WO2019054057A1 - Autonomous travel system for work vehicle - Google Patents

Autonomous travel system for work vehicle Download PDF

Info

Publication number
WO2019054057A1
WO2019054057A1 PCT/JP2018/027855 JP2018027855W WO2019054057A1 WO 2019054057 A1 WO2019054057 A1 WO 2019054057A1 JP 2018027855 W JP2018027855 W JP 2018027855W WO 2019054057 A1 WO2019054057 A1 WO 2019054057A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering angle
target
vehicle
angle error
steering
Prior art date
Application number
PCT/JP2018/027855
Other languages
French (fr)
Japanese (ja)
Inventor
優飛 兒玉
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017176585A external-priority patent/JP6871831B2/en
Priority claimed from JP2017176586A external-priority patent/JP6976782B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2019054057A1 publication Critical patent/WO2019054057A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an autonomous traveling system for work vehicles that can be used for unmanned work vehicles such as tractors, ride rice planters, combine harvesters, ride mowers, wheel loaders, snow removal vehicles, and unmanned work vehicles such as unmanned grass mowers. More specifically, a storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and automatically steering steered wheels so that the vehicle autonomously travels the target route And an autonomous steering system for a work vehicle having an automatic steering unit.
  • a geomagnetic bearing sensor for detecting the direction of the vehicle, a GPS receiver for recognizing the current position of the vehicle, and a steering angle sensor for detecting the steering angle of the front wheels
  • the central portion which is the central position between the front wheels on the front side of the vehicle body
  • the GPS position measurement point which is the antenna installation position of the GPS receiver on the vehicle rear side
  • the command value for front wheel steering not including the error of the geomagnetic direction sensor is calculated.
  • the host vehicle can travel autonomously along the target route.
  • a command value for front wheel steering is calculated from a steering control value based on a target steering angle of a front wheel and a proportional and integral value of PI control based on a target direction of a GPS position measurement point.
  • the third distance for setting the target point described above is switched by the magnitude change of the first distance (left and right separation distance) in the lateral direction from the linear target route of the GPS position measurement point. Therefore, in setting the target steering angle, it is necessary to consider the lateral deviation in addition to the azimuthal deviation, which further increases the load required for the calculation.
  • the change amount of the target steering angle at this time is Since the work vehicle 1 is offset with the angular error, the work vehicle 1 travels with a constant travel offset amount So for the straight work path portion P1. As a result, the working accuracy is reduced due to the traveling offset.
  • a main problem of the present invention is to provide an autonomous travel system for a work vehicle which can suppress a decrease in work accuracy due to a travel offset caused by a steering angle error.
  • the first feature of the present invention is A storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and an automatic steering unit for automatically steering steered wheels so that the vehicle autonomously travels the target route Equipped with
  • the automatic steering unit has a steering angle setting unit that sets a target steering angle of the steered wheels, and a steering angle sensor that detects a steered angle of the steered wheels.
  • the steering angle setting unit comprises azimuth angle deviation calculation means for calculating an azimuth angle deviation, steering angle error detection means for detecting a steering angle error during autonomous traveling, the target from the azimuth angle deviation and the steering angle error.
  • the azimuth deviation calculation means is a target point setting process for setting a target point on the target route with a predetermined distance from the current position to the traveling direction side during autonomous traveling, and a target from the current position to the target point
  • the azimuth deviation calculation means performs the target point setting process, the line generation process, and the azimuth deviation calculation process described above, whereby the azimuth angle between the azimuth of the target azimuth line and the current azimuth of the vehicle is obtained. Deviation can be calculated easily.
  • the steering angle calculation means can calculate a suitable target steering angle in consideration of the steering angle error by adding the steering angle error detected by the steering angle error detection means to the azimuth angle deviation.
  • the second feature of the present invention is The target route is divided into a plurality of types of route parts according to the traveling mode of the vehicle,
  • the storage unit stores a plurality of the predetermined distances set to different lengths according to the type of the path unit,
  • the azimuth deviation calculation means automatically changes the predetermined distance in accordance with the type of the route section on which the vehicle travels autonomously.
  • the third characterizing feature of the present invention is The target route is divided into a plurality of types of route parts according to the traveling mode of the vehicle,
  • the azimuth deviation calculation means is to set the target point on the extension of the current route portion until the current position is switched from the current route portion to the next route portion of a different type.
  • the vehicle while the vehicle is autonomously traveling on the straight path portion, it is possible to set a target point suitable for autonomous traveling on the straight path portion, and from this target point on the straight path portion A target steering angle suitable for autonomous traveling of the vehicle can be calculated. Further, for example, while the vehicle is autonomously traveling in the turning route portion, it is possible to set a target point suitable for autonomous traveling in the turning route portion, and from this target point to autonomous traveling in the turning route portion A suitable target steering angle can be calculated. As a result, it is possible to improve the traveling accuracy when the vehicle autonomously travels on the target route.
  • the fourth characterizing feature of the present invention is A storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and an automatic steering unit for automatically steering steered wheels so that the vehicle autonomously travels the target route Equipped with
  • the automatic steering unit has a steering angle setting unit that sets a target steering angle of the steered wheels, and a steering angle sensor that detects a steered angle of the steered wheels.
  • the steering angle setting unit corrects the target steering angle with a steering angle error, a steering angle calculation unit that calculates the target steering angle, a steering angle error detection unit that detects a steering angle error during autonomous traveling, and And a steering angle correction means
  • the steering angle error detection means sets a gaze point setting process on the target route with a predetermined distance from the current position to the traveling direction side during autonomous traveling, and a line extending from the current position to the gaze point A line segment generation process for generating a minute, and a steering angle error calculation process for calculating an angle formed by the target route and the line segment as the steering angle error
  • the steering angle correction means performs correction processing for adding the steering angle error obtained by the steering angle error calculation processing to the target steering angle.
  • the steering angle error detection means can easily detect the steering angle error at the time of autonomous traveling by performing the gaze point setting process, the line segment generation process, and the steering angle error calculation process described above. it can. Then, the steering angle correction means can obtain the target steering angle in which the steering angle error is taken into consideration by performing the above-described correction processing, and performs automatic steering of the steered wheels based on the corrected target steering angle. As a result, it is possible to reduce the travel offset amount with respect to the target route of the vehicle at the time of autonomous travel due to the steering angle error. As a result, it is possible to suppress a decrease in the working accuracy due to the travel offset caused by the steering angle error while reducing the calculation load required to calculate the steering angle error.
  • the fifth characterizing feature of the present invention is The steering angle error detection means determines whether or not a predetermined condition for allowing detection of the steering angle error is satisfied, and the steering angle error is detected until the predetermined condition is satisfied. The point is to perform a detection prohibition process to prohibit the detection.
  • the steering angle error detection means detects the initial deviation or the like occurring immediately after the work vehicle starts autonomous traveling as the steering angle error by the steering angle error detection means, so that the detection accuracy of the steering angle error by the steering angle error detection means Can be prevented.
  • the target steering angle is corrected with a steering angle error having a low detection accuracy, and the automatic steering of the steered wheels is performed on the basis of the corrected target steering angle. It is possible to avoid the occurrence of the problem that the travel offset amount to the route is less likely to decrease.
  • the sixth characterizing feature of the present invention is In the detection condition determination process, the steering angle error detection means determines that the predetermined condition is satisfied when the vehicle travels a certain distance required from the start of the autonomous traveling to the settling of the autonomous traveling. It is in.
  • detection of the steering angle error is prohibited by the detection prohibiting process from the start of the autonomous traveling of the vehicle to the time when the vehicle travels a certain distance.
  • the steering angle error is detected and the target steering angle is corrected based on the detected steering angle error even during the period from when the vehicle starts autonomous traveling to when the autonomous traveling settles.
  • the target path of the working vehicle at the time of autonomous traveling due to the fact that the detection accuracy of the angular error is reduced and the automatic steering of the steered wheels is performed based on the target steering angle corrected by the low steering angle error of this detection accuracy. It is possible to avoid the occurrence of the problem that the traveling offset amount for the vehicle becomes difficult to decrease.
  • the seventh characterizing feature of the present invention is The steering angle error detection means performs the detection of the steering angle error a plurality of times until the vehicle travels the set distance for detecting the steering angle error, and the average of the steering angle errors for a plurality of times is detected.
  • a point is that averaging is performed to obtain a value and use the average value as a steering angle error for correction processing.
  • the detection accuracy of the steering angle error by the steering angle error detection means can be enhanced by the above-described averaging process. Then, the steering wheel is automatically steered on the basis of the target steering angle corrected with the steering angle error having a high detection accuracy, thereby more reliably reducing the traveling offset amount with respect to the target route of the vehicle during autonomous traveling. be able to. As a result, it is possible to more effectively suppress the decrease in work accuracy due to the traveling offset.
  • the eighth characterizing feature of the present invention is The steering angle error detection means redetects the steering angle error and updates the steering angle error each time the vehicle travels a set distance for steering angle error redetection during autonomous traveling.
  • the steering angle error detection means can increase the detection accuracy of the steering angle error each time the steering angle error is updated by the updating process. Then, the automatic steering of the steered wheels is performed based on the target steering angle corrected with the steering angle error at which the detection accuracy is enhanced for each update, and as the autonomous travel distance of the own vehicle becomes longer, The travel offset amount with respect to the target route of the own vehicle can be reduced, and a reduction in work accuracy due to the travel offset can be more effectively suppressed.
  • FIG. 1st embodiment Block diagram showing a schematic configuration of an autonomous travel system for a work vehicle in the first embodiment
  • a diagram showing an example of a target route generated for autonomous traveling of a work vehicle in a field in the first embodiment Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 1st Embodiment is autonomously traveling on a straight work path part
  • Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 1st Embodiment is autonomously traveling in the turning path part Detailed explanatory drawing about calculation of azimuth deviation in the state where the work vehicle in the first embodiment is autonomously traveling in the turning path portion
  • the autonomous traveling system for work vehicles according to the present invention is a work vehicle other than a tractor, such as a riding rice planter, a combine, a riding grass mower, a wheel loader, a snow removal vehicle, and an unmanned grass mower etc. It can be applied to vehicles.
  • the autonomous traveling system for a work vehicle illustrated in the first embodiment is set to be communicable with the autonomous traveling unit 2 mounted on the tractor 1 and the autonomous traveling unit 2.
  • Mobile communication terminal 3 and the like As the mobile communication terminal 3, a tablet-type personal computer, a smart phone, or the like having a touch-operable liquid crystal panel 4 or the like can be adopted.
  • the tractor 1 is connected to the rotary tillage specification by the rotary tilling device 6, which is an example of the working device, connected to the rear portion via the three-point link mechanism 5 so as to be movable up and down. It is configured. In addition, it can replace with the rotary tilling apparatus 6, and can connect work apparatuses, such as a plow, a sowing apparatus, a scattering apparatus, to the rear part of the tractor 1.
  • work apparatuses such as a plow, a sowing apparatus, a scattering apparatus
  • the tractor 1 includes left and right front wheels 7 functioning as drivable steerable wheels, left and right drivable rear wheels 8, a cabin 9 forming a riding type driving unit, and a common rail system.
  • An electronically controlled diesel engine (hereinafter referred to as the engine) 10 an electronically controlled transmission 11 for shifting power from the engine 10, a full hydraulic power steering mechanism 12 for steering the left and right front wheels 7,
  • the left and right side brakes (not shown) that brake the rear wheel 8, the electronically controlled brake operation mechanism 13 that enables hydraulic operation of the left and right side brakes, and the working clutch that interrupts transmission to the rotary cultivator 6 (Not shown), an electronically controlled clutch operating mechanism 14 which enables hydraulic operation of the working clutch, and an electrohydraulic controlled lifting drive for lifting and lowering the rotary cultivator 6
  • the engine 10 may be an electronically controlled gasoline engine equipped with an electronic governor.
  • a hydromechanical continuously variable transmission (HMT), a hydrostatic continuously variable transmission (HST), a belt type continuously variable transmission, or the like can be adopted.
  • the power steering mechanism 12 may be, for example, an electric power steering mechanism 12 provided with an electric motor.
  • a steering wheel 20 and a seat 21 for a user are provided inside the cabin 9 to enable manual steering of the left and right front wheels 7 via the power steering mechanism 12. Also, although not shown, a shift lever that enables manual operation of the transmission 11, a left and right brake pedal that enables manual operation of the left and right side brakes, and a manual lifting operation of the rotary tilling device 6 Lift levers, etc. are provided.
  • the on-vehicle ECU 16 controls a shift control unit 16A that controls the operation of the transmission 11, a brake control unit 16B that controls the operation of the left and right side brakes, and a working device control that controls the operation of the rotary tilling device 6.
  • 16C a non-volatile vehicle storage unit 16D for storing a previously generated target route P for autonomous traveling, etc., and the target steering angle ⁇ s of the front wheels 7 on both sides during autonomous traveling, and output to the power steering mechanism 12 Steering angle setting unit 16E, and the like.
  • the positioning unit 19 uses the GPS (Global Positioning System), which is an example of the Global Navigation Satellite System (GNSS), and the current position p1 of the vehicle 1
  • GPS Global Positioning System
  • IMU Inertial Measurement Unit
  • Positioning methods using GPS include DGPS (Differential GPS: relative positioning method), RTK-GPS (Real Time Kinematic GPS: interference positioning method), etc.
  • DGPS Different GPS: relative positioning method
  • RTK-GPS Real Time Kinematic GPS: interference positioning method
  • it is suitable for positioning of a mobile object.
  • RTK-GPS is adopted. Therefore, a reference station 24 that enables positioning by RTK-GPS is installed at a known position around the farmland.
  • Each of the tractor 1 and the reference station 24 can wirelessly communicate various data including GPS data between the tractor 1 and the reference station 24 and GPS antennas 26 and 27 for receiving radio waves transmitted from the GPS satellite 25.
  • Communication modules 28, 29, etc. are provided.
  • the satellite navigation device 22 receives the positioning data obtained by the GPS antenna 26 on the tractor side receiving radio waves from the GPS satellites 25 and the GPS antenna 27 on the base station side receives radio waves from the GPS satellites 25.
  • the current position p1 and the current direction ⁇ 1 of the vehicle 1 can be measured with high accuracy based on the obtained positioning data.
  • the positioning unit 19 includes the satellite navigation device 22 and the inertial measurement device 23 so that the current position p1 of the vehicle 1, the current direction ⁇ 1, and the attitude angle (yaw angle, roll angle, pitch angle) can be made with high accuracy. It can be measured.
  • the mobile communication terminal 3 includes a terminal electronic control unit (hereinafter referred to as a terminal ECU) 30 having various control programs for controlling the operation of the liquid crystal panel 4 etc. And a communication module 31 that enables wireless communication of various data including positioning data with the communication module 28 of FIG.
  • the terminal ECU 30 is a non-volatile terminal storing a target route generation unit 30A that generates a target route P for autonomous traveling, and various input data input by the user, the target route P generated by the target route generation unit 30A, and the like.
  • a storage unit 30B and the like are included.
  • the target route generation unit 30A follows the input guidance for target route generation displayed on the liquid crystal panel 4 to obtain vehicle data such as the type and model of the work vehicle and the work device, and When the target field position and the like are input by the user, it is determined whether or not the corresponding target route P is stored in the terminal storage unit 30B based on the input vehicle data, the field position, and the like.
  • the target route P is read from the terminal storage unit 30 B and displayed on the liquid crystal panel 4.
  • the liquid crystal panel 4 displays an execution guidance of positioning data acquisition travel for obtaining positioning data necessary for generation of the target route P, and the user performs positioning data acquisition travel.
  • the field data such as the section and the shape of the work field and the like are acquired, and the acquired field data and vehicle data
  • the target route P suitable for working on the field to be worked with this tractor 1 is generated on the basis of the minimum turning radius, the working width, etc. included in.
  • the generated target route P is displayed on the liquid crystal panel 4 and stored in the terminal storage unit 30B as route data associated with the vehicle data and the field data.
  • the route data includes an azimuth angle ⁇ p of the target route P, a target engine rotation speed, a target vehicle speed, and the like set according to the traveling mode of the tractor 1 on the target route P and the like.
  • a field divided into a rectangular shape is illustrated as a field to be worked.
  • a target route P suitable for the rectangular field a plurality of straight movement work path portions P1 having the same straight movement distance and arranged in parallel with a predetermined distance corresponding to the work width, and adjacent straight movement
  • a reciprocating traveling route is illustrated, which includes a plurality of direction change path portions P2 extending from the end point P1e of the working path portion P1 to the start point P1s and causes the tractor 1 to reciprocate from the start point Ps of the target path P to the end point Pe. ing.
  • the plurality of direction change path portions P2 are a first turning path portion P3 for turning the tractor 1 by 90 degrees from the end point P1e of the straight working path portion P1 toward the next straight working path portion, and a first turning path portion P3.
  • a straight forward path P4 for moving the tractor 1 straight backward from the turning end point P3e toward the previous straight working path, and a starting point of the next straight working path P1 from a backward finish point P4e of the backward straight path P4 It is divided by the 2nd turning course part P5 which turns the tractor 1 90 degrees toward the point P1s.
  • the target route P is divided into a plurality of types of route portions P1 to P5 in accordance with the traveling mode of the vehicle 1.
  • the target path P shown in FIG. 3 is merely an example, and the target path P is, for example, a plurality of direction change path portions P2, and from the end point P1e of the straight work path portion P1 to the start end of the next straight work path portion P1. It may be generated so as to include a U-turn path portion that turns the tractor 1 180 degrees toward the point P1s.
  • the terminal ECU 30 instructs execution of autonomous traveling by the operation of the liquid crystal panel 4 by the user.
  • the target route P being displayed together with the execution command is transmitted to the in-vehicle ECU 16 via the communication modules 31 and 28.
  • the entire target route P may be transmitted at once from the terminal ECU 30 to the on-vehicle ECU 16 at a stage before the tractor 1 starts autonomous traveling.
  • the target route P is divided into a plurality of route portions for each predetermined distance with a small amount of data and the tractor 1 starts autonomous traveling
  • only the initial route portion of the target route P is the terminal ECU 30
  • each time the tractor 1 reaches the route acquisition point set according to the amount of data only the route part corresponding to that point is transmitted from the terminal ECU 30 to the vehicle ECU 16. It may be sent to the
  • the on-vehicle storage unit 16D stores the received target route P in the on-vehicle storage unit 16D to check the data amount.
  • the autonomous traveling control for causing the vehicle to travel autonomously is started based on the target route P and the like stored in the on-vehicle storage unit 16D.
  • automatic shift control for automatically controlling the operation of the transmission 11, automatic braking control for automatically controlling the operation of the brake operating mechanism 13, automatic steering control for automatically steering the left and right front wheels 7, and a rotary tilling device Automatic control for work to automatically control the operation of 6, etc. are included.
  • the shift control unit 16A controls the traveling mode of the tractor 1 on the target route P based on the target route P including the target vehicle speed described above, the output of the positioning unit 19, and the output of the vehicle speed sensor 17.
  • the operation of the transmission 11 is automatically controlled so that the target vehicle speed set accordingly is obtained as the vehicle speed of the vehicle 1.
  • the braking control unit 16B In automatic braking control, the braking control unit 16B properly sets the left and right side brakes on the left and right side brakes in the braking area included in the target path P based on the target path P and the output of the positioning unit 19. The operation of the brake operation mechanism 13 is automatically controlled to brake.
  • the steering angle setting unit 16E sets the target steering angles ⁇ s of the left and right front wheels 7 based on the target path P and the output of the positioning unit 19 so that the vehicle 1 autonomously travels on the target path P.
  • the power steering mechanism 12 outputs the target steering angle ⁇ s which has been obtained and set, and which has been set.
  • the power steering mechanism 12 automatically steers the left and right front wheels 7 based on the target steering angle ⁇ s and the output of the steering angle sensor 18 so that the target steering angle ⁇ s can be obtained as the steering angle of the left and right front wheels 7.
  • the rotary tilling apparatus is operated as the vehicle 1 reaches the start point P1s of the straight work path portion P1 based on the target path P and the output of the positioning unit 19 in the working device control unit 16C. 6.
  • the clutch operating mechanism 14 and the elevation drive mechanism 15 are set so that the tilling by the rotary tilling device 6 is stopped when the tilling by 6 is started and the own vehicle 1 reaches the end point P1e of the straight working path portion P1. Automatically control the operation of
  • the autonomous traveling unit 2 is configured by the communication module 28 and the like.
  • the power steering mechanism 12, the on-vehicle ECU 16, and the steering angle sensor 18 constitute an automatic steering unit 32 for automatically steering the left and right front wheels 7 so that the vehicle 1 autonomously travels on the target path P.
  • the steering angle setting unit 16E calculates azimuth angle deviation calculating means 16Ea for calculating the azimuth angle deviation ⁇ d, and steering angle error ⁇ e during autonomous traveling.
  • the steering angle error detection unit 16Eb detects the steering angle error, and the steering angle calculation unit 16Ec calculates the target steering angle ⁇ s from the azimuth angle deviation ⁇ d and the steering angle error ⁇ e.
  • the azimuth deviation calculation means 16Ea sets a target point p2 on a target route with a predetermined distance D1 in the direction of travel from the current position p1 of the vehicle 1 during autonomous traveling, and Line generation processing for generating a target azimuth line L1 from the current position p1 to the target point p2, and azimuth deviation calculation processing for calculating an angle formed by the current azimuth ⁇ 1 of the vehicle 1 and the target azimuth line L1 as the azimuth deviation ⁇ d I do.
  • the current travel path of the vehicle 1 is the straight work path portion P1 or the backward straight path portion P4, as shown in FIGS.
  • the direction from the current position p1 of the vehicle 1 to the target point p2 is the target azimuth angle ⁇ 2
  • the angle between the target route P and the target azimuth line L1 is the traveling correction angle ⁇ c
  • the travel correction angle ⁇ c is a lateral deviation from the travel route of the vehicle 1 on the NED coordinates as D2
  • the predetermined distance for setting the target point is D1
  • Travel correction angle ⁇ c asin (lateral deviation D2 / predetermined distance D1)
  • the target azimuth ⁇ 2 can be determined, and the azimuth deviation ⁇ d can be obtained from the difference between the determined target azimuth ⁇ 2 and the current azimuth ⁇ 1 of the vehicle 1 measured by the positioning unit 19.
  • the current travel route of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5, the turning centers pt of the respective turning path portions P3, P5.
  • the azimuth deviation ⁇ d is obtained from the aforementioned angle ⁇ v, the current direction ⁇ 1 of the vehicle 1 and the travel correction angle ⁇ c
  • Azimuth deviation ⁇ d angle ⁇ v + SignTrn ⁇ 90 ⁇ present azimuth ⁇ 1 + SignTrn ⁇ (90 ⁇ travel correction angle ⁇ c) It can be determined by Here, degrees are used for all units in this formula, and "90” in the formula indicates 90 degrees. Further, with regard to “Sign Trn”, it is “1” when the turning direction is the clockwise direction, and “ ⁇ 1” when the turning direction is the counterclockwise direction.
  • the distance D3 from the turning center pt of the turning path portions P3 and P5 to the vehicle 1 in this equation is the turning radius R of the turning path portions P3 and P5, and the distance D3 of the vehicle 1 on the NED coordinates.
  • Distance D3 turning radius R + lateral deviation D2 It can be determined by
  • the azimuth deviation ⁇ d calculated by the azimuth deviation calculation means 16Ea is the difference between the target azimuth ⁇ 2 and the current azimuth ⁇ 1 of the vehicle 1 as described above, it can also be used as the target steering angle ⁇ s.
  • the steering angle error ⁇ e caused by the individual difference of the steering angle sensor 18 is included in the steering system, the steering angle error during autonomous traveling is considered. Due to ⁇ e, as shown in FIG. 8, the work vehicle travels in a state where a certain travel offset amount So with respect to the target route P is left. As a result, the working accuracy is reduced due to the traveling offset.
  • the steering angle setting unit 16E has the steering angle error detection unit 16Eb and the steering angle calculation unit 16Ec as described above. As shown in FIGS. 9 to 10, the steering angle error detection means 16Eb moves from the current position p1 of the vehicle 1 to the traveling direction during straight traveling by autonomous traveling of the vehicle 1 in the straight operation route portion P1 of the target route P.
  • a fixation point setting process for setting a fixation point p3 on a target route with a fixed distance D4 (front side) and a line for generating a line L2 from the current position of the vehicle 1 to the fixation point p3
  • a minute generation process step # 4
  • a steering angle error calculation process step # 5 for calculating an angle formed by the target path P and the line segment L2 as the steering angle error ⁇ e are performed.
  • the steering angle calculation means 16Ec calculates a target steering angle ⁇ s by adding the steering angle error ⁇ e obtained by the steering angle error calculation process to the azimuth angle deviation ⁇ d obtained by the azimuth angle deviation calculation process described above. Do the processing.
  • the target steering angle ⁇ s can be calculated to a suitable value in consideration of the steering angle error ⁇ e while reducing the calculation load applied to the steering angle setting unit 16E in calculating the target steering angle ⁇ s.
  • a plurality of predetermined distances D1a to D1c for setting target points set to different lengths according to the types of the respective route parts P1 to P5 in the target route P. Is stored.
  • the azimuth deviation calculation means 16Ea automatically changes the predetermined distance D1 for target point setting in the target point setting process according to the type of each of the route parts P1 to P5 on which the vehicle 1 travels autonomously on the target route P.
  • the azimuth deviation calculation means 16Ea moves the predetermined distance D1 to the vehicle 1 when the current position p1 of the vehicle 1 is the straight work path part P1. Is changed to a first predetermined distance D1a suitable for autonomous traveling on the straight working path portion P1.
  • the azimuth deviation calculation means 16Ea autonomously travels the predetermined distance D1 in the backward straight path portion P4.
  • the second predetermined distance D1b suitable for The second predetermined distance D1b is a rear steering that steers the left and right front wheels 7 on the rear side in the traveling direction and corrects the traveling direction when the vehicle 1 corrects the traveling direction in autonomous traveling on the rear straight traveling path portion P4.
  • the distance is set to be longer than the first predetermined distance D1a in consideration of an increase in the amount of shake.
  • the third predetermined distance D1c is a first predetermined distance in consideration of the fact that the vehicle 1 is easily separated from the turning path portions P3 and P5 during autonomous traveling on the first turning path portion P3 or the second turning path portion P5.
  • the distance is set to be shorter than the predetermined distance D1a and the second predetermined distance D1b.
  • the azimuth deviation calculation means 16Ea is the next path part (for example, the first turning path part) of which the current position p1 of the vehicle 1 is different from the current path part (for example, straight working path part P1).
  • the target point p2 is set on the extension of the current path part.
  • the vehicle 1 travels autonomously in the first turning path portion P3, it is possible to set a target point p2 suitable for autonomous traveling in the first turning path portion P3, and this target point p2 From the above, it is possible to calculate the target steering angle ⁇ s suitable for autonomous traveling on the first turning path portion P3. As a result, it is possible to improve the traveling accuracy when the vehicle 1 travels autonomously on the target route P.
  • the steering angle error detection means 16Eb determines whether or not a predetermined condition for allowing detection of the steering angle error ⁇ e is satisfied (step # 1). And, the detection prohibiting process (step # 2) of prohibiting the detection of the steering angle error ⁇ e is performed until the predetermined condition is satisfied.
  • a predetermined condition it is set whether or not a predetermined distance La necessary for the autonomous traveling to settle after the autonomous vehicle 1 has started the autonomous traveling on the straight operation route portion P1 is run. ing. Then, in the detection condition determination process, the steering angle error detection means 16Eb assumes that the predetermined condition is satisfied when the own vehicle 1 has run a predetermined distance La after starting autonomous traveling on the straight work path portion P1.
  • It is configured to make a determination, whereby the detection prohibiting process is performed by the detection prohibiting process from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until it runs through the predetermined distance La. Detection is prohibited. As a result, detection of the steering angle error ⁇ e and target steering based on the detected steering angle error ⁇ e also from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until the autonomous traveling is settled.
  • the calculation of the angle ⁇ s reduces the detection accuracy of the steering angle error ⁇ e, and the target steering angle ⁇ s is calculated based on the steering angle error ⁇ e having a low detection accuracy and is output to the power steering mechanism 12 As a result, it is possible to avoid the occurrence of the inconvenience that the traveling offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous traveling hardly decreases.
  • the steering angle error detection means 16Eb determines whether or not the own vehicle 1 has run through the first set distance Lb for detecting the steering angle error after traveling by the constant distance La.
  • the travel detection processing (step # 6) is performed, and the steering angle error ⁇ e is detected at every set time until the host vehicle 1 breaks the first set distance Lb for steering angle error detection, and the host vehicle 1
  • the average value of a plurality of steering angle errors ⁇ e detected for each setting time is obtained as the vehicle travels through the first set distance Lb, and the average value is set as the steering angle error ⁇ e for steering angle calculation processing.
  • the conversion process (step # 7) is performed.
  • the steering angle calculation means 16Ec outputs the target steering angle ⁇ s calculated based on the steering angle error ⁇ e with high accuracy to the power steering mechanism 12, thereby a running offset with respect to the target route P of the vehicle 1 at the time of autonomous running.
  • the quantity So can be reduced more reliably. As a result, it is possible to more effectively suppress the decrease in work accuracy due to the traveling offset.
  • the second run determination processing that determines whether or not the own vehicle 1 has run through the second set distance Lc for re-detection of the steer angle error longer than the first set distance Lb (step # 9).
  • the steering angle error ⁇ e is updated by re-detecting the average value of the steering angle error ⁇ e based on the processing procedure described above.
  • the steering angle error detection means 16Eb can increase the detection accuracy of the steering angle error ⁇ e every time the steering angle error ⁇ e is updated by the update processing, and the steering angle calculation means 16Ec can increase the accuracy every update.
  • the target steering angle ⁇ s calculated based on the steering angle error ⁇ e can be output to the power steering mechanism 12.
  • the travel offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous travel can be reduced as the autonomous traveling distance of the vehicle 1 at the straight traveling work route portion P1 becomes longer.
  • the drop can be more effectively suppressed.
  • the difference between the first set distance Lb for detecting the steering angle error and the second set distance Lc for detecting the steering angle error is the target steering based on the steering angle error ⁇ e obtained in the traveling of the first set distance Lb. In the autonomous traveling by the automatic steering after the angle ⁇ s is corrected, the traveling distance until the autonomous traveling settles is set in consideration.
  • the steering angle error detection means 16Eb determines whether or not the vehicle 1 has shifted from the straight work path P1 to the direction change path P2 during execution of the averaging process described above.
  • the shift determination process (step # 8) is performed, and when the shift is made, the averaging process at this time is ended, and the averaging stop process (step # 10) in which the average value of the steering angle error ⁇ e is not obtained.
  • the steering is performed by the steering angle error ⁇ e at the time of direction change having a component different from the steering angle error ⁇ e at the time of straight running mixed with the steering angle error ⁇ e at the straight running It is possible to prevent the decrease in detection accuracy of the angular error ⁇ e.
  • the steering angle error detection means 16Eb determines whether the present straight working path portion P1 is an odd-numbered row or an even-numbered row each time the own vehicle 1 starts autonomous traveling on each straight working path portion P1. The number sequence determination processing is performed, and if the current straight operation path portion P1 is an odd row (outbound portion), the steering angle error for forward movement is detected as the steering angle error ⁇ e detected during autonomous traveling on the current straight operation path portion P1. In the updating process described above, the forward steering angle error ⁇ e is updated each time the forward steering angle error ⁇ e is detected.
  • the steering angle error ⁇ e detected during autonomous traveling at the straight traveling work path portion P1 this time is the steering angle error ⁇ e for returning home.
  • the return steering angle error ⁇ e is updated each time the return steering angle error ⁇ e is detected.
  • the steering angle calculation means 16Ec performs the azimuth angle deviation calculation process described above on the forward steering angle error ⁇ e if the current straight working path portion P1 is an odd number row based on the determination result obtained by the above-described number sequence determination process.
  • the steering angle calculation processing for the forward road to be added to the azimuth deviation ⁇ d obtained in the above is performed.
  • the steering angle calculation processing for the return path is performed to add the steering angle error ⁇ e for the return path to the azimuth angle deviation ⁇ d obtained by the azimuth deviation calculation processing described above. .
  • the positioning unit 19 measures an error in the yaw angle of the vehicle 1 measured by the positioning unit 19, the vehicle 1 travels autonomously in the straight work path portion (outgoing route portion) P1 of the odd number row and even number
  • the steering angle error ⁇ e for the forward path is updated by the steering angle error ⁇ e for the return path
  • the azimuth of the vehicle 1 measured by the positioning unit 19 is 0 degrees, and the vehicle 1 is an even number row
  • the azimuth of the vehicle 1 measured by the positioning unit 19 is 180 degrees when autonomous traveling on the straight working path portion (return path portion) P1 of Even though the own vehicle 1 autonomously travels in the straight-ahead work path part (outbound part) P1 of the odd number row due to an error in the yaw angle of the own vehicle 1 measured by 19 and the like
  • the orientation of the vehicle 1 measured by the unit 19 may be slightly deviated from 0 degrees, and the vehicle 1 may Straight working path portion of the sequence (the return portions) P1 Despite the autonomous, the orientation of the
  • the angle difference with the direction of the host vehicle 1 when traveling autonomously on P1 should be 180 degrees, there may be a disadvantage that it does not become 180 degrees due to a positioning error.
  • the direction of the deviation of the direction due to the positioning error tends to be constant.
  • the steering angle error ⁇ e for the odd row (outbound path) and the steering angle error ⁇ e for the even row (return path) are separately detected and individually updated.
  • the target steering angle ⁇ s at this time can be calculated to a suitable value in which the steering angle error ⁇ e for the outward path is taken into consideration.
  • the traveling offset amount So to the straight working path P1 of the vehicle 1 at the time of autonomous traveling in the straight working path P1 for the outgoing route is reduced more suitably. be able to.
  • the target steering angle ⁇ s at this time can be calculated to a suitable value in which the steering angle error ⁇ e for the return path is taken into consideration.
  • the traveling offset amount So to the straight working path P1 of the own vehicle 1 is suitably reduced at the time of autonomous traveling on the straight working path P1 for returning. be able to.
  • the steering angle error detection means 16Eb performs storage processing for storing the latest steering angle error ⁇ e in the on-vehicle storage unit 16D every time the steering angle error ⁇ e is detected or updated, and the steering angle calculation means 16Ec performs the above-described detection prohibition process. Calculates the target steering angle ⁇ s by adding the steering angle error ⁇ e stored in the on-vehicle storage unit 16D to the azimuth angle deviation ⁇ d obtained by the azimuth angle deviation calculation processing while detection of the steering angle error ⁇ e is prohibited by Do.
  • the target steering angle ⁇ s can be calculated to a suitable value in which the steering angle error ⁇ e is considered, and this target steering angle By outputting ⁇ s to the power steering mechanism 12, the travel offset amount So with respect to the target route P of the vehicle 1 can be reduced.
  • the on-vehicle storage unit 16D is nonvolatile, even if the key-on operation is performed and the autonomous traveling is started after the power is turned off by the key-off operation of the vehicle 1,
  • the steering angle error ⁇ e stored in the on-vehicle storage unit 16D is added to the azimuth angle deviation ⁇ d obtained by the azimuth angle deviation calculation processing, it is possible to calculate the target steering angle ⁇ s in which the steering angle error ⁇ e is taken into consideration.
  • the traveling offset amount So with respect to the target route P of the vehicle 1 can be reduced.
  • the configuration of the work vehicle can be variously changed.
  • the work vehicle may be configured in a hybrid specification including the engine 10 and an electric motor for traveling, or may be configured in an electric specification including an electric motor for traveling in place of the engine 10 .
  • the work vehicle may be configured in a semi crawler specification provided with left and right crawlers instead of the left and right rear wheels 8.
  • the work vehicle may be configured in a rear wheel steering specification in which the left and right rear wheels 8 function as steered wheels.
  • the steering angle sensor 18 is configured such that the automatic steering unit 32 interlocks the steering wheel 20 and the left and right front wheels (steering wheels) 7 by mechanical linkage, the rotational operation direction and rotational operation amount of the steering wheel 20
  • the steering angle of the front wheel (steering wheel) 7 may be detected on the basis of this.
  • the azimuth deviation calculation means 16Ea sets the predetermined distances D1a to D1c for target point setting in the target point setting processing set to different lengths according to the type of each of the route parts P1 to P5 manually by the user. It may be configured to change based on the operation.
  • the azimuth deviation calculation means 16Ea determines the degree of roughness of the field based on the attitude angle (roll angle and pitch angle) of the vehicle 1 measured by the positioning unit 19, and determines the degree of roughness of the determined field.
  • the predetermined distance D1 for target point setting may be automatically changed.
  • the azimuth deviation calculation means 16Ea determines that the target point p2 set on the target route by the target point setting process in the autonomous traveling of the vehicle 1 is the route portion P1 to P5 in which the vehicle 1 is currently traveling.
  • the target point p2 may be configured to be changed from the path portion currently being traveled by the vehicle 1 to the next path portion.
  • the azimuth deviation calculation means 16Ea automatically changes the predetermined distances D1a to D1c for target point setting in the target point setting process according to the type of each of the route parts P1 to P5 on which the vehicle 1 travels autonomously.
  • the predetermined distances D1a to D1c for target point setting may be changed to the predetermined distances D1a to D1c for target point setting corresponding to the next route parts P1 to P5.
  • the steering angle error detection means may be configured to detect the steering angle error by teaching traveling on the target route of the vehicle 1 before work traveling.
  • Second Embodiment A second embodiment in which an autonomous traveling system for a work vehicle according to the present invention is applied to a tractor which is an example of a work vehicle will be described based on the drawings.
  • the autonomous traveling system for work vehicles according to the present invention is a work vehicle other than a tractor, such as a riding rice planter, a combine, a riding grass mower, a wheel loader, a snow removal vehicle, and an unmanned grass mower etc. It can be applied to vehicles.
  • the autonomous traveling system for a work vehicle illustrated in the second embodiment is set to be communicable with the autonomous traveling unit 2 mounted on the tractor 1 and the autonomous traveling unit 2.
  • Mobile communication terminal 3 and the like As the mobile communication terminal 3, a tablet-type personal computer, a smart phone, or the like having a touch-operable liquid crystal panel 4 or the like can be adopted.
  • the tractor 1 is connected to the rotary tillage specification by the rotary tilling device 6 which is an example of the working device being connected to the rear portion via the three-point link mechanism 5 so as to be movable up and down. It is configured. In addition, it can replace with the rotary tilling apparatus 6, and can connect work apparatuses, such as a plow, a sowing apparatus, a scattering apparatus, to the rear part of the tractor 1.
  • work apparatuses such as a plow, a sowing apparatus, a scattering apparatus
  • the tractor 1 includes left and right front wheels 7 functioning as drivable steerable wheels, left and right drivable rear wheels 8, a cabin 9 forming a riding type driving unit, and a common rail system.
  • An electronically controlled diesel engine (hereinafter referred to as the engine) 10 an electronically controlled transmission 11 for shifting power from the engine 10, a full hydraulic power steering mechanism 12 for steering the left and right front wheels 7,
  • the left and right side brakes (not shown) that brake the rear wheel 8, the electronically controlled brake operation mechanism 13 that enables hydraulic operation of the left and right side brakes, and the working clutch that interrupts transmission to the rotary cultivator 6 (Not shown), an electronically controlled clutch operating mechanism 14 which enables hydraulic operation of the working clutch, and an electronic hydraulic control type rising and lowering drive of the rotary cultivator 6
  • the engine 10 may be an electronically controlled gasoline engine equipped with an electronic governor.
  • a hydromechanical continuously variable transmission (HMT), a hydrostatic continuously variable transmission (HST), a belt type continuously variable transmission, or the like can be adopted.
  • the power steering mechanism 12 may be, for example, an electric power steering mechanism 12 provided with an electric motor.
  • a steering wheel 20 and a seat 21 for a user are provided inside the cabin 9 to enable manual steering of the left and right front wheels 7 via the power steering mechanism 12. Also, although not shown, a shift lever that enables manual operation of the transmission 11, a left and right brake pedal that enables manual operation of the left and right side brakes, and a manual lifting operation of the rotary tilling device 6 Lift levers, etc. are provided.
  • the on-vehicle ECU 16 controls a shift control unit 16A that controls the operation of the transmission 11, a braking control unit 16B that controls the operation of the left and right side brakes, and a work device control that controls the operation of the rotary tilling device 6.
  • 16C a non-volatile vehicle storage unit 16D for storing a previously generated target route P for autonomous traveling, etc., and the target steering angle ⁇ s of the front wheels 7 on both sides during autonomous traveling, and output to the power steering mechanism 12 Steering angle setting unit 16E, and the like.
  • the positioning unit 19 uses the GPS (Global Positioning System), which is an example of the Global Navigation Satellite System (GNSS), to determine the current position p1 of the vehicle 1 and An inertial measurement unit (IMU: Inertial Measurement Unit) that measures the attitude, orientation, etc. of the vehicle 1 with a satellite navigation device 22 that measures the current orientation ⁇ 1, a three-axis gyroscope, three-direction acceleration sensors, etc. ) 23, etc. are provided.
  • Positioning methods using GPS include DGPS (Differential GPS: relative positioning method), RTK-GPS (Real Time Kinematic GPS: interference positioning method), etc.
  • DGPS Different GPS: relative positioning method
  • RTK-GPS Real Time Kinematic GPS: interference positioning method
  • it is suitable for positioning of a mobile object.
  • RTK-GPS is adopted. Therefore, a reference station 24 that enables positioning by RTK-GPS is installed at a known position around the farmland.
  • Each of the tractor 1 and the reference station 24 can wirelessly communicate various data including GPS data between the tractor 1 and the reference station 24 and GPS antennas 26 and 27 for receiving radio waves transmitted from the GPS satellite 25.
  • Communication modules 28, 29, etc. are provided.
  • the satellite navigation device 22 receives the positioning data obtained by the GPS antenna 26 on the tractor side receiving radio waves from the GPS satellites 25 and the GPS antenna 27 on the base station side receives radio waves from the GPS satellites 25.
  • the current position p1 and the current direction ⁇ 1 of the vehicle 1 can be measured with high accuracy based on the obtained positioning data.
  • the positioning unit 19 includes the satellite navigation device 22 and the inertial measurement device 23 so that the current position p1 of the vehicle 1, the current direction ⁇ 1, and the attitude angle (yaw angle, roll angle, pitch angle) can be made with high accuracy. It can be measured.
  • the mobile communication terminal 3 includes a terminal electronic control unit (hereinafter referred to as a terminal ECU) 30 having various control programs for controlling the operation of the liquid crystal panel 4 and the like, and a tractor side. And a communication module 31 that enables wireless communication of various data including positioning data with the communication module 28 of FIG.
  • the terminal ECU 30 is a non-volatile terminal storing a target route generation unit 30A that generates a target route P for autonomous traveling, and various input data input by the user, the target route P generated by the target route generation unit 30A, and the like.
  • a storage unit 30B and the like are included.
  • the target route generation unit 30A follows the input guidance for target route generation displayed on the liquid crystal panel 4, vehicle data such as the type and model of the work vehicle and the work device, and When the target field position and the like are input by the user, it is determined whether or not the corresponding target route P is stored in the terminal storage unit 30B based on the input vehicle data, the field position, and the like.
  • the target route P is read from the terminal storage unit 30 B and displayed on the liquid crystal panel 4.
  • the liquid crystal panel 4 displays an execution guidance of positioning data acquisition travel for obtaining positioning data necessary for generation of the target route P, and the user performs positioning data acquisition travel.
  • the field data such as the section and the shape of the work field and the like are acquired, and the acquired field data and vehicle data
  • the target route P suitable for working on the field to be worked with this tractor 1 is generated on the basis of the minimum turning radius, the working width, etc. included in.
  • the generated target route P is displayed on the liquid crystal panel 4 and stored in the terminal storage unit 30B as route data associated with the vehicle data and the field data.
  • the route data includes an azimuth angle ⁇ p of the target route P, a target engine rotation speed, a target vehicle speed, and the like set according to the traveling mode of the tractor 1 on the target route P and the like.
  • a field divided into a rectangular shape is illustrated as a field to be worked.
  • a target route P suitable for the rectangular field a plurality of straight movement work path portions P1 having the same straight movement distance and arranged in parallel with a predetermined distance corresponding to the work width, and adjacent straight movement
  • a reciprocating traveling route is illustrated, which includes a plurality of direction change path portions P2 extending from the end point P1e of the working path portion P1 to the start point P1s and causes the tractor 1 to reciprocate from the start point Ps of the target path P to the end point Pe. ing.
  • the plurality of direction change path portions P2 are a first turning path portion P3 for turning the tractor 1 by 90 degrees from the end point P1e of the straight working path portion P1 toward the next straight working path portion, and a first turning path portion P3.
  • a straight forward path P4 for moving the tractor 1 straight backward from the turning end point P3e toward the previous straight working path, and a starting point of the next straight working path P1 from a backward finish point P4e of the backward straight path P4 It is divided by the 2nd turning course part P5 which turns the tractor 1 90 degrees toward the point P1s.
  • the target route P is divided into a plurality of types of route portions P1 to P5 in accordance with the traveling mode of the vehicle 1.
  • the target path P shown in FIG. 14 is merely an example, and the target path P is, for example, a plurality of direction change path portions P2, and from the end point P1e of the straight work path portion P1 to the start end of the next straight work path portion P1. It may be generated so as to include a U-turn path portion that turns the tractor 1 180 degrees toward the point P1s.
  • the terminal ECU 30 instructs execution of autonomous traveling by the operation of the liquid crystal panel 4 by the user.
  • the target route P being displayed together with the execution command is transmitted to the in-vehicle ECU 16 via the communication modules 31 and 28.
  • the entire target route P may be transmitted at once from the terminal ECU 30 to the on-vehicle ECU 16 at a stage before the tractor 1 starts autonomous traveling.
  • the target route P is divided into a plurality of route portions for each predetermined distance with a small amount of data and the tractor 1 starts autonomous traveling
  • only the initial route portion of the target route P is the terminal ECU 30
  • each time the tractor 1 reaches the route acquisition point set according to the amount of data only the route part corresponding to that point is transmitted from the terminal ECU 30 to the vehicle ECU 16. It may be sent to the
  • the on-vehicle storage unit 16D stores the received target route P in the on-vehicle storage unit 16D to check the data amount.
  • the autonomous traveling control for causing the vehicle to travel autonomously is started based on the target route P and the like stored in the on-vehicle storage unit 16D.
  • automatic shift control for automatically controlling the operation of the transmission 11, automatic braking control for automatically controlling the operation of the brake operating mechanism 13, automatic steering control for automatically steering the left and right front wheels 7, and a rotary tilling device Automatic control for work to automatically control the operation of 6, etc. are included.
  • the shift control unit 16A controls the traveling mode of the tractor 1 on the target route P based on the target route P including the target vehicle speed described above, the output of the positioning unit 19, and the output of the vehicle speed sensor 17.
  • the operation of the transmission 11 is automatically controlled so that the target vehicle speed set accordingly is obtained as the vehicle speed of the vehicle 1.
  • the braking control unit 16B In automatic braking control, the braking control unit 16B properly sets the left and right side brakes on the left and right side brakes in the braking area included in the target path P based on the target path P and the output of the positioning unit 19. The operation of the brake operation mechanism 13 is automatically controlled to brake.
  • the steering angle setting unit 16E sets the target steering angles ⁇ s of the left and right front wheels 7 based on the target path P and the output of the positioning unit 19 so that the vehicle 1 autonomously travels on the target path P.
  • the power steering mechanism 12 outputs the target steering angle ⁇ s which has been obtained and set, and which has been set.
  • the power steering mechanism 12 automatically steers the left and right front wheels 7 based on the target steering angle ⁇ s and the output of the steering angle sensor 18 so that the target steering angle ⁇ s can be obtained as the steering angle of the left and right front wheels 7.
  • the rotary tilling apparatus is operated as the vehicle 1 reaches the start point P1s of the straight work path portion P1 based on the target path P and the output of the positioning unit 19 in the working device control unit 16C. 6.
  • the clutch operating mechanism 14 and the elevation drive mechanism 15 are set so that the tilling by the rotary tilling device 6 is stopped when the tilling by 6 is started and the own vehicle 1 reaches the end point P1e of the straight working path portion P1. Automatically control the operation of
  • the autonomous traveling unit 2 is configured by the communication module 28 and the like.
  • the power steering mechanism 12, the on-vehicle ECU 16, and the steering angle sensor 18 constitute an automatic steering unit 32 for automatically steering the left and right front wheels 7 so that the vehicle 1 autonomously travels on the target path P.
  • the steering angle setting unit 16E has steering angle calculation means 16Ed that calculates the target steering angle ⁇ s at the time of autonomous traveling.
  • the steering angle calculation means 16Ed sets target point p2 on a target route with a predetermined distance D1 from the current position p1 of the vehicle 1 to the traveling direction side during autonomous traveling, and the current position of the vehicle 1
  • the target steering angle calculation processing if the current travel route of the host vehicle 1 is the straight work route portion P1 or the rear straight advance route portion P4. If the direction from the current position p1 of the vehicle 1 to the target point p2 (the azimuth of the line segment L1) is the target azimuth angle ⁇ 2, and the angle between the target path P and the line segment L1 is the traveling correction angle ⁇ c
  • the travel correction angle ⁇ c is a lateral deviation from the travel route of the vehicle 1 on the NED coordinates as D2
  • the predetermined distance for setting the target point is D1
  • Travel correction angle ⁇ c asin (lateral deviation D2 / predetermined distance D1)
  • the target azimuth angle ⁇ 2 can be determined, and the target steering angle ⁇ s can be obtained from the difference between the determined target azimuth angle ⁇ 2 and the attitude angle (yaw angle) ⁇ 1 of the vehicle 1 measured by the positioning unit 19 Can.
  • the current travel route of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5, the turning centers pt of those turning path portions P3 and P5.
  • the target steering angle ⁇ s is obtained from the above-mentioned angle ⁇ v, the current direction ⁇ 1 of the vehicle 1 and the travel correction angle ⁇ c
  • Target steering angle ⁇ s angle ⁇ v + SignTrn ⁇ 90 ⁇ present direction ⁇ 1 + SignTrn ⁇ (90 ⁇ travel correction angle ⁇ c)
  • degrees are used for all units in this formula, and "90” in the formula indicates 90 degrees.
  • ign Trn it is “1” when the turning direction is the clockwise direction, and “ ⁇ 1” when the turning direction is the counterclockwise direction.
  • the distance D3 from the turning center pt of the turning path portions P3 and P5 to the vehicle 1 in this equation is the turning radius R of the turning path portions P3 and P5, and the distance D3 of the vehicle 1 on the NED coordinates.
  • Distance D3 turning radius R + lateral deviation D2 It can be determined by That is, the calculation load applied to the steering angle calculation means 16Ed can be reduced in the target steering angle calculation processing described above.
  • a plurality of predetermined distances D1a-D1c for setting target points set to different lengths according to the type of each of the route parts P1-P5 in the target route P. Is stored.
  • the steering angle calculation means 16Ed automatically changes the predetermined distance D1 for target point setting in the target point setting process according to the type of each of the route portions P1 to P5 on which the vehicle 1 travels autonomously on the target route P.
  • the steering angle calculation means 16Ed is, as shown in FIG. 15, the predetermined distance D1 when the current position p1 of the vehicle 1 is the straight work path part P1. It is changed to the first predetermined distance D1a suitable for autonomous traveling on the straight working path portion P1.
  • the steering angle calculation means 16Ed travels autonomously in the backward straight path portion P4 by the predetermined distance D1.
  • the second predetermined distance D1b is a rear steering that steers the left and right front wheels 7 on the rear side in the traveling direction and corrects the traveling direction when the vehicle 1 corrects the traveling direction in autonomous traveling on the rear straight traveling path portion P4.
  • the distance is set to be longer than the first predetermined distance D1a in consideration of an increase in the amount of shake. If the current position p1 of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5 as shown in FIGS. It changes into the 3rd predetermined distance D1c suitable for carrying out autonomous travel in the 1st turning course part P3 or the 2nd turning course part P5.
  • the third predetermined distance D1c is a first predetermined distance in consideration of the fact that the vehicle 1 is easily separated from the turning path portions P3 and P5 during autonomous traveling on the first turning path portion P3 or the second turning path portion P5.
  • the distance is set to be shorter than the predetermined distance D1a and the second predetermined distance D1b.
  • the steering angle calculation means 16Ed is the next path part (for example, the first turning path part P3) of which the current position p1 of the vehicle 1 is different from the current path part (for example, straight working path part P1).
  • the target point p2 is set on the extension of the current route portion.
  • a target point p2 suitable for autonomous traveling in the first turning path portion P3 can be set, and from the target point p2 It is possible to calculate the target steering angle ⁇ s suitable for autonomous traveling on the single turning path portion P3. As a result, it is possible to improve the traveling accuracy when the vehicle 1 travels autonomously on the target route P.
  • the steering angle error ⁇ e caused by the individual difference of the steering angle sensor 18 is included in the steering system. Due to the angular error ⁇ e, the work vehicle travels with a constant travel offset amount So for the target route P remaining. As a result, the working accuracy is reduced due to the traveling offset.
  • the steering angle setting unit 16E detects a steering angle error detection means 16Ee that detects a steering angle error ⁇ e during autonomous traveling, and a steering angle error ⁇ e. And steering angle correction means 16Ef for correcting the target steering angle ⁇ s.
  • the steering angle error detection means 16Ee moves from the current position p1 of the vehicle 1 to the traveling direction during straight traveling by autonomous traveling of the vehicle 1 on the straight operation route portion P1 of the target route P.
  • a fixation point setting process (step # 3) for setting a fixation point p3 on a target route with a fixed distance D4 (front side) and a line for generating a line L2 from the current position of the vehicle 1 to the fixation point p3
  • a minute generation process (step # 4) and a steering angle error calculation process (step # 5) for calculating an angle formed by the target path P and the line segment L2 as the steering angle error ⁇ e are performed.
  • the steering angle correction means 16Ef performs correction processing to add the steering angle error ⁇ e obtained by the steering angle error calculation processing to the target steering angle ⁇ s obtained by the target steering angle calculation processing described above. As a result, the target steering angle ⁇ s can be corrected to a value in which the steering angle error ⁇ e is taken into consideration.
  • the own vehicle By outputting the target steering angle ⁇ s after this correction processing to the power steering mechanism 12, the own vehicle at the time of autonomous traveling The travel offset amount So for one target route P can be reduced. As a result, it is possible to suppress a decrease in work accuracy due to the traveling offset.
  • the steering angle error detection unit 16Ee determines whether or not a predetermined condition for allowing detection of the steering angle error ⁇ e is satisfied (step # 1). And, the detection prohibiting process (step # 2) of prohibiting the detection of the steering angle error ⁇ e is performed until the predetermined condition is satisfied.
  • a predetermined condition it is set whether or not a predetermined distance La necessary for the autonomous traveling to settle after the autonomous vehicle 1 has started the autonomous traveling on the straight operation path portion P1 is run. ing. Then, in the detection condition determination process, the steering angle error detection means 16Ee assumes that the predetermined condition is satisfied when the own vehicle 1 starts traveling autonomously on the straight work path portion P1 and then runs through the fixed distance La.
  • It is configured to make a determination, whereby the detection prohibiting process is performed by the detection prohibiting process from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until it runs through the predetermined distance La. Detection is prohibited. As a result, detection of the steering angle error ⁇ e and target steering based on the detected steering angle error ⁇ e also from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until the autonomous traveling is settled.
  • the correction of the angle ⁇ s reduces the detection accuracy of the steering angle error ⁇ e, and the target steering angle ⁇ s is corrected based on the steering angle error ⁇ e having a low detection accuracy and is output to the power steering mechanism 12 As a result, it is possible to avoid the occurrence of the inconvenience that the traveling offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous traveling hardly decreases.
  • the steering angle error detection means 16Ee determines whether or not the own vehicle 1 has run through the first set distance Lb for detecting the steering angle error after running the constant distance La.
  • the travel detection processing (step # 6) is performed, and the steering angle error ⁇ e is detected at every set time until the host vehicle 1 breaks the first set distance Lb for steering angle error detection, and the host vehicle 1 As traveling through the first set distance Lb, averaging processing is performed to obtain an average value of a plurality of steering angle errors ⁇ e detected for each setting time, and set the average value as the steering angle error ⁇ e for correction processing Perform (Step # 7).
  • the detection accuracy of the steering angle error ⁇ e by the steering angle error detection means 16Ee can be enhanced.
  • the steering angle correction means 16Ef outputs the target steering angle ⁇ s corrected with the steering angle error ⁇ e with high accuracy to the power steering mechanism 12 to make the travel offset amount So to the target route P of the vehicle 1 at the time of autonomous traveling. Can be lowered more reliably. As a result, it is possible to more effectively suppress the decrease in work accuracy due to the traveling offset.
  • the second run determination processing determines whether the steering angle error detection means 16Ee has run through the second set distance Lc for re-detection of the steer angle error longer than the first set distance Lb.
  • the steering angle error ⁇ e is updated by re-detecting the average value of the steering angle error ⁇ e based on the processing procedure described above.
  • the steering angle error detection means 16Ee can increase the detection accuracy of the steering angle error ⁇ e every time the steering angle error ⁇ e is updated by the updating process, and the steering angle correction means 16Ef can increase the accuracy every update.
  • the target steering angle ⁇ s corrected based on the steering angle error ⁇ e can be output to the power steering mechanism 12.
  • the travel offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous travel can be reduced as the autonomous traveling distance of the vehicle 1 at the straight traveling work route portion P1 becomes longer.
  • the drop can be more effectively suppressed.
  • the difference between the first set distance Lb for detecting the steering angle error and the second set distance Lc for detecting the steering angle error is the target steering based on the steering angle error ⁇ e obtained in the traveling of the first set distance Lb. In the autonomous traveling by the automatic steering after the angle ⁇ s is corrected, the traveling distance until the autonomous traveling settles is set in consideration.
  • the steering angle error detection means 16Ee determines whether or not the vehicle 1 has shifted from the straight work path P1 to the direction change path P2 during execution of the averaging process described above.
  • the shift determination process (step # 8) is performed, and when the shift is made, the averaging process at this time is ended, and the averaging stop process (step # 10) in which the average value of the steering angle error ⁇ e is not obtained.
  • the steering is performed by the steering angle error ⁇ e at the time of direction change having a component different from the steering angle error ⁇ e at the time of straight running mixed with the steering angle error ⁇ e at the straight running It is possible to prevent the decrease in detection accuracy of the angular error ⁇ e.
  • the steering angle error detection means 16Ee determines whether the present straight working path portion P1 is an odd number row or an even number row each time the own vehicle 1 starts the autonomous traveling on each straight portion working path portion P1. The number sequence determination processing is performed, and if the current straight operation path portion P1 is an odd row (outbound portion), the steering angle error for forward movement is detected as the steering angle error ⁇ e detected during autonomous traveling on the current straight operation path portion P1. In the updating process described above, the forward steering angle error ⁇ e is updated each time the forward steering angle error ⁇ e is detected.
  • the steering angle error ⁇ e detected during autonomous traveling at the straight traveling work path portion P1 this time is the steering angle error ⁇ e for returning home.
  • the return steering angle error ⁇ e is updated each time the return steering angle error ⁇ e is detected.
  • the steering angle correction means 16Ef executes the target steering angle calculation processing described above for the forward steering angle error ⁇ e if the current straight working path portion P1 is an odd number row based on the determination result obtained by the above-described number sequence determination processing. A correction process for the forward path to be added to the target steering angle ⁇ s obtained in the above is performed.
  • correction processing for the return path is performed to add the steering angle error ⁇ e for the return path to the target steering angle ⁇ s obtained by the target steering angle calculation processing described above.
  • the positioning unit 19 measures an error in the yaw angle of the vehicle 1 measured by the positioning unit 19, the vehicle 1 travels autonomously in the straight work path portion (outgoing route portion) P1 of the odd number row and even number
  • the steering angle error ⁇ e for the forward path is updated by the steering angle error ⁇ e for the return path
  • the azimuth of the vehicle 1 measured by the positioning unit 19 is 0 degrees, and the vehicle 1 is an even number row
  • the azimuth of the vehicle 1 measured by the positioning unit 19 is 180 degrees when autonomous traveling on the straight working path portion (return path portion) P1 of Even though the own vehicle 1 autonomously travels in the straight-ahead work path part (outbound part) P1 of the odd number row due to an error in the yaw angle of the own vehicle 1 measured by 19 and the like
  • the orientation of the vehicle 1 measured by the unit 19 may be slightly deviated from 0 degrees, and the vehicle 1 may Straight working path portion of the sequence (the return portions) P1 Despite the autonomous, the orientation of the
  • the angle difference with the direction of the host vehicle 1 when traveling autonomously on P1 should be 180 degrees, there may be a disadvantage that it does not become 180 degrees due to a positioning error.
  • the direction of the deviation of the direction due to the positioning error tends to be constant.
  • the steering angle error ⁇ e for the odd row (outbound path) and the steering angle error ⁇ e for the even row (return path) are separately detected and individually updated.
  • the forward path steering angle error ⁇ e and the return path steering angle error ⁇ e With high detection accuracy. Then, if the straight work path P1 on which the vehicle 1 travels autonomously is the outward path portion, the target steering angle ⁇ s at this time can be corrected to a value in which the steering angle error ⁇ e for the outward path is taken into account.
  • the traveling offset amount So to the straight working path P1 of the vehicle 1 at the time of autonomous traveling on the straight working path P1 for the outgoing route is reduced more suitably. It can be done.
  • the target steering angle ⁇ s at this time can be corrected to a value in which the steering angle error ⁇ e for the return path is taken into account.
  • the traveling offset amount So to the straight working path P1 of the vehicle 1 at the time of autonomous traveling on the straight working path P1 for returning is reduced more suitably. It can be done.
  • the steering angle error detection means 16Ee performs storage processing for storing the latest steering angle error ⁇ e in the on-vehicle storage unit 16D every time the steering angle error ⁇ e is detected or updated, and the steering angle correction means 16Ef performs the above-described detection prohibition process
  • the target steering angle ⁇ s obtained in the target steering angle calculation process is corrected with the steering angle error ⁇ e stored in the on-vehicle storage unit 16D.
  • the target steering angle ⁇ s obtained by the target steering angle calculation process is corrected to a value in which the steering angle error ⁇ e is taken into consideration.
  • the target steering angle ⁇ s after this correction processing By outputting the target steering angle ⁇ s after this correction processing to the power steering mechanism 12, it is possible to reduce the travel offset amount So with respect to the target route P of the vehicle 1. Further, as described above, since the on-vehicle storage unit 16D is nonvolatile, even if the key-on operation is performed and the autonomous traveling is started after the power is turned off by the key-off operation of the vehicle 1, The target steering angle ⁇ s obtained by the target steering angle calculation processing can be corrected by the steering angle error ⁇ e stored in the on-vehicle storage unit 16D, and the travel offset amount So to the target route P of the own vehicle 1 can be reduced. it can.
  • the configuration of the work vehicle can be variously changed.
  • the work vehicle may be configured in a hybrid specification including the engine 10 and an electric motor for traveling, or may be configured in an electric specification including an electric motor for traveling in place of the engine 10 .
  • the work vehicle may be configured in a semi crawler specification provided with left and right crawlers instead of the left and right rear wheels 8.
  • the work vehicle may be configured in a rear wheel steering specification in which the left and right rear wheels 8 function as steered wheels.
  • the steering angle sensor 18 is configured such that the automatic steering unit 32 interlocks the steering wheel 20 and the left and right front wheels (steering wheels) 7 by mechanical linkage, the rotational operation direction and rotational operation amount of the steering wheel 20
  • the steering angle of the front wheel (steering wheel) 7 may be detected on the basis of this.
  • the steering angle error detection means 16Ee satisfies the predetermined condition when the vehicle 1 travels until the fixed time required from the start of the autonomous traveling to the settling of the autonomous traveling elapses. It may be determined that the steering angle error ⁇ e is detected.
  • the steering angle error detection means 16Ee determines that the predetermined condition is satisfied when the vehicle 1 travels the set distance set according to the vehicle speed from the start of autonomous traveling.
  • the steering angle error ⁇ e may be detected.
  • the steering angle error detection means 16Ee is for detecting the steering angle error the steering angle error ⁇ e obtained by the fixation point setting process, the line segment generation process, and the steering angle error calculation process described above.
  • the steering angle error ⁇ e may be detected by determining that the predetermined condition is satisfied, when the steering angle error ⁇ e is decreased when the steering wheel angle drops below the set value.
  • the steering angle error detection means 16Ee detects that the vehicle 1 is traveling autonomously in parallel with the target route P based on the measurement of the positioning unit 19 as a predetermined condition. It may be configured to detect the steering angle error ⁇ e by judging that
  • the steering angle error detection means 16Ee detects the steering angle error ⁇ e a plurality of times until the set time for detecting the steering angle error elapses, and performs the steering for the plurality of times.
  • the average value of the angular error ⁇ e may be set as the steering angle error ⁇ e for the correction process.
  • the steering angle error detection means 16Ee may be configured not to perform the averaging process described above.
  • the steering angle error detection means 16Ee redetects the average value of the steering angle error ⁇ e or the steering angle error ⁇ e every time the setting time for steering angle error redetection elapses during autonomous traveling, and the steering angle error It may be configured to update ⁇ e.
  • the steering angle error detecting means 16Ee redetects the average value of the steering angle error ⁇ e or the steering angle error ⁇ e every time the vehicle 1 travels the set distance set according to the vehicle speed, and the steering angle error It may be configured to update ⁇ e.
  • the steering angle error detection means 16Ee While detecting the steering angle error ⁇ e, the steering angle error detection means 16Ee stops detecting the steering angle error ⁇ e when the deviation of the host vehicle 1 with respect to the target path P undergoes a drastic change over the set value. Then, when it is determined that the predetermined condition is satisfied in the detection condition determination process described above, the detection of the steering angle error ⁇ e may be resumed. In this configuration, it is possible to prevent the steering angle error ⁇ e based on the sudden change in deviation from being used for the correction of the target steering angle ⁇ s.
  • the steering angle error detection means 16Ee individually detects each steering angle error ⁇ e according to the traveling mode such as forward, reverse or turning of the vehicle 1 at the time of autonomous traveling, and the on-vehicle storage unit 16D etc. May be configured to be stored. This configuration is suitable when the steering angle error ⁇ e changes in accordance with the traveling mode of the host vehicle 1.
  • the steering angle error detection means 16Ee redetects the steering angle error ⁇ e and updates the steering angle error ⁇ e when updating of the steering angle error ⁇ e is instructed by the operation of the mobile communication terminal 3 or the like. It may be configured. In this configuration, for example, when the work vehicle 1 can not travel on the target route P accurately with accuracy, and changes in the wheel diameter and the wheel contact width due to the replacement of the wheels 7 and 8 in the work vehicle 1, or In the case where the traveling characteristic changes due to the change of the rear wheel 8 to the crawler, the steering angle error ⁇ e can be arbitrarily updated by the operation of the mobile communication terminal 3 or the like.
  • a sensor may be provided, and when the sensor detects a change in the vehicle state, the steering angle error detection means 16Ee may be configured to automatically update the steering angle error ⁇ e.
  • the present invention relates to an autonomous travel system for work vehicles usable for unmanned work vehicles such as tractors, ride rice planters, combine harvesters, ride mowers, wheel loaders, snow removal vehicles, and unmanned work vehicles such as unmanned grass mowers. It can apply.

Abstract

[Problem] To inhibit decline in work precision caused by travel offset arising from a steering angle error. [Solution] Provided is an autonomous travel system for a work vehicle comprising: a steering angle setting unit 16E for setting a target steering angle θs; and a steering angle sensor 18 for sensing a steering angle. The steering angle setting unit 16E comprises: a bearing angle deviation computation means 16Ea for computing a bearing angle deviation; a steering angle error detection means 16Eb for detecting a steering angle error; and a steering angle computation means 16Ec for computing the target steering angle θs from the bearing angle deviation and steering angle error. The bearing angle deviation computation means 16Ea sets a target point on a target path which is at a prescribed distance from the current position in the direction of progress during autonomous travel, generates a target bearing line from the present position to the target point, and computes the angle formed by the present bearing and the target bearing line as the bearing angle deviation.

Description

作業車両用の自律走行システムAutonomous traveling system for work vehicle
 本発明は、トラクタ、乗用田植機、コンバイン、乗用草刈機、ホイールローダ、除雪車、などの乗用作業車両、および、無人草刈機などの無人作業車両に利用可能な作業車両用の自律走行システムに関し、詳しくは、予め生成された目標経路を記憶する記憶部と、自車の現在位置および現在方位を測定する測位ユニットと、前記自車が前記目標経路を自律走行するように操舵輪を自動操舵する自動操舵ユニットとを備えた作業車両用の自律走行システムに関する。 The present invention relates to an autonomous traveling system for work vehicles that can be used for unmanned work vehicles such as tractors, ride rice planters, combine harvesters, ride mowers, wheel loaders, snow removal vehicles, and unmanned work vehicles such as unmanned grass mowers. More specifically, a storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and automatically steering steered wheels so that the vehicle autonomously travels the target route And an autonomous steering system for a work vehicle having an automatic steering unit.
 上記のような作業車両用の自律走行システムにおいては、自車の方位を検出する地磁気方位センサ、自車の現在位置を認識するGPS受信機、および、前輪の操舵角を検出する舵角センサ、などを備え、直線目標経路での作業車両の自律走行中に、車体前側の前輪間中央位置である中心部、および、車体後側のGPS受信機のアンテナ設置位置であるGPS位置計測点が、直線目標経路から横方向に第1距離または第2距離だけ離れている状態で、かつ、前輪が任意の操舵角で操舵された状態にあるときには、車体前側の中心部からの直線目標経路に対する垂線と直線目標経路との交点から第3距離だけ前方の直線目標経路上に目標点を設定して、中心部と目標点を結ぶ直線と、中心部を通る直線目標経路と平行な直線との間の前目標方位(前目標方位=Arctan(第1距離/第3距離))を算出し、直線目標経路に対する車体の方位と操舵角と目標方位とで目標操舵角(目標操舵角=方位+操舵角+目標方位)を算出する。また、GPS位置計測点からの直線目標経路に対する垂線と直線目標経路との交点から第4距離だけ前方の直線目標経路上に後目標点を設定し、GPS位置計測点と後目標点を結ぶ直線と、GPS位置計測点を通る直線目標経路と平行な直線との間の目標方位(目標方位=Arctan(第2距離/第4距離))を算出する。そして、前輪の目標操舵角に基づく操舵制御値と、GPS位置計測点の目標方位に基づくPI制御の比例及び積分値とから、地磁気方位センサの誤差を含まない前輪操舵用の指令値を演算し、この指令値に前輪の操舵角が合致するように指令値と舵角センサの出力とに基づいて前輪の操舵角を制御することにより、自車を目標経路に沿って自律走行させるように構成されたものがある(例えば特許文献1参照)。 In an autonomous traveling system for a work vehicle as described above, a geomagnetic bearing sensor for detecting the direction of the vehicle, a GPS receiver for recognizing the current position of the vehicle, and a steering angle sensor for detecting the steering angle of the front wheels During autonomous traveling of the work vehicle on the straight line target route, the central portion, which is the central position between the front wheels on the front side of the vehicle body, and the GPS position measurement point, which is the antenna installation position of the GPS receiver on the vehicle rear side, When the front wheel is steered at an arbitrary steering angle while being laterally separated from the straight target path by a first distance or a second distance, a perpendicular to the straight target path from the central portion on the front side of the vehicle body The target point is set on the straight target path ahead a third distance from the point of intersection of the target and the straight target path, and between the straight line connecting the central portion and the target point and a straight line parallel to the straight target path passing through the central portion Previous target heading The previous target heading = Arctan (first distance / third distance) is calculated, and the target steering angle (target steering angle = heading + steering angle + target heading) for the heading of the vehicle with respect to the straight target path, steering angle and target heading Calculate In addition, a back target point is set on a straight target route that is a fourth distance ahead of the intersection between the perpendicular to the straight target route from the GPS position measurement point and the straight target route, and a straight line connecting the GPS position measurement point and the back target point And a target azimuth (target azimuth = Arctan (second distance / fourth distance)) between a straight line parallel to the straight line target path passing the GPS position measurement point. Then, from the steering control value based on the target steering angle of the front wheel and the proportional and integral value of PI control based on the target direction of the GPS position measurement point, the command value for front wheel steering not including the error of the geomagnetic direction sensor is calculated. By configuring the steering angle of the front wheels on the basis of the command value and the output of the steering angle sensor so that the steering angle of the front wheels matches the command value, the host vehicle can travel autonomously along the target route. There are some examples (see, for example, Patent Document 1).
特開2002-358122号公報JP 2002-358122 A
 特許文献1に記載の構成では、前輪の目標操舵角に基づく操舵制御値と、GPS位置計測点の目標方位に基づくPI制御の比例及び積分値とから、前輪操舵用の指令値を演算することにより、その演算が複雑になって演算に要する負荷が大きくなる。
 その上、特許文献1に記載の構成では、前述した目標点設定用の第3距離を、GPS位置計測点の直線目標経路からの横方向の第1距離(左右離間距離)の大小変化によって切り換えることから、目標操舵角を設定する上においては方位角偏差に加えて横方向偏差も考慮する必要があり、これにより、演算に要する負荷が更に大きくなる。
In the configuration described in Patent Document 1, a command value for front wheel steering is calculated from a steering control value based on a target steering angle of a front wheel and a proportional and integral value of PI control based on a target direction of a GPS position measurement point. This complicates the operation and increases the load required for the operation.
Moreover, in the configuration described in Patent Document 1, the third distance for setting the target point described above is switched by the magnitude change of the first distance (left and right separation distance) in the lateral direction from the linear target route of the GPS position measurement point. Therefore, in setting the target steering angle, it is necessary to consider the lateral deviation in addition to the azimuthal deviation, which further increases the load required for the calculation.
 また、特許文献1に記載の構成では、前輪の自動操舵を行う上において、舵角センサの個体差などに起因した舵角誤差が考慮されていないことから、図8、図20に示すように、作業車両1が目標経路Pの直進作業経路部P1を自律走行しているときに、操舵輪の目標操舵角が直進用の目標操舵角に設定されていても、舵角誤差によって操舵輪の実操舵角が直進用の目標操舵角からずれてしまい、このときのずれ量に応じて作業車両1が直進作業経路部P1から徐々に斜め方向にオフセットする。その後、このときのオフセットに基づいて、操舵輪の目標操舵角が、作業車両1を直進経路部P1に戻すための目標操舵角に変更されても、このときの目標操舵角の変更量が舵角誤差と相殺されてしまい、作業車両1が直進作業経路部P1に対する一定の走行オフセット量Soを残した状態で走行することになる。その結果、走行オフセットに起因した作業精度の低下を招くことになる。 Further, in the configuration described in Patent Document 1, when automatic steering of the front wheels is performed, a steering angle error caused by an individual difference of the steering angle sensor is not taken into consideration, as shown in FIGS. 8 and 20. When the work vehicle 1 travels autonomously in the straight working route portion P1 of the target route P, even if the target steering angle of the steered wheels is set to the straight target steering angle, the steering angle error of the steered wheels The actual steering angle deviates from the target steering angle for going straight, and the work vehicle 1 is gradually offset in an oblique direction from the straight working path portion P1 according to the amount of deviation at this time. After that, even if the target steering angle of the steered wheels is changed to the target steering angle for returning the work vehicle 1 to the straight path portion P1 based on the offset at this time, the change amount of the target steering angle at this time is Since the work vehicle 1 is offset with the angular error, the work vehicle 1 travels with a constant travel offset amount So for the straight work path portion P1. As a result, the working accuracy is reduced due to the traveling offset.
 この実情に鑑み、本発明の主たる課題は、舵角誤差に起因した走行オフセットによる作業精度の低下を抑制することができる作業車両用の自律走行システムを提供する点にある。 In view of this situation, a main problem of the present invention is to provide an autonomous travel system for a work vehicle which can suppress a decrease in work accuracy due to a travel offset caused by a steering angle error.
 本発明の第1特徴構成は、
 予め生成された目標経路を記憶する記憶部と、自車の現在位置および現在方位を測定する測位ユニットと、前記自車が前記目標経路を自律走行するように操舵輪を自動操舵する自動操舵ユニットとを備え、
 前記自動操舵ユニットは、前記操舵輪の目標操舵角を設定する操舵角設定部と、前記操舵輪の操舵角を検出する舵角センサとを有し、
 前記操舵角設定部は、方位角偏差を演算する方位角偏差演算手段と、自律走行時の舵角誤差を検出する舵角誤差検出手段と、前記方位角偏差と前記舵角誤差とから前記目標操舵角を演算する操舵角演算手段とを有し、
 前記方位角偏差演算手段は、自律走行中に前記現在位置から進行方向側に所定距離をあけた前記目標経路上に目標地点を設定する目標地点設定処理と、前記現在位置から前記目標地点にわたる目標方位ラインを生成するライン生成処理と、前記現在方位と前記目標方位ラインとがなす角度を前記方位角偏差として演算する方位角偏差演算処理とを行う点にある。
The first feature of the present invention is
A storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and an automatic steering unit for automatically steering steered wheels so that the vehicle autonomously travels the target route Equipped with
The automatic steering unit has a steering angle setting unit that sets a target steering angle of the steered wheels, and a steering angle sensor that detects a steered angle of the steered wheels.
The steering angle setting unit comprises azimuth angle deviation calculation means for calculating an azimuth angle deviation, steering angle error detection means for detecting a steering angle error during autonomous traveling, the target from the azimuth angle deviation and the steering angle error. And steering angle calculation means for calculating a steering angle,
The azimuth deviation calculation means is a target point setting process for setting a target point on the target route with a predetermined distance from the current position to the traveling direction side during autonomous traveling, and a target from the current position to the target point A point of performing line generation processing for generating an azimuth line and azimuth deviation calculation processing for calculating an angle formed by the current azimuth and the target azimuth line as the azimuth deviation.
 本構成によれば、方位角偏差演算手段が、前述した目標地点設定処理とライン生成処理と方位角偏差演算処理とを行うことにより、目標方位ラインの方位と自車の現在方位との方位角偏差を簡単に演算することができる。そして、操舵角演算手段が、その方位角偏差に舵角誤差検出手段により検出された舵角誤差を加味することにより、舵角誤差が考慮された好適な目標操舵角を演算することができる。
 これにより、この目標操舵角に基づいて操舵輪の自動操舵を行うことにより、舵角誤差に起因した自律走行時における自車の目標経路に対する走行オフセット量を低下させることができる。
 その結果、目標操舵角の演算に要する演算負荷を軽減しながら、舵角誤差に起因した走行オフセットによる作業精度の低下を抑制することができる。
According to this configuration, the azimuth deviation calculation means performs the target point setting process, the line generation process, and the azimuth deviation calculation process described above, whereby the azimuth angle between the azimuth of the target azimuth line and the current azimuth of the vehicle is obtained. Deviation can be calculated easily. Then, the steering angle calculation means can calculate a suitable target steering angle in consideration of the steering angle error by adding the steering angle error detected by the steering angle error detection means to the azimuth angle deviation.
Thus, by performing the automatic steering of the steered wheels based on the target steering angle, it is possible to reduce the traveling offset amount with respect to the target route of the vehicle during autonomous traveling due to the steering angle error.
As a result, it is possible to suppress a decrease in the working accuracy due to the travel offset caused by the steering angle error while reducing the calculation load required to calculate the target steering angle.
 本発明の第2特徴構成は、
 前記目標経路は、前記自車の走行形態に応じて複数種類の経路部に区画され、
 前記記憶部には、前記経路部の種類に応じて異なる長さに設定された複数の前記所定距離が記憶され、
 前記方位角偏差演算手段は、前記自車が自律走行する前記経路部の種類に応じて前記所定距離を自動的に変更する点にある。
The second feature of the present invention is
The target route is divided into a plurality of types of route parts according to the traveling mode of the vehicle,
The storage unit stores a plurality of the predetermined distances set to different lengths according to the type of the path unit,
The azimuth deviation calculation means automatically changes the predetermined distance in accordance with the type of the route section on which the vehicle travels autonomously.
 本構成によれば、作業車両が自律走行する経路部の種類に応じてユーザが所定距離を手動で変更する手間を無くすことができる。また、ユーザが所定距離を間違えることや所定距離を変更し忘れることに起因した方位角偏差の演算精度の低下を防止することができる。 According to this configuration, it is possible to eliminate the trouble of the user manually changing the predetermined distance in accordance with the type of the route section on which the work vehicle travels autonomously. In addition, it is possible to prevent the decrease in the calculation accuracy of the azimuth deviation due to the user mistaking the predetermined distance or forgetting to change the predetermined distance.
 本発明の第3特徴構成は、
 前記目標経路は、前記自車の走行形態に応じて複数種類の経路部に区画され、
 前記方位角偏差演算手段は、前記現在位置が現在の経路部から種類の異なる次の経路部に切り替わるまでの間は、前記現在の経路部の延長線上に前記目標地点を設定する点にある。
The third characterizing feature of the present invention is
The target route is divided into a plurality of types of route parts according to the traveling mode of the vehicle,
The azimuth deviation calculation means is to set the target point on the extension of the current route portion until the current position is switched from the current route portion to the next route portion of a different type.
 本構成によれば、例えば、自車が直進経路部を自律走行している間は、直進経路部での自律走行に適した目標地点を設定することができ、この目標地点から直進経路部での自律走行に適した目標操舵角を演算することができる。また、例えば、自車が旋回経路部を自律走行している間は、旋回経路部での自律走行に適した目標地点を設定することができ、この目標地点から旋回経路部での自律走行に適した目標操舵角を演算することができる。その結果、自車が目標経路を自律走行するときの走行精度を高めることができる。 According to this configuration, for example, while the vehicle is autonomously traveling on the straight path portion, it is possible to set a target point suitable for autonomous traveling on the straight path portion, and from this target point on the straight path portion A target steering angle suitable for autonomous traveling of the vehicle can be calculated. Further, for example, while the vehicle is autonomously traveling in the turning route portion, it is possible to set a target point suitable for autonomous traveling in the turning route portion, and from this target point to autonomous traveling in the turning route portion A suitable target steering angle can be calculated. As a result, it is possible to improve the traveling accuracy when the vehicle autonomously travels on the target route.
 本発明の第4特徴構成は、
 予め生成された目標経路を記憶する記憶部と、自車の現在位置および現在方位を測定する測位ユニットと、前記自車が前記目標経路を自律走行するように操舵輪を自動操舵する自動操舵ユニットとを備え、
 前記自動操舵ユニットは、前記操舵輪の目標操舵角を設定する操舵角設定部と、前記操舵輪の操舵角を検出する舵角センサとを有し、
 前記操舵角設定部は、前記目標操舵角を演算する操舵角演算手段と、自律走行時の舵角誤差を検出する舵角誤差検出手段と、前記舵角誤差にて前記目標操舵角を補正する舵角補正手段とを有し、
 前記舵角誤差検出手段は、自律走行中に前記現在位置から進行方向側に一定距離をあけた前記目標経路上に注視点を設定する注視点設定処理と、前記現在位置から前記注視点にわたる線分を生成する線分生成処理と、前記目標経路と前記線分とがなす角度を前記舵角誤差として演算する舵角誤差演算処理とを行い、
 前記舵角補正手段は、前記舵角誤差演算処理で得た前記舵角誤差を前記目標操舵角に足し合わせる補正処理を行う点にある。
The fourth characterizing feature of the present invention is
A storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and an automatic steering unit for automatically steering steered wheels so that the vehicle autonomously travels the target route Equipped with
The automatic steering unit has a steering angle setting unit that sets a target steering angle of the steered wheels, and a steering angle sensor that detects a steered angle of the steered wheels.
The steering angle setting unit corrects the target steering angle with a steering angle error, a steering angle calculation unit that calculates the target steering angle, a steering angle error detection unit that detects a steering angle error during autonomous traveling, and And a steering angle correction means,
The steering angle error detection means sets a gaze point setting process on the target route with a predetermined distance from the current position to the traveling direction side during autonomous traveling, and a line extending from the current position to the gaze point A line segment generation process for generating a minute, and a steering angle error calculation process for calculating an angle formed by the target route and the line segment as the steering angle error,
The steering angle correction means performs correction processing for adding the steering angle error obtained by the steering angle error calculation processing to the target steering angle.
 本構成によれば、舵角誤差検出手段が、前述した注視点設定処理と線分生成処理と舵角誤差演算処理とを行うことにより、自律走行時の舵角誤差を簡単に検出することができる。そして、舵角補正手段が、前述した補正処理を行うことにより、舵角誤差が考慮された目標操舵角を得ることができ、この補正後の目標操舵角に基づいて操舵輪の自動操舵を行うことにより、舵角誤差に起因した自律走行時における自車の目標経路に対する走行オフセット量を低下させることができる。
 その結果、舵角誤差の演算に要する演算負荷を軽減しながら、舵角誤差に起因した走行オフセットによる作業精度の低下を抑制することができる。
According to this configuration, the steering angle error detection means can easily detect the steering angle error at the time of autonomous traveling by performing the gaze point setting process, the line segment generation process, and the steering angle error calculation process described above. it can. Then, the steering angle correction means can obtain the target steering angle in which the steering angle error is taken into consideration by performing the above-described correction processing, and performs automatic steering of the steered wheels based on the corrected target steering angle. As a result, it is possible to reduce the travel offset amount with respect to the target route of the vehicle at the time of autonomous travel due to the steering angle error.
As a result, it is possible to suppress a decrease in the working accuracy due to the travel offset caused by the steering angle error while reducing the calculation load required to calculate the steering angle error.
 本発明の第5特徴構成は、
 前記舵角誤差検出手段は、前記舵角誤差の検出を許容する所定条件が成立しているか否かを判別する検出条件判別処理と、前記所定条件が成立するまでの間は前記舵角誤差の検出を禁止する検出禁止処理とを行う点にある。
The fifth characterizing feature of the present invention is
The steering angle error detection means determines whether or not a predetermined condition for allowing detection of the steering angle error is satisfied, and the steering angle error is detected until the predetermined condition is satisfied. The point is to perform a detection prohibition process to prohibit the detection.
 本構成によれば、作業車両が自律走行を開始した直後に生じる初期偏差などが、舵角誤差検出手段によって舵角誤差として検出されることにより、舵角誤差検出手段による舵角誤差の検出確度の低下を防止することができる。
 これにより、目標操舵角が検出確度の低い舵角誤差で補正され、この補正後の目標操舵角に基づいて操舵輪の自動操舵が行われることに起因して、自律走行時における作業車両の目標経路に対する走行オフセット量が低下し難くなる不都合の発生を回避することができる。
According to this configuration, the steering angle error detection means detects the initial deviation or the like occurring immediately after the work vehicle starts autonomous traveling as the steering angle error by the steering angle error detection means, so that the detection accuracy of the steering angle error by the steering angle error detection means Can be prevented.
As a result, the target steering angle is corrected with a steering angle error having a low detection accuracy, and the automatic steering of the steered wheels is performed on the basis of the corrected target steering angle. It is possible to avoid the occurrence of the problem that the travel offset amount to the route is less likely to decrease.
 本発明の第6特徴構成は、
 前記舵角誤差検出手段は、前記検出条件判別処理においては、前記自車が自律走行の開始から自律走行が整定するまでに要する一定距離を走行した場合に前記所定条件が成立したと判断する点にある。
The sixth characterizing feature of the present invention is
In the detection condition determination process, the steering angle error detection means determines that the predetermined condition is satisfied when the vehicle travels a certain distance required from the start of the autonomous traveling to the settling of the autonomous traveling. It is in.
 本構成によれば、自車が自律走行を開始してから一定距離を走破するまでの間は、検出禁止処理によって舵角誤差の検出が禁止される。
 これにより、自車が自律走行を開始してから自律走行が整定するまでの間においても、舵角誤差の検出と、検出した舵角誤差に基づく目標操舵角の補正が行われることにより、舵角誤差の検出確度が低下し、この検出確度の低い舵角誤差で補正された目標操舵角に基づいて操舵輪の自動操舵が行われることに起因して、自律走行時における作業車両の目標経路に対する走行オフセット量が低下し難くなる不都合の発生を回避することができる。
According to this configuration, detection of the steering angle error is prohibited by the detection prohibiting process from the start of the autonomous traveling of the vehicle to the time when the vehicle travels a certain distance.
Thus, the steering angle error is detected and the target steering angle is corrected based on the detected steering angle error even during the period from when the vehicle starts autonomous traveling to when the autonomous traveling settles. The target path of the working vehicle at the time of autonomous traveling due to the fact that the detection accuracy of the angular error is reduced and the automatic steering of the steered wheels is performed based on the target steering angle corrected by the low steering angle error of this detection accuracy. It is possible to avoid the occurrence of the problem that the traveling offset amount for the vehicle becomes difficult to decrease.
 本発明の第7特徴構成は、
 前記舵角誤差検出手段は、前記自車が舵角誤差検出用の設定距離を走行するまでの間において、前記舵角誤差の検出を複数回行うとともに、この複数回分の前記舵角誤差の平均値を求めて前記平均値を補正処理用の舵角誤差とする平均化処理を行う点にある。
The seventh characterizing feature of the present invention is
The steering angle error detection means performs the detection of the steering angle error a plurality of times until the vehicle travels the set distance for detecting the steering angle error, and the average of the steering angle errors for a plurality of times is detected. A point is that averaging is performed to obtain a value and use the average value as a steering angle error for correction processing.
 本構成によれば、前述した平均化処理によって舵角誤差検出手段による舵角誤差の検出確度を高めることができる。そして、この検出確度の高い舵角誤差で補正された目標操舵角に基づいて操舵輪の自動操舵が行われることにより、自律走行時における自車の目標経路に対する走行オフセット量をより確実に低下させることができる。その結果、走行オフセットによる作業精度の低下をより効果的に抑制することができる。 According to this configuration, the detection accuracy of the steering angle error by the steering angle error detection means can be enhanced by the above-described averaging process. Then, the steering wheel is automatically steered on the basis of the target steering angle corrected with the steering angle error having a high detection accuracy, thereby more reliably reducing the traveling offset amount with respect to the target route of the vehicle during autonomous traveling. be able to. As a result, it is possible to more effectively suppress the decrease in work accuracy due to the traveling offset.
 本発明の第8特徴構成は、
 前記舵角誤差検出手段は、自律走行中に前記自車が舵角誤差再検出用の設定距離を走行するごとに前記舵角誤差を再検出して前記舵角誤差を更新する点にある。
The eighth characterizing feature of the present invention is
The steering angle error detection means redetects the steering angle error and updates the steering angle error each time the vehicle travels a set distance for steering angle error redetection during autonomous traveling.
 本構成によれば、舵角誤差検出手段は、更新処理によって舵角誤差を更新するごとに舵角誤差の検出確度を高めることができる。そして、この更新ごとに検出確度が高められた舵角誤差で補正された目標操舵角に基づいて操舵輪の自動操舵が行われることにより、自車の自律走行距離が長くなるほど、自律走行時における自車の目標経路に対する走行オフセット量を低下させることができ、走行オフセットによる作業精度の低下をより効果的に抑制することができる。 According to this configuration, the steering angle error detection means can increase the detection accuracy of the steering angle error each time the steering angle error is updated by the updating process. Then, the automatic steering of the steered wheels is performed based on the target steering angle corrected with the steering angle error at which the detection accuracy is enhanced for each update, and as the autonomous travel distance of the own vehicle becomes longer, The travel offset amount with respect to the target route of the own vehicle can be reduced, and a reduction in work accuracy due to the travel offset can be more effectively suppressed.
第1実施形態における作業車両用の自律走行システムの概略構成を示す図The figure which shows schematic structure of the autonomous travel system for work vehicles in a 1st embodiment 第1実施形態における作業車両用の自律走行システムの概略構成を示すブロック図Block diagram showing a schematic configuration of an autonomous travel system for a work vehicle in the first embodiment 第1実施形態における圃場にて作業車両が自律走行するために生成された目標経路の一例を示す図A diagram showing an example of a target route generated for autonomous traveling of a work vehicle in a field in the first embodiment 第1実施形態における作業車両が直進作業経路部を自律走行している状態での方位角偏差の演算に関する説明図Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 1st Embodiment is autonomously traveling on a straight work path part 第1実施形態における作業車両が後進直進経路部を自律走行している状態での方位角偏差の演算に関する説明図Explanatory drawing about the calculation of the azimuth deviation in the state in which the work vehicle in the first embodiment travels autonomously on the backward straight traveling route portion 第1実施形態における作業車両が旋回経路部を自律走行している状態での方位角偏差の演算に関する説明図Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 1st Embodiment is autonomously traveling in the turning path part 第1実施形態における作業車両が旋回経路部を自律走行している状態での方位角偏差の演算に関する詳細説明図Detailed explanatory drawing about calculation of azimuth deviation in the state where the work vehicle in the first embodiment is autonomously traveling in the turning path portion 第1実施形態における作業車両の自律走行時に作業車両が舵角誤差で目標経路に対して走行オフセットした状態を示す説明図An explanatory view showing a state where the working vehicle travels offset with respect to a target route due to a steering angle error during autonomous traveling of the working vehicle in the first embodiment 第1実施形態における舵角誤差の検出に関する説明図Explanatory drawing about detection of the steering angle error in 1st Embodiment 第1実施形態における舵角誤差の検出に関するフローチャートFlow chart on detection of steering angle error in the first embodiment 第1実施形態における目標地点の設定に関する説明図Explanatory drawing about the setting of the target point in 1st Embodiment 第2実施形態における作業車両用の自律走行システムの概略構成を示す図The figure which shows schematic structure of the autonomous travel system for work vehicles in a 2nd embodiment 第2実施形態における作業車両用の自律走行システムの概略構成を示すブロック図Block diagram showing a schematic configuration of an autonomous traveling system for a work vehicle in a second embodiment 第2実施形態における圃場にて作業車両が自律走行するために生成された目標経路の一例を示す図The figure which shows an example of the target path | route produced | generated in order that a work vehicle autonomously travels in the field in 2nd Embodiment. 第2実施形態における作業車両が直進作業経路部を自律走行している状態での方位角偏差の演算に関する説明図Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 2nd Embodiment is autonomously traveling on a straight work path part 第2実施形態における作業車両が後進直進経路部を自律走行している状態での方位角偏差の演算に関する説明図Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 2nd Embodiment is autonomously traveling on reverse going straight path part 第2実施形態における作業車両が旋回経路部を自律走行している状態での方位角偏差の演算に関する説明図Explanatory drawing about calculation of the azimuth deviation in the state which the working vehicle in 2nd Embodiment is autonomously traveling in the turning path part 第2実施形態における作業車両が旋回経路部を自律走行している状態での方位角偏差の演算に関する詳細説明図Detailed explanatory drawing about calculation of azimuth deviation in a state where a work vehicle in the second embodiment is autonomously traveling in a turning path portion 第2実施形態における目標地点の設定に関する説明図Explanatory drawing about the setting of the target point in 2nd Embodiment 第2実施形態における作業車両の自律走行時に作業車両が舵角誤差で目標経路に対して走行オフセットした状態を示す説明図An explanatory view showing a state where the working vehicle travels offset with respect to a target route due to a steering angle error during autonomous traveling of the working vehicle in the second embodiment 第2実施形態における舵角誤差の検出に関する説明図Explanatory drawing about detection of the steering angle error in 2nd Embodiment 第2実施形態における舵角誤差の検出に関するフローチャートFlow chart on detection of steering angle error in the second embodiment
〔第1実施形態〕
 本発明に係る作業車両用の自律走行システムを、作業車両の一例であるトラクタに適用した第1実施形態を図面に基づいて説明する。
 なお、本発明に係る作業車両用の自律走行システムは、トラクタ以外の、乗用田植機、コンバイン、乗用草刈機、ホイールローダ、除雪車、などの乗用作業車両、および、無人草刈機などの無人作業車両に適用することができる。
First Embodiment
A first embodiment in which an autonomous traveling system for a work vehicle according to the present invention is applied to a tractor which is an example of a work vehicle will be described based on the drawings.
The autonomous traveling system for work vehicles according to the present invention is a work vehicle other than a tractor, such as a riding rice planter, a combine, a riding grass mower, a wheel loader, a snow removal vehicle, and an unmanned grass mower etc. It can be applied to vehicles.
 図1~2に示すように、本第1実施形態に例示する作業車両用の自律走行システムは、トラクタ1に搭載された自律走行ユニット2、および、自律走行ユニット2と通信可能に通信設定された携帯通信端末3、などを備えている。携帯通信端末3には、タッチ操作可能な液晶パネル4などを有するタブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。 As shown in FIGS. 1 and 2, the autonomous traveling system for a work vehicle illustrated in the first embodiment is set to be communicable with the autonomous traveling unit 2 mounted on the tractor 1 and the autonomous traveling unit 2. Mobile communication terminal 3 and the like. As the mobile communication terminal 3, a tablet-type personal computer, a smart phone, or the like having a touch-operable liquid crystal panel 4 or the like can be adopted.
 図1に示すように、トラクタ1は、その後部に3点リンク機構5を介して、作業装置の一例であるロータリ耕耘装置6が昇降可能かつローリング可能に連結されることにより、ロータリ耕耘仕様に構成されている。
 なお、トラクタ1の後部には、ロータリ耕耘装置6に代えて、プラウ、播種装置、散布装置、などの作業装置を連結することができる。
As shown in FIG. 1, the tractor 1 is connected to the rotary tillage specification by the rotary tilling device 6, which is an example of the working device, connected to the rear portion via the three-point link mechanism 5 so as to be movable up and down. It is configured.
In addition, it can replace with the rotary tilling apparatus 6, and can connect work apparatuses, such as a plow, a sowing apparatus, a scattering apparatus, to the rear part of the tractor 1. FIG.
 図1~2に示すように、トラクタ1には、駆動可能な操舵輪として機能する左右の前輪7、駆動可能な左右の後輪8、搭乗式の運転部を形成するキャビン9、コモンレールシステムを備えた電子制御式のディーゼルエンジン(以下、エンジンと称する)10、エンジン10からの動力を変速する電子制御式の変速装置11、左右の前輪7を操舵する全油圧式のパワーステアリング機構12、左右の後輪8を制動する左右のサイドブレーキ(図示せず)、左右のサイドブレーキの油圧操作を可能にする電子制御式のブレーキ操作機構13、ロータリ耕耘装置6への伝動を断続する作業クラッチ(図示せず)、作業クラッチの油圧操作を可能にする電子制御式のクラッチ操作機構14、ロータリ耕耘装置6を昇降駆動する電子油圧制御式の昇降駆動機構15、自車(トラクタ)1の自律走行などに関する各種の制御プログラムなどを有する車載電子制御ユニット(以下、車載ECUと称する)16、自車1の車速を検出する車速センサ17、前輪7の操舵角を検出する舵角センサ18、および、自車1の現在位置および現在方位を測定する測位ユニット19、などが備えられている。
 なお、エンジン10には、電子ガバナを備えた電子制御式のガソリンエンジンを採用してもよい。変速装置11には、油圧機械式無段変速装置(HMT)、静油圧式無段変速装置(HST)、または、ベルト式無段変速装置、などを採用することができる。パワーステアリング機構12には、電動モータを備えた電動式のパワーステアリング機構12などを採用してもよい。
As shown in FIGS. 1 and 2, the tractor 1 includes left and right front wheels 7 functioning as drivable steerable wheels, left and right drivable rear wheels 8, a cabin 9 forming a riding type driving unit, and a common rail system. An electronically controlled diesel engine (hereinafter referred to as the engine) 10, an electronically controlled transmission 11 for shifting power from the engine 10, a full hydraulic power steering mechanism 12 for steering the left and right front wheels 7, The left and right side brakes (not shown) that brake the rear wheel 8, the electronically controlled brake operation mechanism 13 that enables hydraulic operation of the left and right side brakes, and the working clutch that interrupts transmission to the rotary cultivator 6 (Not shown), an electronically controlled clutch operating mechanism 14 which enables hydraulic operation of the working clutch, and an electrohydraulic controlled lifting drive for lifting and lowering the rotary cultivator 6 A mechanism 15, an on-vehicle electronic control unit (hereinafter referred to as an on-vehicle ECU) 16 having various control programs related to autonomous traveling of the vehicle (tractor) 1 etc., a vehicle speed sensor 17 for detecting the vehicle speed of the vehicle 1, A steering angle sensor 18 for detecting a steering angle, and a positioning unit 19 for measuring a current position and a current direction of the vehicle 1 are provided.
The engine 10 may be an electronically controlled gasoline engine equipped with an electronic governor. For the transmission 11, a hydromechanical continuously variable transmission (HMT), a hydrostatic continuously variable transmission (HST), a belt type continuously variable transmission, or the like can be adopted. The power steering mechanism 12 may be, for example, an electric power steering mechanism 12 provided with an electric motor.
 図1に示すように、キャビン9の内部には、パワーステアリング機構12を介した左右の前輪7の手動操舵を可能にするステアリングホイール20およびユーザ用の座席21が備えられている。また、図示は省略するが、変速装置11の手動操作を可能にする変速レバー、左右のサイドブレーキの人為操作を可能にする左右のブレーキペダル、および、ロータリ耕耘装置6の手動昇降操作を可能にする昇降レバー、などが備えられている。 As shown in FIG. 1, a steering wheel 20 and a seat 21 for a user are provided inside the cabin 9 to enable manual steering of the left and right front wheels 7 via the power steering mechanism 12. Also, although not shown, a shift lever that enables manual operation of the transmission 11, a left and right brake pedal that enables manual operation of the left and right side brakes, and a manual lifting operation of the rotary tilling device 6 Lift levers, etc. are provided.
 図2に示すように、車載ECU16は、変速装置11の作動を制御する変速制御部16A、左右のサイドブレーキの作動を制御する制動制御部16B、ロータリ耕耘装置6の作動を制御する作業装置制御部16C、予め生成された自律走行用の目標経路Pなどを記憶する不揮発性の車載記憶部16D、および、自律走行時に左右の前輪7の目標操舵角θsを設定してパワーステアリング機構12に出力する操舵角設定部16E、などを有している。 As shown in FIG. 2, the on-vehicle ECU 16 controls a shift control unit 16A that controls the operation of the transmission 11, a brake control unit 16B that controls the operation of the left and right side brakes, and a working device control that controls the operation of the rotary tilling device 6. 16C, a non-volatile vehicle storage unit 16D for storing a previously generated target route P for autonomous traveling, etc., and the target steering angle θs of the front wheels 7 on both sides during autonomous traveling, and output to the power steering mechanism 12 Steering angle setting unit 16E, and the like.
 図1~3に示すように、測位ユニット19には、全地球航法衛星システム(GNSS:Global Navigation Satellite System)の一例であるGPS(Global Positioning System)を利用して自車1の現在位置p1と現在方位θ1とを測定する衛星航法装置22、および、3軸のジャイロスコープおよび3方向の加速度センサなどを有して自車1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)23、などが備えられている。GPSを利用した測位方法には、DGPS(Differential GPS:相対測位方式)やRTK-GPS(Real Time Kinematic GPS:干渉測位方式)などがあり、本第1実施形態においては、移動体の測位に適したRTK-GPSが採用されている。そのため、圃場周辺の既知位置には、RTK-GPSによる測位を可能にする基準局24が設置されている。 As shown in FIGS. 1 to 3, the positioning unit 19 uses the GPS (Global Positioning System), which is an example of the Global Navigation Satellite System (GNSS), and the current position p1 of the vehicle 1 An inertial measurement unit (IMU: Inertial Measurement Unit) that measures the attitude, orientation, etc. of the vehicle 1 with a satellite navigation device 22 that measures the current orientation θ1, a three-axis gyroscope, three-direction acceleration sensors, etc. ) 23, etc. are provided. Positioning methods using GPS include DGPS (Differential GPS: relative positioning method), RTK-GPS (Real Time Kinematic GPS: interference positioning method), etc. In the first embodiment, it is suitable for positioning of a mobile object. RTK-GPS is adopted. Therefore, a reference station 24 that enables positioning by RTK-GPS is installed at a known position around the farmland.
 トラクタ1と基準局24とのそれぞれには、GPS衛星25から送信された電波を受信するGPSアンテナ26,27、および、トラクタ1と基準局24との間における測位データを含む各種データの無線通信を可能にする通信モジュール28,29、などが備えられている。これにより、衛星航法装置22は、トラクタ側のGPSアンテナ26がGPS衛星25からの電波を受信して得た測位データと、基地局側のGPSアンテナ27がGPS衛星25からの電波を受信して得た測位データとに基づいて、自車1の現在位置p1および現在方位θ1を高い精度で測定することができる。また、測位ユニット19は、衛星航法装置22と慣性計測装置23とを備えることにより、自車1の現在位置p1、現在方位θ1、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。 Each of the tractor 1 and the reference station 24 can wirelessly communicate various data including GPS data between the tractor 1 and the reference station 24 and GPS antennas 26 and 27 for receiving radio waves transmitted from the GPS satellite 25. Communication modules 28, 29, etc. are provided. Thereby, the satellite navigation device 22 receives the positioning data obtained by the GPS antenna 26 on the tractor side receiving radio waves from the GPS satellites 25 and the GPS antenna 27 on the base station side receives radio waves from the GPS satellites 25. The current position p1 and the current direction θ1 of the vehicle 1 can be measured with high accuracy based on the obtained positioning data. In addition, the positioning unit 19 includes the satellite navigation device 22 and the inertial measurement device 23 so that the current position p1 of the vehicle 1, the current direction θ1, and the attitude angle (yaw angle, roll angle, pitch angle) can be made with high accuracy. It can be measured.
 図2~3に示すように、携帯通信端末3には、液晶パネル4などの作動を制御する各種の制御プログラムなどを有する端末電子制御ユニット(以下、端末ECUと称する)30、および、トラクタ側の通信モジュール28との間における測位データを含む各種データの無線通信を可能にする通信モジュール31、などが備えられている。端末ECU30は、自律走行用の目標経路Pを生成する目標経路生成部30A、および、ユーザが入力した各種の入力データや目標経路生成部30Aが生成した目標経路Pなどを記憶する不揮発性の端末記憶部30B、などを有している。 As shown in FIGS. 2 to 3, the mobile communication terminal 3 includes a terminal electronic control unit (hereinafter referred to as a terminal ECU) 30 having various control programs for controlling the operation of the liquid crystal panel 4 etc. And a communication module 31 that enables wireless communication of various data including positioning data with the communication module 28 of FIG. The terminal ECU 30 is a non-volatile terminal storing a target route generation unit 30A that generates a target route P for autonomous traveling, and various input data input by the user, the target route P generated by the target route generation unit 30A, and the like. A storage unit 30B and the like are included.
 図1~3に示すように、目標経路生成部30Aは、液晶パネル4に表示された目標経路生成用の入力案内に従って、作業車両や作業装置の種類や機種のなどの車体データ、および、作業対象の圃場位置、などがユーザによって入力された場合に、入力された車体データおよび圃場位置などに基づいて、該当する目標経路Pが端末記憶部30Bに記憶されているか否かを判別する。該当する目標経路Pが記憶されている場合は、その目標経路Pを端末記憶部30Bから読み出して液晶パネル4に表示させる。該当する目標経路Pが記憶されていない場合は、目標経路Pの生成に必要な測位データを得るための測位データ取得走行の実行案内を液晶パネル4に表示させてユーザに測位データ取得走行を行わせる。そして、この測位データ取得走行中にトラクタ1との無線通信によって得られた測位データなどに基づいて、作業対象圃場の区画や形状などの圃場データを取得し、取得した圃場データ、および、車体データに含まれた最小旋回半径や作業幅、などに基づいて、このトラクタ1で作業対象の圃場を作業するのに適した目標経路Pを生成する。そして、生成した目標経路Pを、液晶パネル4に表示させるとともに、車体データおよび圃場データなどと関連付けた経路データとして端末記憶部30Bに記憶させる。経路データには、目標経路Pの方位角θp、および、目標経路Pでのトラクタ1の走行形態などに応じて設定された目標エンジン回転数や目標車速、などが含まれている。 As shown in FIGS. 1 to 3, the target route generation unit 30A follows the input guidance for target route generation displayed on the liquid crystal panel 4 to obtain vehicle data such as the type and model of the work vehicle and the work device, and When the target field position and the like are input by the user, it is determined whether or not the corresponding target route P is stored in the terminal storage unit 30B based on the input vehicle data, the field position, and the like. When the corresponding target route P is stored, the target route P is read from the terminal storage unit 30 B and displayed on the liquid crystal panel 4. When the corresponding target route P is not stored, the liquid crystal panel 4 displays an execution guidance of positioning data acquisition travel for obtaining positioning data necessary for generation of the target route P, and the user performs positioning data acquisition travel. Let Then, based on the positioning data and the like obtained by wireless communication with the tractor 1 during this positioning data acquisition traveling, the field data such as the section and the shape of the work field and the like are acquired, and the acquired field data and vehicle data The target route P suitable for working on the field to be worked with this tractor 1 is generated on the basis of the minimum turning radius, the working width, etc. included in. Then, the generated target route P is displayed on the liquid crystal panel 4 and stored in the terminal storage unit 30B as route data associated with the vehicle data and the field data. The route data includes an azimuth angle θp of the target route P, a target engine rotation speed, a target vehicle speed, and the like set according to the traveling mode of the tractor 1 on the target route P and the like.
 図3に示すように、本第1実施形態では、作業対象の圃場として矩形状に区画された圃場が例示されている。また、この矩形状の圃場に適した目標経路Pとして、同じ直進距離を有して作業幅に対応する一定距離をあけて平行に配置設定された複数の直進作業経路部P1と、隣接する直進作業経路部P1の終端地点P1eと始端地点P1sとにわたる複数の方向転換経路部P2とを備えて、トラクタ1を目標経路Pの始端地点Psから終端地点Peにわたって往復走行させる往復走行経路が例示されている。複数の直進作業経路部P1のうち、奇数列が往路部であり、偶数列が復路部である。複数の方向転換経路部P2は、直進作業経路部P1の終端地点P1eから次の直進作業経路部側に向けてトラクタ1を90度旋回させる第1旋回経路部P3と、第1旋回経路部P3の旋回終了地点P3eから前回の直進作業経路部側に向けてトラクタ1を後方に直進させる後方直進経路部P4と、後方直進経路部P4の後進終了地点P4eから次の直進作業経路部P1の始端地点P1sに向けてトラクタ1を90度旋回させる第2旋回経路部P5とに区画されている。
 つまり、目標経路Pは、自車1の走行形態に応じて複数種類の経路部P1~P5に区画されている。
 なお、図3に示す目標経路Pはあくまでも一例であり、目標経路Pは、例えば、複数の方向転換経路部P2として、直進作業経路部P1の終端地点P1eから次の直進作業経路部P1の始端地点P1sに向けてトラクタ1を180度旋回させるUターン経路部を備えるように生成されていてもよい。
As shown in FIG. 3, in the first embodiment, a field divided into a rectangular shape is illustrated as a field to be worked. In addition, as a target route P suitable for the rectangular field, a plurality of straight movement work path portions P1 having the same straight movement distance and arranged in parallel with a predetermined distance corresponding to the work width, and adjacent straight movement A reciprocating traveling route is illustrated, which includes a plurality of direction change path portions P2 extending from the end point P1e of the working path portion P1 to the start point P1s and causes the tractor 1 to reciprocate from the start point Ps of the target path P to the end point Pe. ing. Of the plurality of rectilinear work path portions P1, the odd-numbered row is the forward path portion, and the even-numbered row is the return path portion. The plurality of direction change path portions P2 are a first turning path portion P3 for turning the tractor 1 by 90 degrees from the end point P1e of the straight working path portion P1 toward the next straight working path portion, and a first turning path portion P3. A straight forward path P4 for moving the tractor 1 straight backward from the turning end point P3e toward the previous straight working path, and a starting point of the next straight working path P1 from a backward finish point P4e of the backward straight path P4 It is divided by the 2nd turning course part P5 which turns the tractor 1 90 degrees toward the point P1s.
That is, the target route P is divided into a plurality of types of route portions P1 to P5 in accordance with the traveling mode of the vehicle 1.
The target path P shown in FIG. 3 is merely an example, and the target path P is, for example, a plurality of direction change path portions P2, and from the end point P1e of the straight work path portion P1 to the start end of the next straight work path portion P1. It may be generated so as to include a U-turn path portion that turns the tractor 1 180 degrees toward the point P1s.
 図2~3に示すように、端末ECU30は、液晶パネル4にて目標経路Pが確認表示されている状態において、ユーザによる液晶パネル4の操作によって自律走行の実行が指令された場合に、その実行指令とともに表示中の目標経路Pを、通信モジュール31,28を介して車載ECU16に送信する。
 なお、目標経路Pの送信に関しては、トラクタ1が自律走行を開始する前の段階において、目標経路Pの全体が端末ECU30から車載ECU16に一挙に送信されるようにしてもよい。また、例えば、目標経路Pがデータ量の少ない所定距離ごとの複数の経路部分に分割されて、トラクタ1が自律走行を開始する前の段階においては、目標経路Pの初期経路部分のみが端末ECU30から車載ECU16に送信され、自律走行の開始後は、トラクタ1がデータ量などに応じて設定された経路取得地点に達するごとに、その地点に対応する以後の経路部分のみが端末ECU30から車載ECU16に送信されるようにしてもよい。
As shown in FIGS. 2 to 3, in the state where the target route P is confirmed and displayed on the liquid crystal panel 4, the terminal ECU 30 instructs execution of autonomous traveling by the operation of the liquid crystal panel 4 by the user. The target route P being displayed together with the execution command is transmitted to the in-vehicle ECU 16 via the communication modules 31 and 28.
With regard to the transmission of the target route P, the entire target route P may be transmitted at once from the terminal ECU 30 to the on-vehicle ECU 16 at a stage before the tractor 1 starts autonomous traveling. Also, for example, in the stage before the target route P is divided into a plurality of route portions for each predetermined distance with a small amount of data and the tractor 1 starts autonomous traveling, only the initial route portion of the target route P is the terminal ECU 30 After the start of autonomous traveling, each time the tractor 1 reaches the route acquisition point set according to the amount of data, only the route part corresponding to that point is transmitted from the terminal ECU 30 to the vehicle ECU 16. It may be sent to the
 車載ECU16は、端末ECU30からの自律走行の実行指令および目標経路Pを受け取った場合に、受け取った目標経路Pを車載記憶部16Dに記憶してデータ量を確認し、その確認後に、自車1を車載記憶部16Dに記憶した目標経路Pなどに基づいて自律走行させる自律走行制御を開始する。 When the on-board ECU 16 receives the execution command for autonomous traveling from the terminal ECU 30 and the target route P, the on-vehicle storage unit 16D stores the received target route P in the on-vehicle storage unit 16D to check the data amount. The autonomous traveling control for causing the vehicle to travel autonomously is started based on the target route P and the like stored in the on-vehicle storage unit 16D.
 自律走行制御には、変速装置11の作動を自動制御する自動変速制御、ブレーキ操作機構13の作動を自動制御する自動制動制御、左右の前輪7を自動操舵する自動操舵制御、および、ロータリ耕耘装置6の作動を自動制御する作業用自動制御、などが含まれている。
 自動変速制御においては、変速制御部16Aが、前述した目標車速を含む目標経路Pと測位ユニット19の出力と車速センサ17の出力とに基づいて、目標経路Pでのトラクタ1の走行形態などに応じて設定された目標車速が自車1の車速として得られるように変速装置11の作動を自動制御する。
 自動制動制御においては、制動制御部16Bが、目標経路Pと測位ユニット19の出力とに基づいて、目標経路Pに含まれている制動領域において左右のサイドブレーキが左右の後輪8を適正に制動するようにブレーキ操作機構13の作動を自動制御する。
 自動操舵制御においては、自車1が目標経路Pを自律走行するように、操舵角設定部16Eが、目標経路Pと測位ユニット19の出力とに基づいて左右の前輪7の目標操舵角θsを求めて設定し、設定した目標操舵角θsをパワーステアリング機構12に出力する。すると、パワーステアリング機構12が、目標操舵角θsと舵角センサ18の出力とに基づいて、目標操舵角θsが左右の前輪7の操舵角として得られるように左右の前輪7を自動操舵する。
 作業用自動制御においては、作業装置制御部16Cが、目標経路Pと測位ユニット19の出力とに基づいて、自車1が直進作業経路部P1の始端地点P1sに達するのに伴ってロータリ耕耘装置6による耕耘が開始され、かつ、自車1が直進作業経路部P1の終端地点P1eに達するのに伴ってロータリ耕耘装置6による耕耘が停止されるように、クラッチ操作機構14および昇降駆動機構15の作動を自動制御する。
For autonomous traveling control, automatic shift control for automatically controlling the operation of the transmission 11, automatic braking control for automatically controlling the operation of the brake operating mechanism 13, automatic steering control for automatically steering the left and right front wheels 7, and a rotary tilling device Automatic control for work to automatically control the operation of 6, etc. are included.
In the automatic shift control, the shift control unit 16A controls the traveling mode of the tractor 1 on the target route P based on the target route P including the target vehicle speed described above, the output of the positioning unit 19, and the output of the vehicle speed sensor 17. The operation of the transmission 11 is automatically controlled so that the target vehicle speed set accordingly is obtained as the vehicle speed of the vehicle 1.
In automatic braking control, the braking control unit 16B properly sets the left and right side brakes on the left and right side brakes in the braking area included in the target path P based on the target path P and the output of the positioning unit 19. The operation of the brake operation mechanism 13 is automatically controlled to brake.
In automatic steering control, the steering angle setting unit 16E sets the target steering angles θs of the left and right front wheels 7 based on the target path P and the output of the positioning unit 19 so that the vehicle 1 autonomously travels on the target path P. The power steering mechanism 12 outputs the target steering angle θs which has been obtained and set, and which has been set. Then, the power steering mechanism 12 automatically steers the left and right front wheels 7 based on the target steering angle θs and the output of the steering angle sensor 18 so that the target steering angle θs can be obtained as the steering angle of the left and right front wheels 7.
In automatic control for work, the rotary tilling apparatus is operated as the vehicle 1 reaches the start point P1s of the straight work path portion P1 based on the target path P and the output of the positioning unit 19 in the working device control unit 16C. 6. The clutch operating mechanism 14 and the elevation drive mechanism 15 are set so that the tilling by the rotary tilling device 6 is stopped when the tilling by 6 is started and the own vehicle 1 reaches the end point P1e of the straight working path portion P1. Automatically control the operation of
 つまり、このトラクタ1においては、変速装置11、パワーステアリング機構12、ブレーキ操作機構13、クラッチ操作機構14、昇降駆動機構15、車載ECU16、車速センサ17、舵角センサ18、測位ユニット19、および、通信モジュール28、などによって自律走行ユニット2が構成されている。また、パワーステアリング機構12、車載ECU16、および、舵角センサ18により、自車1が目標経路Pを自律走行するように左右の前輪7を自動操舵する自動操舵ユニット32が構成されている。 That is, in the tractor 1, the transmission 11, the power steering mechanism 12, the brake operation mechanism 13, the clutch operation mechanism 14, the elevation drive mechanism 15, the on-vehicle ECU 16, the vehicle speed sensor 17, the steering angle sensor 18, the positioning unit 19, The autonomous traveling unit 2 is configured by the communication module 28 and the like. The power steering mechanism 12, the on-vehicle ECU 16, and the steering angle sensor 18 constitute an automatic steering unit 32 for automatically steering the left and right front wheels 7 so that the vehicle 1 autonomously travels on the target path P.
 目標操舵角θsの設定について詳述すると、図2~7に示すように、操舵角設定部16Eは、方位角偏差θdを演算する方位角偏差演算手段16Eaと、自律走行時の舵角誤差θeを検出する舵角誤差検出手段16Ebと、方位角偏差θdと舵角誤差θeとから目標操舵角θsを演算する操舵角演算手段16Ecとを有している。 If setting of the target steering angle θs is described in detail, as shown in FIGS. 2 to 7, the steering angle setting unit 16E calculates azimuth angle deviation calculating means 16Ea for calculating the azimuth angle deviation θd, and steering angle error θe during autonomous traveling. The steering angle error detection unit 16Eb detects the steering angle error, and the steering angle calculation unit 16Ec calculates the target steering angle θs from the azimuth angle deviation θd and the steering angle error θe.
 方位角偏差演算手段16Eaは、自律走行中に自車1の現在位置p1から進行方向側に所定距離D1をあけた目標経路上に目標地点p2を設定する目標地点設定処理と、自車1の現在位置p1から目標地点p2にわたる目標方位ラインL1を生成するライン生成処理と、自車1の現在方位θ1と目標方位ラインL1とがなす角度を方位角偏差θdとして演算する方位角偏差演算処理とを行う。 The azimuth deviation calculation means 16Ea sets a target point p2 on a target route with a predetermined distance D1 in the direction of travel from the current position p1 of the vehicle 1 during autonomous traveling, and Line generation processing for generating a target azimuth line L1 from the current position p1 to the target point p2, and azimuth deviation calculation processing for calculating an angle formed by the current azimuth θ1 of the vehicle 1 and the target azimuth line L1 as the azimuth deviation θd I do.
 方位角偏差演算処理について詳述すると、方位角偏差演算処理においては、図4~5に示すように、現在の自車1の走行経路が直進作業経路部P1または後方直進経路部P4であれば、自車1の現在位置p1から目標地点p2への向き(目標方位ラインL1の方位)を目標方位角θ2とし、目標経路Pと目標方位ラインL1とがなす角度を走行補正角θcとすれば、直進作業経路部P1での目標方位角θ2は、
 目標方位角θ2=直進作業経路部P1の方位角θp1+走行補正角θc
となり、後方直進経路部P4での目標方位角θ2は、
 目標方位角θ2=後方直進経路部P4の方位角θp4+走行補正角θc
となる。
 ここで、直進作業経路部P1の方位角θp1および後方直進経路部P4の方位角θp4は、目標経路Pを生成する段階において既知であるが、これらを演算する場合は、直進作業経路部P1の始端地点P1sから終端地点P1eへのベクトルV1のE成分(x成分)をV1eとし、ベクトルV1のN成分(y成分)をV1nとすれば、
 直進作業経路部P1の方位角θp1=atan2(V1e,V1n)
となる。また、後方直進経路部P4の始端位置から終端位置へのベクトルV4のE成分(x成分)をV4eとし、ベクトルV4のN成分(y成分)をV4nとすれば、
 後方直進経路部P4の方位角θp4=atan2(V4e,V4n)
となる。そして、走行補正角θcは、NED座標上での自車1の走行経路からの横方向偏差をD2とすれば、目標地点設定用の所定距離がD1であることから、
 走行補正角θc=asin(横方向偏差D2/所定距離D1)
となり、これらにより、目標方位角θ2を求めることができ、求めた目標方位角θ2と測位ユニット19が測定した自車1の現在方位θ1との差から方位角偏差θdを得ることができる。
 一方、図6~7に示すように、現在の自車1の走行経路が第1旋回経路部P3または第2旋回経路部P5であれば、それらの各旋回経路部P3,P5の旋回中心ptから自車1へのベクトルVvとN軸とがなす角度をθvとすれば、方位角偏差θdは、前述した角度θvと自車1の現在方位θ1と走行補正角θcとから、
 方位角偏差θd=角度θv+SignTrn×90-現在方位θ1+SignTrn×(90-走行補正角θc)
によって求めることができる。
 ここで、この式中の単位には全てに度が用いられており、式中の「90」は90度を示している。また、「SignTrn」に関しては、旋回方向が時計周りの方向であれば「1」となり、旋回方向が反時計周りの方向であれば「-1」となる。そして、上記の式における走行補正角θcは、目標地点設定用の所定距離D1と、旋回経路部P3,P5の旋回中心ptから自車1までの距離D3と、旋回経路部P3,P5の旋回半径Rとから、
 走行補正角θc=acos((D3^2+D1^2-R^2)/(2×D3×D1)
によって求めることができ、この式における旋回経路部P3,P5の旋回中心ptから自車1までの距離D3は、旋回経路部P3,P5の旋回半径Rと、NED座標上での自車1の旋回経路部P3,P5からの横方向偏差D2とから、
 距離D3=旋回半径R+横方向偏差D2
によって求めることができる。
In the azimuth deviation calculation process, as shown in FIGS. 4 to 5, if the current travel path of the vehicle 1 is the straight work path portion P1 or the backward straight path portion P4, as shown in FIGS. If the direction from the current position p1 of the vehicle 1 to the target point p2 (the azimuth of the target azimuth line L1) is the target azimuth angle θ2, and the angle between the target route P and the target azimuth line L1 is the traveling correction angle θc , The target azimuth angle θ2 at the straight working path portion P1 is
Target azimuth angle θ2 = azimuth angle θp1 of straight working path portion P1 + traveling correction angle θc
The target azimuth angle θ2 at the rear straight path portion P4 is
Target azimuth angle θ2 = azimuth angle θp4 of the rear straight path portion P4 + traveling correction angle θc
It becomes.
Here, the azimuth angle θp1 of the straight working path portion P1 and the azimuth angle θp4 of the backward straight path portion P4 are known at the stage of generating the target path P, but when these are calculated, the straight working path portion P1 is Assuming that the E component (x component) of the vector V1 from the start point P1s to the end point P1e is V1e and the N component (y component) of the vector V1 is V1n,
Azimuth angle θp1 = atan2 (V1e, V1n) of the straight working path portion P1
It becomes. Further, assuming that the E component (x component) of the vector V4 from the start position to the end position of the straight rear path portion P4 is V4e and the N component (y component) of the vector V4 is V4n,
Azimuth angle θp4 = atan2 (V4e, V4n) of the rear straight path portion P4
It becomes. Then, assuming that the travel correction angle θc is a lateral deviation from the travel route of the vehicle 1 on the NED coordinates as D2, the predetermined distance for setting the target point is D1,
Travel correction angle θc = asin (lateral deviation D2 / predetermined distance D1)
Thus, the target azimuth θ2 can be determined, and the azimuth deviation θd can be obtained from the difference between the determined target azimuth θ2 and the current azimuth θ1 of the vehicle 1 measured by the positioning unit 19.
On the other hand, as shown in FIGS. 6 to 7, if the current travel route of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5, the turning centers pt of the respective turning path portions P3, P5. Assuming that the angle between the vector Vv and the N axis from the vehicle 1 to the N axis is θv, the azimuth deviation θd is obtained from the aforementioned angle θv, the current direction θ1 of the vehicle 1 and the travel correction angle θc
Azimuth deviation θd = angle θv + SignTrn × 90−present azimuth θ1 + SignTrn × (90−travel correction angle θc)
It can be determined by
Here, degrees are used for all units in this formula, and "90" in the formula indicates 90 degrees. Further, with regard to “Sign Trn”, it is “1” when the turning direction is the clockwise direction, and “−1” when the turning direction is the counterclockwise direction. The travel correction angle θc in the above equation is a predetermined distance D1 for setting a target point, a distance D3 from the turning center pt of the turning path portions P3 and P5 to the vehicle 1, and turning of the turning path portions P3 and P5. From the radius R,
Travel correction angle θc = acos ((D3 ^ 2 + D1 ^ 2-R ^ 2) / (2 × D3 × D1)
The distance D3 from the turning center pt of the turning path portions P3 and P5 to the vehicle 1 in this equation is the turning radius R of the turning path portions P3 and P5, and the distance D3 of the vehicle 1 on the NED coordinates. From the lateral deviation D2 from the turning path parts P3 and P5,
Distance D3 = turning radius R + lateral deviation D2
It can be determined by
 ところで、方位角偏差演算手段16Eaが演算する方位角偏差θdは、上記のように目標方位角θ2と自車1の現在方位θ1との差であることから、目標操舵角θsとして使用することも考えられるが、この場合、トラクタ1などの作業車両においては、舵角センサ18の個体差などに起因した舵角誤差θeがステアリング系に含まれていることから、自律走行時には、その舵角誤差θeに起因して、図8に示すように、作業車両が目標経路Pに対する一定の走行オフセット量Soを残した状態で走行することになる。その結果、走行オフセットに起因した作業精度の低下を招くことになる。 By the way, since the azimuth deviation θd calculated by the azimuth deviation calculation means 16Ea is the difference between the target azimuth θ2 and the current azimuth θ1 of the vehicle 1 as described above, it can also be used as the target steering angle θs. In this case, in the working vehicle such as the tractor 1, since the steering angle error θe caused by the individual difference of the steering angle sensor 18 is included in the steering system, the steering angle error during autonomous traveling is considered. Due to θe, as shown in FIG. 8, the work vehicle travels in a state where a certain travel offset amount So with respect to the target route P is left. As a result, the working accuracy is reduced due to the traveling offset.
 そこで、その走行オフセットに起因した作業精度の低下を抑制するために、操舵角設定部16Eは、前述したように舵角誤差検出手段16Ebと操舵角演算手段16Ecとを有している。
 図9~10に示すように、舵角誤差検出手段16Ebは、目標経路Pの直進作業経路部P1での自車1の自律走行による直進走行時に、自車1の現在位置p1から進行方向側(前方側)に一定距離D4をあけた目標経路上に注視点p3を設定する注視点設定処理(ステップ#3)と、自車1の現在位置から注視点p3にわたる線分L2を生成する線分生成処理(ステップ#4)と、目標経路Pと線分L2とがなす角度を舵角誤差θeとして演算する舵角誤差演算処理(ステップ#5)とを行う。そして、舵角誤差演算処理においては、NED座標上での自車1の直進作業経路部P1からの横方向偏差をD5とすれば、注視点設定用の一定距離がD4であることから、舵角誤差θeを、
 舵角誤差θe=asin(横方向偏差D5/一定距離D4)
によって求めることができる。
 操舵角演算手段16Ecは、上記の舵角誤差演算処理で得た舵角誤差θeを前述した方位角偏差演算処理で得た方位角偏差θdに足し合わて目標操舵角θsを演算する操舵角演算処理を行う。
 これにより、目標操舵角θsを舵角誤差θeが考慮された好適な値に演算することができ、この目標操舵角θsをパワーステアリング機構12に出力することにより、自律走行時における自車1の目標経路Pに対する走行オフセット量Soを低下させることができる。その結果、走行オフセットによる作業精度の低下を抑制することができる。
 つまり、目標操舵角θsを演算する上において操舵角設定部16Eにかかる演算負荷を軽減しながら、目標操舵角θsを舵角誤差θeが考慮された好適な値に演算することができる。
Therefore, in order to suppress the decrease in work accuracy caused by the travel offset, the steering angle setting unit 16E has the steering angle error detection unit 16Eb and the steering angle calculation unit 16Ec as described above.
As shown in FIGS. 9 to 10, the steering angle error detection means 16Eb moves from the current position p1 of the vehicle 1 to the traveling direction during straight traveling by autonomous traveling of the vehicle 1 in the straight operation route portion P1 of the target route P. A fixation point setting process (step # 3) for setting a fixation point p3 on a target route with a fixed distance D4 (front side) and a line for generating a line L2 from the current position of the vehicle 1 to the fixation point p3 A minute generation process (step # 4) and a steering angle error calculation process (step # 5) for calculating an angle formed by the target path P and the line segment L2 as the steering angle error θe are performed. Then, in the steering angle error calculation process, assuming that the lateral deviation from the straight working path portion P1 of the vehicle 1 on the NED coordinates is D5, the constant distance for setting the fixation point is D4, The angular error θe
Steering angle error θe = asin (lateral deviation D5 / fixed distance D4)
It can be determined by
The steering angle calculation means 16Ec calculates a target steering angle θs by adding the steering angle error θe obtained by the steering angle error calculation process to the azimuth angle deviation θd obtained by the azimuth angle deviation calculation process described above. Do the processing.
As a result, it is possible to calculate the target steering angle θs to a suitable value in which the steering angle error θe is taken into consideration, and outputting the target steering angle θs to the power steering mechanism 12 The travel offset amount So with respect to the target route P can be reduced. As a result, it is possible to suppress a decrease in work accuracy due to the traveling offset.
That is, the target steering angle θs can be calculated to a suitable value in consideration of the steering angle error θe while reducing the calculation load applied to the steering angle setting unit 16E in calculating the target steering angle θs.
 図4~7に示すように、車載記憶部16Dには、目標経路Pにおける各経路部P1~P5の種類に応じて異なる長さに設定された目標地点設定用の複数の所定距離D1a~D1cが記憶されている。方位角偏差演算手段16Eaは、目標経路Pにおいて自車1が自律走行する各経路部P1~P5の種類に応じて目標地点設定処理における目標地点設定用の所定距離D1を自動的に変更する。
 これにより、トラクタ1が自律走行する経路部P1~P5の種類に応じてユーザが所定距離D1を手動で変更する手間を無くすことができる。また、ユーザが所定距離D1を間違えることや所定距離D1を変更し忘れることに起因した方位角偏差θdの演算精度の低下を防止することができる。
As shown in FIGS. 4 to 7, in the on-vehicle storage unit 16D, a plurality of predetermined distances D1a to D1c for setting target points set to different lengths according to the types of the respective route parts P1 to P5 in the target route P. Is stored. The azimuth deviation calculation means 16Ea automatically changes the predetermined distance D1 for target point setting in the target point setting process according to the type of each of the route parts P1 to P5 on which the vehicle 1 travels autonomously on the target route P.
As a result, it is possible to eliminate the trouble of the user manually changing the predetermined distance D1 in accordance with the types of the route portions P1 to P5 on which the tractor 1 travels autonomously. In addition, it is possible to prevent the decrease in the calculation accuracy of the azimuth deviation θd caused by the user mistaking the predetermined distance D1 or forgetting to change the predetermined distance D1.
 目標地点設定用の所定距離D1に関して、方位角偏差演算手段16Eaは、図4に示すように自車1の現在位置p1が直進作業経路部P1である場合は、所定距離D1を、自車1が直進作業経路部P1で自律走行するのに適した第1所定距離D1aに変更する。
 方位角偏差演算手段16Eaは、図5に示すように自車1の現在位置p1が後方直進経路部P4である場合は、所定距離D1を、自車1が後方直進経路部P4で自律走行するのに適した第2所定距離D1bに変更する。第2所定距離D1bは、自車1が後方直進経路部P4での自律走行において進行方向を修正する場合は、進行方向後ろ側の左右の前輪7を操舵する後方ステアリングになって車体横方向の振れ量が大きくなることを考慮して、第1所定距離D1aよりも長い距離に設定されている。
 方位角偏差演算手段16Eaは、図6~7に示すように自車1の現在位置p1が第1旋回経路部P3または第2旋回経路部P5である場合は、所定距離D1を、自車1が第1旋回経路部P3または第2旋回経路部P5で自律走行するのに適した第3所定距離D1cに変更する。第3所定距離D1cは、第1旋回経路部P3または第2旋回経路部P5での自律走行では、それらの旋回経路部P3,P5から自車1が離れ易くなることを考慮して、第1所定距離D1aおよび第2所定距離D1bよりも短い距離に設定されている。
With respect to the predetermined distance D1 for setting the target point, the azimuth deviation calculation means 16Ea, as shown in FIG. 4, moves the predetermined distance D1 to the vehicle 1 when the current position p1 of the vehicle 1 is the straight work path part P1. Is changed to a first predetermined distance D1a suitable for autonomous traveling on the straight working path portion P1.
When the current position p1 of the vehicle 1 is the backward straight path portion P4 as shown in FIG. 5, the azimuth deviation calculation means 16Ea autonomously travels the predetermined distance D1 in the backward straight path portion P4. The second predetermined distance D1b suitable for The second predetermined distance D1b is a rear steering that steers the left and right front wheels 7 on the rear side in the traveling direction and corrects the traveling direction when the vehicle 1 corrects the traveling direction in autonomous traveling on the rear straight traveling path portion P4. The distance is set to be longer than the first predetermined distance D1a in consideration of an increase in the amount of shake.
When the current position p1 of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5, as shown in FIGS. Is changed to a third predetermined distance D1c suitable for autonomous traveling on the first turning path portion P3 or the second turning path portion P5. The third predetermined distance D1c is a first predetermined distance in consideration of the fact that the vehicle 1 is easily separated from the turning path portions P3 and P5 during autonomous traveling on the first turning path portion P3 or the second turning path portion P5. The distance is set to be shorter than the predetermined distance D1a and the second predetermined distance D1b.
 図11に示すように、方位角偏差演算手段16Eaは、自車1の現在位置p1が現在の経路部(例えば直進作業経路部P1)から種類の異なる次の経路部(例えば第1旋回経路部P3)に切り替わるまでの間は、現在の経路部の延長線上に目標地点p2を設定する。
 これにより、例えば、自車1が直進作業経路部P1を自律走行している間は、直進作業経路部P1での自律走行に適した目標地点p2を設定することができ、この目標地点p2から直進作業経路部P1での自律走行に適した目標操舵角θsを演算することができる。また、例えば、自車1が第1旋回経路部P3を自律走行している間は、第1旋回経路部P3での自律走行に適した目標地点p2を設定することができ、この目標地点p2から第1旋回経路部P3での自律走行に適した目標操舵角θsを演算することができる。その結果、自車1が目標経路Pを自律走行するときの走行精度を高めることができる。
As shown in FIG. 11, the azimuth deviation calculation means 16Ea is the next path part (for example, the first turning path part) of which the current position p1 of the vehicle 1 is different from the current path part (for example, straight working path part P1). Until switching to P3), the target point p2 is set on the extension of the current path part.
Thus, for example, while the vehicle 1 travels autonomously in the straight operation path portion P1, it is possible to set a target point p2 suitable for autonomous traveling in the straight operation path portion P1, and from the target point p2 It is possible to calculate the target steering angle θs suitable for autonomous traveling on the straight working path portion P1. Further, for example, while the vehicle 1 travels autonomously in the first turning path portion P3, it is possible to set a target point p2 suitable for autonomous traveling in the first turning path portion P3, and this target point p2 From the above, it is possible to calculate the target steering angle θs suitable for autonomous traveling on the first turning path portion P3. As a result, it is possible to improve the traveling accuracy when the vehicle 1 travels autonomously on the target route P.
 図3、図9~10に示すように、舵角誤差検出手段16Ebは、舵角誤差θeの検出を許容する所定条件が成立しているか否かを判別する検出条件判別処理(ステップ#1)と、その所定条件が成立するまでの間は舵角誤差θeの検出を禁止する検出禁止処理(ステップ#2)とを行う。
 本第1実施形態においては、所定条件として、自車1が直進作業経路部P1での自律走行を開始してから自律走行が整定するまでに要する一定距離Laを走破したか否かが設定されている。そして、舵角誤差検出手段16Ebは、検出条件判別処理においては、自車1が直進作業経路部P1での自律走行を開始してから一定距離Laを走破した場合に、所定条件が成立したと判断するように構成されており、これにより、自車1が直進作業経路部P1での自律走行を開始してから一定距離Laを走破するまでの間は、検出禁止処理によって舵角誤差θeの検出が禁止される。
 その結果、自車1が直進作業経路部P1での自律走行を開始してから自律走行が整定するまでの間においても、舵角誤差θeの検出と、検出した舵角誤差θeに基づく目標操舵角θsの演算が行われることにより、舵角誤差θeの検出確度が低下し、この検出確度の低い舵角誤差θeに基づいて目標操舵角θsが演算されてパワーステアリング機構12に出力されることに起因して、自律走行時における自車1の目標経路Pに対する走行オフセット量Soが低下し難くなる不都合の発生を回避することができる。
As shown in FIGS. 3 and 9 to 10, the steering angle error detection means 16Eb determines whether or not a predetermined condition for allowing detection of the steering angle error θe is satisfied (step # 1). And, the detection prohibiting process (step # 2) of prohibiting the detection of the steering angle error θe is performed until the predetermined condition is satisfied.
In the first embodiment, as a predetermined condition, it is set whether or not a predetermined distance La necessary for the autonomous traveling to settle after the autonomous vehicle 1 has started the autonomous traveling on the straight operation route portion P1 is run. ing. Then, in the detection condition determination process, the steering angle error detection means 16Eb assumes that the predetermined condition is satisfied when the own vehicle 1 has run a predetermined distance La after starting autonomous traveling on the straight work path portion P1. It is configured to make a determination, whereby the detection prohibiting process is performed by the detection prohibiting process from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until it runs through the predetermined distance La. Detection is prohibited.
As a result, detection of the steering angle error θe and target steering based on the detected steering angle error θe also from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until the autonomous traveling is settled. The calculation of the angle θs reduces the detection accuracy of the steering angle error θe, and the target steering angle θs is calculated based on the steering angle error θe having a low detection accuracy and is output to the power steering mechanism 12 As a result, it is possible to avoid the occurrence of the inconvenience that the traveling offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous traveling hardly decreases.
 図3、図10に示すように、舵角誤差検出手段16Ebは、自車1が一定距離Laの走破後に舵角誤差検出用の第1設定距離Lbを走破したか否かを判別する第1走破判別処理(ステップ#6)を行い、自車1が舵角誤差検出用の第1設定距離Lbを走破するまでの間は舵角誤差θeの検出を設定時間ごとに行い、自車1が第1設定距離Lbを走破するのに伴って、設定時間ごとに検出した複数回分の舵角誤差θeの平均値を求めて、この平均値を操舵角演算処理用の舵角誤差θeとする平均化処理(ステップ#7)を行う。
 これにより、舵角誤差検出手段16Ebによる舵角誤差θeの検出確度を高めることができる。そして、操舵角演算手段16Ecが、確度の高い舵角誤差θeに基づいて演算した目標操舵角θsをパワーステアリング機構12に出力することにより、自律走行時における自車1の目標経路Pに対する走行オフセット量Soをより確実に低下させることができる。その結果、走行オフセットによる作業精度の低下をより効果的に抑制することができる。
As shown in FIGS. 3 and 10, the steering angle error detection means 16Eb determines whether or not the own vehicle 1 has run through the first set distance Lb for detecting the steering angle error after traveling by the constant distance La. The travel detection processing (step # 6) is performed, and the steering angle error θe is detected at every set time until the host vehicle 1 breaks the first set distance Lb for steering angle error detection, and the host vehicle 1 The average value of a plurality of steering angle errors θe detected for each setting time is obtained as the vehicle travels through the first set distance Lb, and the average value is set as the steering angle error θe for steering angle calculation processing. The conversion process (step # 7) is performed.
Thereby, the detection accuracy of the steering angle error θe by the steering angle error detection means 16Eb can be enhanced. Then, the steering angle calculation means 16Ec outputs the target steering angle θs calculated based on the steering angle error θe with high accuracy to the power steering mechanism 12, thereby a running offset with respect to the target route P of the vehicle 1 at the time of autonomous running. The quantity So can be reduced more reliably. As a result, it is possible to more effectively suppress the decrease in work accuracy due to the traveling offset.
 舵角誤差検出手段16Ebは、自車1が第1設定距離Lbよりも長い舵角誤差再検出用の第2設定距離Lcを走破したか否かを判別する第2走破判別処理(ステップ#9)を行い、自車1が第2設定距離Lcを走破するごとに、前述した処理手順に基づいて舵角誤差θeの平均値を再検出して舵角誤差θeを更新する。
 これにより、舵角誤差検出手段16Ebは、更新処理によって舵角誤差θeを更新するごとに舵角誤差θeの検出確度を高めることができ、操舵角演算手段16Ecは、更新ごとに確度が高められた舵角誤差θeに基づいて演算した目標操舵角θsをパワーステアリング機構12に出力することができる。その結果、自車1の直進作業経路部P1での自律走行距離が長くなるほど、自律走行時における自車1の目標経路Pに対する走行オフセット量Soを低下させることができ、走行オフセットによる作業精度の低下をより効果的に抑制することができる。
 なお、舵角誤差検出用の第1設定距離Lbと舵角誤差再検出用の第2設定距離Lcとの差は、第1設定距離Lbの走行で得た舵角誤差θeに基づいて目標操舵角θsが補正された後の自動操舵による自律走行において、自律走行が整定するまでの走行距離を考慮して設定されている。
The second run determination processing that determines whether or not the own vehicle 1 has run through the second set distance Lc for re-detection of the steer angle error longer than the first set distance Lb (step # 9). Each time the vehicle 1 travels the second set distance Lc, the steering angle error θe is updated by re-detecting the average value of the steering angle error θe based on the processing procedure described above.
Thus, the steering angle error detection means 16Eb can increase the detection accuracy of the steering angle error θe every time the steering angle error θe is updated by the update processing, and the steering angle calculation means 16Ec can increase the accuracy every update. The target steering angle θs calculated based on the steering angle error θe can be output to the power steering mechanism 12. As a result, the travel offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous travel can be reduced as the autonomous traveling distance of the vehicle 1 at the straight traveling work route portion P1 becomes longer. The drop can be more effectively suppressed.
The difference between the first set distance Lb for detecting the steering angle error and the second set distance Lc for detecting the steering angle error is the target steering based on the steering angle error θe obtained in the traveling of the first set distance Lb. In the autonomous traveling by the automatic steering after the angle θs is corrected, the traveling distance until the autonomous traveling settles is set in consideration.
 図10に示すように、舵角誤差検出手段16Ebは、前述した平均化処理の実行中に自車1が直進作業経路部P1から方向転換経路部P2に移行したか否かを判別する経路部移行判別処理(ステップ#8)を行い、移行した場合は、このときの平均化処理を終了して舵角誤差θeの平均値を求めない平均化中止処理(ステップ#10)を行う。
 これにより、舵角誤差θeの平均化処理において、直進走行時の舵角誤差θeとは異なる成分を有する方向転換時の舵角誤差θeが直進走行時の舵角誤差θeと混在することによる舵角誤差θeの検出確度の低下を防止することができる。
As shown in FIG. 10, the steering angle error detection means 16Eb determines whether or not the vehicle 1 has shifted from the straight work path P1 to the direction change path P2 during execution of the averaging process described above. The shift determination process (step # 8) is performed, and when the shift is made, the averaging process at this time is ended, and the averaging stop process (step # 10) in which the average value of the steering angle error θe is not obtained.
As a result, in the averaging process of the steering angle error θe, the steering is performed by the steering angle error θe at the time of direction change having a component different from the steering angle error θe at the time of straight running mixed with the steering angle error θe at the straight running It is possible to prevent the decrease in detection accuracy of the angular error θe.
 図示は省略するが、舵角誤差検出手段16Ebは、自車1が各直進作業経路部P1での自律走行を開始するごとに今回の直進作業経路部P1が奇数列か偶数列かを判別する数列判別処理を行い、今回の直進作業経路部P1が奇数列(往路部)であれば、今回の直進作業経路部P1での自律走行中に検出する舵角誤差θeを往路用の舵角誤差θeとし、前述した更新処理においては、往路用の舵角誤差θeを検出するごとに往路用の舵角誤差θeを更新する。また、今回の直進作業経路部P1が偶数列(復路部)であれば、今回の直進作業経路部P1での自律走行中に検出する舵角誤差θeを復路用の舵角誤差θeとし、前述した更新処理においては、復路用の舵角誤差θeを検出するごとに復路用の舵角誤差θeを更新する。
 操舵角演算手段16Ecは、前述した数列判別処理で得た判別結果に基づいて、今回の直進作業経路部P1が奇数列であれば、往路用の舵角誤差θeを前述した方位角偏差演算処理で得た方位角偏差θdに足し合わせる往路用の操舵角演算処理を行う。また、今回の直進作業経路部P1が偶数列であれば、復路用の舵角誤差θeを前述した方位角偏差演算処理で得た方位角偏差θdに足し合わせる復路用の操舵角演算処理を行う。
 これにより、測位ユニット19が測定する自車1のヨー角に誤差がのることなどに起因して、自車1が奇数列の直進作業経路部(往路部)P1を自律走行する場合と偶数列の直進作業経路部(復路部)P1を自律走行する場合とで舵角誤差θeに差異が生じている場合に、往路用の舵角誤差θeが復路用の舵角誤差θeによって更新される、または、復路用の舵角誤差θeが往路用の舵角誤差θeによって更新されることによる舵角誤差θeの検出確度の低下を防止することができる。
 具体的には、例えば、奇数列の直進作業経路部(往路部)P1の方位が真北になり、偶数列の直進作業経路部(復路部)P1の方位が真南になる圃場において、自車1が奇数列の直進作業経路部(往路部)P1を自律走行している場合には、測位ユニット19が測定する自車1の方位が0度になり、かつ、自車1が偶数列の直進作業経路部(復路部)P1を自律走行している場合には、測位ユニット19が測定する自車1の方位が180度になることが理想的であるが、実際には、測位ユニット19が測定する自車1のヨー角に誤差がのることなどに起因して、自車1が奇数列の直進作業経路部(往路部)P1を自律走行しているにもかかわらず、測位ユニット19が測定する自車1の方位が0度から少しずれることがあり、また、自車1が偶数列の直進作業経路部(復路部)P1を自律走行しているにもかかわらず、測位ユニット19が測定する自車1の方位が180度から少しずれることがある。
 これにより、本来は、自車1が奇数列の直進作業経路部(往路部)P1を自律走行しているときの自車1の方位と、自車1が偶数列の直進作業経路部(復路部)P1を自律走行しているときの自車1の方位との角度差が180度になるはずが、測位誤差のために180度にならない不都合が生じることがある。
 しかしながら、自車1が同じ奇数列または同じ偶数列の直進作業経路部P1を自律走行しているときは、測位誤差による方位のずれ方向が一定なる傾向があることから、この点を考慮して、奇数列用(往路用)の舵角誤差θeと偶数列用(復路用)の舵角誤差θeとを個別に検出して個別に更新するようにしている。
 その結果、検出確度の高い往路用の舵角誤差θeと復路用の舵角誤差θeとを得ることができる。
 そして、自車1が自律走行する直進作業経路部P1が往路部であれば、このときの目標操舵角θsを往路用の舵角誤差θeが考慮された好適な値に演算することができ、この目標操舵角θsをパワーステアリング機構12に出力することにより、往路用の直進作業経路部P1での自律走行時における自車1の直進作業経路部P1に対する走行オフセット量Soをより好適に低下させることができる。また、自車1が自律走行する直進作業経路部P1が復路部であれば、このときの目標操舵角θsを復路用の舵角誤差θeが考慮された好適な値に演算することができ、この目標操舵角θsをパワーステアリング機構12に出力することにより、復路用の直進作業経路部P1での自律走行時における自車1の直進作業経路部P1に対する走行オフセット量Soをより好適に低下させることができる。
Although not shown, the steering angle error detection means 16Eb determines whether the present straight working path portion P1 is an odd-numbered row or an even-numbered row each time the own vehicle 1 starts autonomous traveling on each straight working path portion P1. The number sequence determination processing is performed, and if the current straight operation path portion P1 is an odd row (outbound portion), the steering angle error for forward movement is detected as the steering angle error θe detected during autonomous traveling on the current straight operation path portion P1. In the updating process described above, the forward steering angle error θe is updated each time the forward steering angle error θe is detected. Further, if the straight traveling work path portion P1 at this time is an even-numbered row (returning path portion), the steering angle error θe detected during autonomous traveling at the straight traveling work path portion P1 this time is the steering angle error θe for returning home. In the updating process, the return steering angle error θe is updated each time the return steering angle error θe is detected.
The steering angle calculation means 16Ec performs the azimuth angle deviation calculation process described above on the forward steering angle error θe if the current straight working path portion P1 is an odd number row based on the determination result obtained by the above-described number sequence determination process. The steering angle calculation processing for the forward road to be added to the azimuth deviation θd obtained in the above is performed. Further, if the straight working path portion P1 this time is an even number row, the steering angle calculation processing for the return path is performed to add the steering angle error θe for the return path to the azimuth angle deviation θd obtained by the azimuth deviation calculation processing described above. .
As a result, when the positioning unit 19 measures an error in the yaw angle of the vehicle 1 measured by the positioning unit 19, the vehicle 1 travels autonomously in the straight work path portion (outgoing route portion) P1 of the odd number row and even number When there is a difference in the steering angle error θe when autonomous traveling on the straight traveling work path portion (return path portion) P1 of the row, the steering angle error θe for the forward path is updated by the steering angle error θe for the return path Alternatively, it is possible to prevent a decrease in the detection accuracy of the steering angle error θe caused by the return path steering angle error θe being updated by the forward path steering angle error θe.
Specifically, for example, in a field where the heading of the straight working path part (outbound part) P1 of the odd number row is true north and the heading of the straight working path part (return part) P1 of the even number is true south When the car 1 travels autonomously in the straight work path portion (forward path portion) P1 in an odd number row, the azimuth of the vehicle 1 measured by the positioning unit 19 is 0 degrees, and the vehicle 1 is an even number row It is ideal that the azimuth of the vehicle 1 measured by the positioning unit 19 is 180 degrees when autonomous traveling on the straight working path portion (return path portion) P1 of Even though the own vehicle 1 autonomously travels in the straight-ahead work path part (outbound part) P1 of the odd number row due to an error in the yaw angle of the own vehicle 1 measured by 19 and the like, The orientation of the vehicle 1 measured by the unit 19 may be slightly deviated from 0 degrees, and the vehicle 1 may Straight working path portion of the sequence (the return portions) P1 Despite the autonomous, the orientation of the vehicle 1, the positioning unit 19 measures there is a little deviated from 180 degrees.
Thus, originally, the direction of the vehicle 1 when the vehicle 1 autonomously travels in the straight movement work route portion (forward route portion) P1 of the odd number row, and the straight movement work route portion of the even vehicle 1 (return route Part) Although the angle difference with the direction of the host vehicle 1 when traveling autonomously on P1 should be 180 degrees, there may be a disadvantage that it does not become 180 degrees due to a positioning error.
However, when the vehicle 1 travels autonomously in the same straight line work path portion P1 of the same odd number row or the same even number row, the direction of the deviation of the direction due to the positioning error tends to be constant. The steering angle error θe for the odd row (outbound path) and the steering angle error θe for the even row (return path) are separately detected and individually updated.
As a result, it is possible to obtain the forward path steering angle error θe and the return path steering angle error θe with high detection accuracy.
Then, if the straight work path portion P1 on which the vehicle 1 travels autonomously is the outward path portion, the target steering angle θs at this time can be calculated to a suitable value in which the steering angle error θe for the outward path is taken into consideration. By outputting the target steering angle θs to the power steering mechanism 12, the traveling offset amount So to the straight working path P1 of the vehicle 1 at the time of autonomous traveling in the straight working path P1 for the outgoing route is reduced more suitably. be able to. Further, if the straight work path portion P1 on which the vehicle 1 travels autonomously is the return path portion, the target steering angle θs at this time can be calculated to a suitable value in which the steering angle error θe for the return path is taken into consideration. By outputting the target steering angle θs to the power steering mechanism 12, the traveling offset amount So to the straight working path P1 of the own vehicle 1 is suitably reduced at the time of autonomous traveling on the straight working path P1 for returning. be able to.
 舵角誤差検出手段16Ebは、舵角誤差θeを検出または更新するごとに最新の舵角誤差θeを車載記憶部16Dに記憶する記憶処理を行い、操舵角演算手段16Ecは、前述した検出禁止処理によって舵角誤差θeの検出が禁止されている間は、車載記憶部16Dに記憶された舵角誤差θeを方位角偏差演算処理で得た方位角偏差θdに足し合わせて目標操舵角θsを演算する。
 これにより、検出禁止処理によって舵角誤差θeの検出が禁止された自律走行時においても、目標操舵角θsを舵角誤差θeが考慮された好適な値に演算することができ、この目標操舵角θsをパワーステアリング機構12に出力することにより、自車1の目標経路Pに対する走行オフセット量Soを低下させることができる。
 また、前述したように車載記憶部16Dは不揮発性であることから、自車1のキーオフ操作によって電源が落された後に、キーオン操作が行われて自律走行が開始された場合であっても、車載記憶部16Dに記憶された舵角誤差θeを方位角偏差演算処理で得た方位角偏差θdに足し合わせることにより、舵角誤差θeが考慮された目標操舵角θsを演算することができ、自車1の目標経路Pに対する走行オフセット量Soを低下させることができる。
The steering angle error detection means 16Eb performs storage processing for storing the latest steering angle error θe in the on-vehicle storage unit 16D every time the steering angle error θe is detected or updated, and the steering angle calculation means 16Ec performs the above-described detection prohibition process. Calculates the target steering angle θs by adding the steering angle error θe stored in the on-vehicle storage unit 16D to the azimuth angle deviation θd obtained by the azimuth angle deviation calculation processing while detection of the steering angle error θe is prohibited by Do.
Thus, even during autonomous travel in which detection of the steering angle error θe is prohibited by the detection prohibiting process, the target steering angle θs can be calculated to a suitable value in which the steering angle error θe is considered, and this target steering angle By outputting θs to the power steering mechanism 12, the travel offset amount So with respect to the target route P of the vehicle 1 can be reduced.
Further, as described above, since the on-vehicle storage unit 16D is nonvolatile, even if the key-on operation is performed and the autonomous traveling is started after the power is turned off by the key-off operation of the vehicle 1, By adding the steering angle error θe stored in the on-vehicle storage unit 16D to the azimuth angle deviation θd obtained by the azimuth angle deviation calculation processing, it is possible to calculate the target steering angle θs in which the steering angle error θe is taken into consideration. The traveling offset amount So with respect to the target route P of the vehicle 1 can be reduced.
〔別実施形態〕
 本発明の第1実施形態に関する別実施形態について説明する。
 尚、以下に説明する各実施形態の構成は、それぞれ単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Another embodiment of the first embodiment of the present invention will be described.
In addition, the configuration of each embodiment described below is not limited to being individually applied, and may be applied in combination with the configuration of the other embodiments.
(1)作業車両の構成は種々の変更が可能である。
 例えば、作業車両は、エンジン10と走行用の電動モータとを備えるハイブリット仕様に構成されていてもよく、また、エンジン10に代えて走行用の電動モータを備える電動仕様に構成されていてもよい。
 例えば、作業車両は、左右の後輪8に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
 例えば、作業車両は、左右の後輪8が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。
(1) The configuration of the work vehicle can be variously changed.
For example, the work vehicle may be configured in a hybrid specification including the engine 10 and an electric motor for traveling, or may be configured in an electric specification including an electric motor for traveling in place of the engine 10 .
For example, the work vehicle may be configured in a semi crawler specification provided with left and right crawlers instead of the left and right rear wheels 8.
For example, the work vehicle may be configured in a rear wheel steering specification in which the left and right rear wheels 8 function as steered wheels.
(2)舵角センサ18は、自動操舵ユニット32がステアリングホイール20と左右の前輪(操舵輪)7とを機械連係によって連動させる構成であれば、ステアリングホイール20の回転操作方向および回転操作量に基づいて前輪(操舵輪)7の操舵角を検出するように構成されていてもよい。 (2) If the steering angle sensor 18 is configured such that the automatic steering unit 32 interlocks the steering wheel 20 and the left and right front wheels (steering wheels) 7 by mechanical linkage, the rotational operation direction and rotational operation amount of the steering wheel 20 The steering angle of the front wheel (steering wheel) 7 may be detected on the basis of this.
(3)方位角偏差演算手段16Eaは、各経路部P1~P5の種類などに応じて異なる長さに設定された目標地点設定処理における目標地点設定用の所定距離D1a~D1cを、ユーザの手動操作に基づいて変更するように構成されていてもよい。 (3) The azimuth deviation calculation means 16Ea sets the predetermined distances D1a to D1c for target point setting in the target point setting processing set to different lengths according to the type of each of the route parts P1 to P5 manually by the user. It may be configured to change based on the operation.
(4)方位角偏差演算手段16Eaは、測位ユニット19により測定される自車1の姿勢角(ロール角およびピッチ角)に基づいて圃場の荒れ具合を判定し、判定した圃場の荒れ具合に応じて、目標地点設定処理における目標地点設定用の所定距離D1を自動的に変更するように構成されていてもよい。 (4) The azimuth deviation calculation means 16Ea determines the degree of roughness of the field based on the attitude angle (roll angle and pitch angle) of the vehicle 1 measured by the positioning unit 19, and determines the degree of roughness of the determined field. In the target point setting process, the predetermined distance D1 for target point setting may be automatically changed.
(5)方位角偏差演算手段16Eaは、自車1の自律走行において、目標地点設定処理によって目標経路上に設定される目標地点p2が、自車1が現在走行中の経路部P1~P5の終端地点に達したときに、目標地点p2を、自車1が現在走行中の経路部上から次の経路部上に設定変更するように構成されていてもよい。 (5) The azimuth deviation calculation means 16Ea determines that the target point p2 set on the target route by the target point setting process in the autonomous traveling of the vehicle 1 is the route portion P1 to P5 in which the vehicle 1 is currently traveling. When the end point is reached, the target point p2 may be configured to be changed from the path portion currently being traveled by the vehicle 1 to the next path portion.
(6)方位角偏差演算手段16Eaは、自車1が自律走行する各経路部P1~P5の種類に応じて目標地点設定処理における目標地点設定用の所定距離D1a~D1cを自動的に変更するように構成された場合においては、自車1の現在位置p1が現在の経路部P1~P5から次の経路部P1~P5に移行するのに伴って、現在の経路部P1~P5に対応する目標地点設定用の所定距離D1a~D1cから次の経路部P1~P5に対応する目標地点設定用の所定距離D1a~D1cに変更するように構成されていてもよい。 (6) The azimuth deviation calculation means 16Ea automatically changes the predetermined distances D1a to D1c for target point setting in the target point setting process according to the type of each of the route parts P1 to P5 on which the vehicle 1 travels autonomously. In such a case, as the current position p1 of the vehicle 1 shifts from the current route part P1 to P5 to the next route part P1 to P5, it corresponds to the current route part P1 to P5. The predetermined distances D1a to D1c for target point setting may be changed to the predetermined distances D1a to D1c for target point setting corresponding to the next route parts P1 to P5.
(7)舵角誤差検出手段は、作業走行前における自車1の目標経路上でのティーチング走行によって舵角誤差を検出するように構成されていてもよい。 (7) The steering angle error detection means may be configured to detect the steering angle error by teaching traveling on the target route of the vehicle 1 before work traveling.
〔第2実施形態〕
 本発明に係る作業車両用の自律走行システムを、作業車両の一例であるトラクタに適用した第2実施形態を図面に基づいて説明する。
 なお、本発明に係る作業車両用の自律走行システムは、トラクタ以外の、乗用田植機、コンバイン、乗用草刈機、ホイールローダ、除雪車、などの乗用作業車両、および、無人草刈機などの無人作業車両に適用することができる。
Second Embodiment
A second embodiment in which an autonomous traveling system for a work vehicle according to the present invention is applied to a tractor which is an example of a work vehicle will be described based on the drawings.
The autonomous traveling system for work vehicles according to the present invention is a work vehicle other than a tractor, such as a riding rice planter, a combine, a riding grass mower, a wheel loader, a snow removal vehicle, and an unmanned grass mower etc. It can be applied to vehicles.
 図12~13に示すように、本第2実施形態に例示する作業車両用の自律走行システムは、トラクタ1に搭載された自律走行ユニット2、および、自律走行ユニット2と通信可能に通信設定された携帯通信端末3、などを備えている。携帯通信端末3には、タッチ操作可能な液晶パネル4などを有するタブレット型のパーソナルコンピュータやスマートフォンなどを採用することができる。 As shown in FIGS. 12 to 13, the autonomous traveling system for a work vehicle illustrated in the second embodiment is set to be communicable with the autonomous traveling unit 2 mounted on the tractor 1 and the autonomous traveling unit 2. Mobile communication terminal 3 and the like. As the mobile communication terminal 3, a tablet-type personal computer, a smart phone, or the like having a touch-operable liquid crystal panel 4 or the like can be adopted.
 図12に示すように、トラクタ1は、その後部に3点リンク機構5を介して、作業装置の一例であるロータリ耕耘装置6が昇降可能かつローリング可能に連結されることにより、ロータリ耕耘仕様に構成されている。
 なお、トラクタ1の後部には、ロータリ耕耘装置6に代えて、プラウ、播種装置、散布装置、などの作業装置を連結することができる。
As shown in FIG. 12, the tractor 1 is connected to the rotary tillage specification by the rotary tilling device 6 which is an example of the working device being connected to the rear portion via the three-point link mechanism 5 so as to be movable up and down. It is configured.
In addition, it can replace with the rotary tilling apparatus 6, and can connect work apparatuses, such as a plow, a sowing apparatus, a scattering apparatus, to the rear part of the tractor 1. FIG.
 図12~13に示すように、トラクタ1には、駆動可能な操舵輪として機能する左右の前輪7、駆動可能な左右の後輪8、搭乗式の運転部を形成するキャビン9、コモンレールシステムを備えた電子制御式のディーゼルエンジン(以下、エンジンと称する)10、エンジン10からの動力を変速する電子制御式の変速装置11、左右の前輪7を操舵する全油圧式のパワーステアリング機構12、左右の後輪8を制動する左右のサイドブレーキ(図示せず)、左右のサイドブレーキの油圧操作を可能にする電子制御式のブレーキ操作機構13、ロータリ耕耘装置6への伝動を断続する作業クラッチ(図示せず)、作業クラッチの油圧操作を可能にする電子制御式のクラッチ操作機構14、ロータリ耕耘装置6を昇降駆動する電子油圧制御式の昇降駆動機構15、自車(トラクタ)1の自律走行などに関する各種の制御プログラムなどを有する車載電子制御ユニット(以下、車載ECUと称する)16、自車1の車速を検出する車速センサ17、前輪7の操舵角を検出する舵角センサ18、および、自車1の現在位置および現在方位を測定する測位ユニット19、などが備えられている。
 なお、エンジン10には、電子ガバナを備えた電子制御式のガソリンエンジンを採用してもよい。変速装置11には、油圧機械式無段変速装置(HMT)、静油圧式無段変速装置(HST)、または、ベルト式無段変速装置、などを採用することができる。パワーステアリング機構12には、電動モータを備えた電動式のパワーステアリング機構12などを採用してもよい。
As shown in FIGS. 12 to 13, the tractor 1 includes left and right front wheels 7 functioning as drivable steerable wheels, left and right drivable rear wheels 8, a cabin 9 forming a riding type driving unit, and a common rail system. An electronically controlled diesel engine (hereinafter referred to as the engine) 10, an electronically controlled transmission 11 for shifting power from the engine 10, a full hydraulic power steering mechanism 12 for steering the left and right front wheels 7, The left and right side brakes (not shown) that brake the rear wheel 8, the electronically controlled brake operation mechanism 13 that enables hydraulic operation of the left and right side brakes, and the working clutch that interrupts transmission to the rotary cultivator 6 (Not shown), an electronically controlled clutch operating mechanism 14 which enables hydraulic operation of the working clutch, and an electronic hydraulic control type rising and lowering drive of the rotary cultivator 6 A drive mechanism 15, an on-vehicle electronic control unit (hereinafter referred to as an on-vehicle ECU) 16 having various control programs related to autonomous traveling of the vehicle (tractor) 1, etc., a vehicle speed sensor 17 for detecting the vehicle speed of the vehicle 1, A steering angle sensor 18 for detecting the steering angle of the vehicle, and a positioning unit 19 for measuring the current position and the current direction of the vehicle 1 are provided.
The engine 10 may be an electronically controlled gasoline engine equipped with an electronic governor. For the transmission 11, a hydromechanical continuously variable transmission (HMT), a hydrostatic continuously variable transmission (HST), a belt type continuously variable transmission, or the like can be adopted. The power steering mechanism 12 may be, for example, an electric power steering mechanism 12 provided with an electric motor.
 図12に示すように、キャビン9の内部には、パワーステアリング機構12を介した左右の前輪7の手動操舵を可能にするステアリングホイール20およびユーザ用の座席21が備えられている。また、図示は省略するが、変速装置11の手動操作を可能にする変速レバー、左右のサイドブレーキの人為操作を可能にする左右のブレーキペダル、および、ロータリ耕耘装置6の手動昇降操作を可能にする昇降レバー、などが備えられている。 As shown in FIG. 12, a steering wheel 20 and a seat 21 for a user are provided inside the cabin 9 to enable manual steering of the left and right front wheels 7 via the power steering mechanism 12. Also, although not shown, a shift lever that enables manual operation of the transmission 11, a left and right brake pedal that enables manual operation of the left and right side brakes, and a manual lifting operation of the rotary tilling device 6 Lift levers, etc. are provided.
 図13に示すように、車載ECU16は、変速装置11の作動を制御する変速制御部16A、左右のサイドブレーキの作動を制御する制動制御部16B、ロータリ耕耘装置6の作動を制御する作業装置制御部16C、予め生成された自律走行用の目標経路Pなどを記憶する不揮発性の車載記憶部16D、および、自律走行時に左右の前輪7の目標操舵角θsを設定してパワーステアリング機構12に出力する操舵角設定部16E、などを有している。 As shown in FIG. 13, the on-vehicle ECU 16 controls a shift control unit 16A that controls the operation of the transmission 11, a braking control unit 16B that controls the operation of the left and right side brakes, and a work device control that controls the operation of the rotary tilling device 6. 16C, a non-volatile vehicle storage unit 16D for storing a previously generated target route P for autonomous traveling, etc., and the target steering angle θs of the front wheels 7 on both sides during autonomous traveling, and output to the power steering mechanism 12 Steering angle setting unit 16E, and the like.
 図12~14に示すように、測位ユニット19には、全地球航法衛星システム(GNSS:Global Navigation Satellite System)の一例であるGPS(Global Positioning System)を利用して自車1の現在位置p1と現在方位θ1とを測定する衛星航法装置22、および、3軸のジャイロスコープおよび3方向の加速度センサなどを有して自車1の姿勢や方位などを測定する慣性計測装置(IMU:Inertial Measurement Unit)23、などが備えられている。GPSを利用した測位方法には、DGPS(Differential GPS:相対測位方式)やRTK-GPS(Real Time Kinematic GPS:干渉測位方式)などがあり、本第2実施形態においては、移動体の測位に適したRTK-GPSが採用されている。そのため、圃場周辺の既知位置には、RTK-GPSによる測位を可能にする基準局24が設置されている。 As shown in FIGS. 12-14, the positioning unit 19 uses the GPS (Global Positioning System), which is an example of the Global Navigation Satellite System (GNSS), to determine the current position p1 of the vehicle 1 and An inertial measurement unit (IMU: Inertial Measurement Unit) that measures the attitude, orientation, etc. of the vehicle 1 with a satellite navigation device 22 that measures the current orientation θ1, a three-axis gyroscope, three-direction acceleration sensors, etc. ) 23, etc. are provided. Positioning methods using GPS include DGPS (Differential GPS: relative positioning method), RTK-GPS (Real Time Kinematic GPS: interference positioning method), etc. In the second embodiment, it is suitable for positioning of a mobile object. RTK-GPS is adopted. Therefore, a reference station 24 that enables positioning by RTK-GPS is installed at a known position around the farmland.
 トラクタ1と基準局24とのそれぞれには、GPS衛星25から送信された電波を受信するGPSアンテナ26,27、および、トラクタ1と基準局24との間における測位データを含む各種データの無線通信を可能にする通信モジュール28,29、などが備えられている。これにより、衛星航法装置22は、トラクタ側のGPSアンテナ26がGPS衛星25からの電波を受信して得た測位データと、基地局側のGPSアンテナ27がGPS衛星25からの電波を受信して得た測位データとに基づいて、自車1の現在位置p1および現在方位θ1を高い精度で測定することができる。また、測位ユニット19は、衛星航法装置22と慣性計測装置23とを備えることにより、自車1の現在位置p1、現在方位θ1、姿勢角(ヨー角、ロール角、ピッチ角)を高精度に測定することができる。 Each of the tractor 1 and the reference station 24 can wirelessly communicate various data including GPS data between the tractor 1 and the reference station 24 and GPS antennas 26 and 27 for receiving radio waves transmitted from the GPS satellite 25. Communication modules 28, 29, etc. are provided. Thereby, the satellite navigation device 22 receives the positioning data obtained by the GPS antenna 26 on the tractor side receiving radio waves from the GPS satellites 25 and the GPS antenna 27 on the base station side receives radio waves from the GPS satellites 25. The current position p1 and the current direction θ1 of the vehicle 1 can be measured with high accuracy based on the obtained positioning data. In addition, the positioning unit 19 includes the satellite navigation device 22 and the inertial measurement device 23 so that the current position p1 of the vehicle 1, the current direction θ1, and the attitude angle (yaw angle, roll angle, pitch angle) can be made with high accuracy. It can be measured.
 図13~14に示すように、携帯通信端末3には、液晶パネル4などの作動を制御する各種の制御プログラムなどを有する端末電子制御ユニット(以下、端末ECUと称する)30、および、トラクタ側の通信モジュール28との間における測位データを含む各種データの無線通信を可能にする通信モジュール31、などが備えられている。端末ECU30は、自律走行用の目標経路Pを生成する目標経路生成部30A、および、ユーザが入力した各種の入力データや目標経路生成部30Aが生成した目標経路Pなどを記憶する不揮発性の端末記憶部30B、などを有している。 As shown in FIGS. 13 to 14, the mobile communication terminal 3 includes a terminal electronic control unit (hereinafter referred to as a terminal ECU) 30 having various control programs for controlling the operation of the liquid crystal panel 4 and the like, and a tractor side. And a communication module 31 that enables wireless communication of various data including positioning data with the communication module 28 of FIG. The terminal ECU 30 is a non-volatile terminal storing a target route generation unit 30A that generates a target route P for autonomous traveling, and various input data input by the user, the target route P generated by the target route generation unit 30A, and the like. A storage unit 30B and the like are included.
 図12~14に示すように、目標経路生成部30Aは、液晶パネル4に表示された目標経路生成用の入力案内に従って、作業車両や作業装置の種類や機種のなどの車体データ、および、作業対象の圃場位置、などがユーザによって入力された場合に、入力された車体データおよび圃場位置などに基づいて、該当する目標経路Pが端末記憶部30Bに記憶されているか否かを判別する。該当する目標経路Pが記憶されている場合は、その目標経路Pを端末記憶部30Bから読み出して液晶パネル4に表示させる。該当する目標経路Pが記憶されていない場合は、目標経路Pの生成に必要な測位データを得るための測位データ取得走行の実行案内を液晶パネル4に表示させてユーザに測位データ取得走行を行わせる。そして、この測位データ取得走行中にトラクタ1との無線通信によって得られた測位データなどに基づいて、作業対象圃場の区画や形状などの圃場データを取得し、取得した圃場データ、および、車体データに含まれた最小旋回半径や作業幅、などに基づいて、このトラクタ1で作業対象の圃場を作業するのに適した目標経路Pを生成する。そして、生成した目標経路Pを、液晶パネル4に表示させるとともに、車体データおよび圃場データなどと関連付けた経路データとして端末記憶部30Bに記憶させる。経路データには、目標経路Pの方位角θp、および、目標経路Pでのトラクタ1の走行形態などに応じて設定された目標エンジン回転数や目標車速、などが含まれている。 As shown in FIGS. 12 to 14, the target route generation unit 30A follows the input guidance for target route generation displayed on the liquid crystal panel 4, vehicle data such as the type and model of the work vehicle and the work device, and When the target field position and the like are input by the user, it is determined whether or not the corresponding target route P is stored in the terminal storage unit 30B based on the input vehicle data, the field position, and the like. When the corresponding target route P is stored, the target route P is read from the terminal storage unit 30 B and displayed on the liquid crystal panel 4. When the corresponding target route P is not stored, the liquid crystal panel 4 displays an execution guidance of positioning data acquisition travel for obtaining positioning data necessary for generation of the target route P, and the user performs positioning data acquisition travel. Let Then, based on the positioning data and the like obtained by wireless communication with the tractor 1 during this positioning data acquisition traveling, the field data such as the section and the shape of the work field and the like are acquired, and the acquired field data and vehicle data The target route P suitable for working on the field to be worked with this tractor 1 is generated on the basis of the minimum turning radius, the working width, etc. included in. Then, the generated target route P is displayed on the liquid crystal panel 4 and stored in the terminal storage unit 30B as route data associated with the vehicle data and the field data. The route data includes an azimuth angle θp of the target route P, a target engine rotation speed, a target vehicle speed, and the like set according to the traveling mode of the tractor 1 on the target route P and the like.
 図14に示すように、本第2実施形態では、作業対象の圃場として矩形状に区画された圃場が例示されている。また、この矩形状の圃場に適した目標経路Pとして、同じ直進距離を有して作業幅に対応する一定距離をあけて平行に配置設定された複数の直進作業経路部P1と、隣接する直進作業経路部P1の終端地点P1eと始端地点P1sとにわたる複数の方向転換経路部P2とを備えて、トラクタ1を目標経路Pの始端地点Psから終端地点Peにわたって往復走行させる往復走行経路が例示されている。複数の直進作業経路部P1のうち、奇数列が往路部であり、偶数列が復路部である。複数の方向転換経路部P2は、直進作業経路部P1の終端地点P1eから次の直進作業経路部側に向けてトラクタ1を90度旋回させる第1旋回経路部P3と、第1旋回経路部P3の旋回終了地点P3eから前回の直進作業経路部側に向けてトラクタ1を後方に直進させる後方直進経路部P4と、後方直進経路部P4の後進終了地点P4eから次の直進作業経路部P1の始端地点P1sに向けてトラクタ1を90度旋回させる第2旋回経路部P5とに区画されている。
 つまり、目標経路Pは、自車1の走行形態に応じて複数種類の経路部P1~P5に区画されている。
 なお、図14に示す目標経路Pはあくまでも一例であり、目標経路Pは、例えば、複数の方向転換経路部P2として、直進作業経路部P1の終端地点P1eから次の直進作業経路部P1の始端地点P1sに向けてトラクタ1を180度旋回させるUターン経路部を備えるように生成されていてもよい。
As shown in FIG. 14, in the second embodiment, a field divided into a rectangular shape is illustrated as a field to be worked. In addition, as a target route P suitable for the rectangular field, a plurality of straight movement work path portions P1 having the same straight movement distance and arranged in parallel with a predetermined distance corresponding to the work width, and adjacent straight movement A reciprocating traveling route is illustrated, which includes a plurality of direction change path portions P2 extending from the end point P1e of the working path portion P1 to the start point P1s and causes the tractor 1 to reciprocate from the start point Ps of the target path P to the end point Pe. ing. Of the plurality of rectilinear work path portions P1, the odd-numbered row is the forward path portion, and the even-numbered row is the return path portion. The plurality of direction change path portions P2 are a first turning path portion P3 for turning the tractor 1 by 90 degrees from the end point P1e of the straight working path portion P1 toward the next straight working path portion, and a first turning path portion P3. A straight forward path P4 for moving the tractor 1 straight backward from the turning end point P3e toward the previous straight working path, and a starting point of the next straight working path P1 from a backward finish point P4e of the backward straight path P4 It is divided by the 2nd turning course part P5 which turns the tractor 1 90 degrees toward the point P1s.
That is, the target route P is divided into a plurality of types of route portions P1 to P5 in accordance with the traveling mode of the vehicle 1.
The target path P shown in FIG. 14 is merely an example, and the target path P is, for example, a plurality of direction change path portions P2, and from the end point P1e of the straight work path portion P1 to the start end of the next straight work path portion P1. It may be generated so as to include a U-turn path portion that turns the tractor 1 180 degrees toward the point P1s.
 図13~14に示すように、端末ECU30は、液晶パネル4にて目標経路Pが確認表示されている状態において、ユーザによる液晶パネル4の操作によって自律走行の実行が指令された場合に、その実行指令とともに表示中の目標経路Pを、通信モジュール31,28を介して車載ECU16に送信する。
 なお、目標経路Pの送信に関しては、トラクタ1が自律走行を開始する前の段階において、目標経路Pの全体が端末ECU30から車載ECU16に一挙に送信されるようにしてもよい。また、例えば、目標経路Pがデータ量の少ない所定距離ごとの複数の経路部分に分割されて、トラクタ1が自律走行を開始する前の段階においては、目標経路Pの初期経路部分のみが端末ECU30から車載ECU16に送信され、自律走行の開始後は、トラクタ1がデータ量などに応じて設定された経路取得地点に達するごとに、その地点に対応する以後の経路部分のみが端末ECU30から車載ECU16に送信されるようにしてもよい。
As shown in FIGS. 13 to 14, in the state where the target route P is confirmed and displayed on the liquid crystal panel 4, the terminal ECU 30 instructs execution of autonomous traveling by the operation of the liquid crystal panel 4 by the user. The target route P being displayed together with the execution command is transmitted to the in-vehicle ECU 16 via the communication modules 31 and 28.
With regard to the transmission of the target route P, the entire target route P may be transmitted at once from the terminal ECU 30 to the on-vehicle ECU 16 at a stage before the tractor 1 starts autonomous traveling. Also, for example, in the stage before the target route P is divided into a plurality of route portions for each predetermined distance with a small amount of data and the tractor 1 starts autonomous traveling, only the initial route portion of the target route P is the terminal ECU 30 After the start of autonomous traveling, each time the tractor 1 reaches the route acquisition point set according to the amount of data, only the route part corresponding to that point is transmitted from the terminal ECU 30 to the vehicle ECU 16. It may be sent to the
 車載ECU16は、端末ECU30からの自律走行の実行指令および目標経路Pを受け取った場合に、受け取った目標経路Pを車載記憶部16Dに記憶してデータ量を確認し、その確認後に、自車1を車載記憶部16Dに記憶した目標経路Pなどに基づいて自律走行させる自律走行制御を開始する。 When the on-board ECU 16 receives the execution command for autonomous traveling from the terminal ECU 30 and the target route P, the on-vehicle storage unit 16D stores the received target route P in the on-vehicle storage unit 16D to check the data amount. The autonomous traveling control for causing the vehicle to travel autonomously is started based on the target route P and the like stored in the on-vehicle storage unit 16D.
 自律走行制御には、変速装置11の作動を自動制御する自動変速制御、ブレーキ操作機構13の作動を自動制御する自動制動制御、左右の前輪7を自動操舵する自動操舵制御、および、ロータリ耕耘装置6の作動を自動制御する作業用自動制御、などが含まれている。
 自動変速制御においては、変速制御部16Aが、前述した目標車速を含む目標経路Pと測位ユニット19の出力と車速センサ17の出力とに基づいて、目標経路Pでのトラクタ1の走行形態などに応じて設定された目標車速が自車1の車速として得られるように変速装置11の作動を自動制御する。
 自動制動制御においては、制動制御部16Bが、目標経路Pと測位ユニット19の出力とに基づいて、目標経路Pに含まれている制動領域において左右のサイドブレーキが左右の後輪8を適正に制動するようにブレーキ操作機構13の作動を自動制御する。
 自動操舵制御においては、自車1が目標経路Pを自律走行するように、操舵角設定部16Eが、目標経路Pと測位ユニット19の出力とに基づいて左右の前輪7の目標操舵角θsを求めて設定し、設定した目標操舵角θsをパワーステアリング機構12に出力する。すると、パワーステアリング機構12が、目標操舵角θsと舵角センサ18の出力とに基づいて、目標操舵角θsが左右の前輪7の操舵角として得られるように左右の前輪7を自動操舵する。
 作業用自動制御においては、作業装置制御部16Cが、目標経路Pと測位ユニット19の出力とに基づいて、自車1が直進作業経路部P1の始端地点P1sに達するのに伴ってロータリ耕耘装置6による耕耘が開始され、かつ、自車1が直進作業経路部P1の終端地点P1eに達するのに伴ってロータリ耕耘装置6による耕耘が停止されるように、クラッチ操作機構14および昇降駆動機構15の作動を自動制御する。
For autonomous traveling control, automatic shift control for automatically controlling the operation of the transmission 11, automatic braking control for automatically controlling the operation of the brake operating mechanism 13, automatic steering control for automatically steering the left and right front wheels 7, and a rotary tilling device Automatic control for work to automatically control the operation of 6, etc. are included.
In the automatic shift control, the shift control unit 16A controls the traveling mode of the tractor 1 on the target route P based on the target route P including the target vehicle speed described above, the output of the positioning unit 19, and the output of the vehicle speed sensor 17. The operation of the transmission 11 is automatically controlled so that the target vehicle speed set accordingly is obtained as the vehicle speed of the vehicle 1.
In automatic braking control, the braking control unit 16B properly sets the left and right side brakes on the left and right side brakes in the braking area included in the target path P based on the target path P and the output of the positioning unit 19. The operation of the brake operation mechanism 13 is automatically controlled to brake.
In automatic steering control, the steering angle setting unit 16E sets the target steering angles θs of the left and right front wheels 7 based on the target path P and the output of the positioning unit 19 so that the vehicle 1 autonomously travels on the target path P. The power steering mechanism 12 outputs the target steering angle θs which has been obtained and set, and which has been set. Then, the power steering mechanism 12 automatically steers the left and right front wheels 7 based on the target steering angle θs and the output of the steering angle sensor 18 so that the target steering angle θs can be obtained as the steering angle of the left and right front wheels 7.
In automatic control for work, the rotary tilling apparatus is operated as the vehicle 1 reaches the start point P1s of the straight work path portion P1 based on the target path P and the output of the positioning unit 19 in the working device control unit 16C. 6. The clutch operating mechanism 14 and the elevation drive mechanism 15 are set so that the tilling by the rotary tilling device 6 is stopped when the tilling by 6 is started and the own vehicle 1 reaches the end point P1e of the straight working path portion P1. Automatically control the operation of
 つまり、このトラクタ1においては、変速装置11、パワーステアリング機構12、ブレーキ操作機構13、クラッチ操作機構14、昇降駆動機構15、車載ECU16、車速センサ17、舵角センサ18、測位ユニット19、および、通信モジュール28、などによって自律走行ユニット2が構成されている。また、パワーステアリング機構12、車載ECU16、および、舵角センサ18により、自車1が目標経路Pを自律走行するように左右の前輪7を自動操舵する自動操舵ユニット32が構成されている。 That is, in the tractor 1, the transmission 11, the power steering mechanism 12, the brake operation mechanism 13, the clutch operation mechanism 14, the elevation drive mechanism 15, the on-vehicle ECU 16, the vehicle speed sensor 17, the steering angle sensor 18, the positioning unit 19, The autonomous traveling unit 2 is configured by the communication module 28 and the like. The power steering mechanism 12, the on-vehicle ECU 16, and the steering angle sensor 18 constitute an automatic steering unit 32 for automatically steering the left and right front wheels 7 so that the vehicle 1 autonomously travels on the target path P.
 目標操舵角θsの設定について詳述すると、図13~18に示すように、操舵角設定部16Eは、自律走行時に目標操舵角θsを演算する操舵角演算手段16Edを有している。操舵角演算手段16Edは、自律走行中に自車1の現在位置p1から進行方向側に所定距離D1をあけた目標経路上に目標地点p2を設定する目標地点設定処理と、自車1の現在位置p1から目標地点p2にわたる線分L1を生成する線分生成処理と、自車1の現在方位θ1と線分L1とがなす角度を目標操舵角θsとして演算する目標操舵角演算処理とを行う。 To describe the setting of the target steering angle θs in detail, as shown in FIGS. 13 to 18, the steering angle setting unit 16E has steering angle calculation means 16Ed that calculates the target steering angle θs at the time of autonomous traveling. The steering angle calculation means 16Ed sets target point p2 on a target route with a predetermined distance D1 from the current position p1 of the vehicle 1 to the traveling direction side during autonomous traveling, and the current position of the vehicle 1 A line segment generation process for generating a line segment L1 from the position p1 to the target point p2 and a target steering angle calculation process for calculating an angle formed by the current direction θ1 of the vehicle 1 and the line segment L1 as a target steering angle θs .
 目標操舵角演算処理について詳述すると、目標操舵角演算処理においては、図15~16に示すように、現在の自車1の走行経路が直進作業経路部P1または後方直進経路部P4であれば、自車1の現在位置p1から目標地点p2への向き(線分L1の方位)を目標方位角θ2とし、目標経路Pと線分L1とがなす角度を走行補正角θcとすれば、直進作業経路部P1での目標方位角θ2は、
 目標方位角θ2=直進作業経路部P1の方位角θp1+走行補正角θc
となり、後方直進経路部P4での目標方位角θ2は、
 目標方位角θ2=後方直進経路部P4の方位角θp4+走行補正角θc
となる。
 ここで、直進作業経路部P1の方位角θp1および後方直進経路部P4の方位角θp4は、目標経路Pを生成する段階において既知であるが、これらを演算する場合は、直進作業経路部P1の始端地点P1sから終端地点P1eへのベクトルV1のE成分(x成分)をV1eとし、ベクトルV1のN成分(y成分)をV1nとすれば、
 直進作業経路部P1の方位角θp1=atan2(V1e,V1n)
となる。また、後方直進経路部P4の始端位置から終端位置へのベクトルV4のE成分(x成分)をV4eとし、ベクトルV4のN成分(y成分)をV4nとすれば、
 後方直進経路部P4の方位角θp4=atan2(V4e,V4n)
となる。そして、走行補正角θcは、NED座標上での自車1の走行経路からの横方向偏差をD2とすれば、目標地点設定用の所定距離がD1であることから、
 走行補正角θc=asin(横方向偏差D2/所定距離D1)
となり、これらにより、目標方位角θ2を求めることができ、求めた目標方位角θ2と測位ユニット19が測定した自車1の姿勢角(ヨー角)θ1との差から目標操舵角θsを得ることができる。
 一方、図17~18に示すように、現在の自車1の走行経路が第1旋回経路部P3または第2旋回経路部P5であれば、それらの各旋回経路部P3,P5の旋回中心ptから自車1へのベクトルVvとN軸とがなす角度をθvとすれば、目標操舵角θsは、前述した角度θvと自車1の現在方位θ1と走行補正角θcとから、
 目標操舵角θs=角度θv+SignTrn×90-現在方位θ1+SignTrn×(90-走行補正角θc)
によって求めることができる。
 ここで、この式中の単位には全てに度が用いられており、式中の「90」は90度を示している。また、「SignTrn」に関しては、旋回方向が時計周りの方向であれば「1」となり、旋回方向が反時計周りの方向であれば「-1」となる。そして、上記の式における走行補正角θcは、目標地点設定用の所定距離D1と、旋回経路部P3,P5の旋回中心ptから自車1までの距離D3と、旋回経路部P3,P5の旋回半径Rとから、
 走行補正角θc=acos((D3^2+D1^2-R^2)/(2×D3×D1)
によって求めることができ、この式における旋回経路部P3,P5の旋回中心ptから自車1までの距離D3は、旋回経路部P3,P5の旋回半径Rと、NED座標上での自車1の旋回経路部P3,P5からの横方向偏差D2とから、
 距離D3=旋回半径R+横方向偏差D2
によって求めることができる。
 つまり、前述した目標操舵角演算処理において操舵角演算手段16Edにかかる演算負荷を軽減することができる。
Describing the target steering angle calculation processing in detail, as shown in FIGS. 15 to 16, in the target steering angle calculation processing, if the current travel route of the host vehicle 1 is the straight work route portion P1 or the rear straight advance route portion P4. If the direction from the current position p1 of the vehicle 1 to the target point p2 (the azimuth of the line segment L1) is the target azimuth angle θ2, and the angle between the target path P and the line segment L1 is the traveling correction angle θc The target azimuth angle θ2 at the work path portion P1 is
Target azimuth angle θ2 = azimuth angle θp1 of straight working path portion P1 + traveling correction angle θc
The target azimuth angle θ2 at the rear straight path portion P4 is
Target azimuth angle θ2 = azimuth angle θp4 of the rear straight path portion P4 + traveling correction angle θc
It becomes.
Here, the azimuth angle θp1 of the straight working path portion P1 and the azimuth angle θp4 of the backward straight path portion P4 are known at the stage of generating the target path P, but when these are calculated, the straight working path portion P1 is Assuming that the E component (x component) of the vector V1 from the start point P1s to the end point P1e is V1e and the N component (y component) of the vector V1 is V1n,
Azimuth angle θp1 = atan2 (V1e, V1n) of the straight working path portion P1
It becomes. Further, assuming that the E component (x component) of the vector V4 from the start position to the end position of the straight rear path portion P4 is V4e and the N component (y component) of the vector V4 is V4n,
Azimuth angle θp4 = atan2 (V4e, V4n) of the rear straight path portion P4
It becomes. Then, assuming that the travel correction angle θc is a lateral deviation from the travel route of the vehicle 1 on the NED coordinates as D2, the predetermined distance for setting the target point is D1,
Travel correction angle θc = asin (lateral deviation D2 / predetermined distance D1)
Thus, the target azimuth angle θ2 can be determined, and the target steering angle θs can be obtained from the difference between the determined target azimuth angle θ2 and the attitude angle (yaw angle) θ1 of the vehicle 1 measured by the positioning unit 19 Can.
On the other hand, as shown in FIGS. 17 to 18, if the current travel route of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5, the turning centers pt of those turning path portions P3 and P5. Assuming that the angle between the vector Vv and the N axis from the vehicle to the vehicle 1 is θv, the target steering angle θs is obtained from the above-mentioned angle θv, the current direction θ1 of the vehicle 1 and the travel correction angle θc
Target steering angle θs = angle θv + SignTrn × 90−present direction θ1 + SignTrn × (90−travel correction angle θc)
It can be determined by
Here, degrees are used for all units in this formula, and "90" in the formula indicates 90 degrees. Further, with regard to “Sign Trn”, it is “1” when the turning direction is the clockwise direction, and “−1” when the turning direction is the counterclockwise direction. The travel correction angle θc in the above equation is a predetermined distance D1 for setting a target point, a distance D3 from the turning center pt of the turning path portions P3 and P5 to the vehicle 1, and turning of the turning path portions P3 and P5. From the radius R,
Travel correction angle θc = acos ((D3 ^ 2 + D1 ^ 2-R ^ 2) / (2 × D3 × D1)
The distance D3 from the turning center pt of the turning path portions P3 and P5 to the vehicle 1 in this equation is the turning radius R of the turning path portions P3 and P5, and the distance D3 of the vehicle 1 on the NED coordinates. From the lateral deviation D2 from the turning path parts P3 and P5,
Distance D3 = turning radius R + lateral deviation D2
It can be determined by
That is, the calculation load applied to the steering angle calculation means 16Ed can be reduced in the target steering angle calculation processing described above.
 図15~18に示すように、車載記憶部16Dには、目標経路Pにおける各経路部P1~P5の種類に応じて異なる長さに設定された目標地点設定用の複数の所定距離D1a~D1cが記憶されている。操舵角演算手段16Edは、目標経路Pにおいて自車1が自律走行する各経路部P1~P5の種類に応じて目標地点設定処理における目標地点設定用の所定距離D1を自動的に変更する。
 これにより、トラクタ1が自律走行する経路部P1~P5の種類に応じてユーザが所定距離D1を手動で変更する手間を無くすことができる。また、ユーザが所定距離D1を間違えることや所定距離D1を変更し忘れることに起因した目標操舵角θsの演算精度の低下を防止することができる。
As shown in FIGS. 15-18, in the on-vehicle storage unit 16D, a plurality of predetermined distances D1a-D1c for setting target points set to different lengths according to the type of each of the route parts P1-P5 in the target route P. Is stored. The steering angle calculation means 16Ed automatically changes the predetermined distance D1 for target point setting in the target point setting process according to the type of each of the route portions P1 to P5 on which the vehicle 1 travels autonomously on the target route P.
As a result, it is possible to eliminate the trouble of the user manually changing the predetermined distance D1 in accordance with the types of the route portions P1 to P5 on which the tractor 1 travels autonomously. In addition, it is possible to prevent the calculation accuracy of the target steering angle θs from being lowered due to the user mistaking the predetermined distance D1 or forgetting to change the predetermined distance D1.
 目標地点設定用の所定距離D1に関して、操舵角演算手段16Edは、図15に示すように自車1の現在位置p1が直進作業経路部P1である場合は、所定距離D1を、自車1が直進作業経路部P1で自律走行するのに適した第1所定距離D1aに変更する。
 操舵角演算手段16Edは、図16に示すように自車1の現在位置p1が後方直進経路部P4である場合は、所定距離D1を、自車1が後方直進経路部P4で自律走行するのに適した第2所定距離D1bに変更する。第2所定距離D1bは、自車1が後方直進経路部P4での自律走行において進行方向を修正する場合は、進行方向後ろ側の左右の前輪7を操舵する後方ステアリングになって車体横方向の振れ量が大きくなることを考慮して、第1所定距離D1aよりも長い距離に設定されている。
 操舵角演算手段16Edは、図17~18に示すように自車1の現在位置p1が第1旋回経路部P3または第2旋回経路部P5である場合は、所定距離D1を、自車1が第1旋回経路部P3または第2旋回経路部P5で自律走行するのに適した第3所定距離D1cに変更する。第3所定距離D1cは、第1旋回経路部P3または第2旋回経路部P5での自律走行では、それらの旋回経路部P3,P5から自車1が離れ易くなることを考慮して、第1所定距離D1aおよび第2所定距離D1bよりも短い距離に設定されている。
With respect to the predetermined distance D1 for setting the target point, the steering angle calculation means 16Ed is, as shown in FIG. 15, the predetermined distance D1 when the current position p1 of the vehicle 1 is the straight work path part P1. It is changed to the first predetermined distance D1a suitable for autonomous traveling on the straight working path portion P1.
When the current position p1 of the vehicle 1 is the backward straight path portion P4 as shown in FIG. 16, the steering angle calculation means 16Ed travels autonomously in the backward straight path portion P4 by the predetermined distance D1. To a second predetermined distance D1b suitable for The second predetermined distance D1b is a rear steering that steers the left and right front wheels 7 on the rear side in the traveling direction and corrects the traveling direction when the vehicle 1 corrects the traveling direction in autonomous traveling on the rear straight traveling path portion P4. The distance is set to be longer than the first predetermined distance D1a in consideration of an increase in the amount of shake.
If the current position p1 of the vehicle 1 is the first turning path portion P3 or the second turning path portion P5 as shown in FIGS. It changes into the 3rd predetermined distance D1c suitable for carrying out autonomous travel in the 1st turning course part P3 or the 2nd turning course part P5. The third predetermined distance D1c is a first predetermined distance in consideration of the fact that the vehicle 1 is easily separated from the turning path portions P3 and P5 during autonomous traveling on the first turning path portion P3 or the second turning path portion P5. The distance is set to be shorter than the predetermined distance D1a and the second predetermined distance D1b.
 図19に示すように、操舵角演算手段16Edは、自車1の現在位置p1が現在の経路部(例えば直進作業経路部P1)から種類の異なる次の経路部(例えば第1旋回経路部P3)に切り替わるまでの間は、現在の経路部の延長線上に目標地点p2を設定する。
 これにより、例えば、自車1が直進作業経路部P1を自律走行している間は、直進作業経路部P1での自律走行に適した目標地点p2を設定することができ、この目標地点p2から直進作業経路部P1での自律走行に適した目標操舵角θsを演算することができる。また、自車1が第1旋回経路部P3を自律走行している間は、第1旋回経路部P3での自律走行に適した目標地点p2を設定することができ、この目標地点p2から第1旋回経路部P3での自律走行に適した目標操舵角θsを演算することができる。その結果、自車1が目標経路Pを自律走行するときの走行精度を高めることができる。
As shown in FIG. 19, the steering angle calculation means 16Ed is the next path part (for example, the first turning path part P3) of which the current position p1 of the vehicle 1 is different from the current path part (for example, straight working path part P1). Until switching to), the target point p2 is set on the extension of the current route portion.
Thus, for example, while the vehicle 1 travels autonomously in the straight operation path portion P1, it is possible to set a target point p2 suitable for autonomous traveling in the straight operation path portion P1, and from the target point p2 It is possible to calculate the target steering angle θs suitable for autonomous traveling on the straight working path portion P1. In addition, while the vehicle 1 travels autonomously in the first turning path portion P3, a target point p2 suitable for autonomous traveling in the first turning path portion P3 can be set, and from the target point p2 It is possible to calculate the target steering angle θs suitable for autonomous traveling on the single turning path portion P3. As a result, it is possible to improve the traveling accuracy when the vehicle 1 travels autonomously on the target route P.
 ところで、図20に示すように、トラクタ1などの作業車両においては、舵角センサ18の個体差などに起因した舵角誤差θeがステアリング系に含まれていることにより、自律走行時には、その舵角誤差θeに起因して、作業車両が目標経路Pに対する一定の走行オフセット量Soを残した状態で走行することになる。その結果、走行オフセットに起因した作業精度の低下を招くことになる。 By the way, as shown in FIG. 20, in the working vehicle such as the tractor 1, the steering angle error θe caused by the individual difference of the steering angle sensor 18 is included in the steering system. Due to the angular error θe, the work vehicle travels with a constant travel offset amount So for the target route P remaining. As a result, the working accuracy is reduced due to the traveling offset.
 そこで、図13に示すように、操舵角設定部16Eは、操舵角演算手段16Edに加えて、自律走行時の舵角誤差θeを検出する舵角誤差検出手段16Eeと、舵角誤差θeにて目標操舵角θsを補正する舵角補正手段16Efとを有している。 Therefore, as shown in FIG. 13, in addition to the steering angle calculation means 16Ed, the steering angle setting unit 16E detects a steering angle error detection means 16Ee that detects a steering angle error θe during autonomous traveling, and a steering angle error θe. And steering angle correction means 16Ef for correcting the target steering angle θs.
 図21~22に示すように、舵角誤差検出手段16Eeは、目標経路Pの直進作業経路部P1での自車1の自律走行による直進走行時に、自車1の現在位置p1から進行方向側(前方側)に一定距離D4をあけた目標経路上に注視点p3を設定する注視点設定処理(ステップ#3)と、自車1の現在位置から注視点p3にわたる線分L2を生成する線分生成処理(ステップ#4)と、目標経路Pと線分L2とがなす角度を舵角誤差θeとして演算する舵角誤差演算処理(ステップ#5)とを行う。そして、舵角誤差演算処理においては、NED座標上での自車1の直進作業経路部P1からの横方向偏差をD5とすれば、注視点設定用の一定距離がD4であることから、舵角誤差θeを、
 舵角誤差θe=asin(横方向偏差D5/一定距離D4)
によって求めることができる。
 舵角補正手段16Efは、上記の舵角誤差演算処理で得た舵角誤差θeを前述した目標操舵角演算処理で得た目標操舵角θsに足し合わせる補正処理を行う。
 これにより、目標操舵角θsを舵角誤差θeが考慮された値に補正することができ、この補正処理後の目標操舵角θsをパワーステアリング機構12に出力することにより、自律走行時における自車1の目標経路Pに対する走行オフセット量Soを低下させることができる。その結果、走行オフセットによる作業精度の低下を抑制することができる。
As shown in FIGS. 21-22, the steering angle error detection means 16Ee moves from the current position p1 of the vehicle 1 to the traveling direction during straight traveling by autonomous traveling of the vehicle 1 on the straight operation route portion P1 of the target route P. A fixation point setting process (step # 3) for setting a fixation point p3 on a target route with a fixed distance D4 (front side) and a line for generating a line L2 from the current position of the vehicle 1 to the fixation point p3 A minute generation process (step # 4) and a steering angle error calculation process (step # 5) for calculating an angle formed by the target path P and the line segment L2 as the steering angle error θe are performed. Then, in the steering angle error calculation process, assuming that the lateral deviation from the straight working path portion P1 of the vehicle 1 on the NED coordinates is D5, the constant distance for setting the fixation point is D4, The angular error θe
Steering angle error θe = asin (lateral deviation D5 / fixed distance D4)
It can be determined by
The steering angle correction means 16Ef performs correction processing to add the steering angle error θe obtained by the steering angle error calculation processing to the target steering angle θs obtained by the target steering angle calculation processing described above.
As a result, the target steering angle θs can be corrected to a value in which the steering angle error θe is taken into consideration. By outputting the target steering angle θs after this correction processing to the power steering mechanism 12, the own vehicle at the time of autonomous traveling The travel offset amount So for one target route P can be reduced. As a result, it is possible to suppress a decrease in work accuracy due to the traveling offset.
 図14、図21~22に示すように、舵角誤差検出手段16Eeは、舵角誤差θeの検出を許容する所定条件が成立しているか否かを判別する検出条件判別処理(ステップ#1)と、その所定条件が成立するまでの間は舵角誤差θeの検出を禁止する検出禁止処理(ステップ#2)とを行う。
 本第2実施形態においては、所定条件として、自車1が直進作業経路部P1での自律走行を開始してから自律走行が整定するまでに要する一定距離Laを走破したか否かが設定されている。そして、舵角誤差検出手段16Eeは、検出条件判別処理においては、自車1が直進作業経路部P1での自律走行を開始してから一定距離Laを走破した場合に、所定条件が成立したと判断するように構成されており、これにより、自車1が直進作業経路部P1での自律走行を開始してから一定距離Laを走破するまでの間は、検出禁止処理によって舵角誤差θeの検出が禁止される。
 その結果、自車1が直進作業経路部P1での自律走行を開始してから自律走行が整定するまでの間においても、舵角誤差θeの検出と、検出した舵角誤差θeに基づく目標操舵角θsの補正が行われることにより、舵角誤差θeの検出確度が低下し、この検出確度の低い舵角誤差θeに基づいて目標操舵角θsが補正されてパワーステアリング機構12に出力されることに起因して、自律走行時における自車1の目標経路Pに対する走行オフセット量Soが低下し難くなる不都合の発生を回避することができる。
As shown in FIGS. 14 and 21 to 22, the steering angle error detection unit 16Ee determines whether or not a predetermined condition for allowing detection of the steering angle error θe is satisfied (step # 1). And, the detection prohibiting process (step # 2) of prohibiting the detection of the steering angle error θe is performed until the predetermined condition is satisfied.
In the second embodiment, as a predetermined condition, it is set whether or not a predetermined distance La necessary for the autonomous traveling to settle after the autonomous vehicle 1 has started the autonomous traveling on the straight operation path portion P1 is run. ing. Then, in the detection condition determination process, the steering angle error detection means 16Ee assumes that the predetermined condition is satisfied when the own vehicle 1 starts traveling autonomously on the straight work path portion P1 and then runs through the fixed distance La. It is configured to make a determination, whereby the detection prohibiting process is performed by the detection prohibiting process from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until it runs through the predetermined distance La. Detection is prohibited.
As a result, detection of the steering angle error θe and target steering based on the detected steering angle error θe also from when the vehicle 1 starts autonomous traveling on the straight working path portion P1 until the autonomous traveling is settled. The correction of the angle θs reduces the detection accuracy of the steering angle error θe, and the target steering angle θs is corrected based on the steering angle error θe having a low detection accuracy and is output to the power steering mechanism 12 As a result, it is possible to avoid the occurrence of the inconvenience that the traveling offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous traveling hardly decreases.
 図14、図22に示すように、舵角誤差検出手段16Eeは、自車1が一定距離Laの走破後に舵角誤差検出用の第1設定距離Lbを走破したか否かを判別する第1走破判別処理(ステップ#6)を行い、自車1が舵角誤差検出用の第1設定距離Lbを走破するまでの間は舵角誤差θeの検出を設定時間ごとに行い、自車1が第1設定距離Lbを走破するのに伴って、設定時間ごとに検出した複数回分の舵角誤差θeの平均値を求めて、この平均値を補正処理用の舵角誤差θeとする平均化処理(ステップ#7)を行う。
 これにより、舵角誤差検出手段16Eeによる舵角誤差θeの検出確度を高めることができる。そして、舵角補正手段16Efが、確度の高い舵角誤差θeで補正した目標操舵角θsをパワーステアリング機構12に出力することにより、自律走行時における自車1の目標経路Pに対する走行オフセット量Soをより確実に低下させることができる。その結果、走行オフセットによる作業精度の低下をより効果的に抑制することができる。
As shown in FIG. 14 and FIG. 22, the steering angle error detection means 16Ee determines whether or not the own vehicle 1 has run through the first set distance Lb for detecting the steering angle error after running the constant distance La. The travel detection processing (step # 6) is performed, and the steering angle error θe is detected at every set time until the host vehicle 1 breaks the first set distance Lb for steering angle error detection, and the host vehicle 1 As traveling through the first set distance Lb, averaging processing is performed to obtain an average value of a plurality of steering angle errors θe detected for each setting time, and set the average value as the steering angle error θe for correction processing Perform (Step # 7).
Thus, the detection accuracy of the steering angle error θe by the steering angle error detection means 16Ee can be enhanced. Then, the steering angle correction means 16Ef outputs the target steering angle θs corrected with the steering angle error θe with high accuracy to the power steering mechanism 12 to make the travel offset amount So to the target route P of the vehicle 1 at the time of autonomous traveling. Can be lowered more reliably. As a result, it is possible to more effectively suppress the decrease in work accuracy due to the traveling offset.
 舵角誤差検出手段16Eeは、自車1が第1設定距離Lbよりも長い舵角誤差再検出用の第2設定距離Lcを走破したか否かを判別する第2走破判別処理(ステップ#9)を行い、自車1が第2設定距離Lcを走破するごとに、前述した処理手順に基づいて舵角誤差θeの平均値を再検出して舵角誤差θeを更新する。
 これにより、舵角誤差検出手段16Eeは、更新処理によって舵角誤差θeを更新するごとに舵角誤差θeの検出確度を高めることができ、舵角補正手段16Efは、更新ごとに確度が高められた舵角誤差θeに基づいて補正した目標操舵角θsをパワーステアリング機構12に出力することができる。その結果、自車1の直進作業経路部P1での自律走行距離が長くなるほど、自律走行時における自車1の目標経路Pに対する走行オフセット量Soを低下させることができ、走行オフセットによる作業精度の低下をより効果的に抑制することができる。
 なお、舵角誤差検出用の第1設定距離Lbと舵角誤差再検出用の第2設定距離Lcとの差は、第1設定距離Lbの走行で得た舵角誤差θeに基づいて目標操舵角θsが補正された後の自動操舵による自律走行において、自律走行が整定するまでの走行距離を考慮して設定されている。
The second run determination processing (step # 9) determines whether the steering angle error detection means 16Ee has run through the second set distance Lc for re-detection of the steer angle error longer than the first set distance Lb. Each time the vehicle 1 travels the second set distance Lc, the steering angle error θe is updated by re-detecting the average value of the steering angle error θe based on the processing procedure described above.
As a result, the steering angle error detection means 16Ee can increase the detection accuracy of the steering angle error θe every time the steering angle error θe is updated by the updating process, and the steering angle correction means 16Ef can increase the accuracy every update. The target steering angle θs corrected based on the steering angle error θe can be output to the power steering mechanism 12. As a result, the travel offset amount So with respect to the target route P of the vehicle 1 at the time of autonomous travel can be reduced as the autonomous traveling distance of the vehicle 1 at the straight traveling work route portion P1 becomes longer. The drop can be more effectively suppressed.
The difference between the first set distance Lb for detecting the steering angle error and the second set distance Lc for detecting the steering angle error is the target steering based on the steering angle error θe obtained in the traveling of the first set distance Lb. In the autonomous traveling by the automatic steering after the angle θs is corrected, the traveling distance until the autonomous traveling settles is set in consideration.
 図22に示すように、舵角誤差検出手段16Eeは、前述した平均化処理の実行中に自車1が直進作業経路部P1から方向転換経路部P2に移行したか否かを判別する経路部移行判別処理(ステップ#8)を行い、移行した場合は、このときの平均化処理を終了して舵角誤差θeの平均値を求めない平均化中止処理(ステップ#10)を行う。
 これにより、舵角誤差θeの平均化処理において、直進走行時の舵角誤差θeとは異なる成分を有する方向転換時の舵角誤差θeが直進走行時の舵角誤差θeと混在することによる舵角誤差θeの検出確度の低下を防止することができる。
As shown in FIG. 22, the steering angle error detection means 16Ee determines whether or not the vehicle 1 has shifted from the straight work path P1 to the direction change path P2 during execution of the averaging process described above. The shift determination process (step # 8) is performed, and when the shift is made, the averaging process at this time is ended, and the averaging stop process (step # 10) in which the average value of the steering angle error θe is not obtained.
As a result, in the averaging process of the steering angle error θe, the steering is performed by the steering angle error θe at the time of direction change having a component different from the steering angle error θe at the time of straight running mixed with the steering angle error θe at the straight running It is possible to prevent the decrease in detection accuracy of the angular error θe.
 図示は省略するが、舵角誤差検出手段16Eeは、自車1が各直進作業経路部P1での自律走行を開始するごとに今回の直進作業経路部P1が奇数列か偶数列かを判別する数列判別処理を行い、今回の直進作業経路部P1が奇数列(往路部)であれば、今回の直進作業経路部P1での自律走行中に検出する舵角誤差θeを往路用の舵角誤差θeとし、前述した更新処理においては、往路用の舵角誤差θeを検出するごとに往路用の舵角誤差θeを更新する。また、今回の直進作業経路部P1が偶数列(復路部)であれば、今回の直進作業経路部P1での自律走行中に検出する舵角誤差θeを復路用の舵角誤差θeとし、前述した更新処理においては、復路用の舵角誤差θeを検出するごとに復路用の舵角誤差θeを更新する。
 舵角補正手段16Efは、前述した数列判別処理で得た判別結果に基づいて、今回の直進作業経路部P1が奇数列であれば、往路用の舵角誤差θeを前述した目標操舵角演算処理で得た目標操舵角θsに足し合わせる往路用の補正処理を行う。また、今回の直進作業経路部P1が偶数列であれば、復路用の舵角誤差θeを前述した目標操舵角演算処理で得た目標操舵角θsに足し合わせる復路用の補正処理を行う。
 これにより、測位ユニット19が測定する自車1のヨー角に誤差がのることなどに起因して、自車1が奇数列の直進作業経路部(往路部)P1を自律走行する場合と偶数列の直進作業経路部(復路部)P1を自律走行する場合とで舵角誤差θeに差異が生じている場合に、往路用の舵角誤差θeが復路用の舵角誤差θeによって更新される、または、復路用の舵角誤差θeが往路用の舵角誤差θeによって更新されることによる舵角誤差θeの検出確度の低下を防止することができる。
 具体的には、例えば、奇数列の直進作業経路部(往路部)P1の方位が真北になり、偶数列の直進作業経路部(復路部)P1の方位が真南になる圃場において、自車1が奇数列の直進作業経路部(往路部)P1を自律走行している場合には、測位ユニット19が測定する自車1の方位が0度になり、かつ、自車1が偶数列の直進作業経路部(復路部)P1を自律走行している場合には、測位ユニット19が測定する自車1の方位が180度になることが理想的であるが、実際には、測位ユニット19が測定する自車1のヨー角に誤差がのることなどに起因して、自車1が奇数列の直進作業経路部(往路部)P1を自律走行しているにもかかわらず、測位ユニット19が測定する自車1の方位が0度から少しずれることがあり、また、自車1が偶数列の直進作業経路部(復路部)P1を自律走行しているにもかかわらず、測位ユニット19が測定する自車1の方位が180度から少しずれることがある。
 これにより、本来は、自車1が奇数列の直進作業経路部(往路部)P1を自律走行しているときの自車1の方位と、自車1が偶数列の直進作業経路部(復路部)P1を自律走行しているときの自車1の方位との角度差が180度になるはずが、測位誤差のために180度にならない不都合が生じることがある。
 しかしながら、自車1が同じ奇数列または同じ偶数列の直進作業経路部P1を自律走行しているときは、測位誤差による方位のずれ方向が一定なる傾向があることから、この点を考慮して、奇数列用(往路用)の舵角誤差θeと偶数列用(復路用)の舵角誤差θeとを個別に検出して個別に更新するようにしている。
 その結果、検出確度の高い往路用の舵角誤差θeと復路用の舵角誤差θeとを得ることができる。
 そして、自車1が自律走行する直進作業経路部P1が往路部であれば、このときの目標操舵角θsを往路用の舵角誤差θeが考慮された値に補正することができ、この補正後の目標操舵角θsをパワーステアリング機構12に出力することにより、往路用の直進作業経路部P1での自律走行時における自車1の直進作業経路部P1に対する走行オフセット量Soをより好適に低下させることができる。また、自車1が自律走行する直進作業経路部P1が復路部であれば、このときの目標操舵角θsを復路用の舵角誤差θeが考慮された値に補正することができ、この補正後の目標操舵角θsをパワーステアリング機構12に出力することにより、復路用の直進作業経路部P1での自律走行時における自車1の直進作業経路部P1に対する走行オフセット量Soをより好適に低下させることができる。
Although not shown, the steering angle error detection means 16Ee determines whether the present straight working path portion P1 is an odd number row or an even number row each time the own vehicle 1 starts the autonomous traveling on each straight portion working path portion P1. The number sequence determination processing is performed, and if the current straight operation path portion P1 is an odd row (outbound portion), the steering angle error for forward movement is detected as the steering angle error θe detected during autonomous traveling on the current straight operation path portion P1. In the updating process described above, the forward steering angle error θe is updated each time the forward steering angle error θe is detected. Further, if the straight traveling work path portion P1 at this time is an even-numbered row (returning path portion), the steering angle error θe detected during autonomous traveling at the straight traveling work path portion P1 this time is the steering angle error θe for returning home. In the updating process, the return steering angle error θe is updated each time the return steering angle error θe is detected.
The steering angle correction means 16Ef executes the target steering angle calculation processing described above for the forward steering angle error θe if the current straight working path portion P1 is an odd number row based on the determination result obtained by the above-described number sequence determination processing. A correction process for the forward path to be added to the target steering angle θs obtained in the above is performed. Further, if the current straight working path portion P1 is an even-numbered row, correction processing for the return path is performed to add the steering angle error θe for the return path to the target steering angle θs obtained by the target steering angle calculation processing described above.
As a result, when the positioning unit 19 measures an error in the yaw angle of the vehicle 1 measured by the positioning unit 19, the vehicle 1 travels autonomously in the straight work path portion (outgoing route portion) P1 of the odd number row and even number When there is a difference in the steering angle error θe when autonomous traveling on the straight traveling work path portion (return path portion) P1 of the row, the steering angle error θe for the forward path is updated by the steering angle error θe for the return path Alternatively, it is possible to prevent a decrease in the detection accuracy of the steering angle error θe caused by the return path steering angle error θe being updated by the forward path steering angle error θe.
Specifically, for example, in a field where the heading of the straight working path part (outbound part) P1 of the odd number row is true north and the heading of the straight working path part (return part) P1 of the even number is true south When the car 1 travels autonomously in the straight work path portion (forward path portion) P1 in an odd number row, the azimuth of the vehicle 1 measured by the positioning unit 19 is 0 degrees, and the vehicle 1 is an even number row It is ideal that the azimuth of the vehicle 1 measured by the positioning unit 19 is 180 degrees when autonomous traveling on the straight working path portion (return path portion) P1 of Even though the own vehicle 1 autonomously travels in the straight-ahead work path part (outbound part) P1 of the odd number row due to an error in the yaw angle of the own vehicle 1 measured by 19 and the like, The orientation of the vehicle 1 measured by the unit 19 may be slightly deviated from 0 degrees, and the vehicle 1 may Straight working path portion of the sequence (the return portions) P1 Despite the autonomous, the orientation of the vehicle 1, the positioning unit 19 measures there is a little deviated from 180 degrees.
Thus, originally, the direction of the vehicle 1 when the vehicle 1 autonomously travels in the straight movement work route portion (forward route portion) P1 of the odd number row, and the straight movement work route portion of the even vehicle 1 (return route Part) Although the angle difference with the direction of the host vehicle 1 when traveling autonomously on P1 should be 180 degrees, there may be a disadvantage that it does not become 180 degrees due to a positioning error.
However, when the vehicle 1 travels autonomously in the same straight line work path portion P1 of the same odd number row or the same even number row, the direction of the deviation of the direction due to the positioning error tends to be constant. The steering angle error θe for the odd row (outbound path) and the steering angle error θe for the even row (return path) are separately detected and individually updated.
As a result, it is possible to obtain the forward path steering angle error θe and the return path steering angle error θe with high detection accuracy.
Then, if the straight work path P1 on which the vehicle 1 travels autonomously is the outward path portion, the target steering angle θs at this time can be corrected to a value in which the steering angle error θe for the outward path is taken into account. By outputting the subsequent target steering angle θs to the power steering mechanism 12, the traveling offset amount So to the straight working path P1 of the vehicle 1 at the time of autonomous traveling on the straight working path P1 for the outgoing route is reduced more suitably. It can be done. Further, if the straight work path portion P1 on which the vehicle 1 travels autonomously is the return path portion, the target steering angle θs at this time can be corrected to a value in which the steering angle error θe for the return path is taken into account. By outputting the subsequent target steering angle θs to the power steering mechanism 12, the traveling offset amount So to the straight working path P1 of the vehicle 1 at the time of autonomous traveling on the straight working path P1 for returning is reduced more suitably. It can be done.
 舵角誤差検出手段16Eeは、舵角誤差θeを検出または更新するごとに最新の舵角誤差θeを車載記憶部16Dに記憶する記憶処理を行い、舵角補正手段16Efは、前述した検出禁止処理によって舵角誤差θeの検出が禁止されている間は、車載記憶部16Dに記憶された舵角誤差θeにて目標操舵角演算処理で得た目標操舵角θsを補正する。
 これにより、検出禁止処理によって舵角誤差θeの検出が禁止された自律走行時においても、目標操舵角演算処理で得た目標操舵角θsを舵角誤差θeが考慮された値に補正することができ、この補正処理後の目標操舵角θsをパワーステアリング機構12に出力することにより、自車1の目標経路Pに対する走行オフセット量Soを低下させることができる。
 また、前述したように車載記憶部16Dは不揮発性であることから、自車1のキーオフ操作によって電源が落された後に、キーオン操作が行われて自律走行が開始された場合であっても、車載記憶部16Dに記憶された舵角誤差θeにて目標操舵角演算処理で得た目標操舵角θsを補正することができ、自車1の目標経路Pに対する走行オフセット量Soを低下させることができる。
The steering angle error detection means 16Ee performs storage processing for storing the latest steering angle error θe in the on-vehicle storage unit 16D every time the steering angle error θe is detected or updated, and the steering angle correction means 16Ef performs the above-described detection prohibition process Thus, while the detection of the steering angle error θe is prohibited, the target steering angle θs obtained in the target steering angle calculation process is corrected with the steering angle error θe stored in the on-vehicle storage unit 16D.
Thus, even during autonomous travel in which detection of the steering angle error θe is prohibited by the detection prohibiting process, the target steering angle θs obtained by the target steering angle calculation process is corrected to a value in which the steering angle error θe is taken into consideration. By outputting the target steering angle θs after this correction processing to the power steering mechanism 12, it is possible to reduce the travel offset amount So with respect to the target route P of the vehicle 1.
Further, as described above, since the on-vehicle storage unit 16D is nonvolatile, even if the key-on operation is performed and the autonomous traveling is started after the power is turned off by the key-off operation of the vehicle 1, The target steering angle θs obtained by the target steering angle calculation processing can be corrected by the steering angle error θe stored in the on-vehicle storage unit 16D, and the travel offset amount So to the target route P of the own vehicle 1 can be reduced. it can.
〔別実施形態〕
 本発明の第2実施形態に関する別実施形態について説明する。
 尚、以下に説明する各実施形態の構成は、それぞれ単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Another embodiment of the second embodiment of the present invention will be described.
In addition, the configuration of each embodiment described below is not limited to being individually applied, and may be applied in combination with the configuration of the other embodiments.
(1)作業車両の構成は種々の変更が可能である。
 例えば、作業車両は、エンジン10と走行用の電動モータとを備えるハイブリット仕様に構成されていてもよく、また、エンジン10に代えて走行用の電動モータを備える電動仕様に構成されていてもよい。
 例えば、作業車両は、左右の後輪8に代えて左右のクローラを備えるセミクローラ仕様に構成されていてもよい。
 例えば、作業車両は、左右の後輪8が操舵輪として機能する後輪ステアリング仕様に構成されていてもよい。
(1) The configuration of the work vehicle can be variously changed.
For example, the work vehicle may be configured in a hybrid specification including the engine 10 and an electric motor for traveling, or may be configured in an electric specification including an electric motor for traveling in place of the engine 10 .
For example, the work vehicle may be configured in a semi crawler specification provided with left and right crawlers instead of the left and right rear wheels 8.
For example, the work vehicle may be configured in a rear wheel steering specification in which the left and right rear wheels 8 function as steered wheels.
(2)舵角センサ18は、自動操舵ユニット32がステアリングホイール20と左右の前輪(操舵輪)7とを機械連係によって連動させる構成であれば、ステアリングホイール20の回転操作方向および回転操作量に基づいて前輪(操舵輪)7の操舵角を検出するように構成されていてもよい。 (2) If the steering angle sensor 18 is configured such that the automatic steering unit 32 interlocks the steering wheel 20 and the left and right front wheels (steering wheels) 7 by mechanical linkage, the rotational operation direction and rotational operation amount of the steering wheel 20 The steering angle of the front wheel (steering wheel) 7 may be detected on the basis of this.
(3)舵角誤差検出手段16Eeは、検出条件判別処理においては、自車1が自律走行の開始から自律走行が整定するまでに要する一定時間が経過するまで走行した場合に、所定条件が成立したと判断して舵角誤差θeを検出するように構成されていてもよい。 (3) In the detection condition determination process, the steering angle error detection means 16Ee satisfies the predetermined condition when the vehicle 1 travels until the fixed time required from the start of the autonomous traveling to the settling of the autonomous traveling elapses. It may be determined that the steering angle error θe is detected.
(4)舵角誤差検出手段16Eeは、検出条件判別処理においては、自車1が自律走行の開始から車速に応じて設定された設定距離を走行した場合に、所定条件が成立したと判断して舵角誤差θeを検出するように構成されていてもよい。 (4) In the detection condition determination processing, the steering angle error detection means 16Ee determines that the predetermined condition is satisfied when the vehicle 1 travels the set distance set according to the vehicle speed from the start of autonomous traveling. The steering angle error θe may be detected.
(5)舵角誤差検出手段16Eeは、検出条件判別処理においては、前述した注視点設定処理と線分生成処理と舵角誤差演算処理とで得た舵角誤差θeが舵角誤差検出用の設定値以下に低下した場合に、所定条件が成立したと判断して舵角誤差θeを検出するように構成されていてもよい。 (5) In the detection condition determination process, the steering angle error detection means 16Ee is for detecting the steering angle error the steering angle error θe obtained by the fixation point setting process, the line segment generation process, and the steering angle error calculation process described above. The steering angle error θe may be detected by determining that the predetermined condition is satisfied, when the steering angle error θe is decreased when the steering wheel angle drops below the set value.
(6)舵角誤差検出手段16Eeは、検出条件判別処理においては、測位ユニット19の測定に基づいて自車1が目標経路Pと平行に自律走行していることを検知した場合に、所定条件が成立したと判断して舵角誤差θeを検出するように構成されていてもよい。 (6) In the detection condition determination process, the steering angle error detection means 16Ee detects that the vehicle 1 is traveling autonomously in parallel with the target route P based on the measurement of the positioning unit 19 as a predetermined condition. It may be configured to detect the steering angle error θe by judging that
(7)舵角誤差検出手段16Eeは、平均化処理においては、舵角誤差検出用の設定時間が経過するまでの間において、舵角誤差θeの検出を複数回行うとともに、この複数回分の舵角誤差θeの平均値を補正処理用の舵角誤差θeとするように構成されていてもよい。 (7) In the averaging process, the steering angle error detection means 16Ee detects the steering angle error θe a plurality of times until the set time for detecting the steering angle error elapses, and performs the steering for the plurality of times. The average value of the angular error θe may be set as the steering angle error θe for the correction process.
(8)舵角誤差検出手段16Eeは、前述した平均化処理を行わないように構成されていてもよい。 (8) The steering angle error detection means 16Ee may be configured not to perform the averaging process described above.
(9)舵角誤差検出手段16Eeは、自律走行中に舵角誤差再検出用の設定時間が経過するごとに、舵角誤差θeまたは舵角誤差θeの平均値を再検出して舵角誤差θeを更新するように構成されていてもよい。 (9) The steering angle error detection means 16Ee redetects the average value of the steering angle error θe or the steering angle error θe every time the setting time for steering angle error redetection elapses during autonomous traveling, and the steering angle error It may be configured to update θe.
(10)舵角誤差検出手段16Eeは、自車1が車速に応じて設定された設定距離を走行するごとに、舵角誤差θeまたは舵角誤差θeの平均値を再検出して舵角誤差θeを更新するように構成されていてもよい。 (10) The steering angle error detecting means 16Ee redetects the average value of the steering angle error θe or the steering angle error θe every time the vehicle 1 travels the set distance set according to the vehicle speed, and the steering angle error It may be configured to update θe.
(11)舵角誤差検出手段16Eeが舵角誤差θeまたは舵角誤差θeの平均値を再検出して舵角誤差θeを更新する間隔(走行距離または時間など)を、携帯通信端末3などの操作によって任意に設定変更することが可能になるように構成してもよい。この構成では、圃場条件などに応じて舵角誤差θeの更新間隔を最適化することができる。 (11) The interval (travel distance, time, etc.) at which the steering angle error detection means 16Ee redetects the steering angle error θe or the average value of the steering angle error θe and updates the steering angle error θe You may constitute so that it can become possible to change a setting arbitrarily by operation. In this configuration, the update interval of the steering angle error θe can be optimized according to the field conditions and the like.
(12)舵角誤差検出手段16Eeは、舵角誤差θeの検出中において、目標経路Pに対する自車1の偏差に設定値以上の急激な変化が生じた場合に舵角誤差θeの検出を中止し、その後、前述した検出条件判別処理において所定条件が成立したと判断した場合に舵角誤差θeの検出を再開するように構成されていてもよい。この構成では、急激な偏差の変化に基づく舵角誤差θeが目標操舵角θsの補正に使用されることを防止することができる。 (12) While detecting the steering angle error θe, the steering angle error detection means 16Ee stops detecting the steering angle error θe when the deviation of the host vehicle 1 with respect to the target path P undergoes a drastic change over the set value. Then, when it is determined that the predetermined condition is satisfied in the detection condition determination process described above, the detection of the steering angle error θe may be resumed. In this configuration, it is possible to prevent the steering angle error θe based on the sudden change in deviation from being used for the correction of the target steering angle θs.
(13)舵角誤差検出手段16Eeは、自律走行時における自車1の前進、後進、旋回、などの走行形態に応じて、それぞれの舵角誤差θeを個別に検出して車載記憶部16Dなどに記憶させるように構成されていてもよい。この構成は、自車1の走行形態に応じて舵角誤差θeが変化する場合に好適である。 (13) The steering angle error detection means 16Ee individually detects each steering angle error θe according to the traveling mode such as forward, reverse or turning of the vehicle 1 at the time of autonomous traveling, and the on-vehicle storage unit 16D etc. May be configured to be stored. This configuration is suitable when the steering angle error θe changes in accordance with the traveling mode of the host vehicle 1.
(14)舵角誤差検出手段16Eeは、携帯通信端末3などの操作によって舵角誤差θeの更新が指令された場合に、舵角誤差θeを再検出して舵角誤差θeを更新するように構成されていてもよい。この構成では、例えば、作業車両1が目標経路Pを精度よく自律走行することができない場合、および、作業車両1における車輪7,8の交換による車輪径や車輪接地幅の変化、または、左右の後輪8をクローラに変更することによって走行特性に変化が生じた場合、などにおいては、携帯通信端末3などの操作によって任意に舵角誤差θeを更新することができる。 (14) The steering angle error detection means 16Ee redetects the steering angle error θe and updates the steering angle error θe when updating of the steering angle error θe is instructed by the operation of the mobile communication terminal 3 or the like. It may be configured. In this configuration, for example, when the work vehicle 1 can not travel on the target route P accurately with accuracy, and changes in the wheel diameter and the wheel contact width due to the replacement of the wheels 7 and 8 in the work vehicle 1, or In the case where the traveling characteristic changes due to the change of the rear wheel 8 to the crawler, the steering angle error θe can be arbitrarily updated by the operation of the mobile communication terminal 3 or the like.
(15)作業車両1に、車輪7,8の交換、または、左右の後輪8のクローラへの変更、などの舵角誤差θeに影響を及ぼす車両状態の変更が行われたことを検出するセンサを備えて、このセンサが車両状態の変更を検出した場合に、舵角誤差検出手段16Eeが自動的に舵角誤差θeの更新を行うように構成されていてもよい。 (15) It is detected that a change in the vehicle state affecting the steering angle error θe such as replacement of the wheels 7 and 8 or change of the left and right rear wheels 8 to crawlers has been performed on the work vehicle 1 A sensor may be provided, and when the sensor detects a change in the vehicle state, the steering angle error detection means 16Ee may be configured to automatically update the steering angle error θe.
 本発明は、トラクタ、乗用田植機、コンバイン、乗用草刈機、ホイールローダ、除雪車、などの乗用作業車両、および、無人草刈機などの無人作業車両に利用可能な作業車両用の自律走行システムに適用することができる。 The present invention relates to an autonomous travel system for work vehicles usable for unmanned work vehicles such as tractors, ride rice planters, combine harvesters, ride mowers, wheel loaders, snow removal vehicles, and unmanned work vehicles such as unmanned grass mowers. It can apply.
〔第1実施形態〕
1    自車
7    操舵輪
16D  記憶部
16E  操舵角設定部
16Ea 方位角偏差演算手段
16Eb 舵角誤差検出手段
16Ec 操舵角演算手段
18   舵角センサ
19   測位ユニット
32   自動操舵ユニット
L1   目標方位ライン
D1   所定距離
D1a  所定距離(第1所定距離)
D1b  所定距離(第2所定距離)
D1c  所定距離(第3所定距離)
P    目標経路
P1   経路部(直進作業経路部)
P2   経路部(方向転換経路部)
P3   経路部(第1旋回経路部)
P4   経路部(後方直進経路部)
P5   経路部(第2旋回経路部)
p1   現在位置
p2   目標地点
θ1   現在方位
θd   方位角偏差
θe   舵角誤差
θs   目標操舵角
〔第2実施形態〕
1    自車
7    操舵輪
16D  記憶部
16E  操舵角設定部
16Ed 操舵角演算手段
16Ee 舵角誤差検出手段
16Ef 舵角補正手段
18   舵角センサ
19   測位ユニット
32   自動操舵ユニット
L2   線分
La   自律走行整定用の一定距離
Lb   舵角誤差検出用の設定距離
Lc   舵角誤差再検出用の設定距離
P    目標経路
p1   現在位置
p3   注視点
θ1   現在方位
θe   舵角誤差
θs   目標操舵角
First Embodiment
1 self-vehicle 7 steering wheel 16D storage unit 16E steering angle setting unit 16Ea azimuth angle deviation computing means 16Eb steering angle error detecting means 16Ec steering angle computing means 18 steering angle sensor 19 positioning unit 32 automatic steering unit L1 target steering line D1 target direction line D1a Predetermined distance (first predetermined distance)
D1b predetermined distance (second predetermined distance)
D1c predetermined distance (third predetermined distance)
P Target path P1 Path part (straight work path part)
P2 route part (turning route part)
P3 path part (1st turning path part)
P4 path part (rear straight path part)
P5 path part (2nd turning path part)
p1 present position p2 target point θ1 present azimuth θd azimuth angle deviation θe steering angle error θs target steering angle [the second embodiment]
1 self-vehicle 7 steered wheels 16D storage unit 16E steering angle setting unit 16Ed steering angle calculation means 16Ee steering angle error detection means 16Ef steering angle correction means 18 steering angle sensor 19 positioning unit 32 automatic steering unit L2 line segment La for autonomous traveling setting Fixed distance Lb Set distance Lc for steering angle error detection Set distance P for steering angle error redetection Target path p1 Current position p3 Attention point θ1 Current direction θe Steering angle error θs Target steering angle

Claims (8)

  1.  予め生成された目標経路を記憶する記憶部と、自車の現在位置および現在方位を測定する測位ユニットと、前記自車が前記目標経路を自律走行するように操舵輪を自動操舵する自動操舵ユニットとを備え、
     前記自動操舵ユニットは、前記操舵輪の目標操舵角を設定する操舵角設定部と、前記操舵輪の操舵角を検出する舵角センサとを有し、
     前記操舵角設定部は、方位角偏差を演算する方位角偏差演算手段と、自律走行時の舵角誤差を検出する舵角誤差検出手段と、前記方位角偏差と前記舵角誤差とから前記目標操舵角を演算する操舵角演算手段とを有し、
     前記方位角偏差演算手段は、自律走行中に前記現在位置から進行方向側に所定距離をあけた前記目標経路上に目標地点を設定する目標地点設定処理と、前記現在位置から前記目標地点にわたる目標方位ラインを生成するライン生成処理と、前記現在方位と前記目標方位ラインとがなす角度を前記方位角偏差として演算する方位角偏差演算処理とを行うことを特徴とする作業車両用の自律走行システム。
    A storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and an automatic steering unit for automatically steering steered wheels so that the vehicle autonomously travels the target route Equipped with
    The automatic steering unit has a steering angle setting unit that sets a target steering angle of the steered wheels, and a steering angle sensor that detects a steered angle of the steered wheels.
    The steering angle setting unit comprises azimuth angle deviation calculation means for calculating an azimuth angle deviation, steering angle error detection means for detecting a steering angle error during autonomous traveling, the target from the azimuth angle deviation and the steering angle error. And steering angle calculation means for calculating a steering angle,
    The azimuth deviation calculation means is a target point setting process for setting a target point on the target route with a predetermined distance from the current position to the traveling direction side during autonomous traveling, and a target from the current position to the target point An autonomous traveling system for a work vehicle, comprising: line generation processing for generating an azimuth line; and azimuth deviation calculation processing for calculating an angle formed by the current azimuth and the target azimuth line as the azimuth deviation. .
  2.  前記目標経路は、前記自車の走行形態に応じて複数種類の経路部に区画され、
     前記記憶部には、前記経路部の種類に応じて異なる長さに設定された複数の前記所定距離が記憶され、
     前記方位角偏差演算手段は、前記自車が自律走行する前記経路部の種類に応じて前記所定距離を自動的に変更する請求項1に記載の作業車両用の自律走行システム。
    The target route is divided into a plurality of types of route parts according to the traveling mode of the vehicle,
    The storage unit stores a plurality of the predetermined distances set to different lengths according to the type of the path unit,
    The autonomous traveling system for a work vehicle according to claim 1, wherein the azimuth deviation calculation means automatically changes the predetermined distance in accordance with a type of the route section on which the vehicle travels autonomously.
  3.  前記目標経路は、前記自車の走行形態に応じて複数種類の経路部に区画され、
     前記方位角偏差演算手段は、前記現在位置が現在の経路部から種類の異なる次の経路部に切り替わるまでの間は、前記現在の経路部の延長線上に前記目標地点を設定する請求項1又は2に記載の作業車両用の自律走行システム。
    The target route is divided into a plurality of types of route parts according to the traveling mode of the vehicle,
    The azimuth deviation calculation means sets the target point on an extension of the current route portion until the current position switches from the current route portion to a next route portion of a different type. The autonomous travel system for work vehicles according to 2.
  4.  予め生成された目標経路を記憶する記憶部と、自車の現在位置および現在方位を測定する測位ユニットと、前記自車が前記目標経路を自律走行するように操舵輪を自動操舵する自動操舵ユニットとを備え、
     前記自動操舵ユニットは、前記操舵輪の目標操舵角を設定する操舵角設定部と、前記操舵輪の操舵角を検出する舵角センサとを有し、
     前記操舵角設定部は、前記目標操舵角を演算する操舵角演算手段と、自律走行時の舵角誤差を検出する舵角誤差検出手段と、前記舵角誤差にて前記目標操舵角を補正する舵角補正手段とを有し、
     前記舵角誤差検出手段は、自律走行中に前記現在位置から進行方向側に一定距離をあけた前記目標経路上に注視点を設定する注視点設定処理と、前記現在位置から前記注視点にわたる線分を生成する線分生成処理と、前記目標経路と前記線分とがなす角度を前記舵角誤差として演算する舵角誤差演算処理とを行い、
     前記舵角補正手段は、前記舵角誤差演算処理で得た前記舵角誤差を前記目標操舵角に足し合わせる補正処理を行うことを特徴とする作業車両用の自律走行システム。
    A storage unit for storing a target route generated in advance, a positioning unit for measuring a current position and a current direction of the vehicle, and an automatic steering unit for automatically steering steered wheels so that the vehicle autonomously travels the target route Equipped with
    The automatic steering unit has a steering angle setting unit that sets a target steering angle of the steered wheels, and a steering angle sensor that detects a steered angle of the steered wheels.
    The steering angle setting unit corrects the target steering angle with a steering angle error, a steering angle calculation unit that calculates the target steering angle, a steering angle error detection unit that detects a steering angle error during autonomous traveling, and And a steering angle correction means,
    The steering angle error detection means sets a gaze point setting process on the target route with a predetermined distance from the current position to the traveling direction side during autonomous traveling, and a line extending from the current position to the gaze point A line segment generation process for generating a minute, and a steering angle error calculation process for calculating an angle formed by the target route and the line segment as the steering angle error,
    The autonomous travel system for a work vehicle, wherein the steering angle correction means performs correction processing for adding the steering angle error obtained by the steering angle error calculation processing to the target steering angle.
  5.  前記舵角誤差検出手段は、前記舵角誤差の検出を許容する所定条件が成立しているか否かを判別する検出条件判別処理と、前記所定条件が成立するまでの間は前記舵角誤差の検出を禁止する検出禁止処理とを行う請求項4に記載の作業車両用の自律走行システム。 The steering angle error detection means determines whether or not a predetermined condition for allowing detection of the steering angle error is satisfied, and the steering angle error is detected until the predetermined condition is satisfied. The autonomous traveling system for a work vehicle according to claim 4, wherein a detection prohibition process of prohibiting detection is performed.
  6.  前記舵角誤差検出手段は、前記検出条件判別処理においては、前記自車が自律走行の開始から自律走行が整定するまでに要する一定距離を走行した場合に前記所定条件が成立したと判断する請求項5に記載の作業車両用の自律走行システム。 In the detection condition determination process, the steering angle error detection means determines that the predetermined condition is satisfied when the vehicle travels a certain distance required from the start of the autonomous traveling to the settling of the autonomous traveling. An autonomous travel system for a work vehicle according to Item 5.
  7.  前記舵角誤差検出手段は、前記自車が舵角誤差検出用の設定距離を走行するまでの間において、前記舵角誤差の検出を複数回行うとともに、この複数回分の前記舵角誤差の平均値を求めて前記平均値を補正処理用の舵角誤差とする平均化処理を行う請求項4~6のいずれか一項に記載の作業車両用の自律走行システム。 The steering angle error detection means performs the detection of the steering angle error a plurality of times until the vehicle travels the set distance for detecting the steering angle error, and the average of the steering angle errors for a plurality of times is detected. The autonomous traveling system for a work vehicle according to any one of claims 4 to 6, wherein an averaging process is performed to obtain a value and use the average value as a steering angle error for correction process.
  8.  前記舵角誤差検出手段は、自律走行中に前記自車が舵角誤差再検出用の設定距離を走行するごとに前記舵角誤差を再検出して前記舵角誤差を更新する請求項4~7のいずれか一項に記載の作業車両用の自律走行システム。 The steering angle error detection means redetects the steering angle error and updates the steering angle error each time the vehicle travels the set distance for steering angle error redetection during autonomous traveling. The autonomous travel system for work vehicles according to any one of 7.
PCT/JP2018/027855 2017-09-14 2018-07-25 Autonomous travel system for work vehicle WO2019054057A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017176585A JP6871831B2 (en) 2017-09-14 2017-09-14 Autonomous driving system for work vehicles
JP2017-176585 2017-09-14
JP2017-176586 2017-09-14
JP2017176586A JP6976782B2 (en) 2017-09-14 2017-09-14 Autonomous driving system for work vehicles

Publications (1)

Publication Number Publication Date
WO2019054057A1 true WO2019054057A1 (en) 2019-03-21

Family

ID=65722952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027855 WO2019054057A1 (en) 2017-09-14 2018-07-25 Autonomous travel system for work vehicle

Country Status (1)

Country Link
WO (1) WO2019054057A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187712A (en) * 2019-07-12 2019-08-30 彭少华 Unmanned control method, device and equipment
CN111845935A (en) * 2020-07-31 2020-10-30 安徽泗州拖拉机制造有限公司 Automatic navigation steering system of unmanned tractor
CN113359766A (en) * 2021-07-05 2021-09-07 杭州萤石软件有限公司 Mobile robot and movement control method thereof
JP2022099006A (en) * 2020-12-22 2022-07-04 井関農機株式会社 Work vehicle
EP3987899A4 (en) * 2019-06-20 2023-05-10 Yanmar Power Technology Co., Ltd. Automated driving system for work vehicle
WO2023112752A1 (en) * 2021-12-17 2023-06-22 株式会社クボタ Automated travel control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932006A (en) * 1982-08-14 1984-02-21 Kubota Ltd Guiding method of traveling object
JPH03230203A (en) * 1990-02-06 1991-10-14 Tokimec Inc Method and device for automatic steering of vehicle
JP2002182741A (en) * 2000-12-19 2002-06-26 Yanmar Agricult Equip Co Ltd Work vehicle for agriculture
US6445983B1 (en) * 2000-07-07 2002-09-03 Case Corporation Sensor-fusion navigator for automated guidance of off-road vehicles
JP2002358122A (en) * 2001-05-31 2002-12-13 Yanmar Agricult Equip Co Ltd Agricultural work vehicle
JP2004086410A (en) * 2002-08-26 2004-03-18 Japan Aviation Electronics Industry Ltd Autonomous traveling controller
JP2017123804A (en) * 2016-01-13 2017-07-20 株式会社クボタ Work vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932006A (en) * 1982-08-14 1984-02-21 Kubota Ltd Guiding method of traveling object
JPH03230203A (en) * 1990-02-06 1991-10-14 Tokimec Inc Method and device for automatic steering of vehicle
US6445983B1 (en) * 2000-07-07 2002-09-03 Case Corporation Sensor-fusion navigator for automated guidance of off-road vehicles
JP2002182741A (en) * 2000-12-19 2002-06-26 Yanmar Agricult Equip Co Ltd Work vehicle for agriculture
JP2002358122A (en) * 2001-05-31 2002-12-13 Yanmar Agricult Equip Co Ltd Agricultural work vehicle
JP2004086410A (en) * 2002-08-26 2004-03-18 Japan Aviation Electronics Industry Ltd Autonomous traveling controller
JP2017123804A (en) * 2016-01-13 2017-07-20 株式会社クボタ Work vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3987899A4 (en) * 2019-06-20 2023-05-10 Yanmar Power Technology Co., Ltd. Automated driving system for work vehicle
CN110187712A (en) * 2019-07-12 2019-08-30 彭少华 Unmanned control method, device and equipment
CN111845935A (en) * 2020-07-31 2020-10-30 安徽泗州拖拉机制造有限公司 Automatic navigation steering system of unmanned tractor
JP2022099006A (en) * 2020-12-22 2022-07-04 井関農機株式会社 Work vehicle
CN113359766A (en) * 2021-07-05 2021-09-07 杭州萤石软件有限公司 Mobile robot and movement control method thereof
CN113359766B (en) * 2021-07-05 2023-06-23 杭州萤石软件有限公司 Mobile robot movement control method and mobile robot
WO2023112752A1 (en) * 2021-12-17 2023-06-22 株式会社クボタ Automated travel control system

Similar Documents

Publication Publication Date Title
WO2019054057A1 (en) Autonomous travel system for work vehicle
US20230259136A1 (en) Target Route Generation System for Work Vehicle
CN108791482B (en) Automatic steering system
US11650599B2 (en) Positioning detection device and working machine having positioning detection device
JP7192018B2 (en) work vehicle
EP3467606B1 (en) Autonomous work vehicle
JP2023024520A5 (en)
JP6811655B2 (en) Work platform
JP6871831B2 (en) Autonomous driving system for work vehicles
JP2020099226A (en) Controller for automatic travel work vehicle
WO2020235470A1 (en) Automatic travel system
JP7083445B2 (en) Autonomous driving system
WO2019030828A1 (en) Work vehicle control system, method, and work vehicle
JP2024040453A (en) work vehicle
JP2024050614A (en) Work vehicles
JP6976782B2 (en) Autonomous driving system for work vehicles
JP2021009707A (en) Automatic steering system
KR20230057278A (en) Working vehicle
KR20210104646A (en) Driving status display device and automatic driving system
JP2020028273A (en) Travel path display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855762

Country of ref document: EP

Kind code of ref document: A1