WO2019054019A1 - Ink composition and image forming method - Google Patents

Ink composition and image forming method Download PDF

Info

Publication number
WO2019054019A1
WO2019054019A1 PCT/JP2018/025243 JP2018025243W WO2019054019A1 WO 2019054019 A1 WO2019054019 A1 WO 2019054019A1 JP 2018025243 W JP2018025243 W JP 2018025243W WO 2019054019 A1 WO2019054019 A1 WO 2019054019A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
group
neutralizing agent
polymer
compound
Prior art date
Application number
PCT/JP2018/025243
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 小山
昭太 鈴木
憲晃 佐藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019541915A priority Critical patent/JP7102420B2/en
Publication of WO2019054019A1 publication Critical patent/WO2019054019A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/023Emulsion inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes

Definitions

  • the present disclosure relates to an ink composition and an image forming method.
  • step (1) pigment, polymer having an anionic group, volatile base A mixture containing a non-volatile base, an organic solvent, and water, and the total of the degree of neutralization of the anionic group by the volatile base and the degree of neutralization of the anionic group by the non-volatile base is 210% to 500%
  • step (2) dispersing the mixture having a molar ratio of (volatile base / non-volatile base) of more than 1 to obtain a dispersion
  • step (2) the dispersion obtained in step (1) And the step of removing the volatile base and the organic solvent to obtain an aqueous dispersion of polymer particles containing the pigment, and a method of producing a thermal ink jet aqueous dispersion is disclosed.
  • the dispersion stability of the particles is required.
  • the liquid component in the ink film is removed as compared to an ink film formed using an ink containing an organic solvent as a liquid component It is hard to be done. Therefore, an image formed using an ink containing water as a liquid component tends to be inferior in definition. Therefore, the water-based ink containing particles may be required to be able to form a precise image.
  • JP-A-2010-138297 can improve the dispersion stability of particles
  • the composition of the water dispersion described in JP-A-2010-138297 can be improved by heating. It is a composition that is difficult to thicken quickly. Therefore, it is difficult to form a fine image with the aqueous dispersion described in JP-A-2010-138297.
  • a problem to be solved by an embodiment of the present invention is to provide an ink composition which is excellent in dispersion stability and can form a fine image. Further, another problem to be solved by the other embodiments of the present invention is to provide an image forming method capable of forming a fine image.
  • Means for solving the above problems include the following aspects.
  • the particle contains a polymer, and the polymer has an acid group neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a nonvolatile neutralizing agent having a boiling point of 250 ° C. or more
  • ⁇ 3> The ink composition according to ⁇ 1> or ⁇ 2>, wherein the volatile neutralizing agent is at least one selected from the group consisting of an amine compound and a quaternary ammonium hydroxide.
  • the volatile neutralizing agent is at least one selected from the group consisting of an amine compound and a quaternary ammonium hydroxide.
  • the amine compound is at least one selected from the group consisting of a compound represented by the following formula (1), a compound represented by the formula (2), and a compound represented by the formula (3)
  • R 1 , R 2 and R 3 each independently represent an alkyl group. Any two of R 1 , R 2 and R 3 may be bonded to each other to form a ring containing a nitrogen atom.
  • R 4 and R 5 each independently represent an alkyl group, and R 4 and R 5 may combine with each other to form a ring containing a nitrogen atom.
  • R 6 represents an alkyl group.
  • ⁇ 6> The ink composition according to any one of ⁇ 1> to ⁇ 5>, wherein the boiling point of the volatile neutralizing agent is 25 ° C. or more and 100 ° C. or less.
  • the non-volatile neutralizing agent is an alkali metal hydroxide.
  • the molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the nonvolatile neutralizing agent in the particle is in the range of 60/40 to 90/10.
  • ⁇ 9> The ink composition according to any one of ⁇ 1> to ⁇ 8>, wherein the polymer is a linear polymer.
  • ⁇ 10> The ink composition according to any one of ⁇ 1> to ⁇ 9>, wherein the polymer is a urethane polymer, a urea polymer, or a (meth) acrylic polymer.
  • ⁇ 11> The ink composition according to any one of ⁇ 1> to ⁇ 10>, which is used as an inkjet ink.
  • ⁇ 12> An image including a step of forming an ink film by applying the ink composition according to any one of ⁇ 1> to ⁇ 11> on a substrate, and a step of heating the ink film. Formation method.
  • an ink composition that is excellent in dispersion stability and can form a fine image is provided. Further, according to another embodiment of the present invention, an image forming method capable of forming a fine image is provided.
  • a numerical range indicated by using “to” means a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the example.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the amount of each component means the total amount of a plurality of types of substances unless a plurality of types of substances corresponding to each component are present.
  • step is included in the term if the intended purpose of the step is achieved, even if it can not be clearly distinguished from other steps, as well as independent steps.
  • “*" in a chemical formula represents a bonding position.
  • the concept of "image” encompasses not only pattern images (eg, characters, symbols, or figures) but also solid images.
  • “light” is a concept including active energy rays such as ⁇ rays, ⁇ rays, electron beams, ultraviolet rays, visible rays and the like.
  • ultraviolet light may be referred to as "UV (Ultra Violet) light”.
  • LED light light generated from a light emitting diode (LED) light source may be referred to as “LED light”.
  • (meth) acrylic acid is a concept including both acrylic acid and methacrylic acid
  • (meth) acrylate is a concept including both acrylate and methacrylate
  • (meth) acrylic acid” An acryloyl group is a concept including both an acryloyl group and a methacryloyl group.
  • (meth) acrylic polymer is a concept including both acrylic polymer and methacrylic polymer.
  • the polyoxyalkylene group, the urea group and the urethane group mean a polyoxyalkylene bond, a urea bond and a urethane bond, respectively.
  • dispersion stability means the dispersion stability of the particles contained in the ink composition, and is evaluated using the storage stability of the ink and the dischargeability of the ink when applied as an inkjet ink as an index. Ru.
  • the ink composition of the present disclosure (hereinafter, also simply referred to as “ink”) is water, and a volatile neutralizing agent having a boiling point of 25 ° C. to 250 ° C. (hereinafter, also simply referred to as “volatile neutralization agent”) And particles containing an acid group neutralized by a non-volatile neutralizing agent having a boiling point exceeding 250 ° C. (hereinafter, also simply referred to as “non-volatile neutralizing agent” (hereinafter, also referred to as “specific particle”); Contains According to the ink of the present disclosure, it is possible to form a fine image with excellent dispersion stability. Although it is not clear why the ink of the present disclosure can exhibit such an effect, the present inventors speculate as follows.
  • the ink of the present disclosure achieves excellent dispersion stability and formation of a fine image by containing an acid group neutralized by two types of neutralizing agents, a volatile neutralizing agent and a non-volatile neutralizing agent. It can.
  • the ink of the present disclosure contains particles that contain acid groups neutralized with neutralizing agents (i.e., volatile neutralizing agents and non-volatile neutralizing agents), so that charge repulsion between particles is achieved. As a result, aggregation of particles is suppressed, and as a result, it is considered that excellent dispersion stability can be realized.
  • the particles contain only the acid group neutralized by the volatile neutralizing agent, the volatile neutralizing agent gradually volatilizes due to the dissociation equilibrium with the acid group during the storage of the ink. Stability may be reduced.
  • an ink film formed using an ink containing water as a liquid component the liquid component is difficult to remove as compared to an ink film formed using an ink containing an organic solvent as a liquid component. Therefore, an image formed using an ink containing water as a liquid component tends to be inferior in definition. The reason for this is considered to be that unintended ink droplet coalescence may occur on the substrate because the liquid component in the ink film is difficult to remove. Therefore, in order to form a fine image, it is desirable that the ink applied on the substrate be rapidly thickened.
  • the ink film formed by applying the ink of the present disclosure on a substrate is middle-sized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point exceeding 250 ° C.
  • a particle is included that contains the mixed acid groups.
  • the volatile neutralizing agent neutralizing the acid groups contained in the particles is volatilized. It is considered that the ink thickens rapidly because the particles from which the volatile neutralizing agent that is neutralizing the acid group has volatilized coagulate by losing charge repulsion. For this reason, the ink of the present disclosure can form a fine image while including water as a liquid component.
  • the aqueous dispersion described in JP-A-2010-138297 is a thermal ink jet aqueous dispersion for the purpose of excellent ejection speed and ejection stability. Therefore, it is considered that the problem of forming a fine image is not assumed.
  • JP 2010-138297 A a volatile base and a non-volatile base are used in the production of the aqueous dispersion, but the volatile base is removed in the step (2). For this reason, the polymer particles contained in the aqueous dispersion described in JP-A-2010-138297 do not have a volatile base. Therefore, it is difficult to form a fine image with the aqueous dispersion described in JP-A-2010-138297.
  • the ink of the present disclosure can form an image excellent in scratch resistance.
  • the particles in the ink film are coagulated by heating, whereby the ink is thickened. This thickening of the ink is considered to increase the film strength of the formed image.
  • the specific particles contain a volatile neutralizing agent having a boiling point of 25 ° C. to 250 ° C. and an acid group neutralized by a non-volatile neutralizing agent having a boiling point of 250 ° C. or higher.
  • the specific particles are not particularly limited as long as they contain an acid group neutralized with a volatile neutralizing agent and a non-volatile neutralizing agent.
  • the specific particle contains a polymer, and the polymer is neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. to 250 ° C. and a non-volatile neutralizing agent having a boiling point of 250 ° C.
  • Preferred is an embodiment having a substituted acid group.
  • a polymer having an acid group neutralized with a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point of 250 ° C. or more is also referred to as “specific polymer”.
  • the specific polymer has an acid group neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point of 250 ° C. or more.
  • the specific polymer may have only one acid group neutralized by the volatile neutralizing agent and one acid group neutralized by the non-volatile neutralizing agent.
  • the acid group may have two or more types of mixed acid groups and acid groups neutralized by the non-volatile neutralizing agent, and one type of acid group neutralized by the volatile neutralizing agent and the non-volatile group
  • the acid group may have two or more kinds of acid groups neutralized by the neutral neutralizing agent, and the acid groups neutralized by the volatile neutralizing agent may be neutralized by the two or more kinds and the non-volatile neutralizing agent You may have 1 type of acid group.
  • the volatile neutralizing agent is a neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less.
  • boiling point refers to a boiling point at normal pressure (101.325 kPa).
  • the boiling point of the volatile neutralizing agent is 25 ° C. or more, the dispersion stability of the specific particles may be improved.
  • the boiling point of the volatile neutralizing agent is 250 ° C. or less, the definition of the image may be improved.
  • scratch resistance of the image may also be improved.
  • the boiling point of the volatile neutralizing agent is preferably 150 ° C. or less, more preferably 100 ° C.
  • the boiling point of the volatile neutralizing agent is preferably 25 ° C. or more and 150 ° C. or less, and more preferably 25 ° C. or more and 100 ° C. or less, from the viewpoint of ink dispersion stability, image definition, and image scratch resistance. It is more preferable that
  • the volatile neutralizing agent is not particularly limited.
  • the volatile neutralizing agent includes at least one selected from the group consisting of an amine compound and a quaternary ammonium hydroxide.
  • an amine compound is preferable from the viewpoint of volatility at the time of heating.
  • the amine compound is not particularly limited.
  • the molecular weight of the amine compound is not particularly limited.
  • the molecular weight of the amine compound is preferably 20 to 1000, more preferably 30 to 750, and still more preferably 50 to 500, from the viewpoint of handleability.
  • the valence of the amine compound is not particularly limited, but is preferably 1 from the viewpoint of the dispersion stability of the specific particles.
  • the “valence of amine compound” means the number of nitrogen atoms contained in the amine compound.
  • the amine compound is selected from the group consisting of a compound represented by the following formula (1), a compound represented by the formula (2), and a compound represented by the formula (3) from the viewpoint of dispersion stability of specific particles: It is preferable that it is at least one selected.
  • R 1 , R 2 and R 3 each independently represent an alkyl group. Any two of R 1 , R 2 and R 3 may be bonded to each other to form a ring containing a nitrogen atom.
  • R 4 and R 5 each independently represent an alkyl group, and R 4 and R 5 may combine with each other to form a ring containing a nitrogen atom.
  • R 6 represents an alkyl group.
  • the alkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 may be a linear alkyl group, or a branched alkyl group. It may be a group.
  • the carbon number of the alkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is preferably independently 1 to 12, more preferably 1 to 6 Preferably, it is more preferably 1 to 3.
  • At least one amine compound selected from the group consisting of a compound represented by Formula (1), a compound represented by Formula (2), and a compound represented by Formula (3) has high basicity. , The neutralized acid group is stabilized. This can further improve the dispersion stability of the specific particles.
  • an amine compound it is especially preferable that it is a compound represented by Formula (1) from a viewpoint similar to the above.
  • amine compounds which are volatile neutralizing agents are shown in Tables 1 and 2. However, the amine compound which is a volatile neutralizing agent is not limited to these examples.
  • the quaternary ammonium hydroxide is not particularly limited.
  • Examples of quaternary ammonium hydroxide which is a volatile neutralizing agent include tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide, tetrabutyl ammonium hydroxide, benzyltrimethyl ammonium hydroxide and the like. .
  • Non-volatile neutralizer is one having a boiling point above 250 ° C.
  • the boiling point of the non-volatile neutralizing agent exceeding 250 ° C. is a rule to distinguish it from the volatile neutralizing agent.
  • the boiling point of the non-volatile neutralizing agent can be more effectively improved in the dispersion stability of the specific particle, the definition of the image, and the scratch resistance of the image by the combination with the above-mentioned volatile neutralizing agent.
  • the temperature is preferably 1000 ° C. or more, and more preferably 1250 ° C. or more.
  • the upper limit of the boiling point of the non-volatile neutralizing agent is not particularly limited, and can be, for example, 1500 ° C. or less.
  • Non-volatile neutralizing agent is not particularly limited.
  • Non-volatile neutralizing agents include, for example, metal hydroxides.
  • alkali metal hydroxides are preferable as the non-volatile neutralizing agent from the viewpoint of easy availability.
  • alkali metal hydroxides have high basicity, the neutralized acid groups can be easily stabilized, and the dispersion stability of the specific particles can be further improved.
  • the alkali metal hydroxide has a valence of 1, in the ink using the alkali metal hydroxide as the non-volatile neutralizing agent, neutralized acid groups which can be generated during storage The aggregation of specific particles does not occur due to the cross-linking, and the dispersion stability of the specific particles is less likely to be impaired.
  • alkali metal hydroxide examples include sodium hydroxide (boiling point: 1388 ° C.), potassium hydroxide (boiling point: 1327 ° C.) and the like.
  • neutralized acid group refers to an acid group in the form of a salt.
  • the “neutralized acid group” may be present in the ink in the form of ions.
  • the neutralized acid group include salts of carboxy group, salts of sulfo group, salts of phosphoric acid group, salts of sulfuric acid group, salts of phosphonic acid group and the like.
  • a salt of a carboxy group is preferable from the viewpoint of dispersion stability of a specific particle.
  • Salts in salts of carboxy group, salts of sulfo group, salts of phosphoric acid group, salts of sulfuric acid group, salts of phosphonic acid group etc. are neutralizing agents (ie volatile neutralizing agents and non-volatile neutralizing agents Depends on the type of agent).
  • the aforementioned "salt” is an amine salt.
  • the aforementioned "salt” is an alkali metal salt.
  • the degree of neutralization of the acid groups contained in the specific particles is preferably 50% to 100%.
  • the “degree of neutralization of acid groups” means the total of the number of moles of neutralized acid groups and the number of moles of non-neutralized acid groups in the entire acid groups contained in a specific particle.
  • the ratio of the number of moles of the acid group [mole number of neutralized acid group / (mole number of neutralized acid group + mole number of non-neutralized acid group)] is meant.
  • the neutralization degree of the acid group is preferably 50% to 95%, more preferably 80% to 95%, and still more preferably 90% to 95%.
  • a neutralized acid group ie, an acid group in the form of a salt
  • the degree of neutralization of the acid group is 95% or less, the hydrolysis of the urethane group and / or the urea group which can be possessed by the specific polymer contained in the specific particle can be further suppressed.
  • the method of measuring the degree of neutralization of the acid group contained in the specific particles is not particularly limited, and can be measured by a known method such as neutralization titration or structural analysis. Below, an example of a measuring method is shown.
  • the degree of neutralization (%) of the acid group contained in the specific particle can be measured, for example, by the potentiometric titration method shown below.
  • the measuring apparatus is not particularly limited, and, for example, a potentiometric automatic titrator (model number: AT-510) manufactured by Kyoto Denshi Kogyo Co., Ltd. can be suitably used.
  • a potentiometric automatic titrator model number: AT-510 manufactured by Kyoto Denshi Kogyo Co., Ltd.
  • the acid group is a carboxy group (—COOH) will be described as an example.
  • the degree of neutralization may be measured by replacing the carboxy group with a group other than a carboxy group.
  • an aqueous dispersion of specific particles having a neutralized carboxy group is prepared by removing specific particles having a neutralized carboxy group and components other than water from the ink for which the degree of neutralization of the acid group is to be measured. Do. For 50 g of the prepared aqueous dispersion, centrifugation at 80,000 rpm (revolutions per minute; the same applies hereinafter) for 40 minutes is applied. The supernatant produced by centrifugation is removed, and the precipitate (ie, specific particles) is recovered. About 0.5 g of the specific particles recovered is weighed into a container 1 and a weighing value W1 (g) is recorded.
  • a mixture of 54 mL of tetrahydrofuran (THF) and 6 mL of distilled water is added, and the weighed specific particles are diluted to obtain a sample for neutralization degree measurement 1.
  • the “maximum titer F1 (mL)” corresponds to the amount of non-neutralized acid groups (ie, —COOH) among the acid groups contained in the specific particles.
  • about 0.5 g of the collected specific particles is weighed into the container 2 and the weighing value W2 (g) is recorded.
  • 60 mL of acetic acid is added, and the weighed specific particles are diluted to obtain a sample for neutralization degree measurement 2.
  • the “maximum titer F2 (mL)” corresponds to the amount of acid groups that are neutralized (ie, —COONa) among the acid groups contained in the specific particles. Based on the measured values of "F1 (mL)” and “F2 (mL)", the degree of neutralization (%) of the carboxy group which is an acid group is determined according to the following formula.
  • F1 (mL) ⁇ normality of aqueous sodium hydroxide solution (0.1 mol / L) / W1 (g) + F2 (mL) ⁇ normality of perchloric acid solution (0.1 mol / L) / W2 (g) Total amount (mmol / g) of non-neutralized carboxy group and neutralized carboxy group contained per 1 g of the specific particle (1)
  • F2 (mL) ⁇ normality of perchloric acid acetic acid solution (0.1 mol / L) / W 2 (g) amount of carboxy group neutralized (mmol / g) among carboxy groups contained per 1 g of specific particles ) ...
  • Neutralization degree (%) (2) / (1) x 100
  • the acid value of the specific particle is the dispersion stability of the specific particle From the viewpoint, it is preferably 0.10 mmol / g to 2.00 mmol / g, and more preferably 0.30 mmol / g to 1.50 mmol / g.
  • the molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the nonvolatile neutralizing agent contained in the specific particle is, for example, in the range of 40/60 to 95/5.
  • the range of 60/40 to 95/5 is more preferable.
  • the molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent contained in the specific particle (hereinafter, also simply referred to as “molar ratio of acid group”)
  • the measuring method is not particularly limited, and can be measured by known methods such as neutralization titration and structural analysis. Below, an example of a measuring method is shown.
  • the molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent contained in the specific particle is, for example, the potentiometric titration method described below. It can be measured.
  • the measuring apparatus is not particularly limited, and, for example, a potentiometric automatic titrator (model number: AT-510) manufactured by Kyoto Denshi Kogyo Co., Ltd. can be suitably used.
  • F1 (mL) is the number of moles of the acid group neutralized by the non-volatile neutralizing agent which is a strong base
  • (F2-F1) (mL) is a volatile base which is a weak base It corresponds to the number of moles of acid groups neutralized by the neutralizing agent.
  • the specific polymer is preferably a urethane polymer, a urea polymer, or a (meth) acrylic polymer.
  • the urethane polymer means a polymer containing a urethane group (except for the polymer corresponding to the (meth) acrylic polymer described later).
  • the urea polymer means a polymer containing a urea group (except a polymer corresponding to the above-mentioned urethane polymer and a polymer corresponding to the below-mentioned (meth) acrylic polymer).
  • a (meth) acrylic polymer refers to a homopolymer of one (meth) acrylate, a copolymer of two or more (meth) acrylates, or one or more (meth) acrylates It means a copolymer with the above other monomers.
  • urethane polymer also includes polymers containing both urethane groups and urea groups (so-called urethane urea polymers).
  • (meth) acrylic polymer also encompasses (meth) acrylic polymers containing at least one of a urethane group and a urea group.
  • the specific polymer may be a chain-like polymer having no crosslinked structure (hereinafter, also referred to as “specific chain-like polymer”), or a polymer having a crosslinked structure (for example, a three-dimensional crosslinked structure) It may also be referred to as “specifically crosslinked polymer”, and is preferably a specific linear polymer.
  • the specific chain polymer may contain cyclic structures such as aliphatic rings, aromatic rings, and heterocyclic rings in the main chain.
  • the specific chain polymer is a neutralized product of the reaction product of (1) a bifunctional isocyanate compound and a compound having an acid group and two active hydrogen groups, or (2) a bifunctional isocyanate compound Or a neutralized product of a reaction product of a compound having an acid group and two active hydrogen groups and another compound, or (3) a bifunctional isocyanate compound, an acid group and two active hydrogen groups Or a compound having two active hydrogen groups and a compound having no acid group, which is a neutralized product of a reaction product of (4) a bifunctional isocyanate compound, an acid group, It is preferable to be a neutralized product of a reaction product of a compound having two active hydrogen groups, a compound having two active hydrogen groups and no acid group, and another compound.
  • the "neutralized substance" in the present disclosure also includes partially neutralized substances.
  • a diol compound, a diamine compound, and a dithiol compound are mentioned.
  • a urethane group is formed by the reaction of a difunctional isocyanate compound and a diol compound.
  • a urea group is formed by the reaction of a bifunctional isocyanate compound and a diamine compound.
  • compounds containing only one active hydrogen group among the compounds for introducing a polymerizable group described later, among isocyanate compounds having introduced a polymerizable group described later contain only an isocyanate group.
  • compounds and compounds for introducing an acid group described later compounds containing only one active hydrogen group, compounds containing only one isocyanate group among isocyanate compounds having a hydrophilic group described later, and the like can be mentioned.
  • the following compounds (1-1) to (1-20) may be mentioned as the bifunctional isocyanate compound for forming the specific chain polymer.
  • Examples of the compound having two active hydrogen groups for forming a specific chain polymer include the following compounds (2-1) to (2-24).
  • the compound having an acid group and an active hydrogen group there is no particular limitation on the compound having an acid group and an active hydrogen group to form a specific chain polymer.
  • the acid group carboxy group, salt of carboxy group, sulfo group, salt of sulfo group, phosphoric acid group, salt of phosphoric acid group, phosphonic acid group, salt of phosphonic acid group, sulfuric acid group, salt of sulfuric acid group, etc. It can be mentioned.
  • the "salt” an alkali metal salt is preferable, and a sodium salt or a potassium salt is more preferable.
  • the acid group is selected from the group consisting of a carboxy group, a salt of a carboxy group, a sulfo group, a salt of a sulfo group, a phosphate group, and a salt of a phosphate group. At least one is preferable, and at least one selected from carboxy group and salts of carboxy group is more preferable.
  • the compound having an acid group and an active hydrogen group may have only one kind of acid group and one active hydrogen group, and has one of either an acid group or an active hydrogen group, and two or more of the other. And may have two or more of both an acid group and an active hydrogen group.
  • ⁇ -amino acids lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine Amino acids such as tryptophan, tyrosine and valine), malic acid, taurine, ethanolamine phosphate (EAP) and the like.
  • EAP ethanolamine phosphate
  • the specific cross-linked polymer is (1) a neutralization product of a reaction product A2 of water and a reaction product A1 of a compound having an acid group and an active hydrogen group with a compound having an acid group and an active hydrogen group Or (2) a reaction product of a trifunctional or higher functional isocyanate compound, a compound having an acid group and an active hydrogen group, and a bifunctional isocyanate compound, and another compound and water. It is preferable that it is a neutralized product of the reaction product B2.
  • Examples of the other compounds include a compound containing only one active hydrogen group among the compounds for introducing a polymerizable group described later, a compound containing only one isocyanate group among the isocyanate compounds having introduced a polymerizable group described later, Among the compounds for introducing an acid group to be described later, a compound containing only one active hydrogen group, a compound containing only one isocyanate group among isocyanate compounds having a hydrophilic group described later, and the like can be mentioned.
  • the specific particle when the specific particle contains the specific crosslinked polymer, the specific particle preferably contains microcapsules (hereinafter also referred to as “MC”) including a shell made of the specific crosslinked polymer and a core.
  • MC microcapsules
  • Examples of compounds having two or more active hydrogen groups for forming a specific crosslinked polymer include diol compounds, as well as compounds having two active hydrogen groups for forming the specific linear polymer described above. Examples include diamine compounds and dithiol compounds. Moreover, as a compound which has a 2 or more active hydrogen group for forming a specific crosslinked polymer, the trifunctional or more than trifunctional polyol compound, the trifunctional or more than trifunctional polyamine compound, and the trifunctional or more polythiol compound are also mentioned.
  • Examples of the compound having an acid group and an active hydrogen group for forming a specific crosslinked polymer include ⁇ -amino acids as in the compounds having an acid group and an active hydrogen group for forming the specific linear polymer described above.
  • Amino acids such as (lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine), malic acid,
  • Examples include taurine, ethanolamine phosphate (EAP), dimethylol propionic acid (DMPA), 2,2-bis (hydroxymethyl) butyric acid (DMBA) and the like.
  • the trifunctional or higher functional isocyanate compound for forming the specific crosslinked polymer is a compound having at least one selected from the group consisting of bifunctional isocyanate compounds and three or more active hydrogen groups (for example, trifunctional or higher functional compounds) It is preferable that it is a reaction product with at least 1 sort (s) selected from the group which consists of a polyol compound, a trifunctional or more than trifunctional polyamine compound, and a trifunctional or more than trifunctional polythiol compound).
  • the number of moles of bifunctional isocyanate compound (so-called number of molecules) to be reacted with a compound having three or more active hydrogen groups is the number of moles of active hydrogen groups in a compound having three or more active hydrogen groups (so-called activity)
  • the number of equivalents of the hydrogen group is preferably 0.6 times or more, more preferably 0.6 times to 5 times, still more preferably 0.6 times to 3 times, and particularly preferably 0.8 times to 2 times.
  • bifunctional isocyanate compound for forming the trifunctional or more than trifunctional isocyanate compound the thing similar to the bifunctional isocyanate compound for forming the specific chain
  • Examples of the compound having three or more active hydrogen groups for forming a trifunctional or higher functional isocyanate compound include compounds having structures represented by the following (H-1) to (H-13). In the following structure, n represents an integer selected from 1 to 100.
  • trifunctional or higher functional isocyanate compounds used to form the specific crosslinked polymer include adduct type trifunctional or higher isocyanate compounds, isocyanurate type trifunctional or higher isocyanate compounds, biuret type trifunctional or higher isocyanate compounds, and the like. It can be mentioned.
  • isocyanurate type trifunctional or higher isocyanate compounds Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (all, Mitsui Chemicals, Inc.), Sumidur N3300, Desmodur (registered trademark) N3600, N3900, Z4470BA (above, Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HX, HK (above, Nippon Urethane Polymer Co., Ltd.), Duranate (registered trademark) TPA-100, TKA-100, TSA-100, TSS-100, TLA-100, TSE-100 (all, Asahi Kasei Corporation) and the like.
  • the specific particle when the specific particle includes an MC (that is, a microcapsule) containing a shell made of a specific crosslinked polymer and a core, the specific particle is hydrophilic as a dispersant for MC, among the specific linear polymers described above.
  • at least a part of the periphery of the shell of MC can be in a state of being coated with a specific linear polymer as a dispersant.
  • the interaction between the urethane group and / or the urea group possessed by the shell of MC and the urethane group and / or the urea group possessed by the dispersant (specific chain polymer) and the hydrophilic group of the dispersant is combined to further improve the dispersion stability of the specific particles.
  • the ratio of the amount of dispersant to the total solid content of MC (hereinafter also referred to as mass ratio [also referred to as dispersant / MC solid content]) is preferably 0.005 to 1.000, and 0.1. More preferably, it is from 05 to 0.7.
  • the mass ratio [dispersant / MC solid content] is 0.005 or more, the dispersion stability of the specific particles is further improved.
  • the mass ratio [dispersant / MC solid content] is 1.000 or less, the hardness of the image is further improved.
  • the weight average molecular weight (Mw) of the specific polymer is preferably 5000 or more, more preferably 7,000 or more, and 8000 or more from the viewpoint of the dispersion stability of the ink (that is, the dispersion stability of the specific particles). It is further preferred that There is no particular limitation on the upper limit of Mw of the specific polymer. As an upper limit of Mw of a specific polymer, 150000, 100000, 70000, 50000 are mentioned, for example.
  • weight average molecular weight means a value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • measurement by gel permeation chromatography uses HLC (registered trademark) -8020 GPC (Tosoh Corporation) as a measurement device, and TSKgel (registered trademark) Super Multipore HZ-H (as a column). It is possible to use THF (tetrahydrofuran) as an eluent using three 4.6 mm ID ⁇ 15 cm, Tosoh Corporation.
  • the sample concentration is 0.45 mass%
  • the flow rate is 0.35 ml / min
  • the sample injection amount is 10 ⁇ l
  • the measurement temperature is 40 ° C., using a differential refractive index (RI) detector .
  • the standard curve is the standard sample TSK standard, polystyrene of Tosoh Corp .: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “A. It is made from eight samples of "-2500", "A-1000", and "n-propylbenzene".
  • the content of the specific polymer is preferably 10% by mass or more, and more preferably 20% by mass or more based on the total solid content of the specific particles.
  • the content of the specific polymer is 10% by mass or more based on the total solid content of the specific particles, the dispersion stability of the ink (that is, the dispersion stability of the specific particles) is further improved.
  • the content of the specific polymer may be 100% by mass with respect to the total solid content of the specific particles, but is preferably 80% by mass or less, more preferably 70% by mass or less, and 50% by mass It is particularly preferable that the content is less than%.
  • the introduction of the acid group to the specific polymer can be performed using a compound for introducing an acid group.
  • a compound for introducing an acid group a compound having an acid group and an active hydrogen group can be used.
  • a compound for introducing an acid group it is preferable to use a compound having one or more acid groups and two or more active hydrogen groups.
  • ⁇ -amino acids specifically, lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, And serine, threonine, tryptophan, tyrosine, valine, etc.
  • a compound having an acid group and an active hydrogen group as described above can also be mentioned.
  • the compound for introducing an acid group may be used by neutralizing at least a part of the acid group using a volatile neutralizing agent and a non-volatile neutralizing agent.
  • the introduction of the acid group to the specific polymer can also be performed using an isocyanate compound having an acid group introduced.
  • an isocyanate compound having an acid group introduced therein a reaction product of the compound for introducing an acid group described above and a bifunctional isocyanate compound; the compound for introducing an acid group described above, and an isocyanate compound having three or more functional groups, A compound selected from the group consisting of a compound for introducing an acid group, a bifunctional isocyanate compound, a trifunctional or higher functional polyol compound, a trifunctional or higher polyamine compound, and a trifunctional or higher polythiol compound; And the reaction product of Among these, as the isocyanate compound having an acid group introduced, there are already mentioned compounds for introducing an acid group, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (IPDI), hexamethylene diisocyanate (HDI), trimethylhex
  • HXDI isocyanatomethyl cyclohexane
  • XDI m-xylylene diisocyanate
  • HMDI dicyclohexylmethane-4,4'-diisocyanate
  • the specific polymer may further have a nonionic group as a hydrophilic group other than the aforementioned acid groups (neutralized acid group and non-neutralized acid group).
  • a nonionic group includes a group having a polyether structure, and is preferably a monovalent group containing a polyalkyleneoxy group.
  • the nonionic group-introducing compound is preferably a compound having a polyether structure, and more preferably a compound having a polyoxyalkylene chain.
  • the compound having a polyoxyalkylene chain at least one compound selected from the group consisting of polyethylene oxide, polypropylene oxide, and polyethylene oxide-polypropylene oxide block copolymer is preferable, and polyethylene oxide is more preferable.
  • the compound having a polyether structure is selected from the group consisting of monoethers of polyethylene oxide (monomethyl ether, monoethyl ether, etc.) and monoesters of polyethylene oxide (monoacetic acid ester, mono (meth) acrylic acid ester, etc.) Preferred is at least one compound that is
  • isocyanate compound having a nonionic group introduced examples include adducts of trimethylolpropane (TMP), m-xylylene diisocyanate (XDI) and polyethylene glycol monomethyl ether (EO) (for example, Mitsui Chemical Co., Ltd.) Takenate (registered trademark) D-116N).
  • TMP trimethylolpropane
  • XDI m-xylylene diisocyanate
  • EO polyethylene glycol monomethyl ether
  • the specific polymer preferably has at least one kind of polymerizable group.
  • the thickened ink film is polymerized after thickening the ink film by the volatilization of the volatile neutralizing agent that is neutralizing the acid group contained in the specific particles. It can be cured by the action of the sexing group. This further improves the scratch resistance of the image.
  • a photopolymerizable group or a thermally polymerizable group is preferable.
  • the photopolymerizable group is preferably a radical polymerizable group, more preferably a group containing an ethylenic double bond, and still more preferably a (meth) acryloyl group, an allyl group, a styryl group or a vinyl group.
  • a (meth) acryloyl group is particularly preferable from the viewpoint of radical polymerization reactivity and the hardness of the formed film.
  • an epoxy group an oxetanyl group, an aziridinyl group, an azetidinyl group, a ketone group, an aldehyde group or a blocked isocyanate group is preferable.
  • the specific polymer may contain only one type of polymerizable group, or may contain two or more types.
  • the specific polymer having a polymerizable group can be confirmed, for example, by Fourier transform infrared spectroscopy (FT-IR) analysis.
  • FT-IR Fourier transform infrared spectroscopy
  • the introduction of the polymerizable group into the specific polymer can be performed using a compound for introducing a polymerizable group.
  • a compound for introducing a polymerizable group a compound having a polymerizable group and an active hydrogen group can be used.
  • the compound for introducing a polymerizable group it is preferable to use a compound having one or more polymerizable groups and two or more active hydrogen groups.
  • the method for introducing a polymerizable group into a specific polymer is not particularly limited, but when synthesizing a specific polymer, at least one selected from the group consisting of a bifunctional isocyanate compound, water, a diol compound, a diamine compound and Particularly preferred is a method of reacting at least one selected from the group consisting of dithiol compounds, at least one of a compound for introducing a polymerizable group, and (optionally, at least one of a compound for introducing an acid group) .
  • the polymerizable group introducing monomer may be used alone or in combination of two or more.
  • L 1 represents a m + n-valent linking group
  • m and n each independently represent an integer selected from 1 to 100
  • Lc represents a monovalent ethylenically unsaturated group
  • Z represents an active hydrogen group.
  • L 1 is a divalent or higher aliphatic group, a divalent or higher aromatic group, a divalent or higher heterocyclic group, -O-, -S-, -NH-, -N ⁇ , -CO-, -SO It is preferable that-, -SO 2 -or a combination thereof.
  • m and n each independently are preferably 1 to 50, more preferably 2 to 20, still more preferably 3 to 10, and particularly preferably 3 to 5.
  • Examples of the monovalent ethylenically unsaturated group represented by Lc include an allyl group, a vinyl group, an acryloyl group and a methacryloyl group.
  • the active hydrogen group represented by Z is more preferably a hydroxy group or a primary amino group, and still more preferably a hydroxy group.
  • n in the compounds (a-3) and (a-14) represents, for example, an integer selected from 1 to 90.
  • the introduction of the polymerizable group into the specific polymer can also be carried out using an isocyanate compound having a polymerizable group introduced.
  • the reaction product of at least 1 sort (s) of the compound of polymeric group introduction as stated above, and at least 1 sort (s) of the bifunctional isocyanate compound Reaction product of at least one type of polymerizable group introducing compound described above and at least one type of trifunctional or higher functional isocyanate compound; at least one type of polymerizable group introducing compound described above and bifunctional Reaction products of at least one selected from the group consisting of at least one isocyanate compound and at least one trifunctional or higher functional polyol compound, trifunctional or higher functional polyamine compound, and trifunctional or higher functional polythiol compound; .
  • the specific particles preferably contain a polymerizable monomer.
  • the ink film is thickened after the ink film is thickened by the volatilization of the volatile neutralizing agent that is neutralizing the acid group contained in the specific particle, It can be cured by the action of This further improves the scratch resistance of the image.
  • the number of polymerizable monomers contained in the specific particles may be only one, or two or more.
  • a photopolymerizable monomer or a thermally polymerizable monomer is preferable.
  • the photopolymerizable monomer has the property of polymerizing upon irradiation with light (ie, active energy ray).
  • the thermally polymerizable monomer has a property of polymerizing by heating or irradiation of infrared radiation.
  • a radically polymerizable monomer having a radically polymerizable ethylenic double bond is preferable.
  • an ink of an embodiment in which the specific particles contain a photopolymerizable monomer may be referred to as a “photocurable ink”, and an ink of an embodiment in which the specific particles contain a thermally polymerizable monomer Sometimes referred to as "ink of”.
  • the ink of the present disclosure is a photocurable ink
  • curing of the ink film formed by the ink of the present disclosure can be performed by applying light to the ink film (curing process described later)
  • the ink of the present disclosure is a thermosetting ink
  • the ink film can be heated or subjected to infrared irradiation (see heating step or curing step B described later).
  • a preferred embodiment of the photocurable ink is an embodiment in which the specific particles contain a photopolymerizable monomer and the specific polymer has a photopolymerizable group. According to this aspect, since the hardenability of the image by the irradiation of the active energy ray is further improved, the scratch resistance of the image is further improved.
  • the specific particle when the specific particle contains a photopolymerizable monomer as a polymerizable monomer, the specific particle preferably further contains a photopolymerization initiator described later.
  • the specific particles when the specific particles contain a thermally polymerizable monomer as a polymerizable monomer, the specific particles may further contain a photothermal conversion agent, a thermal curing accelerator, or a photothermal conversion agent and a thermal curing accelerator described later.
  • the content of the polymerizable monomer contained in the specific particles (total amount in the case of containing two or more types) is 10 mass with respect to the total solid content of the specific particles from the viewpoint of improving the curing sensitivity of the film and the hardness of the film. % To 90% by mass is preferable, 20% by mass to 80% by mass is more preferable, and 30% by mass to 70% by mass is more preferable.
  • the total solid content of specific particles means the total amount of specific particles when the specific particles do not contain a solvent, and when the specific particles contain a solvent, the total amount of the specific particles excluding the solvent Means
  • the molecular weight of the polymerizable monomer is preferably 100 to 4000, more preferably 100 to 2000, still more preferably 100 to 1000, still more preferably 100 to 900, and still more preferably 100 to 800. And particularly preferably 150 to 750.
  • a polymerizable monomer having a radically polymerizable ethylenic unsaturated bond ie, a radically polymerizable monomer
  • a polymerizable monomer having a cationically polymerizable cationically polymerizable group ie, a cationically polymerizable monomer
  • radically polymerizable monomers examples include acrylate compounds, methacrylate compounds, styrenic compounds, vinyl naphthalene compounds, N-vinyl heterocyclic compounds, unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, and unsaturated urethanes.
  • the radically polymerizable monomer is preferably a compound having an ethylenically unsaturated group.
  • the specific particle may contain only one type of radically polymerizable monomer, or may contain two or more types.
  • acrylate compound 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, tridecyl acrylate, 2-phenoxyethyl acrylate (PEA), bis (4-acryloxypoly) Ethoxyphenyl) propane, oligoester acrylate, epoxy acrylate, isobornyl acrylate (IBOA), dicyclopentenyl acrylate, dicyclopentenyl oxyethyl acrylate, dicyclopentanyl acrylate, cyclic trimethylolpropane formal acrylate, 2- (2 -Ethoxyethoxy) ethyl acrylate, 2- (2-vinyloxyethoxy) ethyl acrylate , Octyl acrylate, decyl acrylate, isodecyl acrylate, lauryl
  • methacrylate compounds methyl methacrylate, n-butyl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, methoxypolyethylene glycol methacrylate, methoxytriethylene glycol methacrylate, hydroxyethyl methacrylate, phenoxyethyl methacrylate, cyclohexyl methacrylate and the like Monofunctional methacrylate compounds;
  • Examples include difunctional methacrylate compounds such as polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2-bis (4-methacryloxypolyethoxyphenyl) propane and tetraethylene glycol dimethacrylate.
  • styrene compound examples include styrene, p-methylstyrene, p-methoxystyrene, ⁇ -methylstyrene, p-methyl- ⁇ -methylstyrene, ⁇ -methylstyrene, p-methoxy- ⁇ -methylstyrene and the like.
  • vinyl naphthalene compound examples include 1-vinyl naphthalene, methyl-1-vinyl naphthalene, ⁇ -methyl-1-vinyl naphthalene, 4-methyl-1-vinyl naphthalene, 4-methoxy-1-vinyl naphthalene and the like.
  • N-vinyl heterocyclic compounds include N-vinylcarbazole, N-vinylpyrrolidone, N-vinylethylacetamide, N-vinylpyrrole, N-binyphenothiazine, N-vinylacetanilide, N-vinylethylacetamide, N-vinylsuccinic acid Imide, N-vinyl phthalimide, N-vinyl caprolactam, N-vinyl imidazole and the like can be mentioned.
  • radically polymerizable monomers include N-vinylamides such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, N-vinylformamide and the like.
  • radically polymerizable monomers as a radically polymerizable monomer having two or less functional groups, 1,6-hexanediol diacrylate (HDDA), 1,9-nonanediol diacrylate (NDDA), 1,10-decanediol Diacrylate (DDDA), 3-methylpentadiol diacrylate (3MPDDA), neopentyl glycol diacrylate, tricyclodecane dimethanol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol Diacrylate (TPGDA), cyclohexanone dimethanol diacrylate, alkoxylated hexanediol diacrylate, polyethylene glycol diacrelay And at least one is preferably selected from the group consisting of polypropylene glycol diacrylate.
  • HDDA 1,6-hexanediol diacrylate
  • NDDA 1,9-non
  • trimethylolpropane triacrylate pentaerythritol triacrylate, dipentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, ethoxylated Trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, caprolactone modified trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol ethoxy tetraacrylate, glycerin propoxy triacrylate, ethoxylated dipentaerythritol hexaacrylate, caprolactam modified dipentaeri Li hexaacrylate, propoxylated glycerol triacrylate,
  • the specific particles may contain a combination of a difunctional or less radically polymerizable monomer and a trifunctional or more radically polymerizable monomer.
  • the difunctional or less radically polymerizable monomer contributes to the adhesion between the image and the substrate
  • the trifunctional or more radically polymerizable monomer contributes to the improvement of the image hardness.
  • a combination of a difunctional or less radically polymerizable monomer and a trifunctional or more radically polymerizable monomer a combination of a difunctional acrylate compound and a trifunctional acrylate compound, a difunctional acrylate compound and a pentafunctional acrylate compound And combinations of monofunctional acrylate compounds and tetrafunctional acrylate compounds.
  • At least one of the radically polymerizable monomers that may be contained in the specific particles is also a radically polymerizable monomer having a cyclic structure (hereinafter, "cyclic radically polymerizable monomer”) Is preferred.
  • cyclohexyl acrylate tetrahydrofurfuryl acrylate, benzyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyl oxyethyl acrylate, dicyclopentanyl acrylate, ethoxylated isocyanuric acid triacrylate, ⁇ And caprolactone-modified tris- (2-acryloxyethyl) isocyanurate.
  • bifunctional or higher cyclic radical polymerizable monomers described below are also included.
  • At least one of radically polymerizable monomers that can be contained in the specific particles has one or more cyclic structures and two or more (meth) acryloyl groups, It is preferable that it is a polymerizable monomer containing (hereinafter also referred to as “a bifunctional or higher cyclic radical polymerizable monomer”).
  • tricyclodecane dimethanol di (meth) acrylate bisphenol A ethylene oxide (EO) adduct di (meth) acrylate, bisphenol A propylene oxide (PO) adduct di (meth) Acrylate, ethoxylated bisphenol A di (meth) acrylate, alkoxylated dimethylol tricyclodecane di (meth) acrylate, alkoxylated cyclohexanone dimethanol di (meth) acrylate, cyclohexanone dimethanol di (meth) acrylate and the like.
  • EO ethylene oxide
  • PO propylene oxide
  • the proportion of the bifunctional or higher cyclic radically polymerizable monomer in the entire polymerizable monomer is preferably 10% by mass to 100% by mass, and more preferably 30% by mass to 100% by mass. Preferably, 40% by mass to 100% by mass is particularly preferable.
  • Examples of cationically polymerizable monomers include epoxy compounds, vinyl ether compounds, and oxetane compounds.
  • a cationically polymerizable monomer a compound having at least one olefin, thioether, acetal, thioxane, thietane, aziridine, N heterocycle, O heterocycle, S heterocycle, P heterocycle, aldehyde, lactam, or cyclic ester group preferable.
  • JP-A-77-159983, JP-B-7-31399, JP-A-8-224982, JP-A-10-863, JP-A-9-134011, and the like can be used as the photopolymerizable monomer.
  • the photocurable polymerizable monomers used in the photopolymerizable compositions described in the respective publications such as Table 2004-514014 are known, and these may also be applied as polymerizable monomers which can be contained in specific particles. it can.
  • photopolymerizable monomer you may use the commercial item marketed.
  • examples of commercial products of the photopolymerizable monomer include AH-600 (bifunctional), AT-600 (bifunctional), UA-306H (six functional), UA-306T (six functional), UA-306I (six functional) ), UA-510H (10 functional), UF-8001G (bifunctional), DAUA-167 (bifunctional), light acrylate NPA (bifunctional), light acrylate 3EG-A (bifunctional) (all, Kyoeisha Chemical (stock) ), SR339A (PEA, monofunctional), SR506 (IBOA, monofunctional), CD262 (bifunctional), SR238 (HDDA, bifunctional), SR341 (3MPDDA, bifunctional), SR508 (bifunctional), SR306H (2 Functional), CD 560 (bifunctional), SR833S (bifunctional), SR444 (trifunctional), SR454 (tri
  • NPGPODA neopentyl glycol propylene oxide adduct diacrylate
  • SR 531 SR 285, SR 256 (above, Sartomer)
  • A-DHP dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd.
  • Alonics registered trademark
  • M-156 Toagosei Co., Ltd.
  • V-CAP BASF Corporation
  • Viscote # 192 Osaka Organic Chemical Industry Co., Ltd.
  • SR506, SR833S, A-9300, or A-9300-CL which is a photopolymerizable monomer having a cyclic structure
  • SR833S is particularly preferable.
  • the thermally polymerizable monomers can be selected from the group of polymerizable monomers that can be polymerized by heating or irradiation with infrared radiation.
  • a thermally polymerizable monomer an epoxy compound, an oxetane compound, an aziridine compound, an azetidine compound, a ketone compound, an aldehyde compound, a block isocyanate compound etc. are mentioned, for example.
  • 1,4-butanediol diglycidyl ether 3- (bis (glycidyloxymethyl) methoxy) -1,2-propanediol, limonene oxide, 2-biphenyl glycidyl ether, 3,4-epoxycyclohexylmethyl -3 ', 4'-Epoxycyclohexanecarboxylate, epoxide derived from epichlorohydrin-bisphenol S, epoxidized styrene, epoxide derived from epichlorohydrin-bisphenol F, epoxide derived from epichlorohydrin-bisphenol A, epoxy Difunctional or less epoxy compounds such as fluorinated novolaks and alicyclic diepoxides; Examples include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyols, polyglycidyl ethers of polyoxyalkylene glycols,
  • oxetane compounds include 3-ethyl-3-hydroxymethyl-1-oxetane, 1,4 bis [3-ethyl-3-oxetanylmethoxy) methyl] benzene, 3-ethyl-3-phenoxymethyl-oxetane, bis ([ 1-ethyl (3-oxetanyl)] methyl) ether, 3-ethyl-3-[(2-ethylhexyloxy) methyl] oxetane, 3-ethyl-[(triethoxysilylpropoxy) methyl] oxetane, 3,3-dimethyl -2- (p-methoxyphenyl) -oxetane and the like.
  • a block isocyanate compound the compound which inactivated the isocyanate compound with blocking agent (what is called, active hydrogen containing compound) is mentioned.
  • an isocyanate compound for example, hexamethylene diisocyanate, isophorone diisocyanate, toluyl diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate trimer, trimethylhexylylene diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, takenate (registration Trademarks: Commercially available isocyanates such as Mitsui Chemical Co., Ltd., Duranate (registered trademark; Asahi Kasei Co., Ltd.), Bayhydur (registered trademark; Bayer AG), etc., or difunctional or higher functional isocyanates combining these are preferred.
  • lactam eg ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam etc.
  • oxime eg acetoxime, methyl ethyl keto oxime (MEK oxime), methyl isobutyl keto oxime (MIBK oxime), cyclohexanone oxime etc]
  • Amines eg aliphatic amines (dimethylamine, diisopyramine, di-n-propylamine, diisobutylamine etc.), alicyclic amines (methylhexylamine, dicyclohexylamine etc.), aromatic amines (aniline, diphenylamine etc.) etc.
  • Aliphatic alcohols eg methanol, ethanol, 2-propanol, n-butanol etc]
  • phenols and alkylphenols eg phenol, cresol, ethylphenol, n-propyl phenol N,
  • blocked isocyanate compound commercially available commercial products may be used.
  • Trixene registered trademark
  • BI7982 BI7641, BI7642, BI7950, BI7960, BI7991 and the like (Baxenden Chemicals LTD), Bayhydur (registered trademark; Bayer AG) Company
  • Bayhydur registered trademark; Bayer AG
  • a compound group described in paragraph [0064] of WO 2015/158654 is also suitably used.
  • the specific particle containing the specific polymer described above and the polymerizable monomer described above is produced, for example, by emulsifying a mixture of an oil phase component containing the specific polymer and the polymerizable monomer and an aqueous phase component.
  • emulsifying a mixture of an oil phase component containing the specific polymer and the polymerizable monomer and an aqueous phase component is produced, for example, by emulsifying a mixture of an oil phase component containing the specific polymer and the polymerizable monomer and an aqueous phase component.
  • the specific particles may contain at least one photopolymerization initiator.
  • the specific particle contains a photopolymerizable monomer (for example, a radical polymerizable monomer)
  • the specific particle preferably contains at least one photopolymerization initiator.
  • the specific particles contain a photopolymerization initiator
  • the sensitivity to light i.e., active energy ray
  • the specific particle contains a photopolymerization initiator
  • one specific particle has both a photopolymerizable monomer and a photopolymerization initiator.
  • the curing sensitivity of the film hereinafter, also simply referred to as "sensitivity" as compared with the case of using a conventional photocurable composition.
  • sensitivity curing sensitivity of the film
  • the ink of the present disclosure can be contained in the ink of the present disclosure, which is a water-based composition, by including a substance having low water solubility in the specific particles. This is also one of the advantages of the ink of the present disclosure.
  • the ink of the embodiment in which the specific particles contain a photopolymerization initiator is excellent in storage stability as compared with the conventional photocurable composition.
  • the reason is considered to be that aggregation or sedimentation of the photopolymerization initiator is suppressed by containing the photopolymerization initiator in the specific particles.
  • the photopolymerization initiator is a compound that absorbs light (that is, active energy rays) to generate a radical which is a polymerization initiation species.
  • photoinitiator As a preferable photoinitiator, (a) Carbonyl compounds, such as aromatic ketones, (b) Acyl phosphine oxide compounds, (c) Aromatic onium salt compounds, (D) organic peroxide, (e) thio compound, (f) hexaarylbiimidazole compound, (g) ketoxime ester compound, (h) borate compound, (i) azinium compound, (j) metallocene compound, k) Active ester compounds, (l) compounds having a carbon halogen bond, (m) alkylamine compounds and the like.
  • carbonyl compounds such as aromatic ketones
  • b) Acyl phosphine oxide compounds As a preferable photoinitiator, (a) Carbonyl compounds, such as aromatic ketones, (b) Acyl phosphine oxide compounds, (c) Aromatic onium salt compounds, (D) organic peroxide, (e) thio compound, (f) hexaary
  • photopolymerization initiators may be used alone or in combination of two or more of the compounds (a) to (m).
  • a carbonyl compound As preferable examples of (a) a carbonyl compound, (b) an acyl phosphine oxide compound, and (e) a thio compound, “RADIATION CURE IN POLYMER SCIENCE AND TECHNOLOGY”, J. P. FOUASSIER, J.J. F. RABEK (1993), pp. And compounds having a benzophenone skeleton or a thioxanthone skeleton described in 77 to 117, and the like.
  • More preferable examples include an ⁇ -thiobenzophenone compound described in JP-B-47-6416, a benzoin ether compound described in JP-B-47-3981, an ⁇ -substituted benzoin compound described in JP-B-47-22326, and Benzoin derivatives described in JP-A-47-23664; aroyl phosphonic acid esters disclosed in JP-A-57-30704; dialkoxybenzophenones described in JP-B-60-26483; JP-B-60-26403; Benzoin ethers described in JP-A-62-81345, JP-B1-34242, U.S. Pat. No.
  • Examples of commercial products of the photopolymerization initiator include IRGACURE (registered trademark) 184, 369, 500, 651, 819, 907, 1000, 1300, 1700, 1870, DAROCUR (registered trademark) 1173, 2959, 4265, ITX, LUCIRIN (registered trademark) TPO [all, BASF Corporation], ESACURE (registered trademark) KTO 37, KTO 46, KIP 150, EDB [all, Lamberti company], H-Nu (registered trademark) 470, 470X [all, Spectra Group Limited], Omnipol TX, 9210 [all, IGM Resins B. V. ], SPEEDCURE 7005, 7010, 7040 [above, LAMBSON company] etc. is mentioned.
  • a carbonyl compound or (b) an acylphosphine oxide compound is more preferable, and specifically, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (eg, BASF) Corporation IRGACURE® 819), 2- (Dimethylamine) -1- (4-morpholinophenyl) -2-benzyl-1-butanone (eg, IRGACURE® 369 from BASF), 2-methyl -1- (4-Methylthiophenyl) -2-morpholinopropan-1-one (eg, IRGACURE® 907 from BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (eg, IRGACURE from BASF (Registered trademark) 184), 2,4,6-trimethylbenzoi - diphenyl - phosphine oxide (e.g., DAROCUR (R) TPO, LUCIRIN (TM) TPO (both
  • an acyl phosphine oxide compound is preferable, and a monoacyl phosphine oxide compound (particularly preferably 2, More preferred is 4,6-trimethylbenzoyl-diphenyl-phosphine oxide) or a bisacylphosphine oxide compound (particularly preferably bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide).
  • a wavelength of LED light 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm is preferable.
  • a polymer type photopolymerization initiator is also preferable.
  • a polymeric photoinitiator the above-mentioned Omnipol TX, 9210; SPEEDCURE7005, 7010, 7040 etc. are mentioned.
  • a specific particle containing a photopolymerization initiator can be produced, for example, by emulsifying a mixture of an aqueous phase component and an oil phase component containing a specific polymer, a photopolymerizable monomer, and a photopolymerization initiator. it can.
  • the content of the photopolymerization initiator is preferably 0.1% by mass to 25% by mass, more preferably 0.5% by mass to 20% by mass, still more preferably 1% by mass, based on the total solid content of the specific particles. It is ⁇ 15% by mass.
  • the specific particles may contain at least one sensitizer.
  • the specific particles preferably contain at least one sensitizer.
  • the decomposition of the photopolymerization initiator by irradiation of light ie, active energy ray
  • a sensitizer is a substance that absorbs a specific activation energy ray to be in an electronically excited state. The sensitizer in the electronically excited state comes into contact with the photopolymerization initiator to produce actions such as electron transfer, energy transfer, heat generation, and the like. This promotes chemical change of the photopolymerization initiator, that is, decomposition, formation of radicals, acid or base, and the like.
  • sensitizer examples include benzophenone, thioxanthone, isopropyl thioxanthone, anthraquinone, 3-acyl coumarin derivative, terphenyl, styryl ketone, 3- (aroyl methylene) thiazoline, camphor quinone, eosin, rhodamine, erythrosine and the like. .
  • the compound represented by General formula (i) of Unexamined-Japanese-Patent No. 2010-24276, and the compound represented by General Formula (I) of Unexamined-Japanese-Patent No. 6-107718 are mentioned. Can also be suitably used.
  • At least one selected from thioxanthone, isopropylthioxanthone, and benzophenone is preferable as the sensitizer from the viewpoint of compatibility with LED light and reactivity with a photopolymerization initiator, and from thioxanthone and isopropyl thioxanthone At least one selected is more preferable, and isopropylthioxanthone is more preferable.
  • the specific particle contains a sensitizer, it may contain one sensitizer alone, or two or more sensitizers.
  • the content of the sensitizer is preferably 0.1% by mass to 20% by mass, and 0.2% by mass to 15% by mass with respect to the total solid content of the specific particles. %, More preferably 0.3% by mass to 10% by mass.
  • Specific particles containing a photopolymerization initiator and a sensitizer include, for example, a mixture of an oil phase component containing a specific polymer, a photopolymerizable monomer, a photopolymerization initiator, and a sensitizer and an aqueous phase component. It can be produced by emulsifying.
  • the specific particles may contain at least one photothermal conversion agent.
  • the photothermal conversion agent is a compound that absorbs infrared rays and generates heat to polymerize and cure the thermally polymerizable monomer.
  • known compounds can be used as the photothermal conversion agent.
  • an infrared absorber As a photothermal conversion agent, an infrared absorber is preferable.
  • infrared absorbers include polymethylindolium, indocyanine green, polymethine dyes, croconium dyes, cyanine dyes, merocyanine dyes, squarylium dyes, chalcogenopyryloarylidene dyes, metal thiolate complex dyes, bis (chalcogenopirillo) polymethine dyes And oxyindolizine dyes, bisaminoallyl polymethine dyes, indolizine dyes, pyrylium dyes, quinoid dyes, quinone dyes, phthalocyanine dyes, naphthalocyanine dyes, azo dyes, azomethine dyes, carbon black and the like.
  • Specific particles containing a photothermal conversion agent can be produced, for example, by emulsifying a mixture of an oil phase component containing a specific polymer, a thermally polymerizable monomer, and a photothermal conversion agent, and an aqueous phase component.
  • a photothermal conversion agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the photothermal conversion agent is preferably 0.1% by mass to 25% by mass, and more preferably 0.5% by mass to 20% by mass, with respect to the total solid content of the specific particles. It is more preferable that the content is 15% by mass.
  • the specific particles may contain at least one of a heat curing accelerator.
  • the thermal curing accelerator is a compound that catalytically accelerates the thermal curing reaction of the thermally polymerizable monomer.
  • the heat curing accelerator is preferably an acid or a base, or a compound that generates an acid or a base by heating, for example, carboxylic acid, sulfonic acid, phosphoric acid, aliphatic alcohol, phenol, aliphatic amine, aromatic amine, imidazole (Phenylimidazole, 2-methylimidazole etc.), pyrazole etc. may be mentioned.
  • a specific particle containing a heat curing accelerator may be produced, for example, by emulsifying a mixture of an oil phase component containing a specific polymer, a heat polymerizable monomer, and a heat curing accelerator, and an aqueous phase component. it can.
  • the heat curing accelerator may be used alone or in combination of two or more.
  • the content of the thermosetting accelerator is preferably 0.1% by mass to 25% by mass, and more preferably 0.5% by mass to 20% by mass, with respect to the total solid content of the specific particles. More preferably, it is 1% by mass to 15% by mass.
  • the total solid content of the specific particles is preferably 50% by mass or more, more preferably 60% by mass or more, and more preferably 70% by mass or more based on the total solid content of the ink. Is more preferably 80% by mass or more, and still more preferably 85% by mass or more. Thereby, the dispersion stability is further improved, and the adhesion between the image and the substrate is further improved.
  • the total solid content of the specific particles is preferably 1% by mass to 50% by mass, more preferably 3% by mass to 40% by mass, with respect to the total amount of the ink, and 5% by mass. More preferably, it is from 30% by mass.
  • the total solid content of the specific particles is 1% by mass or more with respect to the total amount of the ink, the adhesion between the image and the substrate is further improved.
  • the total solid content of the specific particles is 50% by mass or less based on the total amount of the ink, the dispersion stability of the ink is further improved.
  • the volume average dispersed particle size of the specific particles is not particularly limited, but is preferably 0.01 ⁇ m to 10.0 ⁇ m, more preferably 0.01 ⁇ m to 5 ⁇ m, from the viewpoint of dispersion stability, more preferably 0.05 ⁇ m. It is further preferably 1 to 1 ⁇ m, more preferably 0.05 ⁇ m to 0.5 ⁇ m, and still more preferably 0.05 ⁇ m to 0.3 ⁇ m.
  • "volume average dispersed particle size" refers to a value measured by a light scattering method. The measurement of the volume average dispersed particle diameter of the specific particles by the light scattering method is performed using, for example, LA-960 (Horiba, Ltd.).
  • the ink of the present disclosure contains water.
  • Water is a dispersion medium for specific particles (dispersoids).
  • the content of water in the ink of the present disclosure is not particularly limited, but the content of water is preferably 10% by mass to 99% by mass, more preferably 20% by mass to 95% by mass, based on the total amount of the ink % By mass, more preferably 30% by mass to 90% by mass, and particularly preferably 50% by mass to 90% by mass.
  • the ink of the present disclosure may be an ink containing at least one coloring material (so-called “colored ink”) or an ink not containing coloring material (so-called “clear ink”).
  • the coloring material is preferably contained outside the specific particle (that is, the specific particle does not contain the coloring material).
  • the colorant is not particularly limited, and may be selected from known colorants such as pigments, water-soluble dyes and disperse dyes. Among these, from the viewpoint of excellent weather resistance and rich color reproducibility, it is more preferable to include a pigment.
  • the pigment is not particularly limited and may be appropriately selected according to the purpose.
  • examples thereof include known organic pigments and inorganic pigments, and resin particles dyed with a dye, commercially available pigment dispersions and surfaces Treated pigments (for example, pigments in which the pigment is dispersed in water, a liquid compound, an insoluble resin or the like as a dispersion medium, and pigments on which the pigment surface is treated with a resin or a pigment derivative or the like) are also included.
  • organic pigments and inorganic pigments include yellow pigments, red pigments, magenta pigments, blue pigments, cyan pigments, green pigments, orange pigments, purple pigments, brown pigments, black pigments, white pigments, and the like.
  • a pigment dispersant may be used as necessary.
  • a pigment is used as the coloring material, a self-dispersible pigment having a hydrophilic group on the surface of the pigment particle may be used as the pigment.
  • paragraphs [0180] to [0200] of JP-A-2014-040529 and paragraphs [0122] to [0129] of WO 2016/052053 can be appropriately referred to.
  • the content of the colorant is preferably 0.1% by mass to 20% by mass, and more preferably 0.5% by mass to 10% by mass, with respect to the total amount of the ink. 5% to 5% by weight is particularly preferred.
  • the ink of the present disclosure may optionally contain other components other than those described above.
  • the other components may be contained in the specific particle or may not be contained in the specific particle.
  • the ink of the present disclosure may contain an organic solvent.
  • the ink of the present disclosure contains an organic solvent, the adhesion between the image and the substrate can be further improved.
  • the content of the organic solvent is preferably 0.1% by mass to 10% by mass with respect to the total amount of the ink, and 0.1% by mass to 5% by mass It is more preferable that Specific examples of the organic solvent are as follows.
  • Alcohols methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol etc.
  • Polyhydric alcohols ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, 2-methylpropane Diol etc
  • Polyhydric alcohol ethers ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether
  • the ink of the present disclosure may contain at least one surfactant.
  • a surfactant for example, higher fatty acid salt, alkyl sulfate, alkyl ester sulfate, alkyl sulfonate, alkyl benzene sulfonate, sulfosuccinate, naphthalene sulfonate, alkyl phosphate, polyoxyalkylene alkyl ether Phosphate, polyoxyalkylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, glycerin ester, sorbitan ester, polyoxyethylene fatty acid amide, amine oxide and the like can be mentioned.
  • the surfactant at least one surfactant selected from alkyl sulfates, alkyl sulfonates and alkyl benzene sulfonates is preferable, and alkyl sulfates are particularly preferable.
  • the surfactant is preferably an alkyl sulfate having an alkyl chain length of 8 to 18 from the viewpoint of dispersibility of specific particles, and sodium dodecyl sulfate (SDS, alkyl chain length: 12) and sodium cetyl sulfate (SCS) And at least one selected from alkyl chain length: 16).
  • surfactants other than the surfactants described above those described in JP-A-62-173463 and JP-A-62-183457 can also be mentioned.
  • nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols, polyoxyethylene / polyoxypropylene block copolymers, siloxanes, etc. It can be mentioned.
  • organic fluoro compounds are also mentioned as surfactant. The organic fluoro compound is preferably hydrophobic.
  • organic fluoro compound examples include fluoro surfactant, oily fluoro compound (for example, fluoro oil), and solid fluoro compound resin (for example, tetrafluoroethylene resin), and JP-B-57-9053 Those described in columns 8 to 17) and JP-A-62-135826 may be mentioned.
  • the ink of the present disclosure can also contain substantially no surfactant (for example, an anionic surfactant).
  • substantially no surfactant for example, an anionic surfactant
  • "does not substantially contain” indicates that the content is less than 1% by mass (preferably less than 0.1% by mass) based on the total amount of the ink.
  • the embodiment in which the ink substantially does not contain an anionic surfactant has an advantage that the foaming of the ink can be suppressed, an advantage that the water resistance of the image can be improved, an advantage that the whitening due to the bleed out after the image formation can be suppressed, etc. Have.
  • the anionic surfactant increases the ion concentration in the system, and the ionization degree of the anionic pigment dispersant decreases. Therefore, it also has the advantage of being able to suppress the decrease in the dispersibility of the pigment.
  • the ink of the present disclosure may contain a polymerization inhibitor.
  • a polymerization inhibitor p-methoxyphenol, quinones (hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (eg, dibutyl hydroxytoluene (BHT)), alkyl bisphenols, zinc dimethyldithiocarbamate, Dimethyldithiocarbamic acid copper, dibutyldithiocarbamic acid copper, salicylic acid copper, thiodipropionic acid esters, mercaptobenzimidazole, phosphites, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 2,2 And 6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (TEMPOL),
  • At least one member selected from the group consisting of p-methoxyphenol, catechols, quinones, alkylphenols, TEMPO, TEMPOL, cuperone Al, and tris (N-nitroso-N-phenylhydroxylamine) aluminum salt is Preferably, at least one selected from the group consisting of p-methoxyphenol, hydroquinone, benzoquinone, BHT, TEMPO, TEMPOL, cuperone Al, and tris (N-nitroso-N-phenylhydroxylamine) aluminum salt is more preferable.
  • the ink of the present disclosure may contain a UV absorber.
  • a UV absorber well-known ultraviolet absorbers, for example, a benzotriazole type compound, a benzophenone series compound, a triazine type compound, a benzoxazole type compound, etc. are mentioned.
  • the ink of the present disclosure may be a polymerizable monomer, a photopolymerization agent, or the like outside the specific particle, as needed, from the viewpoint of image hardness, adhesion between the image and the substrate, and control of ink discharge stability. It may contain an initiator, a resin and the like. It is preferable that these components have water solubility or water dispersibility.
  • water-soluble refers to a property in which the amount of dissolution with respect to 100 g of distilled water at 25 ° C. exceeds 1 g when dried at 105 ° C. for 2 hours.
  • water dispersible refers to the property of being water insoluble and dispersed in water.
  • water insoluble refers to the property that the amount of dissolution in 100 g of distilled water at 25 ° C. is 1 g or less when dried at 105 ° C. for 2 hours.
  • the ink contains a polymerizable monomer outside the specific particle means that the ink contains a polymerizable monomer which is not contained in the specific particle. The same applies to the case where the photopolymerization initiator, the water-soluble resin, the water-dispersible resin and the like are contained outside the specific particles.
  • Examples of the polymerizable monomer that can be contained outside the specific particle include the polymerizable monomers described in paragraphs [0148] to [0156] of WO 2016/052053.
  • Examples of the polymerizable monomers that can be contained outside the specific particles compounds having an ethylenically unsaturated group, radically polymerizable monomers such as acrylonitrile, styrene, unsaturated polyester, unsaturated polyether, unsaturated polyamide, unsaturated urethane, etc. It can be mentioned.
  • a compound having an ethylenically unsaturated group is preferable, and a compound having a (meth) acryloyl group is particularly preferable.
  • a polymerizable monomer that can be contained outside the specific particle at least one selected from the group consisting of an amide structure, a polyethylene glycol structure, a polypropylene glycol structure, a carboxy group, and a salt of a carboxy group Compounds having one type are preferred.
  • examples of the polymerizable monomer that can be contained outside the specific particle include, for example, (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, N, N- Dimethyl acrylamide, N, N-diethyl acrylamide, morpholine acrylamide, N-2-hydroxyethyl (meth) acrylamide, N-vinyl pyrrolidone, N-vinyl caprolactam, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) Acrylate, 2-hydroxypropyl (meth) acrylate, glycerol monomethacrylate, N- [tris (3-acryloylaminopropyloxymethylene) methyl] acrylamide, diethylene glycol bis (3-acryloylaminopropyl) ether Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, compounds
  • a plurality of R 1 's each independently represent a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and a plurality of R 2 ' s each independently represent a hydrogen atom or a methyl group, Plural L 1 's each independently represent a single bond or a divalent linking group.
  • a plurality of R 3 's each independently represent a hydrogen atom or a methyl group
  • a plurality of L 2 ' s each independently represent an alkylene group having 1 to 8 carbon atoms
  • a plurality of k , And p each independently represent 0 or 1
  • a plurality of m each independently represent an integer of 0 to 8, provided that at least one of k and p is 1.
  • a plurality of R 4 's each independently represent a hydrogen atom or a methyl group
  • a plurality of n each independently represent an integer of 1 to 8 and l is an integer of 0 or 1 Represent.
  • Z 1 represents a residue obtained by removing q hydrogen atoms from a hydroxyl group of a polyol
  • q represents an integer of 3 to 6
  • plural R 5 s each independently represent a hydrogen atom or
  • a plurality of L 3 each independently represent an alkylene group having 1 to 8 carbon atoms.
  • Specific examples of the compounds represented by the general formulas (a) to (d) include compounds represented by the following AM-1 to AM-4.
  • the above AM-1 to AM-4 can be synthesized by the method described in Japanese Patent No. 5591858.
  • the ink of the present disclosure preferably has a viscosity of 3 mPa ⁇ s to 15 mPa ⁇ s, more preferably 3 mPa ⁇ s to 13 mPa ⁇ s, when the ink is 25 ° C. to 50 ° C.
  • the ink of the present disclosure preferably has a viscosity of 50 mPa ⁇ s or less when the ink is at 25 ° C.
  • the viscosity of the ink is a value measured using a viscometer (VISCOMETER TV-22, Toki Sangyo Co., Ltd.).
  • the ink of the present disclosure can be used for image formation by a coating method, an immersion method, a gravure method, a flexo method, an inkjet method and the like.
  • the ink of the present disclosure is particularly preferably used for image formation by an inkjet method (i.e., used as an inkjet ink).
  • Form of ink In the case where the ink of the present disclosure is a photocurable ink or a thermosetting ink, particularly preferred embodiments include the following Forms 1 to 4.
  • Form 1 is a photocurable ink in which the specific particles contain a photopolymerizable monomer and the specific polymer is a specific linear polymer.
  • Mw of a specific chain polymer is 5000 or more.
  • the preferable range of the molecular weight of the specific polymer described above can be referred to.
  • the molecular weight of the photopolymerizable monomer is preferably 100 to 4000.
  • the more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to for the more preferable range of the molecular weight of a photopolymerizable monomer.
  • Form 2 is a photocurable ink in which the specific particles contain a photopolymerizable monomer and the specific polymer is a specific crosslinked polymer.
  • the specific particle is a microcapsule including a shell made of a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a photopolymerizable monomer.
  • the molecular weight of the photopolymerizable monomer is preferably 100 to 4000. The more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to for the more preferable range of the molecular weight of a photopolymerizable monomer.
  • Form 3 is a thermosetting ink in which the specific particle contains a thermally polymerizable monomer and the specific polymer is a specific linear polymer.
  • Mw of a specific chain polymer is 5000 or more.
  • the molecular weight of the thermally polymerizable monomer is preferably 100 to 4000.
  • the more preferable range of the molecular weight of the thermally polymerizable monomer the more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to.
  • Form 4 is a thermosetting ink in which the specific particles contain a thermally polymerizable monomer and the specific polymer is a specific crosslinked polymer.
  • the specific particle is a microcapsule including a shell made of a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a thermally polymerizable monomer.
  • the molecular weight of the thermally polymerizable monomer is preferably 100 to 4000. For the more preferable range of the molecular weight of the thermally polymerizable monomer, the more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to.
  • Production method A mixes specific particles by mixing and emulsifying an organic solvent and an oil phase component containing a specific polymer, and an aqueous phase component containing water, a volatile neutralizing agent, and a non-volatile neutralizing agent.
  • a specific chain polymer is used as the specific polymer
  • an ink of an embodiment containing specific particles containing the specific chain polymer is manufactured.
  • a specific crosslinked polymer is used as the specific polymer
  • an ink of an embodiment containing specific particles containing the specific crosslinked polymer is manufactured.
  • the specific particle is formed by mixing the oil phase component described above and the aqueous phase component, and emulsifying the obtained mixture.
  • the specific particles formed function as dispersoids in the manufactured ink.
  • Water in the water phase component functions as a dispersion medium in the manufactured ink.
  • Examples of the organic solvent contained in the oil phase component include ethyl acetate and methyl ethyl ketone. At least a part of the organic solvent is preferably removed in the process of forming the specific particles and after the formation of the specific particles.
  • the oil phase component may be, for example, a photopolymerizable monomer, a photopolymerization initiator, a sensitizer, a compound for introducing a polymerizable group (preferably a compound having a polymerizable group and an active hydrogen group), in addition to the above components. It can contain an isocyanate compound having a polymerizable group introduced, an isocyanate compound having an acid group introduced, and the like.
  • the water phase components are not particularly limited except for containing water, a volatile neutralizing agent and a non-volatile neutralizing agent.
  • the aqueous phase components may include components other than water, volatile neutralizing agents, and non-volatile neutralizing agents.
  • the aqueous phase component may contain a compound for introducing an acid group (preferably, a compound having an acid group and an active hydrogen group described above).
  • the total amount of the oil phase component and the water phase component excluding the organic solvent and water in the production method A corresponds to the total solid content of the specific particles in the manufactured ink.
  • the above-mentioned “ink” can be referred to.
  • “content” and “total solid content of specific particles” in the section of “ink” described above are respectively “amount used” and “oil phase component and water phase component from organic solvent and water It is read as "the total amount excluding”.
  • the method of mixing the oil phase component and the water phase component is not particularly limited, and examples thereof include mixing by stirring.
  • the method of emulsification is not particularly limited, and examples thereof include emulsification with an emulsifying device such as a homogenizer (for example, a dispersing machine).
  • the rotation speed of the disperser in the emulsification is, for example, 5000 rpm to 20000 rpm, preferably 10000 rpm to 18000 rpm.
  • the rotation time in emulsification is, for example, 1 minute to 120 minutes, preferably 3 minutes to 60 minutes, more preferably 3 minutes to 30 minutes, and still more preferably 5 minutes to 15 minutes.
  • Emulsification in the step of forming the specific particles may be performed under heating. By carrying out the emulsification under heating, specific particles can be formed more efficiently. In addition, by performing emulsification under heating, at least a portion of the organic solvent in the oil phase component can be easily removed from the mixture.
  • the heating temperature in the case of carrying out the emulsification under heating is preferably set appropriately according to the boiling point of the volatile neutralizing agent from the viewpoint of suppressing the volatilization of the volatile neutralizing agent.
  • the emulsification in the step of forming the specific particles is preferably performed at a temperature 10 ° C. or more lower than the boiling point of the volatile neutralizing agent, and more preferably 20 ° C. or more lower.
  • the step of forming the specific particles may include an emulsification step of emulsifying the mixture, and a heating step of heating the emulsion obtained by the emulsification step.
  • an emulsification step of emulsifying the mixture and a heating step of heating the emulsion obtained by the emulsification step.
  • the embodiment including the emulsification step and the heating step, particularly at the heating step it is easy to remove at least a part of the organic solvent in the oil phase component from the mixture.
  • the heating temperature in the heating step is preferably set to a temperature at which the volatile neutralizing agent does not easily volatilize and the organic solvent in the oil phase component tends to volatilize, for example, volatile neutralizing agent and organic solvent It is preferable to set appropriately according to the type and amount.
  • the heating time in the heating step may be appropriately set according to the types and amounts of the volatile neutralizing agent and the organic solvent, and the heating temperature.
  • the manufacturing method A may have other processes other than the process of forming specific particle
  • the process of adding another component for example, pigment
  • the other components (eg, pigments) to be added are as already described as the other components that may be contained in the ink.
  • Production method B As a method of producing an ink of an embodiment containing specific particles containing a specific crosslinked polymer, Production Method B shown below is also suitable.
  • Production method B comprises an oil phase component containing an organic solvent, a trifunctional or higher functional isocyanate compound, and an isocyanate compound having an acid group introduced therein, an aqueous phase component containing water, a volatile neutralizing agent, and a non-volatile neutralizing agent , And emulsifying to form specific particles.
  • a preferred embodiment of the production process B is the same as the preferred embodiment of the production process A except that a trifunctional or higher functional isocyanate compound is used as the oil phase component instead of the specific polymer.
  • the image forming method of the present disclosure includes a step of forming an ink film by applying the above-described ink of the present disclosure on a substrate (hereinafter, also referred to as “application step”), and a step of heating the ink film. (Hereafter, it is also called a "heating process").
  • the image forming method of the present disclosure may have other steps as necessary. According to the image forming method of the present disclosure, a fine image is formed on a substrate. Further, according to the image forming method of the present disclosure, an image excellent in scratch resistance is formed on a substrate.
  • the application step is a step of forming an ink film by applying the ink of the present disclosure on a substrate.
  • an ink on a base material you may employ
  • the inkjet method is preferable in that a film (for example, an image) can be formed on various substrates (including a recording medium).
  • the substrate is not particularly limited, and, for example, known substrates provided as a support and a recording medium can be appropriately selected and used.
  • a substrate paper, paper (plastic, polyethylene, polypropylene, polystyrene, etc.) laminated, metal plate (plate of metal such as aluminum, zinc, copper, etc.), plastic film (polyvinyl chloride (PVC) resin , Cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate (PET: Polyethylene Terephthalate), polyethylene (PE: Polyethylene), polystyrene (PS: Polystyrene), polypropylene (PP: Films made of Polypropylene, PC (Polycarbonate), polyvinyl acetal, acrylic resin, etc., paper laminated or vapor-deposited metal, plastic fiber laminated or vapor-deposited metal Beam and the like.
  • PVC polyvinyl chloride
  • a textiles base material is also mentioned as a base material.
  • Materials for textile base materials include natural fibers such as cotton, silk, hemp and wool; chemical fibers such as viscose rayon and rheocel; synthetic fibers such as polyester, polyamide and acrylic; natural fibers, chemical fibers and synthetic fibers And mixtures of at least two selected from the group consisting of As the textile substrate, the textile substrate described in paragraphs [0039] to [0042] of WO 2015/158592 may be used.
  • plastics such as polyvinyl chloride (PVC) substrate, polystyrene (PS) substrate, polycarbonate (PC) substrate, polyethylene terephthalate (PET) substrate, polypropylene (PP) substrate, acrylic resin substrate and the like Substrates are preferred.
  • PVC polyvinyl chloride
  • PS polystyrene
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PP polypropylene
  • the application of the ink by the inkjet method can be performed using a known inkjet recording device.
  • the ink jet recording apparatus is not particularly limited, and any known ink jet recording apparatus capable of achieving the target resolution can be selected and used.
  • Examples of the inkjet recording apparatus include an apparatus including an ink supply system, a temperature sensor, a heating unit, and the like.
  • the ink supply system includes, for example, a main tank containing the ink of the present disclosure, a supply pipe, an ink supply tank immediately in front of an inkjet head, a filter, and a piezoelectric inkjet head.
  • the piezo type inkjet head preferably has 1 pl to 100 pl, more preferably 8 pl to 30 pl multi-size dots, preferably 320 dpi (dot per inch; the same below) x 320 dpi to 4000 dpi x 4000 dpi, more preferably 400 dpi x 400 dpi It can be driven so as to be capable of discharging at a resolution of ⁇ 1600 dpi ⁇ 1600 dpi, more preferably 720 dpi ⁇ 720 dpi. In addition, dpi represents the number of dots per 2.54 cm (1 inch).
  • the ink may be applied to a substrate that has been preheated.
  • the following heating step can be performed by the heated substrate (that is, the ink film is formed by the heated substrate) Can be heated).
  • the heating of the substrate before applying the ink can be performed, for example, by the heating means exemplified in the heating step described later.
  • the heating step is a step of heating the ink film formed on the substrate. By heating the ink film in the heating step, thickening of the ink film occurs, and as a result, an image excellent in scratch resistance is obtained.
  • the heating step may also serve as the curing step B described later.
  • the aspect which heats the ink provided on the base material by a heating means is mentioned. Further, as described above, when the ink is applied to the substrate heated in advance in the application step, an embodiment of heating the ink by the heated substrate may be mentioned as an embodiment of the heating in the heating step.
  • the heating means is not particularly limited, and examples thereof include a heat drum, a warm air, an infrared lamp, an infrared LED, an infrared heater, a thermal oven, a heat plate, an infrared laser, an infrared dryer and the like.
  • a light emitting diode having an emission wavelength in the near infrared to far infrared rays, having a maximum absorption wavelength at a wavelength of 0.8 ⁇ m to 1.5 ⁇ m or 2.0 ⁇ m to 3.5 ⁇ m, from the point that the ink can be efficiently heat-cured An LED), a heater emitting near infrared to far infrared radiation, a laser having an emission wavelength of near infrared to far infrared radiation, or a dryer emitting near infrared to far infrared radiation is preferable.
  • the heating temperature during heating is preferably 40 ° C. or higher, more preferably 40 ° C. to 200 ° C., still more preferably 45 ° C. to 100 ° C., and further preferably 50 ° C. to 80 ° C. from the viewpoint of more effectively thickening the ink film. More preferably, 55 ° C to 70 ° C is more preferable.
  • the heating temperature refers to the temperature of the ink on the substrate, and can be measured by a thermograph using an infrared thermography device H2640 (Nippon Avionics Co., Ltd.).
  • the heating time can be appropriately set in consideration of the heating temperature, the composition of the ink, the printing speed and the like.
  • the heating time is preferably 5 seconds or more, more preferably 5 seconds to 5 minutes, more preferably 10 seconds to 1 minute, and still more preferably 20 seconds to 1 minute.
  • the image forming method of the present disclosure can have a curing step of curing the ink film heated by the heating step.
  • a polymerization reaction that is, a crosslinking reaction
  • the image forming method of the present disclosure has a curing step, the hardness of the image can be further improved, and thus the scratch resistance of the image can be further improved.
  • the ink film is irradiated with light (that is, active energy ray) as the curing step by irradiating the ink film heated in the heating step.
  • a curing step (hereinafter, “curing step A") for curing can be provided.
  • thermosetting ink when used, a curing step of subjecting the ink film heated in the heating step to heating or irradiation of infrared rays as a curing step to thermally cure the ink film (
  • hardening process B" can be provided.
  • thickening and thermal curing of the ink film are performed by the above-described heating step without providing the curing step B (that is, the curing step B different from the above-described heating step).
  • a heating step for thickening the ink film and a curing step B for thermosetting the ink film may be separately provided.
  • a single heating step may be provided to both thicken and thermally cure the ink film.
  • the curing step A is a step of curing the ink film by irradiating the ink film heated in the heating step with an active energy ray.
  • the photocrosslinking reaction that is, the photopolymerization reaction
  • the photopolymerization reaction proceeds by irradiating the ink film heated in the heating step with active energy rays, whereby the ink film is formed.
  • UV light ultraviolet ray
  • visible ray visible ray
  • electron beam etc. an ultraviolet ray
  • the peak wavelength of the active energy ray (light) is preferably 200 nm to 405 nm, more preferably 220 nm to 390 nm, and still more preferably 220 nm to 385 nm.
  • 200 nm to 310 nm is also preferable, and 200 nm to 280 nm is also preferable.
  • Exposure surface illuminance when the active energy ray (light) is irradiated for example, 10mW / cm 2 ⁇ 2000mW / cm 2, preferably 20mW / cm 2 ⁇ 1000mW / cm 2.
  • the exposure energy when the active energy ray (light) is irradiated is, for example, 10 mJ / cm 2 to 2000 mJ / cm 2 , preferably 20 mJ / cm 2 to 1000 mJ / cm 2 .
  • LEDs Light Emitting Diodes
  • LDs Laser Diodes
  • LEDs Light Emitting Diodes
  • LDs Laser Diodes
  • a metal halide lamp an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, an LED or a blue-violet laser is preferable.
  • an ultra-high pressure mercury lamp capable of light irradiation with a wavelength of 365 nm, 405 nm or 436 nm, light irradiation with a wavelength of 365 nm, 405 nm or 436 nm is possible
  • a high pressure mercury lamp or an LED capable of light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm is more preferable, and an LED capable of light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm is most preferable.
  • the irradiation time of the active energy ray to the ink applied on the substrate is, for example, 0.01 seconds to 120 seconds, preferably 0.1 seconds to 90 seconds.
  • the irradiation conditions and the basic irradiation method the irradiation conditions and the irradiation methods disclosed in Japanese Patent Application Laid-Open No. 60-132767 can be applied similarly.
  • a light source is provided on both sides of a head unit including an ink discharge device as an active energy ray irradiation method, and the head unit and the light source are scanned by a so-called shuttle method, or by another light source without driving. It is preferable to use an active energy ray irradiation method.
  • the irradiation of the active energy ray is preferably performed after a certain time (for example, 0.01 seconds to 120 seconds, preferably 0.01 seconds to 60 seconds) after the ink is landed and the heating and drying are performed.
  • the curing step B is a step of thermally curing the ink film by applying heat or irradiation of infrared rays to the ink film heated in the heating step.
  • the thermal crosslinking reaction that is, thermal polymerization reaction
  • the thermal crosslinking reaction of specific particles in the ink proceeds by heating or irradiating infrared rays to the ink film heated in the heating step, whereby the ink film
  • the strength of the The preferred embodiment of the curing step B is the same as the preferred embodiment of the heating step.
  • DMPA dimethylol propionic acid
  • HMDI dicyclohexylmethane-4,4'-diisocyanate
  • tricyclodecane dimethanol compound (2-5)
  • bisphenol A epoxy diacrylate compound (a-21)
  • ethyl acetate 102.3 g
  • IPA isopropanol
  • ethyl acetate 110 g
  • the reaction solution is allowed to cool to room temperature (25 ° C .; the same applies hereinafter), and the concentration is adjusted with ethyl acetate to obtain a 30% by weight solution of polymer 1 (solvent: IPA and ethyl acetate)
  • solvent solvent: IPA and ethyl acetate
  • Mw weight average molecular weight
  • the polymer 1 has an acryloyl group as a photopolymerizable group.
  • the weight average molecular weight (Mw) of the polymer 2 was 20000, and the acid value was 0.70 mmol / g.
  • DMPA dimethylol propionic acid
  • HMDI dicyclohexylmethane-4,4'-diisocyanate
  • tricyclodecane dimethanol compound (2-5)
  • IPA isopropanol
  • reaction solution was allowed to cool to room temperature, and then concentration adjustment was performed using ethyl acetate to obtain a 30% by mass solution of polymer 101 (solvent: mixed solution of IPA and ethyl acetate) .
  • solvent mixed solution of IPA and ethyl acetate
  • the weight average molecular weight (Mw) of the polymer 101 was 8000, and the acid value was 0.70 mmol / g.
  • Example 1 (Photocurable Ink) ⁇ Preparation of water dispersion> -Preparation of oil phase components- A 30% by weight solution of polymer 1 (53 parts as polymer 1), Sartmar photopolymerizable monomer SR833S (44 parts), BASF photopolymerization initiator IRGACURE® 819 (2.5 parts) Hereinafter, “IRG 819”), 2-isopropylthioxanthone (0.5 part; hereinafter, also referred to as “ITX”) of Tokyo Chemical Industry Co., Ltd. as a sensitizer, and ethyl acetate are mixed, By stirring for 15 minutes, 44 g of an oil phase component having a solid content of 36% by mass was obtained.
  • polymer 1 53 parts as polymer 1
  • Sartmar photopolymerizable monomer SR833S 44 parts
  • BASF photopolymerization initiator IRGACURE® 819 2.5 parts
  • IRG 819 2-isopropylthioxanthone
  • SR833S is a bifunctional photopolymerizable monomer having a cyclic structure, and specifically, it is tricyclodecanedimethanol diacrylate (molecular weight 304).
  • IRG 819 is an acyl phosphine oxide type photoinitiator, specifically, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide.
  • the oil phase component and the water phase component were mixed, and the obtained mixture was emulsified at room temperature for 10 minutes at 18,000 rpm using a homogenizer to obtain an emulsion.
  • the resulting emulsion was added to distilled water (25 g) and the resulting liquid was stirred at room temperature for 30 minutes.
  • the liquid was heated to 50 ° C. and stirred at 50 ° C. for 6 hours to distill off ethyl acetate from the liquid.
  • the liquid from which ethyl acetate was distilled off was further stirred at 50 ° C. for 24 hours to form specific particles in the liquid.
  • an aqueous dispersion of specific particles was obtained by diluting the liquid containing the specific particles with distilled water so as to have a solid content of 20% by mass.
  • Ink Ejectability As one of the indicators of the dispersion stability of the ink, the ejection property was evaluated. After the preparation, the above-mentioned photocurable ink stored at room temperature for less than 1 day was discharged from the head of an ink jet printer (Roland DG Corporation, SP-300V) for 30 minutes, and then the discharge was stopped. After a predetermined time (specifically, 5 minutes, 8 minutes, and 10 minutes, respectively) has elapsed from the stop of the discharge, the ink is discharged again from the head onto the substrate, and a solid of 5 cm ⁇ 5 cm is obtained. An image was formed.
  • CORREX registered trademark
  • PP polypropylene
  • Storage stability of ink was evaluated as one of the indicators of dispersion stability of ink.
  • the above photocurable ink was sealed in a container and allowed to age at 60 ° C. for 2 weeks.
  • the evaluation test similar to the evaluation test of the dischargeability of the said ink was implemented about the ink after two weeks progress, and the storage stability of the ink was evaluated according to the same evaluation standard.
  • A is the one with the best storage stability of the ink.
  • the substrate is heated to 60 ° C. by a print heater, and the photocurable ink is discharged from the head of the ink jet printer to the heated substrate, and the character image shown in FIG. , 7 points, and 10 points in each size.
  • CORREX registered trademark
  • PP polypropylene
  • the character image shown in FIG. 1 of each size formed was observed with a kraft loupe (Etsumi Co., Ltd.) at a magnification of 10 times. Based on the observed results, the definition of the image was evaluated according to the following evaluation criteria. In the following evaluation criteria, A is the one with the highest definition of the image.
  • A The character image shown in FIG. 1 with a size of 5 points was formed without crushing and bleeding.
  • B A character image shown in FIG. 1 having a size of 7 points was formed without crushing and bleeding (except in the case of A).
  • C A character image shown in FIG. 1 having a size of 10 points was formed without crushing and bleeding (except in the case corresponding to A or B).
  • D The character image shown in FIG. 1 with a size of 10 points was crushed or dusted.
  • a coated film having a thickness of 12 ⁇ m was formed on the substrate by applying the photocurable ink stored on the substrate for 1 day or less after preparation to the substrate.
  • CORREX registered trademark
  • PP polypropylene
  • the said application is No. 1 of the K hand coater of RK PRINT COAT INSTRUMENTS company. It carried out using 2 bars.
  • UV (UV) irradiation an ozone-less metal halide lamp MAN 250L is mounted as an exposure light source, and an experimental UV mini-conveyor device CSOT (traded) set at a conveyor speed of 35 m / min and an exposure intensity of 1.0 W / cm 2 GS Yuasa Power Supply was used. This UV irradiation was performed at an exposure energy of 1000 mJ / cm 2 .
  • the surface of the cured film was visually observed, and the scratch resistance of the cured film was evaluated according to the following evaluation criteria.
  • A is the one with the best scratch resistance of the cured film.
  • Example 2 (Photocurable Ink) The same operation as in Example 1 was carried out except that the type and amount of the photopolymerizable monomer were changed as shown in Table 3. The results are shown in Table 3.
  • SR399E is a pentafunctional photopolymerizable monomer having no cyclic structure, and specifically, is dipentaerythritol pentaacrylate (molecular weight 525).
  • Example 3 (Photocurable Ink) The same operation as in Example 1 was performed except that the type of non-volatile neutralizing agent was changed as shown in Table 3. The results are shown in Table 3.
  • Examples 4 to 7 and 13 to 18 (Photocurable Ink) The same operation as in Example 1 was performed except that the type of volatile neutralizing agent was changed as shown in Table 3. The results are shown in Table 3.
  • Example 8 to 12 (Photocurable Ink) The amounts of volatile neutralizing agents used and the amounts of non-volatile neutralizing agents used are shown in Table 3, molar ratio of volatile neutralizing agent to non-volatile neutralizing agent [volatility / non-volatility (molar ratio The same operation as Example 1 was performed except having changed so that it might become]. The results are shown in Table 3.
  • Example 19 (Photocurable Ink) The same operation as in Example 1 is carried out except using a 30% by mass solution of Polymer 2 (53 parts as the amount of Polymer 2) instead of the 30% by mass solution of Polymer 1 (53 parts as the amount of Polymer 1) went. The results are shown in Table 3.
  • Comparative Example 1 (Photocurable Ink) ⁇ Preparation of water dispersion> -Preparation of oil phase components- A 30% by weight solution of polymer 1 (53 parts as polymer 1), Sartmar photopolymerizable monomer SR833S (44 parts), BASF photopolymerization initiator IRGACURE® 819 (2.5 parts) IRG 819), 2-isopropylthioxanthone (0.5 part; ITX) of Tokyo Chemical Industry Co., Ltd. as a sensitizer, and ethyl acetate are mixed, and the solid content is 36% by mass by stirring for 15 minutes 44 g of an oil phase component of
  • Amount of volatile neutralizing agent (g) total amount of oil phase component (g) ⁇ (solid content concentration of oil phase component (% by mass) / 100) ⁇ (specific linear polymer relative to total solid content of oil phase component That is, the content of polymer 1) (% by mass) / 100) ⁇ acid value (mmol / g) of a specific linear polymer (ie, polymer 1) ⁇ 0.9 ⁇ (1/10) ⁇ volatile Molecular weight of Japanese agent (g / mol) / 1000
  • Amount of non-volatile neutralizing agent (g) total amount of oil phase component (g) ⁇ (solid content concentration of oil phase component (mass%) / 100) ⁇ (specific chain polymer relative to total solid content of oil phase component) (Namely, content of polymer-1) (mass%) / 100) ⁇ acid value of specific chain polymer (namely, polymer-1) (mmol / g) ⁇ 0.9 ⁇ molecular weight of non-volatile neutralizing agent (G / mol)
  • the oil phase component and the water phase component were mixed, and the resulting mixture was emulsified at 25 ° C. using a homogenizer at 18,000 rpm for 10 minutes to obtain an emulsion.
  • the resulting emulsion was added to distilled water (25 g) and the resulting liquid was stirred at room temperature for 30 minutes. Next, the liquid is heated to 60 ° C. and stirred at 60 ° C. for 6 hours under reduced pressure (2.7 kPa) to distill off ethyl acetate and a volatile neutralizing agent (that is, ammonia) from the liquid. did.
  • the liquid from which ethyl acetate and the volatile neutralizing agent were distilled off was further stirred at 50 ° C.
  • Comparative Example 2 (Photocurable Ink) An emulsion was obtained in the same manner as in Comparative Example 1 except that the type of volatile neutralizing agent was changed as shown in Table 3. The resulting emulsion was added to distilled water (25 g) and the resulting liquid was stirred at room temperature for 30 minutes. Next, the liquid is heated to 60 ° C. and stirred at 60 ° C. under reduced pressure (2.7 kPa) for 6 hours to distill off ethyl acetate and a volatile neutralizing agent (that is, triethylamine) from the liquid. did. The liquid from which ethyl acetate and the volatile neutralizing agent were distilled off was further stirred at 50 ° C. under normal pressure for 24 hours to form particles in the liquid.
  • an aqueous dispersion of particles was obtained by diluting the liquid containing the particles with distilled water so that the solid content would be 20% by mass.
  • the odor of the volatile neutralizing agent was not felt from the aqueous dispersion of the obtained particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method, It was 0 mmol.
  • a photocurable ink was prepared in the same manner as in Comparative Example 1 using the obtained particle dispersion liquid. The results are shown in Table 3.
  • Comparative Example 3 (Photocurable Ink) The same operation as in Example 1 was performed except that the volatile neutralizing agent was not used. The results are shown in Table 3.
  • Comparative Example 4 (Photocurable Ink) The same operation as in Example 1 was performed except that the non-volatile neutralizing agent was not used. The results are shown in Table 3.
  • “-” In Table 3 indicates that there is no corresponding one.
  • “Volatile / non-volatile (molar ratio)” in Table 3 is the ratio of the non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and the non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
  • Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio) are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
  • particles containing water, a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, and an acid group neutralized by a non-volatile neutralizing agent having a boiling point of 250 ° C. or higher are excellent in the test of the ink dischargeability and the storage stability of the ink as an index for evaluating the dispersion stability of the ink. Show the results.
  • Examples 1 to 19 showed excellent results in the test of image definition.
  • Examples 1-19 also showed excellent results in the scratch resistance test of the cured film.
  • Comparative Examples 1 to 3 the evaluation result was “D” also in the test for scratch resistance of the cured film, and inferior results were obtained as compared with Examples 1 to 19.
  • an acid group containing water and an acid group neutralized with a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, but having a boiling point exceeding 250 ° C. is neutralized
  • Comparative Example 4 using a photocurable ink containing particles not containing water the evaluation results of the test of the ink dischargeability and the storage stability of the ink as an index of the evaluation of the dispersion stability of the ink are “ C "and showed inferior results compared to Examples 1-19.
  • the amine compound when the amine compound is contained as a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, the valence number of the amine compound is 1 (Example 17). It can be seen that the dischargeability of the ink and the storage stability of the ink are better.
  • the molar ratio of the acid group neutralized by the volatile neutralizer to the acid group neutralized by the non-volatile neutralizer contained in the specific particle (during the volatility
  • the number of moles of acid groups neutralized by the common agent / the number of moles of acid groups neutralized by the non-volatile neutralizing agent is in the range of 60/40 to 90/10 (Examples 1 and 9 and 10) It can be seen that all of the ink dischargeability, the storage stability of the ink, the definition of the image, and the scratch resistance of the cured film are all superior.
  • the volume average dispersed particle size of the specific particles was measured.
  • the volume average dispersed particle size of the specific particles was measured by a light scattering method using LA-960 (Horiba, Ltd.).
  • the volume average dispersed particle diameter of the specific particles was in the range of 0.15 ⁇ m to 0.25 ⁇ m.
  • Example 101 Preparation of Thermosetting Ink
  • SR833S, IRG819, and ITX a 60 ° C. and 2.67kPa Trixene TM BI7982 propylene glycol monomethyl ether was distilled off under reduced pressure under the conditions of (20 torr) (thermally polymerizable monomer; blocked isocyanate; Baxenden Chemicals Ltd.) (Hereafter, it is also referred to as "BI 7982"; the amount is as shown in Table 4; molecular weight 793), and in the same manner as in Example 1 except that the polymer 1 is changed to the same amount of polymer 101, Sex ink was prepared.
  • Image Fineness The image fineness was evaluated in the same manner as in the evaluation of the image fineness in Example 1.
  • Example 102 (Thermosetting Ink)
  • the BI7982, EPICLON TM 840 is a thermally polymerizable monomer having an epoxy group (DIC Corporation; hereinafter referred to as "EP840"; the amount is as shown in Table 4; molecular weight 340) is a and the thermal curing accelerator 2-methylimidazole
  • the operation is the same as in Example 101 except that the amount is also changed as shown in Table 4 and the type of volatile neutralizing agent is changed as shown in Table 4. Did. The results are shown in Table 4.
  • Example 103 to 106 The same operation as in Example 101 was performed except that the type of volatile neutralizing agent was changed as shown in Table 4. The results are shown in Table 4.
  • Comparative Example 101 (Thermosetting Ink) Dispersion of particles in the same manner as Comparative Example 1 except that SR833S, IRG 819, and ITX were changed to BI7982 (amounts are as shown in Table 4), and polymer 1 was changed to the same amount of polymer 101. I got The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met. A thermosetting ink was prepared in the same manner as in Comparative Example 1 using the obtained dispersion of particles. The results are shown in Table 4.
  • Comparative Example 102 (Thermosetting Ink) Dispersion of particles in the same manner as Comparative Example 2 except that SR833S, IRG 819, and ITX were changed to BI7982 (as shown in Table 4), and Polymer 1 was changed to the same amount of Polymer 101. I got The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met. A thermosetting ink was prepared in the same manner as in Comparative Example 2 using the obtained dispersion of particles. The results are shown in Table 4.
  • Comparative Example 103 (Thermosetting Ink) The same operation as in Example 101 was performed except that the volatile neutralizing agent was not used. The results are shown in Table 4.
  • Comparative Example 104 (Thermosetting Ink) The same operation as in Example 101 was performed except that the non-volatile neutralizing agent was not used. The results are shown in Table 4.
  • Volatile / non-volatile (molar ratio) in Table 4 is the ratio of non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
  • Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio) in Table 4 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
  • thermosetting ink As shown in Table 4, the same results as in Examples 1 to 19 for the photocurable ink were obtained also in Examples 101 to 106 for the thermosetting ink.
  • the volume average dispersed particle size of the specific particles was measured.
  • the volume average dispersed particle size of the specific particles was measured by a light scattering method using LA-960 (Horiba, Ltd.).
  • the volume average dispersed particle diameter of the specific particles was in the range of 0.15 ⁇ m to 0.25 ⁇ m.
  • Example 201 (Photocurable Ink Containing MC) ⁇ Preparation of Water Dispersion of Microcapsule (MC)>
  • a microcapsule (MC) comprising a shell comprising a urethane polymer which is a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a photopolymerizable monomer, a photopolymerization initiator, and a sensitizer as follows: Water dispersion was prepared.
  • microcapsules (MC) correspond to specific particles.
  • D-110N is a 75% by mass ethyl acetate solution of an adduct of trimethylolpropane (TMP) and m-xylylene diisocyanate (XDI) (trifunctional isocyanate compound “D110N”).
  • TMP trimethylolpropane
  • XDI m-xylylene diisocyanate
  • the above solution of NCO1 is a 35% by mass solution of NCO1 in ethyl acetate.
  • a solution of NCO1 was added to a three-necked flask, 18 g of 2,2-bis (hydroxymethyl) butyric acid (DMBA), 82 g of isophorone diisocyanate (IPDI) and 186 g of ethyl acetate (AcOEt), and heated to 50.degree. 0.3 g of neostanne U-600 was added to the obtained heating thing, and it prepared by making it react for 3 hours.
  • the acid value of NCO1 was 1.20 mmol / g.
  • Amount of volatile neutralizing agent (g) total amount of oil phase component (g) ⁇ (solid content concentration of oil phase component (mass%) / 100) ⁇ (content of NCO 1 with respect to total solid content of oil phase component [Mass%) / 100] ⁇ NCO 1 acid value (mmol / g) ⁇ 0.9 ⁇ [mol number of volatile neutralizing agent (mol) / (mol number of volatile neutralizing agent (mol) + non-volatile] Number of moles of neutralizing agent (mol)] ⁇ molecular weight of volatile neutralizing agent (g / mol) / 1000
  • Amount of non-volatile neutralizing agent (g) total amount of oil phase component (g) ⁇ (solid content concentration of oil phase component (mass%) / 100) ⁇ (content of NCO1 with respect to total solid content of oil phase component) (Mass%) / 100) ⁇ NCO 1 acid value (mmol / g) ⁇ 0.9 ⁇ [number of moles of non-volatile neutralizing agent (mol
  • the oil phase component and the water phase component were mixed, and the resulting mixture was emulsified at room temperature for 10 minutes at 12000 rpm using a homogenizer to obtain an emulsion.
  • the obtained emulsion was added to distilled water (15.3 g), and the obtained liquid was heated to 50 ° C. and stirred at 50 ° C. for 5 hours to evaporate ethyl acetate from the liquid.
  • the liquid from which ethyl acetate was distilled off was further stirred at 50 ° C. for 3 hours to form microcapsules (MC) in the liquid.
  • the liquid containing MC was diluted with distilled water so as to have a solid content of 20% by mass, to obtain an aqueous dispersion of MC.
  • the polymer which is the shell of this microcapsule is a urethane polymer having a three-dimensional crosslinked structure formed by the reaction of D110N, which is a trifunctional isocyanate compound, and NCO1, which is an isocyanate compound having a carboxy group introduced therein.
  • the polymer which is the shell of this microcapsule is formed by the reaction of water with the urethane group originally contained in NCO1, the urethane group originally contained in D110N, and the isocyanate group in D110N or NCO1. It has a urea group.
  • Example 202 (Photocurable Ink Containing MC) The same operation as in Example 201 was carried out except that the type and amount of the photopolymerizable monomer were changed as shown in Table 5. The results are shown in Table 5.
  • Example 203 (Photocurable Ink Containing MC) The same operation as in Example 201 was carried out except that the type of non-volatile neutralizing agent was changed as shown in Table 5. The results are shown in Table 5.
  • Example 204 to 207 and 209 (Photocurable Ink Containing MC) The same operation as in Example 201 was performed except that the type of volatile neutralizing agent was changed as shown in Table 5. The results are shown in Table 5.
  • Example 208 is an example in which the polymer 1 used in Example 1 was used as a dispersant for microcapsules.
  • the complex of the microcapsule and the dispersant corresponds to the specific particle.
  • the solution of NCO1 (10 parts as the amount of NCO1) was changed to a 30% by mass solution of polymer 1 prepared in Example 1 (10 parts as the amount of polymer 1) The same operation as in 201 was performed. The results are shown in Table 5.
  • Comparative Example 201 (Photocurable Ink Containing MC) -Preparation of oil phase components- D110N (43 parts) described above, NCO1 (10 parts) described above, SR833S (44 parts) described above as a photopolymerizable monomer, and IRG 819 (2.5 parts) described above as a photopolymerization initiator
  • ITX 0.5 part
  • ethyl acetate were mixed and stirred for 15 minutes to obtain 45.7 g of an oil phase component having a solid content of 30% by mass.
  • Amount of volatile neutralizing agent (g) total amount of oil phase component (g) ⁇ (solid content concentration of oil phase component (mass%) / 100) ⁇ (content of NCO 1 with respect to total solid content of oil phase component Mass%) / 100) ⁇ NCO 1 acid value (mmol / g) ⁇ 0.9 ⁇ (1/10) ⁇ molecular weight of volatile neutralizing agent (g / mol) / 1000
  • Amount of non-volatile neutralizing agent (g) total amount of oil phase component (g) ⁇ (solid content concentration of oil phase component (mass%) / 100) ⁇ (content of NCO1 with respect to total solid content of oil phase component) (Mass%) / 100) ⁇ NCO 1 acid value (mmol / g) ⁇ 0.9 ⁇ molecular weight of non-volatile neutralizing agent (g / mol) / 1000
  • the oil phase component and the water phase component were mixed, and the resulting mixture was emulsified at room temperature for 10 minutes at 12000 rpm using a homogenizer to obtain an emulsion.
  • the obtained emulsion is added to distilled water (15.3 g), and the obtained liquid is heated to 60 ° C., and stirred at 60 ° C. for 5 hours under reduced pressure (2.7 kPa) to obtain acetic acid from the above liquid Ethyl and volatile neutralizing agent (i.e. ammonia) were distilled off.
  • Microcapsules (MC) were formed in the liquid by further stirring the liquid from which ethyl acetate and the volatile neutralizing agent were distilled off at 50 ° C. under normal pressure for 3 hours.
  • the liquid containing MC was diluted with distilled water so as to have a solid content of 20% by mass, to obtain an aqueous dispersion of MC.
  • the amount of acid groups neutralized to the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method and found to be 0 mmol.
  • a photocurable ink was prepared in the same manner as in Example 201, using the obtained dispersion of particles. The results are shown in Table 5.
  • Comparative Example 202 (Photocurable Ink Containing MC) The same operation as in Comparative Example 201 was carried out except that the type of volatile neutralizing agent was changed as shown in Table 5, to obtain an emulsion.
  • the obtained emulsion is added to distilled water (15.3 g), and the obtained liquid is heated to 60 ° C., and stirred at 60 ° C. for 5 hours under reduced pressure (2.7 kPa) to obtain acetic acid from the above liquid Ethyl and volatile neutralizing agent (ie, triethylamine) were distilled off.
  • Microcapsules (MC) were formed in the liquid by further stirring the liquid from which ethyl acetate and the volatile neutralizing agent were distilled off at 50 ° C. under normal pressure for 3 hours.
  • the liquid containing MC was diluted with distilled water so as to have a solid content of 20% by mass, to obtain an aqueous dispersion of MC.
  • the amount of acid groups neutralized to the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method and found to be 0 mmol. The results are shown in Table 5.
  • Comparative Example 203 (Photocurable Ink Containing MC) The same operation as in Example 201 was carried out except that the volatile neutralizing agent was not used. The results are shown in Table 5.
  • Comparative Example 204 (Photocurable Ink Containing MC) The same operation as in Example 201 was carried out except that the non-volatile neutralizing agent was not used. The results are shown in Table 5.
  • Volatile / non-volatile (molar ratio) in Table 5 is the ratio of non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
  • Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio) in Table 5 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
  • the particles are also as polymers in Examples 201 to 209, which relate to a photocurable ink in which the particles comprise a three-dimensional crosslinked polymer which is a shell of MC (so-called specific crosslinked polymer) as a polymer.
  • MC shell of MC
  • the volume average dispersed particle size of MC was measured.
  • the volume average dispersed particle size of MC was measured by a light scattering method using LA-960 (Horiba, Ltd.). As a result, in any of the examples, the volume average dispersed particle size of MC was in the range of 0.15 ⁇ m to 0.25 ⁇ m.
  • Example 301 (Thermosetting ink containing MC) Preparation of Thermosetting Ink
  • MC microcapsules
  • MC microcapsules
  • a shell composed of a urethane polymer which is a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a thermally polymerizable monomer
  • microcapsules (MC) correspond to specific particles.
  • thermosetting ink was prepared in the same manner as in the preparation of the photocurable ink in Example 201 except that SR833S, IRG 819, and ITX were changed to BI7982 (the amounts are as shown in Table 6). Prepared.
  • Example 302 Thermosetting Ink Containing MC The same operation as in Example 301 was performed, except that BI7982 was changed to EP 840 and 2MI (amounts are as shown in Table 6). The results are shown in Table 6.
  • Example 303 to 306 (Thermosetting ink containing MC) The same operation as in Example 301 was performed except that the type of volatile neutralizing agent was changed as shown in Table 6. The results are shown in Table 6.
  • Comparative Example 301 (Thermosetting Ink Containing MC) A dispersion of particles was obtained in the same manner as in Comparative Example 201 except that SR833S, IRG 819, and ITX were changed to BI7982 (the amount is as shown in Table 6). The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met. In the same manner as in Comparative Example 201, a thermosetting ink was prepared using the obtained dispersion liquid of particles. The results are shown in Table 6.
  • Comparative Example 302 Thermosetting Ink Containing MC A dispersion of particles was obtained in the same manner as in Comparative Example 202 except that SR833S, IRG 819, and ITX were changed to BI7982 (the amounts are as shown in Table 6). The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met. In the same manner as in Comparative Example 202, a thermosetting ink was prepared using the obtained dispersion of particles. The results are shown in Table 6.
  • Comparative Example 303 (Thermosetting Ink Containing MC) The same operation as in Example 301 was performed except that the volatile neutralizing agent was not used. The results are shown in Table 6.
  • Comparative Example 304 (Thermosetting Ink Containing MC) The same operation as in Example 301 was carried out except that the non-volatile neutralizing agent was not used. The results are shown in Table 6.
  • Volatile / non-volatile (molar ratio) in Table 6 is the ratio of the non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and the non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
  • Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio) in Table 6 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
  • thermosetting ink containing MC As shown in Table 6, in Examples 301 to 306 of the thermosetting ink containing MC, the same results as in Examples 201 to 209 of the photocurable ink containing MC were obtained.
  • the volume average dispersed particle size of MC was measured.
  • the volume average dispersed particle size of MC was measured by a light scattering method using LA-960 (Horiba, Ltd.). As a result, in any of the examples, the volume average dispersed particle size of MC was in the range of 0.15 ⁇ m to 0.25 ⁇ m.

Abstract

Provided are: an ink composition that comprises water and particles comprising an acid group neutralized by a volatile neutralizer having a boiling point of 25 to 250°C and a non-volatile neutralizer having a boiling point of over 250°C; and an image forming method.

Description

インク組成物及び画像形成方法Ink composition and image forming method
 本開示は、インク組成物及び画像形成方法に関する。 The present disclosure relates to an ink composition and an image forming method.
 従来、インク組成物の分野において、揮発性塩基と不揮発性塩基とを利用した技術が知られている。
 例えば、特開2010-138297号公報には、優れた吐出速度及び吐出安定性を有するサーマル式インクジェット用水分散体の製造方法として、工程(1):顔料、アニオン性基を有するポリマー、揮発性塩基、不揮発性塩基、有機溶媒、及び水を含有する混合物であって、揮発性塩基によるアニオン性基の中和度と不揮発性塩基によるアニオン性基の中和度との合計が210%~500%であり、かつ(揮発性塩基/不揮発性塩基)のモル比が1を超える混合物を、分散処理して分散体を得る工程、並びに、工程(2):工程(1)で得られた分散体から、揮発性塩基及び有機溶媒を除去して、顔料を含有するポリマー粒子の水分散体を得る工程、を有するサーマル式インクジェット用水分散体の製造方法が開示されている。
Conventionally, in the field of ink compositions, techniques using volatile bases and non-volatile bases are known.
For example, in JP-A-2010-138297, as a method for producing a thermal ink jet aqueous dispersion having excellent ejection speed and ejection stability, step (1): pigment, polymer having an anionic group, volatile base A mixture containing a non-volatile base, an organic solvent, and water, and the total of the degree of neutralization of the anionic group by the volatile base and the degree of neutralization of the anionic group by the non-volatile base is 210% to 500% And dispersing the mixture having a molar ratio of (volatile base / non-volatile base) of more than 1 to obtain a dispersion, and step (2): the dispersion obtained in step (1) And the step of removing the volatile base and the organic solvent to obtain an aqueous dispersion of polymer particles containing the pigment, and a method of producing a thermal ink jet aqueous dispersion is disclosed.
 ところで、粒子を含む水系インクでは、粒子の分散安定性が求められる。
 また、一般に、液体成分として水を含むインクを用いて形成されたインク膜では、液体成分として有機溶剤を含むインクを用いて形成されたインク膜と比較して、インク膜中の液体成分が除去され難い。そのため、液体成分として水を含むインクを用いて形成された画像は、精細さに劣る傾向がある。
 したがって、粒子を含む水系インクには、精細な画像を形成できることが求められる場合がある。
By the way, in the water-based ink containing particles, the dispersion stability of the particles is required.
In general, in an ink film formed using an ink containing water as a liquid component, the liquid component in the ink film is removed as compared to an ink film formed using an ink containing an organic solvent as a liquid component It is hard to be done. Therefore, an image formed using an ink containing water as a liquid component tends to be inferior in definition.
Therefore, the water-based ink containing particles may be required to be able to form a precise image.
 上述の点に関し、特開2010-138297号公報に記載の技術では、粒子の分散安定性を向上させることはできるものの、特開2010-138297号公報に記載の水分散体の組成は、加熱により速やかに増粘させることが難しい組成である。したがって、特開2010-138297号公報に記載の水分散体では、精細な画像を形成することは困難である。 Regarding the above-mentioned point, although the technology described in JP-A-2010-138297 can improve the dispersion stability of particles, the composition of the water dispersion described in JP-A-2010-138297 can be improved by heating. It is a composition that is difficult to thicken quickly. Therefore, it is difficult to form a fine image with the aqueous dispersion described in JP-A-2010-138297.
 本発明の一実施形態が解決しようとする課題は、分散安定性に優れ、かつ、精細な画像を形成できるインク組成物を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、精細な画像を形成できる画像形成方法を提供することである。
A problem to be solved by an embodiment of the present invention is to provide an ink composition which is excellent in dispersion stability and can form a fine image.
Further, another problem to be solved by the other embodiments of the present invention is to provide an image forming method capable of forming a fine image.
 上記課題を解決するための手段には、以下の態様が含まれる。
 <1> 水と、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を含む粒子と、を含有するインク組成物。
 <2> 粒子が、ポリマーを含み、ポリマーが、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を有する<1>に記載のインク組成物。
 <3> 揮発性中和剤が、アミン化合物及び第四級アンモニウムヒドロキシドからなる群より選ばれる少なくとも1種である<1>又は<2>に記載のインク組成物。
 <4> アミン化合物の価数が、1である<3>に記載のインク組成物。
Means for solving the above problems include the following aspects.
<1> An ink containing water, a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, and particles containing an acid group neutralized by a non-volatile neutralizing agent having a boiling point exceeding 250 ° C. Composition.
<2> The particle contains a polymer, and the polymer has an acid group neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a nonvolatile neutralizing agent having a boiling point of 250 ° C. or more The ink composition as described in <1>.
<3> The ink composition according to <1> or <2>, wherein the volatile neutralizing agent is at least one selected from the group consisting of an amine compound and a quaternary ammonium hydroxide.
The ink composition as described in <3> whose valences of <4> amine compounds are one.
 <5> アミン化合物が、下記の式(1)で表される化合物、式(2)で表される化合物、及び式(3)で表される化合物からなる群より選ばれる少なくとも1種である<3>又は<4>に記載のインク組成物。
  式(1):NR
  式(2):NR
  式(3):NR
 式(1)中、R、R、及びRは、各々独立に、アルキル基を表す。R、R、及びRのうちいずれか2つが互いに結合して窒素原子を含む環を形成してもよい。
 式(2)中、R及びRは、各々独立に、アルキル基を表し、RとRとは、互いに結合して窒素原子を含む環を形成してもよい。
 式(3)中、Rは、アルキル基を表す。
<5> The amine compound is at least one selected from the group consisting of a compound represented by the following formula (1), a compound represented by the formula (2), and a compound represented by the formula (3) The ink composition as described in <3> or <4>.
Formula (1): NR 1 R 2 R 3
Formula (2): NR 4 R 5 H
Formula (3): NR 6 H 2
In formula (1), R 1 , R 2 and R 3 each independently represent an alkyl group. Any two of R 1 , R 2 and R 3 may be bonded to each other to form a ring containing a nitrogen atom.
In formula (2), R 4 and R 5 each independently represent an alkyl group, and R 4 and R 5 may combine with each other to form a ring containing a nitrogen atom.
In formula (3), R 6 represents an alkyl group.
 <6> 揮発性中和剤の沸点が、25℃以上100℃以下である<1>~<5>のいずれか1つに記載のインク組成物。
 <7> 非揮発性中和剤が、アルカリ金属の水酸化物である<1>~<6>のいずれか1つに記載のインク組成物。
 <8> 粒子に含まれる、非揮発性中和剤により中和された酸基に対する揮発性中和剤により中和された酸基のモル比が、60/40~90/10の範囲である<1>~<7>のいずれか1つに記載のインク組成物。
 <9> ポリマーが、鎖状ポリマーである<1>~<8>のいずれか1つに記載のインク組成物。
 <10> ポリマーが、ウレタンポリマー、ウレアポリマー、又は(メタ)アクリルポリマーである<1>~<9>のいずれか1つに記載のインク組成物。
 <11> インクジェットインクとして用いられる<1>~<10>のいずれか1つに記載のインク組成物。
 <12> 基材上に、<1>~<11>のいずれか1つに記載のインク組成物を付与することによりインク膜を形成する工程と、インク膜を加熱する工程と、を含む画像形成方法。
<6> The ink composition according to any one of <1> to <5>, wherein the boiling point of the volatile neutralizing agent is 25 ° C. or more and 100 ° C. or less.
<7> The ink composition according to any one of <1> to <6>, wherein the non-volatile neutralizing agent is an alkali metal hydroxide.
<8> The molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the nonvolatile neutralizing agent in the particle is in the range of 60/40 to 90/10. The ink composition according to any one of <1> to <7>.
<9> The ink composition according to any one of <1> to <8>, wherein the polymer is a linear polymer.
<10> The ink composition according to any one of <1> to <9>, wherein the polymer is a urethane polymer, a urea polymer, or a (meth) acrylic polymer.
<11> The ink composition according to any one of <1> to <10>, which is used as an inkjet ink.
<12> An image including a step of forming an ink film by applying the ink composition according to any one of <1> to <11> on a substrate, and a step of heating the ink film. Formation method.
 本発明の一実施形態によれば、分散安定性に優れ、かつ、精細な画像を形成できるインク組成物が提供される。
 また、本発明の他の実施形態によれば、精細な画像を形成できる画像形成方法が提供される。
According to one embodiment of the present invention, an ink composition that is excellent in dispersion stability and can form a fine image is provided.
Further, according to another embodiment of the present invention, an image forming method capable of forming a fine image is provided.
実施例における画像の精細さの評価に用いた文字画像を示す図である。It is a figure which shows the character image used for evaluation of the definition of the image in an Example.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
In the present disclosure, a numerical range indicated by using “to” means a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in a certain numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the example.
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
In the present disclosure, the amount of each component means the total amount of a plurality of types of substances unless a plurality of types of substances corresponding to each component are present.
 本開示において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、化学式中の「*」は、結合位置を表す。
In the present disclosure, the term "step" is included in the term if the intended purpose of the step is achieved, even if it can not be clearly distinguished from other steps, as well as independent steps.
In the present disclosure, "*" in a chemical formula represents a bonding position.
 本開示において、「画像」の概念には、パターン画像(例えば、文字、記号、又は図形)だけでなく、ベタ画像も包含される。
 本開示において、「光」は、γ線、β線、電子線、紫外線、可視光線等の活性エネルギー線を包含する概念である。
 本開示では、紫外線を、「UV(Ultra Violet)光」ということがある。
 本開示では、LED(Light Emitting Diode)光源から生じた光を、「LED光」ということがある。
 本開示において、「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の両方を包含する概念であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念であり、「(メタ)アクリロイル基」は、アクリロイル基及びメタクリロイル基の両方を包含する概念である。
 本開示において、「(メタ)アクリルポリマー」は、アクリルポリマー及びメタクリルポリマーの両方を包含する概念である。
 本開示において、ポリオキシアルキレン基、ウレア基、及びウレタン基は、それぞれ、ポリオキシアルキレン結合、ウレア結合、及びウレタン結合を意味する。
In the present disclosure, the concept of "image" encompasses not only pattern images (eg, characters, symbols, or figures) but also solid images.
In the present disclosure, “light” is a concept including active energy rays such as γ rays, β rays, electron beams, ultraviolet rays, visible rays and the like.
In the present disclosure, ultraviolet light may be referred to as "UV (Ultra Violet) light".
In the present disclosure, light generated from a light emitting diode (LED) light source may be referred to as “LED light”.
In the present disclosure, “(meth) acrylic acid” is a concept including both acrylic acid and methacrylic acid, and “(meth) acrylate” is a concept including both acrylate and methacrylate, “(meth) acrylic acid” ) An acryloyl group is a concept including both an acryloyl group and a methacryloyl group.
In the present disclosure, “(meth) acrylic polymer” is a concept including both acrylic polymer and methacrylic polymer.
In the present disclosure, the polyoxyalkylene group, the urea group and the urethane group mean a polyoxyalkylene bond, a urea bond and a urethane bond, respectively.
 本開示において、「分散安定性」は、インク組成物に含まれる粒子の分散安定性を意味し、インクの保存安定性、及び、インクジェットインクとして適用した場合のインクの吐出性を指標として評価される。 In the present disclosure, “dispersion stability” means the dispersion stability of the particles contained in the ink composition, and is evaluated using the storage stability of the ink and the dischargeability of the ink when applied as an inkjet ink as an index. Ru.
[インク組成物]
 本開示のインク組成物(以下、単に「インク」ともいう)は、水と、沸点が25℃以上250℃以下である揮発性中和剤(以下、単に「揮発性中和剤」ともいう)及び沸点が250℃を超える非揮発性中和剤(以下、単に「非揮発性中和剤」ともいう)により中和された酸基を含む粒子(以下、「特定粒子」ともいう)と、を含有する。
 本開示のインクによれば、分散安定性に優れ、かつ、精細な画像を形成できる。
 本開示のインクがこのような効果を奏し得る理由については明らかではないが、本発明者らは、以下のように推測している。
[Ink composition]
The ink composition of the present disclosure (hereinafter, also simply referred to as “ink”) is water, and a volatile neutralizing agent having a boiling point of 25 ° C. to 250 ° C. (hereinafter, also simply referred to as “volatile neutralization agent”) And particles containing an acid group neutralized by a non-volatile neutralizing agent having a boiling point exceeding 250 ° C. (hereinafter, also simply referred to as “non-volatile neutralizing agent” (hereinafter, also referred to as “specific particle”); Contains
According to the ink of the present disclosure, it is possible to form a fine image with excellent dispersion stability.
Although it is not clear why the ink of the present disclosure can exhibit such an effect, the present inventors speculate as follows.
 本開示のインクは、揮発性中和剤及び非揮発性中和剤という2種類の中和剤により中和された酸基を含むことにより、優れた分散安定性と精細な画像の形成を実現し得る。
 詳細には、本開示のインクでは、中和剤(即ち、揮発性中和剤及び非揮発性中和剤)により中和された酸基を含む粒子を含有するため、粒子間の電荷反発作用により、粒子の凝集が抑制され、その結果、優れた分散安定性を実現できると考えられる。
 なお、粒子が揮発性中和剤により中和された酸基のみを含んでいると、揮発性中和剤は、インクの保存中に酸基との解離平衡により次第に揮発するため、粒子の分散安定性は低下し得る。
The ink of the present disclosure achieves excellent dispersion stability and formation of a fine image by containing an acid group neutralized by two types of neutralizing agents, a volatile neutralizing agent and a non-volatile neutralizing agent. It can.
In particular, the ink of the present disclosure contains particles that contain acid groups neutralized with neutralizing agents (i.e., volatile neutralizing agents and non-volatile neutralizing agents), so that charge repulsion between particles is achieved. As a result, aggregation of particles is suppressed, and as a result, it is considered that excellent dispersion stability can be realized.
When the particles contain only the acid group neutralized by the volatile neutralizing agent, the volatile neutralizing agent gradually volatilizes due to the dissociation equilibrium with the acid group during the storage of the ink. Stability may be reduced.
 一般に、液体成分として水を含むインクを用いて形成されたインク膜では、液体成分として有機溶剤を含むインクを用いて形成されたインク膜と比較して、液体成分が除去され難い。そのため、液体成分として水を含むインクを用いて形成された画像は、精細さに劣る傾向がある。この理由としては、インク膜中の液体成分が除去され難いため、基材上で意図しないインク滴の合一が起こり得るためと考えられる。したがって、精細な画像を形成するためには、基材上に付与されたインクが速やかに増粘することが望ましい。 Generally, in an ink film formed using an ink containing water as a liquid component, the liquid component is difficult to remove as compared to an ink film formed using an ink containing an organic solvent as a liquid component. Therefore, an image formed using an ink containing water as a liquid component tends to be inferior in definition. The reason for this is considered to be that unintended ink droplet coalescence may occur on the substrate because the liquid component in the ink film is difficult to remove. Therefore, in order to form a fine image, it is desirable that the ink applied on the substrate be rapidly thickened.
 本開示のインクを基材上に付与して形成されたインク膜には、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を含む粒子が含有される。形成されたインク膜を加熱すると、粒子に含まれる酸基を中和している揮発性中和剤は揮発する。酸基を中和している揮発性中和剤が揮発した粒子は、電荷反発性を失うことにより凝集するため、インクが速やかに増粘すると考えられる。このため、本開示のインクは、液体成分として水を含みながらも、精細な画像を形成できる。 The ink film formed by applying the ink of the present disclosure on a substrate is middle-sized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point exceeding 250 ° C. A particle is included that contains the mixed acid groups. When the formed ink film is heated, the volatile neutralizing agent neutralizing the acid groups contained in the particles is volatilized. It is considered that the ink thickens rapidly because the particles from which the volatile neutralizing agent that is neutralizing the acid group has volatilized coagulate by losing charge repulsion. For this reason, the ink of the present disclosure can form a fine image while including water as a liquid component.
 本開示のインクに対して、特開2010-138297号公報に記載の水分散体は、優れた吐出速度及び吐出安定性を目的としたサーマル式インクジェット用水分散体である。よって、精細な画像の形成という課題については、想定していないものと考えられる。また、特開2010-138297号公報では、水分散体の製造に際し、揮発性塩基及び不揮発性塩基を使用しているが、工程(2)において揮発性塩基を除去している。このため、特開2010-138297号公報に記載の水分散体に含まれるポリマー粒子は、揮発性塩基を有していない。
 したがって、特開2010-138297号公報に記載の水分散体では、精細な画像を形成することは困難である。
With respect to the ink of the present disclosure, the aqueous dispersion described in JP-A-2010-138297 is a thermal ink jet aqueous dispersion for the purpose of excellent ejection speed and ejection stability. Therefore, it is considered that the problem of forming a fine image is not assumed. In addition, in JP 2010-138297 A, a volatile base and a non-volatile base are used in the production of the aqueous dispersion, but the volatile base is removed in the step (2). For this reason, the polymer particles contained in the aqueous dispersion described in JP-A-2010-138297 do not have a volatile base.
Therefore, it is difficult to form a fine image with the aqueous dispersion described in JP-A-2010-138297.
 また、本開示のインクは、引っ掻き耐性に優れる画像を形成できる。
 既述のとおり、本開示のインクを用いて形成されたインク膜では、インク膜中の粒子が加熱により凝集することで、インクが増粘する。このインクの増粘により、形成される画像の膜強度が高まるためと考えられる。
In addition, the ink of the present disclosure can form an image excellent in scratch resistance.
As described above, in the ink film formed using the ink of the present disclosure, the particles in the ink film are coagulated by heating, whereby the ink is thickened. This thickening of the ink is considered to increase the film strength of the formed image.
 上記の推測は、発明の効果を限定的に解釈するものではなく、一例として説明するものである。 The above guess does not limit interpretation of the effect of the invention, but explains as an example.
 以下、本開示のインクにおける各成分について詳細に説明する。 Hereinafter, each component in the ink of the present disclosure will be described in detail.
〔特定粒子〕
 特定粒子は、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を含む。
 特定粒子は、揮発性中和剤及び非揮発性中和剤により中和された酸基を含んでいれば、特に制限されない。
 特定粒子の態様としては、特定粒子が、ポリマーを含み、このポリマーが、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を有する態様が好ましい。
 以下、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を有するポリマーを、「特定ポリマー」ともいう。
[Specific particle]
The specific particles contain a volatile neutralizing agent having a boiling point of 25 ° C. to 250 ° C. and an acid group neutralized by a non-volatile neutralizing agent having a boiling point of 250 ° C. or higher.
The specific particles are not particularly limited as long as they contain an acid group neutralized with a volatile neutralizing agent and a non-volatile neutralizing agent.
In an aspect of the specific particle, the specific particle contains a polymer, and the polymer is neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. to 250 ° C. and a non-volatile neutralizing agent having a boiling point of 250 ° C. Preferred is an embodiment having a substituted acid group.
Hereinafter, a polymer having an acid group neutralized with a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point of 250 ° C. or more is also referred to as “specific polymer”.
<特定ポリマー>
 特定ポリマーは、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を有する。
 特定ポリマーは、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基とをそれぞれ1種のみ有していてもよく、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基とをそれぞれ2種以上有していてもよく、揮発性中和剤により中和された酸基を1種と非揮発性中和剤により中和された酸基を2種以上とを有していてもよく、揮発性中和剤により中和された酸基を2種以上と非揮発性中和剤により中和された酸基を1種とを有していてもよい。
<Specific polymer>
The specific polymer has an acid group neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point of 250 ° C. or more.
The specific polymer may have only one acid group neutralized by the volatile neutralizing agent and one acid group neutralized by the non-volatile neutralizing agent. The acid group may have two or more types of mixed acid groups and acid groups neutralized by the non-volatile neutralizing agent, and one type of acid group neutralized by the volatile neutralizing agent and the non-volatile group The acid group may have two or more kinds of acid groups neutralized by the neutral neutralizing agent, and the acid groups neutralized by the volatile neutralizing agent may be neutralized by the two or more kinds and the non-volatile neutralizing agent You may have 1 type of acid group.
(揮発性中和剤)
 揮発性中和剤は、沸点が25℃以上250℃以下の中和剤である。
 本開示において、「沸点」とは、常圧(101.325kPa)における沸点を指す。
 揮発性中和剤の沸点が25℃以上であると、特定粒子の分散安定性が向上し得る。
 揮発性中和剤の沸点が250℃以下であると、画像の精細さが向上し得る。また、画像の引っ掻き耐性も向上し得る。
 揮発性中和剤の沸点は、画像の精細さ及び画像の引っ掻き耐性がより向上し得るとの観点から、150℃以下であることが好ましく、100℃以下であることがより好ましい。
 すなわち、インクの分散安定性、画像の精細さ、及び画像の引っ掻き耐性の観点からは、揮発性中和剤の沸点は、25℃以上150℃以下であることが好ましく、25℃以上100℃以下であることがより好ましい。
(Volatile neutralizer)
The volatile neutralizing agent is a neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less.
In the present disclosure, “boiling point” refers to a boiling point at normal pressure (101.325 kPa).
When the boiling point of the volatile neutralizing agent is 25 ° C. or more, the dispersion stability of the specific particles may be improved.
When the boiling point of the volatile neutralizing agent is 250 ° C. or less, the definition of the image may be improved. In addition, scratch resistance of the image may also be improved.
The boiling point of the volatile neutralizing agent is preferably 150 ° C. or less, more preferably 100 ° C. or less, from the viewpoint that the definition of the image and the scratch resistance of the image can be further improved.
That is, the boiling point of the volatile neutralizing agent is preferably 25 ° C. or more and 150 ° C. or less, and more preferably 25 ° C. or more and 100 ° C. or less, from the viewpoint of ink dispersion stability, image definition, and image scratch resistance. It is more preferable that
 揮発性中和剤としては、特に制限はない。
 揮発性中和剤としては、アミン化合物及び第四級アンモニウムヒドロキシドからなる群より選ばれる少なくとも1種が挙げられる。
 これらの中でも、揮発性中和剤としては、加熱時の揮発性の観点から、アミン化合物が好ましい。
The volatile neutralizing agent is not particularly limited.
The volatile neutralizing agent includes at least one selected from the group consisting of an amine compound and a quaternary ammonium hydroxide.
Among these, as the volatile neutralizing agent, an amine compound is preferable from the viewpoint of volatility at the time of heating.
 アミン化合物としては、特に制限はない。
 アミン化合物の分子量は、特に制限されない。
 アミン化合物の分子量は、取り扱い性の観点から、20~1000であることが好ましく、30~750であることがより好ましく、50~500であることが更に好ましい。
The amine compound is not particularly limited.
The molecular weight of the amine compound is not particularly limited.
The molecular weight of the amine compound is preferably 20 to 1000, more preferably 30 to 750, and still more preferably 50 to 500, from the viewpoint of handleability.
 アミン化合物の価数は、特に制限はないが、特定粒子の分散安定性の観点から、1であることが好ましい。
 本開示において、「アミン化合物の価数」とは、アミン化合物中に含まれる窒素原子の数を意味する。
 アミン化合物の価数が1であると、インクの保存中に生じ得る、中和された酸基同士の架橋による特定粒子の凝集が生じないため、特定粒子の分散安定性が損なわれ難い。
The valence of the amine compound is not particularly limited, but is preferably 1 from the viewpoint of the dispersion stability of the specific particles.
In the present disclosure, the “valence of amine compound” means the number of nitrogen atoms contained in the amine compound.
When the amine compound has a valence of 1, aggregation of specific particles due to crosslinking of neutralized acid groups, which may occur during storage of the ink, does not occur, so that the dispersion stability of the specific particles is unlikely to be impaired.
 アミン化合物は、特定粒子の分散安定性の観点から、下記の式(1)で表される化合物、式(2)で表される化合物、及び式(3)で表される化合物からなる群より選ばれる少なくとも1種であることが好ましい。 The amine compound is selected from the group consisting of a compound represented by the following formula (1), a compound represented by the formula (2), and a compound represented by the formula (3) from the viewpoint of dispersion stability of specific particles: It is preferable that it is at least one selected.
  式(1):NR
  式(2):NR
  式(3):NR
Formula (1): NR 1 R 2 R 3
Formula (2): NR 4 R 5 H
Formula (3): NR 6 H 2
 式(1)中、R、R、及びRは、各々独立に、アルキル基を表す。R、R、及びRのうちいずれか2つが互いに結合して窒素原子を含む環を形成してもよい。
 式(2)中、R及びRは、各々独立に、アルキル基を表し、RとRとは、互いに結合して窒素原子を含む環を形成してもよい。
 式(3)中、Rは、アルキル基を表す。
In formula (1), R 1 , R 2 and R 3 each independently represent an alkyl group. Any two of R 1 , R 2 and R 3 may be bonded to each other to form a ring containing a nitrogen atom.
In formula (2), R 4 and R 5 each independently represent an alkyl group, and R 4 and R 5 may combine with each other to form a ring containing a nitrogen atom.
In formula (3), R 6 represents an alkyl group.
 式(1)~(3)において、R、R、R、R、R、及びRで表されるアルキル基は、直鎖アルキル基であってもよいし、分岐鎖アルキル基であってもよい。
 R、R、R、R、R、及びRで表されるアルキル基の炭素数は、各々独立に、1~12であることが好ましく、1~6であることがより好ましく、1~3であることが更に好ましい。
In formulas (1) to (3), the alkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 may be a linear alkyl group, or a branched alkyl group. It may be a group.
The carbon number of the alkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is preferably independently 1 to 12, more preferably 1 to 6 Preferably, it is more preferably 1 to 3.
 式(1)で表される化合物、式(2)で表される化合物、及び式(3)で表される化合物からなる群より選ばれる少なくとも1種であるアミン化合物は、塩基性が高いため、中和された酸基が安定化する。これにより、特定粒子の分散安定性をより向上し得る。
 これらの中でも、アミン化合物としては、上記と同様の観点から、式(1)で表される化合物であることが特に好ましい。
At least one amine compound selected from the group consisting of a compound represented by Formula (1), a compound represented by Formula (2), and a compound represented by Formula (3) has high basicity. , The neutralized acid group is stabilized. This can further improve the dispersion stability of the specific particles.
Among these, as an amine compound, it is especially preferable that it is a compound represented by Formula (1) from a viewpoint similar to the above.
 揮発性中和剤であるアミン化合物の例を表1及び2に示す。但し、揮発性中和剤であるアミン化合物は、これらの例には限定されない。 Examples of amine compounds which are volatile neutralizing agents are shown in Tables 1 and 2. However, the amine compound which is a volatile neutralizing agent is not limited to these examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第四級アンモニウムヒドロキシドとしては、特に制限はない。
 揮発性中和剤である第四級アンモニウムヒドロキシドの例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド等が挙げられる。
The quaternary ammonium hydroxide is not particularly limited.
Examples of quaternary ammonium hydroxide which is a volatile neutralizing agent include tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide, tetrabutyl ammonium hydroxide, benzyltrimethyl ammonium hydroxide and the like. .
(非揮発性中和剤)
 非揮発性中和剤は、沸点が250℃を超える中和剤である。
 非揮発性中和剤の沸点が250℃を超えることは、揮発性中和剤と区別するための規定である。
 非揮発性中和剤の沸点は、既述の揮発性中和剤との併用によって、特定粒子の分散安定性、画像の精細さ、及び画像の引っ掻き耐性がより効果的に向上し得るとの観点から、1000℃以上であることが好ましく、1250℃以上であることがより好ましい。
 また、非揮発性中和剤の沸点の上限は、特に制限されず、例えば、1500℃以下とすることができる。
(Non-volatile neutralizer)
A non-volatile neutralizing agent is one having a boiling point above 250 ° C.
The boiling point of the non-volatile neutralizing agent exceeding 250 ° C. is a rule to distinguish it from the volatile neutralizing agent.
The boiling point of the non-volatile neutralizing agent can be more effectively improved in the dispersion stability of the specific particle, the definition of the image, and the scratch resistance of the image by the combination with the above-mentioned volatile neutralizing agent. From the viewpoint, the temperature is preferably 1000 ° C. or more, and more preferably 1250 ° C. or more.
Further, the upper limit of the boiling point of the non-volatile neutralizing agent is not particularly limited, and can be, for example, 1500 ° C. or less.
 非揮発性中和剤としては、特に制限はない。
 非揮発性中和剤としては、例えば、金属の水酸化物が挙げられる。
 これらの中でも、非揮発性中和剤としては、入手容易性の観点から、アルカリ金属の水酸化物が好ましい。
 また、アルカリ金属の水酸化物は、塩基性が高いため、中和された酸基が安定化し易く、特定粒子の分散安定性がより向上し得る点においても好ましい。
 さらに、アルカリ金属の水酸化物は、価数が1であるため、非揮発性中和剤としてアルカリ金属の水酸化物を用いたインクでは、保存中に生じ得る、中和された酸基同士の架橋による特定粒子の凝集が生じず、特定粒子の分散安定性が損なわれ難い。
The non-volatile neutralizing agent is not particularly limited.
Non-volatile neutralizing agents include, for example, metal hydroxides.
Among these, alkali metal hydroxides are preferable as the non-volatile neutralizing agent from the viewpoint of easy availability.
In addition, since alkali metal hydroxides have high basicity, the neutralized acid groups can be easily stabilized, and the dispersion stability of the specific particles can be further improved.
Furthermore, since the alkali metal hydroxide has a valence of 1, in the ink using the alkali metal hydroxide as the non-volatile neutralizing agent, neutralized acid groups which can be generated during storage The aggregation of specific particles does not occur due to the cross-linking, and the dispersion stability of the specific particles is less likely to be impaired.
 アルカリ金属の水酸化物の具体例としては、水酸化ナトリウム(沸点:1388℃)、水酸化カリウム(沸点:1327℃)等が挙げられる。 Specific examples of the alkali metal hydroxide include sodium hydroxide (boiling point: 1388 ° C.), potassium hydroxide (boiling point: 1327 ° C.) and the like.
-中和された酸基-
 本開示において、「中和された酸基」とは、塩の形態となっている酸基を指す。「中和された酸基」は、インク中ではイオンの形態で存在し得る。
 中和された酸基としては、カルボキシ基の塩、スルホ基の塩、リン酸基の塩、硫酸基の塩、ホスホン酸基の塩等が挙げられる。
 これらの中でも、中和された酸基としては、特定粒子の分散安定性の観点から、カルボキシ基の塩が好ましい。
-Neutralized acid group-
In the present disclosure, "neutralized acid group" refers to an acid group in the form of a salt. The "neutralized acid group" may be present in the ink in the form of ions.
Examples of the neutralized acid group include salts of carboxy group, salts of sulfo group, salts of phosphoric acid group, salts of sulfuric acid group, salts of phosphonic acid group and the like.
Among these, as a neutralized acid group, a salt of a carboxy group is preferable from the viewpoint of dispersion stability of a specific particle.
 カルボキシ基の塩、スルホ基の塩、リン酸基の塩、硫酸基の塩、ホスホン酸基の塩等における「塩」は、中和剤(即ち、揮発性中和剤及び非揮発性中和剤)の種類によって異なる。
 例えば、揮発性中和剤としてのアミン化合物により中和された酸基の場合、前述の「塩」は、アミン塩である。
 例えば、非揮発性中和剤としてのアルカリ金属の水酸化物により中和された酸基の場合、前述の「塩」は、アルカリ金属塩である。
“Salts” in salts of carboxy group, salts of sulfo group, salts of phosphoric acid group, salts of sulfuric acid group, salts of phosphonic acid group etc. are neutralizing agents (ie volatile neutralizing agents and non-volatile neutralizing agents Depends on the type of agent).
For example, in the case of an acid group neutralized by an amine compound as a volatile neutralizing agent, the aforementioned "salt" is an amine salt.
For example, in the case of an acid group neutralized with an alkali metal hydroxide as a non-volatile neutralizing agent, the aforementioned "salt" is an alkali metal salt.
-酸基の中和度-
 特定粒子に含まれる酸基の中和度は、50%~100%であることが好ましい。
 本開示において、「酸基の中和度」とは、特定粒子が含む酸基全体における、中和された酸基のモル数と中和されていない酸基のモル数との合計に対する中和された酸基のモル数の割合〔中和された酸基のモル数/(中和された酸基のモル数+中和されていない酸基のモル数)〕を意味する。
 酸基の中和度が50%以上であると、特定粒子の分散安定性がより向上する。
 酸基の中和度は、50%~95%であることが好ましく、80%~95%であることがより好ましく、90%~95%であることが更に好ましい。
 中和された酸基(即ち、塩の形態である酸基)は、塩基性を示す。酸基の中和度が95%以下であると、特定粒子に含まれる特定ポリマーが有し得るウレタン基及び/又はウレア基の加水分解をより抑制できる。
-Degree of neutralization of acid groups-
The degree of neutralization of the acid groups contained in the specific particles is preferably 50% to 100%.
In the present disclosure, the “degree of neutralization of acid groups” means the total of the number of moles of neutralized acid groups and the number of moles of non-neutralized acid groups in the entire acid groups contained in a specific particle. The ratio of the number of moles of the acid group [mole number of neutralized acid group / (mole number of neutralized acid group + mole number of non-neutralized acid group)] is meant.
When the degree of neutralization of the acid groups is 50% or more, the dispersion stability of the specific particles is further improved.
The neutralization degree of the acid group is preferably 50% to 95%, more preferably 80% to 95%, and still more preferably 90% to 95%.
A neutralized acid group (ie, an acid group in the form of a salt) exhibits basicity. When the degree of neutralization of the acid group is 95% or less, the hydrolysis of the urethane group and / or the urea group which can be possessed by the specific polymer contained in the specific particle can be further suppressed.
 特定粒子に含まれる酸基の中和度の測定方法は、特に制限されず、中和滴定、構造解析等の公知の方法によって測定することができる。以下に、測定方法の一例を示す。 The method of measuring the degree of neutralization of the acid group contained in the specific particles is not particularly limited, and can be measured by a known method such as neutralization titration or structural analysis. Below, an example of a measuring method is shown.
<<中和度の測定方法>>
 本開示において、特定粒子に含まれる酸基の中和度(%)は、例えば、以下に示す電位差滴定法により測定することができる。測定装置としては、特に制限されず、例えば、京都電子工業(株)の電位差自動滴定装置(型番:AT-510)を好適に用いることができる。
 以下では、酸基がカルボキシ基(-COOH)である場合を例に挙げて説明する。なお、酸基がカルボキシ基以外の基(スルホ基、リン酸基等)である場合には、以下の記載において、カルボキシ基をカルボキシ基以外の基に読み替えることにより、中和度を測定することができる。
<< Method of measuring neutralization degree >>
In the present disclosure, the degree of neutralization (%) of the acid group contained in the specific particle can be measured, for example, by the potentiometric titration method shown below. The measuring apparatus is not particularly limited, and, for example, a potentiometric automatic titrator (model number: AT-510) manufactured by Kyoto Denshi Kogyo Co., Ltd. can be suitably used.
Hereinafter, the case where the acid group is a carboxy group (—COOH) will be described as an example. When the acid group is a group other than a carboxy group (such as a sulfo group or a phosphate group), in the following description, the degree of neutralization may be measured by replacing the carboxy group with a group other than a carboxy group. Can.
 まず、酸基の中和度の測定対象であるインクから、中和されたカルボキシ基を有する特定粒子及び水以外の成分を取り除き、中和されたカルボキシ基を有する特定粒子の水分散物を準備する。
 準備した水分散物50gに対し、80000rpm(revolutions per minute;以下、同じ)で40分の条件の遠心分離を施す。遠心分離によって生じた上澄み液を除去し、沈殿物(即ち、特定粒子)を回収する。
 容器1に、回収した特定粒子を約0.5g秤量し、秤量値W1(g)を記録する。次いで、テトラヒドロフラン(THF)54mL及び蒸留水6mLの混合液を添加し、秤量した特定粒子を希釈することにより中和度測定用試料1を得る。
 得られた中和度測定用試料1に対し、滴定液として0.1N(=0.1mol/L)水酸化ナトリウム水溶液を用いて滴定を行い、当量点までに要した滴定液量をF1(mL)として記録する。滴定において複数の当量点が得られた場合は、最大滴定量での当量点の値を用いる。ここで、「最大滴定量F1(mL)」は、特定粒子に含まれる酸基のうち、中和されていない酸基(即ち、-COOH)の量に相当する。
 また、容器2に、回収した特定粒子を約0.5g秤量し、秤量値W2(g)を記録する。次いで、酢酸60mLを添加し、秤量した特定粒子を希釈することにより中和度測定用試料2を得る。
 得られた中和度測定用試料2に対し、滴定液として0.1N(=0.1mol/L)過塩素酸酢酸溶液を用いて滴定を行い、当量点までに要した滴定液量をF2(mL)として記録する。滴定において複数の当量点が得られた場合は、最大滴定量での当量点の値を用いる。ここで、「最大滴定量F2(mL)」は、特定粒子に含まれる酸基のうち、中和されている酸基(即ち、-COONa)の量に相当する。
 「F1(mL)」及び「F2(mL)」の測定値に基づき、下記の式に従って、酸基であるカルボキシ基の中和度(%)を求める。
 F1(mL)×水酸化ナトリウム水溶液の規定度(0.1mol/L)/W1(g)+F2(mL)×過塩素酸酢酸溶液の規定度(0.1mol/L)/W2(g) = 特定粒子1g当たりに含まれる、中和されていないカルボキシ基と中和されたカルボキシ基との総量(mmol/g)・・・(1)
 F2(mL)×過塩素酸酢酸溶液の規定度(0.1mol/L)/W2(g) = 特定粒子1g当たりに含まれるカルボキシ基のうち、中和されたカルボキシ基の量(mmol/g)・・・(2)
 中和度(%) = (2)/(1)×100
First, an aqueous dispersion of specific particles having a neutralized carboxy group is prepared by removing specific particles having a neutralized carboxy group and components other than water from the ink for which the degree of neutralization of the acid group is to be measured. Do.
For 50 g of the prepared aqueous dispersion, centrifugation at 80,000 rpm (revolutions per minute; the same applies hereinafter) for 40 minutes is applied. The supernatant produced by centrifugation is removed, and the precipitate (ie, specific particles) is recovered.
About 0.5 g of the specific particles recovered is weighed into a container 1 and a weighing value W1 (g) is recorded. Next, a mixture of 54 mL of tetrahydrofuran (THF) and 6 mL of distilled water is added, and the weighed specific particles are diluted to obtain a sample for neutralization degree measurement 1.
The obtained sample for neutralization degree measurement 1 was titrated with a 0.1 N (= 0.1 mol / L) sodium hydroxide aqueous solution as a titrant, and the amount of the titrant required until the equivalent point was F1 ( Record as mL). If multiple equivalence points are obtained in titration, use the value of the equivalence point at the maximum titer. Here, the “maximum titer F1 (mL)” corresponds to the amount of non-neutralized acid groups (ie, —COOH) among the acid groups contained in the specific particles.
In addition, about 0.5 g of the collected specific particles is weighed into the container 2 and the weighing value W2 (g) is recorded. Next, 60 mL of acetic acid is added, and the weighed specific particles are diluted to obtain a sample for neutralization degree measurement 2.
The obtained sample 2 for neutralization degree measurement was titrated using a 0.1 N (= 0.1 mol / L) perchloric acid acetic acid solution as a titrant, and the amount of the titrant required until the equivalent point was F2 Record as (mL). If multiple equivalence points are obtained in titration, use the value of the equivalence point at the maximum titer. Here, the “maximum titer F2 (mL)” corresponds to the amount of acid groups that are neutralized (ie, —COONa) among the acid groups contained in the specific particles.
Based on the measured values of "F1 (mL)" and "F2 (mL)", the degree of neutralization (%) of the carboxy group which is an acid group is determined according to the following formula.
F1 (mL) × normality of aqueous sodium hydroxide solution (0.1 mol / L) / W1 (g) + F2 (mL) × normality of perchloric acid solution (0.1 mol / L) / W2 (g) = Total amount (mmol / g) of non-neutralized carboxy group and neutralized carboxy group contained per 1 g of the specific particle (1)
F2 (mL) × normality of perchloric acid acetic acid solution (0.1 mol / L) / W 2 (g) = amount of carboxy group neutralized (mmol / g) among carboxy groups contained per 1 g of specific particles ) ... (2)
Neutralization degree (%) = (2) / (1) x 100
 特定粒子1g中の酸基のミリモル数(例えば、カルボキシ基及びカルボキシ基の塩の合計ミリモル数)を、特定粒子の酸価とした場合、特定粒子の酸価は、特定粒子の分散安定性の観点から、0.10mmol/g~2.00mmol/gであることが好ましく、0.30mmol/g~1.50mmol/gであることがより好ましい。 When the millimole number of the acid group in 1 g of the specific particle (for example, the total mmol number of the carboxy group and the salt of the carboxy group) is the acid value of the specific particle, the acid value of the specific particle is the dispersion stability of the specific particle From the viewpoint, it is preferably 0.10 mmol / g to 2.00 mmol / g, and more preferably 0.30 mmol / g to 1.50 mmol / g.
-特定粒子に含まれる、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基とのモル比-
 特定粒子に含まれる、非揮発性中和剤により中和された酸基に対する揮発性中和剤により中和された酸基のモル比(揮発性中和剤により中和された酸基のモル数/非揮発性中和剤により中和された酸基のモル数)は、特に制限されない。
 特定粒子に含まれる、非揮発性中和剤により中和された酸基に対する揮発性中和剤により中和された酸基のモル比は、例えば、40/60~95/5の範囲であることが好ましく、画像の精細さ及び画像の引っ掻き耐性をより向上させる観点からは、60/40~95/5の範囲であることがより好ましく、画像の精細さ及び画像の引っ掻き耐性に加えて、特定粒子の分散安定性をより向上させる観点からは、60/40~90/10の範囲であることが更に好ましい。
-Molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent contained in the specific particle-
Molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent contained in the specific particle (mol of the acid group neutralized by the volatile neutralizing agent The number / number of moles of acid group neutralized by the non-volatile neutralizing agent is not particularly limited.
The molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the nonvolatile neutralizing agent contained in the specific particle is, for example, in the range of 40/60 to 95/5. From the viewpoint of further improving the image definition and the image scratch resistance, it is more preferably in the range of 60/40 to 95/5, and in addition to the image definition and the image scratch resistance, From the viewpoint of further improving the dispersion stability of the specific particles, the range of 60/40 to 90/10 is more preferable.
 特定粒子に含まれる、非揮発性中和剤により中和された酸基に対する揮発性中和剤により中和された酸基のモル比(以下、単に「酸基のモル比」ともいう)の測定方法は、特に制限されず、中和滴定、構造解析等の公知の方法によって測定することができる。以下に、測定方法の一例を示す。 The molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent contained in the specific particle (hereinafter, also simply referred to as “molar ratio of acid group”) The measuring method is not particularly limited, and can be measured by known methods such as neutralization titration and structural analysis. Below, an example of a measuring method is shown.
<<中和された酸基のモル比の測定方法>>
 本開示において、特定粒子に含まれる、非揮発性中和剤により中和された酸基に対する揮発性中和剤により中和された酸基のモル比は、例えば、以下に示す電位差滴定法により測定することができる。測定装置としては、特に制限はなく、例えば、京都電子工業(株)の電位差自動滴定装置(型番:AT-510)を好適に用いることができる。
<< Method of measuring the molar ratio of neutralized acid groups >>
In the present disclosure, the molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent contained in the specific particle is, for example, the potentiometric titration method described below. It can be measured. The measuring apparatus is not particularly limited, and, for example, a potentiometric automatic titrator (model number: AT-510) manufactured by Kyoto Denshi Kogyo Co., Ltd. can be suitably used.
 まず、測定対象であるインクから、特定粒子及び水以外の成分を取り除き、特定粒子の水分散物を準備する。
 準備した水分散物50gに対し、80000rpmで40分の条件の遠心分離を施す。遠心分離によって生じた上澄み液を除去し、沈殿物(特定粒子)を回収する。
 容器1に、回収した特定粒子を約0.5g秤量し、秤量値W1(g)を記録する。次いで、酢酸60mLを添加し、秤量した特定粒子を希釈することにより中和度測定用試料1を得る。
 得られた中和度測定用試料1に対し、滴定液として0.1N(=0.1mol/L)過塩素酸酢酸溶液を用いて滴定を行い、当量点までに要した滴定液量をF1(mL)として記録する。さらに、滴定を続け、第二の当量点までに要した滴定液量をF2(mL)として記録する。
 ここで、「F1(mL)」は、強塩基である非揮発性中和剤により中和された酸基のモル数、「(F2-F1)(mL)」は、弱塩基である揮発性中和剤により中和された酸基のモル数に相当する。
First, specific particles and components other than water are removed from the ink to be measured to prepare an aqueous dispersion of the specific particles.
Centrifugation under conditions of 80,000 rpm for 40 minutes is applied to 50 g of the prepared aqueous dispersion. The supernatant produced by centrifugation is removed, and the precipitate (specific particles) is recovered.
About 0.5 g of the specific particles recovered is weighed into a container 1 and a weighing value W1 (g) is recorded. Next, 60 mL of acetic acid is added, and the weighed specific particles are diluted to obtain a sample for neutralization degree measurement 1.
The obtained sample for neutralization degree measurement 1 was titrated using a 0.1 N (= 0.1 mol / L) perchloric acid acetic acid solution as a titrant, and the amount of the titrant required until the equivalent point was F1. Record as (mL). Further continue the titration and record the volume of titrant required to the second equivalence point as F2 (mL).
Here, "F1 (mL)" is the number of moles of the acid group neutralized by the non-volatile neutralizing agent which is a strong base, and "(F2-F1) (mL)" is a volatile base which is a weak base It corresponds to the number of moles of acid groups neutralized by the neutralizing agent.
 インクが揮発性中和剤及び非揮発性中和剤により中和された酸基を含む粒子を含有することは、上述の中和滴定、ガスクロマトグラフ分析、元素分析等を組み合わせることにより確認することができる。 Confirming that the ink contains particles containing an acid group neutralized by a volatile neutralizing agent and a non-volatile neutralizing agent by combining the above-mentioned neutralization titration, gas chromatography analysis, elemental analysis and the like. Can.
(特定ポリマーの種類)
 特定ポリマーの種類としては、特に制限はない。
 特定ポリマーは、ウレタンポリマー、ウレアポリマー、又は(メタ)アクリルポリマーであることが好ましい。
(Type of specific polymer)
There is no particular limitation on the type of the specific polymer.
The specific polymer is preferably a urethane polymer, a urea polymer, or a (meth) acrylic polymer.
 本開示において、ウレタンポリマーとは、ウレタン基を含むポリマー(但し、後述の(メタ)アクリルポリマーに該当するポリマーを除く)を意味する。
 本開示において、ウレアポリマーとは、ウレア基を含むポリマー(但し、上述のウレタンポリマーに該当するポリマー、及び、後述の(メタ)アクリルポリマーに該当するポリマーを除く)を意味する。
 本開示において、(メタ)アクリルポリマーとは、1種の(メタ)アクリレートの単独重合体、2種以上の(メタ)アクリレートの共重合体、又は、1種以上の(メタ)アクリレートと1種以上の他のモノマーとの共重合体を意味する。
 ウレタンポリマーの概念には、ウレタン基とウレア基との両方を含むポリマー(所謂、ウレタンウレアポリマー)も包含される。
 (メタ)アクリルポリマーの概念には、ウレタン基及びウレア基の少なくとも一方を含む(メタ)アクリルポリマーも包含される。
In the present disclosure, the urethane polymer means a polymer containing a urethane group (except for the polymer corresponding to the (meth) acrylic polymer described later).
In the present disclosure, the urea polymer means a polymer containing a urea group (except a polymer corresponding to the above-mentioned urethane polymer and a polymer corresponding to the below-mentioned (meth) acrylic polymer).
In the present disclosure, a (meth) acrylic polymer refers to a homopolymer of one (meth) acrylate, a copolymer of two or more (meth) acrylates, or one or more (meth) acrylates It means a copolymer with the above other monomers.
The concept of urethane polymer also includes polymers containing both urethane groups and urea groups (so-called urethane urea polymers).
The term "(meth) acrylic polymer" also encompasses (meth) acrylic polymers containing at least one of a urethane group and a urea group.
 特定ポリマーとしては、架橋構造を有しない鎖状のポリマー(以下、「特定鎖状ポリマー」ともいう)であってもよいし、架橋構造(例えば、三次元架橋構造)を有するポリマー(以下、「特定架橋ポリマー」ともいう)であってもよく、好ましくは、特定鎖状ポリマーである。
 特定鎖状ポリマーは、主鎖中に、脂肪族環、芳香族環、複素環等の環状構造を含んでいてもよい。
 特定架橋ポリマーが有し得る三次元架橋構造については、国際公開第2016/052053号に記載の三次元架橋構造を参照してもよい。
The specific polymer may be a chain-like polymer having no crosslinked structure (hereinafter, also referred to as “specific chain-like polymer”), or a polymer having a crosslinked structure (for example, a three-dimensional crosslinked structure) It may also be referred to as “specifically crosslinked polymer”, and is preferably a specific linear polymer.
The specific chain polymer may contain cyclic structures such as aliphatic rings, aromatic rings, and heterocyclic rings in the main chain.
For the three-dimensional crosslinked structure that the specific crosslinked polymer may have, reference may be made to the three-dimensional crosslinked structure described in WO 2016/052052.
-特定鎖状ポリマー-
 特定鎖状ポリマーは、(1)2官能のイソシアネート化合物と、酸基及び2つの活性水素基を有する化合物と、の反応生成物の中和物であるか、(2)2官能のイソシアネート化合物と、酸基及び2つの活性水素基を有する化合物と、その他の化合物と、の反応生成物の中和物であるか、(3)2官能のイソシアネート化合物と、酸基及び2つの活性水素基を有する化合物と、2つの活性水素基を有し、かつ、酸基を有しない化合物と、の反応生成物の中和物であるか、又は、(4)2官能のイソシアネート化合物と、酸基及び2つの活性水素基を有する化合物と、2つの活性水素基を有し、かつ、酸基を有しない化合物と、その他の化合物と、の反応生成物の中和物であることが好ましい。
 本開示における「中和物」には、部分中和物も包含される。
-Specific linear polymer-
The specific chain polymer is a neutralized product of the reaction product of (1) a bifunctional isocyanate compound and a compound having an acid group and two active hydrogen groups, or (2) a bifunctional isocyanate compound Or a neutralized product of a reaction product of a compound having an acid group and two active hydrogen groups and another compound, or (3) a bifunctional isocyanate compound, an acid group and two active hydrogen groups Or a compound having two active hydrogen groups and a compound having no acid group, which is a neutralized product of a reaction product of (4) a bifunctional isocyanate compound, an acid group, It is preferable to be a neutralized product of a reaction product of a compound having two active hydrogen groups, a compound having two active hydrogen groups and no acid group, and another compound.
The "neutralized substance" in the present disclosure also includes partially neutralized substances.
 2つの活性水素基を有する化合物としては、ジオール化合物、ジアミン化合物、及びジチオール化合物が挙げられる。
 例えば、2官能のイソシアネート化合物とジオール化合物との反応により、ウレタン基が形成される。
 また、2官能のイソシアネート化合物とジアミン化合物との反応により、ウレア基が形成される。
As a compound which has two active hydrogen groups, a diol compound, a diamine compound, and a dithiol compound are mentioned.
For example, a urethane group is formed by the reaction of a difunctional isocyanate compound and a diol compound.
Further, a urea group is formed by the reaction of a bifunctional isocyanate compound and a diamine compound.
 また、上記その他の化合物としては、後述する重合性基導入用化合物のうち、活性水素基を1つのみ含む化合物、後述する重合性基を導入したイソシアネート化合物のうち、イソシアネート基を1つのみ含む化合物、後述する酸基導入用化合物のうち、活性水素基を1つのみ含む化合物、後述する親水性基を導入したイソシアネート化合物のうち、イソシアネート基を1つのみ含む化合物等が挙げられる。 In addition, among the above-mentioned compounds for introducing a polymerizable group, compounds containing only one active hydrogen group among the compounds for introducing a polymerizable group described later, among isocyanate compounds having introduced a polymerizable group described later, contain only an isocyanate group. Among the compounds and compounds for introducing an acid group described later, compounds containing only one active hydrogen group, compounds containing only one isocyanate group among isocyanate compounds having a hydrophilic group described later, and the like can be mentioned.
 特定鎖状ポリマーを形成するための2官能のイソシアネート化合物としては、以下の化合物(1-1)~(1-20)が挙げられる。 The following compounds (1-1) to (1-20) may be mentioned as the bifunctional isocyanate compound for forming the specific chain polymer.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 特定鎖状ポリマーを形成するための、2つの活性水素基を有する化合物としては、以下の化合物(2-1)~(2-24)が挙げられる。 Examples of the compound having two active hydrogen groups for forming a specific chain polymer include the following compounds (2-1) to (2-24).
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 また、特定鎖状ポリマーを形成するための、2つの活性水素基を有する化合物としては、後述する重合性基導入用化合物のうち、活性水素基を2つ含む化合物、後述する酸基導入用化合物のうち、活性水素基を2つ含む化合物等も挙げられる。 Moreover, as a compound which has two active hydrogen groups for forming a specific chain | strand-shaped polymer, the compound which contains two active hydrogen groups among the compounds for polymeric group introduction | transduction mentioned later, and the compound for acid group introduction mentioned later And compounds containing two active hydrogen groups.
 特定鎖状ポリマーを形成するための、酸基及び活性水素基を有する化合物としては、特に制限はない。
 酸基としては、カルボキシ基、カルボキシ基の塩、スルホ基、スルホ基の塩、リン酸基、リン酸基の塩、ホスホン酸基、ホスホン酸基の塩、硫酸基、硫酸基の塩等が挙げられる。「塩」としては、アルカリ金属塩が好ましく、ナトリウム塩又はカリウム塩がより好ましい。
 これらの中でも、酸基としては、インクの分散安定性の観点から、カルボキシ基、カルボキシ基の塩、スルホ基、スルホ基の塩、リン酸基、及びリン酸基の塩からなる群より選ばれる少なくとも1種が好ましく、カルボキシ基及びカルボキシ基の塩から選ばれる少なくとも1種がより好ましい。
There is no particular limitation on the compound having an acid group and an active hydrogen group to form a specific chain polymer.
As the acid group, carboxy group, salt of carboxy group, sulfo group, salt of sulfo group, phosphoric acid group, salt of phosphoric acid group, phosphonic acid group, salt of phosphonic acid group, sulfuric acid group, salt of sulfuric acid group, etc. It can be mentioned. As the "salt", an alkali metal salt is preferable, and a sodium salt or a potassium salt is more preferable.
Among these, from the viewpoint of dispersion stability of the ink, the acid group is selected from the group consisting of a carboxy group, a salt of a carboxy group, a sulfo group, a salt of a sulfo group, a phosphate group, and a salt of a phosphate group. At least one is preferable, and at least one selected from carboxy group and salts of carboxy group is more preferable.
 活性水素基としては、ヒドロキシ基、アミノ基(1級アミノ基及び2級アミノ基)、メルカプト基等が挙げられる。
 酸基及び活性水素基を有する化合物は、酸基及び活性水素基をそれぞれ1種のみ有してもよく、酸基及び活性水素基のどちらか一方を1種有し、他方を2種以上有していてもよく、酸基及び活性水素基の両方を2種以上有していてもよい。
As an active hydrogen group, a hydroxyl group, an amino group (a primary amino group and a secondary amino group), a mercapto group etc. are mentioned.
The compound having an acid group and an active hydrogen group may have only one kind of acid group and one active hydrogen group, and has one of either an acid group or an active hydrogen group, and two or more of the other. And may have two or more of both an acid group and an active hydrogen group.
 酸基及び活性水素基を有する化合物としては、α-アミノ酸(リシン、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、及びバリン)等のアミノ酸、リンゴ酸、タウリン、エタノールアミンリン酸(EAP)などが挙げられる。 As a compound having an acid group and an active hydrogen group, α-amino acids (lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine Amino acids such as tryptophan, tyrosine and valine), malic acid, taurine, ethanolamine phosphate (EAP) and the like.
 酸基及び活性水素基を有する化合物としては、上記の化合物以外にも、以下の具体例が挙げられる。 As a compound which has an acidic radical and an active hydrogen group, the following specific examples other than said compound are mentioned.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
-特定架橋ポリマー-
 特定架橋ポリマーは、(1)3官能以上のイソシアネート化合物と、酸基及び活性水素基を有する化合物と2官能のイソシアネート化合物との反応生成物A1と、水と、の反応生成物A2の中和物であるか、又は、(2)3官能以上のイソシアネート化合物と、酸基及び活性水素基を有する化合物と2官能のイソシアネート化合物との反応生成物B1と、その他の化合物と、水と、の反応生成物B2の中和物であることが好ましい。
-Specific cross-linked polymer-
The specific cross-linked polymer is (1) a neutralization product of a reaction product A2 of water and a reaction product A1 of a compound having an acid group and an active hydrogen group with a compound having an acid group and an active hydrogen group Or (2) a reaction product of a trifunctional or higher functional isocyanate compound, a compound having an acid group and an active hydrogen group, and a bifunctional isocyanate compound, and another compound and water. It is preferable that it is a neutralized product of the reaction product B2.
 上記その他の化合物としては、後述する重合性基導入用化合物のうち、活性水素基を1つのみ含む化合物、後述する重合性基を導入したイソシアネート化合物のうち、イソシアネート基を1つのみ含む化合物、後述する酸基導入用化合物のうち、活性水素基を1つのみ含む化合物、後述する親水性基を導入したイソシアネート化合物のうち、イソシアネート基を1つのみ含む化合物等が挙げられる。 Examples of the other compounds include a compound containing only one active hydrogen group among the compounds for introducing a polymerizable group described later, a compound containing only one isocyanate group among the isocyanate compounds having introduced a polymerizable group described later, Among the compounds for introducing an acid group to be described later, a compound containing only one active hydrogen group, a compound containing only one isocyanate group among isocyanate compounds having a hydrophilic group described later, and the like can be mentioned.
 特定粒子が特定架橋ポリマーを含む場合、特定粒子は、特定架橋ポリマーからなるシェルと、コアと、を含むマイクロカプセル(以下、「MC」ともいう)を含むことが好ましい。 When the specific particle contains the specific crosslinked polymer, the specific particle preferably contains microcapsules (hereinafter also referred to as “MC”) including a shell made of the specific crosslinked polymer and a core.
 特定架橋ポリマーを形成するための、2つ以上の活性水素基を有する化合物としては、既述の特定鎖状ポリマーを形成するための、2つの活性水素基を有する化合物と同様に、ジオール化合物、ジアミン化合物、及びジチオール化合物が挙げられる。
 また、特定架橋ポリマーを形成するための、2つ以上の活性水素基を有する化合物としては、3官能以上のポリオール化合物、3官能以上のポリアミン化合物、及び3官能以上のポリチオール化合物も挙げられる。
Examples of compounds having two or more active hydrogen groups for forming a specific crosslinked polymer include diol compounds, as well as compounds having two active hydrogen groups for forming the specific linear polymer described above. Examples include diamine compounds and dithiol compounds.
Moreover, as a compound which has a 2 or more active hydrogen group for forming a specific crosslinked polymer, the trifunctional or more than trifunctional polyol compound, the trifunctional or more than trifunctional polyamine compound, and the trifunctional or more polythiol compound are also mentioned.
 特定架橋ポリマーを形成するための、酸基及び活性水素基を有する化合物としては、既述の特定鎖状ポリマーを形成するための、酸基及び活性水素基を有する化合物と同様に、α-アミノ酸(リシン、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、及びバリン)等のアミノ酸、リンゴ酸、タウリン、エタノールアミンリン酸(EAP)、ジメチロールプロピオン酸(DMPA)、2,2-ビス(ヒドロキシメチル)酪酸(DMBA)などが挙げられる。 Examples of the compound having an acid group and an active hydrogen group for forming a specific crosslinked polymer include α-amino acids as in the compounds having an acid group and an active hydrogen group for forming the specific linear polymer described above. Amino acids such as (lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine), malic acid, Examples include taurine, ethanolamine phosphate (EAP), dimethylol propionic acid (DMPA), 2,2-bis (hydroxymethyl) butyric acid (DMBA) and the like.
 特定架橋ポリマーを形成するための3官能以上のイソシアネート化合物は、2官能のイソシアネート化合物からなる群から選択される少なくとも1種と、3つ以上の活性水素基を有する化合物(例えば、3官能以上のポリオール化合物、3官能以上のポリアミン化合物、及び3官能以上のポリチオール化合物)からなる群から選択される少なくとも1種と、の反応生成物であることが好ましい。
 3つ以上の活性水素基を有する化合物と反応させる2官能のイソシアネート化合物のモル数(所謂、分子数)は、3つ以上の活性水素基を有する化合物における活性水素基のモル数(所謂、活性水素基の当量数)に対し、0.6倍以上が好ましく、0.6倍~5倍がより好ましく、0.6倍~3倍が更に好ましく、0.8倍~2倍が特に好ましい。
The trifunctional or higher functional isocyanate compound for forming the specific crosslinked polymer is a compound having at least one selected from the group consisting of bifunctional isocyanate compounds and three or more active hydrogen groups (for example, trifunctional or higher functional compounds) It is preferable that it is a reaction product with at least 1 sort (s) selected from the group which consists of a polyol compound, a trifunctional or more than trifunctional polyamine compound, and a trifunctional or more than trifunctional polythiol compound).
The number of moles of bifunctional isocyanate compound (so-called number of molecules) to be reacted with a compound having three or more active hydrogen groups is the number of moles of active hydrogen groups in a compound having three or more active hydrogen groups (so-called activity) The number of equivalents of the hydrogen group is preferably 0.6 times or more, more preferably 0.6 times to 5 times, still more preferably 0.6 times to 3 times, and particularly preferably 0.8 times to 2 times.
 3官能以上のイソシアネート化合物を形成するための2官能のイソシアネート化合物としては、既述の特定鎖状ポリマーを形成するための2官能のイソシアネート化合物と同様のものが挙げられる。 As a bifunctional isocyanate compound for forming the trifunctional or more than trifunctional isocyanate compound, the thing similar to the bifunctional isocyanate compound for forming the specific chain | strand-shaped polymer as stated above is mentioned.
 3官能以上のイソシアネート化合物を形成するための、3つ以上の活性水素基を有する化合物としては、下記(H-1)~(H-13)で表される構造の化合物が挙げられる。なお、下記の構造において、nは、1~100から選択される整数を表す。 Examples of the compound having three or more active hydrogen groups for forming a trifunctional or higher functional isocyanate compound include compounds having structures represented by the following (H-1) to (H-13). In the following structure, n represents an integer selected from 1 to 100.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 特定架橋ポリマーの形成に用いられる3官能以上のイソシアネート化合物としては、アダクト型の3官能以上のイソシアネート化合物、イソシアヌレート型の3官能以上のイソシアネート化合物、ビウレット型の3官能以上のイソシアネート化合物、等が挙げられる。
 アダクト型の3官能以上のイソシアネート化合物の市販品としては、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、P49-75S、D-110N、D-120N、D-140N、D-160N(以上、三井化学(株))、デスモジュール(登録商標)L75、UL57SP(住化バイエルウレタン(株))、コロネート(登録商標)HL、HX、L(日本ウレタンポリマー(株))、P301-75E(旭化成(株))等が挙げられる。
 イソシアヌレート型の3官能以上のイソシアネート化合物の市販品としては、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N(以上、三井化学(株))、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(以上、住化バイエルウレタン(株))、コロネート(登録商標)HX、HK(以上、日本ウレタンポリマー(株))、デュラネート(登録商標)TPA-100、TKA-100、TSA-100、TSS-100、TLA-100、TSE-100(以上、旭化成(株))等が挙げられる。
 ビウレット型の3官能以上のイソシアネート化合物の市販品としては、タケネート(登録商標)D-165N、NP1100(以上、三井化学(株))、デスモジュール(登録商標)N3200(住化バイエルウレタン(株))、デュラネート(登録商標)24A-100(旭化成(株))等が挙げられる。
Examples of trifunctional or higher functional isocyanate compounds used to form the specific crosslinked polymer include adduct type trifunctional or higher isocyanate compounds, isocyanurate type trifunctional or higher isocyanate compounds, biuret type trifunctional or higher isocyanate compounds, and the like. It can be mentioned.
As commercial products of the adduct type trifunctional or higher isocyanate compound, Takenate (registered trademark) D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, D- 140N, D-160N (above, Mitsui Chemical Co., Ltd.), Desmodur (registered trademark) L75, UL57SP (Sumikawa Bayer Urethane Co., Ltd.), Coronate (registered trademark) HL, HX, L (Nippon Urethane Polymer (Japan Urethane Polymer Co., Ltd. ), P301-75E (Asahi Kasei Corporation) and the like.
As commercial products of isocyanurate type trifunctional or higher isocyanate compounds, Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N (all, Mitsui Chemicals, Inc.), Sumidur N3300, Desmodur (registered trademark) N3600, N3900, Z4470BA (above, Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HX, HK (above, Nippon Urethane Polymer Co., Ltd.), Duranate (registered trademark) TPA-100, TKA-100, TSA-100, TSS-100, TLA-100, TSE-100 (all, Asahi Kasei Corporation) and the like.
As commercial products of biuret type trifunctional or higher isocyanate compounds, Takenate (registered trademark) D-165N, NP1100 (Mitsui Chemical Co., Ltd.), Desmodur (registered trademark) N3200 (Suzuki Bayer Urethane Co., Ltd.) And Duranate (registered trademark) 24A-100 (Asahi Kasei Corporation).
 また、特定粒子が、特定架橋ポリマーからなるシェルと、コアと、を含むMC(即ち、マイクロカプセル)を含む場合、特定粒子は、MCに対する分散剤として、前述した特定鎖状ポリマーのうち親水性基を有する態様の特定鎖状ポリマーを含有していてもよい。この態様におけるインクでは、MCのシェルの周囲の少なくとも一部を、分散剤としての特定鎖状ポリマーが被覆している状態となり得る。この態様では、MCのシェルが有するウレタン基及び/又はウレア基と、分散剤(特定鎖状ポリマー)が有するウレタン基及び/又はウレア基と、の相互作用、並びに、分散剤の親水性基による分散作用が相まって、特定粒子の分散安定性がより向上する。
 この態様において、MCの全固形分量に対する分散剤の量の比(以下、質量比〔分散剤/MC固形分〕ともいう)としては、0.005~1.000であることが好ましく、0.05~0.7であることがより好ましい。
 質量比〔分散剤/MC固形分〕が0.005以上であると、特定粒子の分散安定性がより向上する。
 質量比〔分散剤/MC固形分〕が1.000以下であると、画像の硬度がより向上する。
In addition, when the specific particle includes an MC (that is, a microcapsule) containing a shell made of a specific crosslinked polymer and a core, the specific particle is hydrophilic as a dispersant for MC, among the specific linear polymers described above. You may contain the specific linear polymer of the aspect which has group. In the ink in this aspect, at least a part of the periphery of the shell of MC can be in a state of being coated with a specific linear polymer as a dispersant. In this aspect, the interaction between the urethane group and / or the urea group possessed by the shell of MC and the urethane group and / or the urea group possessed by the dispersant (specific chain polymer) and the hydrophilic group of the dispersant The dispersing action is combined to further improve the dispersion stability of the specific particles.
In this embodiment, the ratio of the amount of dispersant to the total solid content of MC (hereinafter also referred to as mass ratio [also referred to as dispersant / MC solid content]) is preferably 0.005 to 1.000, and 0.1. More preferably, it is from 05 to 0.7.
When the mass ratio [dispersant / MC solid content] is 0.005 or more, the dispersion stability of the specific particles is further improved.
When the mass ratio [dispersant / MC solid content] is 1.000 or less, the hardness of the image is further improved.
-特定ポリマーの好ましい重量平均分子量(Mw)-
 特定ポリマーの重量平均分子量(Mw)としては、インクの分散安定性(即ち、特定粒子の分散安定性)の観点から、5000以上であることが好ましく、7000以上であることがより好ましく、8000以上であることが更に好ましい。
 特定ポリマーのMwの上限には特に制限はない。特定ポリマーのMwの上限としては、例えば、150000、100000、70000、50000が挙げられる。
-Preferred weight average molecular weight (Mw) of specific polymer-
The weight average molecular weight (Mw) of the specific polymer is preferably 5000 or more, more preferably 7,000 or more, and 8000 or more from the viewpoint of the dispersion stability of the ink (that is, the dispersion stability of the specific particles). It is further preferred that
There is no particular limitation on the upper limit of Mw of the specific polymer. As an upper limit of Mw of a specific polymer, 150000, 100000, 70000, 50000 are mentioned, for example.
 本開示において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された値を意味する。但し、分子量が小さいためにGPCでは正確なMwを測定できない化合物については、化合物の化学構造から求められる分子量を、その化合物のMwとして採用する。
 本開示において、ゲルパーミエーションクロマトグラフィー(GPC)による測定は、測定装置として、HLC(登録商標)-8020GPC(東ソー(株))を用い、カラムとして、TSKgel(登録商標)Super Multipore HZ-H(4.6mmID×15cm、東ソー(株))を3本用い、溶離液として、THF(テトラヒドロフラン)を用いることができる。また、測定条件としては、試料濃度を0.45質量%、流速を0.35ml/min、サンプル注入量を10μl、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行う。
 検量線は、東ソー(株)の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、「A-1000」、及び「n-プロピルベンゼン」の8サンプルから作製する。
In the present disclosure, weight average molecular weight (Mw) means a value measured by gel permeation chromatography (GPC). However, for compounds whose accurate Mw can not be measured by GPC because of their small molecular weight, the molecular weight determined from the chemical structure of the compound is adopted as the Mw of the compound.
In the present disclosure, measurement by gel permeation chromatography (GPC) uses HLC (registered trademark) -8020 GPC (Tosoh Corporation) as a measurement device, and TSKgel (registered trademark) Super Multipore HZ-H (as a column). It is possible to use THF (tetrahydrofuran) as an eluent using three 4.6 mm ID × 15 cm, Tosoh Corporation. In addition, as measurement conditions, the sample concentration is 0.45 mass%, the flow rate is 0.35 ml / min, the sample injection amount is 10 μl, and the measurement temperature is 40 ° C., using a differential refractive index (RI) detector .
The standard curve is the standard sample TSK standard, polystyrene of Tosoh Corp .: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “A. It is made from eight samples of "-2500", "A-1000", and "n-propylbenzene".
 特定ポリマーの含有量は、特定粒子の全固形分量に対し、10質量%以上であることが好ましく、20質量%以上であることがより好ましい。
 特定ポリマーの含有量が、特定粒子の全固形分量に対して10質量%以上であると、インクの分散安定性(即ち、特定粒子の分散安定性)がより向上する。
 特定ポリマーの含有量は、特定粒子の全固形分量に対し、100質量%となることもあり得るが、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、50質量%以下であることが特に好ましい。
The content of the specific polymer is preferably 10% by mass or more, and more preferably 20% by mass or more based on the total solid content of the specific particles.
When the content of the specific polymer is 10% by mass or more based on the total solid content of the specific particles, the dispersion stability of the ink (that is, the dispersion stability of the specific particles) is further improved.
The content of the specific polymer may be 100% by mass with respect to the total solid content of the specific particles, but is preferably 80% by mass or less, more preferably 70% by mass or less, and 50% by mass It is particularly preferable that the content is less than%.
-酸基導入用化合物-
 特定粒子中の特定ポリマーが酸基を有する場合、特定ポリマーへの酸基の導入は、酸基導入用化合物を用いて行うことができる。
 酸基導入用化合物としては、酸基及び活性水素基を有する化合物を用いることができる。
 酸基導入用化合物としては、1つ以上の酸基及び2つ以上の活性水素基を有する化合物を用いることが好ましい。
-Compound for introducing acid group-
When the specific polymer in the specific particle has an acid group, the introduction of the acid group to the specific polymer can be performed using a compound for introducing an acid group.
As a compound for introducing an acid group, a compound having an acid group and an active hydrogen group can be used.
As a compound for introducing an acid group, it is preferable to use a compound having one or more acid groups and two or more active hydrogen groups.
 酸基導入用化合物としては、例えば、α-アミノ酸(具体的には、リシン、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン等)が挙げられる。
 酸基導入用化合物としては、上記のα-アミノ酸以外に、既述の酸基及び活性水素基を有する化合物も挙げられる。
As a compound for introducing an acid group, for example, α-amino acids (specifically, lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, And serine, threonine, tryptophan, tyrosine, valine, etc.).
As a compound for introducing an acid group, in addition to the above-mentioned α-amino acid, a compound having an acid group and an active hydrogen group as described above can also be mentioned.
 酸基導入用化合物は、揮発性中和剤及び非揮発性中和剤を用い、酸基の少なくとも一部を中和して用いてもよい。 The compound for introducing an acid group may be used by neutralizing at least a part of the acid group using a volatile neutralizing agent and a non-volatile neutralizing agent.
-酸基を導入したイソシアネート化合物-
 特定ポリマーが酸基を有する場合、特定ポリマーへの酸基の導入は、酸基を導入したイソシアネート化合物を用いて行うこともできる。
 酸基を導入したイソシアネート化合物としては、既述の酸基導入用化合物と、2官能のイソシアネート化合物と、の反応生成物;既述の酸基導入用化合物と、3官能以上のイソシアネート化合物と、の反応生成物;既述の酸基導入用化合物と、2官能のイソシアネート化合物と、3官能以上のポリオール化合物、3官能以上のポリアミン化合物、及び3官能以上のポリチオール化合物からなる群より選ばれる化合物と、の反応生成物;等が挙げられる。
 これらの中でも、酸基を導入したイソシアネート化合物としては、既述の酸基導入用化合物と、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、1,3-ビス(イソシアネートメチル)シクロヘキサン(HXDI)、m-キシリレンジイソシアネート(XDI)、又はジシクロヘキシルメタン-4,4’-ジイソシアネート(HMDI)との反応生成物が好ましい。
-Isocyanate compound introduced with acid group-
When the specific polymer has an acid group, the introduction of the acid group to the specific polymer can also be performed using an isocyanate compound having an acid group introduced.
As the isocyanate compound having an acid group introduced therein, a reaction product of the compound for introducing an acid group described above and a bifunctional isocyanate compound; the compound for introducing an acid group described above, and an isocyanate compound having three or more functional groups, A compound selected from the group consisting of a compound for introducing an acid group, a bifunctional isocyanate compound, a trifunctional or higher functional polyol compound, a trifunctional or higher polyamine compound, and a trifunctional or higher polythiol compound; And the reaction product of
Among these, as the isocyanate compound having an acid group introduced, there are already mentioned compounds for introducing an acid group, isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), and 1,3-bis. Preference is given to reaction products with (isocyanatomethyl) cyclohexane (HXDI), m-xylylene diisocyanate (XDI) or dicyclohexylmethane-4,4'-diisocyanate (HMDI).
-ノニオン性基-
 特定ポリマーは、既述の酸基(中和された酸基及び中和されていない酸基)以外の親水性基として、ノニオン性基を更に有していてもよい。
 特定ポリマーがノニオン性基を更に有する場合には、既述の中和された酸基による分散作用と、ノニオン性基による分散作用と、が相まって、インクの分散安定性がより向上し得る。
 ノニオン性基としては、ポリエーテル構造を有する基が挙げられ、ポリアルキレンオキシ基を含む1価の基が好ましい。
-Nonionic group-
The specific polymer may further have a nonionic group as a hydrophilic group other than the aforementioned acid groups (neutralized acid group and non-neutralized acid group).
When the specific polymer further has a nonionic group, the dispersion action of the neutralized acid group and the dispersion action of the nonionic group may be combined to further improve the dispersion stability of the ink.
The nonionic group includes a group having a polyether structure, and is preferably a monovalent group containing a polyalkyleneoxy group.
-ノニオン性基導入用化合物-
 特定ポリマーが、ノニオン性基を有する場合、特定ポリマーへのノニオン性基の導入は、ノニオン性基導入用化合物を用いて行うことができる。
 ノニオン性基導入用化合物としては、ポリエーテル構造を有する化合物が好ましく、ポリオキシアルキレン鎖を有する化合物がより好ましい。
 ポリオキシアルキレン鎖を有する化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド、及びポリエチレンオキシド-ポリプロピレンオキシドブロック共重合体からなる群より選ばれる少なくとも1種の化合物が好ましく、ポリエチレンオキシドがより好ましい。
 ポリエーテル構造を有する化合物としては、ポリエチレンオキシドのモノエーテル体(モノメチルエーテル、モノエチルエーテル等)及びポリエチレンオキシドのモノエステル体(モノ酢酸エステル、モノ(メタ)アクリル酸エステル等)からなる群より選ばれる少なくとも1種の化合物が好ましい。
-Compounds for introducing nonionic groups-
When the specific polymer has a nonionic group, the introduction of the nonionic group into the specific polymer can be performed using a nonionic group-introducing compound.
The nonionic group-introducing compound is preferably a compound having a polyether structure, and more preferably a compound having a polyoxyalkylene chain.
As the compound having a polyoxyalkylene chain, at least one compound selected from the group consisting of polyethylene oxide, polypropylene oxide, and polyethylene oxide-polypropylene oxide block copolymer is preferable, and polyethylene oxide is more preferable.
The compound having a polyether structure is selected from the group consisting of monoethers of polyethylene oxide (monomethyl ether, monoethyl ether, etc.) and monoesters of polyethylene oxide (monoacetic acid ester, mono (meth) acrylic acid ester, etc.) Preferred is at least one compound that is
 ノニオン性基を導入したイソシアネート化合物の具体例としては、トリメチロールプロパン(TMP)とm-キシリレンジイソシアネート(XDI)とポリエチレングリコールモノメチルエーテル(EO)との付加物(例えば、三井化学(株)のタケネート(登録商標)D-116N)が挙げられる。 Specific examples of the isocyanate compound having a nonionic group introduced include adducts of trimethylolpropane (TMP), m-xylylene diisocyanate (XDI) and polyethylene glycol monomethyl ether (EO) (for example, Mitsui Chemical Co., Ltd.) Takenate (registered trademark) D-116N).
-重合性基-
 特定ポリマーは、重合性基を少なくとも1種有することが好ましい。
 特定ポリマーが重合性基を有する場合には、特定粒子に含まれる酸基を中和している揮発性中和剤の揮発によってインク膜を増粘させた後、増粘したインク膜を、重合性基の作用によって硬化させることができる。
 これにより、画像の引っ掻き耐性が更に向上する。
-Polymerizable group-
The specific polymer preferably has at least one kind of polymerizable group.
When the specific polymer has a polymerizable group, the thickened ink film is polymerized after thickening the ink film by the volatilization of the volatile neutralizing agent that is neutralizing the acid group contained in the specific particles. It can be cured by the action of the sexing group.
This further improves the scratch resistance of the image.
 重合性基としては、光重合性基又は熱重合性基が好ましい。
 光重合性基としては、ラジカル重合性基が好ましく、エチレン性二重結合を含む基がより好ましく、(メタ)アクリロイル基、アリル基、スチリル基、又はビニル基が更に好ましい。ラジカル重合性基としては、ラジカル重合反応性及び形成される膜の硬度の観点から、(メタ)アクリロイル基が特に好ましい。
 熱重合性基としては、エポキシ基、オキセタニル基、アジリジニル基、アゼチジニル基、ケトン基、アルデヒド基、又はブロックイソシアネート基が好ましい。
 特定ポリマーは、重合性基を1種のみ含有していてもよいし、2種以上含有していてもよい。
 特定ポリマーが重合性基を有することは、例えば、フーリエ変換赤外線分光測定(FT-IR)分析によって確認することができる。
As a polymeric group, a photopolymerizable group or a thermally polymerizable group is preferable.
The photopolymerizable group is preferably a radical polymerizable group, more preferably a group containing an ethylenic double bond, and still more preferably a (meth) acryloyl group, an allyl group, a styryl group or a vinyl group. As the radically polymerizable group, a (meth) acryloyl group is particularly preferable from the viewpoint of radical polymerization reactivity and the hardness of the formed film.
As the thermally polymerizable group, an epoxy group, an oxetanyl group, an aziridinyl group, an azetidinyl group, a ketone group, an aldehyde group or a blocked isocyanate group is preferable.
The specific polymer may contain only one type of polymerizable group, or may contain two or more types.
The specific polymer having a polymerizable group can be confirmed, for example, by Fourier transform infrared spectroscopy (FT-IR) analysis.
-重合性基導入用化合物-
 特定ポリマーが重合性基を有する場合、特定ポリマーへの重合性基の導入は、重合性基導入用化合物を用いて行うことができる。
 重合性基導入用化合物としては、重合性基及び活性水素基を有する化合物を用いることができる。
 重合性基導入用化合物としては、1つ以上の重合性基及び2つ以上の活性水素基を有する化合物を用いることが好ましい。
-Compound for introducing polymerizable group-
When the specific polymer has a polymerizable group, the introduction of the polymerizable group into the specific polymer can be performed using a compound for introducing a polymerizable group.
As the compound for introducing a polymerizable group, a compound having a polymerizable group and an active hydrogen group can be used.
As the compound for introducing a polymerizable group, it is preferable to use a compound having one or more polymerizable groups and two or more active hydrogen groups.
 特定ポリマーへの重合性基の導入方法には特に制限はないが、特定ポリマーを合成する際に、2官能のイソシアネート化合物からなる群より選ばれる少なくとも1種と、水、ジオール化合物、ジアミン化合物及びジチオール化合物からなる群より選ばれる少なくとも1種と、重合性基導入用化合物の少なくとも1種と、(必要に応じて、酸基導入用化合物の少なくとも1種と、)を反応させる方法が特に好ましい。
 重合性基導入用モノマーは、1種のみ用いてもよいし、2種以上用いてもよい。
The method for introducing a polymerizable group into a specific polymer is not particularly limited, but when synthesizing a specific polymer, at least one selected from the group consisting of a bifunctional isocyanate compound, water, a diol compound, a diamine compound and Particularly preferred is a method of reacting at least one selected from the group consisting of dithiol compounds, at least one of a compound for introducing a polymerizable group, and (optionally, at least one of a compound for introducing an acid group) .
The polymerizable group introducing monomer may be used alone or in combination of two or more.
 重合性基導入用化合物としては、例えば、国際公開第2016/052053号の段落[0075]~[0089]に記載の化合物を用いることもできる。 As the compound for introducing a polymerizable group, for example, the compounds described in paragraphs [0075] to [0089] of WO 2016/052053 can also be used.
 重合性基導入用化合物としては、下記式(ma)で表される化合物が好ましい。
  LLc  (ma)
As the compound for introducing a polymerizable group, a compound represented by the following formula (ma) is preferable.
L 1 Lc m Z n (ma)
 式(ma)において、Lは、m+n価の連結基を表し、m及びnは、各々独立に、1~100から選ばれる整数であり、Lcは1価のエチレン性不飽和基を表し、Zは活性水素基を表す。
 Lは、2価以上の脂肪族基、2価以上の芳香族基、2価以上の複素環基、-O-、-S-、-NH-、-N<、-CO-、-SO-、-SO-又はそれらの組合せであることが好ましい。
 m及びnは、各々独立に、1~50であることが好ましく、2~20であることがより好ましく、3~10であることが更に好ましく、3~5であることが特に好ましい。
 Lcで表される1価のエチレン性不飽和基としては、アリル基、ビニル基、アクリロイル基、メタクリロイル基等が挙げられる。
 Zで表される活性水素基は、ヒドロキシ基又は1級アミノ基であることがより好ましく、ヒドロキシ基であることが更に好ましい。
In formula (ma), L 1 represents a m + n-valent linking group, m and n each independently represent an integer selected from 1 to 100, and Lc represents a monovalent ethylenically unsaturated group, Z represents an active hydrogen group.
L 1 is a divalent or higher aliphatic group, a divalent or higher aromatic group, a divalent or higher heterocyclic group, -O-, -S-, -NH-, -N <, -CO-, -SO It is preferable that-, -SO 2 -or a combination thereof.
m and n each independently are preferably 1 to 50, more preferably 2 to 20, still more preferably 3 to 10, and particularly preferably 3 to 5.
Examples of the monovalent ethylenically unsaturated group represented by Lc include an allyl group, a vinyl group, an acryloyl group and a methacryloyl group.
The active hydrogen group represented by Z is more preferably a hydroxy group or a primary amino group, and still more preferably a hydroxy group.
 以下、重合性基導入用化合物の例を示すが、重合性基導入用化合物は、以下の例には限定されない。なお、化合物(a-3)及び(a-14)におけるnは、例えば、1~90から選ばれる整数を表す。 Hereinafter, although the example of the compound for polymeric group introduction is shown, the compound for polymeric group introduction is not limited to the following examples. Here, n in the compounds (a-3) and (a-14) represents, for example, an integer selected from 1 to 90.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
-重合性基を導入したイソシアネート化合物-
 特定ポリマーが重合性基を有する場合、特定ポリマーへの重合性基の導入は、重合性基を導入したイソシアネート化合物を用いて行うこともできる。
 重合性基を導入したイソシアネート化合物としては、既述の重合性基導入用化合物の少なくとも1種と、2官能のイソシアネート化合物の少なくとも1種と、の反応生成物;
既述の重合性基導入用化合物の少なくとも1種と、3官能以上のイソシアネート化合物の少なくとも1種と、の反応生成物;既述の重合性基導入用化合物の少なくとも1種と、2官能のイソシアネート化合物の少なくとも1種と、3官能以上のポリオール化合物、3官能以上のポリアミン化合物、及び3官能以上のポリチオール化合物からなる群から選択される少なくとも1種と、の反応生成物;等が挙げられる。
-Isocyanate compound introduced with a polymerizable group-
When the specific polymer has a polymerizable group, the introduction of the polymerizable group into the specific polymer can also be carried out using an isocyanate compound having a polymerizable group introduced.
As an isocyanate compound which introduce | transduced the polymeric group, the reaction product of at least 1 sort (s) of the compound of polymeric group introduction as stated above, and at least 1 sort (s) of the bifunctional isocyanate compound;
Reaction product of at least one type of polymerizable group introducing compound described above and at least one type of trifunctional or higher functional isocyanate compound; at least one type of polymerizable group introducing compound described above and bifunctional Reaction products of at least one selected from the group consisting of at least one isocyanate compound and at least one trifunctional or higher functional polyol compound, trifunctional or higher functional polyamine compound, and trifunctional or higher functional polythiol compound; .
(重合性モノマー)
 特定粒子は、重合性モノマーを含むことが好ましい。
 特定粒子が重合性モノマーを含む場合、特定粒子に含まれる酸基を中和している揮発性中和剤の揮発によってインク膜を増粘させた後、増粘したインク膜を、重合性基の作用によって硬化させることができる。
 これにより、画像の引っ掻き耐性が更に向上する。
 特定粒子に含まれる重合性モノマーは、1種のみであってもよいし、2種以上であってもよい。
(Polymerizable monomer)
The specific particles preferably contain a polymerizable monomer.
When the specific particle contains a polymerizable monomer, the ink film is thickened after the ink film is thickened by the volatilization of the volatile neutralizing agent that is neutralizing the acid group contained in the specific particle, It can be cured by the action of
This further improves the scratch resistance of the image.
The number of polymerizable monomers contained in the specific particles may be only one, or two or more.
 特定粒子に含まれる重合性モノマーとしては、国際公開第2016/052053号の段落[0097]~[0105]に記載された化合物を用いてもよい。 As the polymerizable monomer contained in the specific particles, the compounds described in paragraphs [0097] to [0105] of WO 2016/052053 may be used.
 特定粒子に含まれる重合性モノマーとしては、光重合性モノマー又は熱重合性モノマーが好ましい。
 光重合性モノマーは、光(即ち、活性エネルギー線)の照射によって重合する性質を有する。
 熱重合性モノマーは、加熱又は赤外線の照射によって重合する性質を有する。
 光重合性モノマーとしては、ラジカル重合可能なエチレン性二重結合を有するラジカル重合性モノマーが好ましい。
As the polymerizable monomer contained in the specific particles, a photopolymerizable monomer or a thermally polymerizable monomer is preferable.
The photopolymerizable monomer has the property of polymerizing upon irradiation with light (ie, active energy ray).
The thermally polymerizable monomer has a property of polymerizing by heating or irradiation of infrared radiation.
As the photopolymerizable monomer, a radically polymerizable monomer having a radically polymerizable ethylenic double bond is preferable.
 本明細書では、特定粒子が光重合性モノマーを含む態様のインクを、「光硬化性のインク」と称することがあり、特定粒子が熱重合性モノマーを含む態様のインクを、「熱硬化性のインク」と称することがある。
 本開示のインクによって形成されたインク膜の硬化は、本開示のインクが光硬化性のインクである場合には、インク膜に対して光照射を施すことによって行うことができ(後述の硬化工程A参照)、本開示のインクが熱硬化性のインクである場合には、インク膜に対して加熱又は赤外線照射を施すことによって行うことができる(後述の加熱工程又は硬化工程B参照)。
In the present specification, an ink of an embodiment in which the specific particles contain a photopolymerizable monomer may be referred to as a “photocurable ink”, and an ink of an embodiment in which the specific particles contain a thermally polymerizable monomer Sometimes referred to as "ink of".
When the ink of the present disclosure is a photocurable ink, curing of the ink film formed by the ink of the present disclosure can be performed by applying light to the ink film (curing process described later) A) When the ink of the present disclosure is a thermosetting ink, the ink film can be heated or subjected to infrared irradiation (see heating step or curing step B described later).
 光硬化性のインクの好ましい態様は、特定粒子が光重合性モノマーを含み、かつ、特定ポリマーが光重合性基を有する態様である。
 この態様によれば、活性エネルギー線の照射による画像の硬化性がより向上するので、画像の引っ掻き耐性がより向上する。
A preferred embodiment of the photocurable ink is an embodiment in which the specific particles contain a photopolymerizable monomer and the specific polymer has a photopolymerizable group.
According to this aspect, since the hardenability of the image by the irradiation of the active energy ray is further improved, the scratch resistance of the image is further improved.
 特定粒子が、重合性モノマーとして光重合性モノマーを含む場合、特定粒子は、更に、後述の光重合開始剤を含むことが好ましい。
 また、特定粒子が、重合性モノマーとして熱重合性モノマーを含む場合、特定粒子は、更に、後述の光熱変換剤、熱硬化促進剤、又は光熱変換剤及び熱硬化促進剤を含んでもよい。
When the specific particle contains a photopolymerizable monomer as a polymerizable monomer, the specific particle preferably further contains a photopolymerization initiator described later.
When the specific particles contain a thermally polymerizable monomer as a polymerizable monomer, the specific particles may further contain a photothermal conversion agent, a thermal curing accelerator, or a photothermal conversion agent and a thermal curing accelerator described later.
 特定粒子に含まれる重合性モノマーの含有量(2種以上含む場合には合計量)は、膜の硬化感度及び膜の硬度を向上させる観点から、特定粒子の全固形分量に対して、10質量%~90質量%が好ましく、20質量%~80質量%がより好ましく、30質量%~70質量%が更に好ましい。 The content of the polymerizable monomer contained in the specific particles (total amount in the case of containing two or more types) is 10 mass with respect to the total solid content of the specific particles from the viewpoint of improving the curing sensitivity of the film and the hardness of the film. % To 90% by mass is preferable, 20% by mass to 80% by mass is more preferable, and 30% by mass to 70% by mass is more preferable.
 本開示において、特定粒子の全固形分量とは、特定粒子が溶媒を含まない場合には、特定粒子の全量を意味し、特定粒子が溶媒を含む場合には、特定粒子から溶媒を除いた全量を意味する。 In the present disclosure, the total solid content of specific particles means the total amount of specific particles when the specific particles do not contain a solvent, and when the specific particles contain a solvent, the total amount of the specific particles excluding the solvent Means
 重合性モノマーの分子量としては、好ましくは100~4000であり、更に好ましくは100~2000であり、更に好ましくは100~1000であり、更に好ましくは100~900であり、更に好ましくは100~800であり、特に好ましくは150~750である。 The molecular weight of the polymerizable monomer is preferably 100 to 4000, more preferably 100 to 2000, still more preferably 100 to 1000, still more preferably 100 to 900, and still more preferably 100 to 800. And particularly preferably 150 to 750.
-光重合性モノマー-
 光重合性モノマーとしては、ラジカル重合可能なエチレン性不飽和結合を有する重合性モノマー(即ち、ラジカル重合性モノマー)及びカチオン重合可能なカチオン重合性基を有する重合性モノマー(即ち、カチオン重合性モノマー)から選択できる。
-Photopolymerizable monomer-
As the photopolymerizable monomer, a polymerizable monomer having a radically polymerizable ethylenic unsaturated bond (ie, a radically polymerizable monomer) and a polymerizable monomer having a cationically polymerizable cationically polymerizable group (ie, a cationically polymerizable monomer Can be selected from
 ラジカル重合性モノマーの例としては、アクリレート化合物、メタクリレート化合物、スチレン化合物、ビニルナフタレン化合物、N-ビニル複素環化合物、不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、及び不飽和ウレタンが挙げられる。
 ラジカル重合性モノマーは、エチレン性不飽和基を有する化合物が好ましい。
 特定粒子がラジカル重合性モノマーを含む場合、特定粒子は、ラジカル重合性モノマーを1種のみ含んでいてもよく、2種以上含んでいてもよい。
Examples of radically polymerizable monomers include acrylate compounds, methacrylate compounds, styrenic compounds, vinyl naphthalene compounds, N-vinyl heterocyclic compounds, unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, and unsaturated urethanes.
The radically polymerizable monomer is preferably a compound having an ethylenically unsaturated group.
When the specific particle contains a radically polymerizable monomer, the specific particle may contain only one type of radically polymerizable monomer, or may contain two or more types.
 アクリレート化合物としては、2-ヒドロキシエチルアクリレート、ブトキシエチルアクリレート、カルビトールアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、トリデシルアクリレート、2-フェノキシエチルアクリレート(PEA)、ビス(4-アクリロキシポリエトキシフェニル)プロパン、オリゴエステルアクリレート、エポキシアクリレート、イソボルニルアクリレート(IBOA)、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、環状トリメチロールプロパンフォルマルアクリレート、2-(2-エトキシエトキシ)エチルアクリレート、2-(2-ビニロキシエトキシ)エチルアクリレート、オクチルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレート、4-t-ブチルシクロヘキシルアクリレート、イソアミルアクリレート、ステアリルアクリレート、イソアミルスチルアクリレート、イソステアリルアクリレート、2-エチルヘキシルジグリコールアクリレート、2-ヒドロキシブチルアクリレート、2-アクリロイルオキシエチルヒドロフタル酸、エトキシジエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、メトキシプロピレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ビニルエーテルアクリレート、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシフタル酸、2-アクリロキシエチル-2-ヒドロキシエチルフタル酸、ラクトン変性アクリレート、アクリロイルモルホリン、アクリルアミド、置換アクリルアミド(例えば、N-メチロールアクリルアミド及びジアセトンアクリルアミド)等の単官能のアクリレート化合物; As an acrylate compound, 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, tridecyl acrylate, 2-phenoxyethyl acrylate (PEA), bis (4-acryloxypoly) Ethoxyphenyl) propane, oligoester acrylate, epoxy acrylate, isobornyl acrylate (IBOA), dicyclopentenyl acrylate, dicyclopentenyl oxyethyl acrylate, dicyclopentanyl acrylate, cyclic trimethylolpropane formal acrylate, 2- (2 -Ethoxyethoxy) ethyl acrylate, 2- (2-vinyloxyethoxy) ethyl acrylate , Octyl acrylate, decyl acrylate, isodecyl acrylate, lauryl acrylate, 3,3,5-trimethylcyclohexyl acrylate, 4-t-butylcyclohexyl acrylate, isoamyl acrylate, stearyl acrylate, isoamyl still acrylate, isostearyl acrylate, 2-ethylhexyl di- Glycol acrylate, 2-hydroxybutyl acrylate, 2-acryloyloxyethyl hydrophthalic acid, ethoxydiethylene glycol acrylate, methoxy diethylene glycol acrylate, methoxy polyethylene glycol acrylate, methoxy propylene glycol acrylate, 2-hydroxy-3-phenoxy propyl acrylate, vinyl ether acrylate, 2 - Cryloyl oxyethyl succinic acid, 2-acryloyl oxy phthalic acid, 2-acryloxy ethyl 2-hydroxyethyl phthalic acid, lactone modified acrylate, acryloyl morpholine, acrylamide, substituted acrylamide (for example, N-methylol acrylamide and diacetone acrylamide) Etc. monofunctional acrylate compounds;
 ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート(HDDA)、1,9-ノナンジオールジアクリレート(NDDA)、1,10-デカンジオールジアクリレート(DDDA)、3-メチルペンタジオールジアクリレート(3MPDDA)、ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、ビスフェノールAエチレンオキシド(EO)付加物ジアクリレート、ビスフェノールAプロピレンオキシド(PO)付加物ジアクリレート、エトキシ化ビスフェノールAジアクリレート、ヒドロキシピネオペンチルグリコールジアクリレート、プロポキシ化ネオペンチルグリコールジアクリレート、アルコキシ化ジメチロールトリシクロデカンジアクリレート、ポリテトラメチレングリコールジアクリレート、アルコキシ化シクロヘキサノンジメタノールジアクリレート、アルコキシ化ヘキサンジオールジアクリレート、ジオキサングリコールジアクリレート、シクロヘキサノンジメタノールジアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、テトラエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート(TPGDA)、ネオペンチルグリコールプロピレンオキシド付加物ジアクリレート等の2官能のアクリレート化合物; Polyethylene glycol diacrylate, polypropylene glycol diacrylate, polytetramethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate (HDDA), 1, 9 -Nonanediol diacrylate (NDDA), 1,10-decanediol diacrylate (DDDA), 3-methylpentadiol diacrylate (3MPDDA), neopentyl glycol diacrylate, tricyclodecane dimethanol diacrylate, bisphenol A ethylene oxide ( EO) adduct diacrylate, bisphenol A propylene oxide (PO) adduct diacrylate, ethoxylated bisphenol A diacrylate, hydrogen Roxypine pentyl glycol diacrylate, propoxylated neopentyl glycol diacrylate, alkoxylated dimethylol tricyclodecane diacrylate, polytetramethylene glycol diacrylate, alkoxylated cyclohexanone dimethanol diacrylate, alkoxylated hexanediol diacrylate, dioxane glycol Diacrylate, cyclohexanone dimethanol diacrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, tetraethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate (TPGDA), neopentyl glycol propylene oxide adduct diacrylate, etc. Two-functional Aclay Compound;
 トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、グリセリンプロポキシトリアクリレート、エトキシ化ジペンタエリスリトールヘキサアクリレート、カプロラクタム変性ジペンタエリスリトールヘキサアクリレート、プロポキシ化グリセリントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート等の3官能以上のアクリレート化合物などが挙げられる。 Trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol tetraacrylate, ethoxylated isocyanuric acid triacrylate, ε-caprolactone modified tris- (2-acryloxyethyl) isocyanurate, ditrimethylolpropane tetraacrylate, dipentaerythritol penta Acrylate, dipentaerythritol hexaacrylate, ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, caprolactone modified trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol ethoxytetraacrylate, glycerin propoxy triacrylate, ethoxylated Zipe Data hexaacrylate, caprolactam modified dipentaerythritol hexaacrylate, propoxylated glycerol triacrylate, ethoxylated trimethylolpropane triacrylate, such as trifunctional or more acrylate compounds such as propoxylated trimethylol propane triacrylate.
 メタクリレート化合物としては、メチルメタクリレート、n-ブチルメタクリレート、アリルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレート、ジメチルアミノメチルメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシトリエチレングリコールメタクリレート、ヒドロキシエチルメタクリレート、フェノキシエチルメタクリレート、シクロヘキシルメタクリレート等の単官能のメタクリレート化合物; As methacrylate compounds, methyl methacrylate, n-butyl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, methoxypolyethylene glycol methacrylate, methoxytriethylene glycol methacrylate, hydroxyethyl methacrylate, phenoxyethyl methacrylate, cyclohexyl methacrylate and the like Monofunctional methacrylate compounds;
 ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン、テトラエチレングリコールジメタクリレート等の2官能のメタクリレート化合物などが挙げられる。 Examples include difunctional methacrylate compounds such as polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2-bis (4-methacryloxypolyethoxyphenyl) propane and tetraethylene glycol dimethacrylate.
 スチレン化合物としては、スチレン、p-メチルスチレン、p-メトキシスチレン、β-メチルスチレン、p-メチル-β-メチルスチレン、α-メチルスチレン、p-メトキシ-β-メチルスチレン等が挙げられる。 Examples of the styrene compound include styrene, p-methylstyrene, p-methoxystyrene, β-methylstyrene, p-methyl-β-methylstyrene, α-methylstyrene, p-methoxy-β-methylstyrene and the like.
 ビニルナフタレン化合物としては、1-ビニルナフタレン、メチル-1-ビニルナフタレン、β-メチル-1-ビニルナフタレン、4-メチル-1-ビニルナフタレン、4-メトキシ-1-ビニルナフタレン等が挙げられる。 Examples of the vinyl naphthalene compound include 1-vinyl naphthalene, methyl-1-vinyl naphthalene, β-methyl-1-vinyl naphthalene, 4-methyl-1-vinyl naphthalene, 4-methoxy-1-vinyl naphthalene and the like.
 N-ビニル複素環化合物としては、N-ビニルカルバゾール、N-ビニルピロリドン、N-ビニルエチルアセトアミド、N-ビニルピロール、N-ビニフェノチアジン、N-ビニルアセトアニリド、N-ビニルエチルアセトアミド、N-ビニルコハク酸イミド、N-ビニルフタルイミド、N-ビニルカプロラクタム、N-ビニルイミダゾール等が挙げられる。 Examples of N-vinyl heterocyclic compounds include N-vinylcarbazole, N-vinylpyrrolidone, N-vinylethylacetamide, N-vinylpyrrole, N-binyphenothiazine, N-vinylacetanilide, N-vinylethylacetamide, N-vinylsuccinic acid Imide, N-vinyl phthalimide, N-vinyl caprolactam, N-vinyl imidazole and the like can be mentioned.
 その他のラジカル重合性のモノマーとしては、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート、N-ビニルホルムアミド等のN-ビニルアミドが挙げられる。 Other radically polymerizable monomers include N-vinylamides such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, N-vinylformamide and the like.
 これらのラジカル重合性モノマーの中でも、2官能以下のラジカル重合性モノマーとしては、1,6-ヘキサンジオールジアクリレート(HDDA)、1,9-ノナンジオールジアクリレート(NDDA)、1,10-デカンジオールジアクリレート(DDDA)、3-メチルペンタジオールジアクリレート(3MPDDA)、ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート(TPGDA)、シクロヘキサノンジメタノールジアクリレート、アルコキシ化ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、及びポリプロピレングリコールジアクリレートからなる群より選ばれる少なくとも1種が好ましい。
 また、3官能以上のラジカル重合性モノマーとしては、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、カプロラクトン変性トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、グリセリンプロポキシトリアクリレート、エトキシ化ジペンタエリスリトールヘキサアクリレート、カプロラクタム変性ジペンタエリスリトールヘキサアクリレート、プロポキシ化グリセリントリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、及びプロポキシ化トリメチロールプロパントリアクリレートからなる群より選ばれる少なくとも1種が好ましい。
Among these radically polymerizable monomers, as a radically polymerizable monomer having two or less functional groups, 1,6-hexanediol diacrylate (HDDA), 1,9-nonanediol diacrylate (NDDA), 1,10-decanediol Diacrylate (DDDA), 3-methylpentadiol diacrylate (3MPDDA), neopentyl glycol diacrylate, tricyclodecane dimethanol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol Diacrylate (TPGDA), cyclohexanone dimethanol diacrylate, alkoxylated hexanediol diacrylate, polyethylene glycol diacrelay And at least one is preferably selected from the group consisting of polypropylene glycol diacrylate.
Moreover, as a radically polymerizable monomer having 3 or more functions, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, ethoxylated Trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, caprolactone modified trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol ethoxy tetraacrylate, glycerin propoxy triacrylate, ethoxylated dipentaerythritol hexaacrylate, caprolactam modified dipentaeri Li hexaacrylate, propoxylated glycerol triacrylate, ethoxylated trimethylolpropane triacrylate, and at least one selected from the group consisting of propoxylated trimethylol propane triacrylate are preferred.
 特定粒子は、2官能以下のラジカル重合性モノマーと3官能以上のラジカル重合性モノマーとの組合せを含んでもよい。この場合、2官能以下のラジカル重合性モノマーが、画像と基材との密着性に寄与し、3官能以上のラジカル重合性モノマーが、画像の硬度向上に寄与する。
 2官能以下のラジカル重合性モノマーと3官能以上のラジカル重合性モノマーとの組合せとしては、2官能のアクリレート化合物と3官能のアクリレート化合物との組合せ、2官能のアクリレート化合物と5官能のアクリレート化合物との組み合わせ、単官能のアクリレート化合物と4官能のアクリレート化合物との組み合わせなどが挙げられる。
The specific particles may contain a combination of a difunctional or less radically polymerizable monomer and a trifunctional or more radically polymerizable monomer. In this case, the difunctional or less radically polymerizable monomer contributes to the adhesion between the image and the substrate, and the trifunctional or more radically polymerizable monomer contributes to the improvement of the image hardness.
As a combination of a difunctional or less radically polymerizable monomer and a trifunctional or more radically polymerizable monomer, a combination of a difunctional acrylate compound and a trifunctional acrylate compound, a difunctional acrylate compound and a pentafunctional acrylate compound And combinations of monofunctional acrylate compounds and tetrafunctional acrylate compounds.
 画像と基材との密着性をより向上させる観点から、特定粒子に含まれ得るラジカル重合性モノマーの少なくとも1種は、環状構造を有するラジカル重合性モノマー(以下、「環状ラジカル重合性モノマー」ともいう)であることが好ましい。
 環状ラジカル重合性モノマーとしては、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート等が挙げられる。
 また、以下で説明する、2官能以上の環状ラジカル重合性モノマーも挙げられる。
From the viewpoint of further improving the adhesion between the image and the substrate, at least one of the radically polymerizable monomers that may be contained in the specific particles is also a radically polymerizable monomer having a cyclic structure (hereinafter, "cyclic radically polymerizable monomer") Is preferred.
As a cyclic radically polymerizable monomer, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyl oxyethyl acrylate, dicyclopentanyl acrylate, ethoxylated isocyanuric acid triacrylate, ε And caprolactone-modified tris- (2-acryloxyethyl) isocyanurate.
In addition, bifunctional or higher cyclic radical polymerizable monomers described below are also included.
 画像と基材との密着性を更に向上させる観点から、特定粒子に含まれ得るラジカル重合性モノマーの少なくとも1種は、1つ以上の環状構造と、2つ以上の(メタ)アクリロイル基と、を含む重合性モノマー(以下、「2官能以上の環状ラジカル重合性モノマー」ともいう)であることが好ましい。
 2官能以上の環状ラジカル重合性モノマーとしては、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAエチレンオキシド(EO)付加物ジ(メタ)アクリレート、ビスフェノールAプロピレンオキシド(PO)付加物ジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、アルコキシ化ジメチロールトリシクロデカンジ(メタ)アクリレート、アルコキシ化シクロヘキサノンジメタノールジ(メタ)アクリレート、シクロヘキサノンジメタノールジ(メタ)アクリレート等が挙げられる。
From the viewpoint of further improving the adhesion between the image and the substrate, at least one of radically polymerizable monomers that can be contained in the specific particles has one or more cyclic structures and two or more (meth) acryloyl groups, It is preferable that it is a polymerizable monomer containing (hereinafter also referred to as “a bifunctional or higher cyclic radical polymerizable monomer”).
As a bifunctional or more cyclic radically polymerizable monomer, tricyclodecane dimethanol di (meth) acrylate, bisphenol A ethylene oxide (EO) adduct di (meth) acrylate, bisphenol A propylene oxide (PO) adduct di (meth) Acrylate, ethoxylated bisphenol A di (meth) acrylate, alkoxylated dimethylol tricyclodecane di (meth) acrylate, alkoxylated cyclohexanone dimethanol di (meth) acrylate, cyclohexanone dimethanol di (meth) acrylate and the like.
 特定粒子がラジカル重合性モノマーを含む場合、この重合性モノマー全体に占める2官能以上の環状ラジカル重合性モノマーの割合は、10質量%~100質量%が好ましく、30質量%~100質量%がより好ましく、40質量%~100質量%が特に好ましい。 When the specific particles contain a radically polymerizable monomer, the proportion of the bifunctional or higher cyclic radically polymerizable monomer in the entire polymerizable monomer is preferably 10% by mass to 100% by mass, and more preferably 30% by mass to 100% by mass. Preferably, 40% by mass to 100% by mass is particularly preferable.
 上記に挙げたラジカル重合性モノマーの他にも、山下晋三編、「架橋剤ハンドブック」、(1981年大成社);加藤清視編、「UV・EB硬化ハンドブック(原料編)」(1985年、高分子刊行会);ラドテック研究会編、「UV・EB硬化技術の応用と市場」、79頁、(1989年、シーエムシー);滝山栄一郎著、「ポリエステル樹脂ハンドブック」、(1988年、日刊工業新聞社)等に記載の市販品、並びに業界で公知のラジカル重合性及び架橋性のモノマーを用いることができる。 In addition to the above-mentioned radically polymerizable monomers, Y. Yamashita, 3rd. Ed., "Crosslinking Agent Handbook", (1981 Taiseisha); Kato Seikohen, "UV · EB Curing Handbook (raw materials)" (1985) "Polymer publication"; Rad Tech Research Group, "Application and market of UV / EB curing technology", page 79, (1989, CMC); Eiichiro Takiyama, "Polyester resin handbook", (1988, Nikkan Kogyo Co., Ltd.) Commercial products described in Shimbunsha et al., And radically polymerizable and crosslinkable monomers known in the art can be used.
 カチオン重合性モノマーの例としては、エポキシ化合物、ビニルエーテル化合物、及びオキセタン化合物が挙げられる。
 カチオン重合性モノマーとしては、少なくとも1つのオレフィン、チオエーテル、アセタール、チオキサン、チエタン、アジリジン、N複素環、O複素環、S複素環、P複素環、アルデヒド、ラクタム、又は環状エステル基を有する化合物が好ましい。
Examples of cationically polymerizable monomers include epoxy compounds, vinyl ether compounds, and oxetane compounds.
As a cationically polymerizable monomer, a compound having at least one olefin, thioether, acetal, thioxane, thietane, aziridine, N heterocycle, O heterocycle, S heterocycle, P heterocycle, aldehyde, lactam, or cyclic ester group preferable.
 カチオン重合性モノマーとしては、J. V. Crivelloらの「Advances in Polymer Science」, 62, pages 1 to 47 (1984)、Leeらの「Handbook of Epoxy Resins」, McGraw Hill Book Company, New York (1967) 、及びP. F. Bruinsらの「Epoxy Resin Technology」,(1968)に記載の化合物を用いてもよい。 As cationically polymerizable monomers, see "Advances in Polymer Science" by J. V. Crivello et al., 62, pages 1 to 47 (1984), "Handbook of Epoxy Resins" by Lee et al., McGraw Hill Book Company, New York (1967). And P. F. Bruins et al., “Epoxy Resin Technology”, (1968) may be used.
 また、光重合性モノマーとしては、特開平7-159983号公報、特公平7-31399号公報、特開平8-224982号公報、特開平10-863号公報、特開平9-134011号公報、特表2004-514014号公報等の各公報に記載の光重合性組成物に用いられる光硬化性の重合性モノマーが知られており、これらも特定粒子に含まれ得る重合性モノマーとして適用することができる。 Also, as the photopolymerizable monomer, JP-A-77-159983, JP-B-7-31399, JP-A-8-224982, JP-A-10-863, JP-A-9-134011, and the like can be used. The photocurable polymerizable monomers used in the photopolymerizable compositions described in the respective publications such as Table 2004-514014 are known, and these may also be applied as polymerizable monomers which can be contained in specific particles. it can.
 光重合性モノマーとしては、上市されている市販品を用いてもよい。
 光重合性モノマーの市販品の例としては、AH-600(2官能)、AT-600(2官能)、UA-306H(6官能)、UA-306T(6官能)、UA-306I(6官能)、UA-510H(10官能)、UF-8001G(2官能)、DAUA-167(2官能)、ライトアクリレートNPA(2官能)、ライトアクリレート3EG-A(2官能)(以上、共栄社化学(株))、SR339A(PEA、単官能)、SR506(IBOA、単官能)、CD262(2官能)、SR238(HDDA、2官能)、SR341(3MPDDA、2官能)、SR508(2官能)、SR306H(2官能)、CD560(2官能)、SR833S(2官能)、SR444(3官能)、SR454(3官能)、SR492(3官能)、SR499(3官能)、CD501(3官能)、SR502(3官能)、SR9020(3官能)、CD9021(3官能)、SR9035(3官能)、SR494(4官能)、SR399E(5官能)(以上、サートマー社)、A-NOD-N(NDDA、2官能)、A-DOD-N(DDDA、2官能)、A-200(2官能)、APG-400(2官能)、A-BPE-10(2官能)、A-BPE-20(2官能)、A-9300(3官能)、A-9300-1CL(3官能)、A-TMPT(3官能)、A-TMM-3L(3官能)、A-TMMT(4官能)、AD-TMP(4官能)(以上、新中村化学工業(株))、UV-7510B(3官能)(日本合成化学(株))、KAYARAD DPCA-30(6官能)、KAYARAD DPEA-12(6官能)(以上、日本化薬(株))等が挙げられる。
 その他、重合性モノマーとしては、NPGPODA(ネオペンチルグリコールプロピレンオキシド付加物ジアクリレート)、SR531、SR285、SR256(以上、サートマー社)、A-DHP(ジペンタエリスリトールヘキサアクリレート、新中村化学工業(株))、アロニックス(登録商標)M-156(東亞合成(株))、V-CAP(BASF社)、ビスコート#192(大阪有機化学工業(株))等の市販品を好適に用いることができる。
 これらの市販品の中でも、特に環状構造を有する光重合性モノマーである、SR506、SR833S、A-9300、又はA-9300-CLが好ましく、SR833Sが特に好ましい。
As a photopolymerizable monomer, you may use the commercial item marketed.
Examples of commercial products of the photopolymerizable monomer include AH-600 (bifunctional), AT-600 (bifunctional), UA-306H (six functional), UA-306T (six functional), UA-306I (six functional) ), UA-510H (10 functional), UF-8001G (bifunctional), DAUA-167 (bifunctional), light acrylate NPA (bifunctional), light acrylate 3EG-A (bifunctional) (all, Kyoeisha Chemical (stock) ), SR339A (PEA, monofunctional), SR506 (IBOA, monofunctional), CD262 (bifunctional), SR238 (HDDA, bifunctional), SR341 (3MPDDA, bifunctional), SR508 (bifunctional), SR306H (2 Functional), CD 560 (bifunctional), SR833S (bifunctional), SR444 (trifunctional), SR454 (trifunctional), SR492 (trifunctional), SR 99 (trifunctional), CD501 (trifunctional), SR502 (trifunctional), SR9020 (trifunctional), CD9021 (trifunctional), SR9035 (trifunctional), SR494 (tetrafunctional), SR399E (trifunctional) (above, Sartmar, A-NOD-N (NDDA, bifunctional), A-DOD-N (DDDA, bifunctional), A-200 (bifunctional), APG-400 (bifunctional), A-BPE-10 (bifunctional) Bifunctional), A-BPE-20 (bifunctional), A-9300 (trifunctional), A-9300-1CL (trifunctional), A-TMPT (trifunctional), A-TMM-3L (trifunctional), A-TMMT (4 functions), AD-TMP (4 functions) (above, Shin-Nakamura Chemical Co., Ltd.), UV-7510 B (3 functions) (Japan Synthetic Chemical Co., Ltd.), KAYARAD DPCA-30 (6 functions) ), KAYARA DPEA-12 (6 functional) (Nippon Kayaku Co.) and the like.
In addition, as polymerizable monomers, NPGPODA (neopentyl glycol propylene oxide adduct diacrylate), SR 531, SR 285, SR 256 (above, Sartomer), A-DHP (dipentaerythritol hexaacrylate, Shin-Nakamura Chemical Co., Ltd.) Commercial products such as Alonics (registered trademark) M-156 (Toagosei Co., Ltd.), V-CAP (BASF Corporation), and Viscote # 192 (Osaka Organic Chemical Industry Co., Ltd.) can be suitably used.
Among these commercially available products, SR506, SR833S, A-9300, or A-9300-CL, which is a photopolymerizable monomer having a cyclic structure, is particularly preferable, and SR833S is particularly preferable.
-熱重合性モノマー-
 熱重合性モノマーは、加熱もしくは赤外線の照射によって重合可能な重合性モノマーの群から選択できる。熱重合性モノマーとしては、例えば、エポキシ化合物、オキセタン化合物、アジリジン化合物、アゼチジン化合物、ケトン化合物、アルデヒド化合物、ブロックイソシアネート化合物等が挙げられる。
-Thermally polymerizable monomer-
The thermally polymerizable monomers can be selected from the group of polymerizable monomers that can be polymerized by heating or irradiation with infrared radiation. As a thermally polymerizable monomer, an epoxy compound, an oxetane compound, an aziridine compound, an azetidine compound, a ketone compound, an aldehyde compound, a block isocyanate compound etc. are mentioned, for example.
 エポキシ化合物としては、1,4-ブタンジオールジグリシジルエーテル、3-(ビス(グリシジルオキシメチル)メトキシ)-1,2-プロパンジオール、リモネンオキシド、2-ビフェニルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’、4’-エポキシシクロヘキサンカルボキシレート、エピクロロヒドリン-ビスフェノールS由来のエポキシド、エポキシ化スチレン、エピクロロヒドリン-ビスフェノールF由来のエポキシド、エピクロロヒドリン-ビスフェノールA由来のエポキシド、エポキシ化ノボラック、脂環式ジエポキシド等の2官能以下のエポキシ化合物;
 多塩基酸のポリグリシジルエステル、ポリオールのポリグリシジルエーテル、ポリオキシアルキレングリコールのポリグリシジルエーテル、芳香族ポリオールのポリグリシジルエステル、ウレタンポリエポキシ化合物、ポリエポキシポリブタジエン等の3官能以上のエポキシ化合物などが挙げられる。
 エポキシ化合物の市販品としては、EPICLON(登録商標)840(DIC社)が挙げられる。
As an epoxy compound, 1,4-butanediol diglycidyl ether, 3- (bis (glycidyloxymethyl) methoxy) -1,2-propanediol, limonene oxide, 2-biphenyl glycidyl ether, 3,4-epoxycyclohexylmethyl -3 ', 4'-Epoxycyclohexanecarboxylate, epoxide derived from epichlorohydrin-bisphenol S, epoxidized styrene, epoxide derived from epichlorohydrin-bisphenol F, epoxide derived from epichlorohydrin-bisphenol A, epoxy Difunctional or less epoxy compounds such as fluorinated novolaks and alicyclic diepoxides;
Examples include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyols, polyglycidyl ethers of polyoxyalkylene glycols, polyglycidyl esters of aromatic polyols, urethane polyepoxy compounds, and epoxy compounds having three or more functional groups such as polyepoxy polybutadiene and the like. Be
Commercial products of epoxy compounds include EPICLON (registered trademark) 840 (DIC Corporation).
 オキセタン化合物としては、3-エチル-3-ヒドロキシメチル-1-オキセタン、1,4ビス[3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、3-エチル-3-フェノキシメチル-オキセタン、ビス([1-エチル(3-オキセタニル)]メチル)エーテル、3-エチル-3-[(2-エチルヘキシルオキシ)メチル]オキセタン、3-エチル-[(トリエトキシシリルプロポキシ)メチル]オキセタン、3,3-ジメチル-2-(p-メトキシフェニル)-オキセタン等が挙げられる。 Examples of oxetane compounds include 3-ethyl-3-hydroxymethyl-1-oxetane, 1,4 bis [3-ethyl-3-oxetanylmethoxy) methyl] benzene, 3-ethyl-3-phenoxymethyl-oxetane, bis ([ 1-ethyl (3-oxetanyl)] methyl) ether, 3-ethyl-3-[(2-ethylhexyloxy) methyl] oxetane, 3-ethyl-[(triethoxysilylpropoxy) methyl] oxetane, 3,3-dimethyl -2- (p-methoxyphenyl) -oxetane and the like.
 ブロックイソシアネート化合物としては、イソシアネート化合物をブロック化剤(所謂、活性水素含有化合物)で不活性化した化合物が挙げられる。
 イソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トルイルジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート三量体、トリメチルへキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、タケネート(登録商標;三井化学(株))、デュラネート(登録商標;旭化成(株))、Bayhydur(登録商標;バイエルAG社)などの市販のイソシアネート、又はこれらを組み合わせた二官能以上のイソシアネートが好ましい。
As a block isocyanate compound, the compound which inactivated the isocyanate compound with blocking agent (what is called, active hydrogen containing compound) is mentioned.
As an isocyanate compound, for example, hexamethylene diisocyanate, isophorone diisocyanate, toluyl diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate trimer, trimethylhexylylene diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, takenate (registration Trademarks: Commercially available isocyanates such as Mitsui Chemical Co., Ltd., Duranate (registered trademark; Asahi Kasei Co., Ltd.), Bayhydur (registered trademark; Bayer AG), etc., or difunctional or higher functional isocyanates combining these are preferred.
 ブロック化剤としては、ラクタム[例えばε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等]、オキシム[例えばアセトオキシム、メチルエチルケトオキシム(MEKオキシム)、メチルイソブチルケトオキシム(MIBKオキシム)、シクロヘキサノンオキシム等]、アミン[例えば脂肪族アミン(ジメチルアミン、ジイソピルアミン、ジ-n-プロピルアミン、ジイソブチルアミン等)、脂環式アミン(メチルヘキシルアミン、ジシクロヘキシルアミン等)、芳香族アミン(アニリン、ジフェニルアミン等)など]、脂肪族アルコール[例えばメタノール、エタノール、2-プロパノール、n-ブタノール等]、フェノール及びアルキルフェノール[例えばフェノール、クレゾール、エチルフェノール、n-プロピルフェノール、イソプロピルフェノール、n-ブチルフェノール、オクチルフェノール、ノニルフェノール、キシレノール、ジイソプロピルフェノール、ジ-t-ブチルフェノール等]、イミダゾール[例えばイミダゾール、2-メチルイミダゾール等]、ピラゾール[例えばピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾール等]、イミン[例えばエチレンイミン、ポリエチレンイミン等]、活性メチレン[例えばマロン酸ジメチル、マロン酸ジエチル、マロン酸ジイソプロピル、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル等]、特開2002-309217号公報及び特開2008-239890号公報に記載のブロック化剤、並びにこれらの2種以上の混合物が挙げられる。中でも、ブロック化剤としては、オキシム、ラクタム、ピラゾール、活性メチレン、又はアミンが好ましい。 As the blocking agent, lactam [eg ε-caprolactam, δ-valerolactam, γ-butyrolactam etc.], oxime [eg acetoxime, methyl ethyl keto oxime (MEK oxime), methyl isobutyl keto oxime (MIBK oxime), cyclohexanone oxime etc] , Amines [eg aliphatic amines (dimethylamine, diisopyramine, di-n-propylamine, diisobutylamine etc.), alicyclic amines (methylhexylamine, dicyclohexylamine etc.), aromatic amines (aniline, diphenylamine etc.) etc.] Aliphatic alcohols [eg methanol, ethanol, 2-propanol, n-butanol etc], phenols and alkylphenols [eg phenol, cresol, ethylphenol, n-propyl phenol N, isopropylphenol, n-butylphenol, octylphenol, nonylphenol, xylenol, diisopropylphenol, di-t-butylphenol etc.], imidazole [eg imidazole, 2-methylimidazole etc.], pyrazole [eg pyrazole, 3-methylpyrazole, 3, 5-dimethylpyrazole, etc., imine [eg ethyleneimine, polyethyleneimine etc.], active methylene [eg dimethyl malonate, diethyl malonate, diisopropyl malonate, acetylacetone, methyl acetoacetate, ethyl acetoacetate etc.], JP-A-2002- Examples thereof include the blocking agents described in Japanese Patent Application Laid-Open No. 309217 and Japanese Patent Application Laid-Open No. 2008-239890, and mixtures of two or more of these. Among them, as the blocking agent, oxime, lactam, pyrazole, active methylene or amine is preferable.
 ブロックイソシアネート化合物としては、上市されている市販品を用いてもよく、例えば、Trixene(登録商標)BI7982、BI7641,BI7642、BI7950、BI7960、BI7991等(Baxenden Chemicals LTD)、Bayhydur(登録商標;Bayer AG社)が好適に用いられる。また、国際公開第2015/158654号の段落[0064]に記載の化合物群も好適に用いられる。 As the blocked isocyanate compound, commercially available commercial products may be used. For example, Trixene (registered trademark) BI7982, BI7641, BI7642, BI7950, BI7960, BI7991 and the like (Baxenden Chemicals LTD), Bayhydur (registered trademark; Bayer AG) Company) is preferably used. In addition, a compound group described in paragraph [0064] of WO 2015/158654 is also suitably used.
 既述の特定ポリマー及び既述の重合性モノマーを含む特定粒子は、例えば、特定ポリマー及び重合性モノマーを含む油相成分と、水相成分と、を混合した混合物を乳化させることによって製造することができる。 The specific particle containing the specific polymer described above and the polymerizable monomer described above is produced, for example, by emulsifying a mixture of an oil phase component containing the specific polymer and the polymerizable monomer and an aqueous phase component. Can.
(光重合開始剤)
 特定粒子は、光重合開始剤の少なくとも1種を含んでいてもよい。
 特定粒子が光重合性モノマー(例えば、ラジカル重合性モノマー)を含む場合には、特定粒子は、光重合開始剤の少なくとも1種を含むことが好ましい。
(Photopolymerization initiator)
The specific particles may contain at least one photopolymerization initiator.
When the specific particle contains a photopolymerizable monomer (for example, a radical polymerizable monomer), the specific particle preferably contains at least one photopolymerization initiator.
 特定粒子が光重合開始剤を含む場合には、光(即ち、活性エネルギー線)に対する感度が高くなり、硬度により優れ、かつ、基材との密着性にもより優れた画像が得られる。
 詳細には、特定粒子が光重合開始剤を含む場合、1つの特定粒子が、光重合性モノマーと光重合開始剤との両方を有する。このため、光重合性モノマーと光重合開始剤との距離が近くなるので、従来の光硬化性組成物を用いた場合と比較して、膜の硬化感度(以下、単に「感度」ともいう)が向上する。その結果、硬度により優れ、かつ、基材との密着性にもより優れた膜が形成される。
When the specific particles contain a photopolymerization initiator, the sensitivity to light (i.e., active energy ray) is high, and an image having an excellent hardness and an excellent adhesion to a substrate can be obtained.
In particular, when the specific particle contains a photopolymerization initiator, one specific particle has both a photopolymerizable monomer and a photopolymerization initiator. For this reason, since the distance between the photopolymerizable monomer and the photopolymerization initiator is close, the curing sensitivity of the film (hereinafter, also simply referred to as "sensitivity") as compared with the case of using a conventional photocurable composition. Improve. As a result, a film which is more excellent in hardness and more excellent in adhesion to a substrate is formed.
 また、特定粒子が光重合開始剤を含む場合、従来、高感度ではあるが水への分散性が低い又は溶解性が低いために用いることが難しかった光重合開始剤(例えば、水への溶解度が25℃において1.0質量%以下である光重合開始剤)を用いることができる。これにより、使用する光重合開始剤の選択の幅が広がり、ひいては、用いられる光源の選択の幅も広がる。このため、従来よりも硬化感度が向上し得る。
 既述の、高感度ではあるが水への分散性が低い又は溶解性が低いために用いることが難しかった光重合開始剤として、具体的には、後述のカルボニル化合物及びアシルホスフィンオキシド化合物が挙げられ、アシルホスフィンオキシド化合物が好ましい。
 このように、本開示のインクは、水に対する溶解性が低い物質を特定粒子に含ませることにより、水系の組成物である本開示のインク中に含有させることができる。このことも本開示のインクの利点の一つである。
Furthermore, when specific particles contain a photopolymerization initiator, it has been difficult to use a photopolymerization initiator (for example, water solubility), which has high sensitivity but low dispersibility or low solubility in water. Can be used at 25 ° C. in an amount of 1.0 mass% or less. This broadens the choice of the photoinitiator to be used and thus also broadens the choice of the light source used. For this reason, curing sensitivity can be improved more than before.
Specific examples of the photopolymerization initiator described above, which have high sensitivity but low dispersibility or solubility in water but are difficult to use, include carbonyl compounds and acyl phosphine oxide compounds described later. Acyl phosphine oxide compounds are preferred.
Thus, the ink of the present disclosure can be contained in the ink of the present disclosure, which is a water-based composition, by including a substance having low water solubility in the specific particles. This is also one of the advantages of the ink of the present disclosure.
 また、特定粒子が光重合開始剤を含む態様のインクは、従来の光硬化性組成物と比較して、保存安定性にも優れる。この理由は、光重合開始剤が特定粒子に含まれていることにより、光重合開始剤の凝集又は沈降が抑制されるためと考えられる。 In addition, the ink of the embodiment in which the specific particles contain a photopolymerization initiator is excellent in storage stability as compared with the conventional photocurable composition. The reason is considered to be that aggregation or sedimentation of the photopolymerization initiator is suppressed by containing the photopolymerization initiator in the specific particles.
 特定粒子に含まれ得る光重合開始剤としては、公知の光重合開始剤を適宜選択して使用することができる。
 光重合開始剤は、光(即ち、活性エネルギー線)を吸収して重合開始種であるラジカルを生成する化合物である。
As a photoinitiator which may be contained in specific particle | grains, a well-known photoinitiator can be selected suitably and can be used.
The photopolymerization initiator is a compound that absorbs light (that is, active energy rays) to generate a radical which is a polymerization initiation species.
 光重合開始剤としては公知の化合物を使用できるが、好ましい光重合開始剤として、(a)芳香族ケトン類等のカルボニル化合物、(b)アシルホスフィンオキシド化合物、(c)芳香族オニウム塩化合物、(d)有機過酸化物、(e)チオ化合物、(f)ヘキサアリールビイミダゾール化合物、(g)ケトオキシムエステル化合物、(h)ボレート化合物、(i)アジニウム化合物、(j)メタロセン化合物、(k)活性エステル化合物、(l)炭素ハロゲン結合を有する化合物、(m)アルキルアミン化合物等が挙げられる。 Although a well-known compound can be used as a photoinitiator, As a preferable photoinitiator, (a) Carbonyl compounds, such as aromatic ketones, (b) Acyl phosphine oxide compounds, (c) Aromatic onium salt compounds, (D) organic peroxide, (e) thio compound, (f) hexaarylbiimidazole compound, (g) ketoxime ester compound, (h) borate compound, (i) azinium compound, (j) metallocene compound, k) Active ester compounds, (l) compounds having a carbon halogen bond, (m) alkylamine compounds and the like.
 これらの光重合開始剤は、上記(a)~(m)の化合物を1種単独もしくは2種以上を組み合わせて使用してもよい。 These photopolymerization initiators may be used alone or in combination of two or more of the compounds (a) to (m).
 (a)カルボニル化合物、(b)アシルホスフィンオキシド化合物、及び、(e)チオ化合物の好ましい例としては、”RADIATION CURING IN POLYMER SCIENCE AND TECHNOLOGY”,J.P.FOUASSIER,J.F.RABEK(1993)、pp.77~117に記載のベンゾフェノン骨格又はチオキサントン骨格を有する化合物等が挙げられる。
 より好ましい例としては、特公昭47-6416号公報記載のα-チオベンゾフェノン化合物、特公昭47-3981号公報記載のベンゾインエーテル化合物、特公昭47-22326号公報記載のα-置換ベンゾイン化合物、特公昭47-23664号公報記載のベンゾイン誘導体、特開昭57-30704号公報記載のアロイルホスホン酸エステル、特公昭60-26483号公報記載のジアルコキシベンゾフェノン、特公昭60-26403号公報、特開昭62-81345号公報記載のベンゾインエーテル類、特公平1-34242号公報、米国特許第4,318,791号パンフレット、ヨーロッパ特許0284561A1号公報に記載のα-アミノベンゾフェノン類、特開平2-211452号公報記載のp-ジ(ジメチルアミノベンゾイル)ベンゼン、特開昭61-194062号公報記載のチオ置換芳香族ケトン、特公平2-9597号公報記載のアシルホスフィンスルフィド、特公平2-9596号公報記載のアシルホスフィン、特公昭63-61950号公報記載のチオキサントン類、特公昭59-42864号公報記載のクマリン類等を挙げることができる。
 また、特開2008-105379号公報又は特開2009-114290号公報に記載の重合開始剤も好ましい。
As preferable examples of (a) a carbonyl compound, (b) an acyl phosphine oxide compound, and (e) a thio compound, “RADIATION CURE IN POLYMER SCIENCE AND TECHNOLOGY”, J. P. FOUASSIER, J.J. F. RABEK (1993), pp. And compounds having a benzophenone skeleton or a thioxanthone skeleton described in 77 to 117, and the like.
More preferable examples include an α-thiobenzophenone compound described in JP-B-47-6416, a benzoin ether compound described in JP-B-47-3981, an α-substituted benzoin compound described in JP-B-47-22326, and Benzoin derivatives described in JP-A-47-23664; aroyl phosphonic acid esters disclosed in JP-A-57-30704; dialkoxybenzophenones described in JP-B-60-26483; JP-B-60-26403; Benzoin ethers described in JP-A-62-81345, JP-B1-34242, U.S. Pat. No. 4,318,791 pamphlet, .alpha.-aminobenzophenones described in EP-A-0284561 A1, JP-A-2-211452 P-di (dimethylamino) described in Nzoyl) benzene, thio-substituted aromatic ketone described in JP-A-61-194062, acyl phosphine sulfide described in JP-B-2-9597, acyl phosphine described in JP-B-2-9596, JP-B-63-61950 Thioxanthones described in Japanese Patent Application Publication No. Hei 5 (1995), coumarins described in Japanese Patent Publication No. 59-42864, and the like can be mentioned.
In addition, a polymerization initiator described in JP-A 2008-105379 or JP-A 2009-114290 is also preferable.
 光重合開始剤の市販品の例としては、IRGACURE(登録商標)184、369、500、651、819、907、1000、1300、1700、1870、DAROCUR(登録商標)1173、2959、4265、ITX、LUCIRIN(登録商標)TPO〔以上、全てBASF社〕、ESACURE(登録商標)KTO37、KTO46、KIP150、EDB〔以上、全てLamberti社〕、H-Nu(登録商標)470、470X〔以上、全てSpectra Group Limited社〕、Omnipol TX、9210〔以上、全てIGM Resins B.V.社〕、SPEEDCURE7005、7010、7040〔以上、LAMBSON社〕等が挙げられる。 Examples of commercial products of the photopolymerization initiator include IRGACURE (registered trademark) 184, 369, 500, 651, 819, 907, 1000, 1300, 1700, 1870, DAROCUR (registered trademark) 1173, 2959, 4265, ITX, LUCIRIN (registered trademark) TPO [all, BASF Corporation], ESACURE (registered trademark) KTO 37, KTO 46, KIP 150, EDB [all, Lamberti company], H-Nu (registered trademark) 470, 470X [all, Spectra Group Limited], Omnipol TX, 9210 [all, IGM Resins B. V. ], SPEEDCURE 7005, 7010, 7040 [above, LAMBSON company] etc. is mentioned.
 これらの光重合開始剤の中でも、(a)カルボニル化合物又は(b)アシルホスフィンオキシド化合物がより好ましく、具体的には、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド(例えば、BASF社のIRGACURE(登録商標)819)、2-(ジメチルアミン)-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタノン(例えば、BASF社のIRGACURE(登録商標)369)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(例えば、BASF社のIRGACURE(登録商標)907)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(例えば、BASF社のIRGACURE(登録商標)184)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキシド(例えば、DAROCUR(登録商標)TPO、LUCIRIN(登録商標)TPO(いずれもBASF社))などが挙げられる。
 これらの中でも、感度向上の観点及びLED光への適合性の観点等から、内包光重合開始剤としては、(b)アシルホスフィンオキシド化合物が好ましく、モノアシルホスフィンオキシド化合物(特に好ましくは、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキシド)、又は、ビスアシルホスフィンオキシド化合物(特に好ましくは、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド)がより好ましい。
 LED光の波長としては、355nm、365nm、385nm、395nm、又は405nmが好ましい。
Among these photopolymerization initiators, (a) a carbonyl compound or (b) an acylphosphine oxide compound is more preferable, and specifically, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (eg, BASF) Corporation IRGACURE® 819), 2- (Dimethylamine) -1- (4-morpholinophenyl) -2-benzyl-1-butanone (eg, IRGACURE® 369 from BASF), 2-methyl -1- (4-Methylthiophenyl) -2-morpholinopropan-1-one (eg, IRGACURE® 907 from BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (eg, IRGACURE from BASF (Registered trademark) 184), 2,4,6-trimethylbenzoi - diphenyl - phosphine oxide (e.g., DAROCUR (R) TPO, LUCIRIN (TM) TPO (both BASF)), and the like.
Among these, from the viewpoint of sensitivity improvement and compatibility with LED light, as the encapsulated photopolymerization initiator (b), an acyl phosphine oxide compound is preferable, and a monoacyl phosphine oxide compound (particularly preferably 2, More preferred is 4,6-trimethylbenzoyl-diphenyl-phosphine oxide) or a bisacylphosphine oxide compound (particularly preferably bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide).
As a wavelength of LED light, 355 nm, 365 nm, 385 nm, 395 nm, or 405 nm is preferable.
 また、マイグレーション抑制の観点からみると、光重合開始剤としては、高分子型光重合開始剤も好ましい。
 高分子型光重合開始剤としては、前述の、Omnipol TX、9210;SPEEDCURE7005、7010、7040等が挙げられる。
In addition, from the viewpoint of suppressing migration, as the photopolymerization initiator, a polymer type photopolymerization initiator is also preferable.
As a polymeric photoinitiator, the above-mentioned Omnipol TX, 9210; SPEEDCURE7005, 7010, 7040 etc. are mentioned.
 光重合開始剤を含む特定粒子は、例えば、特定ポリマー、光重合性モノマー、及び光重合開始剤を含む油相成分と、水相成分と、を混合した混合物を乳化させることによって製造することができる。 A specific particle containing a photopolymerization initiator can be produced, for example, by emulsifying a mixture of an aqueous phase component and an oil phase component containing a specific polymer, a photopolymerizable monomer, and a photopolymerization initiator. it can.
 光重合開始剤の含有量は、特定粒子の全固形分量に対して、0.1質量%~25質量%が好ましく、より好ましくは0.5質量%~20質量%、さらに好ましくは1質量%~15質量%である。 The content of the photopolymerization initiator is preferably 0.1% by mass to 25% by mass, more preferably 0.5% by mass to 20% by mass, still more preferably 1% by mass, based on the total solid content of the specific particles. It is ̃15% by mass.
(増感剤)
 特定粒子は、増感剤の少なくとも1種を含んでいてもよい。
 特定粒子が光重合開始剤の少なくとも1種を含む場合には、特定粒子は、増感剤の少なくとも1種を含むことが好ましい。
 特定粒子が増感剤を含有すると、光(即ち、活性エネルギー線)の照射による光重合開始剤の分解がより促進され得る。
 増感剤は、特定の活性エネルギー線を吸収して電子励起状態となる物質である。電子励起状態となった増感剤は、光重合開始剤と接触して、電子移動、エネルギー移動、発熱等の作用を生じる。これにより、光重合開始剤の化学変化、即ち、分解、ラジカル、酸又は塩基の生成等が促進される。
(Sensitizer)
The specific particles may contain at least one sensitizer.
When the specific particles contain at least one photopolymerization initiator, the specific particles preferably contain at least one sensitizer.
When the specific particles contain a sensitizer, the decomposition of the photopolymerization initiator by irradiation of light (ie, active energy ray) can be further promoted.
A sensitizer is a substance that absorbs a specific activation energy ray to be in an electronically excited state. The sensitizer in the electronically excited state comes into contact with the photopolymerization initiator to produce actions such as electron transfer, energy transfer, heat generation, and the like. This promotes chemical change of the photopolymerization initiator, that is, decomposition, formation of radicals, acid or base, and the like.
 増感剤としては、例えば、ベンゾフェノン、チオキサントン、イソプロピルチオキサントン、アントラキノン、3-アシルクマリン誘導体、ターフェニル、スチリルケトン、3-(アロイルメチレン)チアゾリン、ショウノウキノン、エオシン、ローダミン、エリスロシン等が挙げられる。
 また、増感剤としては、特開2010-24276号公報に記載の一般式(i)で表される化合物や、特開平6-107718号公報に記載の一般式(I)で表される化合物も、好適に使用できる。
 上記の中でも、増感剤としては、LED光への適合性及び光重合開始剤との反応性の観点から、チオキサントン、イソプロピルチオキサントン、及びベンゾフェノンから選ばれる少なくとも1種が好ましく、チオキサントン及びイソプロピルチオキサントンから選ばれる少なくとも1種がより好ましく、イソプロピルチオキサントンが更に好ましい。
 特定粒子が増感剤を含む場合、増感剤を1種単独で含んでもよいし、2種以上を含んでいてもよい。
Examples of the sensitizer include benzophenone, thioxanthone, isopropyl thioxanthone, anthraquinone, 3-acyl coumarin derivative, terphenyl, styryl ketone, 3- (aroyl methylene) thiazoline, camphor quinone, eosin, rhodamine, erythrosine and the like. .
Moreover, as a sensitizer, the compound represented by General formula (i) of Unexamined-Japanese-Patent No. 2010-24276, and the compound represented by General Formula (I) of Unexamined-Japanese-Patent No. 6-107718 are mentioned. Can also be suitably used.
Among the above, at least one selected from thioxanthone, isopropylthioxanthone, and benzophenone is preferable as the sensitizer from the viewpoint of compatibility with LED light and reactivity with a photopolymerization initiator, and from thioxanthone and isopropyl thioxanthone At least one selected is more preferable, and isopropylthioxanthone is more preferable.
When the specific particle contains a sensitizer, it may contain one sensitizer alone, or two or more sensitizers.
 特定粒子が増感剤を含む場合、増感剤の含有量は、特定粒子の全固形分量に対し、0.1質量%~20質量%であることが好ましく、0.2質量%~15質量%であることがより好ましく、0.3質量%~10質量%であることが更に好ましい。 When the specific particles contain a sensitizer, the content of the sensitizer is preferably 0.1% by mass to 20% by mass, and 0.2% by mass to 15% by mass with respect to the total solid content of the specific particles. %, More preferably 0.3% by mass to 10% by mass.
 光重合開始剤及び増感剤を含む特定粒子は、例えば、特定ポリマー、光重合性モノマー、光重合開始剤、及び増感剤を含む油相成分と、水相成分と、を混合した混合物を乳化させることによって製造することができる。 Specific particles containing a photopolymerization initiator and a sensitizer include, for example, a mixture of an oil phase component containing a specific polymer, a photopolymerizable monomer, a photopolymerization initiator, and a sensitizer and an aqueous phase component. It can be produced by emulsifying.
(光熱変換剤)
 特定粒子が重合性モノマーとして熱重合性モノマーを含む場合、特定粒子は、光熱変換剤の少なくとも1種を含んでいてもよい。
 光熱変換剤は、赤外線等を吸収して発熱し、熱重合性モノマーを重合硬化させる化合物である。光熱変換剤としては、公知の化合物を用いることができる。
(Photothermal conversion agent)
When the specific particles contain a thermally polymerizable monomer as the polymerizable monomer, the specific particles may contain at least one photothermal conversion agent.
The photothermal conversion agent is a compound that absorbs infrared rays and generates heat to polymerize and cure the thermally polymerizable monomer. As the photothermal conversion agent, known compounds can be used.
 光熱変換剤としては、赤外線吸収剤が好ましい。赤外線吸収剤としては、例えば、ポリメチルインドリウム、インドシアニングリーン、ポリメチン色素、クロコニウム色素、シアニン色素、メロシアニン色素、スクワリリウム色素、カルコゲノピリロアリリデン色素、金属チオレート錯体色素、ビス(カルコゲノピリロ)ポリメチン色素、オキシインドリジン色素、ビスアミノアリルポリメチン色素、インドリジン色素、ピリリウム色素、キノイド色素、キノン色素、フタロシアニン色素、ナフタロシアニン色素、アゾ色素、アゾメチン色素、カーボンブラック等が挙げられる。 As a photothermal conversion agent, an infrared absorber is preferable. Examples of infrared absorbers include polymethylindolium, indocyanine green, polymethine dyes, croconium dyes, cyanine dyes, merocyanine dyes, squarylium dyes, chalcogenopyryloarylidene dyes, metal thiolate complex dyes, bis (chalcogenopirillo) polymethine dyes And oxyindolizine dyes, bisaminoallyl polymethine dyes, indolizine dyes, pyrylium dyes, quinoid dyes, quinone dyes, phthalocyanine dyes, naphthalocyanine dyes, azo dyes, azomethine dyes, carbon black and the like.
 光熱変換剤を含む特定粒子は、例えば、特定ポリマー、熱重合性モノマー、及び光熱変換剤を含む油相成分と、水相成分と、を混合した混合物を乳化させることによって製造することができる。 Specific particles containing a photothermal conversion agent can be produced, for example, by emulsifying a mixture of an oil phase component containing a specific polymer, a thermally polymerizable monomer, and a photothermal conversion agent, and an aqueous phase component.
 光熱変換剤は、一種単独で用いてもよいし、二種以上を併用してもよい。
 光熱変換剤の含有量は、特定粒子の全固形分量に対して、0.1質量%~25質量%であることが好ましく、0.5質量%~20質量%であることがより好ましく、1質量%~15質量%であることが更に好ましい。
A photothermal conversion agent may be used individually by 1 type, and may use 2 or more types together.
The content of the photothermal conversion agent is preferably 0.1% by mass to 25% by mass, and more preferably 0.5% by mass to 20% by mass, with respect to the total solid content of the specific particles. It is more preferable that the content is 15% by mass.
(熱硬化促進剤)
 特定粒子が重合性モノマーとして熱重合性モノマーを含む場合、特定粒子は、熱硬化促進剤の少なくとも1種を含んでいてもよい。
 熱硬化促進剤は、熱重合性モノマーの熱硬化反応を触媒的に促進する化合物である。
(Thermosetting accelerator)
When the specific particles contain a thermally polymerizable monomer as a polymerizable monomer, the specific particles may contain at least one of a heat curing accelerator.
The thermal curing accelerator is a compound that catalytically accelerates the thermal curing reaction of the thermally polymerizable monomer.
 熱硬化促進剤としては、公知の化合物を使用することができる。熱硬化促進剤としては、酸若しくは塩基、又は加熱により酸若しくは塩基を発生させる化合物が好ましく、例えば、カルボン酸、スルホン酸、リン酸、脂肪族アルコール、フェノール、脂肪族アミン、芳香族アミン、イミダゾール(フェニルイミダゾール、2-メチルイミダゾール等)、ピラゾールなどが挙げられる。 Known compounds can be used as the heat curing accelerator. The heat curing accelerator is preferably an acid or a base, or a compound that generates an acid or a base by heating, for example, carboxylic acid, sulfonic acid, phosphoric acid, aliphatic alcohol, phenol, aliphatic amine, aromatic amine, imidazole (Phenylimidazole, 2-methylimidazole etc.), pyrazole etc. may be mentioned.
 熱硬化促進剤を含む特定粒子は、例えば、特定ポリマー、熱重合性モノマー、及び熱硬化促進剤を含む油相成分と、水相成分と、を混合した混合物を乳化させることによって製造することができる。 A specific particle containing a heat curing accelerator may be produced, for example, by emulsifying a mixture of an oil phase component containing a specific polymer, a heat polymerizable monomer, and a heat curing accelerator, and an aqueous phase component. it can.
 熱硬化促進剤は、一種単独で用いてもよいし、二種以上を併用してもよい。
 熱硬化促進剤の含有量は、特定粒子の全固形分量に対して、0.1質量%~25質量%であることが好ましく、0.5質量%~20質量%であることがより好ましく、1質量%~15質量%であることが更に好ましい。
The heat curing accelerator may be used alone or in combination of two or more.
The content of the thermosetting accelerator is preferably 0.1% by mass to 25% by mass, and more preferably 0.5% by mass to 20% by mass, with respect to the total solid content of the specific particles. More preferably, it is 1% by mass to 15% by mass.
 本開示のインクにおいて、特定粒子の全固形分量は、インクの全固形分量に対して50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、80質量%以上であることが更に好ましく、85質量%以上であることが更に好ましい。
 これにより、分散安定性がより向上し、かつ、画像と基材との密着性がより向上する。
In the ink of the present disclosure, the total solid content of the specific particles is preferably 50% by mass or more, more preferably 60% by mass or more, and more preferably 70% by mass or more based on the total solid content of the ink. Is more preferably 80% by mass or more, and still more preferably 85% by mass or more.
Thereby, the dispersion stability is further improved, and the adhesion between the image and the substrate is further improved.
 本開示のインクにおいて、特定粒子の全固形分量は、インクの全量に対して、1質量%~50質量%であることが好ましく、3質量%~40質量%であることがより好ましく、5質量%~30質量%であることが更に好ましい。
 特定粒子の全固形分量がインクの全量に対して1質量%以上であると、画像と基材との密着性がより向上する。
 また、特定粒子の全固形分量がインクの全量に対して50質量%以下であると、インクの分散安定性がより向上する。
In the ink of the present disclosure, the total solid content of the specific particles is preferably 1% by mass to 50% by mass, more preferably 3% by mass to 40% by mass, with respect to the total amount of the ink, and 5% by mass. More preferably, it is from 30% by mass.
When the total solid content of the specific particles is 1% by mass or more with respect to the total amount of the ink, the adhesion between the image and the substrate is further improved.
In addition, when the total solid content of the specific particles is 50% by mass or less based on the total amount of the ink, the dispersion stability of the ink is further improved.
 特定粒子の体積平均分散粒子径は特に制限はないが、分散安定性の観点から、0.01μm~10.0μmであることが好ましく、0.01μm~5μmであることがより好ましく、0.05μm~1μmであることが更に好ましく、0.05μm~0.5μmが更に好ましく、0.05μm~0.3μmが更に好ましい。
 本開示において、「体積平均分散粒子径」は、光散乱法によって測定された値を指す。光散乱法による特定粒子の体積平均分散粒子径の測定は、例えば、LA-960((株)堀場製作所)を用いて行う。
The volume average dispersed particle size of the specific particles is not particularly limited, but is preferably 0.01 μm to 10.0 μm, more preferably 0.01 μm to 5 μm, from the viewpoint of dispersion stability, more preferably 0.05 μm. It is further preferably 1 to 1 μm, more preferably 0.05 μm to 0.5 μm, and still more preferably 0.05 μm to 0.3 μm.
In the present disclosure, "volume average dispersed particle size" refers to a value measured by a light scattering method. The measurement of the volume average dispersed particle diameter of the specific particles by the light scattering method is performed using, for example, LA-960 (Horiba, Ltd.).
〔水〕
 本開示のインクは、水を含有する。
 水は、特定粒子(分散質)に対する分散媒である。
 本開示のインク中の水の含有量には特に制限はないが、水の含有量は、インクの全量に対し、好ましくは10質量%~99質量%であり、より好ましくは20質量%~95質量%であり、さらに好ましくは30質量%~90質量%であり、特に好ましくは50質量%~90質量%である。
〔water〕
The ink of the present disclosure contains water.
Water is a dispersion medium for specific particles (dispersoids).
The content of water in the ink of the present disclosure is not particularly limited, but the content of water is preferably 10% by mass to 99% by mass, more preferably 20% by mass to 95% by mass, based on the total amount of the ink % By mass, more preferably 30% by mass to 90% by mass, and particularly preferably 50% by mass to 90% by mass.
〔色材〕
 本開示のインクは、色材を少なくとも1種含有するインク(所謂、「着色インク」)であってもよいし、色材を含有しないインク(所謂、「クリアインク」)であってもよい。
 インクが色材を含有する場合、色材は、特定粒子の外部に含有されること(即ち、特定粒子が色材を含まないこと)が好ましい。
 色材としては、特に制限はなく、顔料、水溶性染料、分散染料等の公知の色材から任意に選択して使用することができる。この中でも、耐候性に優れ、色再現性に富む点から、顔料を含むことがより好ましい。
[Color material]
The ink of the present disclosure may be an ink containing at least one coloring material (so-called "colored ink") or an ink not containing coloring material (so-called "clear ink").
When the ink contains a coloring material, the coloring material is preferably contained outside the specific particle (that is, the specific particle does not contain the coloring material).
The colorant is not particularly limited, and may be selected from known colorants such as pigments, water-soluble dyes and disperse dyes. Among these, from the viewpoint of excellent weather resistance and rich color reproducibility, it is more preferable to include a pigment.
 顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知の有機顔料及び無機顔料などが挙げられ、また、染料で染色した樹脂粒子、市販の顔料分散体や表面処理された顔料(例えば、顔料を分散媒として水、液状化合物や不溶性の樹脂等に分散させたもの、及び、樹脂や顔料誘導体等で顔料表面を処理したもの)も挙げられる。
 有機顔料及び無機顔料としては、例えば、黄色顔料、赤色顔料、マゼンタ顔料、青色顔料、シアン顔料、緑色顔料、橙色顔料、紫色顔料、褐色顔料、黒色顔料、白色顔料等が挙げられる。
The pigment is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include known organic pigments and inorganic pigments, and resin particles dyed with a dye, commercially available pigment dispersions and surfaces Treated pigments (for example, pigments in which the pigment is dispersed in water, a liquid compound, an insoluble resin or the like as a dispersion medium, and pigments on which the pigment surface is treated with a resin or a pigment derivative or the like) are also included.
Examples of organic pigments and inorganic pigments include yellow pigments, red pigments, magenta pigments, blue pigments, cyan pigments, green pigments, orange pigments, purple pigments, brown pigments, black pigments, white pigments, and the like.
 色材として顔料を用いる場合には、必要に応じて顔料分散剤を用いてもよい。
 また、色材として顔料を用いる場合には、顔料として、顔料粒子表面に親水性基を有する自己分散顔料を用いてもよい。
 色材及び顔料分散剤については、特開2014-040529号公報の段落[0180]~[0200]、国際公開第2016/052053号の段落[0122]~[0129]を適宜参照することができる。
When a pigment is used as the colorant, a pigment dispersant may be used as necessary.
When a pigment is used as the coloring material, a self-dispersible pigment having a hydrophilic group on the surface of the pigment particle may be used as the pigment.
With regard to the coloring material and the pigment dispersant, paragraphs [0180] to [0200] of JP-A-2014-040529 and paragraphs [0122] to [0129] of WO 2016/052053 can be appropriately referred to.
 本開示のインクが色材を含有する場合、色材の含有量は、インク全量に対し、0.1質量%~20質量%が好ましく、0.5質量%~10質量%がより好ましく、0.5質量%~5質量%が特に好ましい。 When the ink of the present disclosure contains a colorant, the content of the colorant is preferably 0.1% by mass to 20% by mass, and more preferably 0.5% by mass to 10% by mass, with respect to the total amount of the ink. 5% to 5% by weight is particularly preferred.
〔その他の成分〕
 本開示のインクは、必要に応じて、上記で説明した以外のその他の成分を含有していてもよい。
 その他の成分は、特定粒子に含まれていてもよいし、特定粒子に含まれていなくてもよい。
[Other ingredients]
The ink of the present disclosure may optionally contain other components other than those described above.
The other components may be contained in the specific particle or may not be contained in the specific particle.
(有機溶剤)
 本開示のインクは、有機溶剤を含有していてもよい。
 本開示のインクが有機溶剤を含有すると、画像と基材との密着性がより向上し得る。
 本開示のインクが有機溶剤を含有する場合、有機溶剤の含有量は、インクの全量に対して、0.1質量%~10質量%であることが好ましく、0.1質量%~5質量%であることがより好ましい。
 有機溶剤の具体例は、以下のとおりである。
・アルコール類(メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)
・多価アルコール類(エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール、2-メチルプロパンジオール等)
・多価アルコールエーテル類(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)
・アミン類(エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)
・アミド類(ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)
・複素環類(2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン等)
・スルホキシド類(例えば、ジメチルスルホキシド)
・スルホン類(例えば、スルホラン)
・その他(尿素、アセトニトリル、アセトン等)
(Organic solvent)
The ink of the present disclosure may contain an organic solvent.
When the ink of the present disclosure contains an organic solvent, the adhesion between the image and the substrate can be further improved.
When the ink of the present disclosure contains an organic solvent, the content of the organic solvent is preferably 0.1% by mass to 10% by mass with respect to the total amount of the ink, and 0.1% by mass to 5% by mass It is more preferable that
Specific examples of the organic solvent are as follows.
・ Alcohols (methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol etc.)
· Polyhydric alcohols (ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, 2-methylpropane Diol etc)
・ Polyhydric alcohol ethers (ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, tripropylene glycol monomethyl Ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, ethylene glycol monophenyl Vinyl ether, propylene glycol monophenyl ether)
· Amines (ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine , Tetramethyl propylene diamine etc.)
・ Amidides (formamide, N, N-dimethylformamide, N, N-dimethylacetamide etc.)
・ Heterocycles (2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, γ-butyrolactone etc.)
・ Sulphoxides (eg, dimethyl sulfoxide)
· Sulfones (eg, sulfolane)
・ Others (urea, acetonitrile, acetone etc.)
(界面活性剤)
 本開示のインクは、界面活性剤を少なくとも1種含有していてもよい。
 本開示のインクが界面活性剤を含有すると、インクの基材への濡れ性が向上する。
 界面活性剤としては、例えば、高級脂肪酸塩、アルキル硫酸塩、アルキルエステル硫酸塩、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、スルホコハク酸塩、ナフタレンスルホン酸塩、アルキルリン酸塩、ポリオキシアルキレンアルキルエーテルリン酸塩、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、グリセリンエステル、ソルビタンエステル、ポリオキシエチレン脂肪酸アミド、アミンオキシド等が挙げられる。
 これらの中でも、界面活性剤としては、アルキル硫酸塩、アルキルスルホン酸塩、及びアルキルベンゼンスルホン酸塩から選ばれる少なくとも1種の界面活性剤が好ましく、アルキル硫酸塩が特に好ましい。
 界面活性剤としては、特定粒子の分散性の観点から、アルキル鎖長が8~18のアルキル硫酸塩であることが好ましく、ドデシル硫酸ナトリウム(SDS、アルキル鎖長:12)及びセチル硫酸ナトリウム(SCS、アルキル鎖長:16)から選ばれる少なくとも1種であることがより好ましい。
(Surfactant)
The ink of the present disclosure may contain at least one surfactant.
When the ink of the present disclosure contains a surfactant, the wettability of the ink to the substrate is improved.
As the surfactant, for example, higher fatty acid salt, alkyl sulfate, alkyl ester sulfate, alkyl sulfonate, alkyl benzene sulfonate, sulfosuccinate, naphthalene sulfonate, alkyl phosphate, polyoxyalkylene alkyl ether Phosphate, polyoxyalkylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, glycerin ester, sorbitan ester, polyoxyethylene fatty acid amide, amine oxide and the like can be mentioned.
Among these, as the surfactant, at least one surfactant selected from alkyl sulfates, alkyl sulfonates and alkyl benzene sulfonates is preferable, and alkyl sulfates are particularly preferable.
The surfactant is preferably an alkyl sulfate having an alkyl chain length of 8 to 18 from the viewpoint of dispersibility of specific particles, and sodium dodecyl sulfate (SDS, alkyl chain length: 12) and sodium cetyl sulfate (SCS) And at least one selected from alkyl chain length: 16).
 また、既述の界面活性剤以外のその他の界面活性剤として、特開昭62-173463号及び同62-183457号の各公報に記載されたものも挙げられる。例えば、その他の界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、アセチレングリコール類、ポリオキシエチレン/ポリオキシプロピレンブロックコポリマー類、シロキサン類等のノニオン性界面活性剤が挙げられる。
 また、界面活性剤として、有機フルオロ化合物も挙げられる。
 有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物としては、フッ素系界面活性剤、オイル状フッ素系化合物(例えば、フッ素油)、及び固体状フッ素化合物樹脂(例えば、四フッ化エチレン樹脂)が含まれ、特公昭57-9053号(第8欄~第17欄)、及び特開昭62-135826号の各公報に記載されたものが挙げられる。
Further, as surfactants other than the surfactants described above, those described in JP-A-62-173463 and JP-A-62-183457 can also be mentioned. For example, as other surfactants, nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, acetylene glycols, polyoxyethylene / polyoxypropylene block copolymers, siloxanes, etc. It can be mentioned.
Moreover, organic fluoro compounds are also mentioned as surfactant.
The organic fluoro compound is preferably hydrophobic. Examples of the organic fluoro compound include fluoro surfactant, oily fluoro compound (for example, fluoro oil), and solid fluoro compound resin (for example, tetrafluoroethylene resin), and JP-B-57-9053 Those described in columns 8 to 17) and JP-A-62-135826 may be mentioned.
 なお、本開示のインクは、界面活性剤(例えば、アニオン性界面活性剤)を実質的に含有しないこともできる。
 ここで、「実質的に含有しない」とは、インクの全量に対し、含有量が1質量%未満(好ましくは0.1質量%未満)であることを指す。
 インクがアニオン性界面活性剤を実質的に含有しない態様は、インクの起泡を抑制できるという利点、画像の耐水性を向上できるという利点、画像形成後にブリードアウトによる白化を抑制できるという利点、等を有する。また、特に、インクの調製に、アニオン性分散性基を有する顔料分散物を用いる場合には、アニオン性界面活性剤により系中のイオン濃度が上昇し、アニオン性顔料分散剤の電離度が低下して、顔料の分散性が低下することを抑制できるという利点も有する。
In addition, the ink of the present disclosure can also contain substantially no surfactant (for example, an anionic surfactant).
Here, "does not substantially contain" indicates that the content is less than 1% by mass (preferably less than 0.1% by mass) based on the total amount of the ink.
The embodiment in which the ink substantially does not contain an anionic surfactant has an advantage that the foaming of the ink can be suppressed, an advantage that the water resistance of the image can be improved, an advantage that the whitening due to the bleed out after the image formation can be suppressed, etc. Have. Further, in particular, when using a pigment dispersion having an anionic dispersing group for the preparation of the ink, the anionic surfactant increases the ion concentration in the system, and the ionization degree of the anionic pigment dispersant decreases. Therefore, it also has the advantage of being able to suppress the decrease in the dispersibility of the pigment.
(重合禁止剤)
 本開示のインクは、重合禁止剤を含有していてもよい。
 本開示のインクが重合禁止剤を含有すると、インクの保存安定性がより向上し得る。
 重合禁止剤としては、p-メトキシフェノール、キノン類(ハイドロキノン、ベンゾキノン、メトキシベンゾキノン等)、フェノチアジン、カテコール類、アルキルフェノール類(例えば、ジブチルヒドロキシトルエン(BHT))、アルキルビスフェノール類、ジメチルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール、ホスファイト類、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-1-オキシル(TEMPOL)、クペロンAl、トリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩などが挙げられる。
 これらの中でも、p-メトキシフェノール、カテコール類、キノン類、アルキルフェノール類、TEMPO、TEMPOL、クペロンAl、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩からなる群より選ばれる少なくとも1種が好ましく、p-メトキシフェノール、ハイドロキノン、ベンゾキノン、BHT、TEMPO、TEMPOL、クペロンAl、及びトリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩からなる群より選ばれる少なくとも1種がより好ましい。
(Polymerization inhibitor)
The ink of the present disclosure may contain a polymerization inhibitor.
When the ink of the present disclosure contains a polymerization inhibitor, the storage stability of the ink may be further improved.
As a polymerization inhibitor, p-methoxyphenol, quinones (hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (eg, dibutyl hydroxytoluene (BHT)), alkyl bisphenols, zinc dimethyldithiocarbamate, Dimethyldithiocarbamic acid copper, dibutyldithiocarbamic acid copper, salicylic acid copper, thiodipropionic acid esters, mercaptobenzimidazole, phosphites, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 2,2 And 6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (TEMPOL), cuperone Al, tris (N-nitroso-N-phenylhydroxylamine) aluminum salt and the like. That.
Among these, at least one member selected from the group consisting of p-methoxyphenol, catechols, quinones, alkylphenols, TEMPO, TEMPOL, cuperone Al, and tris (N-nitroso-N-phenylhydroxylamine) aluminum salt is Preferably, at least one selected from the group consisting of p-methoxyphenol, hydroquinone, benzoquinone, BHT, TEMPO, TEMPOL, cuperone Al, and tris (N-nitroso-N-phenylhydroxylamine) aluminum salt is more preferable.
(紫外線吸収剤)
 本開示のインクは、紫外線吸収剤を含有していてもよい。
 本開示のインクが紫外線吸収剤を含有すると、画像の耐候性等がより向上し得る。
 紫外線吸収剤としては、公知の紫外線吸収剤、例えば、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、ベンズオキサゾール系化合物等が挙げられる。
(UV absorber)
The ink of the present disclosure may contain a UV absorber.
When the ink of the present disclosure contains a UV absorber, the weather resistance and the like of the image can be further improved.
As a ultraviolet absorber, well-known ultraviolet absorbers, for example, a benzotriazole type compound, a benzophenone series compound, a triazine type compound, a benzoxazole type compound, etc. are mentioned.
 また、本開示のインクは、画像の硬度、画像と基材との密着性、及びインクの吐出安定性制の御の観点から、必要に応じ、特定粒子の外部に、重合性モノマー、光重合開始剤、樹脂等を含有していてもよい。
 これらの成分は、水溶性又は水分散性を有することが好ましい。
 ここで、「水溶性」とは、105℃で2時間乾燥させた場合に、25℃の蒸留水100g対する溶解量が1gを超える性質を指す。
 また、「水分散性」とは、水不溶性であって、かつ、水中に分散される性質を指す。ここで、「水不溶性」とは、105℃で2時間乾燥させた場合に、25℃の蒸留水100gに対する溶解量が1g以下である性質を指す。
 また、「インクが特定粒子の外部に重合性モノマーを含有している」とは、インクが、特定粒子に含まれない重合性モノマーを含有していることを意味する。光重合開始剤、水溶性樹脂、水分散性樹脂等を特定粒子の外部に含有している場合も同様である。
In addition, the ink of the present disclosure may be a polymerizable monomer, a photopolymerization agent, or the like outside the specific particle, as needed, from the viewpoint of image hardness, adhesion between the image and the substrate, and control of ink discharge stability. It may contain an initiator, a resin and the like.
It is preferable that these components have water solubility or water dispersibility.
Here, "water-soluble" refers to a property in which the amount of dissolution with respect to 100 g of distilled water at 25 ° C. exceeds 1 g when dried at 105 ° C. for 2 hours.
Also, "water dispersible" refers to the property of being water insoluble and dispersed in water. Here, "water insoluble" refers to the property that the amount of dissolution in 100 g of distilled water at 25 ° C. is 1 g or less when dried at 105 ° C. for 2 hours.
Further, "the ink contains a polymerizable monomer outside the specific particle" means that the ink contains a polymerizable monomer which is not contained in the specific particle. The same applies to the case where the photopolymerization initiator, the water-soluble resin, the water-dispersible resin and the like are contained outside the specific particles.
 特定粒子の外部に含有され得る重合性モノマーとしては、国際公開第2016/052053号の段落[0148]~[0156]に記載された重合性モノマーが挙げられる。
 特定粒子の外部に含有され得る重合性モノマーとしては、エチレン性不飽和基を有する化合物、アクリロニトリル、スチレン、不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ウレタン等のラジカル重合性モノマーが挙げられる。
 これらの中でも、特定粒子の外部に含有され得る重合性モノマーとしては、エチレン性不飽和基を有する化合物が好ましく、(メタ)アクリロイル基を有する化合物が特に好ましい。
Examples of the polymerizable monomer that can be contained outside the specific particle include the polymerizable monomers described in paragraphs [0148] to [0156] of WO 2016/052053.
As polymerizable monomers that can be contained outside the specific particles, compounds having an ethylenically unsaturated group, radically polymerizable monomers such as acrylonitrile, styrene, unsaturated polyester, unsaturated polyether, unsaturated polyamide, unsaturated urethane, etc. It can be mentioned.
Among these, as a polymerizable monomer that can be contained outside the specific particle, a compound having an ethylenically unsaturated group is preferable, and a compound having a (meth) acryloyl group is particularly preferable.
 水溶性又は水分散性の観点から、特定粒子の外部に含有され得る重合性モノマーとしては、アミド構造、ポリエチレングリコール構造、ポリプロピレングリコール構造、カルボキシ基、及びカルボキシ基の塩からなる群より選ばれる少なくとも1種を有する化合物が好ましい。 From the viewpoint of water solubility or water dispersibility, as a polymerizable monomer that can be contained outside the specific particle, at least one selected from the group consisting of an amide structure, a polyethylene glycol structure, a polypropylene glycol structure, a carboxy group, and a salt of a carboxy group Compounds having one type are preferred.
 水溶性又は水分散性の観点から、特定粒子の外部に含有され得る重合性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、モルホリンアクリルアミド、N-2-ヒドロキシエチル(メタ)アクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノメタクリレート、N-[トリス(3-アクリロイルアミノプロピルオキシメチレン)メチル]アクリルアミド、ジエチレングリコールビス(3-アクリロイルアミノプロイル)エーテル、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、下記一般式(a)~一般式(d)で表される化合物、及びエトキシ化トリメチロールプロパントリアクリレート(例えば、サートマー社のSR9035)から選ばれる少なくとも1種が好ましく、(メタ)アクリル酸、N,N-ジメチルアクリルアミド、N-2-ヒドロキシエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、グリセリンモノメタクリレート、N-[トリス(3-アクリロイルアミノプロピルオキシメチレン)メチル]アクリルアミド、ジエチレングリコールビス(3-アクリロイルアミノプロイル)エーテル、ポリエチレングリコールジ(メタ)アクリレート、及びポリプロピレングリコールジ(メタ)アクリレート、下記一般式(a)~一般式(d)で表される化合物、及びエトキシ化トリメチロールプロパントリアクリレート(例えば、サートマー社のSR9035)からなる群より選ばれる少なくとも1種がより好ましい。 From the viewpoint of water solubility or water dispersibility, examples of the polymerizable monomer that can be contained outside the specific particle include, for example, (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, N, N- Dimethyl acrylamide, N, N-diethyl acrylamide, morpholine acrylamide, N-2-hydroxyethyl (meth) acrylamide, N-vinyl pyrrolidone, N-vinyl caprolactam, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) Acrylate, 2-hydroxypropyl (meth) acrylate, glycerol monomethacrylate, N- [tris (3-acryloylaminopropyloxymethylene) methyl] acrylamide, diethylene glycol bis (3-acryloylaminopropyl) ether Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, compounds represented by the following general formula (a) to general formula (d), and ethoxylated trimethylolpropane triacrylate (for example, SR 9035 from Sartmar) (Meth) acrylic acid, N, N-dimethyl acrylamide, N-2-hydroxyethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, glycerin monomethacrylate, N- [tris (3-Acryloylaminopropyloxymethylene) methyl] acrylamide, diethylene glycol bis (3-acryloylaminopropyl) ether, polyethylene glycol di (meth) acrylate, and polypropylene glycol At least one member selected from the group consisting of: di- (meth) acrylates, compounds represented by the following general formula (a) to general formula (d), and ethoxylated trimethylolpropane triacrylate (for example, SR9035 from Sartmar) More preferable.
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 一般式(a)中、複数のRは、各々独立に、水素原子、アルキル基、アリール基又は複素環基を表し、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のLは、各々独立に、単結合又は2価の連結基を表す。
 一般式(b)中、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のLは、各々独立に、炭素原子数1~8のアルキレン基を表し、複数のk、及びpは、各々独立に、0又は1を表し、複数のmは、各々独立に、0~8の整数を表し、但し、k及びpの少なくとも1つは1である。
 一般式(c)中、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のnは、各々独立に、1~8の整数を表し、lは0又は1の整数を表す。
 一般式(d)中、Zはポリオールのヒドロキシル基から水素原子をq個除いた残基を表し、qは3~6の整数を表し、複数のRは、各々独立に、水素原子又はメチル基を表し、複数のLは、各々独立に炭素原子数1~8のアルキレン基を表す。
In General Formula (a), a plurality of R 1 's each independently represent a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, and a plurality of R 2 ' s each independently represent a hydrogen atom or a methyl group, Plural L 1 's each independently represent a single bond or a divalent linking group.
In the general formula (b), a plurality of R 3 's each independently represent a hydrogen atom or a methyl group, a plurality of L 2 ' s each independently represent an alkylene group having 1 to 8 carbon atoms, and a plurality of k , And p each independently represent 0 or 1, and a plurality of m each independently represent an integer of 0 to 8, provided that at least one of k and p is 1.
In general formula (c), a plurality of R 4 's each independently represent a hydrogen atom or a methyl group, a plurality of n each independently represent an integer of 1 to 8 and l is an integer of 0 or 1 Represent.
In formula (d), Z 1 represents a residue obtained by removing q hydrogen atoms from a hydroxyl group of a polyol, q represents an integer of 3 to 6, and plural R 5 s each independently represent a hydrogen atom or And a plurality of L 3 each independently represent an alkylene group having 1 to 8 carbon atoms.
 一般式(a)~一般式(d)で表される化合物の具体例としては、下記AM-1~AM-4で表される化合物が挙げられる。 Specific examples of the compounds represented by the general formulas (a) to (d) include compounds represented by the following AM-1 to AM-4.
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 上記のAM-1~AM-4は、特許第5591858号公報に記載の方法により合成することができる。 The above AM-1 to AM-4 can be synthesized by the method described in Japanese Patent No. 5591858.
 特定粒子の外部に含有され得る、光重合開始剤及び樹脂については、国際公開第2016/052053号の段落[0139]~[0147]及び[0157]を適宜参照することができる。 Paragraphs [0139] to [0147] and [0157] of WO 2016/052053 can be appropriately referred to for the photopolymerization initiator and the resin that can be contained outside the specific particle.
〔インクの好ましい物性〕
 本開示のインクは、インクを25℃~50℃とした場合に、粘度が、3mPa・s~15mPa・sであることが好ましく、3mPa・s~13mPa・sであることがより好ましい。特に、本開示のインクは、インクを25℃とした場合における粘度が、50mPa・s以下であることが好ましい。インクの粘度が上記の範囲であると、より高い吐出安定性を実現できる。
 なお、インクの粘度は、粘度計(VISCOMETER TV-22、東機産業(株))を用いて測定される値である。
[Preferred physical properties of ink]
The ink of the present disclosure preferably has a viscosity of 3 mPa · s to 15 mPa · s, more preferably 3 mPa · s to 13 mPa · s, when the ink is 25 ° C. to 50 ° C. In particular, the ink of the present disclosure preferably has a viscosity of 50 mPa · s or less when the ink is at 25 ° C. When the viscosity of the ink is in the above range, higher ejection stability can be realized.
The viscosity of the ink is a value measured using a viscometer (VISCOMETER TV-22, Toki Sangyo Co., Ltd.).
〔インクの用途〕
 本開示のインクは、塗布法、浸漬法、グラビア法、フレキソ法、インクジェット法等による画像形成に用いることができる。
 本開示のインクは、特に、インクジェット法による画像形成に用いられる(即ち、インクジェットインクとして用いられる)ことが好ましい。
[Use of ink]
The ink of the present disclosure can be used for image formation by a coating method, an immersion method, a gravure method, a flexo method, an inkjet method and the like.
The ink of the present disclosure is particularly preferably used for image formation by an inkjet method (i.e., used as an inkjet ink).
〔インクの形態〕
 本開示のインクが光硬化性のインク又は熱硬化性のインクである場合の特に好ましい形態として、以下の形態1~4が挙げられる。
[Form of ink]
In the case where the ink of the present disclosure is a photocurable ink or a thermosetting ink, particularly preferred embodiments include the following Forms 1 to 4.
<形態1>
 形態1は、光硬化性のインクであって、特定粒子が光重合性モノマーを含み、特定ポリマーが特定鎖状ポリマーである形態である。
 形態1において、特定鎖状ポリマーのMwは5000以上であることが好ましい。特定鎖状ポリマーのMwのより好ましい範囲については、前述の特定ポリマーの分子量の好ましい範囲を参照できる。
 形態1において、光重合性モノマーの分子量は、100~4000であることが好ましい。光重合性モノマーの分子量のより好ましい範囲については、前述の重合性モノマーの分子量のより好ましい範囲を参照できる。
<Form 1>
Form 1 is a photocurable ink in which the specific particles contain a photopolymerizable monomer and the specific polymer is a specific linear polymer.
In the form 1, it is preferable that Mw of a specific chain polymer is 5000 or more. For the more preferable range of Mw of the specific chain polymer, the preferable range of the molecular weight of the specific polymer described above can be referred to.
In Form 1, the molecular weight of the photopolymerizable monomer is preferably 100 to 4000. The more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to for the more preferable range of the molecular weight of a photopolymerizable monomer.
<形態2>
 形態2は、光硬化性のインクであって、特定粒子が光重合性モノマーを含み、特定ポリマーが特定架橋ポリマーである形態である。
 形態2としては、特定粒子が、三次元架橋構造を有する特定架橋ポリマーからなるシェルと、光重合性モノマーを含むコアと、を含むマイクロカプセルであることが好ましい。
 形態2において、光重合性モノマーの分子量は、100~4000であることが好ましい。光重合性モノマーの分子量のより好ましい範囲については、前述の重合性モノマーの分子量のより好ましい範囲を参照できる。
<Form 2>
Form 2 is a photocurable ink in which the specific particles contain a photopolymerizable monomer and the specific polymer is a specific crosslinked polymer.
As Form 2, it is preferable that the specific particle is a microcapsule including a shell made of a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a photopolymerizable monomer.
In Form 2, the molecular weight of the photopolymerizable monomer is preferably 100 to 4000. The more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to for the more preferable range of the molecular weight of a photopolymerizable monomer.
<形態3>
 形態3は、熱硬化性のインクであって、特定粒子が熱重合性モノマーを含み、特定ポリマーが特定鎖状ポリマーである形態である。
 形態3において、特定鎖状ポリマーのMwは5000以上であることが好ましい。特定鎖状ポリマーのMwのより好ましい範囲については、前述の特定ポリマーの分子量の好ましい範囲を参照できる。
 形態3において、熱重合性モノマーの分子量は、100~4000であることが好ましい。熱重合性モノマーの分子量のより好ましい範囲については、前述の重合性モノマーの分子量のより好ましい範囲を参照できる。
<Form 3>
Form 3 is a thermosetting ink in which the specific particle contains a thermally polymerizable monomer and the specific polymer is a specific linear polymer.
In the form 3, it is preferable that Mw of a specific chain polymer is 5000 or more. For the more preferable range of Mw of the specific chain polymer, the preferable range of the molecular weight of the specific polymer described above can be referred to.
In Form 3, the molecular weight of the thermally polymerizable monomer is preferably 100 to 4000. For the more preferable range of the molecular weight of the thermally polymerizable monomer, the more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to.
<形態4>
 形態4は、熱硬化性のインクであって、特定粒子が熱重合性モノマーを含み、特定ポリマーが特定架橋ポリマーである形態である。
 形態4としては、特定粒子が、三次元架橋構造を有する特定架橋ポリマーからなるシェルと、熱重合性モノマーを含むコアと、を含むマイクロカプセルであることが好ましい。
 形態4において、熱重合性モノマーの分子量は、100~4000であることが好ましい。熱重合性モノマーの分子量のより好ましい範囲については、前述の重合性モノマーの分子量のより好ましい範囲を参照できる。
<Form 4>
Form 4 is a thermosetting ink in which the specific particles contain a thermally polymerizable monomer and the specific polymer is a specific crosslinked polymer.
As Form 4, it is preferable that the specific particle is a microcapsule including a shell made of a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a thermally polymerizable monomer.
In Form 4, the molecular weight of the thermally polymerizable monomer is preferably 100 to 4000. For the more preferable range of the molecular weight of the thermally polymerizable monomer, the more preferable range of the molecular weight of the above-mentioned polymerizable monomer can be referred to.
〔インクの製造方法の一例(製法A)〕
 本開示のインクを製造する方法には特に制限はないが、以下の一例(製法A)が挙げられる。
 製法Aは、有機溶剤、及び特定ポリマーを含む油相成分と、水、揮発性中和剤、及び非揮発性中和剤を含む水相成分と、を混合し、乳化させることにより、特定粒子を形成する工程を有する。
 製法Aにおいて、特定ポリマーとして特定鎖状ポリマーを用いた場合には、特定鎖状ポリマーを含む特定粒子を含有する態様のインクが製造される。
 製法Aにおいて、特定ポリマーとして特定架橋ポリマーを用いた場合には、特定架橋ポリマーを含む特定粒子を含有する態様のインクが製造される。
[One Example of Method of Producing Ink (Procedure A)]
Although there is no restriction | limiting in particular in the method to manufacture the ink of this indication, An example (the manufacturing method A) of the following is mentioned.
Production method A mixes specific particles by mixing and emulsifying an organic solvent and an oil phase component containing a specific polymer, and an aqueous phase component containing water, a volatile neutralizing agent, and a non-volatile neutralizing agent. To form the
In the process A, when a specific chain polymer is used as the specific polymer, an ink of an embodiment containing specific particles containing the specific chain polymer is manufactured.
In Process A, when a specific crosslinked polymer is used as the specific polymer, an ink of an embodiment containing specific particles containing the specific crosslinked polymer is manufactured.
 特定粒子を形成する工程では、既述の油相成分と水相成分とを混合し、得られた混合物を乳化させることにより、特定粒子が形成される。形成された特定粒子は、製造されるインクにおいて分散質として機能する。
 水相成分中の水は、製造されるインクにおける分散媒として機能する。
In the step of forming the specific particle, the specific particle is formed by mixing the oil phase component described above and the aqueous phase component, and emulsifying the obtained mixture. The specific particles formed function as dispersoids in the manufactured ink.
Water in the water phase component functions as a dispersion medium in the manufactured ink.
 油相成分に含まれる有機溶剤としては、酢酸エチル、メチルエチルケトン等が挙げられる。
 有機溶剤は、特定粒子の形成過程において、また、特定粒子の形成後において、その少なくとも一部が除去されることが好ましい。
Examples of the organic solvent contained in the oil phase component include ethyl acetate and methyl ethyl ketone.
At least a part of the organic solvent is preferably removed in the process of forming the specific particles and after the formation of the specific particles.
 油相成分は、上記各成分以外にも、例えば、光重合性モノマー、光重合開始剤、増感剤、重合性基導入用化合物(好ましくは、重合性基及び活性水素基を有する化合物)、重合性基を導入したイソシアネート化合物、酸基を導入したイソシアネート化合物等を含むことができる。 The oil phase component may be, for example, a photopolymerizable monomer, a photopolymerization initiator, a sensitizer, a compound for introducing a polymerizable group (preferably a compound having a polymerizable group and an active hydrogen group), in addition to the above components. It can contain an isocyanate compound having a polymerizable group introduced, an isocyanate compound having an acid group introduced, and the like.
 水相成分は、水、揮発性中和剤、及び非揮発性中和剤を含むこと以外には、特に制限はない。
 水相成分は、水、揮発性中和剤、及び非揮発性中和剤以外の成分を含んでもよい。
 例えば、水相成分は、既述の酸基導入用化合物(好ましくは、既述の酸基及び活性水素基を有する化合物)を含んでいてもよい。
The water phase components are not particularly limited except for containing water, a volatile neutralizing agent and a non-volatile neutralizing agent.
The aqueous phase components may include components other than water, volatile neutralizing agents, and non-volatile neutralizing agents.
For example, the aqueous phase component may contain a compound for introducing an acid group (preferably, a compound having an acid group and an active hydrogen group described above).
 製法Aにおける、油相成分及び水相成分から有機溶剤及び水を除いた全量が、製造されるインクにおける、特定粒子の全固形分量に対応する。
 製法Aに用いられ得る各成分の使用量の好ましい範囲については、既述の「インク」の項を参照できる。この参照の際、既述の「インク」の項における、「含有量」及び「特定粒子の全固形分量」は、それぞれ、「使用量」及び「油相成分及び水相成分から有機溶剤及び水を除いた全量」と読み替える。
The total amount of the oil phase component and the water phase component excluding the organic solvent and water in the production method A corresponds to the total solid content of the specific particles in the manufactured ink.
For the preferable range of the amount of each component that can be used in the production method A, the above-mentioned "ink" can be referred to. In this reference, "content" and "total solid content of specific particles" in the section of "ink" described above are respectively "amount used" and "oil phase component and water phase component from organic solvent and water It is read as "the total amount excluding".
 特定粒子を形成する工程において、油相成分と水相成分との混合の方法には特に限定はないが、例えば、撹拌による混合が挙げられる。 In the step of forming the specific particles, the method of mixing the oil phase component and the water phase component is not particularly limited, and examples thereof include mixing by stirring.
 特定粒子を形成する工程において、乳化の方法には特に限定はないが、例えば、ホモジナイザー等の乳化装置(例えば、分散機)による乳化が挙げられる。
 乳化における分散機の回転数は、例えば、5000rpm~20000rpmであり、好ましくは10000rpm~18000rpmである。
 乳化における回転時間は、例えば、1分間~120分間であり、好ましくは3分間~60分間であり、より好ましくは3分間~30分間であり、更に好ましくは5分間~15分間である。
In the step of forming the specific particles, the method of emulsification is not particularly limited, and examples thereof include emulsification with an emulsifying device such as a homogenizer (for example, a dispersing machine).
The rotation speed of the disperser in the emulsification is, for example, 5000 rpm to 20000 rpm, preferably 10000 rpm to 18000 rpm.
The rotation time in emulsification is, for example, 1 minute to 120 minutes, preferably 3 minutes to 60 minutes, more preferably 3 minutes to 30 minutes, and still more preferably 5 minutes to 15 minutes.
 特定粒子を形成する工程における乳化は、加熱下で行ってもよい。
 乳化を加熱下で行うことにより、特定粒子をより効率よく形成できる。
 また、乳化を加熱下で行うことにより、油相成分中の有機溶剤の少なくとも一部を、混合物中から除去し易い。
 乳化を加熱下で行う場合の加熱温度は、揮発性中和剤の揮発を抑制する観点から、揮発性中和剤の沸点に応じて、適宜設定することが好ましい。
 特定粒子を形成する工程における乳化は、揮発性中和剤の沸点よりも10℃以上低い温度で行うことが好ましく、20℃以上低い温度で行うことがより好ましい。
Emulsification in the step of forming the specific particles may be performed under heating.
By carrying out the emulsification under heating, specific particles can be formed more efficiently.
In addition, by performing emulsification under heating, at least a portion of the organic solvent in the oil phase component can be easily removed from the mixture.
The heating temperature in the case of carrying out the emulsification under heating is preferably set appropriately according to the boiling point of the volatile neutralizing agent from the viewpoint of suppressing the volatilization of the volatile neutralizing agent.
The emulsification in the step of forming the specific particles is preferably performed at a temperature 10 ° C. or more lower than the boiling point of the volatile neutralizing agent, and more preferably 20 ° C. or more lower.
 また、特定粒子を形成する工程は、混合物を乳化させる乳化段階と、乳化段階によって得られた乳化物を加熱する加熱段階と、を含んでいてもよい。
 乳化段階と加熱段階とを含む態様では、特に加熱段階において、特定粒子をより効率よく形成できる。
 また、乳化段階と加熱段階とを含む態様では、特に加熱段階において、油相成分中の有機溶剤の少なくとも一部を、混合物中から除去し易い。
 加熱段階における加熱温度としては、揮発性中和剤が揮発し難く、かつ、油相成分中の有機溶剤が揮発し易い温度に設定することが好ましく、例えば、揮発性中和剤及び有機溶剤の種類及び量に応じて、適宜設定することが好ましい。
 加熱段階における加熱時間は、揮発性中和剤及び有機溶剤の種類及び量、並びに加熱温度に応じて、適宜設定するとよい。
Also, the step of forming the specific particles may include an emulsification step of emulsifying the mixture, and a heating step of heating the emulsion obtained by the emulsification step.
In the aspect including the emulsification step and the heating step, it is possible to form the specific particles more efficiently particularly in the heating step.
In the embodiment including the emulsification step and the heating step, particularly at the heating step, it is easy to remove at least a part of the organic solvent in the oil phase component from the mixture.
The heating temperature in the heating step is preferably set to a temperature at which the volatile neutralizing agent does not easily volatilize and the organic solvent in the oil phase component tends to volatilize, for example, volatile neutralizing agent and organic solvent It is preferable to set appropriately according to the type and amount.
The heating time in the heating step may be appropriately set according to the types and amounts of the volatile neutralizing agent and the organic solvent, and the heating temperature.
 また、製法Aは、必要に応じて、特定粒子を形成する工程以外のその他の工程を有していてもよい。
 その他の工程としては、特定粒子を形成する工程後において、その他の成分(例えば、顔料)を添加する工程が挙げられる。
 添加されるその他の成分(例えば、顔料)については、インクに含有され得るその他の成分として既に説明したとおりである。
Moreover, the manufacturing method A may have other processes other than the process of forming specific particle | grains as needed.
As another process, the process of adding another component (for example, pigment) is mentioned after the process of forming specific particle | grains.
The other components (eg, pigments) to be added are as already described as the other components that may be contained in the ink.
〔インクの製造方法の別の一例(製法B)〕
 特定架橋ポリマーを含む特定粒子を含有する態様のインクを製造する方法としては、以下に示す、製法Bも好適である。
 製法Bは、有機溶剤、3官能以上のイソシアネート化合物、及び酸基を導入したイソシアネート化合物を含む油相成分と、水、揮発性中和剤、及び非揮発性中和剤を含む水相成分と、を混合し、乳化させることにより、特定粒子を形成する工程を有する。
 製法Bの好ましい態様は、油相成分に特定ポリマーではなく3官能以上のイソシアネート化合物を用いる点を除けば、製法Aの好ましい態様と同様である。
[Another example of the method for producing the ink (production method B)]
As a method of producing an ink of an embodiment containing specific particles containing a specific crosslinked polymer, Production Method B shown below is also suitable.
Production method B comprises an oil phase component containing an organic solvent, a trifunctional or higher functional isocyanate compound, and an isocyanate compound having an acid group introduced therein, an aqueous phase component containing water, a volatile neutralizing agent, and a non-volatile neutralizing agent , And emulsifying to form specific particles.
A preferred embodiment of the production process B is the same as the preferred embodiment of the production process A except that a trifunctional or higher functional isocyanate compound is used as the oil phase component instead of the specific polymer.
〔画像形成方法〕
 本開示の画像形成方法は、基材上に、既述の本開示のインクを付与することによりインク膜を形成する工程(以下、「付与工程」ともいう)と、上記インク膜を加熱する工程(以下、「加熱工程」ともいう)と、を有する。
 本開示の画像形成方法は、必要に応じその他の工程を有していてもよい。
 本開示の画像形成方法によれば、基材上に、精細な画像が形成される。また、本開示の画像形成方法によれば、基材上に、引っ掻き耐性に優れた画像が形成される。
[Image forming method]
The image forming method of the present disclosure includes a step of forming an ink film by applying the above-described ink of the present disclosure on a substrate (hereinafter, also referred to as “application step”), and a step of heating the ink film. (Hereafter, it is also called a "heating process").
The image forming method of the present disclosure may have other steps as necessary.
According to the image forming method of the present disclosure, a fine image is formed on a substrate. Further, according to the image forming method of the present disclosure, an image excellent in scratch resistance is formed on a substrate.
(付与工程)
 付与工程は、基材上に、本開示のインクを付与することによりインク膜を形成する工程である。
 基材上にインクを付与する態様としては、塗布法、浸漬法、インクジェット法等の公知の方法を利用した態様のいずれを採用してもよい。中でも、種々の基材(記録媒体を含む)に対して膜(例えば、画像)の形成が行える点で、インクジェット法が好適である。
(Applying process)
The application step is a step of forming an ink film by applying the ink of the present disclosure on a substrate.
As an aspect which applies an ink on a base material, you may employ | adopt any of the aspect using well-known methods, such as a coating method, an immersion method, and an inkjet method. Among them, the inkjet method is preferable in that a film (for example, an image) can be formed on various substrates (including a recording medium).
 基材としては、特に制限はなく、例えば、支持体及び記録媒体として提供されている公知の基材を適宜選択して使用することができる。
 基材としては、紙、プラスチック(ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(アルミニウム、亜鉛、銅等の金属の板)、プラスチックフィルム(ポリ塩化ビニル(PVC:Polyvinyl Chloride)樹脂、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート(PET:Polyethylene Terephthalate)、ポリエチレン(PE:Polyethylene)、ポリスチレン(PS:Polystyrene)、ポリプロピレン(PP:Polypropylene)、ポリカーボネート(PC:Polycarbonate)、ポリビニルアセタール、アクリル樹脂等のフィルム)、既述の金属がラミネートされ又は蒸着された紙、既述の金属がラミネートされ又は蒸着されたプラスチックフィルムなどが挙げられる。
The substrate is not particularly limited, and, for example, known substrates provided as a support and a recording medium can be appropriately selected and used.
As a substrate, paper, paper (plastic, polyethylene, polypropylene, polystyrene, etc.) laminated, metal plate (plate of metal such as aluminum, zinc, copper, etc.), plastic film (polyvinyl chloride (PVC) resin , Cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate (PET: Polyethylene Terephthalate), polyethylene (PE: Polyethylene), polystyrene (PS: Polystyrene), polypropylene (PP: Films made of Polypropylene, PC (Polycarbonate), polyvinyl acetal, acrylic resin, etc., paper laminated or vapor-deposited metal, plastic fiber laminated or vapor-deposited metal Beam and the like.
 また、基材としては、テキスタイル基材も挙げられる。
 テキスタイル基材の素材としては、綿、絹、麻、羊毛等の天然繊維;ビスコースレーヨン、レオセル等の化学繊維;ポリエステル、ポリアミド、アクリル等の合成繊維;天然繊維、化学繊維、及び合成繊維からなる群より選ばれる少なくとも2種である混合物などが挙げられる。テキスタイル基材としては、国際公開第2015/158592号の段落[0039]~[0042]に記載されたテキスタイル基材を用いてもよい。
Moreover, a textiles base material is also mentioned as a base material.
Materials for textile base materials include natural fibers such as cotton, silk, hemp and wool; chemical fibers such as viscose rayon and rheocel; synthetic fibers such as polyester, polyamide and acrylic; natural fibers, chemical fibers and synthetic fibers And mixtures of at least two selected from the group consisting of As the textile substrate, the textile substrate described in paragraphs [0039] to [0042] of WO 2015/158592 may be used.
 基材としては、ポリ塩化ビニル(PVC)基材、ポリスチレン(PS)基材、ポリカーボネート(PC)基材、ポリエチレンテレフタレート(PET)基材、ポリプロピレン(PP)基材、アクリル樹脂基材等のプラスチック基材が好ましい。 As a substrate, plastics such as polyvinyl chloride (PVC) substrate, polystyrene (PS) substrate, polycarbonate (PC) substrate, polyethylene terephthalate (PET) substrate, polypropylene (PP) substrate, acrylic resin substrate and the like Substrates are preferred.
 インクジェット法によるインクの付与は、公知のインクジェット記録装置を用いて行うことができる。
 インクジェット記録装置としては特に制限はなく、目的とする解像度を達成し得る公知のインクジェット記録装置を任意に選択して使用することができる。
 インクジェット記録装置としては、インク供給系、温度センサー、加熱手段等を含む装置が挙げられる。
 インク供給系は、例えば、本開示のインクを含む元タンク、供給配管、インクジェットヘッド直前のインク供給タンク、フィルター、及びピエゾ型のインクジェットヘッドからなる。ピエゾ型のインクジェットヘッドは、好ましくは1pl~100pl、より好ましくは8pl~30plのマルチサイズドットを、好ましくは320dpi(dot per inch;以下、同じ)×320dpi~4000dpi×4000dpi、より好ましくは400dpi×400dpi~1600dpi×1600dpi、さらに好ましくは720dpi×720dpiの解像度で吐出できるよう駆動することができる。なお、dpiとは、2.54cm(1inch)当たりのドット数を表す。
The application of the ink by the inkjet method can be performed using a known inkjet recording device.
The ink jet recording apparatus is not particularly limited, and any known ink jet recording apparatus capable of achieving the target resolution can be selected and used.
Examples of the inkjet recording apparatus include an apparatus including an ink supply system, a temperature sensor, a heating unit, and the like.
The ink supply system includes, for example, a main tank containing the ink of the present disclosure, a supply pipe, an ink supply tank immediately in front of an inkjet head, a filter, and a piezoelectric inkjet head. The piezo type inkjet head preferably has 1 pl to 100 pl, more preferably 8 pl to 30 pl multi-size dots, preferably 320 dpi (dot per inch; the same below) x 320 dpi to 4000 dpi x 4000 dpi, more preferably 400 dpi x 400 dpi It can be driven so as to be capable of discharging at a resolution of ̃1600 dpi × 1600 dpi, more preferably 720 dpi × 720 dpi. In addition, dpi represents the number of dots per 2.54 cm (1 inch).
 また、付与工程では、予め加熱された基材に対してインクを付与してもよい。
 付与工程において、予め加熱された基材に対してインクを付与した場合には、加熱された基材によって、以下の加熱工程を実施することができる(即ち、加熱された基材によってインク膜を加熱することができる)。
 インクを付与する前の基材の加熱は、例えば、後述する加熱工程において例示する加熱手段によって行うことができる。
In addition, in the application step, the ink may be applied to a substrate that has been preheated.
In the application step, when the ink is applied to the preheated substrate, the following heating step can be performed by the heated substrate (that is, the ink film is formed by the heated substrate) Can be heated).
The heating of the substrate before applying the ink can be performed, for example, by the heating means exemplified in the heating step described later.
(加熱工程)
 加熱工程は、基材上に形成されたインク膜を加熱する工程である。
 加熱工程においてインク膜を加熱することにより、インク膜の増粘が起こり、その結果、引っ掻き耐性に優れた画像が得られる。
 本開示の画像形成方法において、本開示のインクとして、前述の熱硬化性のインクを用いる場合には、加熱工程における加熱により、インク膜の硬化(即ち、熱重合性モノマーによる熱重合)を行ってもよい。言い換えれば、本開示のインクとして、前述の熱硬化性のインクを用いる場合には、加熱工程が、後述の硬化工程Bを兼ねていてもよい。
(Heating process)
The heating step is a step of heating the ink film formed on the substrate.
By heating the ink film in the heating step, thickening of the ink film occurs, and as a result, an image excellent in scratch resistance is obtained.
In the image forming method of the present disclosure, when the above-described thermosetting ink is used as the ink of the present disclosure, curing of the ink film (that is, thermal polymerization by a thermally polymerizable monomer) is performed by heating in the heating step. May be In other words, when the above-described thermosetting ink is used as the ink of the present disclosure, the heating step may also serve as the curing step B described later.
 加熱工程における加熱の態様としては、基材上に付与されたインクを加熱手段によって加熱する態様が挙げられる。
 また、既述のとおり、付与工程において、予め加熱された基材に対してインクを付与した場合、加熱工程における加熱の態様としては、加熱された基材によってインクを加熱する態様も挙げられる。
As an aspect of the heating in a heating process, the aspect which heats the ink provided on the base material by a heating means is mentioned.
Further, as described above, when the ink is applied to the substrate heated in advance in the application step, an embodiment of heating the ink by the heated substrate may be mentioned as an embodiment of the heating in the heating step.
 加熱手段としては、特に限定されるものではなく、例えば、ヒートドラム、温風、赤外線ランプ、赤外線LED、赤外線ヒーター、熱オーブン、ヒート板、赤外線レーザー、赤外線ドライヤー等が挙げられる。中でも、インクを効率的に加熱硬化可能な点で、波長0.8μm~1.5μm又は2.0μm~3.5μmに極大吸収波長を有する、近赤外線~遠赤外線に発光波長を有する発光ダイオード(LED)、近赤外線~遠赤外線を放射するヒーター、近赤外線~遠赤外線に発振波長を有するレーザー、又は近赤外線~遠赤外線を放射するドライヤーが好ましい。 The heating means is not particularly limited, and examples thereof include a heat drum, a warm air, an infrared lamp, an infrared LED, an infrared heater, a thermal oven, a heat plate, an infrared laser, an infrared dryer and the like. Among them, a light emitting diode having an emission wavelength in the near infrared to far infrared rays, having a maximum absorption wavelength at a wavelength of 0.8 μm to 1.5 μm or 2.0 μm to 3.5 μm, from the point that the ink can be efficiently heat-cured An LED), a heater emitting near infrared to far infrared radiation, a laser having an emission wavelength of near infrared to far infrared radiation, or a dryer emitting near infrared to far infrared radiation is preferable.
 加熱時における加熱温度は、インク膜をより効果的に増粘させる観点から、40℃以上が好ましく、40℃~200℃がより好ましく、45℃~100℃が更に好ましく、50℃~80℃が更に好ましく、55℃~70℃が更に好ましい。
 加熱温度は、基材上のインクの温度を指し、赤外線サーモグラフィ装置H2640(日本アビオニクス(株))を用いたサーモグラフで測定することができる。
 加熱時間は、加熱温度、インクの組成、印刷速度等を加味し、適宜設定することができる。加熱時間は、5秒以上が好ましく、5秒~5分がより好ましく、10秒~1分がより好ましく、20秒~1分が更に好ましい。
The heating temperature during heating is preferably 40 ° C. or higher, more preferably 40 ° C. to 200 ° C., still more preferably 45 ° C. to 100 ° C., and further preferably 50 ° C. to 80 ° C. from the viewpoint of more effectively thickening the ink film. More preferably, 55 ° C to 70 ° C is more preferable.
The heating temperature refers to the temperature of the ink on the substrate, and can be measured by a thermograph using an infrared thermography device H2640 (Nippon Avionics Co., Ltd.).
The heating time can be appropriately set in consideration of the heating temperature, the composition of the ink, the printing speed and the like. The heating time is preferably 5 seconds or more, more preferably 5 seconds to 5 minutes, more preferably 10 seconds to 1 minute, and still more preferably 20 seconds to 1 minute.
(硬化工程)
 本開示の画像形成方法は、加熱工程によって加熱されたインク膜を硬化させる硬化工程を有することができる。
 この硬化工程により、インク膜中において、重合性モノマーによる重合反応(即ち、架橋反応)が進行する。従って、本開示の画像形成方法が硬化工程を有する場合には、画像の硬度をより向上させることができ、ひいては画像の引っ掻き耐性をより向上させることができる。
(Curing process)
The image forming method of the present disclosure can have a curing step of curing the ink film heated by the heating step.
By the curing step, a polymerization reaction (that is, a crosslinking reaction) by the polymerizable monomer proceeds in the ink film. Therefore, when the image forming method of the present disclosure has a curing step, the hardness of the image can be further improved, and thus the scratch resistance of the image can be further improved.
 本開示の画像形成方法において、光硬化性のインクを用いる場合、硬化工程として、加熱工程によって加熱されたインク膜に対して光(即ち、活性エネルギー線)を照射することにより、インク膜を光硬化させる硬化工程(以下、「硬化工程A」)を設けることができる。 In the image forming method of the present disclosure, when a photocurable ink is used, the ink film is irradiated with light (that is, active energy ray) as the curing step by irradiating the ink film heated in the heating step. A curing step (hereinafter, "curing step A") for curing can be provided.
 本開示の画像形成方法において、熱硬化性のインクを用いる場合、硬化工程として、加熱工程によって加熱されたインク膜に対し、加熱又は赤外線の照射を施すことによりインク膜を熱硬化させる硬化工程(以下、「硬化工程B」)を設けることができる。
 但し、熱硬化性のインクを用いる場合、この硬化工程B(即ち、前述の加熱工程とは別の硬化工程B)を設けず、前述の加熱工程により、インク膜の増粘及び熱硬化を行ってもよい。
 即ち、本開示の画像形成方法において、熱硬化性のインクを用いる場合は、インク膜の増粘を行う加熱工程と、インク膜の熱硬化を行う硬化工程Bと、を別個に設けてもよいし、インク膜の増粘及び熱硬化を両方行う1回の加熱工程を設けてもよい。
In the image forming method of the present disclosure, when a thermosetting ink is used, a curing step of subjecting the ink film heated in the heating step to heating or irradiation of infrared rays as a curing step to thermally cure the ink film ( Hereinafter, "hardening process B" can be provided.
However, when using a thermosetting ink, thickening and thermal curing of the ink film are performed by the above-described heating step without providing the curing step B (that is, the curing step B different from the above-described heating step). May be
That is, in the case of using a thermosetting ink in the image forming method of the present disclosure, a heating step for thickening the ink film and a curing step B for thermosetting the ink film may be separately provided. Alternatively, a single heating step may be provided to both thicken and thermally cure the ink film.
-硬化工程A-
 硬化工程Aは、加熱工程によって加熱されたインク膜に対して活性エネルギー線を照射することによりインク膜を硬化させる工程である。
 硬化工程Aでは、加熱工程によって加熱されたインク膜に対して活性エネルギー線を照射することにより、インク膜中の特定粒子の光架橋反応(即ち、光重合反応)が進行し、これによりインク膜の強度が高められる。
-Curing process A-
The curing step A is a step of curing the ink film by irradiating the ink film heated in the heating step with an active energy ray.
In the curing step A, the photocrosslinking reaction (that is, the photopolymerization reaction) of specific particles in the ink film proceeds by irradiating the ink film heated in the heating step with active energy rays, whereby the ink film is formed. The strength of the
 硬化工程Aで用いることができる活性エネルギー線としては、紫外線(UV光)、可視光線、電子線等を挙げられ、これらの中でも、UV光が好ましい。 As an active energy ray which can be used by hardening process A, an ultraviolet ray (UV light), a visible ray, an electron beam etc. are mentioned, Among these, UV light is preferred.
 活性エネルギー線(光)のピーク波長は、200nm~405nmであることが好ましく、220nm~390nmであることがより好ましく、220nm~385nmであることが更に好ましい。
 また、200nm~310nmであることも好ましく、200nm~280nmであることも好ましい。
The peak wavelength of the active energy ray (light) is preferably 200 nm to 405 nm, more preferably 220 nm to 390 nm, and still more preferably 220 nm to 385 nm.
In addition, 200 nm to 310 nm is also preferable, and 200 nm to 280 nm is also preferable.
 活性エネルギー線(光)が照射される際の露光面照度は、例えば10mW/cm~2000mW/cm、好ましくは20mW/cm~1000mW/cmである。
 活性エネルギー線(光)が照射される際の露光エネルギーは、例えば10mJ/cm~2000mJ/cm、好ましくは20mJ/cm~1000mJ/cmである。
Exposure surface illuminance when the active energy ray (light) is irradiated, for example, 10mW / cm 2 ~ 2000mW / cm 2, preferably 20mW / cm 2 ~ 1000mW / cm 2.
The exposure energy when the active energy ray (light) is irradiated is, for example, 10 mJ / cm 2 to 2000 mJ / cm 2 , preferably 20 mJ / cm 2 to 1000 mJ / cm 2 .
 活性エネルギー線(光)を発生させるための源としては、水銀ランプ、メタルハライドランプ、UV蛍光灯、ガスレーザー、固体レーザー等が広く知られている。
 また、上記で例示された光源の、半導体紫外発光デバイスへの置き換えは、産業的にも環境的にも非常に有用である。
 半導体紫外発光デバイスの中でも、LED(Light Emitting Diode)及びLD(Laser Diode)は、小型、高寿命、高効率、及び低コストであり、光源として期待されている。
 光源としては、メタルハライドランプ、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、LED、又は青紫レーザーが好ましい。
 これらの中でも、増感剤と光重合開始剤とを併用する場合は、波長365nm、405nm、若しくは436nmの光照射が可能な超高圧水銀ランプ、波長365nm、405nm、若しくは436nmの光照射が可能な高圧水銀ランプ、又は、波長355nm、365nm、385nm、395nm、若しくは405nmの光照射が可能なLEDがより好ましく、波長355nm、365nm、385nm、395nm、若しくは405nmの光照射が可能なLEDが最も好ましい。
As sources for generating active energy rays (light), mercury lamps, metal halide lamps, UV fluorescent lamps, gas lasers, solid lasers and the like are widely known.
Also, the replacement of the light source exemplified above with a semiconductor ultraviolet light emitting device is very useful both industrially and environmentally.
Among semiconductor ultraviolet light emitting devices, LEDs (Light Emitting Diodes) and LDs (Laser Diodes) are small in size, high in life, high in efficiency, and low in cost, and are expected as light sources.
As a light source, a metal halide lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, an LED or a blue-violet laser is preferable.
Among these, when using a sensitizer and a photopolymerization initiator in combination, an ultra-high pressure mercury lamp capable of light irradiation with a wavelength of 365 nm, 405 nm or 436 nm, light irradiation with a wavelength of 365 nm, 405 nm or 436 nm is possible A high pressure mercury lamp or an LED capable of light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm is more preferable, and an LED capable of light irradiation with a wavelength of 355 nm, 365 nm, 385 nm, 395 nm or 405 nm is most preferable.
 硬化工程Aおいて、基材上に付与されたインクに対する活性エネルギー線の照射時間は、例えば0.01秒間~120秒間であり、好ましくは0.1秒間~90秒間である。
 照射条件及び基本的な照射方法は、特開昭60-132767号公報に開示されている照射条件及び照射方法を同様に適用することができる。
 活性エネルギー線の照射方式として、具体的には、インクの吐出装置を含むヘッドユニットの両側に光源を設け、いわゆるシャトル方式でヘッドユニット及び光源を走査する方式、又は、駆動を伴わない別光源によって活性エネルギー線の照射を行う方式が好ましい。
 活性エネルギー線の照射は、インクを着弾して加熱乾燥を行った後、一定時間(例えば0.01秒間~120秒間、好ましくは0.01秒間~60秒間)をおいて行うことが好ましい。
In the curing step A, the irradiation time of the active energy ray to the ink applied on the substrate is, for example, 0.01 seconds to 120 seconds, preferably 0.1 seconds to 90 seconds.
As the irradiation conditions and the basic irradiation method, the irradiation conditions and the irradiation methods disclosed in Japanese Patent Application Laid-Open No. 60-132767 can be applied similarly.
Specifically, a light source is provided on both sides of a head unit including an ink discharge device as an active energy ray irradiation method, and the head unit and the light source are scanned by a so-called shuttle method, or by another light source without driving. It is preferable to use an active energy ray irradiation method.
The irradiation of the active energy ray is preferably performed after a certain time (for example, 0.01 seconds to 120 seconds, preferably 0.01 seconds to 60 seconds) after the ink is landed and the heating and drying are performed.
-硬化工程B-
 硬化工程Bは、加熱工程によって加熱されたインク膜に対し、加熱又は赤外線の照射を施すことによりインク膜を熱硬化させる工程である。
 硬化工程Bでは、加熱工程によって加熱されたインク膜に対し、加熱又は赤外線の照射を施すことにより、インク中の特定粒子の熱架橋反応(即ち、熱重合反応)が進行し、これによりインク膜の強度が高められる。
 硬化工程Bの好ましい態様は、加熱工程の好ましい態様と同様である。
-Curing process B-
The curing step B is a step of thermally curing the ink film by applying heat or irradiation of infrared rays to the ink film heated in the heating step.
In the curing step B, the thermal crosslinking reaction (that is, thermal polymerization reaction) of specific particles in the ink proceeds by heating or irradiating infrared rays to the ink film heated in the heating step, whereby the ink film The strength of the
The preferred embodiment of the curing step B is the same as the preferred embodiment of the heating step.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を超えない限り、以下の実施例に限定されるものではない。
 以下の実施例において、「部」は、特に断りがない限り、質量部を表す。
 また、化学式中の「*」は、結合位置を表す。
EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
In the following examples, "parts" represents parts by mass unless otherwise specified.
Moreover, "*" in chemical formula represents a bonding position.
<特定鎖状ポリマーの合成>
(ポリマー1の合成)
 下記の反応スキームに従い、特定鎖状ポリマーとして、下記のポリマー1を合成した。
<Synthesis of Specific Chain Polymer>
(Synthesis of Polymer 1)
The following polymer 1 was synthesized as a specific linear polymer according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(16.9g)、ジシクロヘキシルメタン-4,4’―ジイソシアネート(HMDI)(82.5g)、トリシクロデカンジメタノール(化合物(2-5))(2.9g)、ビスフェノールAエポキシジアクリレート(化合物(a-21))(77.0g)、及び酢酸エチル(102.3g)を仕込み、70℃に加熱した。そこに、ネオスタンU-600(日東化成(株)、無機ビスマス触媒;以下、「U-600」ともいう)を0.2g添加し、70℃で5時間撹拌した。
 次に、そこに、末端封止剤としてのイソプロパノール(IPA)(80g)と、酢酸エチル(110g)と、を添加し、70℃で3時間撹拌した。3時間の撹拌後、反応液を室温(25℃;以下同じ)まで放冷し、次いで、酢酸エチルを用いて濃度調整を行うことにより、ポリマー1の30質量%溶液(溶媒:IPA及び酢酸エチルの混合溶液)を得た。
 ポリマー1の重量平均分子量(Mw)は8000であり、酸価は0.70mmol/gであった。
 ポリマー1は、光重合性基としてアクリロイル基を有している。
In a three-necked flask, dimethylol propionic acid (DMPA) (16.9 g), dicyclohexylmethane-4,4'-diisocyanate (HMDI) (82.5 g), tricyclodecane dimethanol (compound (2-5)) (2 9 g), bisphenol A epoxy diacrylate (compound (a-21)) (77.0 g), and ethyl acetate (102.3 g) were charged and heated to 70 ° C. Thereto, 0.2 g of Neostan U-600 (Nitto Kasei Co., Ltd., inorganic bismuth catalyst; hereinafter also referred to as "U-600") was added, and the mixture was stirred at 70 ° C. for 5 hours.
Next, thereto was added isopropanol (IPA) (80 g) as an end capping agent and ethyl acetate (110 g), and the mixture was stirred at 70 ° C. for 3 hours. After stirring for 3 hours, the reaction solution is allowed to cool to room temperature (25 ° C .; the same applies hereinafter), and the concentration is adjusted with ethyl acetate to obtain a 30% by weight solution of polymer 1 (solvent: IPA and ethyl acetate) Mixed solution of
The weight average molecular weight (Mw) of the polymer 1 was 8000, and the acid value was 0.70 mmol / g.
The polymer 1 has an acryloyl group as a photopolymerizable group.
(ポリマー2の合成)
 特定鎖状ポリマーとして、鎖状の(メタ)アクリルポリマーであるポリマー2を合成した。詳細を以下に示す。
 三口フラスコに、プロピレングリコールモノメチルエーテル(37.5g)を仕込み、20mL/minの窒素気流下、75℃で30分間加熱した。
 次に、そこに、メタクリル酸2-エチルへキシル(30.0g)、メタクリル酸メチル(10.0g)、メタクリル酸(3.0g)、アリルメタクリレート(7.0g)、2,2’-アゾビス(イソ酪酸メチル)(2.2g)、及びプロピレングリコールモノメチルエーテル(37.5g)の混合液を2時間かけて滴下した。滴下終了後、75℃で2時間撹拌し、その後、室温まで放冷した。得られた反応液を水5Lに撹拌しながら滴下し、(メタ)アクリルポリマーの粉体を得た。得られた粉体を60℃のオーブンを用いて6時間乾燥し、次いで、酢酸エチルに溶解させて濃度調整を行うことにより、ポリマー2の30質量%溶液(溶媒:酢酸エチル)を得た。
 ポリマー2の重量平均分子量(Mw)は20000であり、酸価は0.70mmol/gであった。
(Synthesis of Polymer 2)
As a specific chain polymer, Polymer 2, which is a chain (meth) acrylic polymer, was synthesized. Details are shown below.
Propylene glycol monomethyl ether (37.5 g) was charged into a three-necked flask, and heated at 75 ° C. for 30 minutes under a nitrogen stream of 20 mL / min.
Then, there were added thereto 2-ethylhexyl methacrylate (30.0 g), methyl methacrylate (10.0 g), methacrylic acid (3.0 g), allyl methacrylate (7.0 g), 2,2'-azobis A mixture of (methyl isobutyrate) (2.2 g) and propylene glycol monomethyl ether (37.5 g) was added dropwise over 2 hours. After completion of the dropwise addition, the mixture was stirred at 75 ° C. for 2 hours and then allowed to cool to room temperature. The resulting reaction solution was added dropwise to 5 liters of water with stirring to obtain a powder of (meth) acrylic polymer. The obtained powder was dried using an oven at 60 ° C. for 6 hours, and then dissolved in ethyl acetate and concentration adjusted to obtain a 30% by mass solution of polymer 2 (solvent: ethyl acetate).
The weight average molecular weight (Mw) of the polymer 2 was 20000, and the acid value was 0.70 mmol / g.
(ポリマー101の合成)
 下記の反応スキームに従い、特定鎖状ポリマーとして、下記のポリマー101を合成した。
(Synthesis of Polymer 101)
The following polymer 101 was synthesized as a specific linear polymer according to the following reaction scheme.
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
 三口フラスコに、ジメチロールプロピオン酸(DMPA)(6.4g)、ジシクロヘキシルメタン-4,4’―ジイソシアネート(HMDI)(41.2g)、トリシクロデカンジメタノール(化合物(2-5))(20.2g)、及び酢酸エチル(67.7g)を仕込み、70℃に加熱した。得られた加熱物に、U-600を0.14g添加し、70℃で5時間撹拌した。
 次に、そこに、末端封止剤としてのイソプロパノール(IPA)(10g)と、酢酸エチル(32.9g)と、を添加し、70℃で3時間撹拌した。3時間の撹拌後、反応液を室温まで放冷し、次いで、酢酸エチルを用いて濃度調整を行うことにより、ポリマー101の30質量%溶液(溶媒:IPA及び酢酸エチルの混合溶液)を得た。
 ポリマー101の重量平均分子量(Mw)は8000であり、酸価は0.70mmol/gであった。
In a three-necked flask, dimethylol propionic acid (DMPA) (6.4 g), dicyclohexylmethane-4,4'-diisocyanate (HMDI) (41.2 g), tricyclodecane dimethanol (compound (2-5)) (20 2 g) and ethyl acetate (67.7 g) were charged and heated to 70.degree. To the resulting heated product, 0.14 g of U-600 was added and stirred at 70 ° C. for 5 hours.
Next, there was added isopropanol (IPA) (10 g) as an end capping agent and ethyl acetate (32.9 g), and the mixture was stirred at 70 ° C. for 3 hours. After stirring for 3 hours, the reaction solution was allowed to cool to room temperature, and then concentration adjustment was performed using ethyl acetate to obtain a 30% by mass solution of polymer 101 (solvent: mixed solution of IPA and ethyl acetate) .
The weight average molecular weight (Mw) of the polymer 101 was 8000, and the acid value was 0.70 mmol / g.
〔実施例1〕(光硬化性のインク)
<水分散物の調製>
-油相成分の調製-
 ポリマー1の30質量%溶液(ポリマー1の量として53部)と、サートマー社の光重合性モノマーSR833S(44部)と、BASF社の光重合開始剤IRGACURE(登録商標)819(2.5部;以下、「IRG819」ともいう)と、増感剤として東京化成工業(株)の2-イソプロピルチオキサントン(0.5部;以下、「ITX」ともいう)と、酢酸エチルと、を混合し、15分間撹拌することにより、固形分36質量%の油相成分44gを得た。
Example 1 (Photocurable Ink)
<Preparation of water dispersion>
-Preparation of oil phase components-
A 30% by weight solution of polymer 1 (53 parts as polymer 1), Sartmar photopolymerizable monomer SR833S (44 parts), BASF photopolymerization initiator IRGACURE® 819 (2.5 parts) Hereinafter, “IRG 819”), 2-isopropylthioxanthone (0.5 part; hereinafter, also referred to as “ITX”) of Tokyo Chemical Industry Co., Ltd. as a sensitizer, and ethyl acetate are mixed, By stirring for 15 minutes, 44 g of an oil phase component having a solid content of 36% by mass was obtained.
 SR833Sは、環状構造を有する2官能の光重合性モノマーであり、具体的にはトリシクロデカンジメタノールジアクリレート(分子量304)である。
 IRG819は、アシルホスフィンオキシド系光重合開始剤であり、具体的には、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシドである。
SR833S is a bifunctional photopolymerizable monomer having a cyclic structure, and specifically, it is tricyclodecanedimethanol diacrylate (molecular weight 304).
IRG 819 is an acyl phosphine oxide type photoinitiator, specifically, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide.
-水相成分の調製-
 蒸留水(45g)と、揮発性中和剤としてのトリエチルアミン(沸点:89℃)と、非揮発性中和剤としての水酸化ナトリウム(NaOH)(沸点:1388℃)と、を混合し、15分間撹拌することにより、水相成分を調製した。
 揮発性中和剤の使用量及び非揮発性中和剤の使用量は、製造される特定粒子における酸基(即ち、カルボキシ基)の中和度が90%となるように調整した。
 揮発性中和剤及び非揮発性中和剤の具体的な量は、以下の算出式によって求めた。
-Preparation of water phase components-
Mix distilled water (45 g), triethylamine (boiling point: 89 ° C.) as a volatile neutralizing agent, and sodium hydroxide (NaOH) (boiling point: 1388 ° C.) as a non-volatile neutralizing agent, 15 The aqueous phase component was prepared by stirring for a minute.
The amount of volatile neutralizing agent used and the amount of non-volatile neutralizing agent used were adjusted so that the degree of neutralization of the acid groups (i.e., carboxy groups) in the specific particles to be produced was 90%.
The specific amounts of volatile neutralizing agent and non-volatile neutralizing agent were determined by the following formula.
 揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対する特定鎖状ポリマー(即ち、ポリマ-1)の含有量(質量%)/100)×特定鎖状ポリマー(即ち、ポリマ-1)の酸価(mmol/g)×0.9×〔揮発性中和剤のモル数(mol)/(揮発性中和剤のモル数(mol)+非揮発性中和剤のモル数(mol))〕×揮発性中和剤の分子量(g/mol)/1000
 非揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対する特定鎖状ポリマー(即ち、ポリマ-1)の含有量(質量%)/100)×特定鎖状ポリマー(即ち、ポリマ-1)の酸価(mmol/g)×0.9×〔非揮発性中和剤のモル数(mol)/(揮発性中和剤のモル数(mol)+非揮発性中和剤のモル数(mol))〕×非揮発性中和剤の分子量(g/mol)/1000
Amount of volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (% by mass) / 100) × (specific linear polymer relative to total solid content of oil phase component That is, the content of polymer-1) (% by mass) / 100) × the acid value (mmol / g) of the specific linear polymer (ie, polymer-1) × 0.9 × [the number of moles of the volatile neutralizing agent (Mol) / (mol of volatile neutralizing agent (mol) + mol of non-volatile neutralizing agent (mol)) × molecular weight of volatile neutralizing agent (g / mol) / 1000
Amount of non-volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (mass%) / 100) × (specific chain polymer relative to total solid content of oil phase component) (Namely, content of polymer-1) (mass%) / 100) × acid value of specific chain polymer (namely, polymer-1) (mmol / g) × 0.9 × [nonvolatile neutralizing agent Number of moles (mol) / (number of moles of volatile neutralizing agent (mol) + number of moles of non-volatile neutralizing agent (mol)) × molecular weight of non-volatile neutralizing agent (g / mol) / 1000
 上記油相成分と上記水相成分とを混合し、得られた混合物を、室温でホモジナイザーを用いて18000rpmで10分間乳化させ、乳化物を得た。
 得られた乳化物を蒸留水(25g)に添加し、得られた液体を室温で30分撹拌した。次に、この液体を50℃に加熱し、50℃で6時間撹拌することにより、上記液体から酢酸エチルを留去した。酢酸エチルが留去された液体を、更に、50℃で24時間撹拌することにより、液体中に特定粒子を形成させた。
 次に、この特定粒子を含む液体を、固形分含有量が20質量%となるように蒸留水を用いて希釈することにより、特定粒子の水分散物を得た。
The oil phase component and the water phase component were mixed, and the obtained mixture was emulsified at room temperature for 10 minutes at 18,000 rpm using a homogenizer to obtain an emulsion.
The resulting emulsion was added to distilled water (25 g) and the resulting liquid was stirred at room temperature for 30 minutes. Next, the liquid was heated to 50 ° C. and stirred at 50 ° C. for 6 hours to distill off ethyl acetate from the liquid. The liquid from which ethyl acetate was distilled off was further stirred at 50 ° C. for 24 hours to form specific particles in the liquid.
Next, an aqueous dispersion of specific particles was obtained by diluting the liquid containing the specific particles with distilled water so as to have a solid content of 20% by mass.
<光硬化性のインクの調製>
 下記組成の各成分を混合し、光硬化性のインクを作製した。
<Preparation of Photocurable Ink>
Each component of the following composition was mixed to prepare a photocurable ink.
-光硬化性のインクの組成-
・上記水分散物                     82部
・顔料分散液                      13部
〔Pro-jet Cyan APD1000(FUJIFILM Imaging Colorants社)、顔料濃度:14質量%〕
・フッ素系界面活性剤                 0.3部
〔Capstone FS-31(DuPont社)、固形分:25質量%〕
・2-メチルプロパンジオール             4.7部
-Composition of photocurable ink-
-82 parts of the above aqueous dispersion-13 parts of pigment dispersion (Pro-jet Cyan APD 1000 (FUJIFILM Imaging Colorants), pigment concentration: 14% by mass)
・ Fluorinated surfactant 0.3 parts (Capstone FS-31 (DuPont), solid content: 25% by mass)
-4.7 parts of 2-methyl propane diol
<評価>
 上記で得られた光硬化性のインクを用い、以下の評価を行った。
 結果を表3に示す。
<Evaluation>
The following evaluation was performed using the photocurable ink obtained above.
The results are shown in Table 3.
1.インクの吐出性
 インクの分散安定性の指標の1つとして、吐出性の評価を行った。
 調製後室温で1日以内保管した上記光硬化性のインクをインクジェットプリンタ(ローランド ディー.ジー.社、SP-300V)のヘッドから30分間吐出し、次いで吐出を停止した。
 吐出の停止から所定の時間(詳細には、5分間、8分間、及び10分間のそれぞれの時間)経過した後、基材上に、再び上記ヘッドから上記インクを吐出させ、5cm×5cmのベタ画像を形成した。
 基材としては、DUROplastic社のポリプロピレン(PP)基板であるCORREX(登録商標)を用いた。
 これらの画像を目視で観察し、不吐出ノズルの発生等によるドット欠けの有無を確認し、下記評価基準に従って、インクの吐出性を評価した。
 下記評価基準において、インクの吐出性が最も優れるものは、Aである。
1. Ink Ejectability As one of the indicators of the dispersion stability of the ink, the ejection property was evaluated.
After the preparation, the above-mentioned photocurable ink stored at room temperature for less than 1 day was discharged from the head of an ink jet printer (Roland DG Corporation, SP-300V) for 30 minutes, and then the discharge was stopped.
After a predetermined time (specifically, 5 minutes, 8 minutes, and 10 minutes, respectively) has elapsed from the stop of the discharge, the ink is discharged again from the head onto the substrate, and a solid of 5 cm × 5 cm is obtained. An image was formed.
As a substrate, CORREX (registered trademark) which is a polypropylene (PP) substrate of DUROplastic was used.
These images were visually observed to confirm the presence or absence of dot defects due to the occurrence of non-ejection nozzles and the like, and the ink ejection properties were evaluated according to the following evaluation criteria.
In the following evaluation criteria, A is the one with the best ink dischargeability.
-インクの吐出性の評価基準-
 A:吐出の停止から10分経過後の吐出評価時にも不吐出ノズルの発生等によるドット欠けの発生が認められず、良好な画像が得られた。
 B:吐出の停止から8分経過後の吐出評価時には不吐出ノズルの発生等によるドット欠けの発生が認められず、良好な画像が得られたが、10分経過後の吐出評価時には不吐出ノズルが発生し、ドット欠けの発生が認められた。
 C:吐出の停止から8分経過後の吐出評価時に不吐出ノズルが発生し、ドット欠けの発生が認められた。
-Evaluation criteria for ink dischargeability-
A: At the time of discharge evaluation after 10 minutes from the stop of discharge, occurrence of dot missing due to the generation of a non-discharge nozzle or the like was not observed, and a good image was obtained.
B: At the time of discharge evaluation after 8 minutes from the stop of discharge, occurrence of dot missing due to the occurrence of non-discharge nozzle etc. was not recognized and a good image was obtained, but at the time of discharge evaluation after 10 minutes non-discharge nozzle Was observed, and the occurrence of dot missing was observed.
C: A non-ejection nozzle was generated at the time of ejection evaluation 8 minutes after the ejection was stopped, and occurrence of dot chipping was recognized.
2.インクの保存安定性
 インクの分散安定性の指標の1つとして、保存安定性の評価を行った。
 上記光硬化性のインクを容器に密封し、60℃で2週間経時させた。
 2週間経過後のインクについて、上記インクの吐出性の評価試験と同様の評価試験を実施し、同様の評価基準に従って、インクの保存安定性を評価した。
 上記評価基準において、インクの保存安定性が最も優れるものは、Aである。
2. Storage stability of ink Storage stability was evaluated as one of the indicators of dispersion stability of ink.
The above photocurable ink was sealed in a container and allowed to age at 60 ° C. for 2 weeks.
The evaluation test similar to the evaluation test of the dischargeability of the said ink was implemented about the ink after two weeks progress, and the storage stability of the ink was evaluated according to the same evaluation standard.
Among the above evaluation criteria, A is the one with the best storage stability of the ink.
3.画像の精細さ
 基材をプリントヒーターによって60℃に加熱し、加熱された基材に対し、上記光硬化性のインクを上記インクジェットプリンタのヘッドから吐出し、図1に示す文字画像を、5ポイント、7ポイント、及び10ポイントの各サイズにて形成した。
 基材としては、DUROplastic社のポリプロピレン(PP)基板であるCORREX(登録商標)を用いた。
3. Fineness of the image The substrate is heated to 60 ° C. by a print heater, and the photocurable ink is discharged from the head of the ink jet printer to the heated substrate, and the character image shown in FIG. , 7 points, and 10 points in each size.
As a substrate, CORREX (registered trademark) which is a polypropylene (PP) substrate of DUROplastic was used.
 形成された各サイズの図1に示す文字画像を、倍率10倍のクラフトルーペ(エツミ社)によって観察した。観察した結果に基づき、下記評価基準にて、画像の精細さを評価した。下記評価基準において、画像の精細さが最も優れるものは、Aである。 The character image shown in FIG. 1 of each size formed was observed with a kraft loupe (Etsumi Co., Ltd.) at a magnification of 10 times. Based on the observed results, the definition of the image was evaluated according to the following evaluation criteria. In the following evaluation criteria, A is the one with the highest definition of the image.
-画像の精細さの評価基準-
 A:5ポイントのサイズの図1に示す文字画像が、潰れ及びにじみ無く形成された。
 B:7ポイントのサイズの図1に示す文字画像が、潰れ及びにじみ無く形成された(但し、Aに該当する場合を除く)。
 C:10ポイントのサイズの図1に示す文字画像が、潰れ及びにじみ無く形成された(但し、A又はBに該当する場合を除く)。
 D:10ポイントのサイズの図1に示す文字画像が、潰れて、又は、にじんで形成された。
-Evaluation criteria for image definition-
A: The character image shown in FIG. 1 with a size of 5 points was formed without crushing and bleeding.
B: A character image shown in FIG. 1 having a size of 7 points was formed without crushing and bleeding (except in the case of A).
C: A character image shown in FIG. 1 having a size of 10 points was formed without crushing and bleeding (except in the case corresponding to A or B).
D: The character image shown in FIG. 1 with a size of 10 points was crushed or dusted.
4.硬化膜の引っ掻き耐性
 調製後室温で1日以内保管した上記光硬化性のインクを基材上に塗布することにより、上記基材上に厚さ12μmの塗膜を形成した。
 基材としては、DUROplastic社のポリプロピレン(PP)基板であるCORREX(登録商標)を用いた。
 また、上記塗布は、RK PRINT COAT INSTRUMENTS社のKハンドコーターのNo.2バーを用いて行った。
4. Scratch Resistance of Cured Film A coated film having a thickness of 12 μm was formed on the substrate by applying the photocurable ink stored on the substrate for 1 day or less after preparation to the substrate.
As a substrate, CORREX (registered trademark) which is a polypropylene (PP) substrate of DUROplastic was used.
Moreover, the said application is No. 1 of the K hand coater of RK PRINT COAT INSTRUMENTS company. It carried out using 2 bars.
 次に、上記塗膜を60℃で3分間加熱し、乾燥させた。
 乾燥後の塗膜に対し、紫外線(UV)を照射することにより、塗膜を硬化させ、硬化膜を得た。
 紫外線(UV)の照射には、露光光源としてオゾンレスメタルハライドランプMAN250Lを搭載し、コンベアスピード35m/分、及び露光強度1.0W/cmに設定した実験用UVミニコンベア装置CSOT((株)ジーエス・ユアサパワーサプライ)を用いた。このUV照射は、露光エネルギー1000mJ/cmにて行った。
Next, the coated film was heated at 60 ° C. for 3 minutes to be dried.
The coating film after drying was irradiated with ultraviolet light (UV) to cure the coating film and obtain a cured film.
For UV (UV) irradiation, an ozone-less metal halide lamp MAN 250L is mounted as an exposure light source, and an experimental UV mini-conveyor device CSOT (traded) set at a conveyor speed of 35 m / min and an exposure intensity of 1.0 W / cm 2 GS Yuasa Power Supply was used. This UV irradiation was performed at an exposure energy of 1000 mJ / cm 2 .
 上記で形成された硬化膜に対し、以下の条件の引っ掻き試験を実施した。 The scratch test of the following conditions was implemented with respect to the cured film formed above.
-引っ掻き試験の条件-
 装置:ハイドン社の往復摩耗試験機「TYPE30S」
 引っ掻き針:先端の曲率半径が1.0mmであるSUS(ステンレス)製の引っ掻き針
 加重:100g及び200gの2条件
 引っ掻き速度:3000mm/min.
 引っ掻き回数:5往復
-Conditions of scratch test-
Equipment: Haydn's reciprocating wear tester "TYPE 30S"
Scratching needle: SUS (stainless steel) scratching needle having a tip radius of curvature of 1.0 mm Loading: 100 g and 200 g two conditions Scratching speed: 3000 mm / min.
Number of scratches: 5 round trips
 引っ掻き試験の実施後、硬化膜の表面を目視で観察し、下記評価基準に従って、硬化膜の引っ掻き耐性を評価した。
 下記評価基準において、硬化膜の引っ掻き耐性が最も優れるものは、Aである。
After the scratch test, the surface of the cured film was visually observed, and the scratch resistance of the cured film was evaluated according to the following evaluation criteria.
In the following evaluation criteria, A is the one with the best scratch resistance of the cured film.
-硬化膜の引っ掻き耐性の評価基準-
 A:荷重100g及び荷重200gのいずれの条件においても、硬化膜に引っ掻き跡は見られなかった。
 B:荷重100gの条件では、硬化膜に引っ掻き跡は見られなかったが、荷重200gの条件では、硬化膜にわずかに引っ掻き跡が見られた。
 C:荷重100gの条件で、硬化膜にわずかに引っ掻き跡が見られた。
 D:荷重100gの条件で、硬化膜にはっきりと引っ掻き跡が見られた。
-Evaluation criteria for scratch resistance of cured film-
A: No scratch marks were observed on the cured film under any of the conditions of 100 g load and 200 g load.
B: No scratch marks were observed on the cured film under the condition of a load of 100 g, but slight scratches were observed on the cured film under the condition of the load of 200 g.
C: A slight scratch was observed on the cured film under a load of 100 g.
D: Scratch marks were clearly observed on the cured film under a load of 100 g.
〔実施例2〕(光硬化性のインク)
 光重合性モノマーの種類及び量を、表3に示すように変更したこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
 ここで、SR399Eは、環状構造を有しない5官能の光重合性モノマーであり、具体的にはジペンタエリスリトールペンタアクリレート(分子量525)である。
Example 2 (Photocurable Ink)
The same operation as in Example 1 was carried out except that the type and amount of the photopolymerizable monomer were changed as shown in Table 3.
The results are shown in Table 3.
Here, SR399E is a pentafunctional photopolymerizable monomer having no cyclic structure, and specifically, is dipentaerythritol pentaacrylate (molecular weight 525).
〔実施例3〕(光硬化性のインク)
 非揮発性中和剤の種類を、表3に示すように変更したこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
Example 3 (Photocurable Ink)
The same operation as in Example 1 was performed except that the type of non-volatile neutralizing agent was changed as shown in Table 3.
The results are shown in Table 3.
〔実施例4~7及び13~18〕(光硬化性のインク)
 揮発性中和剤の種類を、表3に示すように変更したこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
[Examples 4 to 7 and 13 to 18] (Photocurable Ink)
The same operation as in Example 1 was performed except that the type of volatile neutralizing agent was changed as shown in Table 3.
The results are shown in Table 3.
〔実施例8~12〕(光硬化性のインク)
 揮発性中和剤の使用量及び非揮発性中和剤の使用量を、表3に示す、非揮発性中和剤に対する揮発性中和剤のモル比〔揮発性/非揮発性(モル比)〕になるように変更したこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
[Examples 8 to 12] (Photocurable Ink)
The amounts of volatile neutralizing agents used and the amounts of non-volatile neutralizing agents used are shown in Table 3, molar ratio of volatile neutralizing agent to non-volatile neutralizing agent [volatility / non-volatility (molar ratio The same operation as Example 1 was performed except having changed so that it might become].
The results are shown in Table 3.
〔実施例19〕(光硬化性のインク)
 ポリマー1の30質量%溶液(ポリマー1の量として53部)の代わりに、ポリマー2の30質量%溶液(ポリマー2の量として53部)を使用したこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
Example 19 (Photocurable Ink)
The same operation as in Example 1 is carried out except using a 30% by mass solution of Polymer 2 (53 parts as the amount of Polymer 2) instead of the 30% by mass solution of Polymer 1 (53 parts as the amount of Polymer 1) went.
The results are shown in Table 3.
〔比較例1〕(光硬化性のインク)
<水分散物の調製>
-油相成分の調製-
 ポリマー1の30質量%溶液(ポリマー1の量として53部)と、サートマー社の光重合性モノマーSR833S(44部)と、BASF社の光重合開始剤IRGACURE(登録商標)819(2.5部;IRG819)と、増感剤として東京化成工業(株)の2-イソプロピルチオキサントン(0.5部;ITX)と、酢酸エチルと、を混合し、15分間撹拌することにより、固形分36質量%の油相成分44gを得た。
Comparative Example 1 (Photocurable Ink)
<Preparation of water dispersion>
-Preparation of oil phase components-
A 30% by weight solution of polymer 1 (53 parts as polymer 1), Sartmar photopolymerizable monomer SR833S (44 parts), BASF photopolymerization initiator IRGACURE® 819 (2.5 parts) IRG 819), 2-isopropylthioxanthone (0.5 part; ITX) of Tokyo Chemical Industry Co., Ltd. as a sensitizer, and ethyl acetate are mixed, and the solid content is 36% by mass by stirring for 15 minutes 44 g of an oil phase component of
-水相成分の調製-
 蒸留水(45g)と、揮発性中和剤としてのアンモニア(沸点:-33℃)と、非揮発性中和剤としての水酸化ナトリウム(NaOH)(沸点:1388℃)と、を混合し、15分間撹拌することにより、水相成分を調製した。
 非揮発性中和剤の使用量は、製造される特定粒子における酸基(即ち、カルボキシ基)の中和度が90%となるように調整した。
 揮発性中和剤の使用量は、非揮発性中和剤の使用量の1/10の量とした。
 揮発性中和剤及び非揮発性中和剤の具体的な量は、以下の算出式によって求めた。
-Preparation of water phase components-
Mix distilled water (45 g), ammonia (boiling point: -33 ° C) as a volatile neutralizing agent, and sodium hydroxide (NaOH) (boiling point: 1388 ° C) as a non-volatile neutralizing agent, The aqueous phase component was prepared by stirring for 15 minutes.
The amount of non-volatile neutralizing agent used was adjusted so that the degree of neutralization of the acid groups (i.e., carboxy groups) in the specific particles to be produced was 90%.
The amount of volatile neutralizing agent used was 1/10 of the amount of nonvolatile neutralizing agent used.
The specific amounts of volatile neutralizing agent and non-volatile neutralizing agent were determined by the following formula.
 揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対する特定鎖状ポリマー(即ち、ポリマ-1)の含有量(質量%)/100)×特定鎖状ポリマー(即ち、ポリマ-1)の酸価(mmol/g)×0.9×(1/10)×揮発性中和剤の分子量(g/mol)/1000
 非揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対する特定鎖状ポリマー(即ち、ポリマ-1)の含有量(質量%)/100)×特定鎖状ポリマー(即ち、ポリマ-1)の酸価(mmol/g)×0.9×非揮発性中和剤の分子量(g/mol)/1000
Amount of volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (% by mass) / 100) × (specific linear polymer relative to total solid content of oil phase component That is, the content of polymer 1) (% by mass) / 100) × acid value (mmol / g) of a specific linear polymer (ie, polymer 1) × 0.9 × (1/10) × volatile Molecular weight of Japanese agent (g / mol) / 1000
Amount of non-volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (mass%) / 100) × (specific chain polymer relative to total solid content of oil phase component) (Namely, content of polymer-1) (mass%) / 100) × acid value of specific chain polymer (namely, polymer-1) (mmol / g) × 0.9 × molecular weight of non-volatile neutralizing agent (G / mol) / 1000
 上記油相成分と上記水相成分とを混合し、得られた混合物を25℃でホモジナイザーを用いて18000rpmで10分間乳化させ、乳化物を得た。
 得られた乳化物を蒸留水(25g)に添加し、得られた液体を室温で30分撹拌した。次に、この液体を60℃に加熱し、減圧(2.7kPa)下、60℃で6時間撹拌することにより、上記液体から酢酸エチルと揮発性中和剤(即ち、アンモニア)とを留去した。酢酸エチルと揮発性中和剤とが留去された液体を、更に、常圧下、50℃で24時間撹拌することにより、液体中に粒子を形成させた。
 次に、この粒子を含む液体を、固形分含有量が20質量%となるように蒸留水を用いて希釈することにより、粒子の水分散物を得た。得られた粒子の水分散物からは、揮発性中和剤による臭気は感じられず、揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、比較例1と同様にして、光硬化性のインクを調製した。
 結果を表3に示す。
The oil phase component and the water phase component were mixed, and the resulting mixture was emulsified at 25 ° C. using a homogenizer at 18,000 rpm for 10 minutes to obtain an emulsion.
The resulting emulsion was added to distilled water (25 g) and the resulting liquid was stirred at room temperature for 30 minutes. Next, the liquid is heated to 60 ° C. and stirred at 60 ° C. for 6 hours under reduced pressure (2.7 kPa) to distill off ethyl acetate and a volatile neutralizing agent (that is, ammonia) from the liquid. did. The liquid from which ethyl acetate and the volatile neutralizing agent were distilled off was further stirred at 50 ° C. under normal pressure for 24 hours to form particles in the liquid.
Next, an aqueous dispersion of particles was obtained by diluting the liquid containing the particles with distilled water so that the solid content would be 20% by mass. The odor of the volatile neutralizing agent was not felt from the aqueous dispersion of the obtained particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method, It was 0 mmol.
A photocurable ink was prepared in the same manner as in Comparative Example 1 using the obtained particle dispersion liquid.
The results are shown in Table 3.
〔比較例2〕(光硬化性のインク)
 揮発性中和剤の種類を、表3に示すように変更したこと以外は比較例1と同様の操作を行い、乳化物を得た。
 得られた乳化物を蒸留水(25g)に添加し、得られた液体を室温で30分撹拌した。次に、この液体を60℃に加熱し、減圧(2.7kPa)下、60℃で6時間撹拌することにより、上記液体から酢酸エチルと揮発性中和剤(即ち、トリエチルアミン)とを留去した。酢酸エチルと揮発性中和剤とが留去された液体を、更に、常圧下、50℃で24時間撹拌することにより、液体中に粒子を形成させた。
 次に、この粒子を含む液体を、固形分含有量が20質量%となるように蒸留水を用いて希釈することにより、粒子の水分散物を得た。得られた粒子の水分散物からは、揮発性中和剤による臭気は感じられず、揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、比較例1と同様にして、光硬化性のインクを調製した。
 結果を表3に示す。
Comparative Example 2 (Photocurable Ink)
An emulsion was obtained in the same manner as in Comparative Example 1 except that the type of volatile neutralizing agent was changed as shown in Table 3.
The resulting emulsion was added to distilled water (25 g) and the resulting liquid was stirred at room temperature for 30 minutes. Next, the liquid is heated to 60 ° C. and stirred at 60 ° C. under reduced pressure (2.7 kPa) for 6 hours to distill off ethyl acetate and a volatile neutralizing agent (that is, triethylamine) from the liquid. did. The liquid from which ethyl acetate and the volatile neutralizing agent were distilled off was further stirred at 50 ° C. under normal pressure for 24 hours to form particles in the liquid.
Next, an aqueous dispersion of particles was obtained by diluting the liquid containing the particles with distilled water so that the solid content would be 20% by mass. The odor of the volatile neutralizing agent was not felt from the aqueous dispersion of the obtained particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method, It was 0 mmol.
A photocurable ink was prepared in the same manner as in Comparative Example 1 using the obtained particle dispersion liquid.
The results are shown in Table 3.
〔比較例3〕(光硬化性のインク)
 揮発性中和剤を使用しなかったこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
Comparative Example 3 (Photocurable Ink)
The same operation as in Example 1 was performed except that the volatile neutralizing agent was not used.
The results are shown in Table 3.
〔比較例4〕(光硬化性のインク)
 非揮発性中和剤を使用しなかったこと以外は実施例1と同様の操作を行った。
 結果を表3に示す。
Comparative Example 4 (Photocurable Ink)
The same operation as in Example 1 was performed except that the non-volatile neutralizing agent was not used.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000012

 
Figure JPOXMLDOC01-appb-T000012

 
 表3中の「-」は、該当するものがないことを示す。
 表3中における「揮発性/非揮発性(モル比)」は、揮発性中和剤と非揮発性中和剤との合計を100モル%とした場合における、非揮発性中和剤の割合(モル%)に対する揮発性中和剤の割合(モル%)の比〔揮発性中和剤の割合(モル%)/非揮発性中和剤の割合(モル%)〕を意味する。
 表3中における「揮発性により中和された酸基/非揮発性により中和された酸基(モル比)」は、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基との合計を100モル%とした場合における、非揮発性中和剤により中和された酸基の割合(モル%)に対する揮発性中和剤により中和された酸基の割合(モル%)の比〔揮発性中和剤により中和された酸基の割合(モル%)/非揮発性中和剤により中和された酸基の割合(モル%)〕を意味する。
“-” In Table 3 indicates that there is no corresponding one.
“Volatile / non-volatile (molar ratio)” in Table 3 is the ratio of the non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and the non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
“Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio)” in Table 3 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
 表3に示すように、水と、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を含む粒子(即ち、特定粒子)と、を含有する光硬化性のインクを用いた実施例1~19は、インクの分散安定性の評価の指標となるインクの吐出性及びインクの保存安定性の試験において、優れた結果を示した。また、実施例1~19は、画像の精細さの試験において、優れた結果を示した。さらに、実施例1~19は、硬化膜の引っ掻き耐性の試験においても、優れた結果を示した。 As shown in Table 3, particles containing water, a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, and an acid group neutralized by a non-volatile neutralizing agent having a boiling point of 250 ° C. or higher (ie, Examples 1 to 19 using a photocurable ink containing specific particles (A) and (B) are excellent in the test of the ink dischargeability and the storage stability of the ink as an index for evaluating the dispersion stability of the ink. Show the results. In addition, Examples 1 to 19 showed excellent results in the test of image definition. Furthermore, Examples 1-19 also showed excellent results in the scratch resistance test of the cured film.
 これに対し、水と、沸点が250℃を超える非揮発性中和剤により中和された酸基を含むが、沸点が25℃以上250℃以下である揮発性中和剤により中和された酸基を含まない粒子と、を含有する光硬化性のインクを用いた比較例1~3は、インクの分散安定性の評価の指標となるインクの吐出性及びインクの保存安定性の試験では、優れた結果を示したが、画像の精細さの試験では、評価結果が「D」であり、実施例1~19と比較して、劣る結果を示した。また、比較例1~3は、硬化膜の引っ掻き耐性の試験でも、評価結果が「D」であり、実施例1~19と比較して、劣る結果を示した。
 また、水と、沸点が25℃以上250℃以下である揮発性中和剤により中和された酸基を含むが、沸点が250℃を超える非揮発性中和剤により中和された酸基を含まない粒子と、を含有する光硬化性のインクを用いた比較例4は、インクの分散安定性の評価の指標となるインクの吐出性及びインクの保存安定性の試験の評価結果が「C」であり、実施例1~19と比較して、劣る結果を示した。
On the other hand, it is neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less although it contains water and an acid group neutralized by a non-volatile neutralizing agent whose boiling point exceeds 250 ° C. In Comparative Examples 1 to 3 using a photocurable ink containing particles having no acid group, the ink dischargeability and the ink storage stability test serving as an index for evaluating the dispersion stability of the ink Although excellent results were shown, in the test of the definition of the image, the evaluation result is “D”, and inferior results are shown as compared with Examples 1 to 19. In addition, in Comparative Examples 1 to 3, the evaluation result was “D” also in the test for scratch resistance of the cured film, and inferior results were obtained as compared with Examples 1 to 19.
In addition, an acid group containing water and an acid group neutralized with a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, but having a boiling point exceeding 250 ° C. is neutralized In Comparative Example 4 using a photocurable ink containing particles not containing water, the evaluation results of the test of the ink dischargeability and the storage stability of the ink as an index of the evaluation of the dispersion stability of the ink are “ C "and showed inferior results compared to Examples 1-19.
 実施例1、4~7及び13~19の結果から、揮発性中和剤の沸点が25℃以上100℃以下である(実施例1及び4~7)と、画像の精細さ及び硬化膜の引っ掻き耐性がより優れることがわかる。 From the results of Examples 1, 4 to 7 and 13 to 19, when the boiling point of the volatile neutralizing agent is 25 ° C. or more and 100 ° C. or less (Examples 1 and 4 to 7), the image definition and the cured film are obtained It is understood that scratch resistance is more excellent.
 例えば、実施例17及び18の結果から、沸点が25℃以上250℃以下である揮発性中和剤としてアミン化合物を含む場合、アミン化合物の価数が1である(実施例17)と、インクの吐出性及びインクの保存安定性がより優れることがわかる。 For example, from the results of Examples 17 and 18, when the amine compound is contained as a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, the valence number of the amine compound is 1 (Example 17). It can be seen that the dischargeability of the ink and the storage stability of the ink are better.
 例えば、実施例13及び16の結果から、沸点が25℃以上250℃以下である揮発性中和剤としてアミン化合物を含む場合、アミン化合物の置換基が全てアルキル基である(実施例13)と、インクの吐出性及びインクの保存安定性がより優れることがわかる。 For example, from the results of Examples 13 and 16, when the amine compound is contained as a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less, all substituents of the amine compound are alkyl groups (Example 13) It can be seen that the ink dischargeability and the storage stability of the ink are more excellent.
 実施例1及び8~12の結果から、特定粒子に含まれる、非揮発性中和剤により中和された酸基に対する揮発性中和剤により中和された酸基のモル比(揮発性中和剤により中和された酸基のモル数/非揮発性中和剤により中和された酸基のモル数)が、60/40~90/10の範囲である(実施例1、9及び10)と、インクの吐出性、インクの保存安定性、画像の精細さ、及び硬化膜の引っ掻き耐性の全てがより優れることがわかる。 From the results of Examples 1 and 8 to 12, the molar ratio of the acid group neutralized by the volatile neutralizer to the acid group neutralized by the non-volatile neutralizer contained in the specific particle (during the volatility The number of moles of acid groups neutralized by the common agent / the number of moles of acid groups neutralized by the non-volatile neutralizing agent is in the range of 60/40 to 90/10 (Examples 1 and 9 and 10) It can be seen that all of the ink dischargeability, the storage stability of the ink, the definition of the image, and the scratch resistance of the cured film are all superior.
 既述の実施例1~19の各々における特定粒子の水分散物を用い、特定粒子の体積平均分散粒子径を測定した。
 特定粒子の体積平均分散粒子径は、LA-960((株)堀場製作所)を用い、光散乱法により測定した。
 その結果、いずれの例においても、特定粒子の体積平均分散粒子径は、0.15μm~0.25μmの範囲であった。
Using the aqueous dispersion of specific particles in each of Examples 1 to 19 described above, the volume average dispersed particle size of the specific particles was measured.
The volume average dispersed particle size of the specific particles was measured by a light scattering method using LA-960 (Horiba, Ltd.).
As a result, in any of the examples, the volume average dispersed particle diameter of the specific particles was in the range of 0.15 μm to 0.25 μm.
〔実施例101〕(熱硬化性のインク)
<熱硬化性のインクの調製>
 インクの調製において、SR833S、IRG819、及びITXを、60℃及び2.67kPa(20torr)の条件でプロピレングリコールモノメチルエーテルを減圧留去したTrixeneTMBI7982(熱重合性モノマー;ブロックイソシアネート;Baxenden Chemicals社)(以下、「BI7982」ともいう;量は表4に示すとおり;分子量793)に変更し、かつ、ポリマー1を同じ量のポリマー101に変更したこと以外は実施例1と同様にして、熱硬化性のインクを調製した。
Example 101 (Thermosetting Ink)
Preparation of Thermosetting Ink
In preparation of the ink, SR833S, IRG819, and ITX a, 60 ° C. and 2.67kPa Trixene TM BI7982 propylene glycol monomethyl ether was distilled off under reduced pressure under the conditions of (20 torr) (thermally polymerizable monomer; blocked isocyanate; Baxenden Chemicals Ltd.) (Hereafter, it is also referred to as "BI 7982"; the amount is as shown in Table 4; molecular weight 793), and in the same manner as in Example 1 except that the polymer 1 is changed to the same amount of polymer 101, Sex ink was prepared.
<評価>
 上記で得られた熱硬化性のインクを用い、以下の評価を行った。
 結果を表4に示す。
<Evaluation>
The following evaluation was performed using the thermosetting ink obtained above.
The results are shown in Table 4.
1.インクの吐出性
 インクの吐出性について、実施例1におけるインクの吐出性の評価と同様にして実施した。
1. Ink Ejectability The ink ejection properties were evaluated in the same manner as in the evaluation of the ink ejection properties in Example 1.
2.インクの保存安定性
 インクの保存安定性について、実施例1におけるインクの保存安定性の評価と同様にして実施した。
2. Storage Stability of Ink The storage stability of the ink was carried out in the same manner as the evaluation of the storage stability of the ink in Example 1.
3.画像の精細さ
 画像の精細さについて、実施例1における画像の精細さの評価と同様にして実施した。
3. Image Fineness The image fineness was evaluated in the same manner as in the evaluation of the image fineness in Example 1.
4.硬化膜の引っ掻き耐性
 硬化膜の引っ掻き耐性の評価について、塗膜を60℃で3分間加熱して乾燥させ、乾燥後の塗膜に対し紫外線(UV)を照射する操作を、塗膜を120℃のオーブンで5分加熱する操作に変更したこと以外は実施例1における硬化膜の引っ掻き耐性の評価と同様にして実施した。
4. Scratch resistance of the cured film For evaluation of the scratch resistance of the cured film, the coated film is dried by heating at 60 ° C. for 3 minutes, and the coated film is irradiated with ultraviolet light (UV) at 120 ° C. The evaluation was conducted in the same manner as in the evaluation of the scratch resistance of the cured film in Example 1 except that the operation was changed to heating for 5 minutes in an oven of
〔実施例102〕(熱硬化性のインク)
 BI7982を、エポキシ基を有する熱重合性モノマーであるEPICLONTM840(DIC社;以下、「EP840」ともいう;量は表4に示すとおり;分子量340)及び熱硬化促進剤である2-メチルイミダゾール(以下、「2MI」ともいう;量は表4に示すとおり)に変更し、かつ、揮発性中和剤の種類を、表4に示すように変更したこと以外は実施例101と同様の操作を行った。
 結果を表4に示す。
Example 102 (Thermosetting Ink)
The BI7982, EPICLON TM 840 is a thermally polymerizable monomer having an epoxy group (DIC Corporation; hereinafter referred to as "EP840"; the amount is as shown in Table 4; molecular weight 340) is a and the thermal curing accelerator 2-methylimidazole The operation is the same as in Example 101 except that the amount is also changed as shown in Table 4 and the type of volatile neutralizing agent is changed as shown in Table 4. Did.
The results are shown in Table 4.
〔実施例103~106〕(熱硬化性のインク)
 揮発性中和剤の種類を、表4に示すように変更したこと以外は実施例101と同様の操作を行った。
 結果を表4に示す。
[Examples 103 to 106] (Thermosetting ink)
The same operation as in Example 101 was performed except that the type of volatile neutralizing agent was changed as shown in Table 4.
The results are shown in Table 4.
〔比較例101〕(熱硬化性のインク)
 SR833S、IRG819、及びITXを、BI7982(量は表4に示すとおり)に変更し、かつ、ポリマー1を同じ量のポリマー101に変更したこと以外は比較例1と同様にして、粒子の分散液を得た。得られた粒子の分散液からは、揮発性中和剤による臭気は感じられず、揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、比較例1と同様にして、熱硬化性のインクを調製した。
 結果を表4に示す。
Comparative Example 101 (Thermosetting Ink)
Dispersion of particles in the same manner as Comparative Example 1 except that SR833S, IRG 819, and ITX were changed to BI7982 (amounts are as shown in Table 4), and polymer 1 was changed to the same amount of polymer 101. I got The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met.
A thermosetting ink was prepared in the same manner as in Comparative Example 1 using the obtained dispersion of particles.
The results are shown in Table 4.
〔比較例102〕(熱硬化性のインク)
 SR833S、IRG819、及びITXを、BI7982(量は表4に示すとおり)に変更し、かつ、ポリマー1を同じ量のポリマー101に変更したこと以外は比較例2と同様にして、粒子の分散液を得た。得られた粒子の分散液からは、揮発性中和剤による臭気は感じられず、揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、比較例2と同様にして、熱硬化性のインクを調製した。
 結果を表4に示す。
Comparative Example 102 (Thermosetting Ink)
Dispersion of particles in the same manner as Comparative Example 2 except that SR833S, IRG 819, and ITX were changed to BI7982 (as shown in Table 4), and Polymer 1 was changed to the same amount of Polymer 101. I got The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met.
A thermosetting ink was prepared in the same manner as in Comparative Example 2 using the obtained dispersion of particles.
The results are shown in Table 4.
〔比較例103〕(熱硬化性のインク)
 揮発性中和剤を使用しなかったこと以外は実施例101と同様の操作を行った。
 結果を表4に示す。
Comparative Example 103 (Thermosetting Ink)
The same operation as in Example 101 was performed except that the volatile neutralizing agent was not used.
The results are shown in Table 4.
〔比較例104〕(熱硬化性のインク)
 非揮発性中和剤を使用しなかったこと以外は実施例101と同様の操作を行った。
 結果を表4に示す。
Comparative Example 104 (Thermosetting Ink)
The same operation as in Example 101 was performed except that the non-volatile neutralizing agent was not used.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000013

 
Figure JPOXMLDOC01-appb-T000013

 
 表4中の「-」は、該当するものがないことを示す。
 表4中における「揮発性/非揮発性(モル比)」は、揮発性中和剤と非揮発性中和剤との合計を100モル%とした場合における、非揮発性中和剤の割合(モル%)に対する揮発性中和剤の割合(モル%)の比〔揮発性中和剤の割合(モル%)/非揮発性中和剤の割合(モル%)〕を意味する。
 表4中における「揮発性により中和された酸基/非揮発性により中和された酸基(モル比)」は、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基との合計を100モル%とした場合における、非揮発性中和剤により中和された酸基の割合(モル%)に対する揮発性中和剤により中和された酸基の割合(モル%)の比〔揮発性中和剤により中和された酸基の割合(モル%)/非揮発性中和剤により中和された酸基の割合(モル%)〕を意味する。
“-” In Table 4 indicates that there is no corresponding one.
“Volatile / non-volatile (molar ratio)” in Table 4 is the ratio of non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
“Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio)” in Table 4 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
 表4に示すように、熱硬化性のインクに関する実施例101~106においても、光硬化性のインクに関する実施例1~19と同様の結果が得られた。 As shown in Table 4, the same results as in Examples 1 to 19 for the photocurable ink were obtained also in Examples 101 to 106 for the thermosetting ink.
 既述の実施例101~106の各々における特定粒子の水分散物を用い、特定粒子の体積平均分散粒子径を測定した。
 特定粒子の体積平均分散粒子径は、LA-960((株)堀場製作所)を用い、光散乱法により測定した。
 その結果、いずれの例においても、特定粒子の体積平均分散粒子径は、0.15μm~0.25μmの範囲であった。
Using the aqueous dispersion of specific particles in each of Examples 101 to 106 described above, the volume average dispersed particle size of the specific particles was measured.
The volume average dispersed particle size of the specific particles was measured by a light scattering method using LA-960 (Horiba, Ltd.).
As a result, in any of the examples, the volume average dispersed particle diameter of the specific particles was in the range of 0.15 μm to 0.25 μm.
〔実施例201〕(MCを含む光硬化性のインク)
<マイクロカプセル(MC)の水分散物の調製>
 以下のようにして、三次元架橋構造を有する特定架橋ポリマーであるウレタンポリマーからなるシェルと、光重合性モノマー、光重合開始剤、及び増感剤を含むコアと、を含むマイクロカプセル(MC)の水分散物を調製した。
 この例では、マイクロカプセル(MC)が特定粒子に該当する。
Example 201 (Photocurable Ink Containing MC)
<Preparation of Water Dispersion of Microcapsule (MC)>
A microcapsule (MC) comprising a shell comprising a urethane polymer which is a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a photopolymerizable monomer, a photopolymerization initiator, and a sensitizer as follows: Water dispersion was prepared.
In this example, microcapsules (MC) correspond to specific particles.
-油相成分の調製-
 三井化学(株)のタケネート(登録商標)D-110N(固形分である3官能イソシアネート化合物の量として43部;以下、この固形分を「D110N」ともいう)と、下記NCO1の溶液(固形分であるNCO1の量として10部;以下、この固形分を「NCO1」ともいう)と、光重合性モノマーである前述のSR833S(44部)と、光重合開始剤である前述のIRG819(2.5部)と、増感剤である前述のITX(0.5部)と、酢酸エチルと、を混合し、15分間撹拌することにより、固形分30質量%の油相成分45.7gを得た。
-Preparation of oil phase components-
Mitsui Chemicals, Inc. Takenate (registered trademark) D-110N (43 parts as the amount of solid trifunctional isocyanate compound; hereinafter, this solid is also referred to as “D110N”) and a solution of the following NCO1 (solid 10 parts as the amount of NCO1 which is the following; hereinafter, this solid content is also referred to as "NCO1"), the above-mentioned SR833S (44 parts) which is a photopolymerizable monomer, and the above-mentioned IRG 819 (2. 55.7 parts), the above-mentioned ITX (0.5 part) which is a sensitizer, and ethyl acetate are mixed and stirred for 15 minutes to obtain 45.7 g of an oil phase component having a solid content of 30% by mass. The
 タケネートD-110Nは、トリメチロールプロパン(TMP)とm-キシリレンジイソシアネート(XDI)との付加物(3官能イソシアネート化合物である「D110N」)の75質量%酢酸エチル溶液である。 Takenate D-110N is a 75% by mass ethyl acetate solution of an adduct of trimethylolpropane (TMP) and m-xylylene diisocyanate (XDI) (trifunctional isocyanate compound “D110N”).
 NCO1は、カルボキシ基を導入したイソシアネート化合物であり、具体的には、2,2-ビス(ヒドロキシメチル)酪酸(DMBA)とIPDIとの付加物(DMBA/IPDI=1/3(モル比))である。
 上記NCO1の溶液は、NCO1の35質量%酢酸エチル溶液である。
 NCO1の溶液は、三口フラスコに、2,2-ビス(ヒドロキシメチル)酪酸(DMBA)18g、イソホロンジイソシアネート(IPDI)82g、及び酢酸エチル(AcOEt)186gを加え、50℃に加熱した。得られた加熱物にネオスタンU-600を0.3g添加し、3時間反応させることによって調製した。
 NCO1の酸価は、1.20mmol/gであった。
NCO1 is an isocyanate compound having a carboxy group introduced, and specifically, an adduct of 2,2-bis (hydroxymethyl) butyric acid (DMBA) and IPDI (DMBA / IPDI = 1/3 (molar ratio)) It is.
The above solution of NCO1 is a 35% by mass solution of NCO1 in ethyl acetate.
A solution of NCO1 was added to a three-necked flask, 18 g of 2,2-bis (hydroxymethyl) butyric acid (DMBA), 82 g of isophorone diisocyanate (IPDI) and 186 g of ethyl acetate (AcOEt), and heated to 50.degree. 0.3 g of neostanne U-600 was added to the obtained heating thing, and it prepared by making it react for 3 hours.
The acid value of NCO1 was 1.20 mmol / g.
-水相成分の調製-
 蒸留水(43.1g)と、揮発性中和剤としてのトリエチルアミン(沸点:89℃)と、非揮発性中和剤としての水酸化ナトリウム(NaOH)(沸点:1388℃)と、を混合し、15分間撹拌することにより、水相成分を調製した。
 揮発性中和剤の使用量及び非揮発性中和剤の使用量は、製造される特定粒子(即ち、MC)における酸基(即ち、カルボキシ基)の中和度が90%となるように調整した。
 揮発性中和剤及び非揮発性中和剤の具体的な量は、以下の算出式によって求めた。
-Preparation of water phase components-
Distilled water (43.1 g), triethylamine (boiling point: 89 ° C.) as a volatile neutralizing agent, and sodium hydroxide (NaOH) (boiling point: 1388 ° C.) as a non-volatile neutralizing agent The aqueous phase component was prepared by stirring for 15 minutes.
The amount of volatile neutralizing agent used and the amount of non-volatile neutralizing agent used are such that the degree of neutralization of the acid group (ie, carboxy group) in the specific particle (ie, MC) to be produced is 90% It was adjusted.
The specific amounts of volatile neutralizing agent and non-volatile neutralizing agent were determined by the following formula.
 揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対するNCO1の含有量(質量%)/100〕×NCO1の酸価(mmol/g)×0.9×〔揮発性中和剤のモル数(mol)/(揮発性中和剤のモル数(mol)+非揮発性中和剤のモル数(mol))〕×揮発性中和剤の分子量(g/mol)/1000
 非揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対するNCO1の含有量(質量%)/100)×NCO1の酸価(mmol/g)×0.9×〔非揮発性中和剤のモル数(mol)/(揮発性中和剤のモル数(mol)+非揮発性中和剤のモル数(mol))〕×非揮発性中和剤の分子量(g/mol)/1000
Amount of volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (mass%) / 100) × (content of NCO 1 with respect to total solid content of oil phase component [Mass%) / 100] × NCO 1 acid value (mmol / g) × 0.9 × [mol number of volatile neutralizing agent (mol) / (mol number of volatile neutralizing agent (mol) + non-volatile] Number of moles of neutralizing agent (mol)] × molecular weight of volatile neutralizing agent (g / mol) / 1000
Amount of non-volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (mass%) / 100) × (content of NCO1 with respect to total solid content of oil phase component) (Mass%) / 100) × NCO 1 acid value (mmol / g) × 0.9 × [number of moles of non-volatile neutralizing agent (mol) / (number of moles of volatile neutralizing agent (mol) + non- Number of moles of volatile neutralizing agent (mol)] × molecular weight of non-volatile neutralizing agent (g / mol) / 1000
 上記油相成分と上記水相成分とを混合し、得られた混合物を、室温でホモジナイザーを用いて12000rpmで10分間乳化させ、乳化物を得た。
 得られた乳化物を蒸留水(15.3g)に添加し、得られた液体を50℃に加熱し、50℃で5時間撹拌することにより、上記液体から酢酸エチルを留去した。次いで、酢酸エチルが留去された液体を、更に、50℃で3時間撹拌することにより、液体中にマイクロカプセル(MC)を形成させた。
 次に、このMCを含む液体を、固形分含有量が20質量%となるように蒸留水を用いて希釈することにより、MCの水分散物を得た。
The oil phase component and the water phase component were mixed, and the resulting mixture was emulsified at room temperature for 10 minutes at 12000 rpm using a homogenizer to obtain an emulsion.
The obtained emulsion was added to distilled water (15.3 g), and the obtained liquid was heated to 50 ° C. and stirred at 50 ° C. for 5 hours to evaporate ethyl acetate from the liquid. Next, the liquid from which ethyl acetate was distilled off was further stirred at 50 ° C. for 3 hours to form microcapsules (MC) in the liquid.
Next, the liquid containing MC was diluted with distilled water so as to have a solid content of 20% by mass, to obtain an aqueous dispersion of MC.
 このマイクロカプセルのシェルであるポリマーは、3官能イソシアネート化合物であるD110Nと、カルボキシ基を導入したイソシアネート化合物であるNCO1と、の反応によって形成された三次元架橋構造を有するウレタンポリマーである。
 このマイクロカプセルのシェルであるポリマーは、NCO1にもともと含まれていたウレタン基、D110Nにもともと含まれていたウレタン基、及び、D110N中又はNCO1中のイソシアネート基と、水と、の反応によって形成されたウレア基を有している。
The polymer which is the shell of this microcapsule is a urethane polymer having a three-dimensional crosslinked structure formed by the reaction of D110N, which is a trifunctional isocyanate compound, and NCO1, which is an isocyanate compound having a carboxy group introduced therein.
The polymer which is the shell of this microcapsule is formed by the reaction of water with the urethane group originally contained in NCO1, the urethane group originally contained in D110N, and the isocyanate group in D110N or NCO1. It has a urea group.
-光硬化性のインクの組成-
・上記水分散物                     82部
・顔料分散液                      13部
〔Pro-jet Cyan APD1000(FUJIFILM Imaging Colorants社)、顔料濃度:14質量%〕
・フッ素系界面活性剤                 0.3部
〔Capstone FS-31(DuPont社)、固形分:25質量%〕
・2-メチルプロパンジオール             4.7部
-Composition of photocurable ink-
-82 parts of the above aqueous dispersion-13 parts of pigment dispersion (Pro-jet Cyan APD 1000 (FUJIFILM Imaging Colorants), pigment concentration: 14% by mass)
・ Fluorinated surfactant 0.3 parts (Capstone FS-31 (DuPont), solid content: 25% by mass)
-4.7 parts of 2-methyl propane diol
<評価>
 上記で得られた光硬化性のインクを用い、実施例1で実施した評価と同様の評価を行った。
 結果を表5に示す。
<Evaluation>
The same evaluation as performed in Example 1 was performed using the photocurable ink obtained above.
The results are shown in Table 5.
〔実施例202〕(MCを含む光硬化性のインク)
 光重合性モノマーの種類及び量を、表5に示すように変更したこと以外は実施例201と同様の操作を行った。
 結果を表5に示す。
Example 202 (Photocurable Ink Containing MC)
The same operation as in Example 201 was carried out except that the type and amount of the photopolymerizable monomer were changed as shown in Table 5.
The results are shown in Table 5.
〔実施例203〕(MCを含む光硬化性のインク)
 非揮発性中和剤の種類を、表5に示すように変更したこと以外は実施例201と同様の操作を行った。
 結果を表5に示す。
Example 203 (Photocurable Ink Containing MC)
The same operation as in Example 201 was carried out except that the type of non-volatile neutralizing agent was changed as shown in Table 5.
The results are shown in Table 5.
〔実施例204~207及び209〕(MCを含む光硬化性のインク)
 揮発性中和剤の種類を、表5に示すように変更したこと以外は実施例201と同様の操作を行った。
 結果を表5に示す。
[Examples 204 to 207 and 209] (Photocurable Ink Containing MC)
The same operation as in Example 201 was performed except that the type of volatile neutralizing agent was changed as shown in Table 5.
The results are shown in Table 5.
〔実施例208〕(MCを含む光硬化性のインク)
 実施例208は、実施例1で用いたポリマー1を、マイクロカプセルの分散剤として用いた例である。
 この例では、マイクロカプセルと分散剤との複合体が、特定粒子に該当する。
 油相成分の調製において、NCO1の溶液(NCO1の量として10部)を、実施例1で調製したポリマー1の30質量%溶液(ポリマー1の量として10部)に変更したこと以外は実施例201と同様の操作を行った。
 結果を表5に示す。
Example 208 (Photocurable Ink Containing MC)
Example 208 is an example in which the polymer 1 used in Example 1 was used as a dispersant for microcapsules.
In this example, the complex of the microcapsule and the dispersant corresponds to the specific particle.
In the preparation of the oil phase component, an example except that the solution of NCO1 (10 parts as the amount of NCO1) was changed to a 30% by mass solution of polymer 1 prepared in Example 1 (10 parts as the amount of polymer 1) The same operation as in 201 was performed.
The results are shown in Table 5.
〔比較例201〕(MCを含む光硬化性のインク)
-油相成分の調製-
 前述のD110N(43部)と、前述のNCO1(10部)と、光重合性モノマーである前述のSR833S(44部)と、光重合開始剤である前述のIRG819(2.5部)と、増感剤である前述のITX(0.5部)と、酢酸エチルと、を混合し、15分間撹拌することにより、固形分30質量%の油相成分45.7gを得た。
Comparative Example 201 (Photocurable Ink Containing MC)
-Preparation of oil phase components-
D110N (43 parts) described above, NCO1 (10 parts) described above, SR833S (44 parts) described above as a photopolymerizable monomer, and IRG 819 (2.5 parts) described above as a photopolymerization initiator The aforementioned ITX (0.5 part) as a sensitizer and ethyl acetate were mixed and stirred for 15 minutes to obtain 45.7 g of an oil phase component having a solid content of 30% by mass.
-水相成分の調製-
 蒸留水(43.1g)と、揮発性中和剤としてのアンモニア(沸点:-33℃)と、非揮発性中和剤としての水酸化ナトリウム(NaOH)(沸点:1388℃)と、を混合し、15分間撹拌することにより、水相成分を調製した。
 非揮発性中和剤の使用量は、製造される特定粒子(即ち、MC)における酸基(即ち、カルボキシ基)の中和度が90%となるように調整した。
 揮発性中和剤の使用量は、非揮発性中和剤の使用量の1/10の量とした。
 揮発性中和剤及び非揮発性中和剤の具体的な量は、以下の算出式によって求めた。
-Preparation of water phase components-
Distilled water (43.1 g), ammonia (boiling point: -33 ° C) as a volatile neutralizing agent, and sodium hydroxide (NaOH) (boiling point: 1388 ° C) as a non-volatile neutralizing agent The aqueous phase component was prepared by stirring for 15 minutes.
The amount of non-volatile neutralizing agent used was adjusted so that the degree of neutralization of the acid groups (ie, carboxy groups) in the specific particles (ie, MC) to be produced was 90%.
The amount of volatile neutralizing agent used was 1/10 of the amount of nonvolatile neutralizing agent used.
The specific amounts of volatile neutralizing agent and non-volatile neutralizing agent were determined by the following formula.
 揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対するNCO1の含有量(質量%)/100)×NCO1の酸価(mmol/g)×0.9×(1/10)×揮発性中和剤の分子量(g/mol)/1000
 非揮発性中和剤の量(g)=油相成分の全量(g)×(油相成分の固形分濃度(質量%)/100)×(油相成分の全固形分量に対するNCO1の含有量(質量%)/100)×NCO1の酸価(mmol/g)×0.9×非揮発性中和剤の分子量(g/mol)/1000
Amount of volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (mass%) / 100) × (content of NCO 1 with respect to total solid content of oil phase component Mass%) / 100) × NCO 1 acid value (mmol / g) × 0.9 × (1/10) × molecular weight of volatile neutralizing agent (g / mol) / 1000
Amount of non-volatile neutralizing agent (g) = total amount of oil phase component (g) × (solid content concentration of oil phase component (mass%) / 100) × (content of NCO1 with respect to total solid content of oil phase component) (Mass%) / 100) × NCO 1 acid value (mmol / g) × 0.9 × molecular weight of non-volatile neutralizing agent (g / mol) / 1000
 上記油相成分と上記水相成分とを混合し、得られた混合物を、室温でホモジナイザーを用いて12000rpmで10分間乳化させ、乳化物を得た。
 得られた乳化物を蒸留水(15.3g)に添加し、得られた液体を60℃に加熱し、減圧(2.7kPa)下、60℃で5時間撹拌することにより、上記液体から酢酸エチルと揮発性中和剤(即ち、アンモニア)とを留去した。酢酸エチルと揮発性中和剤とが留去された液体を、更に、常圧下、50℃で3時間撹拌することにより、液体中にマイクロカプセル(MC)を形成させた。
 次に、このMCを含む液体を、固形分含有量が20質量%となるように蒸留水を用いて希釈することにより、MCの水分散物を得た。揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、実施例201と同様にして、光硬化性のインクを調製した。
 結果を表5に示す。
The oil phase component and the water phase component were mixed, and the resulting mixture was emulsified at room temperature for 10 minutes at 12000 rpm using a homogenizer to obtain an emulsion.
The obtained emulsion is added to distilled water (15.3 g), and the obtained liquid is heated to 60 ° C., and stirred at 60 ° C. for 5 hours under reduced pressure (2.7 kPa) to obtain acetic acid from the above liquid Ethyl and volatile neutralizing agent (i.e. ammonia) were distilled off. Microcapsules (MC) were formed in the liquid by further stirring the liquid from which ethyl acetate and the volatile neutralizing agent were distilled off at 50 ° C. under normal pressure for 3 hours.
Next, the liquid containing MC was diluted with distilled water so as to have a solid content of 20% by mass, to obtain an aqueous dispersion of MC. The amount of acid groups neutralized to the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method and found to be 0 mmol.
A photocurable ink was prepared in the same manner as in Example 201, using the obtained dispersion of particles.
The results are shown in Table 5.
〔比較例202〕(MCを含む光硬化性のインク)
 揮発性中和剤の種類を、表5に示すように変更したこと以外は比較例201と同様の操作を行い、乳化物を得た。
 得られた乳化物を蒸留水(15.3g)に添加し、得られた液体を60℃に加熱し、減圧(2.7kPa)下、60℃で5時間撹拌することにより、上記液体から酢酸エチルと揮発性中和剤(即ち、トリエチルアミン)とを留去した。酢酸エチルと揮発性中和剤とが留去された液体を、更に、常圧下、50℃で3時間撹拌することにより、液体中にマイクロカプセル(MC)を形成させた。
 次に、このMCを含む液体を、固形分含有量が20質量%となるように蒸留水を用いて希釈することにより、MCの水分散物を得た。揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 結果を表5に示す。
Comparative Example 202 (Photocurable Ink Containing MC)
The same operation as in Comparative Example 201 was carried out except that the type of volatile neutralizing agent was changed as shown in Table 5, to obtain an emulsion.
The obtained emulsion is added to distilled water (15.3 g), and the obtained liquid is heated to 60 ° C., and stirred at 60 ° C. for 5 hours under reduced pressure (2.7 kPa) to obtain acetic acid from the above liquid Ethyl and volatile neutralizing agent (ie, triethylamine) were distilled off. Microcapsules (MC) were formed in the liquid by further stirring the liquid from which ethyl acetate and the volatile neutralizing agent were distilled off at 50 ° C. under normal pressure for 3 hours.
Next, the liquid containing MC was diluted with distilled water so as to have a solid content of 20% by mass, to obtain an aqueous dispersion of MC. The amount of acid groups neutralized to the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method and found to be 0 mmol.
The results are shown in Table 5.
〔比較例203〕(MCを含む光硬化性のインク)
 揮発性中和剤を使用しなかったこと以外は実施例201と同様の操作を行った。
 結果を表5に示す。
Comparative Example 203 (Photocurable Ink Containing MC)
The same operation as in Example 201 was carried out except that the volatile neutralizing agent was not used.
The results are shown in Table 5.
〔比較例204〕(MCを含む光硬化性のインク)
 非揮発性中和剤を使用しなかったこと以外は実施例201と同様の操作を行った。
 結果を表5に示す。
Comparative Example 204 (Photocurable Ink Containing MC)
The same operation as in Example 201 was carried out except that the non-volatile neutralizing agent was not used.
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000014

 
Figure JPOXMLDOC01-appb-T000014

 
 表5中の「-」は、該当するものがないことを示す。
 表5中における「揮発性/非揮発性(モル比)」は、揮発性中和剤と非揮発性中和剤との合計を100モル%とした場合における、非揮発性中和剤の割合(モル%)に対する揮発性中和剤の割合(モル%)の比〔揮発性中和剤の割合(モル%)/非揮発性中和剤の割合(モル%)〕を意味する。
 表5中における「揮発性により中和された酸基/非揮発性により中和された酸基(モル比)」は、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基との合計を100モル%とした場合における、非揮発性中和剤により中和された酸基の割合(モル%)に対する揮発性中和剤により中和された酸基の割合(モル%)の比〔揮発性中和剤により中和された酸基の割合(モル%)/非揮発性中和剤により中和された酸基の割合(モル%)〕を意味する。
“-” In Table 5 indicates that there is no corresponding one.
“Volatile / non-volatile (molar ratio)” in Table 5 is the ratio of non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
“Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio)” in Table 5 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
 表5に示すように、粒子が、ポリマーとして、MCのシェルである三次元架橋ポリマー(所謂、特定架橋ポリマー)を含む光硬化性のインクに関する実施例201~209においても、粒子が、ポリマーとして、特定鎖状ポリマー(ポリマー1)を含む光硬化性のインクに関する実施例1~19と同様の結果が得られた。 As shown in Table 5, the particles are also as polymers in Examples 201 to 209, which relate to a photocurable ink in which the particles comprise a three-dimensional crosslinked polymer which is a shell of MC (so-called specific crosslinked polymer) as a polymer. The same results as in Examples 1 to 19 were obtained for a photocurable ink containing the specific linear polymer (Polymer 1).
 既述の実施例201~209の各々におけるMCの水分散物を用い、MCの体積平均分散粒子径を測定した。
 MCの体積平均分散粒子径は、LA-960((株)堀場製作所)を用い、光散乱法により測定した。
 その結果、いずれの例においても、MCの体積平均分散粒子径は、0.15μm~0.25μmの範囲であった。
Using the aqueous dispersion of MC in each of Examples 201 to 209 described above, the volume average dispersed particle size of MC was measured.
The volume average dispersed particle size of MC was measured by a light scattering method using LA-960 (Horiba, Ltd.).
As a result, in any of the examples, the volume average dispersed particle size of MC was in the range of 0.15 μm to 0.25 μm.
〔実施例301〕(MCを含む熱硬化性のインク)
<熱硬化性のインクの調製>
 以下のようにして、三次元架橋構造を有する特定架橋ポリマーであるウレタンポリマーからなるシェルと、熱重合性モノマーを含むコアと、を含むマイクロカプセル(MC)の水分散物を調製した。
 この例では、マイクロカプセル(MC)が特定粒子に該当する。
[Example 301] (Thermosetting ink containing MC)
Preparation of Thermosetting Ink
In the following manner, an aqueous dispersion of microcapsules (MC) containing a shell composed of a urethane polymer which is a specific crosslinked polymer having a three-dimensional crosslinked structure, and a core containing a thermally polymerizable monomer was prepared.
In this example, microcapsules (MC) correspond to specific particles.
 詳細には、SR833S、IRG819、及びITXを、BI7982(量は表6に示すとおり)に変更したこと以外は実施例201における光硬化性のインクの調製と同様にして、熱硬化性のインクを調製した。 Specifically, a thermosetting ink was prepared in the same manner as in the preparation of the photocurable ink in Example 201 except that SR833S, IRG 819, and ITX were changed to BI7982 (the amounts are as shown in Table 6). Prepared.
<評価>
 上記で得られた熱硬化性のインクを用い、実施例101で実施した評価と同様の評価を行った。
 結果を表6に示す。
<Evaluation>
The same evaluation as that performed in Example 101 was performed using the thermosetting ink obtained above.
The results are shown in Table 6.
〔実施例302〕(MCを含む熱硬化性のインク)
 BI7982を、EP840及び2MI(量は表6に示すとおり)に変更したこと以外は実施例301と同様の操作を行った。
 結果を表6に示す。
Example 302 Thermosetting Ink Containing MC
The same operation as in Example 301 was performed, except that BI7982 was changed to EP 840 and 2MI (amounts are as shown in Table 6).
The results are shown in Table 6.
〔実施例303~306〕(MCを含む熱硬化性のインク)
 揮発性中和剤の種類を、表6に示すように変更したこと以外は実施例301と同様の操作を行った。
 結果を表6に示す。
[Examples 303 to 306] (Thermosetting ink containing MC)
The same operation as in Example 301 was performed except that the type of volatile neutralizing agent was changed as shown in Table 6.
The results are shown in Table 6.
〔比較例301〕(MCを含む熱硬化性のインク)
 SR833S、IRG819、及びITXを、BI7982(量は表6に示すとおり)に変更したこと以外は比較例201と同様にして、粒子の分散液を得た。得られた粒子の分散液からは、揮発性中和剤による臭気は感じられず、揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、比較例201と同様にして、熱硬化性のインクを調製した。
 結果を表6に示す。
Comparative Example 301 (Thermosetting Ink Containing MC)
A dispersion of particles was obtained in the same manner as in Comparative Example 201 except that SR833S, IRG 819, and ITX were changed to BI7982 (the amount is as shown in Table 6). The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met.
In the same manner as in Comparative Example 201, a thermosetting ink was prepared using the obtained dispersion liquid of particles.
The results are shown in Table 6.
〔比較例302〕(MCを含む熱硬化性のインク)
 SR833S、IRG819、及びITXを、BI7982(量は表6に示すとおり)に変更したこと以外は比較例202と同様にして、粒子の分散液を得た。得られた粒子の分散液からは、揮発性中和剤による臭気は感じられず、揮発性中和剤に中和された酸基の量を、既述の電位差滴定法により測定したところ、0mmolであった。
 得られた粒子の分散液を用い、比較例202と同様にして、熱硬化性のインクを調製した。
 結果を表6に示す。
Comparative Example 302 Thermosetting Ink Containing MC
A dispersion of particles was obtained in the same manner as in Comparative Example 202 except that SR833S, IRG 819, and ITX were changed to BI7982 (the amounts are as shown in Table 6). The odor of the volatile neutralizing agent was not felt from the obtained dispersion liquid of the particles, and the amount of the acid group neutralized by the volatile neutralizing agent was measured by the above-mentioned potentiometric titration method. Met.
In the same manner as in Comparative Example 202, a thermosetting ink was prepared using the obtained dispersion of particles.
The results are shown in Table 6.
〔比較例303〕(MCを含む熱硬化性のインク)
 揮発性中和剤を使用しなかったこと以外は実施例301と同様の操作を行った。
 結果を表6に示す。
Comparative Example 303 (Thermosetting Ink Containing MC)
The same operation as in Example 301 was performed except that the volatile neutralizing agent was not used.
The results are shown in Table 6.
〔比較例304〕(MCを含む熱硬化性のインク)
 非揮発性中和剤を使用しなかったこと以外は実施例301と同様の操作を行った。
 結果を表6に示す。
Comparative Example 304 (Thermosetting Ink Containing MC)
The same operation as in Example 301 was carried out except that the non-volatile neutralizing agent was not used.
The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000015

 
Figure JPOXMLDOC01-appb-T000015

 
 表6中の「-」は、該当するものがないことを示す。
 表6中における「揮発性/非揮発性(モル比)」は、揮発性中和剤と非揮発性中和剤との合計を100モル%とした場合における、非揮発性中和剤の割合(モル%)に対する揮発性中和剤の割合(モル%)の比〔揮発性中和剤の割合(モル%)/非揮発性中和剤の割合(モル%)〕を意味する。
 表6中における「揮発性により中和された酸基/非揮発性により中和された酸基(モル比)」は、揮発性中和剤により中和された酸基と非揮発性中和剤により中和された酸基との合計を100モル%とした場合における、非揮発性中和剤により中和された酸基の割合(モル%)に対する揮発性中和剤により中和された酸基の割合(モル%)の比〔揮発性中和剤により中和された酸基の割合(モル%)/非揮発性中和剤により中和された酸基の割合(モル%)〕を意味する。
“-” In Table 6 indicates that there is no corresponding one.
“Volatile / non-volatile (molar ratio)” in Table 6 is the ratio of the non-volatile neutralizing agent to the total of 100 mol% of the volatile neutralizing agent and the non-volatile neutralizing agent The ratio of the ratio of volatile neutralizer to (mol%) (mol%) [ratio of volatile neutralizer (mol%) / ratio of non-volatile neutralizer (mol%)] is meant.
“Volatile neutralized acid group / non-volatile neutralized acid group (molar ratio)” in Table 6 are the acid group neutralized by the volatile neutralizing agent and the nonvolatile neutralization Neutralized by the volatile neutralizing agent with respect to the ratio (mol%) of the acid group neutralized by the non-volatile neutralizing agent, assuming that the total with the acid agent neutralized by the agent is 100 mol% Ratio of acid group proportion (mol%) [proportion of acid group neutralized by volatile neutralizing agent (mol%) / ratio of acid group neutralized by non-volatile neutralizing agent (mol%)] Means
 表6に示すように、MCを含有する熱硬化性のインクに関する実施例301~306においても、MCを含有する光硬化性のインクに関する実施例201~209と同様の結果が得られた。 As shown in Table 6, in Examples 301 to 306 of the thermosetting ink containing MC, the same results as in Examples 201 to 209 of the photocurable ink containing MC were obtained.
 既述の実施例301~306の各々におけるMCの水分散物を用い、MCの体積平均分散粒子径を測定した。
 MCの体積平均分散粒子径は、LA-960((株)堀場製作所)を用い、光散乱法により測定した。
 その結果、いずれの例においても、MCの体積平均分散粒子径は、0.15μm~0.25μmの範囲であった。
Using the aqueous dispersion of MC in each of Examples 301 to 306 described above, the volume average dispersed particle size of MC was measured.
The volume average dispersed particle size of MC was measured by a light scattering method using LA-960 (Horiba, Ltd.).
As a result, in any of the examples, the volume average dispersed particle size of MC was in the range of 0.15 μm to 0.25 μm.
 2017年9月14日に出願された日本国特許出願2017-176704号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-176704 filed on Sep. 14, 2017 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are as if each individual document, patent application, and technical standard is specifically and individually incorporated by reference. To the extent, it is incorporated herein by reference.

Claims (12)

  1.  水と、
     沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を含む粒子と、
    を含有するインク組成物。
    water and,
    Particles containing an acid group neutralized by a volatile neutralizing agent having a boiling point of 25 ° C. or more and 250 ° C. or less and a non-volatile neutralizing agent having a boiling point of 250 ° C. or higher;
    An ink composition containing
  2.  前記粒子が、ポリマーを含み、
     前記ポリマーが、沸点が25℃以上250℃以下である揮発性中和剤及び沸点が250℃を超える非揮発性中和剤により中和された酸基を有する請求項1に記載のインク組成物。
    The particles comprise a polymer,
    The ink composition according to claim 1, wherein the polymer has an acid group neutralized by a volatile neutralizing agent having a boiling point of 25 ° C to 250 ° C and a nonvolatile neutralizing agent having a boiling point of 250 ° C or more. .
  3.  前記揮発性中和剤が、アミン化合物及び第四級アンモニウムヒドロキシドからなる群より選ばれる少なくとも1種である請求項1又は請求項2に記載のインク組成物。 The ink composition according to claim 1 or 2, wherein the volatile neutralizing agent is at least one selected from the group consisting of an amine compound and a quaternary ammonium hydroxide.
  4.  前記アミン化合物の価数が、1である請求項3に記載のインク組成物。 The ink composition according to claim 3, wherein the valence of the amine compound is one.
  5.  前記アミン化合物が、下記の式(1)で表される化合物、式(2)で表される化合物、及び式(3)で表される化合物からなる群より選ばれる少なくとも1種である請求項3又は請求項4に記載のインク組成物。
      式(1):NR
      式(2):NR
      式(3):NR
     式(1)中、R、R、及びRは、各々独立に、アルキル基を表す。R、R、及びRのうちいずれか2つが互いに結合して窒素原子を含む環を形成してもよい。
     式(2)中、R及びRは、各々独立に、アルキル基を表し、RとRとは、互いに結合して窒素原子を含む環を形成してもよい。
     式(3)中、Rは、アルキル基を表す。
    The at least one selected from the group consisting of a compound represented by the following formula (1), a compound represented by the formula (2), and a compound represented by the formula (3): The ink composition according to claim 3 or 4.
    Formula (1): NR 1 R 2 R 3
    Formula (2): NR 4 R 5 H
    Formula (3): NR 6 H 2
    In formula (1), R 1 , R 2 and R 3 each independently represent an alkyl group. Any two of R 1 , R 2 and R 3 may be bonded to each other to form a ring containing a nitrogen atom.
    In formula (2), R 4 and R 5 each independently represent an alkyl group, and R 4 and R 5 may combine with each other to form a ring containing a nitrogen atom.
    In formula (3), R 6 represents an alkyl group.
  6.  前記揮発性中和剤の沸点が、25℃以上100℃以下である請求項1~請求項5のいずれか1項に記載のインク組成物。 The ink composition according to any one of claims 1 to 5, wherein the boiling point of the volatile neutralizing agent is 25 属 C or more and 100 属 C or less.
  7.  前記非揮発性中和剤が、アルカリ金属の水酸化物である請求項1~請求項6のいずれか1項に記載のインク組成物。 The ink composition according to any one of claims 1 to 6, wherein the non-volatile neutralizing agent is a hydroxide of an alkali metal.
  8.  前記粒子に含まれる、前記非揮発性中和剤により中和された酸基に対する前記揮発性中和剤により中和された酸基のモル比が、60/40~90/10の範囲である請求項1~請求項7のいずれか1項に記載のインク組成物。 The molar ratio of the acid group neutralized by the volatile neutralizing agent to the acid group neutralized by the non-volatile neutralizing agent in the particles is in the range of 60/40 to 90/10. The ink composition according to any one of claims 1 to 7.
  9.  前記ポリマーが、鎖状ポリマーである請求項1~請求項8のいずれか1項に記載のインク組成物。 The ink composition according to any one of claims 1 to 8, wherein the polymer is a linear polymer.
  10.  前記ポリマーが、ウレタンポリマー、ウレアポリマー、又は(メタ)アクリルポリマーである請求項1~請求項9のいずれか1項に記載のインク組成物。 The ink composition according to any one of claims 1 to 9, wherein the polymer is a urethane polymer, a urea polymer, or a (meth) acrylic polymer.
  11.  インクジェットインクとして用いられる請求項1~請求項10のいずれか1項に記載のインク組成物。 The ink composition according to any one of claims 1 to 10, which is used as an inkjet ink.
  12.  基材上に、請求項1~請求項11のいずれか1項に記載のインク組成物を付与することによりインク膜を形成する工程と、
     前記インク膜を加熱する工程と、
    を含む画像形成方法。
    Forming an ink film by applying the ink composition according to any one of claims 1 to 11 on a substrate;
    Heating the ink film;
    An image forming method including:
PCT/JP2018/025243 2017-09-14 2018-07-03 Ink composition and image forming method WO2019054019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541915A JP7102420B2 (en) 2017-09-14 2018-07-03 Ink composition and image forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-176704 2017-09-14
JP2017176704 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054019A1 true WO2019054019A1 (en) 2019-03-21

Family

ID=65722620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025243 WO2019054019A1 (en) 2017-09-14 2018-07-03 Ink composition and image forming method

Country Status (2)

Country Link
JP (1) JP7102420B2 (en)
WO (1) WO2019054019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070535A1 (en) 2020-09-29 2022-04-07 富士フイルム株式会社 Aqueous dispersion, and method for recording image

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247455A (en) * 1994-03-09 1995-09-26 Sakata Corp Drying retarder for aqueous resin composition and retardation of drying of aqueous resin composition
JPH09151342A (en) * 1995-09-28 1997-06-10 Dainippon Ink & Chem Inc Aqueous dispersion for recording liquid containing anionic microencapsulated pigment and recording liquid
JPH1046091A (en) * 1996-08-07 1998-02-17 Kao Corp Aqueous ink
JPH11256083A (en) * 1998-03-10 1999-09-21 Kao Corp Water-base ink
JP2000026775A (en) * 1998-07-10 2000-01-25 Kao Corp Aqueous ink
JP2004534143A (en) * 2001-07-13 2004-11-11 ユ セ ベ ソシエテ アノニム Energy-curable polymer ink composition
JP2004536203A (en) * 2001-07-20 2004-12-02 ユ セ ベ ソシエテ アノニム Radiation-curable polymer ink composition
JP2009173879A (en) * 2007-12-28 2009-08-06 Konica Minolta Holdings Inc Inkjet ink, and inkjet recording method
JP2010138297A (en) * 2008-12-11 2010-06-24 Kao Corp Method for producing aqueous dispersion for thermal ink-jet printing use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213180A (en) 2002-01-28 2003-07-30 Seiko Epson Corp Ink set for inkjet recording and inkjet recording method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247455A (en) * 1994-03-09 1995-09-26 Sakata Corp Drying retarder for aqueous resin composition and retardation of drying of aqueous resin composition
JPH09151342A (en) * 1995-09-28 1997-06-10 Dainippon Ink & Chem Inc Aqueous dispersion for recording liquid containing anionic microencapsulated pigment and recording liquid
JPH1046091A (en) * 1996-08-07 1998-02-17 Kao Corp Aqueous ink
JPH11256083A (en) * 1998-03-10 1999-09-21 Kao Corp Water-base ink
JP2000026775A (en) * 1998-07-10 2000-01-25 Kao Corp Aqueous ink
JP2004534143A (en) * 2001-07-13 2004-11-11 ユ セ ベ ソシエテ アノニム Energy-curable polymer ink composition
JP2004536203A (en) * 2001-07-20 2004-12-02 ユ セ ベ ソシエテ アノニム Radiation-curable polymer ink composition
JP2009173879A (en) * 2007-12-28 2009-08-06 Konica Minolta Holdings Inc Inkjet ink, and inkjet recording method
JP2010138297A (en) * 2008-12-11 2010-06-24 Kao Corp Method for producing aqueous dispersion for thermal ink-jet printing use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070535A1 (en) 2020-09-29 2022-04-07 富士フイルム株式会社 Aqueous dispersion, and method for recording image

Also Published As

Publication number Publication date
JPWO2019054019A1 (en) 2020-10-29
JP7102420B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
JP6584677B2 (en) Ink jet ink composition and image forming method
JP6820429B2 (en) Ink composition, its manufacturing method, and image forming method
JP6537638B2 (en) Microcapsule, water dispersion, method of producing water dispersion, and image forming method
JP6896155B2 (en) Inkjet ink composition, its manufacturing method, and image forming method
WO2019021639A1 (en) Ink composition, method for producing same, and image formation method
JP6510681B2 (en) Water dispersion, method for producing the same, and image forming method
JP6639687B2 (en) Aqueous dispersion, method for producing the same, and image forming method
JP6537637B2 (en) Water dispersion, method for producing the same, and image forming method
WO2019058990A1 (en) Ink composition, method for manufacturing same and image formation method
JP7254947B2 (en) Particles, aqueous dispersions, inkjet inks, film-forming methods, and image-forming methods
JP7102420B2 (en) Ink composition and image forming method
JP6900467B2 (en) Inkjet ink, its manufacturing method, and image forming method
JP6900466B2 (en) Ink composition, its manufacturing method, and image forming method
JP6678737B2 (en) Aqueous dispersion, method for producing the same, and image forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856327

Country of ref document: EP

Kind code of ref document: A1