WO2019054408A1 - Variable valve timing device - Google Patents

Variable valve timing device Download PDF

Info

Publication number
WO2019054408A1
WO2019054408A1 PCT/JP2018/033808 JP2018033808W WO2019054408A1 WO 2019054408 A1 WO2019054408 A1 WO 2019054408A1 JP 2018033808 W JP2018033808 W JP 2018033808W WO 2019054408 A1 WO2019054408 A1 WO 2019054408A1
Authority
WO
WIPO (PCT)
Prior art keywords
camshaft
sprocket
armature
cam
valve timing
Prior art date
Application number
PCT/JP2018/033808
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 隆英
佐藤 光司
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019054408A1 publication Critical patent/WO2019054408A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive

Definitions

  • the present invention relates to a variable valve timing device used in an engine valve system.
  • a chain is bridged between a sprocket provided on a camshaft and a sprocket provided on a crankshaft, and the rotation of the crankshaft is transmitted to the camshaft through the chain, whereby a camshaft is obtained.
  • the engine is rotationally driven, and the rotation of its camshaft drives the intake and exhaust valves of the engine.
  • variable valve timing device which changes the opening and closing timings of the intake and exhaust valves according to the rotational speed of the engine.
  • Variable valve timing devices generally include a camshaft that drives an intake or exhaust valve of an engine, a sprocket disposed coaxially with the camshaft, and a variable (that is, a relative angular position) of the camshaft relative to the sprocket. And a mechanical portion (see, for example, Patent Document 1).
  • the variable valve timing device of Patent Document 1 is an electric motor coaxially arranged with the camshaft as a variable mechanism portion for changing the phase of the camshaft with respect to the sprocket, and a difference for reducing the rotation of the electric motor and transmitting it to the sprocket And a dynamic reduction mechanism.
  • the differential type reduction mechanism has an eccentric shaft connected to the output shaft of the electric motor, an annular internal gear connected to the camshaft, and an external gear connected to the sprocket.
  • the ring-shaped internal gear and the external gear inscribed in the internal gear rotate relative to each other by one tooth each rotation.
  • variable valve timing device of this patent document 1 rotates the electric motor at the same speed as the camshaft and uses it to make the phase of the camshaft relative to the sprocket constant. keep.
  • the camshaft and the sprocket are rotated relative to each other by temporarily increasing or decreasing the rotation of the electric motor relative to the rotation of the camshaft. Change the phase.
  • variable valve timing device of Patent Document 1 uses an electric motor and a differential reduction mechanism as a variable mechanism unit for changing the phase of the camshaft with respect to the sprocket, and manufactures such variable mechanism unit at low cost. It is difficult to do. In addition, it is necessary to change the rotation of the electric motor according to the rotation speed of the camshaft, and the control of the electric motor is complicated.
  • the problem to be solved by the present invention is to provide a variable valve timing device that can be manufactured inexpensively and is easy to control.
  • variable valve timing device of the following composition.
  • a camshaft A sprocket coaxially arranged with the camshaft;
  • a variable mechanism unit for changing the phase of the camshaft relative to the sprocket.
  • the variable mechanism unit An armature movably supported in the axial direction;
  • An electromagnet for attracting the armature axially by energization;
  • a variable valve timing device comprising: a cam mechanism for converting an axial movement of the armature to a relative rotation of the camshaft with respect to the sprocket.
  • the device configuration is more efficient than using the electric motor and the differential reduction mechanism. It is simple and can be manufactured inexpensively. Further, control for arbitrarily changing the phase of the camshaft with respect to the sprocket merely switches between energization and interruption of the electromagnet, so control is easy.
  • a rotor connected to the sprocket so as to have a disk portion of a magnetic body positioned between the electromagnet and the axially opposed surface of the armature and to rotate integrally with the sprocket.
  • the armature when the electromagnet is energized, the armature is attracted to the disc portion of the rotor that rotates integrally with the sprocket, and the armature rotates integrally with the sprocket. Therefore, the armature can be supported not on the side of the non-rotating electromagnet but on the side of the camshaft, which simplifies the device configuration.
  • the rotor may be configured to further include an inner diameter side cylindrical portion that axially extends from a radially inner end of the disk portion and is rotatably supported on an outer periphery of the camshaft.
  • the inner diameter side cylindrical portion may be supported on the outer periphery of the camshaft via a bearing, or may be supported directly on the outer periphery of the camshaft.
  • a rotation stopper may be provided between the rotor and the cam shaft to limit relative rotation of the cam shaft relative to the rotor to a predetermined angular range.
  • a slide cam which is supported on the outer periphery of the camshaft so as to be axially movable and relatively non-rotatable with respect to the camshaft, and which is axially opposed to the sprocket;
  • the slide cam may be one connected to the armature so as to move integrally with the armature in the axial direction.
  • the slide cam may adopt a spline fitted on the outer periphery of the camshaft.
  • the slide cam is connected to the armature so as to move axially integrally with the armature in such a manner as to be rotatable relative to the armature.
  • An axial stopper can be provided on the outer periphery of the cam shaft to restrict an axial movement range of the slide cam.
  • variable valve timing device uses the electromagnet and the cam mechanism as the variable mechanism portion for changing the phase of the camshaft with respect to the sprocket, it is possible to use the electric motor and the differential type reduction mechanism.
  • the device configuration is simple and can be manufactured inexpensively. Further, control for arbitrarily changing the phase of the camshaft with respect to the sprocket merely switches between energization and interruption of the electromagnet, so control is easy.
  • FIG. 7 is a cross-sectional view showing a state in which the phase of the camshaft in FIG.
  • FIG. 1 shows a variable valve timing device according to an embodiment of the present invention.
  • This variable valve timing device changes the phase (relative angular position) of the camshaft 1 with respect to the sprocket 2 and the sprocket 2 coaxially arranged with the camshaft 1 for driving the intake or exhaust valve of the engine.
  • a variable mechanism unit 3 3.
  • a plurality of teeth 4 are formed on the outer periphery of the sprocket 2.
  • the teeth 4 mesh with a chain (not shown) that transmits the rotation of a crankshaft (not shown) to the camshaft 1.
  • the sprocket 2 is annular, and the shaft end of the camshaft 1 is inserted through the inside. The axial end of the camshaft 1 protrudes from the sprocket 2 to the side of the housing 5.
  • the housing 5 is a stationary system.
  • the variable mechanism unit 3 includes an armature 6 axially movably supported with respect to the camshaft 1, an electromagnet 7 for attracting the armature 6 in the axial direction by energization, and axial movement of the armature 6 with respect to the sprocket 2. And a cam mechanism 8 for converting the relative rotation of the camshaft 1.
  • the electromagnet 7 is formed in an annular shape surrounding an axial end of the camshaft 1.
  • the electromagnet 7 is fixedly attached to the housing 5.
  • the electromagnet 7 has a field core 9 formed of a magnetic material and a coil 10 wound around the field core 9.
  • the field core 9 includes an inner cylindrical portion 9a facing the inner diameter of the coil 10, an outer cylindrical portion 9b facing the outer diameter of the coil 10, and an end of the inner cylindrical portion 9a and the outer cylindrical portion 9b on the housing 5 side. And an annular plate portion 9c connecting the two.
  • the coil 10 is composed of a wire wound annularly around the camshaft 1.
  • a rotor 12 is connected to the sprocket 2 via a rotor guide 11 so as to rotate integrally with the sprocket 2.
  • the rotor guide 11 is fixed to a side surface of the sprocket 2 on the housing 5 side by a bolt 13.
  • the rotor 12 is fixed to the inner periphery of the rotor guide 11.
  • the rotor 12 includes a disk portion 12a of a magnetic body disposed between axially opposed surfaces of the electromagnet 7 and the armature 6, an outer diameter side cylindrical portion 12b axially extending from the radial outer end of the disk portion 12a, and a disk And an inner diameter side cylindrical portion 12c extending in the axial direction from the radial inner end of the portion 12a.
  • the outer diameter side cylindrical portion 12 b is press-fitted to the inner periphery of the rotor guide 11.
  • the inner diameter side cylindrical portion 12 c and the outer diameter side cylindrical portion 12 b extend in the axial direction toward the housing 5 with respect to the disk portion 12 a.
  • outer diameter side cylindrical portion 12 b is disposed to face the outer diameter side of the outer cylinder portion 9 b of the field core 9, and the inner diameter side cylindrical portion 12 c faces the inner diameter side of the inner cylinder portion 9 a of the field core 9.
  • the outer diameter side cylindrical portion 12 b is disposed to face the outer diameter side of the outer cylinder portion 9 b of the field core 9
  • the inner diameter side cylindrical portion 12 c faces the inner diameter side of the inner cylinder portion 9 a of the field core 9.
  • the inner diameter side cylindrical portion 12 c is supported on the outer periphery of the camshaft 1 via a bearing 14.
  • the bearing 14 is a rolling bearing (for example, a needle roller bearing) in the drawing, a sliding bearing may be employed instead.
  • An end plate 15 is fixed to the end face of the camshaft 1 by a bolt 16.
  • the end plate 15 axially faces the end face of the inner diameter side cylindrical portion 12 c of the rotor 12 on the housing 5 side, and restricts the axial movement of the rotor 12.
  • a low-friction treatment for example, a low-friction coating or a low-friction layer is formed on the surface of the opposing portion between the end plate 15 and the end face of the inner side cylindrical portion 12c of the rotor 12 on the housing 5 side It is preferable to apply a plating treatment or the like, or to incorporate a thrust slide bearing or a thrust rolling bearing.
  • a slit 17 is formed in the disc portion 12 a of the rotor 12 at a position facing the armature 6.
  • the slit 17 penetrates the disc portion 12 a in the axial direction.
  • the slits 17 are arc-shaped extending in a thin line on the circumference centering on the camshaft 1, and a plurality of the slits 17 are provided at intervals in the circumferential direction.
  • the magnetic flux flowing in the radial direction of the inside of the disk portion 12a of the rotor 12 is blocked by the slits 17 when the electromagnet 7 is energized, thereby increasing the density of the magnetic flux passing through the armature 6 It is possible to efficiently suction the armature 6 to the disc portion 12a.
  • a separating spring 18 is incorporated which biases the armature 6 in the direction of separating it from the disk portion 12a.
  • the cam mechanism 8 includes a slide cam 19 disposed axially opposite to the sprocket 2, a cam groove 20 formed on the opposite surface of the sprocket 2 to the slide cam 19, and an opposite surface of the slide cam 19 to the sprocket 2. It has a cam groove 21 formed, and a ball 22 incorporated between the cam groove 20 of the sprocket 2 and the cam groove 21 of the slide cam 19.
  • the cam groove 20 and the cam groove 21 are formed to extend in the circumferential direction. Further, the cam groove 20 is formed to have a groove bottom inclined so as to be gradually deeper in one circumferential direction from the contact position with the ball 22, and the cam groove 21 is also circumferentially from the contact position with the ball 22. It is configured to have a groove bottom inclined so as to be gradually deeper toward the other direction.
  • the ball 22 is, for example, a steel ball.
  • the slide cam 19 has an outer diameter side from a cylindrical portion 19a penetrating between the outer circumference of the camshaft 1 and the inner circumference of the sprocket 2 and an end of the cylindrical portion 19a remote from the housing 5
  • the cam groove 21 is formed in the flange portion 19 b.
  • the cylindrical portion 19 a of the slide cam 19 is spline-fitted to the outer periphery of the camshaft 1, and is supported on the outer periphery of the camshaft 1 so as to be axially movable with respect to the camshaft 1 and non-relatively rotatable.
  • a cylindrical surface 23 rotatably supporting the inner periphery of the armature 6 is formed on the outer periphery of the end of the cylindrical portion 19 a of the slide cam 19, and the axial end face of the cylindrical portion 19 a of the slide cam 19
  • the armature 6 is prevented from coming off the slide cam 19 by caulking.
  • the slide cam 19 is connected to the armature 6 so as to move integrally with the armature 6 in the axial direction so as to be rotatable relative to the armature 6.
  • the caulking portion 30 formed by caulking the end face in the axial direction of the cylindrical portion 19a is accommodated in the concave portion 31 formed at the radially inner end of the contact surface of the armature 6 with the disc portion 12a of the rotor 12. It is done.
  • an axial stopper 24 that restricts the axial movement range of the slide cam 19 is provided on the outer periphery of the camshaft 1.
  • the axial stopper 24 is disposed opposite to the slide cam 19 on the opposite side of the housing 5.
  • variable valve timing device An operation example of this variable valve timing device will be described.
  • the phase of the camshaft 1 with respect to the sprocket 2 is the phase of the most retarded angle (the position where the relative angular position of the camshaft 1 with respect to the sprocket 2 is shifted to the rearmost side in the rotational direction of the camshaft 1). That is, when the sprocket 2 rotates, the camshaft 1 rotates integrally with the sprocket 2 at the phase of the most retarded angle.
  • the electromagnet 7 When the electromagnet 7 is energized, as shown in FIG. 1, the electromagnet 7 attracts the armature 6, and the armature 6 is attracted to the disk portion 12 a of the rotor 12. At this time, as the armature 6 moves in the axial direction, the axial distance between the sprocket 2 and the flange portion 19b of the slide cam 19 becomes narrower, and as shown in FIG. 1 and FIG. It rolls along the grooves 20 and 21 in the direction in which the cam grooves 20 and 21 become deeper, the slide cam 19 rotates relative to the sprocket 2, and the camshaft 1 rotates relative to the slide cam 19.
  • the phase of the camshaft 1 with respect to the sprocket 2 changes to the phase of the most advanced angle (the position where the relative angle position of the camshaft 1 with respect to the sprocket 2 is shifted to the frontmost side in the rotational direction of the camshaft 1). That is, when the sprocket 2 rotates, the camshaft 1 rotates integrally with the sprocket 2 at the phase of the most advanced angle.
  • variable valve timing device uses the electromagnet 7 and the cam mechanism 8 as the variable mechanism portion 3 for changing the phase of the camshaft 1 with respect to the sprocket 2, it is possible to use an electric motor and a differential reduction mechanism.
  • the apparatus configuration is simpler than that of forming the variable mechanism unit, and it is possible to manufacture at low cost. Further, since control for arbitrarily changing the phase of the camshaft 1 with respect to the sprocket 2 only switches between energization and interruption of the electromagnet 7, control is easy.
  • variable valve timing device when the electromagnet 7 is energized, the armature 6 is attracted to the disk portion 12 a of the rotor 12 that rotates integrally with the sprocket 2, and the armature 6 rotates integrally with the sprocket 2. Therefore, the armature 6 can be supported not on the side of the non-rotating electromagnet 7 but on the side of the camshaft 1, and the device configuration is simple.
  • this variable valve timing device includes a slide cam 19 disposed axially opposite to the sprocket 2, a cam groove 20 formed on the surface of the sprocket 2 facing the slide cam 19, and a sprocket 2 of the slide cam 19. Since the cam mechanism 8 having the cam groove 21 formed on the opposite surface to the ball and the ball 22 incorporated between the cam groove 20 of the sprocket 2 and the cam groove 21 of the slide cam 19 is employed, the cam mechanism 8 is It is possible to obtain a compact variable valve timing device having a short axial length.
  • variable valve timing device connects the armature 6 and the slide cam 19 so that relative rotation is possible, the slide cam 19 operates stably when the armature 6 is attracted to the rotor 12.
  • FIG.6, FIG.7, FIG.8 The modification of the said embodiment is shown in FIG.6, FIG.7, FIG.8.
  • a rotation stopper 25 for restricting relative rotation of the camshaft 1 with respect to the rotor 12 to a predetermined angle range is provided between the rotor 12 and the camshaft 1, and the other configuration is the same as the above embodiment. It is. Therefore, the parts corresponding to the above embodiment are given the same reference numerals and the description will be omitted.
  • the rotation stopper 25 is provided with a radially inward protrusion 26 provided at an end of the inner diameter side cylindrical portion 12 c of the rotor 12 on the housing 5 side, and an axial end portion of the camshaft 1 so as to accommodate the protrusion 26. It comprises with the recessed part 27 provided in the outer periphery.
  • the recess 27 has a pair of inner side surfaces 28 and 29 opposed in the circumferential direction, and the pair of inner side surfaces 28 and 29 restricts the circumferential movement of the projection 26 within a predetermined angular range.
  • the predetermined angle range is, for example, an angle range having a lower limit of 0 deg and a value set in a numerical range of 20 deg to 70 deg as an upper limit.
  • the rotation stopper 25 for limiting the relative rotation of the camshaft 1 with respect to the rotor 12 to a predetermined angular range is provided between the rotor 12 and the camshaft 1
  • the phase of the camshaft 1 with respect to the sprocket 2 is changed. Since the stop position of relative rotation at the time of rotation can be determined by the rotation stopper 25, it is possible to accurately manage the phase of the camshaft 1 with respect to the sprocket 2. That is, as shown in FIG. 7, the position of the camshaft 1 when the phase of the camshaft 1 with respect to the sprocket 2 becomes the most advanced angle is set by the position of the camshaft 1 when the inner side surface 28 and the protrusion 26 contact.

Abstract

Disclosed is a variable valve timing device provided with: a camshaft (1); a sprocket (2) which is disposed coaxially with the camshaft (1); and a varying mechanism part (3) which varies the phase of the camshaft (1) with respect to the sprocket (2). The varying mechanism part (3) comprises: an armature (6) that is supported so as to be movable in an axial direction; an electromagnet (7) that attracts the armature (6) in an axial direction when current is applied thereto; and a cam mechanism (8) that converts the axial movement of the armature (6) into rotation of the camshaft (1) relative to the sprocket (2).

Description

可変バルブタイミング装置Variable valve timing device
 この発明は、エンジンの動弁系に用いられる可変バルブタイミング装置に関する。 The present invention relates to a variable valve timing device used in an engine valve system.
 エンジンにおいては、カムシャフトに設けられたスプロケットと、クランクシャフトに設けられたスプロケットの間にチェーンが掛け渡され、そのチェーンを介してクランクシャフトの回転をカムシャフトに伝達することで、カムシャフトを回転駆動し、そのカムシャフトの回転によってエンジンの吸気バルブおよび排気バルブが駆動される。 In an engine, a chain is bridged between a sprocket provided on a camshaft and a sprocket provided on a crankshaft, and the rotation of the crankshaft is transmitted to the camshaft through the chain, whereby a camshaft is obtained. The engine is rotationally driven, and the rotation of its camshaft drives the intake and exhaust valves of the engine.
 ここで、吸気バルブや排気バルブが開弁あるいは閉弁してから、実際の気体の流れが変わるまでの間には時間のズレが存在し、そのズレの大きさは、吸排気の流速により変化する。そのため、エンジンが高速回転しているときと低速回転しているときとでは、エンジンの吸気バルブおよび排気バルブの最適な開閉タイミングが異なる。そこで、エンジンの吸気バルブや排気バルブの開閉タイミングを最適化するため、エンジンの回転速度に応じて、吸気バルブや排気バルブの開閉タイミングを変化させる可変バルブタイミング装置が使用される。 Here, there is a time lag between the opening and closing of the intake and exhaust valves and the change of the actual gas flow, and the magnitude of the deviation varies with the flow rate of the intake and exhaust. Do. Therefore, when the engine is rotating at high speed and when it is rotating at low speed, the optimal opening / closing timing of the intake valve and the exhaust valve of the engine is different. Therefore, in order to optimize the opening and closing timings of the intake and exhaust valves of the engine, a variable valve timing device is used which changes the opening and closing timings of the intake and exhaust valves according to the rotational speed of the engine.
 可変バルブタイミング装置は、一般に、エンジンの吸気バルブまたは排気バルブを駆動するカムシャフトと、そのカムシャフトと同軸に配置されたスプロケットと、スプロケットに対するカムシャフトの位相(すなわち相対角度位置)を変化させる可変機構部とを有する(例えば、特許文献1参照)。 Variable valve timing devices generally include a camshaft that drives an intake or exhaust valve of an engine, a sprocket disposed coaxially with the camshaft, and a variable (that is, a relative angular position) of the camshaft relative to the sprocket. And a mechanical portion (see, for example, Patent Document 1).
 特許文献1の可変バルブタイミング装置は、スプロケットに対するカムシャフトの位相を変化させる可変機構部として、カムシャフトと同軸に配置された電動モータと、その電動モータの回転を減速してスプロケットに伝達する差動式の減速機構とを有する。差動式の減速機構は、電動モータの出力軸に接続された偏心軸と、カムシャフトに接続された環状の内歯歯車と、スプロケットに接続された外歯歯車とを有し、偏心軸が1回転するごとに、環状の内歯歯車と、その内歯歯車に内接する外歯歯車とが1歯分だけ相対回転するように構成されている。 The variable valve timing device of Patent Document 1 is an electric motor coaxially arranged with the camshaft as a variable mechanism portion for changing the phase of the camshaft with respect to the sprocket, and a difference for reducing the rotation of the electric motor and transmitting it to the sprocket And a dynamic reduction mechanism. The differential type reduction mechanism has an eccentric shaft connected to the output shaft of the electric motor, an annular internal gear connected to the camshaft, and an external gear connected to the sprocket. The ring-shaped internal gear and the external gear inscribed in the internal gear rotate relative to each other by one tooth each rotation.
 この特許文献1の可変バルブタイミング装置は、スプロケットに対するカムシャフトの位相を変化させる必要がないときは、電動モータをカムシャフトと同速で回転させて使用し、スプロケットに対するカムシャフトの位相を一定に保つ。一方、スプロケットに対するカムシャフトの位相を変化させるときは、電動モータの回転をカムシャフトの回転よりも一時的に早くするか遅くすることにより、カムシャフトとスプロケットを相対回転させ、スプロケットに対するカムシャフトの位相を変化させる。 When it is not necessary to change the phase of the camshaft with respect to the sprocket, the variable valve timing device of this patent document 1 rotates the electric motor at the same speed as the camshaft and uses it to make the phase of the camshaft relative to the sprocket constant. keep. On the other hand, when changing the phase of the camshaft with respect to the sprocket, the camshaft and the sprocket are rotated relative to each other by temporarily increasing or decreasing the rotation of the electric motor relative to the rotation of the camshaft. Change the phase.
特開2008-057349号公報JP, 2008-057349, A
 特許文献1の可変バルブタイミング装置は、スプロケットに対するカムシャフトの位相を変化させる可変機構部として、電動モータと差動式の減速機構とを用いており、このような可変機構部を低コストで製造することは難しい。また、カムシャフトの回転速度に応じて電動モータの回転を変化させる必要があり、電動モータの制御が煩雑である。 The variable valve timing device of Patent Document 1 uses an electric motor and a differential reduction mechanism as a variable mechanism unit for changing the phase of the camshaft with respect to the sprocket, and manufactures such variable mechanism unit at low cost. It is difficult to do. In addition, it is necessary to change the rotation of the electric motor according to the rotation speed of the camshaft, and the control of the electric motor is complicated.
 この発明が解決しようとする課題は、安価に製造することができ、制御が容易な可変バルブタイミング装置を提供することである。 The problem to be solved by the present invention is to provide a variable valve timing device that can be manufactured inexpensively and is easy to control.
 上記の課題を解決するため、この発明では、以下の構成の可変バルブタイミング装置を提供する。
 カムシャフトと、
 前記カムシャフトと同軸に配置されたスプロケットと、
 前記スプロケットに対する前記カムシャフトの位相を変化させる可変機構部と、を備える可変バルブタイミング装置において、
 前記可変機構部を、
 軸方向に移動可能に支持されたアーマチュアと、
 通電により前記アーマチュアを軸方向に吸引する電磁石と、
 前記アーマチュアの軸方向の移動を前記スプロケットに対する前記カムシャフトの相対回転に変換するカム機構とで構成したことを特徴とする可変バルブタイミング装置。
In order to solve the above-mentioned subject, in the present invention, the variable valve timing device of the following composition is provided.
With a camshaft,
A sprocket coaxially arranged with the camshaft;
A variable mechanism unit for changing the phase of the camshaft relative to the sprocket.
The variable mechanism unit
An armature movably supported in the axial direction;
An electromagnet for attracting the armature axially by energization;
A variable valve timing device, comprising: a cam mechanism for converting an axial movement of the armature to a relative rotation of the camshaft with respect to the sprocket.
 このようにすると、スプロケットに対するカムシャフトの位相を変化させるための可変機構部として、電磁石とカム機構とを用いているので、電動モータと差動式の減速機構とを用いるよりも、装置構成がシンプルであり、安価に製造することが可能である。また、スプロケットに対するカムシャフトの位相を任意に変化させるための制御が、電磁石の通電と遮断を切り替えるだけなので、制御が容易である。 In this case, since the electromagnet and the cam mechanism are used as the variable mechanism portion for changing the phase of the camshaft with respect to the sprocket, the device configuration is more efficient than using the electric motor and the differential reduction mechanism. It is simple and can be manufactured inexpensively. Further, control for arbitrarily changing the phase of the camshaft with respect to the sprocket merely switches between energization and interruption of the electromagnet, so control is easy.
 前記電磁石と前記アーマチュアの軸方向の対向面間に位置する磁性体の円盤部をもち、前記スプロケットと一体回転するように前記スプロケットに接続されたロータを設けると好ましい。 It is preferable to provide a rotor connected to the sprocket so as to have a disk portion of a magnetic body positioned between the electromagnet and the axially opposed surface of the armature and to rotate integrally with the sprocket.
 このようにすると、電磁石に通電したときに、アーマチュアは、スプロケットと一体回転するロータの円盤部に吸着され、アーマチュアは、スプロケットと一体回転する。そのため、アーマチュアを、非回転の電磁石の側ではなく、カムシャフトの側で支持することができ、装置構成がシンプルとなる。 Thus, when the electromagnet is energized, the armature is attracted to the disc portion of the rotor that rotates integrally with the sprocket, and the armature rotates integrally with the sprocket. Therefore, the armature can be supported not on the side of the non-rotating electromagnet but on the side of the camshaft, which simplifies the device configuration.
 前記ロータは、前記円盤部の径方向内端から軸方向に延び、前記カムシャフトの外周で回転可能に支持される内径側円筒部を更に有する構成のものを採用することができる。ここで、内径側円筒部は、軸受を介してカムシャフトの外周で支持してもよく、カムシャフトの外周で直接支持してもよい。 The rotor may be configured to further include an inner diameter side cylindrical portion that axially extends from a radially inner end of the disk portion and is rotatably supported on an outer periphery of the camshaft. Here, the inner diameter side cylindrical portion may be supported on the outer periphery of the camshaft via a bearing, or may be supported directly on the outer periphery of the camshaft.
 前記ロータと前記カムシャフトの間に、前記ロータに対する前記カムシャフトの相対回転を所定角度範囲に規制する回転ストッパを設けることができる。 A rotation stopper may be provided between the rotor and the cam shaft to limit relative rotation of the cam shaft relative to the rotor to a predetermined angular range.
 このようにすると、スプロケットに対するカムシャフトの位相を変化させるときの相対回転の停止位置を回転ストッパで決めることができるので、スプロケットに対するカムシャフトの位相を正確に管理することが可能となる。 In this way, since the stop position of relative rotation when changing the phase of the camshaft with respect to the sprocket can be determined by the rotation stopper, it is possible to accurately manage the phase of the camshaft with respect to the sprocket.
 前記カム機構としては、
 前記カムシャフトに対して軸方向に移動可能かつ相対回転不能に前記カムシャフトの外周で支持され、前記スプロケットと軸方向に対向して配置されたスライドカムと、
 前記スプロケットの前記スライドカムに対する対向面に形成されたカム溝と、
 前記スライドカムの前記スプロケットに対する対向面に形成されたカム溝と、
 前記スプロケットの前記カム溝と前記スライドカムの前記カム溝の間に組み込まれたボールとを有し、
 前記スライドカムは、前記アーマチュアと軸方向に一体に移動するように前記アーマチュアに接続されているものを採用することができる。
As the cam mechanism,
A slide cam which is supported on the outer periphery of the camshaft so as to be axially movable and relatively non-rotatable with respect to the camshaft, and which is axially opposed to the sprocket;
A cam groove formed on the surface of the sprocket facing the slide cam;
A cam groove formed on the surface of the slide cam facing the sprocket;
A ball incorporated between the cam groove of the sprocket and the cam groove of the slide cam;
The slide cam may be one connected to the armature so as to move integrally with the armature in the axial direction.
 このようにすると、カム機構の軸方向長さが短く、コンパクトな可変バルブタイミング装置を得ることが可能となる。 In this way, it is possible to obtain a compact variable valve timing device in which the axial length of the cam mechanism is short.
 前記スライドカムは、前記カムシャフトの外周にスプライン嵌合したものを採用することができる。 The slide cam may adopt a spline fitted on the outer periphery of the camshaft.
 前記スライドカムは、前記アーマチュアと相対回転可能な状態で前記アーマチュアと軸方向に一体に移動するように、前記アーマチュアに接続すると好ましい。 Preferably, the slide cam is connected to the armature so as to move axially integrally with the armature in such a manner as to be rotatable relative to the armature.
 このようにすると、アーマチュアがロータに吸着されるときに、アーマチュアに対してスライドカムが相対回転することができるので、スライドカムの動作が安定したものとなる。 In this way, when the armature is attracted to the rotor, the slide cam can rotate relative to the armature, so that the operation of the slide cam becomes stable.
 前記カムシャフトの外周に、前記スライドカムの軸方向移動範囲を規制する軸方向ストッパを設けることができる。 An axial stopper can be provided on the outer periphery of the cam shaft to restrict an axial movement range of the slide cam.
 この発明の可変バルブタイミング装置は、スプロケットに対するカムシャフトの位相を変化させるための可変機構部として、電磁石とカム機構とを用いているので、電動モータと差動式の減速機構とを用いるよりも、装置構成がシンプルであり、安価に製造することが可能である。また、スプロケットに対するカムシャフトの位相を任意に変化させるための制御が、電磁石の通電と遮断を切り替えるだけなので、制御が容易である。 Since the variable valve timing device according to the present invention uses the electromagnet and the cam mechanism as the variable mechanism portion for changing the phase of the camshaft with respect to the sprocket, it is possible to use the electric motor and the differential type reduction mechanism. The device configuration is simple and can be manufactured inexpensively. Further, control for arbitrarily changing the phase of the camshaft with respect to the sprocket merely switches between energization and interruption of the electromagnet, so control is easy.
この発明の実施形態の可変バルブタイミング装置を示す断面図Sectional view showing a variable valve timing device according to an embodiment of the present invention 図1のII-II線に沿った断面図Sectional view along the line II-II in FIG. 1 図1のアーマチュアとスライドカムの接続部の近傍を拡大して示す図The figure which expands and shows the vicinity of the connection part of the armature of FIG. 1, and a slide cam. 図1に示す電磁石の通電を遮断した状態を示す断面図Sectional drawing which shows the state which cut off electricity supply of the electromagnet shown in FIG. 図4のV-V線に沿った断面図Sectional view along the line V-V in FIG. 4 図1のロータとカムシャフトの間に回転ストッパを設けた変形例を示す断面図Sectional drawing which shows the modification which provided the rotation stopper between the rotor and cam shaft of FIG. 図6のVII-VII線に沿った断面図Sectional view along line VII-VII in FIG. 6 図7のカムシャフトの位相が最遅角の位相に変化した状態を示す断面図FIG. 7 is a cross-sectional view showing a state in which the phase of the camshaft in FIG.
 図1に、この発明の実施形態の可変バルブタイミング装置を示す。この可変バルブタイミング装置は、エンジンの吸気バルブまたは排気バルブを駆動するカムシャフト1と、カムシャフト1と同軸に配置されたスプロケット2と、スプロケット2に対するカムシャフト1の位相(相対角度位置)を変化させる可変機構部3とを有する。 FIG. 1 shows a variable valve timing device according to an embodiment of the present invention. This variable valve timing device changes the phase (relative angular position) of the camshaft 1 with respect to the sprocket 2 and the sprocket 2 coaxially arranged with the camshaft 1 for driving the intake or exhaust valve of the engine. And a variable mechanism unit 3.
 スプロケット2の外周には、複数の歯4が形成されている。歯4は、図示しないクランクシャフトの回転をカムシャフト1に伝達するチェーン(図示せず)と噛み合う。スプロケット2は環状とされ、その内側をカムシャフト1の軸端部が挿通している。カムシャフト1の軸端部は、スプロケット2からハウジング5の側に突出している。ハウジング5は静止系である。 A plurality of teeth 4 are formed on the outer periphery of the sprocket 2. The teeth 4 mesh with a chain (not shown) that transmits the rotation of a crankshaft (not shown) to the camshaft 1. The sprocket 2 is annular, and the shaft end of the camshaft 1 is inserted through the inside. The axial end of the camshaft 1 protrudes from the sprocket 2 to the side of the housing 5. The housing 5 is a stationary system.
 可変機構部3は、カムシャフト1に対して軸方向に移動可能に支持されたアーマチュア6と、通電によりアーマチュア6を軸方向に吸引する電磁石7と、アーマチュア6の軸方向の移動をスプロケット2に対するカムシャフト1の相対回転に変換するカム機構8とを有する。 The variable mechanism unit 3 includes an armature 6 axially movably supported with respect to the camshaft 1, an electromagnet 7 for attracting the armature 6 in the axial direction by energization, and axial movement of the armature 6 with respect to the sprocket 2. And a cam mechanism 8 for converting the relative rotation of the camshaft 1.
 電磁石7は、カムシャフト1の軸端部を囲む環状に形成されている。電磁石7は、ハウジング5に固定して取り付けられている。電磁石7は、磁性体で形成されたフィールドコア9と、フィールドコア9に巻回されたコイル10とを有する。フィールドコア9は、コイル10の内径側に対向する内筒部9aと、コイル10の外径側に対向する外筒部9bと、内筒部9aと外筒部9bのハウジング5側の端部同士を連結する円環板部9cとで構成されている。コイル10は、カムシャフト1を中心とする環状に巻回された導線で構成されている。 The electromagnet 7 is formed in an annular shape surrounding an axial end of the camshaft 1. The electromagnet 7 is fixedly attached to the housing 5. The electromagnet 7 has a field core 9 formed of a magnetic material and a coil 10 wound around the field core 9. The field core 9 includes an inner cylindrical portion 9a facing the inner diameter of the coil 10, an outer cylindrical portion 9b facing the outer diameter of the coil 10, and an end of the inner cylindrical portion 9a and the outer cylindrical portion 9b on the housing 5 side. And an annular plate portion 9c connecting the two. The coil 10 is composed of a wire wound annularly around the camshaft 1.
 スプロケット2には、スプロケット2と一体に回転するようにロータガイド11を介してロータ12が接続されている。ロータガイド11は、スプロケット2のハウジング5の側の側面にボルト13で固定されている。ロータ12は、ロータガイド11の内周に固定されている。 A rotor 12 is connected to the sprocket 2 via a rotor guide 11 so as to rotate integrally with the sprocket 2. The rotor guide 11 is fixed to a side surface of the sprocket 2 on the housing 5 side by a bolt 13. The rotor 12 is fixed to the inner periphery of the rotor guide 11.
 ロータ12は、電磁石7とアーマチュア6の軸方向の対向面間に配置された磁性体の円盤部12aと、円盤部12aの径方向外端から軸方向に延びる外径側円筒部12bと、円盤部12aの径方向内端から軸方向に延びる内径側円筒部12cとを有する。外径側円筒部12bは、ロータガイド11の内周に圧入されている。ここで、内径側円筒部12cと外径側円筒部12bは、円盤部12aに対してハウジング5に向かう側の軸方向に延びている。また、外径側円筒部12bは、フィールドコア9の外筒部9bの外径側に対向して配置され、内径側円筒部12cは、フィールドコア9の内筒部9aの内径側に対向して配置されている。 The rotor 12 includes a disk portion 12a of a magnetic body disposed between axially opposed surfaces of the electromagnet 7 and the armature 6, an outer diameter side cylindrical portion 12b axially extending from the radial outer end of the disk portion 12a, and a disk And an inner diameter side cylindrical portion 12c extending in the axial direction from the radial inner end of the portion 12a. The outer diameter side cylindrical portion 12 b is press-fitted to the inner periphery of the rotor guide 11. Here, the inner diameter side cylindrical portion 12 c and the outer diameter side cylindrical portion 12 b extend in the axial direction toward the housing 5 with respect to the disk portion 12 a. Further, the outer diameter side cylindrical portion 12 b is disposed to face the outer diameter side of the outer cylinder portion 9 b of the field core 9, and the inner diameter side cylindrical portion 12 c faces the inner diameter side of the inner cylinder portion 9 a of the field core 9. Are arranged.
 内径側円筒部12cは、軸受14を介してカムシャフト1の外周で支持されている。軸受14は、図では転がり軸受(例えば針状ころ軸受)であるが、これに代えて滑り軸受を採用してもよい。また、軸受14を設けずに、内径側円筒部12cをカムシャフト1の外周で直接支持することも可能である。この場合、内径側円筒部12cの内周の円筒面とカムシャフト1の外周の円筒面のうちの一方または両方に低摩擦の皮膜を設けると好ましい。カムシャフト1の端面には、エンドプレート15がボルト16で固定されている。エンドプレート15は、ロータ12の内径側円筒部12cのハウジング5の側の端面と軸方向に対向し、ロータ12の軸方向移動を規制している。エンドプレート15と、ロータ12の内径側円筒部12cのハウジング5の側の端面との間の対向部分には、低摩擦処理(例えば低摩擦皮膜のコーティング処理や、低摩擦層を表面に形成するめっき処理など)を施すか、スラスト滑り軸受またはスラスト転がり軸受を組み込むと好ましい。 The inner diameter side cylindrical portion 12 c is supported on the outer periphery of the camshaft 1 via a bearing 14. Although the bearing 14 is a rolling bearing (for example, a needle roller bearing) in the drawing, a sliding bearing may be employed instead. Moreover, it is also possible to directly support the inner diameter side cylindrical portion 12 c on the outer periphery of the camshaft 1 without providing the bearing 14. In this case, it is preferable to provide a low-friction coating on one or both of the inner circumferential cylindrical surface of the inner diameter side cylindrical portion 12 c and the outer circumferential surface of the camshaft 1. An end plate 15 is fixed to the end face of the camshaft 1 by a bolt 16. The end plate 15 axially faces the end face of the inner diameter side cylindrical portion 12 c of the rotor 12 on the housing 5 side, and restricts the axial movement of the rotor 12. A low-friction treatment (for example, a low-friction coating or a low-friction layer is formed on the surface of the opposing portion between the end plate 15 and the end face of the inner side cylindrical portion 12c of the rotor 12 on the housing 5 side It is preferable to apply a plating treatment or the like, or to incorporate a thrust slide bearing or a thrust rolling bearing.
 ロータ12の円盤部12aには、アーマチュア6と対向する位置にスリット17が形成されている。スリット17は、円盤部12aを軸方向に貫通している。また、このスリット17は、カムシャフト1を中心とする円周上を細長く延びる円弧形状であり、周方向に間隔をおいて複数設けられている。このスリット17を設けることにより、電磁石7への通電時に、ロータ12の円盤部12aの内部を半径方向に流れる磁束をスリット17で遮断し、これによりアーマチュア6を通る磁束の密度を高め、その結果、効率よくアーマチュア6を円盤部12aに吸引することが可能となっている。ロータ12の円盤部12aとアーマチュア6の軸方向の対向面間には、アーマチュア6を円盤部12aから離反させる方向に付勢する離反ばね18が組み込まれている。 A slit 17 is formed in the disc portion 12 a of the rotor 12 at a position facing the armature 6. The slit 17 penetrates the disc portion 12 a in the axial direction. Further, the slits 17 are arc-shaped extending in a thin line on the circumference centering on the camshaft 1, and a plurality of the slits 17 are provided at intervals in the circumferential direction. By providing the slits 17, the magnetic flux flowing in the radial direction of the inside of the disk portion 12a of the rotor 12 is blocked by the slits 17 when the electromagnet 7 is energized, thereby increasing the density of the magnetic flux passing through the armature 6 It is possible to efficiently suction the armature 6 to the disc portion 12a. Between the axially opposed surfaces of the disk portion 12a of the rotor 12 and the armature 6, a separating spring 18 is incorporated which biases the armature 6 in the direction of separating it from the disk portion 12a.
 カム機構8は、スプロケット2と軸方向に対向して配置されたスライドカム19と、スプロケット2のスライドカム19に対する対向面に形成されたカム溝20と、スライドカム19のスプロケット2に対する対向面に形成されたカム溝21と、スプロケット2のカム溝20とスライドカム19のカム溝21の間に組み込まれたボール22とを有する。 The cam mechanism 8 includes a slide cam 19 disposed axially opposite to the sprocket 2, a cam groove 20 formed on the opposite surface of the sprocket 2 to the slide cam 19, and an opposite surface of the slide cam 19 to the sprocket 2. It has a cam groove 21 formed, and a ball 22 incorporated between the cam groove 20 of the sprocket 2 and the cam groove 21 of the slide cam 19.
 図2、図5に示すように、カム溝20とカム溝21は、それぞれ周方向に延びるように形成されている。また、カム溝20は、ボール22との接触位置から周方向の一方向に向かって次第に深くなるように傾斜した溝底をもつ形状とされ、カム溝21も、ボール22との接触位置から周方向の他方向に向かって次第に深くなるように傾斜した溝底をもつ形状とされている。ボール22は、例えば鋼球である。 As shown in FIGS. 2 and 5, the cam groove 20 and the cam groove 21 are formed to extend in the circumferential direction. Further, the cam groove 20 is formed to have a groove bottom inclined so as to be gradually deeper in one circumferential direction from the contact position with the ball 22, and the cam groove 21 is also circumferentially from the contact position with the ball 22. It is configured to have a groove bottom inclined so as to be gradually deeper toward the other direction. The ball 22 is, for example, a steel ball.
 図1に示すように、スライドカム19は、カムシャフト1の外周とスプロケット2の内周との間を貫通する筒部19aと、筒部19aのハウジング5から遠い側の端部から外径側に延びるフランジ部19bとで構成され、フランジ部19bにカム溝21が形成されている。スライドカム19の筒部19aは、カムシャフト1の外周にスプライン嵌合しており、カムシャフト1に対して軸方向に移動可能かつ相対回転不能にカムシャフト1の外周で支持されている。 As shown in FIG. 1, the slide cam 19 has an outer diameter side from a cylindrical portion 19a penetrating between the outer circumference of the camshaft 1 and the inner circumference of the sprocket 2 and an end of the cylindrical portion 19a remote from the housing 5 The cam groove 21 is formed in the flange portion 19 b. The cylindrical portion 19 a of the slide cam 19 is spline-fitted to the outer periphery of the camshaft 1, and is supported on the outer periphery of the camshaft 1 so as to be axially movable with respect to the camshaft 1 and non-relatively rotatable.
 図3に示すように、スライドカム19の筒部19aの端部外周には、アーマチュア6の内周を回転可能に支持する円筒面23が形成され、スライドカム19の筒部19aの軸方向端面を加締めることで、アーマチュア6がスライドカム19から抜け止めされている。これにより、スライドカム19は、アーマチュア6と相対回転可能な状態でアーマチュア6と軸方向に一体に移動するようにアーマチュア6に接続されている。図3において、筒部19aの軸方向端面を加締めることで形成された加締め部30は、ロータ12の円盤部12aに対するアーマチュア6の接触面の径方向内端に形成された凹部31に収容されている。 As shown in FIG. 3, a cylindrical surface 23 rotatably supporting the inner periphery of the armature 6 is formed on the outer periphery of the end of the cylindrical portion 19 a of the slide cam 19, and the axial end face of the cylindrical portion 19 a of the slide cam 19 The armature 6 is prevented from coming off the slide cam 19 by caulking. Thus, the slide cam 19 is connected to the armature 6 so as to move integrally with the armature 6 in the axial direction so as to be rotatable relative to the armature 6. In FIG. 3, the caulking portion 30 formed by caulking the end face in the axial direction of the cylindrical portion 19a is accommodated in the concave portion 31 formed at the radially inner end of the contact surface of the armature 6 with the disc portion 12a of the rotor 12. It is done.
 図1に示すように、カムシャフト1の外周には、スライドカム19の軸方向移動範囲を規制する軸方向ストッパ24が設けられている。軸方向ストッパ24は、スライドカム19に対してハウジング5のある側とは反対側に対向して配置されている。 As shown in FIG. 1, on the outer periphery of the camshaft 1, an axial stopper 24 that restricts the axial movement range of the slide cam 19 is provided. The axial stopper 24 is disposed opposite to the slide cam 19 on the opposite side of the housing 5.
 この可変バルブタイミング装置の動作例を説明する。 An operation example of this variable valve timing device will be described.
 電磁石7への通電を遮断しているとき、図4に示すように、アーマチュア6は離反ばね18の力によってロータ12から離反した状態となっている。このとき、スプロケット2とスライドカム19のフランジ部19bとの間の軸方向間隔は比較的広く、スライドカム19は軸方向ストッパ24に接触した状態となっている。また、図4、図5に示すように、ボール22は、カム溝20,21の浅い位置にある。この状態において、カムシャフト1のスプロケット2に対する位相は、最遅角の位相(スプロケット2に対するカムシャフト1の相対角度位置をカムシャフト1の回転方向の最も後方側にずらした位置)である。つまり、スプロケット2が回転するとき、カムシャフト1は、最遅角の位相でスプロケット2と一体に回転する状態となる。 When the energization to the electromagnet 7 is cut off, as shown in FIG. 4, the armature 6 is separated from the rotor 12 by the force of the separation spring 18. At this time, the axial distance between the sprocket 2 and the flange 19 b of the slide cam 19 is relatively wide, and the slide cam 19 is in contact with the axial stopper 24. Further, as shown in FIGS. 4 and 5, the ball 22 is at a shallow position of the cam grooves 20 and 21. In this state, the phase of the camshaft 1 with respect to the sprocket 2 is the phase of the most retarded angle (the position where the relative angular position of the camshaft 1 with respect to the sprocket 2 is shifted to the rearmost side in the rotational direction of the camshaft 1). That is, when the sprocket 2 rotates, the camshaft 1 rotates integrally with the sprocket 2 at the phase of the most retarded angle.
 電磁石7に通電すると、図1に示すように、電磁石7がアーマチュア6を吸引し、アーマチュア6はロータ12の円盤部12aに吸着される。このとき、アーマチュア6が軸方向に移動するのに伴い、スプロケット2とスライドカム19のフランジ部19bとの間の軸方向間隔が狭くなり、図1、図2に示すように、ボール22がカム溝20,21に沿ってカム溝20,21の深くなる方向に転がり、スプロケット2に対してスライドカム19が相対回転し、スライドカム19と一体にカムシャフト1も相対回転する。これにより、カムシャフト1のスプロケット2に対する位相は、最進角の位相(スプロケット2に対するカムシャフト1の相対角度位置をカムシャフト1の回転方向の最も前方側にずらした位置)に変化する。つまり、スプロケット2が回転するとき、カムシャフト1は、最進角の位相でスプロケット2と一体に回転する状態となる。 When the electromagnet 7 is energized, as shown in FIG. 1, the electromagnet 7 attracts the armature 6, and the armature 6 is attracted to the disk portion 12 a of the rotor 12. At this time, as the armature 6 moves in the axial direction, the axial distance between the sprocket 2 and the flange portion 19b of the slide cam 19 becomes narrower, and as shown in FIG. 1 and FIG. It rolls along the grooves 20 and 21 in the direction in which the cam grooves 20 and 21 become deeper, the slide cam 19 rotates relative to the sprocket 2, and the camshaft 1 rotates relative to the slide cam 19. Thereby, the phase of the camshaft 1 with respect to the sprocket 2 changes to the phase of the most advanced angle (the position where the relative angle position of the camshaft 1 with respect to the sprocket 2 is shifted to the frontmost side in the rotational direction of the camshaft 1). That is, when the sprocket 2 rotates, the camshaft 1 rotates integrally with the sprocket 2 at the phase of the most advanced angle.
 この可変バルブタイミング装置は、スプロケット2に対するカムシャフト1の位相を変化させるための可変機構部3として、電磁石7とカム機構8とを用いているので、電動モータと差動式の減速機構とで可変機構部を構成するよりも、装置構成がシンプルであり、安価に製造することが可能である。また、スプロケット2に対するカムシャフト1の位相を任意に変化させるための制御が、電磁石7の通電と遮断を切り替えるだけなので、制御が容易である。 Since the variable valve timing device uses the electromagnet 7 and the cam mechanism 8 as the variable mechanism portion 3 for changing the phase of the camshaft 1 with respect to the sprocket 2, it is possible to use an electric motor and a differential reduction mechanism. The apparatus configuration is simpler than that of forming the variable mechanism unit, and it is possible to manufacture at low cost. Further, since control for arbitrarily changing the phase of the camshaft 1 with respect to the sprocket 2 only switches between energization and interruption of the electromagnet 7, control is easy.
 また、この可変バルブタイミング装置は、電磁石7に通電したときに、アーマチュア6が、スプロケット2と一体回転するロータ12の円盤部12aに吸着され、アーマチュア6が、スプロケット2と一体回転する。そのため、アーマチュア6を、非回転の電磁石7の側ではなく、カムシャフト1の側で支持することができ、装置構成がシンプルとなっている。 Further, in the variable valve timing device, when the electromagnet 7 is energized, the armature 6 is attracted to the disk portion 12 a of the rotor 12 that rotates integrally with the sprocket 2, and the armature 6 rotates integrally with the sprocket 2. Therefore, the armature 6 can be supported not on the side of the non-rotating electromagnet 7 but on the side of the camshaft 1, and the device configuration is simple.
 また、この可変バルブタイミング装置は、スプロケット2と軸方向に対向して配置されたスライドカム19と、スプロケット2のスライドカム19に対する対向面に形成されたカム溝20と、スライドカム19のスプロケット2に対する対向面に形成されたカム溝21と、スプロケット2のカム溝20とスライドカム19のカム溝21の間に組み込まれたボール22とを有するカム機構8を採用しているので、カム機構8の軸方向長さが短く、コンパクトな可変バルブタイミング装置を得ることが可能となっている。 Further, this variable valve timing device includes a slide cam 19 disposed axially opposite to the sprocket 2, a cam groove 20 formed on the surface of the sprocket 2 facing the slide cam 19, and a sprocket 2 of the slide cam 19. Since the cam mechanism 8 having the cam groove 21 formed on the opposite surface to the ball and the ball 22 incorporated between the cam groove 20 of the sprocket 2 and the cam groove 21 of the slide cam 19 is employed, the cam mechanism 8 is It is possible to obtain a compact variable valve timing device having a short axial length.
 また、この可変バルブタイミング装置は、アーマチュア6とスライドカム19を相対回転可能に接続しているので、アーマチュア6がロータ12に吸着されるときに、スライドカム19が安定して動作する。 Further, since the variable valve timing device connects the armature 6 and the slide cam 19 so that relative rotation is possible, the slide cam 19 operates stably when the armature 6 is attracted to the rotor 12.
 図6、図7、図8に、上記実施形態の変形例を示す。この変形例は、ロータ12とカムシャフト1の間に、ロータ12に対するカムシャフト1の相対回転を所定角度範囲に規制する回転ストッパ25を設けたものであり、その他の構成は上記実施形態と同一である。そのため、上記実施形態に対応する部分は同一の符号を付して説明を省略する。 The modification of the said embodiment is shown in FIG.6, FIG.7, FIG.8. In this modification, a rotation stopper 25 for restricting relative rotation of the camshaft 1 with respect to the rotor 12 to a predetermined angle range is provided between the rotor 12 and the camshaft 1, and the other configuration is the same as the above embodiment. It is. Therefore, the parts corresponding to the above embodiment are given the same reference numerals and the description will be omitted.
 回転ストッパ25は、ロータ12の内径側円筒部12cのハウジング5の側の端部に設けられた径方向内向きの突起26と、その突起26を収容するようにカムシャフト1の軸端部の外周に設けられた凹部27とで構成されている。凹部27は、周方向に対向する一対の内側面28,29を有し、その一対の内側面28,29が突起26の周方向移動を所定角度範囲に規制している。所定角度範囲は、例えば、0degを下限とし、20deg~70degの数値範囲で設定される値を上限とする角度範囲である。 The rotation stopper 25 is provided with a radially inward protrusion 26 provided at an end of the inner diameter side cylindrical portion 12 c of the rotor 12 on the housing 5 side, and an axial end portion of the camshaft 1 so as to accommodate the protrusion 26. It comprises with the recessed part 27 provided in the outer periphery. The recess 27 has a pair of inner side surfaces 28 and 29 opposed in the circumferential direction, and the pair of inner side surfaces 28 and 29 restricts the circumferential movement of the projection 26 within a predetermined angular range. The predetermined angle range is, for example, an angle range having a lower limit of 0 deg and a value set in a numerical range of 20 deg to 70 deg as an upper limit.
 この変形例のように、ロータ12とカムシャフト1の間に、ロータ12に対するカムシャフト1の相対回転を所定角度範囲に規制する回転ストッパ25を設けると、スプロケット2に対するカムシャフト1の位相を変化させるときの相対回転の停止位置を回転ストッパ25で決めることができるので、スプロケット2に対するカムシャフト1の位相を正確に管理することが可能となる。すなわち、図7に示すように、内側面28と突起26が接触するときのカムシャフト1の位置によって、カムシャフト1のスプロケット2に対する位相が最進角となるときのカムシャフト1の位置を設定することができ、図8に示すように、内側面29と突起26が接触するときのカムシャフト1の位置によって、カムシャフト1のスプロケット2に対する位相が最遅角となるときのカムシャフト1の位置を設定することができる。 As in this modification, when the rotation stopper 25 for limiting the relative rotation of the camshaft 1 with respect to the rotor 12 to a predetermined angular range is provided between the rotor 12 and the camshaft 1, the phase of the camshaft 1 with respect to the sprocket 2 is changed. Since the stop position of relative rotation at the time of rotation can be determined by the rotation stopper 25, it is possible to accurately manage the phase of the camshaft 1 with respect to the sprocket 2. That is, as shown in FIG. 7, the position of the camshaft 1 when the phase of the camshaft 1 with respect to the sprocket 2 becomes the most advanced angle is set by the position of the camshaft 1 when the inner side surface 28 and the protrusion 26 contact. Of the camshaft 1 when the phase of the camshaft 1 with respect to the sprocket 2 is most retarded, depending on the position of the camshaft 1 when the inner surface 29 and the projection 26 come into contact with each other, as shown in FIG. You can set the position.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all the modifications within the meaning and scope equivalent to the claims.
1    カムシャフト
2    スプロケット
3    可変機構部
6    アーマチュア
7    電磁石
8    カム機構
12   ロータ
12a  円盤部
12c  内径側円筒部
19   スライドカム
20   カム溝
21   カム溝
22   ボール
24   軸方向ストッパ
25   回転ストッパ
Reference Signs List 1 camshaft 2 sprocket 3 variable mechanism 6 armature 7 electromagnet 8 cam mechanism 12 rotor 12a disc 12c inner diameter side cylindrical portion 19 slide cam 20 cam groove 21 cam groove 22 ball 24 axial stopper 25 rotation stopper

Claims (8)

  1.  カムシャフト(1)と、
     前記カムシャフト(1)と同軸に配置されたスプロケット(2)と、
     前記スプロケット(2)に対する前記カムシャフト(1)の位相を変化させる可変機構部(3)と、を備える可変バルブタイミング装置において、
     前記可変機構部(3)を、
     軸方向に移動可能に支持されたアーマチュア(6)と、
     通電により前記アーマチュア(6)を軸方向に吸引する電磁石(7)と、
     前記アーマチュア(6)の軸方向の移動を前記スプロケット(2)に対する前記カムシャフト(1)の相対回転に変換するカム機構(8)とで構成したことを特徴とする可変バルブタイミング装置。
    With the camshaft (1),
    A sprocket (2) disposed coaxially with the camshaft (1);
    A variable mechanism (3) for changing the phase of the camshaft (1) with respect to the sprocket (2);
    The variable mechanism unit (3)
    An armature (6) axially movably supported;
    An electromagnet (7) for attracting the armature (6) in the axial direction by energization;
    And a cam mechanism (8) for converting the axial movement of the armature (6) into relative rotation of the camshaft (1) with respect to the sprocket (2).
  2.  前記電磁石(7)と前記アーマチュア(6)の軸方向の対向面間に位置する磁性体の円盤部(12a)をもち、前記スプロケット(2)と一体回転するように前記スプロケット(2)に接続されたロータ(12)を更に有する請求項1に記載の可変バルブタイミング装置。 It has a disk (12a) of magnetic material located between the opposing faces of the electromagnet (7) and the armature (6) in the axial direction, and is connected to the sprocket (2) so as to rotate integrally with the sprocket (2) A variable valve timing device according to claim 1, further comprising a rotor (12).
  3.  前記ロータ(12)は、前記円盤部(12a)の径方向内端から軸方向に延び、前記カムシャフト(1)の外周で回転可能に支持される内径側円筒部(12c)を更に有する請求項2に記載の可変バルブタイミング装置。 The rotor (12) further includes an inner cylindrical portion (12c) axially extending from a radially inner end of the disk portion (12a) and rotatably supported on the outer periphery of the camshaft (1). The variable valve timing device according to Item 2.
  4.  前記ロータ(12)と前記カムシャフト(1)の間に、前記ロータ(12)に対する前記カムシャフト(1)の相対回転を所定角度範囲に規制する回転ストッパ(25)を設けた請求項2または3に記載の可変バルブタイミング装置。 The rotary stopper (25) for restricting relative rotation of the camshaft (1) with respect to the rotor (12) to a predetermined angular range is provided between the rotor (12) and the camshaft (1). The variable valve timing device according to 3.
  5.  前記カム機構(8)は、
     前記カムシャフト(1)に対して軸方向に移動可能かつ相対回転不能に前記カムシャフト(1)の外周で支持され、前記スプロケット(2)と軸方向に対向して配置されたスライドカム(19)と、
     前記スプロケット(2)の前記スライドカム(19)に対する対向面に形成されたカム溝(20)と、
     前記スライドカム(19)の前記スプロケット(2)に対する対向面に形成されたカム溝(21)と、
     前記スプロケット(2)の前記カム溝(20)と前記スライドカム(19)の前記カム溝(21)の間に組み込まれたボール(22)とを有し、
     前記スライドカム(19)は、前記アーマチュア(6)と軸方向に一体に移動するように前記アーマチュア(6)に接続されている請求項1から4のいずれかに記載の可変バルブタイミング装置。
    The cam mechanism (8) is
    A slide cam (19) supported on the outer periphery of the camshaft (1) so as to be axially movable and relatively non-rotatable with respect to the camshaft (1) and axially opposed to the sprocket (2) )When,
    A cam groove (20) formed on the surface of the sprocket (2) facing the slide cam (19);
    A cam groove (21) formed on the surface of the slide cam (19) facing the sprocket (2);
    The cam groove (20) of the sprocket (2) and a ball (22) incorporated between the cam groove (21) of the slide cam (19);
    The variable valve timing device according to any one of claims 1 to 4, wherein the slide cam (19) is connected to the armature (6) so as to move axially integrally with the armature (6).
  6.  前記スライドカム(19)は、前記カムシャフト(1)の外周にスプライン嵌合している請求項5に記載の可変バルブタイミング装置。 The variable valve timing device according to claim 5, wherein the slide cam (19) is splined on the outer periphery of the camshaft (1).
  7.  前記スライドカム(19)は、前記アーマチュア(6)と相対回転可能な状態で前記アーマチュア(6)と軸方向に一体に移動するように、前記アーマチュア(6)に接続されている請求項5または6に記載の可変バルブタイミング装置。 The slide cam (19) is connected to the armature (6) so as to axially move integrally with the armature (6) in a relatively rotatable manner with the armature (6). The variable valve timing device according to 6.
  8.  前記カムシャフト(1)の外周に、前記スライドカム(19)の軸方向移動範囲を規制する軸方向ストッパ(24)を設けた請求項5から7のいずれかに記載の可変バルブタイミング装置。 The variable valve timing device according to any one of claims 5 to 7, wherein an axial stopper (24) for restricting an axial movement range of the slide cam (19) is provided on an outer periphery of the camshaft (1).
PCT/JP2018/033808 2017-09-15 2018-09-12 Variable valve timing device WO2019054408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177940A JP2019052601A (en) 2017-09-15 2017-09-15 Variable valve timing device
JP2017-177940 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054408A1 true WO2019054408A1 (en) 2019-03-21

Family

ID=65722862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033808 WO2019054408A1 (en) 2017-09-15 2018-09-12 Variable valve timing device

Country Status (2)

Country Link
JP (1) JP2019052601A (en)
WO (1) WO2019054408A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074602A (en) * 2001-06-19 2003-03-12 Hitachi Unisia Automotive Ltd Rotation phase control device and valve timing control device for internal combustion engine
JP2003286814A (en) * 2002-03-28 2003-10-10 Hitachi Unisia Automotive Ltd Valve timing control device of internal combustion engine
JP2005133544A (en) * 2003-10-28 2005-05-26 Hitachi Ltd Valve timing controller for internal combustion engine
JP2006226144A (en) * 2005-02-15 2006-08-31 Toyota Motor Corp Device for varying valve timing of internal combustion engine
JP2010077849A (en) * 2008-09-25 2010-04-08 Hitachi Automotive Systems Ltd Control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074602A (en) * 2001-06-19 2003-03-12 Hitachi Unisia Automotive Ltd Rotation phase control device and valve timing control device for internal combustion engine
JP2003286814A (en) * 2002-03-28 2003-10-10 Hitachi Unisia Automotive Ltd Valve timing control device of internal combustion engine
JP2005133544A (en) * 2003-10-28 2005-05-26 Hitachi Ltd Valve timing controller for internal combustion engine
JP2006226144A (en) * 2005-02-15 2006-08-31 Toyota Motor Corp Device for varying valve timing of internal combustion engine
JP2010077849A (en) * 2008-09-25 2010-04-08 Hitachi Automotive Systems Ltd Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2019052601A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP7435028B2 (en) clutch device
US6805081B2 (en) Valve timing control device for internal combustion engine
US8418665B2 (en) Variable phase controller for automotive engine
KR101624778B1 (en) System for controlling valve timing of internal combustion engine
KR101624782B1 (en) Device for controlling valve timing of internal combustion engine
US8651076B2 (en) Adjusting system for camshafts of an internal combustion engine
WO2014010550A1 (en) Variable valve device for internal combustion engine
WO2006025173A1 (en) Phase varying device of engine
JP2006299867A (en) Valve timing control device for internal combustion engine
JP5650838B2 (en) Regulator for internal combustion engine valve drive
JP2013536362A (en) Valve train for piston engines
CN108026799B (en) Camshaft adjuster
JP2009222036A (en) Valve timing control device of internal combustion engine
WO2019054408A1 (en) Variable valve timing device
JP3917833B2 (en) Valve timing control device for internal combustion engine
JP4528214B2 (en) Phase variable device for internal combustion engine valve
JP2003206711A (en) Controller for variable valve timing mechanism
JP2007071261A (en) Electromagnetic brake device
JP2013234699A (en) Magnetic coupling device
JP5287933B2 (en) Fluid brake device and valve timing adjusting device
JP3234308U (en) Rotation drive
JP3949080B2 (en) Electromagnetic brake
JP2017129199A (en) Variable inertia flywheel
JP2004274891A (en) Hysteresis brake
JP5859216B2 (en) Magnetic coupling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855701

Country of ref document: EP

Kind code of ref document: A1