedic artificial metal object 1 is made of a metal material such as titanium or stainless steel as described above, so that microorganisms do not adhere to the surface of the orthopedic artificial metal object 1
  • the structure formation of the surface of the orthopedic artificial metal object 1 that promotes the wetting of the lubricating layer 130 is important.
  • the nano-microstructures 110 may provide a set roughness to the lubricating layer 130 formed on the surface of the orthopedic artificial metal object 1.
  • the setting roughness provided by the nano-microstructure 110 not only improves the wetting of the lubricating fluid contained in the lubricating layer 130 but also enhances the adhesion to the surface of the orthopedic artificial metal object 1,
  • the lubricating layer 130 can be uniformly formed on the surface of the orthopedic artificial metal object 1.
  • the self-assembled monolayer 120 refers to an organic monolayer formed spontaneously on the surface of the orthopedic artificial metal object 1, and can be adhered on the nano-microstructure 110 to form a monolayer.
  • the self-assembled monolayer 120 can make the surface of the orthopedic artificial metal object 1 formed with the nano-microstructures 110 hydrophobic.
  • the surface of the orthopedic artificial metal object 1 is prevented from being damaged by external impact or wear Microstructure 110 due to the spontaneous formation of the self-assembled monolayer 120 even if the distribution balance of the lubricant layer 130 on the nano-microstructure 110 is broken, the lubricant layer 130 on the nano- Can be restored.
  • the lubricating layer 130 may wet the surface of the orthopedic artificial metal object 1.
  • microorganisms such as bacteria and bacteria can not slide on the surface of the orthopedic artificial metal object 1 and can slide along the surface of the orthopedic artificial metal object 1.
  • the lubricating layer 130 may protect the nano-microstructure 110.
  • the lubricant layer 130 can protect the nano-microstructure 110 from external force to prevent the formation of a biological film by microorganisms.
  • the lubricant layer 130 may be formed on the self-assembled monolayer 120 to have a set surface energy.
  • the material constituting the lubricating layer 130 may have a low surface energy suitable for modifying the surface of the orthopedic artificial metal object 1 as a lubricating fluid.
  • the lubricating fluid may be a perfluorocarbon liquid.
  • the lubricating fluid may include perfluorotri-n-pentylamine FC-70, perfluoropolyether Krytox-100, perfluoropolyether Krytox-103, perfluorodecaline Flutec PP6, Fluorinert FC-70 FC-40, perfluorohexane FC- perfluorooctane PF5080, perfluorooctyl bromide 1-bromoperfluorooctane, perfluoroperhydrophenanthrene Vitreon, FluoroMed APF-215HP, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6 -dodecafluoro-2-trifluoromethyl-hexane, HFE-7500, Krytox FG-40, Krytox-105, Krytox-107 and Perfluorodecalin.
  • the viscosity and density of the lubricating fluid forming the lubricating layer 130 may be important. Since the orthopedic artificial metal object 1 is inserted into the object, it is important to select a lubricating fluid having a viscosity and density within a specific range in which the body temperature of the object is considered.
  • the viscosity of the lubricating fluid may be between 0.1 and 0.8 cm 2 / s and the density between 1500 and 2000 kg / m 3 .
  • the repellency of the lubricating layer 130 with respect to the microbe is improved
  • the slip of the microorganism to the lubricating layer 130 can be improved.
  • Fig. 3 schematically shows an example of a nano-microstructure in part (A) of the surface of the orthopedic artificial metal object of Fig. 1;
  • the nano-microstructures 110 may be formed on the stem 10.
  • the nano-microstructures 110 are formed on the surface of the orthopedic artificial metal object 1 by various methods such as wet etching, dry etching, mechanical etching and laser etching on the surface of the orthopedic artificial metal object 1 .
  • a method of depositing the nano-microparticles on the surface of the orthopedic artificial metal object 1 in such a manner that the nano-micro structure 110 is formed on the surface of the orthopedic artificial metal object 1 is difficult, It is undesirable because there is a risk that the atoms float in the body and cause side effects.
  • FIG. 8 to 10 Various methods of forming the nano-microstructures 110 on the surface of the orthopedic artificial metal object 1 will be described in detail with reference to FIGS. 8 to 10.
  • the nano-microstructures 110 can be formed in nanoscale or microscale.
  • the nano-microstructures 110 may include a plurality of nano-sized or micro-sized protrusions.
  • the geometric features such as the size of each of the plurality of protrusions of the nano-microstructure 110 and the spacing of adjacent protrusions are important when the surface of the orthopedic artificial metal object 1 is wetted by the lubricant layer 130 Surface porosity and the like of the surface of the orthopedic artificial metal object 1 serving as a parameter.
  • the size of the diameter D of the plurality of protrusions of the nano-microstructure 110 may be between about 50 and about 300 nanometers (nm).
  • the diameter D of the plurality of protrusions may be about 50 nanometers, about 100 nanometers, about 150 nanometers, about 200 nanometers, about 250 nanometers, about 300 nanometers, and the like.
  • the diameter D of the plurality of protrusions of the nano-microstructure 110 may be between 3 and 30 micrometers ( ⁇ ⁇ ).
  • the diameter D of the plurality of protrusions may be about 3 micrometers, about 5 micrometers, about 10 micrometers, about 15 micrometers, about 20 micrometers, about 25 micrometers, about 30 micrometers, etc.
  • the spacing L between adjacent protrusions of the plurality of protrusions of the nano-microstructure 110 may be between about 100 and about 500 nanometers (nm).
  • the spacing L between adjacent protrusions of the plurality of protrusions may be about 100 nanometers, about 150 nanometers, about 200 nanometers, about 250 nanometers, about 300 nanometers, about 350 nanometers, about 350 nanometers 400 nanometers, about 450 nanometers, about 500 nanometers, and the like.
  • the surface of the orthopedic artificial metal object 1 can have a porosity and a surface area of a level suitable for biocompatibility.
  • the plurality of protrusions of the nano-microstructure 110 may be composed of at least two sets having different diameters (D).
  • the plurality of protrusions of the first set may be between 50 and 300 nanometers (nm)
  • the plurality of protrusions of the second set may be between 3 and 30 micrometers (mu m).
  • the nano-microstructures 110 have a mixed structure such that the plurality of protrusions have different diameters D, the characteristics of the surface of the orthopedic artificial metal object 1 in the case of nanoscale It is possible to have all the characteristics of the surface of the orthopedic artificial metal object 1 in the case of microscale.
  • the plurality of protrusions of the nano-microstructure 110 may have a specific shape. Depending on the shape of each of the plurality of protrusions of the nano-microstructure 110, the surface roughness characteristics of the surface of the orthopedic artificial metal object 1 may be varied. For example, each of the plurality of protrusions may have a shape such as a cylindrical shape, a pyramid shape, a cone shape, or the like. In addition, the cross-section of the plurality of protrusions of the nano-microstructure 110 may be circular, oval or polygonal.
  • the protruding direction of the plurality of protrusions of the nano-microstructure 110 is a direction perpendicularly protruding from the surface of the orthopedic artificial metal object 1, but not limited thereto, Each of the protrusions can establish a set angle with respect to the surface of the orthopedic artificial metal object 1.
  • FIG. 4 is a perspective view schematically showing another example of the nano-microstructure according to one embodiment.
  • the nano-microstructure 111 may be formed on the surface of an orthopedic artificial metal object, for example, on the surface of the stem 10.
  • the nano-microstructure 111 may include a plurality of protrusions.
  • the shape of the nano-microstructure 111 formed on the surface of the orthopedic artificial metal object is important not only in the surface roughness but also in the maintenance time of the function of the surface of the orthopedic artificial metal object.
  • Each of the plurality of protrusions of the nano-microstructure 111 may have a conical shape in which one surface is smaller in area than the other surface.
  • one surface of each of the plurality of protrusions, which is smaller in area than the other surface is adjacent to the surface of the orthopedic artificial metal object and the other surface is positioned in a direction far from the surface of the orthopedic artificial metal object
  • Each of the plurality of protrusions may be formed on the surface of the orthopedic artificial metal object.
  • each of the plurality of protrusions may increase in width in a direction away from the surface of the orthopedic artificial metal object.
  • Such a structure may also be referred to as an over-hang structure.
  • the functionality of the surface of the orthopedic artificial metal object - preventing the attachment of microorganisms, wetting of the lubricating fluid, etc. can be maintained for a long time.
  • FIG. 5 is an enlarged view of a cross section of the nano-microstructure according to one state of FIG. 4, and FIG. 6 is an enlarged view of a cross section of the nano-microstructure according to another state of FIG.
  • the technique of controlling water is very important. Since the orthopedic artificial metal inserted into the object is in contact with the body fluids of the object, which is a water component, the material forming the nano-microstructure formed on the surface of the orthopedic artificial metal and its specific shape are important.
  • the nano-microstructure may include a first sub-structure 112 and a second sub-structure 113.
  • the first sub-structure 112 may be formed by agglomerating at least one of the first particles against the surface of the orthopedic artificial metal object.
  • the first sub-structure 112 may be formed such that the proximal portion relative to the surface of the orthopedic artificial metal object is smaller in width than the distal portion. That is, the first sub-structure 112 may form an overhang structure by aggregating at least one of the first particles.
  • at least one of the first particles may be an adhesive that performs an adhesive function.
  • the second sub-structure 113 may be formed by attaching at least one or more second particles to the periphery of the first sub-structure 112.
  • the at least one second particle can be SiO 2 NPs.
  • the first sub-structure 112 and the second sub-structure 113 formed on the surface of the orthopedic artificial metal object can promote the wetting of the liquid layer to the surface of the orthopedic artificial metal object.
  • FIG. 7 is a schematic view of an example of a self-assembled monolayer in a portion (A) of the surface of the orthopedic artificial metal object of Fig.
  • the molecules in the self-assembled monolayer 120 can be aligned with each other.
  • the molecules that make up the self-assembled monolayer 120 may be polymers, including the head 121, the chain 122, and the functionalities 123.
  • the thickness of the monolayer may be several tens nanometers (nm) in size.
  • the head 121 may be chemically attached to the surface of the orthopedic artificial metal object 1.
  • Chain 122 may be predominantly of hydrocarbon and may assist in the mutual alignment of molecules in self-assembled monolayer 120 by van der Waals interactions.
  • the functional group 123 can convert the property of the surface of the orthopedic artificial metal object 1 into a hydrophobic property so as to prevent the microorganism from being adsorbed to the surface of the orthopedic artificial metal object 1.
  • the kind of the functional group 123 is important in the interaction with the microorganism and the transformation of the surface of the orthopedic artificial metal object 1.
  • the functional group 123 may be a fluorinated silane group.
  • functional group 123 may be selected from the group consisting of heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane, trichloro 1H, 1H, 2H, 2H-perfluorooctyl) silane and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.
  • FIG. 8 is a flowchart schematically showing a method of manufacturing an orthopedic artificial metal object according to an embodiment.
  • a method of manufacturing an orthopedic artificial metal object may modify a surface of an orthopedic artificial metal object to form a nano-microstructure (S810).
  • the surface of the orthopedic artificial metal object can be made of titanium and stainless steel.
  • the nano-microstructure can be formed on the surface of the orthopedic artificial metal by applying a chemical method or a mechanical method to the surface of the orthopedic artificial metal material made of titanium and stainless steel.
  • a self-assembled monolayer can be formed on the nano-microstructure (S820).
  • the self-assembled monolayer can have a fluorinated silane group.
  • a lubricating layer having a set surface energy can be formed on the self-assembled monolayer (S830).
  • the lubricating fluid forming the lubricating layer may be a perfluorocarbon liquid, and may have a low surface energy suitable for surface modification.
  • one kind of perfluorocarbon liquid may be selected so that the value of the viscosity and density of the perfluorocarbon liquid is biocompatible.
  • FIG. 9 is a flowchart schematically illustrating an example of a method of forming a structure on the surface of an orthopedic artificial metal object in a method of manufacturing an orthopedic artificial metal object according to an embodiment.
  • a method of forming a structure on the surface of an orthopedic artificial metal object includes etching (S910) an aqueous solution of hydrogen fluoride (HF) on a surface of the first metal (HF) aqueous solution and a nitric acid (HNO 3 ) aqueous solution (S 920).
  • etching an aqueous solution of hydrogen fluoride (HF) on a surface of the first metal (HF) aqueous solution and a nitric acid (HNO 3 ) aqueous solution
  • the first metal may be stainless steel and the second metal may be titanium.
  • step S910 of etching the surface of the first metal with an aqueous solution of hydrogen fluoride (HF) the concentration of the aqueous solution of hydrogen fluoride (HF) may be 49%.
  • the surface of the first metal can be wet etched for about 30 minutes at a temperature between about 25 and 40 degrees C in an aqueous solution of hydrogen fluoride (HF).
  • HF hydrogen fluoride
  • HNO 3 nitric acid
  • the surface of the second metal may be wet-etched in a mixed solution of an aqueous solution of hydrogen fluoride (HF) and an aqueous solution of nitric acid (HNO 3 ) for about 10 to 60 minutes.
  • FIG. 10 is a flowchart schematically showing another example of a method of manufacturing an orthopedic artificial metal object according to an embodiment.
  • a dry etching process according to one embodiment is shown for a surface of an orthopedic artificial metal object.
  • the size of the pattern is about 100 to 300 nanometers (nm)
  • the surface of the orthopedic artificial metal object can be patterned such that the spacing between the patterns is about 100 to 500 nanometers (nm).
  • the surface of the orthopedic artificial metal object can be engraved with a pattern of reactive ion etching on the surface of the nano-micropatterned orthopedic artificial metal object.
  • the method of manufacturing an orthopedic artificial metal object includes a mechanical etching method in which a surface of an orthopedic artificial metal object is mechanically etched using sand particles, And a laser etching method of forming a micropattern or a nano pattern using a nano-laser on the surface of water.
  • processing method is an example of a method of manufacturing an orthopedic artificial metal object according to an embodiment, and is not limited thereto.
  • FIG. 11 is a view showing the degree of microbial production of the artificial metal material produced by the conventional artificial metal material and the method of manufacturing orthopedic artificial metal material according to one embodiment with time.
  • the untreated 3-cm stainless steel was cultivated in a culture medium containing microorganisms for 1 to 6 weeks according to the manufacturing method of the artificial metal, and whether or not the biological membrane of the microorganism was formed in the stainless steel was examined for each week.
  • FIG. 12 is an illustration of an experiment for screening bioproduct constructs in a tissue culture plate according to the TCP scheme.
  • FIG. 12 shows an experiment in which a tissue culture plate (TCP) is prepared by adding titanium and stainless steel, which are metals used in artificial metal materials, and microorganisms.
  • TCP tissue culture plate
  • 13 is a diagram showing an experiment for comparing the degree of biological film formation according to the tube method.
  • the artificial metal material produced according to the manufacturing method of the artificial metal material according to an embodiment and the artificial metal material not manufactured according to the manufacturing method of artificial metal material according to an embodiment After addition of microorganisms, the degree of biomembrane formation was compared. As a result of the experiment, when the microorganism was added to the artificial metal material produced according to the method of manufacturing artificial metal material according to one embodiment, the degree of biological film formation was remarkably higher than that of the artificial metal material Respectively.
  • the orthopedic artificial metal material and the method of manufacturing the same can prevent the artificial metal material from being removed from the object such as the human body and the animal even if the infection occurs around the artificial metal material,

Abstract

An orthopedic artificial metal article, according to one embodiment, may comprise: a nano-micro structure which has a plurality of protrusion parts formed on the surface of the artificial metal article formed from a metal material; a self-assembled monolayer which is attached on top of the nano-micro structure, thereby forming a monolayer having a predetermined, nanometer-scale thickness, has molecules in the monolayer mutually aligned, and makes contact with a predetermined fluid capable of making sliding contact with microorganisms; and a lubricating layer which is formed on top of the self-assembled monolayer, and contains the predetermined fluid capable of making sliding contact with microorganisms.

Description

정형외과적인 인공 금속물 및 이의 제조 방법Orthopedic artificial metal material and its manufacturing method
이하, 실시예들은 정형외과적인 인공 금속물 및 이의 제조 방법에 관한 것이다.Hereinafter, embodiments relate to an orthopedic artificial metal material and a method of manufacturing the same.
정형외과 수술 이후에 발생하는 감염은 환자의 치료 기간을 연장시키고 치료 비용을 증가시키며, 환자를 사망에 이르게 할 수 있는 중요한 합병증 중 하나이며, 환자를 치료하는 입장에서는 환자의 입원 기간의 연장과 이로 인한 법적인 문제 등이 발생할 수 있다. 정형외과 수술 이후에 발생하는 감염의 원인은 당뇨, 면역 저하, 영양 결핍 등 환자의 건강 상태 및 수술 시 외부 환경적인 요소 등 여러 가지가 있다.Infections that occur after orthopedic surgery are one of the important complications that can lead to prolongation of the patient's treatment time, increase the cost of treatment, and lead to death of the patient. In terms of treating the patient, And the like. The causes of infections after orthopedic surgery are diabetes, immune deficiency, malnutrition, and other external environmental factors.
특히, 정형외과 수술에서는 인공 삽입물을 많이 사용하고 있는데, 인공 삽입물 주변의 감염은 그 빈도가 높지는 않지만, 한번 감염되면 치료가 쉽지 않고 대부분 인공 삽입물을 제거하는 방향으로 치료가 진행된다. 이러한 감염의 발생에는 인공 삽입물의 표면에 미생물들이 부착하는지 여부가 중요한 관심사이다.Particularly, orthopedic surgery uses a lot of artificial implants. The infection around the prosthesis is not frequent, but once it is infected, it is not easy to treat. Most of the treatment is done to remove the prosthesis. Whether or not microorganisms adhere to the surface of the prosthesis is an important concern for the occurrence of such an infection.
미생물들이 인공 삽입물의 표면에 부착되면, 부착된 미생물들에 의하여 생성되어 분비되는 물질과 증식된 미생물들이 조합하여 생체 막이 형성될 수 있다. 이 경우, 형성된 생체 막의 내부에 존재하는 미생물들을 제거하기 위하여 항생제 등을 투여하지만, 이미 형성된 생체 막에 의하여 생체 막의 내부에 존재하는 미생물을 제거할 수 있을 정도로 많은 양의 항생제 등이 미생물에 도달되지 못한다. 위와 같은 어려움을 고려한 인공 삽입물을 제조하는 방법 등이 개발되고 있다.When the microorganisms are attached to the surface of the prosthesis, a biomembrane can be formed by combining the substances produced and secreted by the attached microorganisms and the proliferated microorganisms. In this case, an antibiotic or the like is administered to remove the microorganisms existing in the formed biological membrane, but a large amount of antibiotics or the like can not reach the microorganism so that the microorganisms existing inside the biological membrane can be removed by the already formed biological membrane can not do it. And a method of manufacturing an artificial implant considering the above difficulties have been developed.
예를 들어, 한국 공개특허공보 제10-2008-0068853호는 임플란트 표면상에 뚜렷이 구별되는 나노입자의 증착방법을 개시한다.For example, Korean Patent Laid-Open Publication No. 10-2008-0068853 discloses a method of depositing nanoparticles that are distinct on the surface of an implant.
일 실시예에 따른 목적은 정형외과적인 인공 금속물의 표면에 미생물이 부착되지 못하는 정형외과적인 인공 금속물 및 이의 제조 방법을 제공하는 것이다.An object of the present invention is to provide an orthopedic artificial metal object in which microorganisms are not adhered to the surface of an orthopedic artificial metal object and a method of manufacturing the same.
일 실시예에 따른 정형외과적인 인공 금속물은 금속 재료로 만들어진 인공 금속물의 표면에 형성된 복수 개의 돌출부들을 구비하는 나노-마이크로 구조체; 상기 나노-마이크로 구조체 위에 부착되어 나노미터 스케일의 설정 두께의 단층을 형성하고, 단층 내 분자들이 상호 정렬되고, 미생물과 미끄럼 접촉 가능한 설정 유체와 접촉하도록 구성된 자가 조립 단층; 및 상기 자가 조립 단층 위에 형성되고, 미생물과 미끄럼 접촉 가능한 설정 유체를 포함하는 윤활층을 포함할 수 있다.An orthopedic artificial metal object according to an embodiment includes a nano-micro structure having a plurality of protrusions formed on a surface of a artificial metal object made of a metal material; A self-assembled monolayer adhered on the nano-microstructure to form a monolayer of a predetermined thickness of a nanometer scale, the molecules in the monolayer being aligned with each other, and contacting a setting fluid capable of sliding contact with the microorganism; And a lubricant layer formed on the self-assembled monolayer and containing a setting fluid capable of sliding contact with the microorganism.
상기 복수 개의 돌출부들은 상기 인공 금속물의 표면으로부터 멀어지는 방향으로 폭이 증가할 수 있다.The plurality of protrusions may increase in width in a direction away from the surface of the artificial metal object.
상기 복수 개의 돌출부들의 각각은 인공 금속물의 표면에 형성된 제1서브구조체 및 상기 제1서브구조체를 둘러싸도록 형성된 제2서브 구조체를 포함할 수 있다.Each of the plurality of protrusions may include a first substructure formed on a surface of the artificial metal object and a second substructure formed to surround the first substructure.
상기 복수 개의 돌출부들은 직경 크기가 50 내지 300 나노미터(nm) 사이이고, 상기 복수 개의 돌출부들 중 인접한 돌출부들 사이의 간격은 100 내지 500 나노미터(nm) 사이일 수 있다.The plurality of protrusions may be between 50 and 300 nanometers in diameter in diameter and the spacing between adjacent protrusions of the plurality of protrusions may be between 100 and 500 nanometers.
상기 복수 개의 돌출부들은 직경 크기가 50 내지 300 나노미터(nm) 사이인 돌출부들의 제1세트와 직경 크기가 3 내지 30 마이크로미터(㎛) 사이인 돌출부들의 제2세트로 구성될 수 있다.The plurality of protrusions may be comprised of a first set of protrusions having a diameter size between 50 and 300 nanometers and a second set of protrusions having a diameter size between 3 and 30 micrometers (mu m).
상기 자가 조립 단층은 인공 금속물의 표면의 성질을 소수성으로 변환시키도록 구성된 설정 작용기를 구비하고, 상기 설정 작용기는 플루오르화 실란기일 수 있다.The self-assembled monolayer has a setting function configured to convert the properties of the surface of the artificial metal object to hydrophobic, and the setting function may be a fluorinated silane group.
상기 설정 작용기는, 헵타데카플루오르 - 1, 1, 2, 2 - 테트라하이드로데실트리클로로실란, 트리데카플루오르 - 1, 1, 2, 2 - 테트라하이드로옥틸트리클로로실란, 트리클로로(1H, 1H, 2H, 2H - 퍼플루오르옥틸)실란 및 1H, 1H, 2H, 2H - 퍼플루오르옥틸트리에톡시실란으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.The set functionalities include heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane, trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.
상기 설정 유체는 점성이 0.1 내지 0.8 cm2/s 사이이고, 밀도가 1500 내지 2000 kg/m3 사이일 수 있다.The setting fluid may have a viscosity between 0.1 and 0.8 cm 2 / s and a density between 1500 and 2000 kg / m 3 .
상기 설정 유체는, FC-70, Krytox-100, Krytox-103, Flutec PP6, FC-40, FC-72, PF5080, 1 - 브로모퍼플루오르옥탄, Vitreon, FluoroMed APF-215HP, HFE-7500, Krytox FG-40, Krytox-105, Krytox-107 및 퍼플루오로데칼린(Perfluorodecalin)으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.The settling fluids were selected from the group consisting of FC-70, Krytox-100, Krytox-103, Flutec PP6, FC-40, FC-72, PF5080, 1-Bromofluorooctane, Vitreon, FluoroMed APF-215HP, HFE-7500, Krytox FG -40, Krytox-105, Krytox-107, and Perfluorodecalin.
일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법은 금속 재료로 만들어진 인공 금속물의 표면을 개질하여 나노-마이크로 구조를 형성하는 표면 구조 형성 단계; 상기 나노-마이크로 구조 위에 자가 조립 단층을 형성하는 단층 형성 단계; 및 상기 자가 조립 단층 위에 설정 표면 에너지를 가지는 윤활층을 형성하는 윤활층 형성 단계를 포함할 수 있다.According to an embodiment of the present invention, there is provided a method of fabricating an orthopedic artificial metal object, the method comprising: a surface structure forming step of forming a nano-microstructure by modifying a surface of an artificial metal object made of a metal material; Forming a monolayer on the nano-microstructure; And a lubricating layer forming step of forming a lubricating layer having a set surface energy on the self-assembled monolayer.
상기 금속 재료는 제1금속 및 제2금속을 포함하고, 상기 표면 구조 형성 단계는, 상기 제1금속으로 이루어진 상기 인공 금속물의 표면에 플루오르화 수소 수용액으로 습식 식각하고, 상기 제2금속으로 이루어진 상기 인공 금속물의 표면에 플루오르화 수소 수용액 및 질산 수용액의 혼합 용액으로 습식 식각하는 습식 식각 단계를 포함할 수 있다.Wherein the metal material comprises a first metal and a second metal, and the surface structure forming step comprises wet etching the surface of the artificial metal material composed of the first metal with an aqueous solution of hydrogen fluoride, And a wet etching step of wet-etching the surface of the artificial metal material with a mixed solution of an aqueous solution of hydrogen fluoride and an aqueous solution of nitric acid.
상기 표면 구조 형성 단계는, 포토리소그래피를 이용하여 나노-마이크로 패턴화하고, 반응성 이온 에칭 방식으로 음각 패턴화하는 건식 식각 단계를 포함할 수 있다.The surface structure forming step may include a dry etching step of nano-micropatterning by using photolithography and patterning by engraving with a reactive ion etching method.
상기 표면 구조 형성 단계는, 모래 입자를 이용하여 기계적으로 식각하는 기계적 식각 단계 또는 나노 레이저를 이용하여 마이크로 패턴 또는 나노 패턴을 형성하는 레이저 식각 단계를 포함할 수 있다.The surface structure forming step may include a mechanical etching step of mechanically etching using sand particles or a laser etching step of forming a micro pattern or a nano pattern using a nano laser.
일 실시예에 따른 정형외과적인 인공 금속물 및 이의 제조 방법은 인공 금속물의 주변에 감염이 발생하더라도 인체, 동물 등 대상체로부터 인공 금속물을 제거하지 않고 리스크가 적은 수술과 항생제 치료만으로 인공 금속물의 주변에 발생된 감염을 치료할 수 있다.According to one embodiment, the orthopedic artificial metal material and the method of manufacturing the same can prevent the artificial metal material from being removed from the object such as the human body and the animal even if the infection occurs around the artificial metal material, Can be treated.
일 실시예에 따른 정형외과적인 인공 금속물 및 이의 제조 방법은 인공 금속물의 제조 시 인공 금속물의 표면에 금속 원자를 증착하는 등의 방식을 사용하지 않으므로 금속 원자가 체내에 부유함으로 인하여 발생하는 합병증을 발생시키지 않을 수 있다.The orthopedic artificial metal material and the method of manufacturing the same according to an embodiment do not use a method of depositing metal atoms on the surface of the artificial metal material during the manufacture of the artificial metal material. Therefore, the complication .
일 실시예에 따른 정형외과적인 인공 금속물 및 이의 제조 방법은 인공 금속물의 표면에 항생제를 미리 부착하지 않으므로 항생제가 미생물의 감염을 방지하기 위하여 모두 사용된 후 다시 항생제를 인공 금속물의 표면에 부착하기 위하여 대상체로부터 인공 금속물을 제거할 필요가 없다.Since the orthopedic artificial metal material according to one embodiment and the method of manufacturing the same do not previously attach the antibiotic to the surface of the artificial metal object, the antibiotic agent is used to prevent infection of the microorganism, and then the antibiotic agent is attached to the surface of the artificial metal material There is no need to remove artificial metal from the object.
일 실시예에 따른 정형외과적인 인공 금속물 및 이의 제조 방법의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the orthopedic artificial metal material and the manufacturing method thereof according to one embodiment are not limited to those mentioned above, and other effects not mentioned can be clearly understood to those of ordinary skill in the art from the following description.
도 1은 일 실시예에 따른 정형외과적인 인공 금속물이 대상체로 삽입된 모습을 개략적으로 나타내고 정형외과적인 인공 금속물의 표면의 일부(A)를 확대한 도면이다.FIG. 1 is an enlarged view of a part (A) of a surface of an orthopedic artificial metal object, schematically showing a state in which an orthopedic artificial metal object according to an embodiment is inserted into a target object.
도 2는 도 1의 정형외과적인 인공 금속물의 표면의 일부(A)를 확대한 확대도이다.Fig. 2 is an enlarged view showing a part (A) of the surface of the orthopedic artificial metal object of Fig.
도 3은 도 1의 정형외과적인 인공 금속물의 표면의 일부(A) 중 나노-마이크로 구조체의 일 예를 개략적으로 나타낸 도면이다.Fig. 3 schematically shows an example of a nano-microstructure in part (A) of the surface of the orthopedic artificial metal object of Fig. 1;
도 4는 일 실시예에 따른 나노-마이크로 구조체의 또 다른 예를 개략적으로 나타낸 사시도이다.4 is a perspective view schematically showing another example of the nano-microstructure according to one embodiment.
도 5는 도 4의 일 상태에 따른 나노-마이크로 구조체의 단면을 확대한 확대도이다.5 is an enlarged view of a cross section of the nano-microstructure according to the state of FIG.
도 6은 도 4의 또 다른 상태에 따른 나노-마이크로 구조체의 단면을 확대한 확대도이다.6 is an enlarged view of a cross section of the nano-microstructure according to another state of FIG.
도 7은 도 1의 정형외과적인 인공 금속물의 표면의 일부(A) 중 자가 조립 단층의 일 예를 개략적으로 나타낸 도면이다.7 is a schematic view of an example of a self-assembled monolayer in a portion (A) of the surface of the orthopedic artificial metal object of Fig.
도 8은 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법을 개략적으로 나타낸 순서도이다.8 is a flowchart schematically showing a method of manufacturing an orthopedic artificial metal object according to an embodiment.
도 9는 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법 중 정형외과적인 인공 금속물의 표면에 구조를 형성하는 방법의 일 예를 개략적으로 나타낸 순서도이다.9 is a flowchart schematically illustrating an example of a method of forming a structure on the surface of an orthopedic artificial metal object in a method of manufacturing an orthopedic artificial metal object according to an embodiment.
도 10은 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법 중 또 다른 예를 개략적으로 나타낸 순서도이다.10 is a flowchart schematically showing another example of a method of manufacturing an orthopedic artificial metal object according to an embodiment.
도 11은 기존의 인공 금속물 및 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법에 의하여 제조된 인공 금속물의 시간에 따른 미생물 생성 정도를 나타낸 도면이다.FIG. 11 is a view showing the degree of microbial production of the artificial metal material produced by the conventional artificial metal material and the method of manufacturing orthopedic artificial metal material according to one embodiment with time.
도 12는 TCP 방식에 따라 조직 배양 플레이트에서 생체 막 생성자들을 스크린(screen)하는 실험을 나타낸 도면이다.12 is an illustration of an experiment for screening bioproduct constructs in a tissue culture plate according to the TCP scheme.
도 13은 Tube 방식에 따라 생체 막 형성 정도를 비교하는 실험을 나타낸 도면이다.13 is a diagram showing an experiment for comparing the degree of biological film formation according to the tube method.
이하, 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference numerals even though they are shown in different drawings. In the following description of the embodiments, detailed description of known functions and configurations incorporated herein will be omitted when it may make the best of an understanding clear.
또한, 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the embodiment, terms such as first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements. When a component is described as being "connected", "coupled", or "connected" to another component, the component may be directly connected or connected to the other component, Quot; may be " connected, " " coupled, " or " connected. &Quot;
어느 하나의 실시예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시예에 기재한 설명은 다른 실시예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.The components included in any one embodiment and the components including common functions will be described using the same names in other embodiments. Unless otherwise stated, the description of any one embodiment may be applied to other embodiments, and a detailed description thereof will be omitted in the overlapping scope.
도 1은 일 실시예에 따른 정형외과적인 인공 금속물이 대상체로 삽입된 모습을 개략적으로 나타내고 정형외과적인 인공 금속물의 표면의 일부(A)를 확대한 도면이고, 도 2는 도 1의 정형외과적인 인공 금속물의 표면의 일부(A)를 확대한 확대도이다.FIG. 1 is an enlarged view of a portion (A) of a surface of an orthopedic artificial metal object, schematically showing a state in which an orthopedic artificial metal object according to an embodiment is inserted into a target object, FIG. 2 is a cross- (A) of the surface of the artificial metal object.
도 1을 참고하면, 일 실시예에 따른 정형외과적인 인공 금속물(1)은 대상체의 제1부분의 캐비티(cavity)로 삽입되는 줄기부(10), 줄기부(10)에 부착되고 대상체의 제2부분으로 이어지는 연결부(20) 및 연결부(20)에 결합되고 대상체의 제2부분의 리세스(recess)로 삽입되는 컵(30)을 포함할 수 있다. 예를 들어, 대상체는 인체, 동물 등일 수 있고, 제1부분은 대퇴골(femur)일 수 있고, 제2부분은 비구(acetabulum)일 수 있다. 다만, 이에 제한되는 것은 아니고, 경우에 따라 정형외과적인 인공 금속물(1)은 대상체의 부위에 맞는 형상을 구비할 수 있다. 즉, 정형외과적인 인공 금속물(1)은 고관절, 팔꿈치 관절, 발목 관절, 무릎 관절 등 대상체의 여러 부위에 사용될 수 있다.Referring to FIG. 1, an orthopedic artificial metal object 1 according to one embodiment includes a stem 10 inserted into a cavity of a first portion of a subject, a stem 10 attached to the stem 10, And a cup 30 coupled to the connection 20 and to the recess of the second portion of the object. For example, the subject may be a human, an animal, etc., the first portion may be a femur, and the second portion may be a acetabulum. However, the present invention is not limited thereto, and in some cases, the orthopedic artificial metal object 1 may have a shape conforming to a region of the object. That is, orthopedic artificial metal (1) can be used in various parts of the object such as the hip, elbow joint, ankle joint, and knee joint.
도 1 및 도 2를 참고하면, 정형외과적인 인공 금속물(1)은 나노-마이크로 구조체(110), 나노-마이크로 구조체(110) 위에 형성된 자가 조립 단층(Self-Assembled Monolayer)(120) 및 자가 조립 단층(120) 위에 형성된 윤활층(lubricant layer)(130)을 포함할 수 있다.1 and 2, an orthopedic artificial metal object 1 includes a nano-microstructure 110, a self-assembled monolayer 120 formed on the nano-microstructure 110, And a lubricant layer 130 formed on the fabricated monolayer 120.
나노-마이크로 구조체(110)는 정형외과적인 인공 금속물(1)의 표면, 예를 들어 줄기부(10)의 표면에 형성될 수 있다. 여기서, 정형외과적인 인공 금속물(1)의 표면은 적어도 하나 이상의 금속 재료로 이루어질 수 있다. 예를 들어, 정형외과적인 인공 금속물(1)의 표면을 이루는 금속 재료는 티타늄(Ti), 스테인리스강(Stainless Steel) 등일 수 있다. 일반적인 물체의 표면과 달리, 정형외과적인 인공 금속물(1)의 표면은 앞서 설명한 티타늄, 스테인리스강과 같은 금속 재료로 이루어져 있으므로, 정형외과적인 인공 금속물(1)의 표면에 미생물이 부착되지 않기 위하여는 윤활층(130)의 습윤화를 촉진하는 정형외과적인 인공 금속물(1)의 표면의 구조 형성이 중요하다.The nano-microstructure 110 may be formed on the surface of the orthopedic artificial metal object 1, for example, on the surface of the stem 10. Here, the surface of the orthopedic artificial metal object 1 may be made of at least one metal material. For example, the metal material forming the surface of the orthopedic artificial metal object 1 may be titanium (Ti), stainless steel, or the like. Unlike the surface of a general object, the surface of the orthopedic artificial metal object 1 is made of a metal material such as titanium or stainless steel as described above, so that microorganisms do not adhere to the surface of the orthopedic artificial metal object 1 The structure formation of the surface of the orthopedic artificial metal object 1 that promotes the wetting of the lubricating layer 130 is important.
나노-마이크로 구조체(110)는 정형외과적인 인공 금속물(1)의 표면에 형성되는 윤활층(130)에 설정 거칠기를 제공할 수 있다. 나노-마이크로 구조체(110)가 제공하는 설정 거칠기에 따라, 윤활층(130)에 포함된 윤활 유체의 습윤화가 향상될 뿐만 아니라 정형외과적인 인공 금속물(1)의 표면에 대한 부착력이 강화되고, 윤활층(130)이 정형외과적인 인공 금속물(1)의 표면에 균일하게 형성될 수 있다.The nano-microstructures 110 may provide a set roughness to the lubricating layer 130 formed on the surface of the orthopedic artificial metal object 1. The setting roughness provided by the nano-microstructure 110 not only improves the wetting of the lubricating fluid contained in the lubricating layer 130 but also enhances the adhesion to the surface of the orthopedic artificial metal object 1, The lubricating layer 130 can be uniformly formed on the surface of the orthopedic artificial metal object 1.
자가 조립 단층(120)은 정형외과적인 인공 금속물(1)의 표면에 자발적으로 형성되는 유기 단분자막을 말하는 것으로, 나노-마이크로 구조체(110) 위에 부착되어 단층을 형성할 수 있다. 자가 조립 단층(120)은 나노-마이크로 구조체(110)가 형성된 정형외과적인 인공 금속물(1)의 표면의 성질을 소수성으로 만들 수 있다.The self-assembled monolayer 120 refers to an organic monolayer formed spontaneously on the surface of the orthopedic artificial metal object 1, and can be adhered on the nano-microstructure 110 to form a monolayer. The self-assembled monolayer 120 can make the surface of the orthopedic artificial metal object 1 formed with the nano-microstructures 110 hydrophobic.
자가 조립 단층(120)이 나노-마이크로 구조체(110)와 윤활층(130) 사이에 형성되면, 외부로부터 전달되는 충격 또는 마모에 의하여 정형외과적인 인공 금속물(1)의 표면의 손상을 방지할 수 있고, 나노-마이크로 구조체(110) 위의 윤활층(130)의 분배 균형이 깨지더라도 자가 조립 단층(120)의 자발적 형성이라는 성질로 인하여 나노-마이크로 구조체(110) 위의 윤활층(130)의 분배 균형이 회복될 수 있다.When the self-assembled monolayer 120 is formed between the nano-microstructure 110 and the lubricant layer 130, the surface of the orthopedic artificial metal object 1 is prevented from being damaged by external impact or wear Microstructure 110 due to the spontaneous formation of the self-assembled monolayer 120 even if the distribution balance of the lubricant layer 130 on the nano-microstructure 110 is broken, the lubricant layer 130 on the nano- Can be restored.
윤활층(130)은 정형외과적인 인공 금속물(1)의 표면을 습윤화할 수 있다. 이에 따라, 세균, 박테리아 등의 미생물이 정형외과적인 인공 금속물(1)의 표면에 부착되지 못하고 정형외과적인 인공 금속물(1)의 표면을 따라 미끄러질 수 있다.The lubricating layer 130 may wet the surface of the orthopedic artificial metal object 1. Thus, microorganisms such as bacteria and bacteria can not slide on the surface of the orthopedic artificial metal object 1 and can slide along the surface of the orthopedic artificial metal object 1.
윤활층(130)은 나노-마이크로 구조체(110)를 보호할 수 있다. 예를 들어, 나노-마이크로 구조체(110)가 어떠한 이유로 인하여 외력에 의해 손상이 된 경우, 나노-마이크로 구조체(110) 중 손상된 부분에 미생물이 번식할 수 있다. 이러한 현상을 방지하기 위하여, 윤활층(130)은 외력으로부터 나노-마이크로 구조체(110)를 보호함으로써 미생물에 의한 생체 막 형성을 방지할 수 있다.The lubricating layer 130 may protect the nano-microstructure 110. For example, when the nano-microstructures 110 are damaged due to external force for some reason, microorganisms may propagate in the damaged portions of the nano-microstructures 110. In order to prevent such a phenomenon, the lubricant layer 130 can protect the nano-microstructure 110 from external force to prevent the formation of a biological film by microorganisms.
윤활층(130)은 설정 표면 에너지를 구비하도록 자가 조립 단층(120) 위에 형성될 수 있다. 여기서, 윤활층(130)을 이루는 물질은 윤활 유체로서 정형외과적인 인공 금속물(1)의 표면을 개질하기에 적합한 낮은 표면 에너지를 구비할 수 있다. 예를 들어, 윤활 유체는 퍼플루오로카본(perfluorocarbon) 액체일 수 있다.The lubricant layer 130 may be formed on the self-assembled monolayer 120 to have a set surface energy. Here, the material constituting the lubricating layer 130 may have a low surface energy suitable for modifying the surface of the orthopedic artificial metal object 1 as a lubricating fluid. For example, the lubricating fluid may be a perfluorocarbon liquid.
또 다른 예로, 윤활 유체는 perfluorotri-n-pentylamine인 FC-70, perfluoropolyether인 Krytox-100, perfluoropolyether인 Krytox-103, perfluorodecaline인 Flutec PP6, Fluorinert™ FC-70인 FC-40, perfluorohexane인 FC-72, perfluorooctane인 PF5080, Perfluorooctyl bromide인 1 - 브로모퍼플루오르옥탄,  perfluoroperhydrophenanthrene인 Vitreon, FluoroMed APF-215HP, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane인 HFE-7500, Krytox FG-40, Krytox-105, Krytox-107 및 퍼플루오로데칼린(Perfluorodecalin)으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.As another example, the lubricating fluid may include perfluorotri-n-pentylamine FC-70, perfluoropolyether Krytox-100, perfluoropolyether Krytox-103, perfluorodecaline Flutec PP6, Fluorinert FC-70 FC-40, perfluorohexane FC- perfluorooctane PF5080, perfluorooctyl bromide 1-bromoperfluorooctane, perfluoroperhydrophenanthrene Vitreon, FluoroMed APF-215HP, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6 -dodecafluoro-2-trifluoromethyl-hexane, HFE-7500, Krytox FG-40, Krytox-105, Krytox-107 and Perfluorodecalin.
정형외과적인 인공 금속물(1)의 표면을 개질하는 데 있어서, 윤활층(130)을 이루는 윤활 유체의 점성 및 밀도가 중요할 수 있다. 정형외과적인 인공 금속물(1)이 대상체로 삽입되기 때문에 대상체의 체내 온도가 고려된 특정 범위 내의 점성 및 밀도를 구비하는 윤활 유체의 선택이 중요한 것이다.In modifying the surface of the orthopedic artificial metal object 1, the viscosity and density of the lubricating fluid forming the lubricating layer 130 may be important. Since the orthopedic artificial metal object 1 is inserted into the object, it is important to select a lubricating fluid having a viscosity and density within a specific range in which the body temperature of the object is considered.
예를 들어, 윤활 유체의 점성은 0.1 내지 0.8 cm2/s 사이이고, 밀도가 1500 내지 2000 kg/m3 사이일 수 있다. 이와 같이, 정형외과적인 인공 금속물(1)이 대상체로 삽입되는 점을 고려한 윤활층(130)을 이루는 윤활 유체의 점성 및 밀도 특성에 따르면, 미생물에 대한 윤활층(130)의 반발성이 향상되고, 윤활층(130)에 대한 미생물의 미끄러짐을 향상시킬 수 있다.For example, the viscosity of the lubricating fluid may be between 0.1 and 0.8 cm 2 / s and the density between 1500 and 2000 kg / m 3 . As described above, according to the viscosity and density characteristics of the lubricating fluid constituting the lubricating layer 130 considering the insertion of the orthopedic artificial metal object 1 into the object, the repellency of the lubricating layer 130 with respect to the microbe is improved And the slip of the microorganism to the lubricating layer 130 can be improved.
도 3은 도 1의 정형외과적인 인공 금속물의 표면의 일부(A) 중 나노-마이크로 구조체의 일 예를 개략적으로 나타낸 도면이다.Fig. 3 schematically shows an example of a nano-microstructure in part (A) of the surface of the orthopedic artificial metal object of Fig. 1;
도 1 내지 도 3을 참고하면, 나노-마이크로 구조체(110)는 줄기부(10)에 형성될 수 있다. 나노-마이크로 구조체(110)는 정형외과적인 인공 금속물(1)의 표면에 대하여 습식 식각, 건식 식각, 기계적 식각, 레이저 식각 등 다양한 방식이 적용됨으로써 정형외과적인 인공 금속물(1)의 표면에 형성될 수 있다. 다만, 정형외과적인 인공 금속물(1)의 표면에 나노-마이크로 구조체(110)를 형성하는 방식으로 나노-마이크로 입자를 정형외과적인 인공 금속물(1)의 표면에 증착시키는 방식은 증착된 금속 원자가 체내에 부유하여 부작용을 발생시킬 수 있는 리스크가 있으므로 바람직하지 않다. 정형외과적인 인공 금속물(1)의 표면에 나노-마이크로 구조체(110)를 형성하는 다양한 방식에 대하여는 도 8 내지 도 10을 참고하여 상세하게 설명하기로 한다.Referring to FIGS. 1 to 3, the nano-microstructures 110 may be formed on the stem 10. The nano-microstructures 110 are formed on the surface of the orthopedic artificial metal object 1 by various methods such as wet etching, dry etching, mechanical etching and laser etching on the surface of the orthopedic artificial metal object 1 . However, a method of depositing the nano-microparticles on the surface of the orthopedic artificial metal object 1 in such a manner that the nano-micro structure 110 is formed on the surface of the orthopedic artificial metal object 1 is difficult, It is undesirable because there is a risk that the atoms float in the body and cause side effects. Various methods of forming the nano-microstructures 110 on the surface of the orthopedic artificial metal object 1 will be described in detail with reference to FIGS. 8 to 10. FIG.
나노-마이크로 구조체(110)는 나노 스케일 또는 마이크로 스케일로 형성될 수 있다. 나노-마이크로 구조체(110)는 나노 크기 또는 마이크로 크기의 복수 개의 돌출부들을 포함할 수 있다. 나노-마이크로 구조체(110)의 복수 개의 돌출부들의 각각의 크기 및 인접한 돌출부들의 간격 등의 형상적인 특징들은 정형외과적인 인공 금속물(1)의 표면이 윤활층(130)에 의하여 습윤화될 때 중요한 파라미터로서 작용하는 정형외과적인 인공 금속물(1)의 표면의 기공률, 표면적 등과 관련이 있다.The nano-microstructures 110 can be formed in nanoscale or microscale. The nano-microstructures 110 may include a plurality of nano-sized or micro-sized protrusions. The geometric features such as the size of each of the plurality of protrusions of the nano-microstructure 110 and the spacing of adjacent protrusions are important when the surface of the orthopedic artificial metal object 1 is wetted by the lubricant layer 130 Surface porosity and the like of the surface of the orthopedic artificial metal object 1 serving as a parameter.
나노-마이크로 구조체(110)의 복수 개의 돌출부들의 직경(D)의 크기는 약 50 내지 약 300 나노미터(nm) 사이일 수 있다. 예를 들어, 복수 개의 돌출부들의 직경(D)의 크기는 약 50 나노미터, 약 100 나노미터, 약 150 나노미터, 약 200 나노미터, 약 250 나노미터, 약 300 나노미터 등일 수 있다. 또한, 나노-마이크로 구조체(110)의 복수 개의 돌출부들의 직경(D)의 크기는 3 내지 30 마이크로미터(㎛) 사이일 수 있다. 예를 들어, 복수 개의 돌출부들의 직경(D)의 크기는 약 3 마이크로미터, 약 5 마이크로미터, 약 10 마이크로미터, 약 15 마이크로미터, 약 20 마이크로미터, 약 25 마이크로미터, 약 30 마이크로미터 등일 수 있다. 나노-마이크로 구조체(110)의 복수 개의 돌출부들 중 인접한 돌출부들 사이의 간격(L)은 약 100 내지 약 500 나노미터(nm) 사이일 수 있다. 예를 들어, 복수 개의 돌출부들 중 인접한 돌출부들 사이의 간격(L)은 약 100 나노미터, 약 150 나노미터, 약 200 나노미터, 약 250 나노미터, 약 300 나노미터, 약 350 나노미터, 약 400 나노미터, 약 450 나노미터, 약 500 나노미터 등일 수 있다. 이와 같은 나노-마이크로 구조체(110)의 형상적인 스케일에 따르면, 정형외과적인 인공 금속물(1)의 표면이 생체 적합성에 적합한 수준의 기공률 및 표면적을 구비할 수 있다.The size of the diameter D of the plurality of protrusions of the nano-microstructure 110 may be between about 50 and about 300 nanometers (nm). For example, the diameter D of the plurality of protrusions may be about 50 nanometers, about 100 nanometers, about 150 nanometers, about 200 nanometers, about 250 nanometers, about 300 nanometers, and the like. In addition, the diameter D of the plurality of protrusions of the nano-microstructure 110 may be between 3 and 30 micrometers (占 퐉). For example, the diameter D of the plurality of protrusions may be about 3 micrometers, about 5 micrometers, about 10 micrometers, about 15 micrometers, about 20 micrometers, about 25 micrometers, about 30 micrometers, etc. . The spacing L between adjacent protrusions of the plurality of protrusions of the nano-microstructure 110 may be between about 100 and about 500 nanometers (nm). For example, the spacing L between adjacent protrusions of the plurality of protrusions may be about 100 nanometers, about 150 nanometers, about 200 nanometers, about 250 nanometers, about 300 nanometers, about 350 nanometers, about 350 nanometers 400 nanometers, about 450 nanometers, about 500 nanometers, and the like. According to such a geometrical scale of the nano-microstructure 110, the surface of the orthopedic artificial metal object 1 can have a porosity and a surface area of a level suitable for biocompatibility.
나노-마이크로 구조체(110)의 복수 개의 돌출부들은 서로 다른 직경(D)을 가지는 적어도 두 개 이상의 세트들로 구성될 수 있다. 예를 들어, 제1세트의 복수 개의 돌출부들은 50 내지 300 나노미터(nm) 사이일 수 있고, 제2세트의 복수 개의 돌출부들은 3 내지 30 마이크로미터(㎛) 사이일 수 있다. 이와 같이, 복수 개의 돌출부들이 서로 다른 직경(D)을 가지도록 나노-마이크로 구조체(110)가 혼합 구조를 구비하는 경우, 나노 스케일인 경우의 정형외과적인 인공 금속물(1)의 표면의 특성과 마이크로 스케일인 경우의 정형외과적인 인공 금속물(1)의 표면의 특성을 모두 구비할 수 있다.The plurality of protrusions of the nano-microstructure 110 may be composed of at least two sets having different diameters (D). For example, the plurality of protrusions of the first set may be between 50 and 300 nanometers (nm), and the plurality of protrusions of the second set may be between 3 and 30 micrometers (mu m). As described above, when the nano-microstructures 110 have a mixed structure such that the plurality of protrusions have different diameters D, the characteristics of the surface of the orthopedic artificial metal object 1 in the case of nanoscale It is possible to have all the characteristics of the surface of the orthopedic artificial metal object 1 in the case of microscale.
나노-마이크로 구조체(110)의 복수 개의 돌출부들은 특정 형상을 구비할 수 있다. 나노-마이크로 구조체(110)의 복수 개의 돌출부들의 각각이 구비하는 형상에 따라 정형외과적인 인공 금속물(1)의 표면이 제공하는 표면 거칠기의 특성이 달라질 수 있다. 예를 들어, 복수 개의 돌출부들의 각각은 원통형, 피라미드형, 원뿔형 등의 형상을 구비할 수 있다. 또한, 나노-마이크로 구조체(110)의 복수 개의 돌출부들의 단면은 원형, 타원형 또는 다각형일 수 있다. 또한, 나노-마이크로 구조체(110)의 복수 개의 돌출부들의 돌출 방향은 정형외과적인 인공 금속물(1)의 표면으로부터 수직하게 돌출하는 방향이지만, 이에 제한되는 것은 아니고 나노-마이크로 구조체(110)의 복수 개의 돌출부들의 각각은 정형외과적인 인공 금속물(1)의 표면에 대하여 설정 각도를 이룰 수 있다.The plurality of protrusions of the nano-microstructure 110 may have a specific shape. Depending on the shape of each of the plurality of protrusions of the nano-microstructure 110, the surface roughness characteristics of the surface of the orthopedic artificial metal object 1 may be varied. For example, each of the plurality of protrusions may have a shape such as a cylindrical shape, a pyramid shape, a cone shape, or the like. In addition, the cross-section of the plurality of protrusions of the nano-microstructure 110 may be circular, oval or polygonal. The protruding direction of the plurality of protrusions of the nano-microstructure 110 is a direction perpendicularly protruding from the surface of the orthopedic artificial metal object 1, but not limited thereto, Each of the protrusions can establish a set angle with respect to the surface of the orthopedic artificial metal object 1.
도 4는 일 실시예에 따른 나노-마이크로 구조체의 또 다른 예를 개략적으로 나타낸 사시도이다.4 is a perspective view schematically showing another example of the nano-microstructure according to one embodiment.
도 4를 참고하면, 일 실시예에 따른 나노-마이크로 구조체(111)는 정형외과적인 인공 금속물의 표면, 예를 들어 줄기부(10)의 표면에 형성될 수 있다. 나노-마이크로 구조체(111)는 복수 개의 돌출부들을 포함할 수 있다. 정형외과적인 인공 금속물의 표면에 형성된 나노-마이크로 구조체(111)의 형상은 표면 거칠기 뿐만 아니라 정형외과적인 인공 금속물의 표면의 기능성의 유지 시간에 있어서도 중요하다.Referring to FIG. 4, the nano-microstructure 111 according to one embodiment may be formed on the surface of an orthopedic artificial metal object, for example, on the surface of the stem 10. The nano-microstructure 111 may include a plurality of protrusions. The shape of the nano-microstructure 111 formed on the surface of the orthopedic artificial metal object is important not only in the surface roughness but also in the maintenance time of the function of the surface of the orthopedic artificial metal object.
나노-마이크로 구조체(111)의 복수 개의 돌출부들의 각각은 어느 하나의 면이 다른 하나의 면보다 면적이 작은 원뿔 형상을 구비할 수 있다. 예를 들어, 복수 개의 돌출부들의 각각의 다른 하나의 면보다 면적이 작은 어느 하나의 면이 정형외과적인 인공 금속물의 표면에 인접하고 다른 하나의 면이 정형외과적인 인공 금속물의 표면으로부터 먼 방향에 위치되도록 복수 개의 돌출부들의 각각은 정형외과적인 인공 금속물의 표면에 형성될 수 있다. 다시 말하면, 복수 개의 돌출부들의 각각은 정형외과적인 인공 금속물의 표면으로부터 멀어지는 방향으로 폭이 증가할 수 있다. 이와 같은 구조는, 오버행(over-hang) 구조로도 언급될 수 있다. 복수 개의 돌출부들이 오버행 구조를 구비함에 따라, 정형외과적인 인공 금속물의 표면의 기능성 - 미생물의 부착 방지, 윤활 유체의 습윤화 등 - 이 오랜 시간 동안 유지될 수 있다.Each of the plurality of protrusions of the nano-microstructure 111 may have a conical shape in which one surface is smaller in area than the other surface. For example, one surface of each of the plurality of protrusions, which is smaller in area than the other surface, is adjacent to the surface of the orthopedic artificial metal object and the other surface is positioned in a direction far from the surface of the orthopedic artificial metal object Each of the plurality of protrusions may be formed on the surface of the orthopedic artificial metal object. In other words, each of the plurality of protrusions may increase in width in a direction away from the surface of the orthopedic artificial metal object. Such a structure may also be referred to as an over-hang structure. As the plurality of protrusions have an overhang structure, the functionality of the surface of the orthopedic artificial metal object - preventing the attachment of microorganisms, wetting of the lubricating fluid, etc., can be maintained for a long time.
도 5는 도 4의 일 상태에 따른 나노-마이크로 구조체의 단면을 확대한 확대도이고, 도 6은 도 4의 또 다른 상태에 따른 나노-마이크로 구조체의 단면을 확대한 확대도이다.FIG. 5 is an enlarged view of a cross section of the nano-microstructure according to one state of FIG. 4, and FIG. 6 is an enlarged view of a cross section of the nano-microstructure according to another state of FIG.
대상체의 약 70% 이상은 물로 구성되어 있으므로, 물을 제어하는 기술이 매우 중요하다. 대상체로 삽입되는 정형외과적인 인공 금속물은 대부분 물 성분인 대상체의 체액과 접촉되므로, 정형외과적인 인공 금속물의 표면에 형성된 나노-마이크로 구조체를 이루는 물질 및 그 구체적인 형상이 중요하다.Since about 70% or more of the object is composed of water, the technique of controlling water is very important. Since the orthopedic artificial metal inserted into the object is in contact with the body fluids of the object, which is a water component, the material forming the nano-microstructure formed on the surface of the orthopedic artificial metal and its specific shape are important.
도 5 및 도 6을 참고하면, 일 실시예에 따른 나노-마이크로 구조체는 제1서브구조체(112) 및 제2서브구조체(113)를 포함할 수 있다. 제1서브구조체(112)는 적어도 하나 이상의 제1입자가 정형외과적인 인공 금속물의 표면에 대하여 응집되어 형성될 수 있다. 제1서브구조체(112)는 정형외과적인 인공 금속물의 표면에 대하여 근위부분이 말단부분보다 폭이 더 작도록 형성될 수 있다. 즉, 제1서브구조체(112)는 적어도 하나 이상의 제1입자가 응집하여 오버행 구조를 형성할 수 있다. 예를 들어, 적어도 하나 이상의 제1입자는 접착 기능을 수행하는 접착제일 수 있다. 제2서브구조체(113)는 적어도 하나 이상의 제2입자가 제1서브구조체(112)의 주변에 부착되어 형성될 수 있다. 예를 들어, 적어도 하나 이상의 제2입자는 SiO2 NPs일 수 있다.Referring to FIGS. 5 and 6, the nano-microstructure according to one embodiment may include a first sub-structure 112 and a second sub-structure 113. The first sub-structure 112 may be formed by agglomerating at least one of the first particles against the surface of the orthopedic artificial metal object. The first sub-structure 112 may be formed such that the proximal portion relative to the surface of the orthopedic artificial metal object is smaller in width than the distal portion. That is, the first sub-structure 112 may form an overhang structure by aggregating at least one of the first particles. For example, at least one of the first particles may be an adhesive that performs an adhesive function. The second sub-structure 113 may be formed by attaching at least one or more second particles to the periphery of the first sub-structure 112. For example, the at least one second particle can be SiO 2 NPs.
정형외과적인 인공 금속물의 표면에 형성된 제1서브구조체(112) 및 제1서브구조체(112)를 둘러싸도록 형성된 제2서브구조체(113)에 있어서, 공기층이 정형외과적인 인공 금속물의 표면에 인접하게 형성되고, 공기층 위에 액체층이 형성되어 있는 상태로부터 공기층과 액체층이 혼합되는 상태로 전이된다. 다시 말하면, 정형외과적인 인공 금속물의 표면에 형성된 제1서브구조체(112) 및 제2서브구조체(113)에 의하여 정형외과적인 인공 금속물의 표면으로 액체층의 습윤화가 촉진될 수 있다.A first substructure 112 formed on the surface of an orthopedic artificial metal object and a second substructure 113 formed to surround the first substructure 112 so that the air layer is adjacent to the surface of the orthopedic artificial metal object And the air layer and the liquid layer are transferred from the state in which the liquid layer is formed on the air layer to the state in which the air layer and the liquid layer are mixed. In other words, the first sub-structure 112 and the second sub-structure 113 formed on the surface of the orthopedic artificial metal object can promote the wetting of the liquid layer to the surface of the orthopedic artificial metal object.
도 7은 도 1의 정형외과적인 인공 금속물의 표면의 일부(A) 중 자가 조립 단층의 일 예를 개략적으로 나타낸 도면이다.7 is a schematic view of an example of a self-assembled monolayer in a portion (A) of the surface of the orthopedic artificial metal object of Fig.
도 1, 도 2 및 도 7을 참고하면, 자가 조립 단층(120)은 나노-마이크로 구조체(110) 위에 부착되어 단층을 형성하는 경우, 자가 조립 단층(120) 내 분자들은 상호 정렬될 수 있다. 예를 들어, 자가 조립 단층(120)을 이루는 분자는 고분자로서, 헤드(121), 체인(122) 및 작용기(123)를 포함할 수 있다. 이 때, 단층의 두께는 수십 나노미터(nm)의 크기일 수 있다.1, 2 and 7, when the self-assembled monolayer 120 adheres onto the nano-microstructure 110 to form a monolayer, the molecules in the self-assembled monolayer 120 can be aligned with each other. For example, the molecules that make up the self-assembled monolayer 120 may be polymers, including the head 121, the chain 122, and the functionalities 123. At this time, the thickness of the monolayer may be several tens nanometers (nm) in size.
헤드(121)는 정형외과적인 인공 금속물(1)의 표면에 화학적으로 부착될 수 있다. 체인(122)은 주로 탄화수소로 이루어질 수 있고, 반데르발스 상호작용에 의하여 자가 조립 단층(120) 내 분자들의 상호 정렬을 도울 수 있다. 작용기(123)는 정형외과적인 인공 금속물(1)의 표면의 성질을 소수성으로 변환시켜, 미생물이 정형외과적인 인공 금속물(1)의 표면으로 흡착되는 것을 방지할 수 있다.The head 121 may be chemically attached to the surface of the orthopedic artificial metal object 1. Chain 122 may be predominantly of hydrocarbon and may assist in the mutual alignment of molecules in self-assembled monolayer 120 by van der Waals interactions. The functional group 123 can convert the property of the surface of the orthopedic artificial metal object 1 into a hydrophobic property so as to prevent the microorganism from being adsorbed to the surface of the orthopedic artificial metal object 1.
미생물과의 상호 작용 및 정형외과적인 인공 금속물(1)의 표면의 성질 변환에 있어서 작용기(123)의 종류가 중요하다.The kind of the functional group 123 is important in the interaction with the microorganism and the transformation of the surface of the orthopedic artificial metal object 1.
작용기(123)는 플루오르화 실란기일 수 있다. 예를 들어, 작용기(123)는 헵타데카플루오르 - 1, 1, 2, 2 - 테트라하이드로데실트리클로로실란, 트리데카플루오르 - 1, 1, 2, 2 - 테트라하이드로옥틸트리클로로실란, 트리클로로(1H, 1H, 2H, 2H - 퍼플루오르옥틸)실란 및 1H, 1H, 2H, 2H - 퍼플루오르옥틸트리에톡시실란일 수 있다.The functional group 123 may be a fluorinated silane group. For example, functional group 123 may be selected from the group consisting of heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane, trichloro 1H, 1H, 2H, 2H-perfluorooctyl) silane and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.
도 8은 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법을 개략적으로 나타낸 순서도이다.8 is a flowchart schematically showing a method of manufacturing an orthopedic artificial metal object according to an embodiment.
도 8을 참고하면, 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법은 정형외과적인 인공 금속물의 표면을 개질(modify)하여 나노-마이크로 구조를 형성할 수 있다(S810). 여기서, 정형외과적인 인공 금속물의 표면은 티타늄 및 스테인리스강으로 이루어질 수 있다. 표면 구조 형성 단계(S810)에서, 티타늄 및 스테인리스강으로 이루어진 정형외과적인 인공 금속물의 표면에 대하여 화학적 방식 또는 기계적 방식이 적용됨으로써 정형외과적인 인공 금속물의 표면에 나노-마이크로 구조가 형성될 수 있다.Referring to FIG. 8, a method of manufacturing an orthopedic artificial metal object according to an embodiment may modify a surface of an orthopedic artificial metal object to form a nano-microstructure (S810). Here, the surface of the orthopedic artificial metal object can be made of titanium and stainless steel. In the surface structure forming step (S810), the nano-microstructure can be formed on the surface of the orthopedic artificial metal by applying a chemical method or a mechanical method to the surface of the orthopedic artificial metal material made of titanium and stainless steel.
이후, 나노-마이크로 구조 위에 자가 조립 단층을 형성할 수 있다(S820). 예를 들어, 자가 조립 단층은 플루오로화 실란기를 구비할 수 있다.Then, a self-assembled monolayer can be formed on the nano-microstructure (S820). For example, the self-assembled monolayer can have a fluorinated silane group.
이후, 자가 조립 단층 위에 설정 표면 에너지를 가지는 윤활층을 형성할 수 있다(S830). 예를 들어, 윤활층을 이루는 윤활 유체는 퍼플루오로카본 액체로서, 표면 개질에 적합한 낮은 표면 에너지를 구비할 수 있다. 이 때, 퍼플루오로카본 액체의 점성 및 밀도의 수치가 생체 적합성에 맞도록 퍼플루오로카본 액체의 일 종류가 선택될 수 있다.Thereafter, a lubricating layer having a set surface energy can be formed on the self-assembled monolayer (S830). For example, the lubricating fluid forming the lubricating layer may be a perfluorocarbon liquid, and may have a low surface energy suitable for surface modification. At this time, one kind of perfluorocarbon liquid may be selected so that the value of the viscosity and density of the perfluorocarbon liquid is biocompatible.
도 9는 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법 중 정형외과적인 인공 금속물의 표면에 구조를 형성하는 방법의 일 예를 개략적으로 나타낸 순서도이다.9 is a flowchart schematically illustrating an example of a method of forming a structure on the surface of an orthopedic artificial metal object in a method of manufacturing an orthopedic artificial metal object according to an embodiment.
도 9를 참고하면, 일 실시예에 따른 정형외과적인 인공 금속물의 표면에 구조를 형성하는 방법은 제1금속으로 이루어진 표면에 플루오르화 수소(HF) 수용액으로 식각하고(S910), 제2금속으로 이루어진 표면에 플루오르화 수소(HF) 수용액과 질산(HNO3) 수용액의 혼합 용액으로 식각될 수 있다(S920). 다만, 도 9에 도시된 식각 순서에 제한되지 않는다. 여기서, 제1금속은 스테인리스강, 제2금속은 티타늄일 수 있다.Referring to FIG. 9, a method of forming a structure on the surface of an orthopedic artificial metal object according to an embodiment includes etching (S910) an aqueous solution of hydrogen fluoride (HF) on a surface of the first metal (HF) aqueous solution and a nitric acid (HNO 3 ) aqueous solution (S 920). However, it is not limited to the etching order shown in Fig. Here, the first metal may be stainless steel and the second metal may be titanium.
제1금속으로 이루어진 표면에 플루오르화 수소(HF) 수용액으로 식각하는 단계(S910)에서, 플루오르화 수소(HF) 수용액의 농도는 49%일 수 있다. 이 과정에서, 제1금속으로 이루어진 표면은 플루오르화 수소(HF) 수용액에서 약 25도 내지 40도 사이의 온도에서 약 30분간 습식 식각될 수 있다.In step S910 of etching the surface of the first metal with an aqueous solution of hydrogen fluoride (HF), the concentration of the aqueous solution of hydrogen fluoride (HF) may be 49%. In this process, the surface of the first metal can be wet etched for about 30 minutes at a temperature between about 25 and 40 degrees C in an aqueous solution of hydrogen fluoride (HF).
제2금속으로 이루어진 표면에 플루오르화 수소(HF) 수용액과 질산(HNO3) 수용액의 혼합 용액으로 식각하는 단계(S920)에서, 플루오르화 수소(HF) 수용액의 농도는 3 내지 5%이고, 질산(HNO3) 수용액의 농도는 3 내지 20%일 수 있다. 이 과정에서, 제2금속으로 이루어진 표면은 플루오르화 수소(HF) 수용액과 질산(HNO3) 수용액의 혼합 용액에서 약 10 내지 60분간 습식 식각될 수 있다.2 as hydrogen fluoride (HF) aqueous solution with nitric acid to a surface made of metal (HNO 3), and at step (S920) for etching with a mixed solution of aqueous solution of hydrogen fluoride (HF) concentrations of from 3 to 5% of the aqueous solution of nitric acid (HNO 3 ) aqueous solution may be 3 to 20%. In this process, the surface of the second metal may be wet-etched in a mixed solution of an aqueous solution of hydrogen fluoride (HF) and an aqueous solution of nitric acid (HNO 3 ) for about 10 to 60 minutes.
도 10은 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법 중 또 다른 예를 개략적으로 나타낸 순서도이다.10 is a flowchart schematically showing another example of a method of manufacturing an orthopedic artificial metal object according to an embodiment.
도 10을 참고하면, 정형외과적인 인공 금속물의 표면에 대하여 일 실시예에 따른 건식 식각 공정이 도시된다.Referring to FIG. 10, a dry etching process according to one embodiment is shown for a surface of an orthopedic artificial metal object.
먼저, 포토리소그래피를 이용하여 나노-마이크로 패턴화하는 단계(S1000)에서, 정형외과적인 인공 금속물의 표면에 나노-마이크로 패턴화를 할 때, 패턴의 크기가 약 100 내지 300 나노미터(nm)이고 패턴 간 간격이 약 100 내지 500 나노미터(nm)가 되도록 정형외과적인 인공 금속물의 표면이 패턴화될 수 있다.First, when performing nano-micropatterning on the surface of an orthopedic artificial metal material in a step of S1000 (nano-micropatterning) using photolithography, the size of the pattern is about 100 to 300 nanometers (nm) The surface of the orthopedic artificial metal object can be patterned such that the spacing between the patterns is about 100 to 500 nanometers (nm).
이후, 나노-마이크로 패턴화된 정형외과적인 인공 금속물의 표면에 대하여 반응성 이온 에칭(reactive ion etching) 방식으로 정형외과적인 인공 금속물의 표면이 음각 패턴화될 수 있다.Thereafter, the surface of the orthopedic artificial metal object can be engraved with a pattern of reactive ion etching on the surface of the nano-micropatterned orthopedic artificial metal object.
도 1 내지 도 10에 도시되지 않았지만, 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법은 정형외과적인 인공 금속물의 표면에 모래 입자를 이용하여 기계적으로 식각하는 기계적 식각 방식, 정형외과적인 인공 금속물의 표면에 나노 레이저를 이용하여 마이크로 패턴 또는 나노 패턴을 형성하는 레이저 식각 방식을 포함할 수 있다.Although not shown in FIGS. 1 to 10, the method of manufacturing an orthopedic artificial metal object according to an embodiment includes a mechanical etching method in which a surface of an orthopedic artificial metal object is mechanically etched using sand particles, And a laser etching method of forming a micropattern or a nano pattern using a nano-laser on the surface of water.
앞서 설명한 공정 방식은 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법의 일 예를 나타내는 것이며, 이에 제한되지 않음을 밝혀둔다.It is noted that the above-described processing method is an example of a method of manufacturing an orthopedic artificial metal object according to an embodiment, and is not limited thereto.
실험예 1Experimental Example 1
도 11은 기존의 인공 금속물 및 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법에 의하여 제조된 인공 금속물의 시간에 따른 미생물 생성 정도를 나타낸 도면이다.FIG. 11 is a view showing the degree of microbial production of the artificial metal material produced by the conventional artificial metal material and the method of manufacturing orthopedic artificial metal material according to one embodiment with time.
도 11 및 아래의 표 1을 참고하면, 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법, 특히 일 실시예에 따른 습식 식각에 따라 처리된 3cm의 스테인리스강 및 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법에 따라 처리되지 않은 3cm의 스테인리스강을 미생물이 있는 배양지에 1주 내지 6주까지 배양하고, 각 주마다 스테인리스강에 미생물에 의한 생체 막이 형성되었는지 여부를 검사하였다.Referring to Figure 11 and Table 1 below, a method of making an orthopedic artificial metal object according to one embodiment, particularly a 3 cm stainless steel treated according to one embodiment of wet etch and an orthopedic The untreated 3-cm stainless steel was cultivated in a culture medium containing microorganisms for 1 to 6 weeks according to the manufacturing method of the artificial metal, and whether or not the biological membrane of the microorganism was formed in the stainless steel was examined for each week.
Figure PCTKR2018010338-appb-I000001
Figure PCTKR2018010338-appb-I000001
이와 같은 결과에 따르면, 일 실시예에 따른 제조 방법에 따른 금속 표면에 2주째부터 형성되어야 할 생체 막이 형성되지 않음을 확인할 수 있었다.According to the results, it was confirmed that a biological membrane to be formed on the metal surface according to the manufacturing method according to one embodiment was not formed from the second week.
이와 같은 실험예는 정형외과적인 인공 금속물의 표면이 일 실시예에 따른 정형외과적인 인공 금속물의 제조 방법에 따라 처리되면, 대상체 내에 삽입된 정형외과적인 인공 금속물의 주변에 미생물에 의한 감염이 발생하더라도 생체 막이 형성되어 있지 않을 가능성이 매우 높다는 것을 증명하는 것이다.In this experimental example, when the surface of the orthopedic artificial metal object is treated according to the method of manufacturing the orthopedic artificial metal object according to the embodiment, even if the infection by the microorganism occurs around the orthopedic artificial metal object inserted into the object It is very likely that the biological membrane is not formed.
실험예 2Experimental Example 2
도 12는 TCP 방식에 따라 조직 배양 플레이트에서 생체 막 생성자들을 스크린(screen)하는 실험을 나타낸 도면이다.12 is an illustration of an experiment for screening bioproduct constructs in a tissue culture plate according to the TCP scheme.
도 12에는 조직 배양 플레이트(Tissue Culture Plate, TCP)에 인공 금속물에 사용되는 금속인 티타늄 및 스테인리스강과 미생물들을 첨가하여 실험한 모습이 도시된다. 실험 결과, 일 실시예에 따른 인공 금속물의 제조 방법에 따라 제조된 인공 금속물에 미생물을 첨가한 경우, 일 실시예에 따른 인공 금속물의 제조 방법에 따라 제조되지 않은 경우보다 생체 막 형성 정도가 현저하게 낮았다.FIG. 12 shows an experiment in which a tissue culture plate (TCP) is prepared by adding titanium and stainless steel, which are metals used in artificial metal materials, and microorganisms. As a result of the experiment, when the microorganism was added to the artificial metal material produced according to the method of manufacturing artificial metal material according to one embodiment, the degree of biological film formation was remarkably higher than that of the artificial metal material Respectively.
실험예 3Experimental Example 3
도 13은 Tube 방식에 따라 생체 막 형성 정도를 비교하는 실험을 나타낸 도면이다.13 is a diagram showing an experiment for comparing the degree of biological film formation according to the tube method.
도 13을 참고하면, 튜브(tube)들에 일 실시예에 따른 인공 금속물의 제조 방법에 따라 제조된 인공 금속물 및 일 실시예에 따른 인공 금속물의 제조 방법에 따라 제조되지 않은 인공 금속물에 각각 미생물을 첨가한 후, 생체 막 형성 정도를 비교하였다. 실험 결과, 일 실시예에 따른 인공 금속물의 제조 방법에 따라 제조된 인공 금속물에 미생물을 첨가한 경우, 일 실시예에 따른 인공 금속물의 제조 방법에 따라 제조되지 않은 경우보다 생체 막 형성 정도가 현저하게 낮았다.Referring to FIG. 13, the artificial metal material produced according to the manufacturing method of the artificial metal material according to an embodiment and the artificial metal material not manufactured according to the manufacturing method of artificial metal material according to an embodiment, After addition of microorganisms, the degree of biomembrane formation was compared. As a result of the experiment, when the microorganism was added to the artificial metal material produced according to the method of manufacturing artificial metal material according to one embodiment, the degree of biological film formation was remarkably higher than that of the artificial metal material Respectively.
한편, 앞서 설명한 실험예들은 단지 예시를 위하여 제시되는 것으로서, 제한적이고 배타적이지 않음을 먼저 밝혀둔다.It should be noted, however, that the foregoing experimental examples are presented for illustrative purposes only and are not intended to be limiting or exclusive.
일 실시예에 따른 정형외과적인 인공 금속물 및 이의 제조 방법은 인공 금속물의 주변에 감염이 발생하더라도 인체, 동물 등 대상체로부터 인공 금속물을 제거하지 않고 리스크가 적은 수술과 항생제 치료만으로 인공 금속물의 주변에 발생된 감염을 치료할 수 있다는 장점, 인공 금속물의 제조 시 인공 금속물의 표면에 금속 원자를 증착하는 등의 방식을 사용하지 않으므로 금속 원자가 체내에 부유함으로 인하여 발생하는 합병증을 발생시키지 않을 수 있다는 장점, 인공 금속물의 표면에 항생제를 미리 부착하지 않으므로 항생제가 미생물의 감염을 방지하기 위하여 모두 사용된 후 다시 항생제를 인공 금속물의 표면에 부착하기 위하여 대상체로부터 인공 금속물을 제거할 필요가 없다는 장점을 갖는다.According to one embodiment, the orthopedic artificial metal material and the method of manufacturing the same can prevent the artificial metal material from being removed from the object such as the human body and the animal even if the infection occurs around the artificial metal material, The advantage of being able to treat the infections caused by the metal atoms in the body, and the advantage that the metal atoms do not cause complications due to floating in the body since the method of depositing metal atoms on the surface of the artificial metal material during the production of the artificial metal material is not used, There is no need to remove the artificial metal from the object in order to attach the antibiotic to the surface of the artificial metal again after the antibiotic is used to prevent infection of the microorganism since the antibiotic is not previously attached to the surface of the artificial metal.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. For example, it is to be understood that the techniques described may be performed in a different order than the described methods, and / or that components of the described systems, structures, devices, circuits, Lt; / RTI > or equivalents, even if it is replaced or replaced.

Claims (13)

  1. 금속 재료로 만들어진 인공 금속물의 표면에 형성된 복수 개의 돌출부들을 구비하는 나노-마이크로 구조체;A nano-microstructure having a plurality of protrusions formed on a surface of an artificial metal material made of a metal material;
    상기 나노-마이크로 구조체 위에 부착되어 나노미터 스케일의 설정 두께의 단층을 형성하고, 단층 내 분자들이 상호 정렬되고, 미생물과 미끄럼 접촉 가능한 설정 유체와 접촉하도록 구성된 자가 조립 단층; 및A self-assembled monolayer adhered on the nano-microstructure to form a monolayer of a predetermined thickness of a nanometer scale, the molecules in the monolayer being aligned with each other, and contacting a setting fluid capable of sliding contact with the microorganism; And
    상기 자가 조립 단층 위에 형성되고, 미생물과 미끄럼 접촉 가능한 설정 유체를 포함하는 윤활층;A lubricating layer formed on the self-assembled monolayer and comprising a setting fluid capable of sliding contact with the microorganism;
    을 포함하는 정형외과적인 인공 금속물.Orthopedic artificial metal water containing.
  2. 제1항에 있어서,The method according to claim 1,
    상기 복수 개의 돌출부들은 상기 인공 금속물의 표면으로부터 멀어지는 방향으로 폭이 증가하는 정형외과적인 인공 금속물.The plurality of protrusions increasing in width in a direction away from a surface of the artificial metal object.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 복수 개의 돌출부들의 각각은 인공 금속물의 표면에 형성된 제1서브구조체 및 상기 제1서브구조체를 둘러싸도록 형성된 제2서브 구조체를 포함하는 정형외과적인 인공 금속물.Wherein each of the plurality of protrusions comprises a first substructure formed on a surface of artificial metal material and a second substructure formed to surround the first substructure.
  4. 제1항에 있어서,The method according to claim 1,
    상기 복수 개의 돌출부들은 직경 크기가 50 내지 300 나노미터(nm) 사이이고, 상기 복수 개의 돌출부들 중 인접한 돌출부들 사이의 간격은 100 내지 500 나노미터(nm) 사이인 정형외과적인 인공 금속물.Wherein the plurality of protrusions are between 50 and 300 nanometers in diameter in diameter and the spacing between adjacent protrusions of the plurality of protrusions is between 100 and 500 nanometers.
  5. 제1항에 있어서,The method according to claim 1,
    상기 복수 개의 돌출부들은 직경 크기가 50 내지 300 나노미터(nm) 사이인 돌출부들의 제1세트와 직경 크기가 3 내지 30 마이크로미터(㎛) 사이인 돌출부들의 제2세트로 구성되는 정형외과적인 인공 금속물.Wherein the plurality of protrusions comprises a first set of protrusions having a diameter size between 50 and 300 nanometers and a second set of protrusions having a diameter size between 3 and 30 micrometers water.
  6. 제1항에 있어서,The method according to claim 1,
    상기 자가 조립 단층은 인공 금속물의 표면의 성질을 소수성으로 변환시키도록 구성된 설정 작용기를 구비하고, 상기 설정 작용기는 플루오르화 실란기인 정형외과적인 인공 금속물.Wherein the self-assembled monolayer has a setting function configured to convert the properties of the surface of the artificial metal object to hydrophobic, and wherein the setting function is a fluorinated silane group.
  7. 제6항에 있어서,The method according to claim 6,
    상기 설정 작용기는, 헵타데카플루오르 - 1, 1, 2, 2 - 테트라하이드로데실트리클로로실란, 트리데카플루오르 - 1, 1, 2, 2 - 테트라하이드로옥틸트리클로로실란, 트리클로로(1H, 1H, 2H, 2H - 퍼플루오르옥틸)실란 및 1H, 1H, 2H, 2H - 퍼플루오르옥틸트리에톡시실란으로 이루어진 군으로부터 선택된 하나 이상인 정형외과적인 인공 금속물.The set functionalities include heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane, tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane, trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane and 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane.
  8. 제1항에 있어서,The method according to claim 1,
    상기 설정 유체는 점성이 0.1 내지 0.8 cm2/s 사이이고, 밀도가 1500 내지 2000 kg/m3 사이인 정형외과적인 인공 금속물.The set fluid having a viscosity of between 0.1 and 0.8 cm < 2 > / s and a density of between 1500 and 2000 kg / m < 3 >.
  9. 제1항에 있어서,The method according to claim 1,
    상기 설정 유체는, FC-70, Krytox-100, Krytox-103, Flutec PP6, FC-40, FC-72, PF5080, 1 - 브로모퍼플루오르옥탄, Vitreon, FluoroMed APF-215HP, HFE-7500, Krytox FG-40, Krytox-105, Krytox-107 및 퍼플루오로데칼린(Perfluorodecalin)으로 이루어진 군으로부터 선택된 하나 이상인 정형외과적인 인공 금속물.The settling fluids were selected from the group consisting of FC-70, Krytox-100, Krytox-103, Flutec PP6, FC-40, FC-72, PF5080, 1-Bromofluorooctane, Vitreon, FluoroMed APF-215HP, HFE-7500, Krytox FG -40, Krytox-105, Krytox-107, and Perfluorodecalin.
  10. 금속 재료로 만들어진 인공 금속물의 표면을 개질하여 나노-마이크로 구조를 형성하는 표면 구조 형성 단계;A surface structure forming step of forming a nano-microstructure by modifying a surface of an artificial metal material made of a metal material;
    상기 나노-마이크로 구조 위에 자가 조립 단층을 형성하는 단층 형성 단계; 및Forming a monolayer on the nano-microstructure; And
    상기 자가 조립 단층 위에 설정 표면 에너지를 가지는 윤활층을 형성하는 윤활층 형성 단계;A lubricant layer forming step of forming a lubricant layer having a set surface energy on the self-assembled monolayer;
    를 포함하는 정형외과적인 인공 금속물의 제조 방법.≪ / RTI >
  11. 제10항에 있어서,11. The method of claim 10,
    상기 금속 재료는 제1금속 및 제2금속을 포함하고,Wherein the metal material comprises a first metal and a second metal,
    상기 표면 구조 형성 단계는, 상기 제1금속으로 이루어진 상기 인공 금속물의 표면에 플루오르화 수소 수용액으로 습식 식각하고, 상기 제2금속으로 이루어진 상기 인공 금속물의 표면에 플루오르화 수소 수용액 및 질산 수용액의 혼합 용액으로 습식 식각하는 습식 식각 단계를 포함하는 정형외과적인 인공 금속물의 제조 방법.Wherein the surface structure forming step comprises wet etching the surface of the artificial metal material composed of the first metal with an aqueous solution of hydrogen fluoride to form a mixed solution of an aqueous hydrogen fluoride solution and an aqueous nitric acid solution on the surface of the artificial metal material composed of the second metal Wherein the wet etch step comprises wet etching the wet etch step.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 표면 구조 형성 단계는, 포토리소그래피를 이용하여 나노-마이크로 패턴화하고, 반응성 이온 에칭 방식으로 음각 패턴화하는 건식 식각 단계를 포함하는 정형외과적인 인공 금속물의 제조 방법.Wherein the surface structure forming step includes a dry etching step of forming a nano-micropatterned pattern by photolithography and forming an engraved pattern by a reactive ion etching method.
  13. 제10항에 있어서,11. The method of claim 10,
    상기 표면 구조 형성 단계는, 모래 입자를 이용하여 기계적으로 식각하는 기계적 식각 단계 또는 나노 레이저를 이용하여 마이크로 패턴 또는 나노 패턴을 형성하는 레이저 식각 단계를 포함하는 정형외과적인 인공 금속물의 제조 방법.Wherein the surface structure forming step comprises a mechanical etching step of mechanically etching using sand particles or a laser etching step of forming a micropattern or a nano pattern using a nano-laser.
PCT/KR2018/010338 2017-09-14 2018-09-05 Orthopedic artificial metal article and manufacturing method therefor WO2019054690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170117958A KR101985094B1 (en) 2017-09-14 2017-09-14 Artificial metallic object and manufacturing method thereof
KR10-2017-0117958 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054690A1 true WO2019054690A1 (en) 2019-03-21

Family

ID=65723374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010338 WO2019054690A1 (en) 2017-09-14 2018-09-05 Orthopedic artificial metal article and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101985094B1 (en)
WO (1) WO2019054690A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222595B1 (en) * 2019-04-24 2021-03-05 원광대학교산학협력단 Bactericidal implantable device via nanostructure particles with protection layer and manufacturing method
KR102282017B1 (en) * 2019-06-05 2021-07-29 주식회사 오아이디 Coating structure of orthopedic endoprosthesis and method for modifying orthopedic endoprosthesis surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070095916A (en) * 2004-11-26 2007-10-01 스텐토믹스 인코포레이티드 Chelating and binding chemicals to a medical implant
KR20130001226A (en) * 2010-01-28 2013-01-03 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Structures for preventing microorganism attachment
KR20140004723A (en) * 2011-01-19 2014-01-13 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Slippery liquid-infused porous surfaces and biological applications thereof
JP2014530733A (en) * 2011-10-27 2014-11-20 キンバリー クラーク ワールドワイド インコーポレイテッド Implantable device for delivery of bioactive agents
KR101701264B1 (en) * 2015-09-16 2017-02-01 한국전기연구원 Metal for transplantation, manufacturing method for metal, implant and stent using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535704B2 (en) * 2005-12-29 2013-09-17 Medtronic, Inc. Self-assembling cross-linking molecular nano film
JP2012143416A (en) * 2011-01-13 2012-08-02 Gc Corp Dental implant and surface treatment method of dental implant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070095916A (en) * 2004-11-26 2007-10-01 스텐토믹스 인코포레이티드 Chelating and binding chemicals to a medical implant
KR20130001226A (en) * 2010-01-28 2013-01-03 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Structures for preventing microorganism attachment
KR20140004723A (en) * 2011-01-19 2014-01-13 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Slippery liquid-infused porous surfaces and biological applications thereof
JP2014530733A (en) * 2011-10-27 2014-11-20 キンバリー クラーク ワールドワイド インコーポレイテッド Implantable device for delivery of bioactive agents
KR101701264B1 (en) * 2015-09-16 2017-02-01 한국전기연구원 Metal for transplantation, manufacturing method for metal, implant and stent using the same

Also Published As

Publication number Publication date
KR20190030471A (en) 2019-03-22
KR101985094B1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
Ge et al. Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications
JP4755694B2 (en) Method to improve biocompatibility of elastomeric materials by microtexturing using microdroplet patterning
Jaggessar et al. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants
Ercan et al. Diameter of titanium nanotubes influences anti-bacterial efficacy
EP2632613B1 (en) Engineered surfaces for reducing bacterial adhesion
WO2019054690A1 (en) Orthopedic artificial metal article and manufacturing method therefor
Ye et al. Cicada and catkin inspired dual biomimetic antibacterial structure for the surface modification of implant material
Park et al. Graphene as an enabling strategy for dental implant and tissue regeneration
WO2009046425A2 (en) Micro- and nano-patterned surface features to reduce implant fouling and regulate wound healing
JP6427106B2 (en) Method of manufacturing nonconductive antibacterial sheet
Palacio et al. Gecko-inspired fibril nanostructures for reversible adhesion in biomedical applications
Tsui et al. Low-cost, flexible, disinfectant-free and regular-array three-dimensional nanopyramid antibacterial films for clinical applications
WO2006027274A1 (en) Surface-structured substrate and production thereof
WO2016167476A1 (en) Implant having surface of micro-nano composite structure, and method for processing surface of implant
JP2021042194A (en) Water-degradable films comprising hyaluronic acid or salt thereof and polyphenol compounds
WO2020246813A1 (en) Surface coating structure of surgical prosthesis, and method for modifying surface of surgical prosthesis by using same
CN107137767A (en) A kind of hydroxyapatite pattern surface preparation method with anti-microbial property
Subramani Fabrication of hydrogel micropatterns by soft photolithography
Bérces et al. Effect of nanostructures on anchoring stem cell-derived neural tissue to artificial surfaces
Liu et al. A printing-spray-transfer process for attaching biocompatible and antibacterial coatings to the surfaces of patient-specific silicone stents
Ion et al. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells
KR20200140673A (en) Coating structure of orthopedic endoprosthesis and method for modifying orthopedic endoprosthesis surface
Asadi Tokmedash et al. Stretchable, Nano‐Crumpled MXene Multilayers Impart Long‐Term Antibacterial Surface Properties
WO2017047912A1 (en) Bioimplantation metal having nano-patterning groove surface, method for preparing metal, implant, method for manufacturing implant, stent, and method for manufacturing stent
Amani Hamedani et al. Flexible multifunctional titania nanotube array platform for biological interfacing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857300

Country of ref document: EP

Kind code of ref document: A1