WO2019054602A1 - Polymer having nano-wrinkle structure formed using ion beam and preparation method therefor - Google Patents

Polymer having nano-wrinkle structure formed using ion beam and preparation method therefor Download PDF

Info

Publication number
WO2019054602A1
WO2019054602A1 PCT/KR2018/005563 KR2018005563W WO2019054602A1 WO 2019054602 A1 WO2019054602 A1 WO 2019054602A1 KR 2018005563 W KR2018005563 W KR 2018005563W WO 2019054602 A1 WO2019054602 A1 WO 2019054602A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
nano
present
energy
particles
Prior art date
Application number
PCT/KR2018/005563
Other languages
French (fr)
Korean (ko)
Inventor
이승훈
정성훈
김도근
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2019054602A1 publication Critical patent/WO2019054602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a polymer having a nano-pleated structure using an ion beam and a method for producing the same. More specifically, the present invention relates to a polymer having a nanofiber structure formed on a surface of which surface area ratio and mechanical durability are improved, a product having excellent sensitivity and reliability using the same, and a process for producing the polymer using an ion beam.
  • the ion treatment technology of the polymer surface accelerates particles (ions) accelerated by the energy of 0.01-100 keV to collide with the polymer surface to control cross-linking and scission of the polymer, To form nano structures and bonds.
  • the AC (kHz to MHz) glow discharge method has the limitation of the process conditions such as ion irradiation energy up to about 0.3 keV and vertical fixation of ion incidence angle among the ion treatment technology of polymer surface that can be nano-structured without existing mask. Nanostructures were limited.
  • Table 1 below shows characteristics of a conventional surface treatment technique using plasma.
  • the ion beam generation technology is a technique for generating high-energy particles of several keV for controlling reactions such as cross-linking and cleavage on a polymer surface.
  • Table 2 compares the suitability of polymer surface treatment for different ion beam generation technologies.
  • US Pat. No. 8,951,428 discloses a process for producing a periodic structure of a polymer phase using a plasma process.
  • a nano-ripple structure is formed by controlling an electrode temperature at which a polymer is attached, .
  • the present inventors can control the shape of the nanostructure without mask by controlling the density of the polymer, the kind of the generated ion, the ion incident energy, or the ion incident amount, so that the polymer surface ion treatment technique advantageous for large- Thereby completing the present invention.
  • Another object of the present invention is to provide a product such as a sensor, a scalable device, or a Ben Double device which is excellent in sensitivity and reliability using the polymer material.
  • An object of the present invention is to provide a polymer having a nano-pleated structure formed on its surface and having improved surface area ratio and mechanical durability by controlling the generation of a large number of ions at a low voltage upon irradiation with an ion beam and by varying process gas and polymer density, And a method for producing a polymer which can mass-produce the polymer in a large area at low cost without using a mask by using an ion beam.
  • 1.1 g / cm 3 Or more and having a plurality of nano-pleated structures with a width of 20 to 300 nm on the surface.
  • the density may be 1.1 to 1.3 g / cm < 3 >.
  • the polymer may be made of poly methyl methacrylate (PMMA), polycarbonate (PC), or a mixture thereof.
  • the nano-pleated structure may be formed by gas particle irradiation having an energy of 50 eV or more and less than 1000 eV.
  • a metal or a metal oxide may be deposited on the polymer.
  • an article comprising the polymer of the present invention.
  • the product may be a sensor, a scalable device, or a Ben Double device.
  • 1.1 g / cm 3 And irradiating gas particles having an energy of 50 eV or more and less than 1000 eV to a polymer having a density of at least 50 eV to form a nano-pleated structure.
  • the gas particles are selected from the group consisting of argon; Or a group of mixed particles containing at least one of argon, krypton, xenon, oxygen, nitrogen, and hydrogen.
  • the mixed particle group may contain at least 80% of argon.
  • the mixed particle group may contain less than 20% oxygen.
  • two or more kinds of particles of the mixed particle group can be irradiated simultaneously or sequentially.
  • the gas particles may be ions or neutral gas particles.
  • the polymer may have a plurality of nano-pleated structures having a width of 20 to 300 nm on its surface.
  • a product such as a sensor, a stressable device, or a Ben Double device having excellent sensitivity and reliability using the polymer material can be provided.
  • a polymer having a nanofiber structure formed on a surface having improved surface area ratio and mechanical durability can be mass-produced in a large area at low cost without using a mask by using an ion beam.
  • FIGS. 1A and 1B are schematic diagrams of a DNA detection sensor using the polymer substrate of the present invention.
  • FIGS. 2A to 2F are photographs showing the results of analyzing nanostructures formed on a surface of a PMMA by irradiating argon particles with different irradiation energy according to an embodiment of the present invention.
  • FIGS. 3A and 3B are photographs showing the result of analyzing the nanostructure formed on the surface by irradiating argon particles with different irradiation energy to the PC surface according to an embodiment of the present invention.
  • FIG. 4A is a photograph showing the result of analyzing the nanostructure formed on the surface by irradiating argon particles onto the PET surface.
  • 4B is a photograph showing the result of analyzing the nanostructure formed on the surface by irradiating argon particles to the surface of the PDMS.
  • 5A to 5C are photographs showing the results of analyzing nanostructures formed on the surface by irradiating oxygen particles with different irradiation energy to the PMMA surface.
  • 6A to 6D are photographs showing the result of analyzing the nanostructures formed on the surface by irradiating the PMMA surface with a mixture of argon and oxygen particles with different oxygen mixing ratios according to an embodiment of the present invention.
  • FIG. 7A and 7B are photographs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention.
  • FIGS. 7C and 7D are graphs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention.
  • FIG. 7C and 7D are graphs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • 1.1 g / cm 3 Or more and having a plurality of nano-pleated structures with a width of 20 to 300 nm on the surface.
  • Polymer of the present invention is 1.1 g / cm 3 And a plurality of nano-pleated structures are formed on the surface of the polymer having the density of the above-mentioned density.
  • 1.1 g / cm 3 The surface area ratio is improved compared with a wrinkle structure of several micrometers wide formed on a low-density polymer such as PDMS, PE, or PP having a density of less than a predetermined value.
  • the wrinkle structure of the polymer of the present invention is advantageous in that the surface area ratio is remarkably improved by a width of 20 to 300 nm. Therefore, the wrinkle structure of the width can increase the adsorption rate for DNA, cells, biomolecules, reagents, etc., and can improve the sensitivity in a sensor field for detecting biomaterials or the like by utilizing electrical or optical property changes of a metal or metal oxide thin film. Can be improved.
  • 1.1 g / cm 3 Density surface of the low-density polymer surface is subjected to surface treatment, the penetration depth is deep and the thickness of the cured layer is not adjusted to be thin, so that a wrinkle structure having a width of 20 to 300 nm is hardly formed.
  • an improved surface area ratio and a mechanical durability of a nanostructure can be satisfied at the same time. If the width of the nano-wrinkle structure is less than 20 nm, the surface area ratio can be remarkably improved, but the mechanical durability of the nanostructure may be deteriorated. If the width of the wrinkle structure of the polymer is more than 300 nm, the mechanical durability of the nanostructure is excellent, but the improvement of the surface area ratio may be limited.
  • the average width of the nano wrinkle structure is 20 nm or more and 50 nm or less, 20 nm or more and 100 nm or less, 20 nm or more and 150 nm or less, 20 nm or more and 200 nm or less, 20 nm or more and 250 nm or less, 20 nm or more and 270 nm or less, 50 nm to 250 nm, 50 nm to 250 nm, 50 nm to 270 nm, 50 nm to 300 nm, 100 nm to 150 nm, 100 nm to 200 nm, 100 nm to 250 nm, 100 nm to 270 nm, and 50 nm to 150 nm, 150 nm or more and 250 nm or less, 150 nm or more and 250 nm or less, 150 nm or more and 270 nm or less, 150 nm or more and 300 nm or less, 200 nm or more and 250 n
  • the density of the polymer may be 1.1 to 1.3 g / cm < 3 >. However, it is not limited to this.
  • the density of the polymer of the present invention is 1.1 to 1.3 g / cm 3 , it is suitable for forming the wrinkle structure having the width of 20 to 300 nm.
  • the penetration depth is very short and the energy absorbed by the polymer surface is high . Therefore, in the process of transferring the energy to the polymer, the high density polymer receives higher energy than the medium density polymer such as PMMA and PC at a short particle penetration depth due to frequent collision, and a rapid physical etching may occur without a wrinkle structure.
  • a high density polymer such as polyethylene terephthalate (PET) or polyimide (PI) having an excess density
  • PET polyethylene terephthalate
  • PI polyimide
  • 1.1 g / cm 3 Density polymer surface such as polydimethylsiloxane (PDMS), polypropylene (PP), and polyurethane (PU) is subjected to surface treatment by irradiating ions, the energy Is lower than that of medium density polymers such as PMMA and PC and the depth of penetration is deep so that the thickness of the cured layer is not controlled to be thin. Therefore, the low-density polymer is advantageous in forming a hardened layer at the uppermost surface of the surface necessary for forming nano-wrinkles, and a hardened layer of several nm or more is formed. In this case, a nano-pleated structure with a width exceeding 300 nm is formed.
  • PDMS polydimethylsiloxane
  • PP polypropylene
  • PU polyurethane
  • the polymer may be made of poly methyl methacrylate (PMMA), polycarbonate (PC), or a mixture thereof. But are not limited to, 1.1 to 1.3 g / cm < 3 > PC, PMMA, PC, or mixtures thereof, which are medium density polymers having a range of density.
  • the nano-pleated structure may be formed by gas particle irradiation having an energy of 50 eV or more and less than 1000 eV.
  • a nanofiber structure having a desired range can be formed on the surface of the polymer having a density of at least 20 wt%.
  • a metal or a metal oxide may be deposited on the polymer.
  • the deposition may be performed by vacuum depositing the metal-containing nanoparticles on the Raman active material.
  • the size distribution of the metal-containing nanoparticles and the distance between the metal-containing nanoparticles, i.e., the size of the nanogap can be controlled.
  • the nanogap may have a size of 0.5 to 100 nm, 0.5 to 10 nm, 0.5 to 20 nm, 0.5 to 30 nm, 0.5 to 40 nm, 0.5 to 50 nm, 1 to 10 nm, 1 to 20 nm, 1 to 30 nm, 1 to 40 nm, .
  • the size of the nanogap is preferably 10 nm or less, and plasmonic coupling may be generated between the metal-containing nanoparticles to be used as a surface-enhanced Raman scattering substrate.
  • the vacuum deposition may use any one of sputtering, evaporation, and chemical vapor deposition, but is not limited thereto.
  • the Raman active material may be selected from Al, Au, Ag, Cu, Pt, Pd, and alloys thereof, but is not limited thereto.
  • an article comprising the polymer of the present invention.
  • the product may be a sensor, a scalable device, or a Ben Double device.
  • the product is not particularly limited as long as it is a product that requires improvement of the surface area ratio and mechanical durability of the nanostructure.
  • the sensor may be a biosensor that detects a biomaterial using a change in electrical or optical characteristics of a metal or a metal oxide thin film after adsorbing DNA, a cell, a biomolecule, or a reagent, have.
  • the present invention is applicable to the field of surface enhanced Raman scattering (SERS) technology.
  • SERS is gold, silver, the local surface plasmon resonance generated in such a noble metal nanostructure and copper (localized surface plasmon resonance, LSPR) 10 6 over amplifies the Raman signal (Raman spectroscopy) of the molecules adsorbed on the plasmonic nanostructure by , which is a technique capable of analyzing Raman of a trace amount of a sample of less than ppb.
  • the nano structure of the protrusion or the rod is mainly used, but the protrusion type nanostructure having a larger aspect ratio than the wrinkle shape has a problem that the mechanical durability is degraded.
  • the nanorod has a disadvantage of forming a nanogap by using a capillary force of a solvent to form a nanoparticle, which is a hot spot, by using a metal nanorod closure phenomenon at a high aspect ratio, because the nanorod is several ten nanometers away from the neighboring nanorod.
  • the interval between nano wrinkles is relatively small compared to the interval between the nanorods, there is an advantage advantageous in forming nanogaps.
  • sample molecules are diluted by the following mechanism when forming a nanogap according to the capillary force application according to the prior art.
  • a solution containing a sample molecule is dropped on a plasmonic nanostructure having a low seeding ratio
  • the solvent and the sample molecules are spread in three dimensions (xy plane and depth direction).
  • the capillary force acts on the nanostructure, and the nanostructures standing upright tilt to form a nanogap.
  • the non-evaporated solution in the lower part contains not only the solvent but also the solute (sample molecule).
  • the solvent is completely evaporated and the remaining sample molecules are adsorbed to the substructure.
  • Such conventional techniques have the problem that nano-gaps can be formed by capillary force, but sample molecules can not be selectively concentrated into nano-gaps.
  • the sample molecules can be selectively concentrated into the nanogap region, and a small amount of sample can be detected, thereby improving the sensitivity.
  • FIGS. 1A and 1B are schematic diagrams of a DNA detection sensor using the polymer substrate of the present invention.
  • a DNA detection sensor is used as a probe solution such as 6-mercaptohexanol between nanofiber structures 12 formed on a polymer substrate 10 according to the present invention. (20) can be permeated.
  • the surface area ratio of the nano wrinkle structure 12 according to the present invention is improved and the surface area at which the probe solution 20 can be contacted is improved to improve the coimmobilization efficiency between the probe solution 20 and the probe DNA 24 have. Accordingly, the efficiency of hybridization between the probe DNA 24 and the complementary DNA 26 in the sample can be enhanced, and the sensitivity of the DNA detection sensor can be improved.
  • Reference numeral 22 denotes an oxide of a positive charge RuHex type for increasing DNA detection efficiency.
  • the stressable device or the ben double device is not particularly limited as long as it is a flexible device or a device that requires a stretchable or bendable characteristic.
  • the stressable device or the Ben Double device may be a device in various industrial fields such as a photovoltaic field, a display field, a semiconductor installation field, a medical field, a clothing field, a measurement field, and a photographing field.
  • 1.1 g / cm 3 And irradiating gas particles having an energy of 50 eV or more and less than 1000 eV to a polymer having a density of at least 50 eV to form a nano-pleated structure.
  • a desired range of nano-pleated structures can be formed on the surface of the medium density polymer by irradiating gas particles having an energy of 50 eV or more and less than 1000 eV.
  • gas particles having an energy of 50 eV or more and less than 1000 eV.
  • the energy is less than 50 eV, a hole may be formed although it is not a nano-pleated structure (see FIG. If the energy is 1000 eV or more, a wrinkle-like nanostructure may not be formed (see FIGS. 2F and 3B). This is because the energy that the gas particles transmit through the impact to the polymeric constituent elements is not suitable to form a cured layer on the topmost layer of the surface to form corrugations.
  • gas particle irradiation with an energy of 50 eV or more and less than 1000 eV is suitable for forming a nano-pleated structure (see Figs. 2B, 2C, 2D, 2E and 3A) .
  • the density of the polymer may be 1.1 to 1.3 g / cm < 3 >. However, it is not limited to this.
  • the density of the polymer of the present invention is 1.1 to 1.3 g / cm 3 , it is suitable for forming the wrinkle structure having the width of 20 to 300 nm.
  • a cured layer having a thickness of several nm or more is formed, which is advantageous for forming a cured layer at the uppermost surface of the surface necessary for forming nano wrinkles, and in this case, a nano-pleated structure having a width exceeding 300 nm is formed (see Fig.
  • the gas particles are selected from the group consisting of argon; Or a group of mixed particles containing at least one of argon, krypton, xenon, oxygen, nitrogen, and hydrogen.
  • the mixed particle group may include inert gas particles of 80% or more.
  • the inert gas particles may be argon, although not limited thereto.
  • the mixed particle group may contain less than 20% oxygen.
  • holes may be formed on the surface of the polymer due to the chemical etching effect of oxygen radicals when the oxygen particles in the mixed particle group are 20% or more (see FIGS. 6A to 6D).
  • two or more kinds of particles of the mixed particle group can be irradiated simultaneously or sequentially.
  • the gas particles may be ions or neutral gas particles.
  • the polymer may have a plurality of nano-pleated structures having a width of 20 to 300 nm on its surface.
  • FIGS. 7A and 7B are photographs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention.
  • FIGS. 7C and 7D are graphs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention.
  • FIG. 7C and 7D are graphs showing the height of the nano-pleated structure formed on the surface of the PMMA when the PMMA is cut along the line of the center shown in Figs. 7A and 7B, respectively.
  • the polymer having the nano-pleated structure according to the present invention has a larger specific surface area than the hole structure of the graph of FIG. 7B and the graph of FIG. 7D.
  • Example 1 Analysis of surface nanostructure according to energy when irradiating argon particles on PMMA surface
  • the surface of PMMA was irradiated with argon particles to analyze the surface nanostructure according to energy.
  • the photograph of the surface of the polymer specimen was taken using FE-SEM.
  • Argon particles were irradiated on PMMA (Microchem, 950 PMMA A11) surface at a vacuum degree of 1 mTorr.
  • PMMA specimens were coated on a glass substrate for 40 seconds at 1000 RPM under spin coating and cured at 100 °C for 5 minutes.
  • FIG. 2A when the energy of the argon particles was 35 eV, nano wrinkles were not formed and holes were formed.
  • FIG. 2B nano wrinkles having a width of 48-50 nm were formed when the energy of argon particles was 500 eV.
  • FIG. 2C when the energy of the argon particles was 800 eV, nano wrinkles having a width of 75-100 nm level were formed on the surface.
  • Fig. 2 (d) when the energy of the argon particles was 800 eV, nano wrinkles having a width of 158 to 207 nm were formed on the surface.
  • FIG. 2 (d) when the energy of the argon particles was 800 eV, nano wrinkles having a width of 158 to 207 nm were formed on the surface.
  • incident energy in the range of 50 eV to less than 1000 eV is suitable for forming wrinkles.
  • Example 2 Analysis of surface nanostructure according to energy when irradiating argon particles on PC surface
  • the surface of the PC was irradiated with argon particles to analyze the surface nanostructure according to the energy.
  • the photograph of the surface of the polymer specimen was taken using FE-SEM.
  • Argon particles were irradiated on the surface of PC (Samchun Chemical, 1.21 g / cm3) at a vacuum degree of 1 mTorr.
  • PC specimens were coated on a glass substrate for 40 seconds under a spin coating condition of 1000 RPM and cured at 100 ° C for 5 minutes.
  • argon gas particles were collided with PET, which is a high density polymer of not less than 1.3 g / cm 3 in the polymer material, and the surface nanostructure was analyzed.
  • PET In general, PET, PI with a density of 1.3 g / cm 3 or more receives higher energy than PMMA and PC at a short particle penetration depth due to frequent collisions in the process of transferring energy through collision of gas particles. Therefore, as shown in FIG. 4A, a sharp physical etching was not performed, and a surface structure in the form of protrusions was shown.
  • the surface nanostructure was analyzed by impinging argon gas particles on PDMS, which is a low-density polymer having a density of 1.0 g / cm 3 or less in the polymer material.
  • PDMS, PP, or PI having a density of 1.0 g / cm 3 or less has energy slightly lower than PMMA and PC and has a deep penetration depth through collision of gas particles. This is advantageous for forming a cured layer at the topmost surface layer necessary for forming nano wrinkles, forming a cured layer of several nm or more in thickness, and in this case, a nano-pleated structure with a width exceeding 300 nm is formed as shown in Fig. 3B.
  • PMMA polymer having the same conditions as in Example 1 was used, but oxygen particles were irradiated instead of argon to analyze surface nanostructure according to energy.
  • the photograph of the surface of the polymer specimen was taken using FE-SEM. Oxygen particles were irradiated on the PMMA surface at a vacuum degree of 1 mTorr.
  • FIG. 5A when the energy of the oxygen particle was 35 eV, nano-protrusions rather than nano-wrinkles were formed.
  • FIG. 5B when the energy of the oxygen ion is 500 eV, nano protrusions having a larger aspect ratio are formed, and when the energy is increased to 700 eV, as shown in FIG. 5C, lost. This is because when the oxygen particles collide with the surface of the polymer, the uppermost layer polymer is converted into a substance such as CO x , H 2 O and etched by a chemical reaction.
  • the surface of PMMA with the same conditions as in Example 1 was irradiated with argon and oxygen mixed gas particles, and the surface nanostructure according to the gas mixture ratio was analyzed by FE-SEM.
  • the degree of vacuum in the surface treatment process was 1.7 mTorr, the energy of the particles was 800 eV, and the total amount of particles incident on the PMMA surface was 10 15 / cm 2 .
  • the PMMA specimen was spin-coated with PMMA (Microchem, 950 PMMA A11, 1.18 g / cm3) on a glass substrate at a rotational speed of 1000 RPM for 40 seconds and cured at 100 ° C for 5 minutes.
  • PMMA Microchem, 950 PMMA A11, 1.18 g / cm3
  • 6A to 6D are photographs showing the result of analyzing the nanostructures formed on the surface by irradiating the PMMA surface with a mixture of argon and oxygen particles with different oxygen mixing ratios according to an embodiment of the present invention.
  • 6A is a nanostructure of a PMMA surface formed by argon 100% particle irradiation, and has a wrinkle structure.
  • 6B to 6D are surface structures formed when oxygen gas is mixed at a ratio of 20%, 25%, and 30% to an argon ratio. In the case of FIG. 6B in which oxygen gas was mixed at a level of 20%, a wrinkle structure was observed, but a hole was formed on the surface of the PMMA due to the chemical etching effect of the oxygen radical. As the mixing ratio of oxygen gas increased to 25% and 30%, the chemical etching effect increased and the wrinkle structure disappeared and only the hole structure remained.
  • the mixed particle group contains less than 20% oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a polymer having a nano-wrinkle structure formed using an ion beam and a preparation method therefor. More specifically, the present invention relates to a polymer having a nano-wrinkle structure formed on a surface thereof, the polymer having an improved surface area ratio and mechanical durability, to a product with excellent sensitivity and reliability using the same, and to a method for preparing the polymer by using an ion beam.

Description

이온빔을 이용한 나노 주름 구조가 형성된 폴리머 및 이의 제조방법Polymer with nano-pleated structure using ion beam and manufacturing method thereof
본 발명은 이온빔을 이용한 나노 주름 구조가 형성된 폴리머 및 이의 제조방법에 관한 것이다. 보다 상세하게 본 발명은 표면적비 및 기계적 내구성이 향상된 표면에 나노 주름 구조가 형성된 폴리머, 이를 이용한 민감도 및 신뢰성이 우수한 제품 및 상기 폴리머를 이온빔을 이용하여 제조하는 방법에 관한 것이다. The present invention relates to a polymer having a nano-pleated structure using an ion beam and a method for producing the same. More specifically, the present invention relates to a polymer having a nanofiber structure formed on a surface of which surface area ratio and mechanical durability are improved, a product having excellent sensitivity and reliability using the same, and a process for producing the polymer using an ion beam.
폴리머 표면의 이온처리 기술은 0.01-100 keV의 에너지로 가속된 입자(이온)가 폴리머 표면과 충돌시켜 폴리머의 교차결합(Cross-linking) 및 절단(Scission) 등의 반응을 제어해 사용자가 원하는 형태의 나노구조 및 결합을 형성하는 기술이다.The ion treatment technology of the polymer surface accelerates particles (ions) accelerated by the energy of 0.01-100 keV to collide with the polymer surface to control cross-linking and scission of the polymer, To form nano structures and bonds.
종래의 플라즈마와 이온을 이용한 폴리머 표면 나노구조화 기술은 마스크(Mask)를 사용한 식각이 주를 이루고 있다. 그러나 패턴 형성을 위한 마스크(Mask) 증착-리소그래피(lithography)-식각-애슁(ashing)의 단계를 거쳐야 하는 공정 복잡성에 의해 저가 대량생산에 어려움이 있었다. Conventional polymer surface nanostructuring technology using plasma and ions is mainly based on etching using a mask. However, due to the complexity of the process of mask-deposition, lithography, etch-ashing for pattern formation, it has been difficult to mass-produce at low cost.
기존의 마스크 없이 나노구조화가 가능한 폴리머 표면의 이온처리 기술 중 교류(kHz~MHz) Glow 방전 방식은 최대 약 0.3 keV 수준의 이온 조사 에너지, 이온 입사 각도의 수직 고정 등의 공정조건 한계가 있어 구현 가능한 나노구조가 제한적이었다. The AC (kHz to MHz) glow discharge method has the limitation of the process conditions such as ion irradiation energy up to about 0.3 keV and vertical fixation of ion incidence angle among the ion treatment technology of polymer surface that can be nano-structured without existing mask. Nanostructures were limited.
하기 표 1은 종래의 플라즈마를 이용한 표면처리 기술의 특징을 나타낸다.Table 1 below shows characteristics of a conventional surface treatment technique using plasma.
Figure PCTKR2018005563-appb-img-000001
Figure PCTKR2018005563-appb-img-000001
따라서, 폴리머 표면의 나노구조화 공정에 필요한 이온 에너지 및 입사 각도 제어가 가능한 폴리머 표면의 이온처리 기술이 필요하다.Therefore, there is a need for an ion treatment technique for the surface of a polymer capable of controlling the ion energy and the angle of incidence necessary for the nanostructuring process of the polymer surface.
한편, 이온빔 발생기술은 폴리머 표면상 교차결합 및 절단 등의 반응 제어를 위한 수 keV급 고에너지 입자를 발생시키는 기술이다. 이온빔 발생기술은 크게 2가지로 분류되며, 이온 가속을 위한 별도의 가속 그리드가 있는 타입과, 이온 가속을 위한 별도의 가속 그리드가 없는 타입이 있다. 각 타입별 특징은 하기 표 2에 나타나 있으며, 그리드가 없는 타입의 이온빔 발생장치가 상대적으로 높은 이온 입사 전류량 때문에 폴리머 표면의 나노구조화용 고속 표면처리에 적합하다. On the other hand, the ion beam generation technology is a technique for generating high-energy particles of several keV for controlling reactions such as cross-linking and cleavage on a polymer surface. There are two types of ion beam generation technologies. One is a type with a separate acceleration grid for ion acceleration, and the other type does not have a separate acceleration grid for ion acceleration. The characteristics of each type are shown in Table 2 below, and a grid-free type ion beam generator is suitable for high-speed surface treatment for nanostructuring of a polymer surface due to a relatively high ion incident current.
표 2는 이온빔 발생기술별 폴리머 표면처리 적합성을 비교한 것이다.Table 2 compares the suitability of polymer surface treatment for different ion beam generation technologies.
Figure PCTKR2018005563-appb-img-000002
Figure PCTKR2018005563-appb-img-000002
본 발명의 배경기술로는 미국 특허 제8,951,428호에 플라즈마 공정을 이용한 폴리머 상의 주기적 구조의 제조 방법이 있으며, 상기 특허에는 폴리머가 부착된 전극 온도를 제어하여 산소 플라즈마로 나노 리플 구조를 형성하는 것이 기재되어 있다.US Pat. No. 8,951,428 discloses a process for producing a periodic structure of a polymer phase using a plasma process. In this patent, a nano-ripple structure is formed by controlling an electrode temperature at which a polymer is attached, .
본 발명자들은 폴리머의 밀도, 발생 이온의 종류, 이온 입사 에너지, 또는 이온 입사량 제어를 통해 나노구조의 형태를 마스크 없이 제어할 수 있어, 대면적, 저가 대량생산에 유리한 폴리머 표면의 이온처리 기술을 개발하여 본 발명을 완성하였다. The present inventors can control the shape of the nanostructure without mask by controlling the density of the polymer, the kind of the generated ion, the ion incident energy, or the ion incident amount, so that the polymer surface ion treatment technique advantageous for large- Thereby completing the present invention.
본 발명의 목적은 표면적비 및 기계적 내구성이 향상된, 표면에 나노 주름 구조가 형성된 폴리머 소재를 제공하는 것이다.It is an object of the present invention to provide a polymer material having a surface nano-wrinkled structure with improved surface area ratio and mechanical durability.
본 발명의 다른 목적은 상기 폴리머 소재를 이용하여 민감도 및 신뢰성이 우수한 센서, 스트레처블 디바이스, 또는 벤더블 디바이스 등의 제품을 제공하는 것이다.Another object of the present invention is to provide a product such as a sensor, a scalable device, or a Ben Double device which is excellent in sensitivity and reliability using the polymer material.
본 발명의 또 다른 목적은 표면적비 및 기계적 내구성이 향상된, 표면에 나노 주름 구조가 형성된 폴리머를 이온빔을 이용하여 마스크 없이 대면적으로 저가 대량생산할 수 있는 폴리머의 제조방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing a polymer which can improve the surface area ratio and mechanical durability and can mass produce a polymer having a nanoporous structure on its surface in a large area at low cost without using a mask by using an ion beam.
본 발명의 다른 목적 및 이점은 하기 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 발명은 이온빔 조사시 낮은 전압에서 많은 이온을 발생하도록 제어하고, 공정가스 및 폴리머 밀도를 변화시켜 형성된 표면적비 및 기계적 내구성이 향상된, 표면에 나노 주름 구조가 형성된 폴리머, 이를 이용한 민감도 및 신뢰성이 우수한 제품, 및 상기 폴리머를 이온빔을 이용하여 마스크 없이 대면적으로 저가 대량생산할 수 있는 폴리머의 제조방법에 관한 것이다.An object of the present invention is to provide a polymer having a nano-pleated structure formed on its surface and having improved surface area ratio and mechanical durability by controlling the generation of a large number of ions at a low voltage upon irradiation with an ion beam and by varying process gas and polymer density, And a method for producing a polymer which can mass-produce the polymer in a large area at low cost without using a mask by using an ion beam.
본 발명의 일 측면에 의하면, 1.1 g/cm 3 이상의 밀도를 가지며, 표면에 20 ~ 300nm 폭의 복수의 나노 주름 구조가 형성된, 폴리머가 제공된다.According to an aspect of the invention, 1.1 g / cm 3 Or more and having a plurality of nano-pleated structures with a width of 20 to 300 nm on the surface.
본 발명의 일 실시예에 의하면, 상기 밀도는 1.1 ~ 1.3 g/cm 3일 수 있다.According to an embodiment of the present invention, the density may be 1.1 to 1.3 g / cm < 3 >.
본 발명의 일 실시예에 의하면, 상기 폴리머는 폴리메틸메타크릴레이트(Poly Methyl Methacrylate, PMMA), 폴리카보네이트(Polycarbonate, PC), 또는 이들의 혼합물로 이루어질 수 있다.According to one embodiment of the present invention, the polymer may be made of poly methyl methacrylate (PMMA), polycarbonate (PC), or a mixture thereof.
본 발명의 일 실시예에 의하면, 상기 나노 주름 구조는 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자 조사에 의해 형성되는 것일 수 있다.According to an embodiment of the present invention, the nano-pleated structure may be formed by gas particle irradiation having an energy of 50 eV or more and less than 1000 eV.
본 발명의 일 실시예에 의하면, 상기 폴리머 상에 금속 또는 금속산화물이 증착될 수 있다. According to one embodiment of the present invention, a metal or a metal oxide may be deposited on the polymer.
본 발명의 다른 측면에 의하면, 본 발명의 상기 폴리머를 포함하는 제품이 제공된다.According to another aspect of the present invention, there is provided an article comprising the polymer of the present invention.
본 발명의 일 실시예에 의하면, 상기 제품은 센서, 스트레처블 디바이스, 또는 벤더블 디바이스일 수 있다.According to one embodiment of the present invention, the product may be a sensor, a scalable device, or a Ben Double device.
본 발명의 또 다른 측면에 의하면, 1.1 g/cm 3 이상의 밀도를 가지는 폴리머에 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자를 조사하여 나노 주름 구조를 형성하는 단계를 포함하는, 나노 주름 구조가 형성된 폴리머의 제조 방법이 제공된다.According to still another aspect of the present invention, 1.1 g / cm 3 And irradiating gas particles having an energy of 50 eV or more and less than 1000 eV to a polymer having a density of at least 50 eV to form a nano-pleated structure.
본 발명의 일 실시예에 의하면, 상기 가스입자는 아르곤; 또는 아르곤과, 크립톤, 제논, 산소, 질소, 및 수소 중 1 이상이 포함된 혼합 입자군일 수 있다.According to one embodiment of the present invention, the gas particles are selected from the group consisting of argon; Or a group of mixed particles containing at least one of argon, krypton, xenon, oxygen, nitrogen, and hydrogen.
본 발명의 일 실시예에 의하면, 상기 혼합 입자군은 80% 이상의 아르곤을 포함할 수 있다.According to an embodiment of the present invention, the mixed particle group may contain at least 80% of argon.
본 발명의 일 실시예에 의하면, 상기 혼합 입자군은 20% 미만의 산소를 포함할 수 있다.According to an embodiment of the present invention, the mixed particle group may contain less than 20% oxygen.
본 발명의 일 실시예에 의하면, 상기 혼합 입자군의 2종 이상의 입자는 동시에 또는 순차적으로 조사될 수 있다.According to one embodiment of the present invention, two or more kinds of particles of the mixed particle group can be irradiated simultaneously or sequentially.
본 발명의 일 실시예에 의하면, 상기 가스입자는 이온 또는 중성가스 입자일 수 있다. According to an embodiment of the present invention, the gas particles may be ions or neutral gas particles.
본 발명의 일 실시예에 의하면, 상기 폴리머는 그 표면에 20 ~ 300nm 폭의 복수의 나노 주름 구조가 형성될 수 있다.According to an embodiment of the present invention, the polymer may have a plurality of nano-pleated structures having a width of 20 to 300 nm on its surface.
본 발명의 일 실시예에 의하면, 표면적비 및 기계적 내구성이 향상된 표면에 나노 주름 구조가 형성된 폴리머 소재를 제공할 수 있다. According to one embodiment of the present invention, it is possible to provide a polymer material having a nanofoil structure on a surface having improved surface area ratio and mechanical durability.
본 발명의 일 실시예에 의하면, 상기 폴리머 소재를 이용하여 민감도 및 신뢰성이 우수한 센서, 스트레처블 디바이스, 또는 벤더블 디바이스 등의 제품을 제공할 수 있다.According to an embodiment of the present invention, a product such as a sensor, a stressable device, or a Ben Double device having excellent sensitivity and reliability using the polymer material can be provided.
본 발명의 일 실시예에 의하면, 표면적비 및 기계적 내구성이 향상된 표면에 나노 주름 구조가 형성된 폴리머를 이온빔을 이용하여 마스크 없이 대면적으로 저가 대량생산할 수 있다.According to an embodiment of the present invention, a polymer having a nanofiber structure formed on a surface having improved surface area ratio and mechanical durability can be mass-produced in a large area at low cost without using a mask by using an ion beam.
도 1a 및 도 1b는 본 발명의 폴리머 기판을 이용한 DNA 검출센서의 모식도이다.1A and 1B are schematic diagrams of a DNA detection sensor using the polymer substrate of the present invention.
도 2a ~ 도 2f는 본 발명의 일 실시예에 따라, PMMA 표면에 조사 에너지를 달리하여 아르곤 입자를 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다.FIGS. 2A to 2F are photographs showing the results of analyzing nanostructures formed on a surface of a PMMA by irradiating argon particles with different irradiation energy according to an embodiment of the present invention. FIG.
[규칙 제91조에 의한 정정 12.07.2018] 
도 3a 및 도 3b는 본 발명의 일 실시예에 따라, PC 표면에 조사 에너지를 달리하여 아르곤 입자를 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다.
[Amended by Rule 91, 12.07.2018]
FIGS. 3A and 3B are photographs showing the result of analyzing the nanostructure formed on the surface by irradiating argon particles with different irradiation energy to the PC surface according to an embodiment of the present invention. FIG.
도 4a는 PET 표면에 아르곤 입자를 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다.FIG. 4A is a photograph showing the result of analyzing the nanostructure formed on the surface by irradiating argon particles onto the PET surface. FIG.
도 4b는 PDMS 표면에 아르곤 입자를 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다.4B is a photograph showing the result of analyzing the nanostructure formed on the surface by irradiating argon particles to the surface of the PDMS.
도 5a ~ 도 5c는 PMMA 표면에 조사 에너지를 달리하여 산소 입자를 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다.5A to 5C are photographs showing the results of analyzing nanostructures formed on the surface by irradiating oxygen particles with different irradiation energy to the PMMA surface.
도 6a ~ 도 6d는 본 발명의 일 실시예에 따라, PMMA 표면에 아르곤과 산소 입자의 혼합 입자군을 산소 혼합비율을 달리하여 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다.6A to 6D are photographs showing the result of analyzing the nanostructures formed on the surface by irradiating the PMMA surface with a mixture of argon and oxygen particles with different oxygen mixing ratios according to an embodiment of the present invention.
도 7a 및 도 7b는 본 발명의 일 실시예에 따라, PMMA 표면에 형성된 나노 주름 구조에 의한 표면적비 증가를 비교예와 비교해서 보여주는 사진이다. 7A and 7B are photographs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention.
도 7c 및 도 7d는 본 발명의 일 실시예에 따라, PMMA 표면에 형성된 나노 주름 구조에 의한 표면적비 증가를 비교예와 비교해서 보여주는 그래프이다. FIGS. 7C and 7D are graphs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention. FIG.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The singular expressions include plural expressions unless the context clearly dictates otherwise.
본 출원에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprises", "having", and the like are intended to specify the presence of stated features, integers, steps, operations, components, parts, or combinations thereof, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
본 출원에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "상에"라 함은 대상 부분의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력 방향을 기준으로 상 측에 위치하는 것을 의미하는 것이 아니다.In the present application, when a component is referred to as " comprising ", it means that it can include other components as well, without excluding other components unless specifically stated otherwise. Also, throughout the specification, the term " on " means to be located above or below the object portion, and does not necessarily mean that the object is located on the upper side with respect to the gravitational direction.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.BRIEF DESCRIPTION OF THE DRAWINGS The present invention is capable of various modifications and various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
이하, 본 발명의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Referring to the accompanying drawings, the same or corresponding components are denoted by the same reference numerals, do.
본 발명의 일 측면에 의하면, 1.1 g/cm 3 이상의 밀도를 가지며, 표면에 20 ~ 300nm 폭의 복수의 나노 주름 구조가 형성된, 폴리머가 제공된다.According to an aspect of the invention, 1.1 g / cm 3 Or more and having a plurality of nano-pleated structures with a width of 20 to 300 nm on the surface.
본 발명의 폴리머는 1.1 g/cm 3 이상의 밀도를 가지는 폴리머의 표면에 복수의 나노 주름 구조를 가지는 것을 특징으로 한다. 본 발명에 의하면, 1.1 g/cm 3 미만의 밀도를 가지는 PDMS, PE, PP 등의 저밀도 폴리머 상에 형성되는 수 마이크로미터 폭의 주름 구조에 비하여 표면적비가 향상되는 이점이 있다. Polymer of the present invention is 1.1 g / cm 3 And a plurality of nano-pleated structures are formed on the surface of the polymer having the density of the above-mentioned density. According to the present invention, 1.1 g / cm 3 The surface area ratio is improved compared with a wrinkle structure of several micrometers wide formed on a low-density polymer such as PDMS, PE, or PP having a density of less than a predetermined value.
본 발명의 폴리머의 주름 구조는 20 ~ 300nm 폭으로 표면적비가 현저하게 향상되는 이점이 있다. 따라서, 상기 폭의 주름 구조는 DNA, 세포, 생체분자, 또는 시약 등에 대한 흡착율을 높일 수 있어, 금속 또는 금속산화물 박막의 전기적, 광학적 특성 변화를 이용하여 생체물질 등을 검출하는 센서 분야에서 민감도를 개선할 수 있다. 한편, 1.1 g/cm 3 미만의 저밀도 폴리머 표면에 이온을 조사하여 표면처리를 하면 투과 깊이가 깊어 경화층의 두께가 얇게 조절되지 않아 20 ~ 300nm 폭의 주름 구조는 형성되기 어렵다. The wrinkle structure of the polymer of the present invention is advantageous in that the surface area ratio is remarkably improved by a width of 20 to 300 nm. Therefore, the wrinkle structure of the width can increase the adsorption rate for DNA, cells, biomolecules, reagents, etc., and can improve the sensitivity in a sensor field for detecting biomaterials or the like by utilizing electrical or optical property changes of a metal or metal oxide thin film. Can be improved. On the other hand, 1.1 g / cm 3 Density surface of the low-density polymer surface is subjected to surface treatment, the penetration depth is deep and the thickness of the cured layer is not adjusted to be thin, so that a wrinkle structure having a width of 20 to 300 nm is hardly formed.
본 발명에 의하면, 개선된 표면적비 및 나노구조의 기계적 내구성을 동시에 만족시킬 수 있다. 이에 한정되는 것은 아니나, 상기 나노 주름 구조의 폭이 20nm 미만이면, 표면적비가 현저하게 향상될 수 있으나, 나노구조의 기계적 내구성이 저하될 수 있다. 또한, 폴리머의 주름 구조의 폭이 300nm 초과이면, 나노구조의 기계적 내구성은 우수하나, 표면적비 향상이 제한적일 수 있다. According to the present invention, an improved surface area ratio and a mechanical durability of a nanostructure can be satisfied at the same time. If the width of the nano-wrinkle structure is less than 20 nm, the surface area ratio can be remarkably improved, but the mechanical durability of the nanostructure may be deteriorated. If the width of the wrinkle structure of the polymer is more than 300 nm, the mechanical durability of the nanostructure is excellent, but the improvement of the surface area ratio may be limited.
이에 한정되는 것은 아니나, 상기 나노 주름 구조의 폭의 평균은 20nm 이상 50nm 이하, 20nm 이상 100nm 이하, 20nm 이상 150nm 이하, 20nm 이상 200nm 이하, 20nm 이상 250nm 이하, 20nm 이상 270nm 이하, 20nm 이상 300nm 이하, 50nm 이상 100nm 이하, 50nm 이상 150nm 이하, 50nm 이상 200nm 이하, 50nm 이상 250nm 이하, 50nm 이상 270nm 이하, 50nm 이상 300nm 이하, 100nm 이상 150nm 이하, 100nm 이상 200nm 이하, 100nm 이상 250nm 이하, 100nm 이상 270nm 이하, 100nm 이상 300nm 이하, 150nm 이상 200nm 이하, 150nm 이상 250nm 이하, 150nm 이상 270nm 이하, 150nm 이상 300nm 이하, 200nm 이상 250nm 이하, 200nm 이상 270nm 이하, 200nm 이상 300nm 이하 일 수 있다. The average width of the nano wrinkle structure is 20 nm or more and 50 nm or less, 20 nm or more and 100 nm or less, 20 nm or more and 150 nm or less, 20 nm or more and 200 nm or less, 20 nm or more and 250 nm or less, 20 nm or more and 270 nm or less, 50 nm to 250 nm, 50 nm to 250 nm, 50 nm to 270 nm, 50 nm to 300 nm, 100 nm to 150 nm, 100 nm to 200 nm, 100 nm to 250 nm, 100 nm to 270 nm, and 50 nm to 150 nm, 150 nm or more and 250 nm or less, 150 nm or more and 270 nm or less, 150 nm or more and 300 nm or less, 200 nm or more and 250 nm or less, 200 nm or more and 270 nm or less and 200 nm or more and 300 nm or less.
본 발명의 일 실시예에 의하면, 상기 폴리머의 밀도는 1.1 ~ 1.3 g/cm 3일 수 있다. 이에 한정되는 것은 아니나, 본 발명의 폴리머의 밀도가 1.1 ~ 1.3 g/cm 3일 때, 상기 20 ~ 300nm 폭의 주름 구조 형성에 적합하다. According to an embodiment of the present invention, the density of the polymer may be 1.1 to 1.3 g / cm < 3 >. However, it is not limited to this. When the density of the polymer of the present invention is 1.1 to 1.3 g / cm 3 , it is suitable for forming the wrinkle structure having the width of 20 to 300 nm.
1.3 g/cm 3 초과의 밀도를 가지는 폴리에틸렌 텔레프탈레이트(Polyethylene Terephthalate, PET), 폴리이미드(polyimide, PI) 등의 고밀도 폴리머 표면에 이온을 조사하여 표면처리를 하면 투과 깊이가 매우 짧고, 폴리머 표면에 흡수되는 에너지가 높다. 따라서, 폴리머에 에너지를 전달하는 과정에서 고밀도 폴리머는 잦은 충돌로 중밀도 폴리머인 PMMA 및 PC보다 높은 에너지를 짧은 입자투과 깊이에서 받게 되어, 주름 구조가 형성되지 않고 급격한 물리적 식각이 발생할 수 있다. 1.3 g / cm 3 When a high density polymer such as polyethylene terephthalate (PET) or polyimide (PI) having an excess density is irradiated with ions and subjected to surface treatment, the penetration depth is very short and the energy absorbed by the polymer surface is high . Therefore, in the process of transferring the energy to the polymer, the high density polymer receives higher energy than the medium density polymer such as PMMA and PC at a short particle penetration depth due to frequent collision, and a rapid physical etching may occur without a wrinkle structure.
또한, 1.1 g/cm 3 미만의 폴리디메틸실록산(Polydimethylsiloxane, PDMS), 폴리프로필렌(Polypropylen, PP), 폴리우레탄(Polyurethane, PU) 등의 저밀도 폴리머 표면에 이온을 조사하여 표면처리를 하면, 가스입자가 충돌을 통해 전달하는 에너지는 중밀도 폴리머인 PMMA 및 PC보다 낮고 투과 깊이가 깊어 경화층의 두께가 얇게 조절되지 않는다. 따라서, 저밀도 폴리머는 나노주름을 형성하기 위해 필요한 표면 최상층의 경화층 형성에 유리하여 수 nm 이상의 경화층이 형성되며, 이 경우 폭이 300nm를 초과하는 나노 주름 구조가 형성된다. In addition, 1.1 g / cm 3 Density polymer surface such as polydimethylsiloxane (PDMS), polypropylene (PP), and polyurethane (PU) is subjected to surface treatment by irradiating ions, the energy Is lower than that of medium density polymers such as PMMA and PC and the depth of penetration is deep so that the thickness of the cured layer is not controlled to be thin. Therefore, the low-density polymer is advantageous in forming a hardened layer at the uppermost surface of the surface necessary for forming nano-wrinkles, and a hardened layer of several nm or more is formed. In this case, a nano-pleated structure with a width exceeding 300 nm is formed.
본 발명의 일 실시예에 의하면, 상기 폴리머는 폴리메틸메타크릴레이트(Poly Methyl Methacrylate, PMMA), 폴리카보네이트(Polycarbonate, PC), 또는 이들의 혼합물로 이루어질 수 있다. 이에 한정되는 것은 아니나, 1.1 ~ 1.3 g/cm 3 범위의 밀도를 가지는 중밀도 폴리머인 PMMA, PC, 또는 이들의 혼합물일 수 있다.According to one embodiment of the present invention, the polymer may be made of poly methyl methacrylate (PMMA), polycarbonate (PC), or a mixture thereof. But are not limited to, 1.1 to 1.3 g / cm < 3 > PC, PMMA, PC, or mixtures thereof, which are medium density polymers having a range of density.
본 발명의 일 실시예에 의하면, 상기 나노 주름 구조는 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자 조사에 의해 형성되는 것일 수 있다.According to an embodiment of the present invention, the nano-pleated structure may be formed by gas particle irradiation having an energy of 50 eV or more and less than 1000 eV.
이에 한정되는 것은 아니나, 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자 조사에 의해 1.1 g/cm 3 이상의 밀도를 가지는 폴리머의 표면에 원하는 범위의 나노 주름 구조를 형성할 수 있다. But is not limited to, 1.1 g / cm < 3 > by gas particle irradiation having an energy of 50 eV or more and less than 1000 eV A nanofiber structure having a desired range can be formed on the surface of the polymer having a density of at least 20 wt%.
본 발명의 일 실시예에 의하면, 상기 폴리머에 금속 또는 금속산화물이 증착될 수 있다. 이에 한정되는 것은 아니나, 상기 증착은 금속 함유 나노입자를 라만활성물질을 진공 증착시켜 형성될 수 있다. 진공 증착 시, 금속 함유 나노입자의 크기 분포 및 금속 함유 나노입자 사이의 거리, 즉 나노갭의 크기를 조절할 수 있다. 상기 나노갭의 크기는 0.5 내지 100nm, 0.5 내지 10nm, 0.5 내지 20nm, 0.5 내지 30nm, 0.5 내지 40nm, 0.5 내지 50nm, 1 내지 10nm, 1 내지 20nm, 1 내지 30nm, 1 내지 40nm, 1 내지 50nm일 수 있다. 상기 나노갭의 크기는 10nm 이하로 형성되어야 적합하며, 이때 금속 함유 나노입자 사이에서 플라즈모닉 커플링(plasmonic coupling)을 발생시켜 표면 증강 라만 산란용 기판으로 이용될 수 있다.According to an embodiment of the present invention, a metal or a metal oxide may be deposited on the polymer. The deposition may be performed by vacuum depositing the metal-containing nanoparticles on the Raman active material. During vacuum deposition, the size distribution of the metal-containing nanoparticles and the distance between the metal-containing nanoparticles, i.e., the size of the nanogap, can be controlled. The nanogap may have a size of 0.5 to 100 nm, 0.5 to 10 nm, 0.5 to 20 nm, 0.5 to 30 nm, 0.5 to 40 nm, 0.5 to 50 nm, 1 to 10 nm, 1 to 20 nm, 1 to 30 nm, 1 to 40 nm, . The size of the nanogap is preferably 10 nm or less, and plasmonic coupling may be generated between the metal-containing nanoparticles to be used as a surface-enhanced Raman scattering substrate.
상기 진공증착은 스퍼터링(sputtering), 기화(evaporation) 및 화학증기 증착(chemical vapor deposition) 중 어느 하나를 이용할 수 있으며 이에 제한되는 것은 아니다.The vacuum deposition may use any one of sputtering, evaporation, and chemical vapor deposition, but is not limited thereto.
상기 라만활성물질은 Al, Au, Ag, Cu, Pt, Pd 및 이의 합금에서 중 어느 하나를 사용할 수 있으며 이에 제한되는 것은 아니다.The Raman active material may be selected from Al, Au, Ag, Cu, Pt, Pd, and alloys thereof, but is not limited thereto.
본 발명의 다른 측면에 의하면, 본 발명의 상기 폴리머를 포함하는 제품이 제공된다.According to another aspect of the present invention, there is provided an article comprising the polymer of the present invention.
본 발명의 일 실시예에 의하면, 상기 제품은 센서, 스트레처블 디바이스, 또는 벤더블 디바이스일 수 있다. 상기 제품은 표면적비의 향상 및 나노구조의 기계적 내구성이 요구되는 제품이면 특별한 제한은 없다. According to one embodiment of the present invention, the product may be a sensor, a scalable device, or a Ben Double device. The product is not particularly limited as long as it is a product that requires improvement of the surface area ratio and mechanical durability of the nanostructure.
이에 한정되는 것은 아니나, 상기 센서는 DNA, 세포, 생체분자, 또는 시약 등을 흡착한 후, 금속 또는 금속산화물 박막의 전기적, 광학적 특성 변화를 이용하여 생체물질을 검출하는 바이오 센서를 예를 들 수 있다. 예시적으로 본 발명은 표면 증강 라만 산란(surface enhanced Raman scattering, SERS) 기술 분야에 적용될 수 있다. SERS는 금, 은, 구리와 같은 귀금속 나노구조체에서 발생하는 국부 표면 플라즈몬 공명(localized surface plasmon resonance, LSPR)에 의해 플라즈모닉 나노구조체에 흡착된 분자의 라만 분광신호(Raman spectroscopy)를 10 6 이상 증폭시켜, ppb 이하의 극미량 시료의 라만 분석이 가능한 기술이다. SERS 기술 분야에서는 주로 돌기 또는 로드 형태의 나노구조를 이용하나, 주름 형태보다 종횡비가 큰 돌기 형태의 나노구조는 기계적 내구성이 저하되는 문제점이 있다. 또한, 나노로드는 이웃하는 나노로드와 수십 nm 떨어져 있어, 핫스팟인 나노갭 형성을 위해 용매의 모세관 힘을 적용하여 고종횡비의 금속 나노로드 닫힘 현상을 이용하여 나노갭을 형성해야 하는 단점이 있다. 이에 대해 나노 주름 간의 간격은 나노로드 간의 간격에 비해 상대적으로 작기 때문에, 나노갭 형성에 유리한 이점이 있다.The sensor may be a biosensor that detects a biomaterial using a change in electrical or optical characteristics of a metal or a metal oxide thin film after adsorbing DNA, a cell, a biomolecule, or a reagent, have. Illustratively, the present invention is applicable to the field of surface enhanced Raman scattering (SERS) technology. SERS is gold, silver, the local surface plasmon resonance generated in such a noble metal nanostructure and copper (localized surface plasmon resonance, LSPR) 10 6 over amplifies the Raman signal (Raman spectroscopy) of the molecules adsorbed on the plasmonic nanostructure by , Which is a technique capable of analyzing Raman of a trace amount of a sample of less than ppb. In the SERS technology, the nano structure of the protrusion or the rod is mainly used, but the protrusion type nanostructure having a larger aspect ratio than the wrinkle shape has a problem that the mechanical durability is degraded. In addition, the nanorod has a disadvantage of forming a nanogap by using a capillary force of a solvent to form a nanoparticle, which is a hot spot, by using a metal nanorod closure phenomenon at a high aspect ratio, because the nanorod is several ten nanometers away from the neighboring nanorod. On the other hand, since the interval between nano wrinkles is relatively small compared to the interval between the nanorods, there is an advantage advantageous in forming nanogaps.
또한, 종래 기술에 의한 모세관힘 적용에 따른 나노갭 형성 시 다음과 같은 메커니즘에 의해 시료분자가 희석되는 문제점이 있었다. 시료 분자를 포함하고 있는 용액을 고종회비를 지닌 플라즈모닉 나노구조에 떨어뜨리면, 용매 및 시료분자가 3차원(xy평면 및 깊이방향)으로 퍼지게 된다. 이후 상부에 존재하는 용매가 증발하면서 모세관힘이 나노구조에 작용하여, 똑바로 서있던 나노구조가 서로 기울어져 나노갭을 형성한다. 하부에 존재하고 있는 아직 증발하지 않은 용액에는 용매뿐만 아니라 용질(시료 분자)까지 포함되어 있으며, 최종적으로 용매는 완전히 증발되고, 남아 있던 시료분자는 하부구조에도 흡착된다. 이러한 종래의 기술은 모세관힘에 의한 나노갭 형성은 가능하지만, 시료 분자를 선택적으로 나노갭으로 농축시킬 수 없는 문제점이 있다. Further, there has been a problem that sample molecules are diluted by the following mechanism when forming a nanogap according to the capillary force application according to the prior art. When a solution containing a sample molecule is dropped on a plasmonic nanostructure having a low seeding ratio, the solvent and the sample molecules are spread in three dimensions (xy plane and depth direction). Then, as the solvent at the top evaporates, the capillary force acts on the nanostructure, and the nanostructures standing upright tilt to form a nanogap. The non-evaporated solution in the lower part contains not only the solvent but also the solute (sample molecule). Finally, the solvent is completely evaporated and the remaining sample molecules are adsorbed to the substructure. Such conventional techniques have the problem that nano-gaps can be formed by capillary force, but sample molecules can not be selectively concentrated into nano-gaps.
그러나, 본 발명의 나노 주름은 종횡비가 크지 않아, 시료 분자를 선택적으로 나노갭 영역으로 농축시킬 수 있어, 미량의 시료도 검출할 수 있어 민감도가 향상된다.However, since the aspect ratio of the nano wrinkle of the present invention is not large, the sample molecules can be selectively concentrated into the nanogap region, and a small amount of sample can be detected, thereby improving the sensitivity.
도 1a 및 도 1b는 본 발명의 폴리머 기판을 이용한 DNA 검출센서의 모식도이다. 상기 도 1a 및 도 1b에 나타난 바와 같이, DNA 검출센서는 본 발명에 의한 폴리머 기판(10) 상에 형성된 나노 주름 구조(12) 사이에 6-머캅토헥산올(6-mercaptohexanol)과 같은 프로브 용액(20)이 침투될 수 있는 구조로 구성된다. 본 발명에 의한 나노 주름 구조(12)는 표면적비가 향상되어 프로브 용액(20)이 접할 수 있는 표면적이 향상되어, 상기 프로브 용액(20)과 프로브 DNA(24)와의 고정(coimmobilization) 효율을 높일 수 있다. 따라서, 프로브 DNA(24)와 시료 내의 상보적 DNA(26)의 결합(hybridization) 효율을 높여 DNA 검출센서의 민감도를 향상시킬 수 있다. 도면 부호 22는 DNA 검출 효율을 높이기 위한 양전하의 RuHex 형태의 산화물을 나타낸다. 1A and 1B are schematic diagrams of a DNA detection sensor using the polymer substrate of the present invention. As shown in FIGS. 1A and 1B, a DNA detection sensor is used as a probe solution such as 6-mercaptohexanol between nanofiber structures 12 formed on a polymer substrate 10 according to the present invention. (20) can be permeated. The surface area ratio of the nano wrinkle structure 12 according to the present invention is improved and the surface area at which the probe solution 20 can be contacted is improved to improve the coimmobilization efficiency between the probe solution 20 and the probe DNA 24 have. Accordingly, the efficiency of hybridization between the probe DNA 24 and the complementary DNA 26 in the sample can be enhanced, and the sensitivity of the DNA detection sensor can be improved. Reference numeral 22 denotes an oxide of a positive charge RuHex type for increasing DNA detection efficiency.
또한, 상기 스트레처블 디바이스 또는 벤더블 디바이스는 플렉시블 특성에서 더 나아가서, 스트레처블(Stretchable) 또는 벤더블(bendable) 특성이 필요한 디바이스이면 특별한 제한이 없다. 이에 한정되는 것은 아니나, 상기 스트레처블 디바이스 또는 벤더블 디바이스는 태양광분야, 디스플레이분야, 반도체설치분야, 의료분야, 의류분야, 측정분야, 및 촬영분야 등 다양한 산업 분야의 디바이스일 수 있다.In addition, the stressable device or the ben double device is not particularly limited as long as it is a flexible device or a device that requires a stretchable or bendable characteristic. The stressable device or the Ben Double device may be a device in various industrial fields such as a photovoltaic field, a display field, a semiconductor installation field, a medical field, a clothing field, a measurement field, and a photographing field.
본 발명의 또 다른 측면에 의하면, 1.1 g/cm 3 이상의 밀도를 가지는 폴리머에 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자를 조사하여 나노 주름 구조를 형성하는 단계를 포함하는, 나노 주름 구조가 형성된 폴리머의 제조 방법이 제공된다.According to still another aspect of the present invention, 1.1 g / cm 3 And irradiating gas particles having an energy of 50 eV or more and less than 1000 eV to a polymer having a density of at least 50 eV to form a nano-pleated structure.
본 발명에 의하면, 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자 조사에 의해 중밀도 폴리머의 표면에 원하는 범위의 나노 주름 구조를 형성할 수 있다. 이에 한정되는 것은 아니나, 상기 에너지가 50 eV 미만이면 나노 주름 구조가 아니나 구멍이 형성될 수 있다(도 2a 참조). 또한, 상기 에너지가 1000 eV 이상이면 주름 형태의 나노 구조가 형성되지 않을 수 있다(도 2f 및 도 3b 참조). 이는 가스입자가 폴리머 구성 원소에 충돌을 통해 전달하는 에너지가 주름을 형성하기 위한 표면 최상층에 경화층을 형성하기 적합하지 않기 때문이다. 즉, 가스입자가 전달하는 에너지가 높아 최상층의 물리적 식각이 발생하기 때문이다. 따라서, 가스입자의 충돌의 경우, 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자 조사가 나노 주름 구조를 형성하기에 적합하다(도 2b, 도 2c, 도 2d, 도 2e, 및 도 3a 참조). According to the present invention, a desired range of nano-pleated structures can be formed on the surface of the medium density polymer by irradiating gas particles having an energy of 50 eV or more and less than 1000 eV. Although not limited thereto, if the energy is less than 50 eV, a hole may be formed although it is not a nano-pleated structure (see FIG. If the energy is 1000 eV or more, a wrinkle-like nanostructure may not be formed (see FIGS. 2F and 3B). This is because the energy that the gas particles transmit through the impact to the polymeric constituent elements is not suitable to form a cured layer on the topmost layer of the surface to form corrugations. That is, because the energy delivered by the gas particles is high, the physical etching of the uppermost layer occurs. Therefore, in the case of collision of gas particles, gas particle irradiation with an energy of 50 eV or more and less than 1000 eV is suitable for forming a nano-pleated structure (see Figs. 2B, 2C, 2D, 2E and 3A) .
본 발명의 일 실시예에 의하면, 상기 폴리머의 밀도는 1.1 ~ 1.3 g/cm 3일 수 있다. 이에 한정되는 것은 아니나, 본 발명의 폴리머의 밀도가 1.1 ~ 1.3 g/cm 3일 때, 상기 20 ~ 300nm 폭의 주름 구조 형성에 적합하다. According to an embodiment of the present invention, the density of the polymer may be 1.1 to 1.3 g / cm < 3 >. However, it is not limited to this. When the density of the polymer of the present invention is 1.1 to 1.3 g / cm 3 , it is suitable for forming the wrinkle structure having the width of 20 to 300 nm.
1.3 g/cm 3 초과의 밀도를 가지는 PET, PI 등의 고밀도 폴리머 표면에 이온을 조사하여 표면처리를 하면 투과 깊이가 매우 짧고, 폴리머 표면에 흡수되는 에너지가 높다. 따라서, 폴리머에 에너지를 전달하는 과정에서 잦은 충돌로 PMMA, PC보다 높은 에너지를 짧은 입자투과 깊이에서 받게 되어, 주름 구조가 형성되지 않고 급격한 물리적 식각이 발생할 수 있다(도 4a 참조). 1.3 g / cm 3 When the surface treatment is performed by irradiating ions onto the surface of a high-density polymer such as PET or PI having an excess density, the penetration depth is very short and the energy absorbed by the surface of the polymer is high. Therefore, in the process of transferring energy to the polymer, frequent collisions cause a higher energy than that of PMMA and PC at a short particle penetration depth, resulting in a sharp physical etching without forming a wrinkle structure (see FIG. 4A).
또한, 1.1 g/cm 3 미만의 PDMS, PP, PI 등의 저밀도 폴리머 표면에 이온을 조사하여 표면처리를 하면 가스입자가 충돌을 통해 전달하는 에너지가 PMMA, PC보다 낮고 투과 깊이가 깊어 경화층의 두께가 얇게 조절되지 않는다. 따라서, 나노주름을 형성하기 위해 필요한 표면 최상층의 경화층 형성에 유리하여 수 nm 이상의 경화층이 형성되며, 이 경우 폭이 300nm를 초과하는 나노 주름 구조가 형성된다(도 4b 참조). In addition, 1.1 g / cm 3 Of the surface of the low density polymer such as PDMS, PP, PI and the like, the energy transmitted through the collision is lower than that of PMMA and PC, and the depth of penetration is deep and the thickness of the hardened layer is not adjusted to be thin. Therefore, a cured layer having a thickness of several nm or more is formed, which is advantageous for forming a cured layer at the uppermost surface of the surface necessary for forming nano wrinkles, and in this case, a nano-pleated structure having a width exceeding 300 nm is formed (see Fig.
본 발명의 일 실시예에 의하면, 상기 가스입자는 아르곤; 또는 아르곤과, 크립톤, 제논, 산소, 질소, 및 수소 중 1 이상이 포함된 혼합 입자군일 수 있다.According to one embodiment of the present invention, the gas particles are selected from the group consisting of argon; Or a group of mixed particles containing at least one of argon, krypton, xenon, oxygen, nitrogen, and hydrogen.
산소 입자만을 이용하여 조사하는 경우, 나노 주름 구조의 형성이 어려울 수 있다. 이는 산소 입자가 폴리머에 충돌할 경우, 화학적 반응이 활발하여 최상층 폴리머가 COx, H 2O 등의 물질로 변환되어 식각될 수 있다(도 5a 내지 도 5c 참조). 따라서, PMMA, PC 와 같은 폴리머 표면에 나노 주름구조를 형성하기 위해서는, 화학적 식각이 억제되는 불활성 가스입자(헬륨, 크립톤, 아르곤, 제논)를 이용한 표면처리가 필요하다.When irradiated using only oxygen particles, it may be difficult to form a nano-pleated structure. This is because when the oxygen particles collide with the polymer, the chemical reaction is active, so that the top layer polymer can be converted into a substance such as COx, H 2 O and etched (see FIGS. 5A to 5C). Therefore, surface treatment using inert gas particles (helium, krypton, argon, xenon) in which chemical etching is suppressed is required to form a nano-wrinkle structure on the polymer surface such as PMMA and PC.
본 발명의 일 실시예에 의하면, 상기 혼합 입자군은 80% 이상의 불활성 가스 입자를 포함할 수 있다. 이에 한정되는 것은 아니나, 상기 불활성 가스입자는 아르곤일 수 있다. According to an embodiment of the present invention, the mixed particle group may include inert gas particles of 80% or more. The inert gas particles may be argon, although not limited thereto.
본 발명의 일 실시예에 의하면, 상기 혼합 입자군은 20% 미만의 산소를 포함할 수 있다. 이에 한정되는 것은 아니나, 혼합 입자군에서 산소 입자가 20% 이상인 경우, 산소 라디컬의 화학적 식각 효과에 의해 폴리머 표면에 홀(hole)이 형성될 수 있다(도 6a 내지 도 6d 참조).According to an embodiment of the present invention, the mixed particle group may contain less than 20% oxygen. Although not limited thereto, holes may be formed on the surface of the polymer due to the chemical etching effect of oxygen radicals when the oxygen particles in the mixed particle group are 20% or more (see FIGS. 6A to 6D).
본 발명의 일 실시예에 의하면, 상기 혼합 입자군의 2종 이상의 입자는 동시에 또는 순차적으로 조사될 수 있다.According to one embodiment of the present invention, two or more kinds of particles of the mixed particle group can be irradiated simultaneously or sequentially.
본 발명의 일 실시예에 의하면, 상기 가스입자는 이온 또는 중성가스 입자일 수 있다. According to an embodiment of the present invention, the gas particles may be ions or neutral gas particles.
본 발명의 일 실시예에 의하면, 상기 폴리머는 그 표면에 20 ~ 300nm 폭의 복수의 나노 주름 구조가 형성될 수 있다.According to an embodiment of the present invention, the polymer may have a plurality of nano-pleated structures having a width of 20 to 300 nm on its surface.
도 7a 및 도 7b는 본 발명의 일 실시예에 따라, PMMA 표면에 형성된 나노 주름 구조에 의한 표면적비 증가를 비교예와 비교해서 보여주는 사진이다. 도 7c 및 도 7d는 본 발명의 일 실시예에 따라, PMMA 표면에 형성된 나노 주름 구조에 의한 표면적비 증가를 비교예와 비교해서 보여주는 그래프이다. 즉, 도 7c 및 도 7d는 각각 도 7a 및 도 7b에 도시된 중앙부의 선을 따라 PMMA을 절단하였을 때 PMMA의 표면에 형성된 나노 주름 구조의 높이를 나타낸 그래프이다.7A and 7B are photographs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention. FIGS. 7C and 7D are graphs showing the increase in the surface area ratio due to the nanofoil structure formed on the PMMA surface, in comparison with the comparative example, according to an embodiment of the present invention. FIG. 7C and 7D are graphs showing the height of the nano-pleated structure formed on the surface of the PMMA when the PMMA is cut along the line of the center shown in Figs. 7A and 7B, respectively.
상기 도 7a의 사진 및 도 7c의 그래프에 나타난 바와, 본 발명에 의한 나노 주름 구조를 가진 폴리머는 상기 도 7b의 사진 및 도 7d의 그래프의 홀 구조에 비해 비표면적이 증가하는 것을 알 수 있다.As shown in the photograph of FIG. 7A and the graph of FIG. 7C, the polymer having the nano-pleated structure according to the present invention has a larger specific surface area than the hole structure of the graph of FIG. 7B and the graph of FIG. 7D.
실시예 Example
이하에서는 본 발명의 구체적인 실시예 및 비교예, 이들의 특성 평가 결과를 통해서 본 발명을 보다 구체적으로 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples of the present invention and their characteristic evaluation results.
실시예Example 1. PMMA 표면에 아르곤 입자 조사시 에너지에 따른 표면 나노구조 분석 1. Analysis of surface nanostructure according to energy when irradiating argon particles on PMMA surface
PMMA 표면에 아르곤 입자를 조사하여 에너지에 따른 표면 나노구조를 분석하였다. 폴리머 시편 표면의 사진은 FE-SEM을 이용하여 촬영하였다. 진공도 1 mTorr에서 아르곤 입자를 PMMA (Microchem, 950 PMMA A11) 표면에 조사하였다. PMMA 시편은 유리 기판 상에 스핀코팅 1000 RPM 조건에서 40초간 코팅하였으며, 100℃에서 5분간 경화하였다. The surface of PMMA was irradiated with argon particles to analyze the surface nanostructure according to energy. The photograph of the surface of the polymer specimen was taken using FE-SEM. Argon particles were irradiated on PMMA (Microchem, 950 PMMA A11) surface at a vacuum degree of 1 mTorr. PMMA specimens were coated on a glass substrate for 40 seconds at 1000 RPM under spin coating and cured at 100 ℃ for 5 minutes.
도 2a에 도시된 바와 같이, 아르곤 입자의 에너지가 35 eV인 경우, 나노 주름은 형성되지 않고 구멍들이 형성되었다. 도 2b에 도시된 바와 같이, 아르곤 입자의 에너지가 500 eV인 경우에는 폭이 48-50 nm 수준인 나노 주름이 형성되었다. 도 2c에 도시된 바와 같이, 아르곤 입자의 에너지가 800 eV인 경우, 폭이 75-100 nm 수준인 나노 주름이 표면에 형성되었다. 도 2d에 도시된 바와 같이, 아르곤 입자의 에너지가 800 eV인 경우, 폭이 158-207 nm 수준인 나노 주름이 표면에 형성되었다. 도 2e에 도시된 바와 같이, 아르곤 입자의 에너지가 900 eV인 경우, 폭이 213-267 nm 수준인 나노 주름이 표면에 형성되었다. 도 2f에 도시된 바와 같이, 아르곤 입자의 에너지가 1000 eV인 경우, 주름형태의 나노구조가 형성되지 않았다. 이 현상은 가스입자가 PMMA 폴리머 구성원소에 충돌을 통해 전달하는 에너지가 주름을 형성하기 위한 표면 최상층 경화층 형성에 적합하지 않기 때문이다. 즉, 아르곤 입자가 전달하는 에너지가 높아 최상층의 물리적 식각이 발생하는 것이다. As shown in FIG. 2A, when the energy of the argon particles was 35 eV, nano wrinkles were not formed and holes were formed. As shown in FIG. 2B, nano wrinkles having a width of 48-50 nm were formed when the energy of argon particles was 500 eV. As shown in FIG. 2C, when the energy of the argon particles was 800 eV, nano wrinkles having a width of 75-100 nm level were formed on the surface. As shown in Fig. 2 (d), when the energy of the argon particles was 800 eV, nano wrinkles having a width of 158 to 207 nm were formed on the surface. As shown in FIG. 2E, when the energy of argon particles is 900 eV, nanofibers having a width of 213 to 267 nm are formed on the surface. As shown in FIG. 2F, when the energy of argon particles was 1000 eV, no wrinkled nanostructures were formed. This phenomenon is due to the fact that the energy that the gas particles transmit through the collision to the PMMA polymer constituent element is not suitable for forming the surface top layer hardening layer to form wrinkles. That is, the energy delivered by the argon particles is high, resulting in the physical etching of the top layer.
따라서, 아르곤 가스 위주의 입자 충돌의 경우, 50 eV 이상 1000 eV 미만 범위의 입사에너지가 주름을 형성하기에 적합하다. Thus, for particle bombardment with argon gas, incident energy in the range of 50 eV to less than 1000 eV is suitable for forming wrinkles.
실시예Example 2. PC 표면에 아르곤 입자 조사시 에너지에 따른 표면 나노구조 분석 2. Analysis of surface nanostructure according to energy when irradiating argon particles on PC surface
PC 표면에 아르곤 입자를 조사하여 에너지에 따른 표면 나노구조를 분석하였다. 폴리머 시편 표면의 사진은 FE-SEM을 이용하여 촬영하였다. 진공도 1 mTorr에서 아르곤 입자를 PC(Samchun Chemical, 1.21 g/㎤) 표면에 조사하였다. PC 시편은 유리 기판 상에 스핀코팅 1000 RPM 조건에서 40초간 코팅하였으며, 100℃ 환경에서 5분간 경화(curing) 하였다. The surface of the PC was irradiated with argon particles to analyze the surface nanostructure according to the energy. The photograph of the surface of the polymer specimen was taken using FE-SEM. Argon particles were irradiated on the surface of PC (Samchun Chemical, 1.21 g / cm3) at a vacuum degree of 1 mTorr. PC specimens were coated on a glass substrate for 40 seconds under a spin coating condition of 1000 RPM and cured at 100 ° C for 5 minutes.
도 3a에 도시된 바와 같이, 아르곤 입자의 에너지가 100 eV인 경우, 폭이 38-43 nm 수준인 나노 주름이 형성되었다. 그러나, 도 3b에 도시된 바와 같이, 아르곤 입자의 에너지가 1000 eV인 경우, 주름형태의 나노구조가 형성되지 않았다. 이 현상은 입사하는 아르곤 입자가 충돌에 의해 PC 구성원소에 전달하는 에너지가 표면 최상층에 경화층 생성하기 위해 요구되는 에너지보다 높아 물리적 식각이 주로 발생하기 때문이다.As shown in Fig. 3A, when the energy of the argon particle was 100 eV, nano wrinkles having a width of 38-43 nm were formed. However, as shown in FIG. 3B, when the energy of argon particles was 1000 eV, no wrinkle-like nanostructure was formed. This phenomenon is due to the fact that the energy that the incident argon particles transmit to the constituent elements of the PC due to the collision is higher than the energy required to form the hardened layer on the uppermost layer of the surface.
비교예Comparative Example 1. PET 표면에 아르곤 입자 조사시 에너지에 따른 표면 나노구조 분석 1. Analysis of surface nanostructure according to energy when irradiating argon particles on PET surface
실시예 1과 동일한 조건으로, 폴리머 소재 중 1.3 g/cm 3 이상의 고밀도 폴리머인 PET에 아르곤 가스입자를 충돌시켜 표면 나노구조를 분석하였다. Under the same conditions as in Example 1, argon gas particles were collided with PET, which is a high density polymer of not less than 1.3 g / cm 3 in the polymer material, and the surface nanostructure was analyzed.
일반적으로 1.3 g/cm 3 이상의 밀도를 가지는 PET, PI 는 가스입자가 충돌을 통해 에너지를 전달하는 과정에서 잦은 충돌로 인해 PMMA, PC보다 높은 에너지를 짧은 입자 투과깊이에서 받게 된다. 따라서, 도 4a에 도시된 바와 같이, 주름구조가 형성되지 않고 급격한 물리적 식각이 발생하여 돌기 형태의 표면구조를 나타내었다.In general, PET, PI with a density of 1.3 g / cm 3 or more receives higher energy than PMMA and PC at a short particle penetration depth due to frequent collisions in the process of transferring energy through collision of gas particles. Therefore, as shown in FIG. 4A, a sharp physical etching was not performed, and a surface structure in the form of protrusions was shown.
비교예Comparative Example 2.  2. PDMSPDMS 표면에 아르곤 입자 조사시 에너지에 따른 표면 나노구조 분석 Analysis of surface nanostructure according to energy when irradiating argon particles on surface
실시예 1과 동일한 조건으로, 폴리머 소재 중 1.0 g/cm 3 이하의 밀도를 가지는 저밀도 폴리머인 PDMS에 아르곤 가스입자를 충돌시켜 표면 나노구조를 분석하였다. Under the same conditions as in Example 1, the surface nanostructure was analyzed by impinging argon gas particles on PDMS, which is a low-density polymer having a density of 1.0 g / cm 3 or less in the polymer material.
1.0 g/cm 3 이하의 밀도를 가지는 PDMS, PP, 또는 PI는 가스입자가 충돌을 통해 전달하는 에너지가 PMMA 및 PC보다 다소 낮고 투과깊이가 깊다. 이는 나노주름을 형성하기 위해 필요한 표면 최상층의 경화층 형성에 유리하여 수 nm 이상의 경화층을 형성하며, 도 3b에 도시된 바와 같이, 이 경우 폭이 300nm를 초과하는 나노 주름 구조가 형성되었다.PDMS, PP, or PI having a density of 1.0 g / cm 3 or less has energy slightly lower than PMMA and PC and has a deep penetration depth through collision of gas particles. This is advantageous for forming a cured layer at the topmost surface layer necessary for forming nano wrinkles, forming a cured layer of several nm or more in thickness, and in this case, a nano-pleated structure with a width exceeding 300 nm is formed as shown in Fig. 3B.
비교예Comparative Example 3. PMMA 표면에 산소 입자 조사시 에너지에 따른 표면 나노구조 분석 3. Analysis of surface nanostructure according to energy when irradiating oxygen particles on PMMA surface
상기 실시예 1과 동일한 조건의 PMMA 폴리머를 이용하나, 아르곤 대신에 산소 입자를 조사하여 에너지에 따른 표면 나노구조를 분석하였다. 폴리머 시편 표면의 사진은 FE-SEM을 이용하여 촬영하였다. 진공도 1 mTorr에서 산소 입자를 PMMA 표면에 조사하였다. PMMA polymer having the same conditions as in Example 1 was used, but oxygen particles were irradiated instead of argon to analyze surface nanostructure according to energy. The photograph of the surface of the polymer specimen was taken using FE-SEM. Oxygen particles were irradiated on the PMMA surface at a vacuum degree of 1 mTorr.
도 5a에 도시된 바와 같이, 산소 입자의 에너지가 35 eV인 경우, 나노 주름이 아닌 나노 돌기가 형성되었다. 도 5b에 도시된 바와 같이, 산소 이온의 에너지가 500 eV인 경우 종횡비가 더 큰 나노 돌기가 형성되었고, 도 5c에 도시된 바와 같이, 에너지가 700 eV 수준으로 증가할 경우, 나노 돌기 구조가 사라졌다. 이는 폴리머 표면에 산소 입자가 충돌할 경우, 화학적 반응 활발하여 최상층 폴리머가 CO X, H 2O 등의 물질로 변환되어 식각되었기 때문이다. 따라서, PMMA, PC와 같은 폴리머 표면에 나노 주름 구조를 형성하기 위해서는 화학적 식각이 억제되는 불활성 가스입자(헬륨, 크립톤, 아르곤, 제논)를 통한 표면처리가 필요하다.As shown in FIG. 5A, when the energy of the oxygen particle was 35 eV, nano-protrusions rather than nano-wrinkles were formed. As shown in FIG. 5B, when the energy of the oxygen ion is 500 eV, nano protrusions having a larger aspect ratio are formed, and when the energy is increased to 700 eV, as shown in FIG. 5C, lost. This is because when the oxygen particles collide with the surface of the polymer, the uppermost layer polymer is converted into a substance such as CO x , H 2 O and etched by a chemical reaction. Therefore, in order to form a nano-wrinkle structure on a polymer surface such as PMMA and PC, it is necessary to perform surface treatment through inert gas particles (helium, krypton, argon, xenon) whose chemical etching is suppressed.
실시예 3. PMMA의 이온빔 처리시 가스 혼합비에 따른 표면형상 변화 분석Example 3. Analysis of surface shape change according to gas mixture ratio in ion beam treatment of PMMA
상기 실시예 1과 동일한 조건의 PMMA 표면에 아르곤과 산소 혼합가스 입자를 조사하였으며 가스 혼합 비율에 따른 표면 나노구조를 FE-SEM으로 분석하였다. 표면처리 공정의 진공도는 1.7 mTorr, 입자의 에너지는 800 eV이며, PMMA 표면에 입사한 입자의 총량은 10 15/cm 2이었다. The surface of PMMA with the same conditions as in Example 1 was irradiated with argon and oxygen mixed gas particles, and the surface nanostructure according to the gas mixture ratio was analyzed by FE-SEM. The degree of vacuum in the surface treatment process was 1.7 mTorr, the energy of the particles was 800 eV, and the total amount of particles incident on the PMMA surface was 10 15 / cm 2 .
PMMA 시편은 PMMA (Microchem, 950 PMMA A11, 1.18 g/㎤) 물질을 유리 기판 상에 회전속도 1000 RPM으로 40초 동안 스핀코팅 후, 100℃에서 5분간 경화하였다. The PMMA specimen was spin-coated with PMMA (Microchem, 950 PMMA A11, 1.18 g / ㎤) on a glass substrate at a rotational speed of 1000 RPM for 40 seconds and cured at 100 ° C for 5 minutes.
도 6a ~ 도 6d는 본 발명의 일 실시예에 따라, PMMA 표면에 아르곤과 산소 입자의 혼합 입자군을 산소 혼합비율을 달리하여 조사하여 표면에 형성된 나노구조를 분석한 결과를 보여주는 사진이다. 도 6a는 아르곤 100% 입자 조사에 의해 형성된 PMMA 표면의 나노구조이며, 주름 구조를 가진다. 도 6b 내지 도 6d는 아르곤 비율 대비 산소 가스를 20%, 25%, 30%의 비율로 혼합한 경우 형성되는 표면구조이다. 산소 가스가 20% 수준으로 혼합된 도 6b의 경우, 주름 구조가 관찰되지만 산소 라디칼의 화학적 식각효과에 의해 PMMA 표면에 홀(hole)이 형성되었다. 산소 가스의 혼합 비율이 25%, 30%로 증가함에 따라 화학적 식각효과가 증가하여 주름구조는 사라지고 홀 구조만 남았다. 6A to 6D are photographs showing the result of analyzing the nanostructures formed on the surface by irradiating the PMMA surface with a mixture of argon and oxygen particles with different oxygen mixing ratios according to an embodiment of the present invention. 6A is a nanostructure of a PMMA surface formed by argon 100% particle irradiation, and has a wrinkle structure. 6B to 6D are surface structures formed when oxygen gas is mixed at a ratio of 20%, 25%, and 30% to an argon ratio. In the case of FIG. 6B in which oxygen gas was mixed at a level of 20%, a wrinkle structure was observed, but a hole was formed on the surface of the PMMA due to the chemical etching effect of the oxygen radical. As the mixing ratio of oxygen gas increased to 25% and 30%, the chemical etching effect increased and the wrinkle structure disappeared and only the hole structure remained.
따라서, 폴리머 표면에 나노 주름 구조를 형성하기 위해서는, 상기 혼합 입자군은 20% 미만의 산소를 포함하는 것이 바람직하다.Therefore, in order to form the nano-pleated structure on the polymer surface, it is preferable that the mixed particle group contains less than 20% oxygen.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면, 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리 범위 내에 포함된다고 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit of the invention as defined in the appended claims. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (14)

1.1 g/cm 3 이상의 밀도를 가지며, 1.1 g / cm 3 Or more,
표면에 20 ~ 300nm 폭의 복수의 나노 주름 구조가 형성된, 폴리머. Wherein a plurality of nanofoil structures having a width of 20 to 300 nm are formed on the surface.
제1항에 있어서,The method according to claim 1,
상기 밀도는 1.1 ~ 1.3 g/cm 3 인, 폴리머.Wherein the density is 1.1 to 1.3 g / cm < 3 >.
제1항에 있어서,The method according to claim 1,
상기 폴리머는 폴리메틸메타크릴레이트(Poly Methyl Methacrylate, PMMA), 폴리카보네이트(Polycarbonate, PC), 또는 이들의 혼합물로 이루어진, 폴리머.The polymer is comprised of polymethyl methacrylate (PMMA), polycarbonate (PC), or a mixture thereof.
제1항에 있어서,The method according to claim 1,
상기 나노 주름 구조는 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자 조사에 의해 형성되는 것인, 폴리머.Wherein the nanofiber structure is formed by gas particle irradiation having an energy of 50 eV to less than 1000 eV.
제1항에 있어서, 상기 폴리머 상에 금속 또는 금속산화물이 증착된, 폴리머.The polymer of claim 1, wherein a metal or metal oxide is deposited on the polymer.
제1항 내지 제5항 중 어느 한 항에 기재된 폴리머를 포함하는 제품.A product comprising the polymer of any one of claims 1 to 5.
제6항에 있어서, 상기 제품은 센서, 스트레처블 디바이스, 또는 벤더블 디바이스인, 제품.7. The article of claim 6, wherein the article is a sensor, a scalable device, or a Ben Double device.
1.1 g/cm 3 이상의 밀도를 가지는 폴리머에 50 eV 이상 1000 eV 미만의 에너지를 가진 가스입자를 조사하여 나노 주름 구조를 형성하는 단계를 포함하는, 나노 주름 구조가 형성된 폴리머의 제조 방법.1.1 g / cm 3 And irradiating gas particles having an energy of 50 eV or more and less than 1000 eV to form a nano-pleated structure.
제8항에 있어서, 9. The method of claim 8,
상기 가스입자는 The gas particles
아르곤; 또는 argon; or
아르곤과, 크립톤, 제논, 산소, 질소, 및 수소 중 1 이상이 포함된 혼합 입자군인, 나노 주름 구조가 형성된 폴리머의 제조방법.A mixed particle group containing at least one of argon, krypton, xenon, oxygen, nitrogen, and hydrogen.
제8항에 있어서, 9. The method of claim 8,
상기 혼합 입자군은 80% 이상의 아르곤을 포함하는, 나노 주름 구조가 형성된 폴리머의 제조방법. Wherein the mixed particle group comprises at least 80% of argon.
제8항에 있어서,9. The method of claim 8,
상기 혼합 입자군은 20% 미만의 산소를 포함하는, 나노 주름 구조가 형성된 폴리머의 제조방법. Wherein the mixed particle group contains less than 20% oxygen.
제8항에 있어서, 9. The method of claim 8,
상기 혼합 입자군의 2종 이상의 입자는 동시에 또는 순차적으로 조사되는, 나노 주름 구조가 형성된 폴리머의 제조방법.Wherein at least two kinds of particles of the mixed particle group are irradiated simultaneously or sequentially.
제8항에 있어서, 9. The method of claim 8,
상기 가스입자는 이온 또는 중성가스 입자인, 나노 주름 구조가 형성된 폴리머의 제조방법.Wherein the gas particle is an ion or a neutral gas particle.
제8항에 있어서,9. The method of claim 8,
상기 폴리머는 그 표면에 20 ~ 300nm 폭의 복수의 나노 주름 구조가 형성되는, 나노 주름 구조가 형성된 폴리머의 제조방법.Wherein the polymer has a plurality of nanofoil structures having a width of 20 to 300 nm formed on the surface thereof.
PCT/KR2018/005563 2017-09-13 2018-05-15 Polymer having nano-wrinkle structure formed using ion beam and preparation method therefor WO2019054602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0117351 2017-09-13
KR1020170117351A KR101976564B1 (en) 2017-09-13 2017-09-13 Polymer having nano wrinkle structures and method for manufacturing thereof using a ion beam

Publications (1)

Publication Number Publication Date
WO2019054602A1 true WO2019054602A1 (en) 2019-03-21

Family

ID=65722879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005563 WO2019054602A1 (en) 2017-09-13 2018-05-15 Polymer having nano-wrinkle structure formed using ion beam and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101976564B1 (en)
WO (1) WO2019054602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208099A (en) * 2020-01-08 2020-05-29 同济大学 Silver nano-cluster fluorescent probe, preparation method thereof and application thereof in detection of active oxygen species

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230088572A (en) * 2021-12-10 2023-06-20 한국재료연구원 Polymer substrate with nanostructures and sensor including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029054A (en) * 2003-09-20 2005-03-24 (주) 유니플라텍 Method for giving anti-static to polymer surface and non-delaminated flexible print circuit board using plasma ion implantation
JP2006113429A (en) * 2004-10-18 2006-04-27 Toppan Printing Co Ltd Manufacturing method of relief pattern and relief pattern
KR20090094355A (en) * 2006-11-30 2009-09-04 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Method for producing a nanostructure on a plastic surface
KR20110034096A (en) * 2009-09-28 2011-04-05 현대자동차주식회사 Fabrication of nano embossed plastic surfaces and its fabrication methods
KR20160021263A (en) * 2013-06-19 2016-02-24 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Method for producing an antireflective layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029054A (en) * 2003-09-20 2005-03-24 (주) 유니플라텍 Method for giving anti-static to polymer surface and non-delaminated flexible print circuit board using plasma ion implantation
JP2006113429A (en) * 2004-10-18 2006-04-27 Toppan Printing Co Ltd Manufacturing method of relief pattern and relief pattern
KR20090094355A (en) * 2006-11-30 2009-09-04 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Method for producing a nanostructure on a plastic surface
KR20110034096A (en) * 2009-09-28 2011-04-05 현대자동차주식회사 Fabrication of nano embossed plastic surfaces and its fabrication methods
KR20160021263A (en) * 2013-06-19 2016-02-24 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. Method for producing an antireflective layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208099A (en) * 2020-01-08 2020-05-29 同济大学 Silver nano-cluster fluorescent probe, preparation method thereof and application thereof in detection of active oxygen species

Also Published As

Publication number Publication date
KR101976564B1 (en) 2019-05-10
KR20190030267A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
Pizzocchero et al. The hot pick-up technique for batch assembly of van der Waals heterostructures
WO2013042819A1 (en) Production method for a graphene thin film
US8154063B2 (en) Ultrafast and ultrasensitive novel photodetectors
WO2019054602A1 (en) Polymer having nano-wrinkle structure formed using ion beam and preparation method therefor
US20090229972A1 (en) Method and apparatus for producing a feature having a surface roughness in a substrate
CN105823782A (en) Characterization method of crystal boundary and atom defects in two-dimensional material
JP2010155218A (en) Method for manufacturing substrate with particulate-single-layer-membrane and substrate with particulate-single-layer-membrane
Yin et al. Rapid Meniscus‐Assisted Solution‐Printing of Conjugated Block Copolymers for Field‐Effect Transistors
Constantinescu et al. Thin films of polyaniline deposited by MAPLE technique
CN109580650B (en) Method for detecting surface cleanliness of graphene
CN108538765A (en) The transfer method of etching device and figure
Metzler et al. Formation of nanometer-thick delaminated amorphous carbon layer by two-step plasma processing of methacrylate-based polymer
WO2019059689A1 (en) Apparatus for electrodeless measurement of electron mobility in nano material, apparatus for electrodeless measurement of hole mobility in nano material, method for electrodeless measurement of electron mobility in nano material, and method for electrodeless measurement of hole mobility in nano material
WO2023106624A1 (en) Polymer substrate on which nanostructures are formed and sensor comprising same
Laariedh et al. Large-area, cost-effective Surface-Enhanced Raman Scattering (SERS) substrates fabrication
US7365019B2 (en) Atmospheric process and system for controlled and rapid removal of polymers from high aspect ratio holes
Cai et al. Fabrication of submicron conducting and chemically functionalized structures from poly (3‐octylthiophene) by an electron beam
CA2617110A1 (en) Method of obtaining patterns in an organic conductor substrate and organic material thus obtained
US20030080089A1 (en) Method of patterning a substrate
WO2023146229A1 (en) Resistive hydrogen sensor comprising sensing layer having semiconducting single-walled carbon nanotubes, and manufacturing method therefor
Dacha et al. Tailoring the Morphology of a Diketopyrrolopyrrole‐based Polymer as Films or Wires for High‐Performance OFETs using Solution Shearing
Werner et al. Electron beam induced coalescence in plasma polymer silver composite films
Zhang et al. Self-aligned nanolithography by selective polymer dissolution
WO2022169090A1 (en) Method for preparing metal nanostructure
WO2021125853A1 (en) Plasmon hierarchical structure having nanogap and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855437

Country of ref document: EP

Kind code of ref document: A1