WO2019053947A1 - Wiring structure and wiring layer transfer method - Google Patents

Wiring structure and wiring layer transfer method Download PDF

Info

Publication number
WO2019053947A1
WO2019053947A1 PCT/JP2018/019011 JP2018019011W WO2019053947A1 WO 2019053947 A1 WO2019053947 A1 WO 2019053947A1 JP 2018019011 W JP2018019011 W JP 2018019011W WO 2019053947 A1 WO2019053947 A1 WO 2019053947A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
water
wiring
soluble resin
resin layer
Prior art date
Application number
PCT/JP2018/019011
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
直哉 杉本
豊田 英志
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2019053947A1 publication Critical patent/WO2019053947A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Definitions

  • the present invention relates to a wiring structure and a method of transferring a wiring layer using the wiring structure.
  • BACKGROUND Conventionally, a biological sensor that is attached to human skin or the like to detect a biological signal is known.
  • a biocompatible polymer substrate includes a module for data acquisition, a polymer layer having viscosity, an electrode disposed on the polymer layer, and a wiring for connecting the module for data acquisition and the electrode (for example, Patent Document 1).
  • a polymer layer is attached to the skin of a person, an electrode detects a biological signal, for example, a voltage signal derived from a myocardium, and a module for data acquisition receives a voltage signal derived from a myocardium And record.
  • a biological signal for example, a voltage signal derived from a myocardium
  • a module for data acquisition receives a voltage signal derived from a myocardium And record.
  • Non-Patent Document 1 a method in which only a module, an electrode and a wiring are directly attached by using a van der Waals force or the like while excluding a polymer layer.
  • Non-Patent Document 1 a sheet in which an electronic device including a wiring, a sensor, and the like is disposed on the surface of a polyvinyl alcohol substrate that is a water-soluble resin is manufactured, and then the electronic device is directly applied to the skin A method is described wherein the sheet is placed on the skin so as to contact and then the polyvinyl alcohol substrate is dissolved and removed with water. By this method, only the electronic device is transferred to the skin.
  • the surface of an adherend such as a human body to which a wiring or the like is transferred may be almost a curved surface such as an arm neck, an ankle, and a waist.
  • the sheet described in Non-Patent Document 1 since the wiring is disposed on the surface of the polyvinyl alcohol substrate, when transferred to the curved surface of the adherend, the transferred wiring layer is from the surface of the adherend There is a problem of peeling off. Specifically, when the sheet is bent along a curved surface, the pattern shape of the wiring is distorted in the thickness direction or the surface direction, and the wiring does not contact along the curved surface and peels off the adherend surface.
  • Non-Patent Document 1 the entire wiring layer (upper surface and side surface) is exposed from the polyvinyl alcohol layer. Therefore, at the time of transport or transfer, there is a problem that the wiring layer is peeled or damaged due to bending or external impact. That is, it is inferior to handleability.
  • An object of the present invention is to provide a wiring structure which can reliably transfer a wiring layer to an adherend having a curved surface and which is excellent in handleability, and a method of transferring the wiring layer.
  • the present invention [1] comprises a water-soluble resin layer and a wiring layer, the wiring layer is embedded in the water-soluble resin layer, and one surface in the thickness direction of the wiring layer is exposed from the water-soluble resin layer. Wiring structure is included.
  • the present invention [2] includes the wiring structure according to [1], wherein the thickness of the water-soluble resin layer is 300 ⁇ m or less.
  • the flexural rigidity of the water-soluble resin layer at a width of 10 mm is 1.0 ⁇ 10 3 GPa ⁇ ⁇ m 4 or more and 3.0 ⁇ 10 12 GPa ⁇ ⁇ m 4 or less, [1] or It includes the wiring structure described in [2].
  • the present invention [4] includes the wiring structure according to any one of [1] to [3], wherein the water-soluble resin layer contains at least one of polyvinyl alcohol and polyvinyl pyrrolidone.
  • the present invention [5] comprises the wiring structure according to any one of the above [1] to [4], a process for preparing an adherend, the wiring structure, and one surface in the thickness direction of the wiring layer.
  • the method for transferring a wiring layer includes the steps of laminating on the adherend so that the metal contacts the adherend, and subsequently removing the water-soluble resin layer.
  • the present invention [6] includes the method for transferring a wiring layer according to [5], wherein the contact surface of the adherend with which the wiring structure is in contact has a curved surface.
  • the present invention [7] includes the method for transferring a wiring layer according to [5] or [6], wherein the adherend with which the wiring structure is in contact includes an adhesive layer.
  • the wiring layer is embedded in the water soluble resin layer, the wiring layer is protected by the water soluble resin layer. Therefore, peeling and damage of the wiring layer can be suppressed even in the event of bending or external impact, and the handleability is excellent.
  • the wiring layer is embedded in the water-soluble resin layer, and one surface in the thickness direction of the wiring layer is exposed from the water-soluble resin layer. Therefore, even when the wiring structure is bent along the curved surface when transferred to the adherend made of the curved surface, the pattern shape of the wiring layer is maintained in the water-soluble resin layer. Therefore, the wiring layer can be reliably transferred to the adherend.
  • FIG. 1 shows a cross-sectional view of one embodiment of the wiring structure of the present invention.
  • 2A to 2G are process drawings of the method of manufacturing the wiring structure shown in FIG. 1, and FIG. 2A is a step of forming a seed layer on the upper surface of the first peeling layer, and FIG. Step of disposing in a layer, FIG. 2C is a step of forming a wiring layer in a seed layer, FIG. 2D is a step of disposing a second peeling layer on the top surface of the wiring layer, and FIG. 2E is a step of forming a first peeling layer and a seed layer.
  • a removal step FIG. 2F shows a step of covering the wiring layer with a water-soluble resin layer, and FIG.
  • FIG. 2G shows a step of removing the second peeling layer.
  • 3A to 3C are process drawings of a transfer method using the wiring structure shown in FIG. 1, wherein FIG. 3A is a step of preparing a wiring structure and an adherend, and FIG. 3B is a wiring structure. The process of laminating on the adherend, FIG. 3C shows the process of removing the water-soluble resin layer.
  • FIG. 4 shows a modification of the wiring structure shown in FIG. 1 (a form in which a part of the wiring layer is buried).
  • FIG. 5 shows a wiring structure produced in the comparative example.
  • FIG. 6 shows a schematic view in the handling test of the example.
  • the vertical direction in the drawing is the vertical direction (thickness direction, first direction)
  • the upper side of the drawing is the upper side (one side in the thickness direction, one side in the first direction)
  • the lower side is the lower side (thickness direction).
  • the left-right direction and the depth direction in the drawing are surface directions orthogonal to the up-down direction. Specifically, it conforms to the directional arrow in each figure.
  • the wiring structure 1 includes the water-soluble resin layer 2 and the wiring layer 3.
  • the water-soluble resin layer 2 has a sheet (film) extending in the surface direction.
  • a plurality of groove parts 4 recessed to the lower side (the other side in the thickness direction) are formed.
  • the groove 4 is formed in a substantially rectangular shape in cross section.
  • the water soluble resin layer 2 is formed in a sheet form from a water soluble resin composition.
  • the water soluble resin composition contains a water soluble resin.
  • the water-soluble resin is a water-soluble resin, and examples thereof include polyvinyl alcohol, polyvinyl pyrrolidone, starch, water-soluble polyester and the like. From the viewpoint of solubility, flexibility, biosafety and strength, preferably polyvinyl alcohol and polyvinyl pyrrolidone are mentioned, and more preferably polyvinyl alcohol is mentioned.
  • the water-soluble resin can be used alone or in combination of two or more.
  • Polyvinyl alcohol is a hydrolyzate of polyvinyl acetate (specifically, a partial hydrolyzate).
  • polyvinyl alcohol also includes copolymers of polyvinyl alcohol and their modified products.
  • the degree of saponification of polyvinyl alcohol is, for example, 80 mol% or more, preferably 85 mol% or more, and for example, 100 mol% or less, preferably less than 95 mol%.
  • saponification degree below the said upper limit, crystallization can be suppressed and it is excellent in water solubility (especially water solubility in low temperature). Further, by setting the degree of saponification to the above lower limit or more, the strength is excellent, and the wiring layer 3 can be reliably supported.
  • the polymerization degree of polyvinyl alcohol is, for example, 500 or more, preferably 1000 or more, more preferably 1300 or more, and for example, 10000 or less, preferably 5000 or less, more preferably 3000 or less.
  • the viscosity of the polyvinyl alcohol in a 4% by mass aqueous solution (20 ° C.) is, for example, 5 mPa ⁇ s or more, preferably 20 mPa ⁇ s or more, and for example, 100 mPa ⁇ s or less, preferably 50 mPa ⁇ s or less .
  • the degree of saponification, degree of polymerization and viscosity of polyvinyl alcohol are both calculated according to the “polyvinyl alcohol test method” described in JIS K 6726 (1994).
  • water-soluble means that a resin sample formed in 30 mm x 30 mm x 0.1 mm thickness is immersed in 100 ml of water at any temperature of 20-80 ° C (especially 80 ° C) for 24 hours. When the resin sample is completely dissolved.
  • the water soluble resin composition can contain a surfactant. Thereby, the water-soluble resin layer 2 can be formed uniformly.
  • surfactant silicone type surfactant, fluorine type surfactant, etc. are mentioned, for example.
  • silicone type surfactant polyether modified silicone, alcohol modified silicone etc. are mentioned, for example.
  • fluorine-based surfactants include, for example, perfluoroalkyl sulfonates, perfluoroalkyl carboxylates, perfluoroalkyl quaternary ammonium salts and the like.
  • the surfactant may be used alone or in combination of two or more.
  • silicone surface activity is mentioned.
  • the content ratio thereof is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the water-soluble resin. Also, for example, it is 10 parts by mass or less, preferably 1 part by mass or less.
  • the water-soluble resin composition may contain a crosslinking agent, if necessary.
  • crosslinking agent for example, an isocyanate compound, an oxazoline compound, a melamine compound, an epoxy compound, a carboxylic acid compound, a carboxylic acid anhydride, a carbodiimide compound, a bisvinylsulfone compound, an organic titanium compound, Examples include zirconium-based compounds and boron-based compounds.
  • the wiring structure 1 When the water-soluble resin composition contains a crosslinking agent, the wiring structure 1 is brought into contact with the adherend, and then the wiring structure 1 is heated to crosslink the polyvinyl alcohol to form the water-soluble resin layer 2. It can be made a non-water-soluble resin layer (crosslinked polyvinyl alcohol layer). As a result, the wiring layer 3 and the water-insoluble resin layer (cover layer) can be transferred to the adherend.
  • a crosslinking agent When the water-soluble resin composition contains a crosslinking agent, the wiring structure 1 is brought into contact with the adherend, and then the wiring structure 1 is heated to crosslink the polyvinyl alcohol to form the water-soluble resin layer 2. It can be made a non-water-soluble resin layer (crosslinked polyvinyl alcohol layer). As a result, the wiring layer 3 and the water-insoluble resin layer (cover layer) can be transferred to the adherend.
  • the elastic modulus of the water-soluble resin layer 2 is, for example, 0.1 GPa or more, preferably 0.5 GPa or more, and for example, 5.0 GPa or less, preferably 2.0 GPa or less.
  • the modulus of elasticity of the water-soluble resin layer 2 can be measured, for example, by using a tensile compression tester at 23 ° C. and 50% RH under the conditions of 23 ° C. and 50% RH for the measurement sample obtained by molding the water-soluble resin It can be determined by measuring at 300 mm / min.
  • the measurement of the elastic modulus and bending rigidity of the water-soluble resin layer 2 collect
  • the resin sample which formed the film again may be used.
  • the flexural rigidity of the water-soluble resin layer 2 is, for example, 1.0 ⁇ 10 3 GPa ⁇ ⁇ m 4 or more, preferably 9.4 ⁇ 10 4 GPa ⁇ ⁇ m 4 or more, and for example, 3.0 ⁇ 10 12 GPa ⁇ ⁇ m 4 or less, preferably 5.4 ⁇ 10 10 GPa ⁇ ⁇ m 4 or less, and more preferably 6.0 ⁇ 10 6 GPa ⁇ ⁇ m 4 or less.
  • the flexural rigidity of the water-soluble resin layer 2 can be calculated as 10 mm in width according to the following equation.
  • Ei indicates the elastic modulus (above)
  • Ai indicates the cross-sectional area (cross-sectional area obtained by the product of the width bi and the thickness hi)
  • Gi indicates the barycentric coordinates
  • bi indicates the width (ie, 10 mm )
  • Hi indicates the thickness (ie, T 1 below).
  • the thickness T 1 (the distance from the upper end face to the lower end face) of the water-soluble resin layer 2 is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 8 ⁇ m or more, and for example, 1500 ⁇ m or less, preferably , 300 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the wiring layer 3 is disposed inside the groove 4 of the water-soluble resin layer 2. Specifically, the wiring layer 3 is completely embedded in the upper part of the water-soluble resin layer 2. The wiring layer 3 is disposed in the groove 4 so that the upper surface (one surface in the thickness direction) of the wiring layer 3 is flush with the upper surface of the water-soluble resin layer 2 (the upper surface excluding the groove 4).
  • the wiring layer 3 is formed of a plurality of wirings 5, and the plurality of wirings 5 are arranged in parallel at intervals.
  • the side surface and the lower surface of the wiring 5 are covered with the water-soluble resin layer 2, and the upper surface of the wiring 5 is exposed from the water-soluble resin layer 2.
  • the pattern shape (wiring pattern in plan view) of the wiring layer 3 may be, for example, a stripe shape, a lattice shape, or the like.
  • the wiring layer 3 is made of a conductive material, and examples thereof include copper, silver, gold, nickel, and alloys thereof, and preferably, copper.
  • the thickness T 2 of the wiring layer 3 (line 5), for example, 0.1 [mu] m or more, preferably, 1 [mu] m or more, more preferably at most 3 ⁇ m or more, and is, for example, 100 [mu] m or less, preferably, 80 [mu] m or less, preferably , 30 ⁇ m or less.
  • the conductivity can be improved.
  • the wiring layer 3 can be easily transferred by making the wiring layer 3 appropriate in hardness.
  • the width (L) of the wiring 5 is, for example, 0.1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, and for example, 10000 ⁇ m or less, preferably 1000 ⁇ m or less, more preferably 100 ⁇ m or less It is.
  • the distance (S) between the wires is, for example, 0.1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, and for example, 100,000 ⁇ m or less, preferably 10000 ⁇ m or less, more preferably 1000 ⁇ m or less It is.
  • the ratio (L / S) of the width (L) of the wires 5 to the distance (S) between the wires is, for example, 0.1 or more, preferably 0.2 or more, and for example, 2.0 or less Preferably, it is 0.5 or less.
  • the ratio to the thickness (T 2) of the wiring layer 3 are, for example, 1 or more, or preferably 2 or more, and is, for example, It is 1000 or less, preferably 200 or less, more preferably 10 or less, and still more preferably 8 or less.
  • the water-soluble resin layer 2 can protect the wiring 5 more reliably.
  • the flexibility of the wiring structure 1 is excellent, and the wiring layer 3 can be easily transferred.
  • the step (1) of forming the seed layer 10 on the upper surface of the first release layer 11, the step of forming the wiring layer 3 on the upper surface of the seed layer 10 (2), and the wiring of the second release layer 13 A step (3) of disposing on the upper surface of the layer 3; a step (4) of removing the first peeling layer 11 and the seed layer 10; a step (5) of covering the wiring layer 3 with the water-soluble resin layer 2; A step (6) of removing the peeling layer 13 is provided.
  • Each step will be described below.
  • the seed layer 10 is formed on the top surface of the first peeling layer 11.
  • the seed layer 10 is formed of, for example, a metal material such as chromium, gold, silver, platinum, nickel, titanium, silicon, manganese, zirconium and their alloys, or their oxides.
  • a metal material Preferably, copper is mentioned.
  • the first release layer 11 may be a support layer capable of being supported releasably with respect to the seed layer 10, and examples thereof include a resin layer, a metal layer, and the like, and preferably include a metal layer.
  • the metal layer is formed in a sheet shape from a metal material such as, for example, stainless steel, aluminum, 42 alloy or the like. As a metal material, Preferably, stainless steel is mentioned.
  • the seed layer 10 is formed on the upper surface of the first peeling layer 11, for example, a wet process such as plating, for example, a dry process such as vapor deposition or sputtering is used.
  • the seed layer 10 is formed on the top surface of the first release layer 11 by plating, more preferably electrolytic plating.
  • the seed layer 10 is formed on the entire top surface of the first release layer 11.
  • the thickness of the seed layer 10 is, for example, 0.03 ⁇ m or more, preferably 0.3 ⁇ m or more, and for example, 5 ⁇ m or less, preferably 3 ⁇ m or less.
  • the wiring layer 3 is formed on the upper surface of the seed layer 10.
  • the wiring layer 3 is formed on the top surface of the seed layer 10 by an additive method.
  • a plating resist 12 is formed from a dry film resist on the upper surface of the seed layer 10 in a reverse pattern of the wiring layer 3.
  • the wiring layer 3 is laminated on the upper surface of the seed layer 10 exposed from the plating resist 12 by electrolytic plating in which power is supplied from the seed layer 10.
  • the plating resist 12 indicated by phantom lines in FIG. 2C is removed using, for example, a peeling solution.
  • the wiring layer 3 has a shape which is continuous with the upper surface of the seed layer 10.
  • the second peeling layer 13 is disposed on the upper surface of the wiring layer 3.
  • the second peeling layer 13 is disposed on the upper surface of the wiring layer 3 so that the lower surface of the second peeling layer 13 is in contact with the upper surface of the wiring layer 3.
  • the second release layer 13 has a support layer and an adhesive layer disposed on the lower surface of the support layer. That is, the 2nd exfoliation layer 13 has adhesiveness.
  • the same support layer as the 1st exfoliation layer 11 is mentioned.
  • the pressure-sensitive adhesive material for forming the pressure-sensitive adhesive layer include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone pressure-sensitive adhesives.
  • the adhesive layer can also be formed, for example, from an active energy ray-irradiated release sheet or the like whose adhesive force is reduced by irradiation of active energy rays.
  • step (4) as shown in FIG. 2E, the first peeling layer 11 and the seed layer 10 are removed in this order.
  • the first peeling layer 11 is peeled downward from the seed layer 10 while being bent downward. Thereby, the lower surface of the seed layer 10 is exposed.
  • the seed layer 10 is removed by etching such as wet etching. Thereby, the lower surface and the side surface of the wiring layer 3 are exposed. And the laminated body 14 by which the 2nd peeling layer 13 was laminated
  • the wiring layer 3 is covered with the water-soluble resin layer 2.
  • the water-soluble resin layer 2 is disposed on the lower surface of the laminate 14 so that the lower surface and the side surface of the wiring layer 3 are covered with the water-soluble resin layer 2.
  • the laminated body 14 shown in FIG. 2E is turned upside down, and a water soluble resin-containing aqueous solution is applied and dried from the upper side (lower side in FIG. 2F) of the inverted laminated body 14 to form the water soluble resin layer 2 Arranged in the stack 14. Thereafter, the laminate 14 on which the water-soluble resin layer 2 is laminated is turned upside down.
  • the water-soluble resin-containing aqueous solution contains a water-soluble resin composition and water.
  • the water-soluble resin-containing aqueous solution can further contain an alcohol-based solvent such as isopropyl alcohol, if necessary.
  • the solid content of the water-soluble resin in the water-soluble resin-containing aqueous solution is, for example, 1% by mass or more, preferably 5% by mass or more, and for example, 50% by mass or less, preferably 20% by mass or less.
  • the drying temperature is, for example, 80 ° C. or more, preferably 100 ° C. or more, and for example, 200 ° C. or less, preferably 150 ° C. or less.
  • the wiring structure 1 is obtained in the state laminated
  • the second peeling layer 13 is removed from the wiring structure 1.
  • the second peeling layer 13 is peeled upward from the wiring structure 1 while being bent upward.
  • the wiring structure 1 shown in FIG. 1 and FIG. 2G is obtained.
  • the surface on the side where the wiring layer 3 is exposed is the wiring exposed surface 6.
  • the step (A) of preparing the wiring structure 1 and the adherend 7, the step (B) of laminating the wiring structure 1 on the adherend 7, and the removal of the water soluble resin layer A process (C) is provided.
  • Each step will be described below.
  • step (A) as shown in FIG. 3A, the wiring structure 1 and the adherend 7 are prepared.
  • Examples of the adherend 7 include a living body.
  • the living body includes an animal body and a plant body, preferably an animal body.
  • Examples of the animal include human bodies (humans), for example, livestock such as cows, horses, pigs, pigs, chickens, dogs, cats and the like, for example, fish and the like.
  • the skin of a human body specifically, a human body is mentioned.
  • the contact surface 8 (surface to which the wiring layer 3 is transferred) in the adherend 7 has a curved surface.
  • the radius of curvature R of the curved surface is, for example, 1 cm or more, preferably 2 cm or more, and for example, 10 cm or less.
  • the surface roughness Ra of the contact surface 8 is, for example, 1 ⁇ m or more, and for example, 100 ⁇ m or less.
  • the contact surface 8 of the adherend 7 may be either a non-adhesive surface or an adhesive surface. That is, the adherend 7 may be any of a non-adhesive layer and an adhesive layer. According to the wiring structure 1, the wiring layer 3 can be favorably transferred not only to the non-adhesive surface but also to the adhesive surface.
  • an adherend whose surface is a pressure-sensitive adhesive surface it is a non-living body, and examples thereof include pressure-sensitive adhesive layers such as acrylic pressure-sensitive adhesives and silicone pressure-sensitive adhesives.
  • the wiring structure 1 and the adherend 7 are disposed such that the contact surfaces 8 of the wiring layer 3 and the adherend 7 face each other. That is, the wiring exposed surface 6 of the wiring structure 1 and the contact surface 8 of the adherend 7 are disposed to face each other.
  • step (B) As shown in FIG. 3B, the wiring structure 1 is laminated on the adherend 7.
  • a part (e.g., the center in the surface direction) of the exposed wiring surface 6 of the wiring structure 1 is brought into contact with the contact surface 8 of the adherend 7.
  • the wiring structure 1 is curved along the curved surface of the contact surface 8 to bring the entire exposed wiring surface 6 of the wiring structure 1 into contact with the contact surface 8.
  • step (C) as shown in FIG. 3C, the water-soluble resin layer 2 is removed.
  • the water-soluble resin layer 2 is removed by dissolving the water-soluble resin layer 2 in water (water washing). That is, the water-soluble resin is dissolved in water by bringing a large amount of water into contact with the wiring structure 1 by, for example, a method such as immersion, coating, or spraying, and then the aqueous solution in which the water-soluble resin is dissolved is removed. .
  • the temperature of water may be equal to or higher than the dissolution temperature of the water-soluble resin, and is, for example, 10 ° C. or more, preferably 50 ° C. or more, more preferably 70 ° C. or more, for example, 95 ° C. or less, preferably And 90 ° C. or less.
  • the wiring laminate 9 including the adherend 7 and the wiring layer 3 disposed on the contact surface 8 is manufactured.
  • the wiring layer 3 since the wiring layer 3 is embedded in the water-soluble resin layer 2, the wiring layer 3 is protected by the water-soluble resin layer 2. Therefore, damage and detachment of the wiring layer 3 can be suppressed even against external impact. Therefore, it is excellent in handleability.
  • the wiring layer 3 is embedded in the water-soluble resin layer 2, and the upper surface of the wiring layer 3 is exposed from the water-soluble resin layer 2. Therefore, even when the wiring structure 1 is bent along the curved surface (contact surface 8) when transferred to the adherend 7 having a curved surface, the pattern shape of the wiring layer 3 is within the water-soluble resin layer 2 It is maintained as it is. Therefore, the wiring layer 3 can be reliably transferred to the adherend 7.
  • the wiring layer 3 is placed on the upper surface of the water-soluble resin layer 2. Therefore, when the conventional wiring structure is transferred to the adherend 7 having a curved surface, when the wiring structure is bent, the pattern shape of the wiring layer 3 is distorted in the vertical direction and in the surface direction. Is difficult to take shape along the curved surface. In addition, the distance between adjacent wires 5 may be reduced, and the wires 5 may be closely packed. Therefore, the wiring layer 3 peels from the surface of the adherend 7 without contacting along the curved surface.
  • the wiring layer 3 can be reliably transferred along the contact surface 8.
  • a conventional transfer method that is, a wiring transfer substrate comprising a substrate (non-water-soluble substrate) and a wiring layer disposed thereon is prepared, and the wiring layer of the wiring transfer substrate is brought into contact with the adhesive layer.
  • the base material surface exposed from the wiring layer also contacts the adhesive layer. Then, when the substrate is peeled from the wiring layer, the adhesive layer (contact surface) is pulled together with the substrate, the contact surface is distorted, and the wiring layer can not be transferred well.
  • the wiring structure 1 since the water-soluble resin layer 2 is removed by the dissolution of water, it is possible to prevent the adhesive layer (contact surface 8) from being pulled. Therefore, the wiring layer 3 can be favorably transferred while maintaining the predetermined pattern shape.
  • Modified Example A modified example of the wiring structure of the present invention and the transfer method thereof will be described with reference to FIG.
  • symbol is attached
  • the wiring layer 3 is completely buried in the water-soluble resin layer 2.
  • the wiring layer 3 is a water-soluble resin layer Only part of it may be buried in 2.
  • the wiring layer 3 protrudes from the surface of the water-soluble resin layer 2. Specifically, the upper portion of the wiring layer 3 protrudes upward from the water-soluble resin layer 2, and the lower portion of the wiring layer 3 is embedded in the water-soluble resin layer 2.
  • the ratio (T 3 / T 2 ⁇ 100%) of the vertical length T 3 of the buried portion (lower portion) of the wiring layer 3 to the thickness T 2 of the wiring layer 3 is, for example, 50% or more, preferably 80% The above is, for example, less than 100%.
  • the same operation and effect as the embodiment shown in FIG. 1 can be obtained. From the viewpoint that the wiring layer 3 can be transferred onto the curved surface more reliably, and from the viewpoint of much better handleability, one embodiment (the above ratio is 100%) shown in FIG. 1 can be mentioned.
  • the contact surface 8 of the adherend 7 has a curved surface, but for example, the contact surface 8 of the adherend 7 may be flat.
  • the wiring structure 1 is brought into contact with the adherend 7 without swelling the water-soluble resin layer 2.
  • the wiring structure 1 may be brought into contact with the adherend 7.
  • a water-soluble resin having a high dissolution temperature in water for example, a water-soluble resin having a dissolution temperature of 70 ° C. or more
  • a water-soluble resin having a saponification degree of 95 mol% or more can be mentioned.
  • the wiring structure 1 is brought into contact with water at a temperature equal to or lower than the melting temperature (for example, water at 60 ° C. or lower) to swell the water-soluble resin layer 2.
  • the melting temperature for example, water at 60 ° C. or lower
  • the wiring structure 1 is made to contact and follow the contact surface 8 of the adherend 7.
  • step (C) the water-soluble resin layer 2 is removed using water (for example, water at 80 ° C. or higher) that is at or above the dissolution temperature.
  • the same effects as those of the embodiment shown in FIGS. 3A to 3C can be obtained.
  • the wiring structure 1 since the water-soluble resin layer 2 swells and softens at the time of transfer, the wiring structure 1 can be more easily followed and contacted by the curved surface which is the contact surface 8, and more easily and reliably. It can be transferred to a curved surface.
  • the water-soluble resin layer 2 (and, consequently, the water-soluble resin composition) optionally contains a polyvinyl alcohol and a crosslinking agent.
  • the wiring structure 1 is heated instead of removing the water-soluble resin layer 2.
  • the polyvinyl alcohol is crosslinked, the water-soluble resin layer becomes a non-water-soluble resin layer (cross-linked polyvinyl alcohol layer), and the non-water-soluble resin layer functions as an unnecessary cover layer in water. That is, the wiring layer 3 and the water-insoluble resin layer (cover layer) for protecting the wiring layer 3 can be transferred to the adherend 7.
  • the second peeling layer 13 is removed in the manufacturing method shown in FIGS. 2A to 2G, for example, the second peeling layer 13 may be removed immediately before use (transfer), and the flow At the stage, the wiring structure 1 may include the second peeling layer 13.
  • blending ratios content ratios
  • physical property values parameters, etc. used in the following description are the blending ratios (content ratios) corresponding to those described in the above-mentioned “embodiments for carrying out the invention” ), Physical property values, parameters, etc. may be substituted for the upper limit (numerical values defined as “below”, “less than”) or lower limit (numerical values defined as “above”, “exceed”), etc. it can.
  • Example 1 A first release layer (stainless steel, 50 ⁇ m in thickness) was prepared, and then a seed layer (copper, 1.0 ⁇ m in thickness) was formed on the upper surface of the first release layer by electrolytic copper plating (see FIG. 2A).
  • a dry film resist was laminated on the entire top surface of the seed layer, and then the plating resist was formed on the top surface of the seed layer in a reverse pattern of the wiring layer by exposing and developing the dry film resist (see FIG. 2B). ).
  • a copper wiring layer was laminated on the upper surface of the seed layer by electrolytic copper plating in which power is supplied from the seed layer. Thereafter, the plating resist was removed using a stripping solution (see FIG. 2C).
  • the wiring pattern was grid-like, the width L of each wiring was 50 ⁇ m, the spacing S between adjacent wirings was 200 ⁇ m, and the thickness T 2 of each wiring was 50 ⁇ m.
  • a second release layer (silicone pressure-sensitive adhesive tape) was laminated on the top surface of the wiring layer 3 (see FIG. 2D).
  • the first release layer was then removed from the seed layer, followed by wet etching to remove the seed layer 10 (see phantom lines in FIG. 2D, see FIG. 2E).
  • a laminate of the second peeling layer and the wiring layer was obtained.
  • the second release layer was peeled off from the wiring laminate.
  • Examples 2 to 14 A wiring structure was manufactured in the same manner as Example 1, except that the type and thickness of the material used for the water-soluble resin layer, the thickness and dimensions of the wiring layer, and the like were changed according to the description in Table 1.
  • Example 6 polyvinyl alcohol (Nippon-Acetates Bpobar company make, "JF-17") 3.2g, polyether modified silicone (surfactant, Nisshin Chemical Industry Co., Ltd. make) , "SAG002”), 0.02 parts by mass, 35.78 g of water, and 1.00 g of isopropyl alcohol were mixed.
  • Example 7 3.2 g of polyvinyl alcohol ("JF-20", manufactured by Nippon Shokuhin-Bi-Poval Co., Ltd.), polyether-modified silicone (surfactant, manufactured by Nisshin Chemical Industry Co., Ltd., "SAG002”) 0.02 The parts by mass and 36.78 g of water were mixed.
  • Example 8 to 14 10 g of polyvinyl alcohol (manufactured by Permanent Paste Co., Ltd., "Kranol", dried and solidified product), polyether modified silicone (surfactant, manufactured by Nisshin Chemical Industry, "SAG 002”) 0.05 mass Parts and 90.05 g of water were mixed.
  • Comparative Example 1 The wiring structure was manufactured such that the wiring layer was placed on the surface of the water-soluble resin layer, that is, the wiring layer was not buried in the water-soluble resin layer (see FIG. 5).
  • the resin sample was immersed in water at each temperature (20 ° C., 40 ° C., 60 ° C., 80 ° C.) for 24 hours, and it was confirmed whether the resin sample was completely dissolved.
  • the elastic modulus E of the measurement sample was measured using a tensile compression tester (“Technograph TG-1 kN” manufactured by Minebea Mitsumi Co., Ltd.) under conditions of 23 ° C. and 50% RH. The tensile speed was 300 mm / min. The results are shown in Table 1.
  • Ei is the elastic modulus measured in the above ⁇ Measurement of elastic modulus>
  • Ai is the cross-sectional area (cross-sectional area obtained by the product of the width bi and the thickness hi)
  • Gi is the barycentric coordinate
  • bi is the width (I.e., 10 mm) and hi was the thickness (i.e., the thickness T1 of the water-soluble resin layer described in Table 1 ).
  • Example 1 In Example 1, Ei: 2.4 GPa, Ai: 1.00 ⁇ 10 7 ⁇ m 2 , Gi (Y coordinate): 500 ⁇ m, bi: 10000 ⁇ m, hi: 1000 ⁇ m, y: 500 ⁇ m, Bi: 5.0 ⁇ 10 9 ⁇ m 3 and Ii: 8.33 ⁇ 10 11 ⁇ m 4 , and the flexural rigidity Z was 2.0 ⁇ 10 12 GPa ⁇ ⁇ m 4 .
  • the surface of the adherend is wetted with water, and the wiring structures of the respective examples and comparative examples are brought into contact with the adherend and the wiring layer on the surface of the adherend and on the curved surface of the adherend.
  • the wiring structure was pressed along.
  • the wiring layer was transferred to the adherend.
  • the wiring structure is mounted without being pressed against the top surface of the adherend so that the wiring layer of the wiring structure is on the lower side, and the weight of the wiring layer is reduced. Thus, it was observed whether or not the wiring structure was along the curved surface of the adherend.
  • the case where the wiring structure was along the curved surface of the adherend was evaluated as ⁇ . The results are shown in Table 1.
  • the wiring structure was bent by pressing the rod 20 having a radius of curvature R2 cm against the back surface (surface opposite to the wiring exposed surface) of the wiring structures of the respective examples and comparative examples (see FIG. 6).
  • the wiring structure of the present invention can be applied to various industrial products, and is suitably used, for example, as a patch-type biosensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This wiring structure includes a water-soluble resin layer and a wiring layer. The wiring layer is embedded in the water-soluble resin layer. One surface of the wiring layer in the thickness direction is exposed from the water-soluble resin layer.

Description

配線構造体、および、配線層の転写方法Wiring structure and method of transferring wiring layer
 本発明は、配線構造体、および、配線構造体を用いた配線層の転写方法に関する。 The present invention relates to a wiring structure and a method of transferring a wiring layer using the wiring structure.
 従来から、人の皮膚などに貼付して生体信号を検出する生体センサが知られている。 BACKGROUND Conventionally, a biological sensor that is attached to human skin or the like to detect a biological signal is known.
 例えば、データ取得用モジュールと、粘性を有するポリマー層と、ポリマー層上に配置される電極と、データ取得用モジュールおよび電極を接続する配線とを備える生体適合性ポリマー基板が提案されている(例えば、特許文献1参照。)。 For example, a biocompatible polymer substrate has been proposed that includes a module for data acquisition, a polymer layer having viscosity, an electrode disposed on the polymer layer, and a wiring for connecting the module for data acquisition and the electrode (for example, Patent Document 1).
 そして、そのような生体適合性ポリマー基板では、ポリマー層が人の皮膚に貼り付けられて、電極が生体信号、例えば心筋由来の電圧信号を検出し、データ取得用モジュールが心筋由来電圧信号を受信して記録する。 Then, in such a biocompatible polymer substrate, a polymer layer is attached to the skin of a person, an electrode detects a biological signal, for example, a voltage signal derived from a myocardium, and a module for data acquisition receives a voltage signal derived from a myocardium And record.
 ところで、ポリマー基板は、人の皮膚に貼付すると、負担や不快感を与える場合が生じる。そのため、ポリマー層を排除して、モジュール、電極や配線のみをファンデルワールス力などを利用して直接貼付する方法が提案されている(例えば、非特許文献1参照。)。 By the way, when a polymer substrate is attached to the skin of a person, there is a case where a burden or an unpleasant feeling is given. Therefore, there has been proposed a method in which only a module, an electrode and a wiring are directly attached by using a van der Waals force or the like while excluding a polymer layer (see, for example, Non-Patent Document 1).
 具体的には、非特許文献1では、水溶性樹脂であるポリビニルアルコール基材の表面に、配線やセンサなどから構成される電子機器を配置したシートを作製し、次いで、電子機器を皮膚に直接接触するように、シートを皮膚に配置し、次いで、水でポリビニルアルコール基材を溶解して除去する方法が記載されている。この方法により、電子機器のみを皮膚に転写している。 Specifically, in Non-Patent Document 1, a sheet in which an electronic device including a wiring, a sensor, and the like is disposed on the surface of a polyvinyl alcohol substrate that is a water-soluble resin is manufactured, and then the electronic device is directly applied to the skin A method is described wherein the sheet is placed on the skin so as to contact and then the polyvinyl alcohol substrate is dissolved and removed with water. By this method, only the electronic device is transferred to the skin.
特開2012-10978号公報JP 2012-10978 A
 ところで、配線などを転写する人体などの被着体の表面は、腕首、足首および胴回りなど、ほとんどが曲面である場合がある。そして、非特許文献1に記載のシートでは、配線がポリビニルアルコール基材の表面に配置されているため、被着体の曲面に転写した場合に、転写された配線層が、被着体表面から剥離してしまう不具合が生じる。具体的には、シートを曲面に沿って曲げた際に、配線のパターン形状が厚み方向や面方向に歪んでしまい、配線が、曲面に沿って接触せず、被着体表面から剥離する。 By the way, the surface of an adherend such as a human body to which a wiring or the like is transferred may be almost a curved surface such as an arm neck, an ankle, and a waist. Then, in the sheet described in Non-Patent Document 1, since the wiring is disposed on the surface of the polyvinyl alcohol substrate, when transferred to the curved surface of the adherend, the transferred wiring layer is from the surface of the adherend There is a problem of peeling off. Specifically, when the sheet is bent along a curved surface, the pattern shape of the wiring is distorted in the thickness direction or the surface direction, and the wiring does not contact along the curved surface and peels off the adherend surface.
 また、非特許文献1に記載の配線構造体では、配線層全体(上面および側面)がポリビニルアルコール層から露出されている。そのため、搬送時や転写時に、折り曲げや外部からの衝撃により、配線層が剥離または損傷する不具合が生じる。すなわち、取扱い性に劣る。 Further, in the wiring structure described in Non-Patent Document 1, the entire wiring layer (upper surface and side surface) is exposed from the polyvinyl alcohol layer. Therefore, at the time of transport or transfer, there is a problem that the wiring layer is peeled or damaged due to bending or external impact. That is, it is inferior to handleability.
 本発明は、曲面を有する被着体に配線層を確実に転写することができ、取扱い性に優れる配線構造体、および、配線層の転写方法を提供することにある。 An object of the present invention is to provide a wiring structure which can reliably transfer a wiring layer to an adherend having a curved surface and which is excellent in handleability, and a method of transferring the wiring layer.
 本発明[1]は、水溶性樹脂層および配線層を備え、前記配線層が、前記水溶性樹脂層に埋設され、前記配線層の厚み方向一方面が、前記水溶性樹脂層から露出する、配線構造体を含んでいる。 The present invention [1] comprises a water-soluble resin layer and a wiring layer, the wiring layer is embedded in the water-soluble resin layer, and one surface in the thickness direction of the wiring layer is exposed from the water-soluble resin layer. Wiring structure is included.
 本発明[2]は、前記水溶性樹脂層の厚みが、300μm以下である、[1]に記載の配線構造体を含んでいる。 The present invention [2] includes the wiring structure according to [1], wherein the thickness of the water-soluble resin layer is 300 μm or less.
 本発明[3]は、幅10mmにおける前記水溶性樹脂層の曲げ剛性が、1.0×10GPa・μm以上、3.0×1012GPa・μm以下である、[1]または[2]に記載の配線構造体を含んでいる。 In the present invention [3], the flexural rigidity of the water-soluble resin layer at a width of 10 mm is 1.0 × 10 3 GPa · μm 4 or more and 3.0 × 10 12 GPa · μm 4 or less, [1] or It includes the wiring structure described in [2].
 本発明[4]は、前記水溶性樹脂層が、ポリビニルアルコールおよびポリビニルピロリドンの少なくとも1種を含有する、[1]~[3]のいずれか一項に記載の配線構造体を含んでいる。 The present invention [4] includes the wiring structure according to any one of [1] to [3], wherein the water-soluble resin layer contains at least one of polyvinyl alcohol and polyvinyl pyrrolidone.
 本発明[5]は、[1]~[4]のいずれか一項に記載の配線構造体、および、被着体を用意する工程、前記配線構造体を、前記配線層の厚み方向一方面が前記被着体に接触するように、前記被着体に積層する工程、および、続いて、前記水溶性樹脂層を除去する工程を備える、配線層の転写方法を含んでいる。 The present invention [5] comprises the wiring structure according to any one of the above [1] to [4], a process for preparing an adherend, the wiring structure, and one surface in the thickness direction of the wiring layer. The method for transferring a wiring layer includes the steps of laminating on the adherend so that the metal contacts the adherend, and subsequently removing the water-soluble resin layer.
 本発明[6]は、前記配線構造体が接触する前記被着体の接触面が、曲面を有する、[5]に記載の配線層の転写方法を含んでいる。 The present invention [6] includes the method for transferring a wiring layer according to [5], wherein the contact surface of the adherend with which the wiring structure is in contact has a curved surface.
 本発明[7]は、前記配線構造体が接触する前記被着体が、粘着層を備える、[5]または[6]に記載の配線層の転写方法を含んでいる。 The present invention [7] includes the method for transferring a wiring layer according to [5] or [6], wherein the adherend with which the wiring structure is in contact includes an adhesive layer.
 本発明の配線構造体によれば、配線層が、水溶性樹脂層に埋設されているため、配線層は、水溶性樹脂層に保護されている。そのため、折り曲げや外部からの衝撃に対しても、配線層の剥離および損傷を抑制することができ、取扱い性に優れる。 According to the wiring structure of the present invention, since the wiring layer is embedded in the water soluble resin layer, the wiring layer is protected by the water soluble resin layer. Therefore, peeling and damage of the wiring layer can be suppressed even in the event of bending or external impact, and the handleability is excellent.
 また、本発明の配線構造体によれば、配線層が、水溶性樹脂層に埋設されており、配線層の厚み方向一方面が、水溶性樹脂層から露出している。そのため、曲面からなる被着体に転写する際において、配線構造体をその曲面に沿って曲げたとしても、配線層のパターン形状は、水溶性樹脂層内で維持されている。そのため、配線層を確実に被着体に転写することができる。 Further, according to the wiring structure of the present invention, the wiring layer is embedded in the water-soluble resin layer, and one surface in the thickness direction of the wiring layer is exposed from the water-soluble resin layer. Therefore, even when the wiring structure is bent along the curved surface when transferred to the adherend made of the curved surface, the pattern shape of the wiring layer is maintained in the water-soluble resin layer. Therefore, the wiring layer can be reliably transferred to the adherend.
図1は、本発明の配線構造体の一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of one embodiment of the wiring structure of the present invention. 図2A~図2Gは、図1に示す配線構造体の製造方法の工程図であって、図2Aは、シード層を第1剥離層の上面の形成する工程、図2Bは、めっきレジストをシード層に配置する工程、図2Cは、配線層をシード層に形成する工程、図2Dは、第2剥離層を配線層の上面に配置する工程、図2Eは、第1剥離層およびシード層を除去する工程、図2Fは、配線層を水溶性樹脂層で被覆する工程、図2Gは、第2剥離層を除去する工程を示す。2A to 2G are process drawings of the method of manufacturing the wiring structure shown in FIG. 1, and FIG. 2A is a step of forming a seed layer on the upper surface of the first peeling layer, and FIG. Step of disposing in a layer, FIG. 2C is a step of forming a wiring layer in a seed layer, FIG. 2D is a step of disposing a second peeling layer on the top surface of the wiring layer, and FIG. 2E is a step of forming a first peeling layer and a seed layer. A removal step, FIG. 2F shows a step of covering the wiring layer with a water-soluble resin layer, and FIG. 2G shows a step of removing the second peeling layer. 図3A~図3Cは、図1に示す配線構造体を用いた転写方法の工程図であって、図3Aは、配線構造体および被着体を用意する工程、図3Bは、配線構造体を被着体に積層する工程、図3Cは、水溶性樹脂層を除去する工程を示す。3A to 3C are process drawings of a transfer method using the wiring structure shown in FIG. 1, wherein FIG. 3A is a step of preparing a wiring structure and an adherend, and FIG. 3B is a wiring structure. The process of laminating on the adherend, FIG. 3C shows the process of removing the water-soluble resin layer. 図4は、図1に示す配線構造体の変形例(配線層の一部が埋設されている形態)を示す。FIG. 4 shows a modification of the wiring structure shown in FIG. 1 (a form in which a part of the wiring layer is buried). 図5は、比較例で作製した配線構造体を示す。FIG. 5 shows a wiring structure produced in the comparative example. 図6は、実施例の取扱い性試験における模式図を示す。FIG. 6 shows a schematic view in the handling test of the example.
 1.配線構造体
 図1を参照して、本発明の配線構造体の一実施形態を説明する。
1. Wiring Structure One embodiment of a wiring structure of the present invention will be described with reference to FIG.
 図1において、紙面上下方向は、上下方向(厚み方向、第1方向)であって、紙面上側が、上側(厚み方向一方側、第1方向一方側)、紙面下側が、下側(厚み方向他方側、第1方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。 In FIG. 1, the vertical direction in the drawing is the vertical direction (thickness direction, first direction), and the upper side of the drawing is the upper side (one side in the thickness direction, one side in the first direction), and the lower side is the lower side (thickness direction). The other side, the other side in the first direction). Further, the left-right direction and the depth direction in the drawing are surface directions orthogonal to the up-down direction. Specifically, it conforms to the directional arrow in each figure.
 配線構造体1は、水溶性樹脂層2および配線層3を備える。 The wiring structure 1 includes the water-soluble resin layer 2 and the wiring layer 3.
 水溶性樹脂層2は、面方向に延びるシート(フィルム)を有している。 The water-soluble resin layer 2 has a sheet (film) extending in the surface direction.
 水溶性樹脂層2の上部には、下側(厚み方向他方側)に凹む複数の溝部4が形成されている。溝部4は、断面視略矩形状に形成されている。 In the upper part of the water-soluble resin layer 2, a plurality of groove parts 4 recessed to the lower side (the other side in the thickness direction) are formed. The groove 4 is formed in a substantially rectangular shape in cross section.
 水溶性樹脂層2は、水溶性樹脂組成物からシート状に形成されている。 The water soluble resin layer 2 is formed in a sheet form from a water soluble resin composition.
 水溶性樹脂組成物は、水溶性樹脂を含有する。 The water soluble resin composition contains a water soluble resin.
 水溶性樹脂は、水に可溶な樹脂であり、例えば、ポリビニルアルコール、ポリビニルピロリドン、でんぷん、水溶性ポリエステルなどが挙げられる。溶解性、可撓性、生体安全性、強度の観点から、好ましくは、ポリビニルアルコール、ポリビニルピロリドンが挙げられ、より好ましくは、ポリビニルアルコールが挙げられる。水溶性樹脂は、1種単独または2種以上を併用することができる。 The water-soluble resin is a water-soluble resin, and examples thereof include polyvinyl alcohol, polyvinyl pyrrolidone, starch, water-soluble polyester and the like. From the viewpoint of solubility, flexibility, biosafety and strength, preferably polyvinyl alcohol and polyvinyl pyrrolidone are mentioned, and more preferably polyvinyl alcohol is mentioned. The water-soluble resin can be used alone or in combination of two or more.
 ポリビニルアルコール(PVA)は、ポリ酢酸ビニルの加水分解物(具体的には、部分加水分解物)である。なお、本発明では、水溶性である限り、ポリビニルアルコールは、ポリビニルアルコールの共重合体およびその変性物も含まれる。 Polyvinyl alcohol (PVA) is a hydrolyzate of polyvinyl acetate (specifically, a partial hydrolyzate). In the present invention, as long as it is water soluble, polyvinyl alcohol also includes copolymers of polyvinyl alcohol and their modified products.
 ポリビニルアルコールのケン化度は、例えば、80モル%以上、好ましくは、85モル%以上であり、また、例えば、100モル%以下、好ましくは、95モル%未満である。ケン化度を上記上限以下とすることにより、結晶化を抑制でき、水溶性(特に、低温での水溶性)に優れる。また、ケン化度を上記下限以上とすることにより、強度が優れ、配線層3を確実に支持できる。 The degree of saponification of polyvinyl alcohol is, for example, 80 mol% or more, preferably 85 mol% or more, and for example, 100 mol% or less, preferably less than 95 mol%. By making saponification degree below the said upper limit, crystallization can be suppressed and it is excellent in water solubility (especially water solubility in low temperature). Further, by setting the degree of saponification to the above lower limit or more, the strength is excellent, and the wiring layer 3 can be reliably supported.
 ポリビニルアルコールの重合度は、例えば、500以上、好ましくは、1000以上、より好ましくは、1300以上であり、また、例えば、10000以下、好ましくは、5000以下、より好ましくは、3000以下である。重合度を上記範囲内とすることにより、曲面追従性に優れ、被着体に配線層3をより確実に転写することができる。 The polymerization degree of polyvinyl alcohol is, for example, 500 or more, preferably 1000 or more, more preferably 1300 or more, and for example, 10000 or less, preferably 5000 or less, more preferably 3000 or less. By setting the degree of polymerization within the above range, the curved surface followability is excellent, and the wiring layer 3 can be more reliably transferred to the adherend.
 ポリビニルアルコールの4質量%水溶液(20℃)における粘度は、例えば、5mPa・s以上、好ましくは、20mPa・s以上であり、また、例えば、100mPa・s以下、好ましくは、50mPa・s以下である。 The viscosity of the polyvinyl alcohol in a 4% by mass aqueous solution (20 ° C.) is, for example, 5 mPa · s or more, preferably 20 mPa · s or more, and for example, 100 mPa · s or less, preferably 50 mPa · s or less .
 ポリビニルアルコールのケン化度、重合度および粘度は、ともに、JIS K 6726(1994)に記載の「ポリビニルアルコール試験方法」に従って、算出される。 The degree of saponification, degree of polymerization and viscosity of polyvinyl alcohol are both calculated according to the “polyvinyl alcohol test method” described in JIS K 6726 (1994).
 本発明において、「水溶性」とは、30mm×30mm×厚み0.1mmに形成した樹脂サンプルを、20~80℃のいずれかの温度(特に、80℃)の水100ml中に24時間浸漬させた場合に、樹脂サンプルが完全に溶解することをいう。 In the present invention, "water-soluble" means that a resin sample formed in 30 mm x 30 mm x 0.1 mm thickness is immersed in 100 ml of water at any temperature of 20-80 ° C (especially 80 ° C) for 24 hours. When the resin sample is completely dissolved.
 水溶性樹脂組成物は、界面活性剤を含有することができる。これにより、水溶性樹脂層2を均一に成膜することができる。 The water soluble resin composition can contain a surfactant. Thereby, the water-soluble resin layer 2 can be formed uniformly.
 界面活性剤としては、例えば、シリコーン系界面活性剤、フッ素系界面活性剤などが挙げられる。 As surfactant, silicone type surfactant, fluorine type surfactant, etc. are mentioned, for example.
 シリコーン系界面活性剤としては、例えば、ポリエーテル変性シリコーン、アルコール変性シリコーンなどが挙げられる。 As silicone type surfactant, polyether modified silicone, alcohol modified silicone etc. are mentioned, for example.
 フッ素系界面活性剤としては、例えば、例えば、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキル第四級アンモニウム塩などが挙げられる。 Examples of fluorine-based surfactants include, for example, perfluoroalkyl sulfonates, perfluoroalkyl carboxylates, perfluoroalkyl quaternary ammonium salts and the like.
 界面活性剤は、1種単独または2種以上を併用することができる。好ましくは、シリコーン系界面活性が挙げられる。 The surfactant may be used alone or in combination of two or more. Preferably, silicone surface activity is mentioned.
 水溶性樹脂組成物が、界面活性剤を含有する場合、その含有割合は、水溶性樹脂100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上であり、また、例えば、10質量部以下、好ましくは、1質量部以下である。 When the water-soluble resin composition contains a surfactant, the content ratio thereof is, for example, 0.01 parts by mass or more, preferably 0.1 parts by mass or more, with respect to 100 parts by mass of the water-soluble resin. Also, for example, it is 10 parts by mass or less, preferably 1 part by mass or less.
 水溶性樹脂としてポリビニルアルコールを使用する場合は、水溶性樹脂組成物は、必要に応じて、架橋剤を含有してもよい。 When polyvinyl alcohol is used as the water-soluble resin, the water-soluble resin composition may contain a crosslinking agent, if necessary.
 このような架橋剤としては、例えば、イソシアネート系化合物、オキサゾリン系化合物、メラミン系化合物、エポキシ系化合物、カルボン酸化合物、カルボン酸無水物、カルボジイミド系化合物、ビスビニルスルホン系化合物、有機チタン系化合物、ジルコニウム系化合物、ホウ素系化合物などが挙げられる。 As such a crosslinking agent, for example, an isocyanate compound, an oxazoline compound, a melamine compound, an epoxy compound, a carboxylic acid compound, a carboxylic acid anhydride, a carbodiimide compound, a bisvinylsulfone compound, an organic titanium compound, Examples include zirconium-based compounds and boron-based compounds.
 水溶性樹脂組成物が架橋剤を含有する場合、配線構造体1を被着体に接触させた後、配線構造体1を加熱することにより、ポリビニルアルコールを架橋させて、水溶性樹脂層2を非水溶性樹脂層(架橋ポリビニルアルコール層)にすることができる。その結果、被着体に、配線層3および非水溶性樹脂層(カバー層)を転写することができる。 When the water-soluble resin composition contains a crosslinking agent, the wiring structure 1 is brought into contact with the adherend, and then the wiring structure 1 is heated to crosslink the polyvinyl alcohol to form the water-soluble resin layer 2. It can be made a non-water-soluble resin layer (crosslinked polyvinyl alcohol layer). As a result, the wiring layer 3 and the water-insoluble resin layer (cover layer) can be transferred to the adherend.
 水溶性樹脂層2の弾性率は、例えば、0.1GPa以上、好ましくは、0.5GPa以上であり、また、例えば、5.0GPa以下、好ましくは、2.0GPa以下である。 The elastic modulus of the water-soluble resin layer 2 is, for example, 0.1 GPa or more, preferably 0.5 GPa or more, and for example, 5.0 GPa or less, preferably 2.0 GPa or less.
 水溶性樹脂層2の弾性率は、例えば、水溶性樹脂を長さ20mm×幅5mmに成形した測定サンプルを、23℃、50%RHの条件下で、引張圧縮試験機を用いて、引張速度300mm/minで測定することにより、求めることができる。なお、水溶性樹脂層2の弾性率および曲げ剛性の測定は、後述する転写方法において、水溶性樹脂層2を水で溶解して除去することにより発生する水溶性樹脂含有水溶液を回収し、これを再成膜した樹脂サンプルを用いてもよい。 The modulus of elasticity of the water-soluble resin layer 2 can be measured, for example, by using a tensile compression tester at 23 ° C. and 50% RH under the conditions of 23 ° C. and 50% RH for the measurement sample obtained by molding the water-soluble resin It can be determined by measuring at 300 mm / min. In addition, the measurement of the elastic modulus and bending rigidity of the water-soluble resin layer 2 collect | recovers the water-soluble resin containing aqueous solution which generate | occur | produces by melt | dissolving and removing the water-soluble resin layer 2 in the transfer method mentioned later. The resin sample which formed the film again may be used.
 水溶性樹脂層2の曲げ剛性は、例えば、1.0×10GPa・μm以上、好ましくは、9.4×10GPa・μm以上であり、また、例えば、3.0×1012GPa・μm以下、好ましくは、5.4×1010GPa・μm以下、より好ましくは、6.0×10GPa・μm以下である。曲げ剛性を上記範囲内とすることにより、曲面追従性に優れ、被着体に配線層3をより確実に転写することができる。 The flexural rigidity of the water-soluble resin layer 2 is, for example, 1.0 × 10 3 GPa · μm 4 or more, preferably 9.4 × 10 4 GPa · μm 4 or more, and for example, 3.0 × 10 12 GPa · μm 4 or less, preferably 5.4 × 10 10 GPa · μm 4 or less, and more preferably 6.0 × 10 6 GPa · μm 4 or less. By setting the bending rigidity within the above range, the curved surface followability is excellent, and the wiring layer 3 can be more reliably transferred to the adherend.
 水溶性樹脂層2の曲げ剛性は、幅10mmとして、下記式に従い、算出することができる。 The flexural rigidity of the water-soluble resin layer 2 can be calculated as 10 mm in width according to the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Eiは、弾性率(上記)を示し、Aiは、断面積(幅biと厚みhiとの積により得られる断面積)を示し、Giは、重心座標を示し、biは、幅(すなわち、10mm)を示し、hiは、厚み(すなわち、下記T)を示す。 Ei indicates the elastic modulus (above), Ai indicates the cross-sectional area (cross-sectional area obtained by the product of the width bi and the thickness hi), Gi indicates the barycentric coordinates, and bi indicates the width (ie, 10 mm ), Hi indicates the thickness (ie, T 1 below).
 水溶性樹脂層2の厚みT(上端面から下端面までの距離)は、例えば、1μm以上、好ましくは、3μm以上、より好ましくは、8μm以上であり、また、例えば、1500μm以下、好ましくは、300μm以下、より好ましくは、50μm以下である。水溶性樹脂層2の厚みを上記下限以上とすることにより、強度が優れるため、配線構造体1のしわや破損を抑制することができる。また、水溶性樹脂層2の厚みを上記上限以下とすることにより、曲面追従性に優れ、被着体に配線層3をより確実に転写することができる。 The thickness T 1 (the distance from the upper end face to the lower end face) of the water-soluble resin layer 2 is, for example, 1 μm or more, preferably 3 μm or more, more preferably 8 μm or more, and for example, 1500 μm or less, preferably , 300 μm or less, more preferably 50 μm or less. By setting the thickness of the water-soluble resin layer 2 to the above lower limit or more, since the strength is excellent, it is possible to suppress wrinkles and breakage of the wiring structure 1. Further, by setting the thickness of the water-soluble resin layer 2 to the upper limit or less, the curved surface followability is excellent, and the wiring layer 3 can be more reliably transferred to the adherend.
 配線層3は、水溶性樹脂層2の溝部4の内部に配置されている。具体的には、配線層3は、水溶性樹脂層2の上部に完全に埋設されている。配線層3の上面(厚み方向一方面)が、水溶性樹脂層2の上面(溝部4以外を除く上面)と面一となるように、配線層3は、溝部4に配置されている。 The wiring layer 3 is disposed inside the groove 4 of the water-soluble resin layer 2. Specifically, the wiring layer 3 is completely embedded in the upper part of the water-soluble resin layer 2. The wiring layer 3 is disposed in the groove 4 so that the upper surface (one surface in the thickness direction) of the wiring layer 3 is flush with the upper surface of the water-soluble resin layer 2 (the upper surface excluding the groove 4).
 配線層3は、複数の配線5から形成されており、複数の配線5は、互いに間隔を隔てて並列配置されている。配線5の側面および下面は、水溶性樹脂層2で被覆され、配線5の上面は、水溶性樹脂層2から露出されている。 The wiring layer 3 is formed of a plurality of wirings 5, and the plurality of wirings 5 are arranged in parallel at intervals. The side surface and the lower surface of the wiring 5 are covered with the water-soluble resin layer 2, and the upper surface of the wiring 5 is exposed from the water-soluble resin layer 2.
 配線層3のパターン形状(平面視の配線パターン)は、例えば、ストライプ状、格子状などが挙げられる。 The pattern shape (wiring pattern in plan view) of the wiring layer 3 may be, for example, a stripe shape, a lattice shape, or the like.
 配線層3は、導電性の材料からなり、例えば、銅、銀、金、ニッケル、または、これらの合金が挙げられ、好ましくは、銅が挙げられる。 The wiring layer 3 is made of a conductive material, and examples thereof include copper, silver, gold, nickel, and alloys thereof, and preferably, copper.
 配線層3(配線5)の厚みTは、例えば、0.1μm以上、好ましくは、1μm以上、より好ましくは、3μm以上であり、また、例えば、100μm以下、好ましくは、80μm以下、好ましくは、30μm以下である。配線層3の厚みを上記下限以上とすることにより、導電性を良好にすることができる。また、配線層3の厚みを上記上限以下とすることにより、配線層3を適度な硬さにして、配線層3を転写しやすくできる。 The thickness T 2 of the wiring layer 3 (line 5), for example, 0.1 [mu] m or more, preferably, 1 [mu] m or more, more preferably at most 3μm or more, and is, for example, 100 [mu] m or less, preferably, 80 [mu] m or less, preferably , 30 μm or less. By setting the thickness of the wiring layer 3 to the above lower limit or more, the conductivity can be improved. In addition, by setting the thickness of the wiring layer 3 to the upper limit or less, the wiring layer 3 can be easily transferred by making the wiring layer 3 appropriate in hardness.
 配線5の幅(L)は、例えば、0.1μm以上、好ましくは、10μm以上、より好ましくは、25μm以上であり、また、例えば、10000μm以下、好ましくは、1000μm以下、より好ましくは、100μm以下である。 The width (L) of the wiring 5 is, for example, 0.1 μm or more, preferably 10 μm or more, more preferably 25 μm or more, and for example, 10000 μm or less, preferably 1000 μm or less, more preferably 100 μm or less It is.
 配線同士の間隔(S)は、例えば、0.1μm以上、好ましくは、10μm以上、より好ましくは、25μm以上であり、また、例えば、100000μm以下、好ましくは、10000μm以下、より好ましくは、1000μm以下である。 The distance (S) between the wires is, for example, 0.1 μm or more, preferably 10 μm or more, more preferably 25 μm or more, and for example, 100,000 μm or less, preferably 10000 μm or less, more preferably 1000 μm or less It is.
 配線5の幅(L)の、配線同士の間隔(S)に対する比(L/S)は、例えば、0.1以上、好ましくは、0.2以上であり、また、例えば、2.0以下、好ましくは、0.5以下である。 The ratio (L / S) of the width (L) of the wires 5 to the distance (S) between the wires is, for example, 0.1 or more, preferably 0.2 or more, and for example, 2.0 or less Preferably, it is 0.5 or less.
 水溶性樹脂層2の厚み(T)の、配線層3の厚み(T)に対する比(T/T)は、例えば、1以上、好ましくは、2以上であり、また、例えば、1000以下、好ましくは、200以下、より好ましくは、10以下、さらに好ましくは、8以下である。上記比を上記下限以上とすることにより、水溶性樹脂層2が配線5をより確実に保護することができる。また、上記比を上記上限以下とすることにより、配線構造体1の可撓性に優れ、配線層3を転写しやすくできる。 Of the water-soluble resin layer 2 having a thickness (T 1), the ratio to the thickness (T 2) of the wiring layer 3 (T 1 / T 2) are, for example, 1 or more, or preferably 2 or more, and is, for example, It is 1000 or less, preferably 200 or less, more preferably 10 or less, and still more preferably 8 or less. By setting the ratio to the above lower limit or more, the water-soluble resin layer 2 can protect the wiring 5 more reliably. Further, by setting the ratio to the upper limit or less, the flexibility of the wiring structure 1 is excellent, and the wiring layer 3 can be easily transferred.
 2.配線回路基板の製造方法
 図2A~図2Gを参照して、配線構造体1の製造方法の一実施形態を説明する。
2. Method of Manufacturing a Printed Circuit Board An embodiment of a method of manufacturing the wiring structure 1 will be described with reference to FIGS. 2A to 2G.
 この製造方法は、例えば、シード層10を第1剥離層11の上面に形成する工程(1)、配線層3をシード層10の上面に形成する工程(2)、第2剥離層13を配線層3の上面に配置する工程(3)、第1剥離層11およびシード層10を除去する工程(4)、配線層3を水溶性樹脂層2で被覆する工程(5)、および、第2剥離層13を除去する工程(6)を備える。以下、各工程について説明する。 In this manufacturing method, for example, the step (1) of forming the seed layer 10 on the upper surface of the first release layer 11, the step of forming the wiring layer 3 on the upper surface of the seed layer 10 (2), and the wiring of the second release layer 13 A step (3) of disposing on the upper surface of the layer 3; a step (4) of removing the first peeling layer 11 and the seed layer 10; a step (5) of covering the wiring layer 3 with the water-soluble resin layer 2; A step (6) of removing the peeling layer 13 is provided. Each step will be described below.
 工程(1)では、図2Aに示すように、シード層10を第1剥離層11の上面に形成する。 In the step (1), as shown in FIG. 2A, the seed layer 10 is formed on the top surface of the first peeling layer 11.
 シード層10は、例えば、クロム、金、銀、白金、ニッケル、チタン、ケイ素、マンガン、ジルコニウムおよびそれらの合金、または、それらの酸化物などの金属材料から形成される。金属材料としては、好ましくは、銅が挙げられる。 The seed layer 10 is formed of, for example, a metal material such as chromium, gold, silver, platinum, nickel, titanium, silicon, manganese, zirconium and their alloys, or their oxides. As a metal material, Preferably, copper is mentioned.
 第1剥離層11は、シード層10に対して剥離可能に支持できる支持層であればよく、例えば、樹脂層、金属層などが挙げられ、好ましくは、金属層が挙げられる。金属層は、例えば、ステンレス、アルミニウム、42アロイなどの金属材料からシート形状に形成されている。金属材料として、好ましくは、ステンレスが挙げられる。 The first release layer 11 may be a support layer capable of being supported releasably with respect to the seed layer 10, and examples thereof include a resin layer, a metal layer, and the like, and preferably include a metal layer. The metal layer is formed in a sheet shape from a metal material such as, for example, stainless steel, aluminum, 42 alloy or the like. As a metal material, Preferably, stainless steel is mentioned.
 シード層10を第1剥離層11の上面に形成するには、例えば、めっきなどのウェットプロセス、例えば、蒸着、スパッタリングなどのドライプロセスなどが用いられる。好ましくは、めっき、より好ましくは、電解めっきによって、シード層10を第1剥離層11の上面に形成する。 In order to form the seed layer 10 on the upper surface of the first peeling layer 11, for example, a wet process such as plating, for example, a dry process such as vapor deposition or sputtering is used. Preferably, the seed layer 10 is formed on the top surface of the first release layer 11 by plating, more preferably electrolytic plating.
 シード層10は、第1剥離層11の上面全面に形成される。シード層10の厚みは、例えば、0.03μm以上、好ましくは、0.3μm以上であり、また、例えば、5μm以下、好ましくは、3μm以下である。 The seed layer 10 is formed on the entire top surface of the first release layer 11. The thickness of the seed layer 10 is, for example, 0.03 μm or more, preferably 0.3 μm or more, and for example, 5 μm or less, preferably 3 μm or less.
 次いで、工程(2)では、図2Cに示すように、配線層3をシード層10の上面に形成する。 Next, in the step (2), as shown in FIG. 2C, the wiring layer 3 is formed on the upper surface of the seed layer 10.
 好ましくは、図2Bおよび図2Cに示すように、アディティブ法によって、配線層3をシード層10の上面に形成する。 Preferably, as shown in FIGS. 2B and 2C, the wiring layer 3 is formed on the top surface of the seed layer 10 by an additive method.
 具体的には、まず、図2Bに示すように、ドライフィルムレジストからめっきレジスト12を、配線層3の逆パターンで、シード層10の上面に形成する。次いで、図2Cに示すように、シード層10から給電する電解めっきによって、配線層3を、めっきレジスト12から露出するシード層10の上面に積層する。その後、図2Cの仮想線で示すめっきレジスト12を、例えば、剥離液を用いて除去する。 Specifically, first, as shown in FIG. 2B, a plating resist 12 is formed from a dry film resist on the upper surface of the seed layer 10 in a reverse pattern of the wiring layer 3. Next, as shown in FIG. 2C, the wiring layer 3 is laminated on the upper surface of the seed layer 10 exposed from the plating resist 12 by electrolytic plating in which power is supplied from the seed layer 10. Thereafter, the plating resist 12 indicated by phantom lines in FIG. 2C is removed using, for example, a peeling solution.
 配線層3は、シード層10の上面に連続する形状を有する。 The wiring layer 3 has a shape which is continuous with the upper surface of the seed layer 10.
 次いで、工程(3)では、図2Dに示すように、第2剥離層13を配線層3の上面に配置する。 Next, in the step (3), as shown in FIG. 2D, the second peeling layer 13 is disposed on the upper surface of the wiring layer 3.
 具体的には、第2剥離層13の下面が配線層3の上面に接触するように、第2剥離層13を配線層3の上面に配置する。 Specifically, the second peeling layer 13 is disposed on the upper surface of the wiring layer 3 so that the lower surface of the second peeling layer 13 is in contact with the upper surface of the wiring layer 3.
 第2剥離層13は、支持層と、支持層の下面に配置される粘着層とを有する。すなわち、第2剥離層13は、粘着性を有する。 The second release layer 13 has a support layer and an adhesive layer disposed on the lower surface of the support layer. That is, the 2nd exfoliation layer 13 has adhesiveness.
 支持層としては、第1剥離層11と同様の支持層が挙げられる。粘着層を形成する粘着材料としては、例えば、アクリル系感圧接着剤、シリコーン系感圧接着剤などの感圧接着剤が挙げられる。また、粘着層を、例えば、活性エネルギー線の照射によって粘着力が低下する活性エネルギー線照射剥離シートなどから形成することもできる。 As a support layer, the same support layer as the 1st exfoliation layer 11 is mentioned. Examples of the pressure-sensitive adhesive material for forming the pressure-sensitive adhesive layer include pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives and silicone pressure-sensitive adhesives. Moreover, the adhesive layer can also be formed, for example, from an active energy ray-irradiated release sheet or the like whose adhesive force is reduced by irradiation of active energy rays.
 次いで、工程(4)では、図2Eに示すように、第1剥離層11およびシード層10をこの順に除去する。 Next, in step (4), as shown in FIG. 2E, the first peeling layer 11 and the seed layer 10 are removed in this order.
 具体的には、まず、図2Dの仮想線に示すように、第1剥離層11を下方に撓ませながら、シード層10から剥離する。これにより、シード層10の下面が露出する。 Specifically, first, as shown by phantom lines in FIG. 2D, the first peeling layer 11 is peeled downward from the seed layer 10 while being bent downward. Thereby, the lower surface of the seed layer 10 is exposed.
 続いて、例えば、ウエットエッチングなどのエッチングによって、シード層10を除去する。これにより、配線層3の下面および側面が露出する。そして、配線層3に第2剥離層13が積層された積層体14が得られる。 Subsequently, the seed layer 10 is removed by etching such as wet etching. Thereby, the lower surface and the side surface of the wiring layer 3 are exposed. And the laminated body 14 by which the 2nd peeling layer 13 was laminated | stacked on the wiring layer 3 is obtained.
 次いで、工程(5)では、図2Fに示すように、配線層3を水溶性樹脂層2で被覆する。 Next, in the step (5), as shown in FIG. 2F, the wiring layer 3 is covered with the water-soluble resin layer 2.
 具体的には、配線層3の下面および側面を水溶性樹脂層2で被覆するように、積層体14の下面に水溶性樹脂層2を配置する。例えば、図2Eに示す積層体14を上下反転し、その反転した積層体14の上側(図2Fでは、下側)から、水溶性樹脂含有水溶液を塗布および乾燥して、水溶性樹脂層2を積層体14に配置する。その後、水溶性樹脂層2が積層された積層体14を上下反転させる。 Specifically, the water-soluble resin layer 2 is disposed on the lower surface of the laminate 14 so that the lower surface and the side surface of the wiring layer 3 are covered with the water-soluble resin layer 2. For example, the laminated body 14 shown in FIG. 2E is turned upside down, and a water soluble resin-containing aqueous solution is applied and dried from the upper side (lower side in FIG. 2F) of the inverted laminated body 14 to form the water soluble resin layer 2 Arranged in the stack 14. Thereafter, the laminate 14 on which the water-soluble resin layer 2 is laminated is turned upside down.
 水溶性樹脂含有水溶液は、水溶性樹脂組成物および水を含有する。水溶性樹脂含有水溶液は、必要に応じて、イソプロピルアルコールなどのアルコール系溶媒をさらに含有することができる。 The water-soluble resin-containing aqueous solution contains a water-soluble resin composition and water. The water-soluble resin-containing aqueous solution can further contain an alcohol-based solvent such as isopropyl alcohol, if necessary.
 水溶性樹脂含有水溶液における水溶性樹脂の固形分量は、例えば、1質量%以上、好ましくは、5質量%以上であり、また、例えば、50質量%以下、好ましくは、20質量%以下である。 The solid content of the water-soluble resin in the water-soluble resin-containing aqueous solution is, for example, 1% by mass or more, preferably 5% by mass or more, and for example, 50% by mass or less, preferably 20% by mass or less.
 乾燥温度は、例えば、80℃以上、好ましくは、100℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。 The drying temperature is, for example, 80 ° C. or more, preferably 100 ° C. or more, and for example, 200 ° C. or less, preferably 150 ° C. or less.
 これにより、図2Fに示すように、配線構造体1が、第2剥離層13に積層された状態で、得られる。 Thereby, as shown to FIG. 2F, the wiring structure 1 is obtained in the state laminated | stacked on the 2nd peeling layer 13. As shown in FIG.
 次いで、工程(6)では、図2Gに示すように、第2剥離層13を配線構造体1から除去する。 Next, in the step (6), as shown in FIG. 2G, the second peeling layer 13 is removed from the wiring structure 1.
 具体的には、図2Fの仮想線に示すように、第2剥離層13を上方に撓ませながら、配線構造体1から剥離する。 Specifically, as shown by phantom lines in FIG. 2F, the second peeling layer 13 is peeled upward from the wiring structure 1 while being bent upward.
 これによって、図1および図2Gに示す配線構造体1が得られる。なお、配線構造体1において、配線層3が露出している側の表面(図1および図2Gでは、上面、図3Aでは、下面)を配線露出面6とする。 Thereby, the wiring structure 1 shown in FIG. 1 and FIG. 2G is obtained. In the wiring structure 1, the surface on the side where the wiring layer 3 is exposed (upper surface in FIGS. 1 and 2G, lower surface in FIG. 3A) is the wiring exposed surface 6.
 3.配線層の転写方法
 図3A~図3Cを参照して、配線層3の転写方法の一実施形態を説明する。
3. Method of Transferring Wiring Layer One embodiment of a method of transferring wiring layer 3 will be described with reference to FIGS. 3A to 3C.
 この転写方法は、例えば、配線構造体1および被着体7を用意する工程(A)、配線構造体1を被着体7に積層する工程(B)、および、水溶性樹脂層を除去する工程(C)を備える。以下、各工程を説明する。 In this transfer method, for example, the step (A) of preparing the wiring structure 1 and the adherend 7, the step (B) of laminating the wiring structure 1 on the adherend 7, and the removal of the water soluble resin layer A process (C) is provided. Each step will be described below.
 工程(A)では、図3Aに示すように、配線構造体1および被着体7をそれぞれ用意する。 In the step (A), as shown in FIG. 3A, the wiring structure 1 and the adherend 7 are prepared.
 被着体7として、例えば、生体が挙げられる。生体としては、動物体、植物体が挙げられ、好ましくは、動物体が挙げられる。動物体は、例えば、人体(人)、例えば、牛、馬、豚、豚、鶏、犬、猫などの家畜、例えば、魚類などが挙げられる。好ましくは、人体、具体的には、人体の皮膚が挙げられる。 Examples of the adherend 7 include a living body. The living body includes an animal body and a plant body, preferably an animal body. Examples of the animal include human bodies (humans), for example, livestock such as cows, horses, pigs, pigs, chickens, dogs, cats and the like, for example, fish and the like. Preferably, the skin of a human body, specifically, a human body is mentioned.
 被着体7における接触面8(配線層3が転写される表面)は、曲面を備える。 The contact surface 8 (surface to which the wiring layer 3 is transferred) in the adherend 7 has a curved surface.
 曲面の曲率半径Rは、例えば、1cm以上、好ましくは、2cm以上であり、また、例えば、10cm以下である。接触面8の表面粗さRaは、例えば、1μm以上であり、また、例えば、100μm以下である。 The radius of curvature R of the curved surface is, for example, 1 cm or more, preferably 2 cm or more, and for example, 10 cm or less. The surface roughness Ra of the contact surface 8 is, for example, 1 μm or more, and for example, 100 μm or less.
 また、被着体7の接触面8は、非粘着面および粘着面のいずれであってもよい。すなわち、被着体7は、非粘着層および粘着層のいずれであってもよい。配線構造体1によれば、非粘着面のみならず、粘着面に対しても良好に配線層3を転写できる。 The contact surface 8 of the adherend 7 may be either a non-adhesive surface or an adhesive surface. That is, the adherend 7 may be any of a non-adhesive layer and an adhesive layer. According to the wiring structure 1, the wiring layer 3 can be favorably transferred not only to the non-adhesive surface but also to the adhesive surface.
 表面が粘着面である被着体としては、非生体であって、例えば、アクリル系感圧接着剤、シリコーン系感圧接着剤などの感圧接着剤層などが挙げられる。 As an adherend whose surface is a pressure-sensitive adhesive surface, it is a non-living body, and examples thereof include pressure-sensitive adhesive layers such as acrylic pressure-sensitive adhesives and silicone pressure-sensitive adhesives.
 続いて、図3Aに示すように、配線構造体1および被着体7を、配線層3および被着体7の接触面8が対向するように配置する。すなわち、配線構造体1の配線露出面6と、被着体7の接触面8とが向かい合うように配置する。 Subsequently, as shown in FIG. 3A, the wiring structure 1 and the adherend 7 are disposed such that the contact surfaces 8 of the wiring layer 3 and the adherend 7 face each other. That is, the wiring exposed surface 6 of the wiring structure 1 and the contact surface 8 of the adherend 7 are disposed to face each other.
 次いで、工程(B)では、図3Bに示すように、配線構造体1を被着体7に積層する。 Next, in the step (B), as shown in FIG. 3B, the wiring structure 1 is laminated on the adherend 7.
 具体的には、まず、図3Bの仮想線に示すように、配線構造体1の配線露出面6の一部(例えば、面方向中央部)を被着体7の接触面8に接触させる。 Specifically, first, as shown by phantom lines in FIG. 3B, a part (e.g., the center in the surface direction) of the exposed wiring surface 6 of the wiring structure 1 is brought into contact with the contact surface 8 of the adherend 7.
 続いて、配線構造体1を接触面8の曲面に沿って湾曲させて、配線構造体1の配線露出面6全体を接触面8に接触させる。 Subsequently, the wiring structure 1 is curved along the curved surface of the contact surface 8 to bring the entire exposed wiring surface 6 of the wiring structure 1 into contact with the contact surface 8.
 次いで、工程(C)では、図3Cに示すように、水溶性樹脂層2を除去する。 Next, in step (C), as shown in FIG. 3C, the water-soluble resin layer 2 is removed.
 具体的には、水溶性樹脂層2を水に溶解させることによって、水溶性樹脂層2を除去する(水洗)。すなわち、配線構造体1に多量の水を、例えば、浸漬、塗布、噴霧などの手法により接触させることにより、水溶性樹脂を水に溶解させ、続いて、水溶性樹脂が溶解した水溶液を除去する。 Specifically, the water-soluble resin layer 2 is removed by dissolving the water-soluble resin layer 2 in water (water washing). That is, the water-soluble resin is dissolved in water by bringing a large amount of water into contact with the wiring structure 1 by, for example, a method such as immersion, coating, or spraying, and then the aqueous solution in which the water-soluble resin is dissolved is removed. .
 水の温度は、水溶性樹脂の溶解温度以上であればよく、例えば、10℃以上、好ましくは、50℃以上、より好ましくは、70℃以上であり、また、例えば、95℃以下、好ましくは、90℃以下である。水の温度を上記下限以上とすることにより、水に対する水溶性樹脂層2の溶解性を向上させ、より確実に水溶性樹脂層2を除去することができる。 The temperature of water may be equal to or higher than the dissolution temperature of the water-soluble resin, and is, for example, 10 ° C. or more, preferably 50 ° C. or more, more preferably 70 ° C. or more, for example, 95 ° C. or less, preferably And 90 ° C. or less. By setting the temperature of water to the lower limit or more, the solubility of the water-soluble resin layer 2 in water can be improved, and the water-soluble resin layer 2 can be more reliably removed.
 これにより、被着体7の接触面8には、配線層3のみが転写(配置)される。すなわち、被着体7と、その接触面8に配置される配線層3とを備える配線積層体9が製造される。 As a result, only the wiring layer 3 is transferred (disposed) to the contact surface 8 of the adherend 7. That is, the wiring laminate 9 including the adherend 7 and the wiring layer 3 disposed on the contact surface 8 is manufactured.
 4.作用効果
 この配線構造体1によれば、配線層3が、水溶性樹脂層2に埋設されているため、配線層3は、水溶性樹脂層2に保護されている。そのため、外部からの衝撃に対しても、配線層3の損傷および脱落を抑制することができる。よって、取扱い性に優れる。
4. Function and Effect According to the wiring structure 1, since the wiring layer 3 is embedded in the water-soluble resin layer 2, the wiring layer 3 is protected by the water-soluble resin layer 2. Therefore, damage and detachment of the wiring layer 3 can be suppressed even against external impact. Therefore, it is excellent in handleability.
 また、この配線構造体1によれば、配線層3が、水溶性樹脂層2に埋設されており、配線層3の上面が、水溶性樹脂層2から露出している。そのため、曲面を備える被着体7に転写する際において、配線構造体1をその曲面(接触面8)に沿って曲げたとしても、配線層3のパターン形状は、水溶性樹脂層2内でそのまま維持されている。そのため、配線層3を確実に被着体7に転写することができる。 Further, according to the wiring structure 1, the wiring layer 3 is embedded in the water-soluble resin layer 2, and the upper surface of the wiring layer 3 is exposed from the water-soluble resin layer 2. Therefore, even when the wiring structure 1 is bent along the curved surface (contact surface 8) when transferred to the adherend 7 having a curved surface, the pattern shape of the wiring layer 3 is within the water-soluble resin layer 2 It is maintained as it is. Therefore, the wiring layer 3 can be reliably transferred to the adherend 7.
 一方、従来の配線構造体(図5参照)では、配線層3が水溶性樹脂層2の上面に載置されている。そのため、従来の配線構造体を曲面からなる被着体7に転写する際に、配線構造体を曲げた際に、配線層3のパターン形状が上下方向や面方向に歪んでしまい、配線層3が曲面に沿った形状を取りにくい。また、隣接する配線5との距離が縮まり、配線5が互いに密集する場合が生じる。そのため、配線層3が、曲面に沿って接触せず、被着体7表面から剥離する。 On the other hand, in the conventional wiring structure (see FIG. 5), the wiring layer 3 is placed on the upper surface of the water-soluble resin layer 2. Therefore, when the conventional wiring structure is transferred to the adherend 7 having a curved surface, when the wiring structure is bent, the pattern shape of the wiring layer 3 is distorted in the vertical direction and in the surface direction. Is difficult to take shape along the curved surface. In addition, the distance between adjacent wires 5 may be reduced, and the wires 5 may be closely packed. Therefore, the wiring layer 3 peels from the surface of the adherend 7 without contacting along the curved surface.
 また、この配線構造体1によれば、被着体7が粘着層であっても、確実に配線層3を接触面8に沿って転写することができる。 Further, according to the wiring structure 1, even if the adherend 7 is an adhesive layer, the wiring layer 3 can be reliably transferred along the contact surface 8.
 すなわち、従来の転写方法、すなわち、基材(非水溶性基材)とその上に配置される配線層とを備える配線転写基材を用意し、配線転写基材の配線層を粘着層の接触面に接触させ、基材を配線層から剥離する方法では、配線層から露出する基材表面も粘着層に接触する。そうすると、基材を配線層から剥離する際に、粘着層(接触面)が基材とともに引っ張られてしまい、接触面が歪んでしまい、配線層を良好に転写できない。 That is, a conventional transfer method, that is, a wiring transfer substrate comprising a substrate (non-water-soluble substrate) and a wiring layer disposed thereon is prepared, and the wiring layer of the wiring transfer substrate is brought into contact with the adhesive layer. In the method of contacting the surface and peeling the base material from the wiring layer, the base material surface exposed from the wiring layer also contacts the adhesive layer. Then, when the substrate is peeled from the wiring layer, the adhesive layer (contact surface) is pulled together with the substrate, the contact surface is distorted, and the wiring layer can not be transferred well.
 これに対し、この配線構造体1によれば、水溶性樹脂層2は、水の溶解によって除去されるため、粘着層(接触面8)が引っ張られることは防止できる。そのため、配線層3を所定のパターン形状を維持したまま良好に転写することができる。 On the other hand, according to the wiring structure 1, since the water-soluble resin layer 2 is removed by the dissolution of water, it is possible to prevent the adhesive layer (contact surface 8) from being pulled. Therefore, the wiring layer 3 can be favorably transferred while maintaining the predetermined pattern shape.
 また、この転写方法によれば、水溶性樹脂層2は、水で除去できるため、簡易に転写でき、生体安全性が高い。 Further, according to this transfer method, since the water-soluble resin layer 2 can be removed by water, transfer can be carried out easily and biological safety is high.
 5.変形例
 図4などを参照して、本発明の配線構造体およびその転写方法の変形例について説明する。なお、変形例において、一実施形態と同様の部材には、同様の符号を付し、その説明を省略する。
5. Modified Example A modified example of the wiring structure of the present invention and the transfer method thereof will be described with reference to FIG. In addition, in a modification, the same code | symbol is attached | subjected to the member similar to one Embodiment, and the description is abbreviate | omitted.
 (1)図1に示す配線構造体1は、配線層3は、水溶性樹脂層2に完全に埋没されているが、例えば、図4に示すように、配線層3は、水溶性樹脂層2に一部のみ埋没されていてもよい。 (1) In the wiring structure 1 shown in FIG. 1, the wiring layer 3 is completely buried in the water-soluble resin layer 2. For example, as shown in FIG. 4, the wiring layer 3 is a water-soluble resin layer Only part of it may be buried in 2.
 図4に示す実施形態では、配線層3は、水溶性樹脂層2の表面から突出している。具体的には、配線層3の上部は、水溶性樹脂層2から上側に突出し、配線層3の下部は、水溶性樹脂層2に埋設されている。 In the embodiment shown in FIG. 4, the wiring layer 3 protrudes from the surface of the water-soluble resin layer 2. Specifically, the upper portion of the wiring layer 3 protrudes upward from the water-soluble resin layer 2, and the lower portion of the wiring layer 3 is embedded in the water-soluble resin layer 2.
 配線層3の埋没部分(下部)の上下方向長さTの、配線層3の厚みTに対する割合(T/T×100%)は、例えば、50%以上、好ましくは、80%以上であり、また、例えば、100%未満である。 The ratio (T 3 / T 2 × 100%) of the vertical length T 3 of the buried portion (lower portion) of the wiring layer 3 to the thickness T 2 of the wiring layer 3 is, for example, 50% or more, preferably 80% The above is, for example, less than 100%.
 図4に示す実施形態においても、図1に示す一実施形態と同様の作用効果を奏する。曲面に配線層3をより確実に転写することができる観点、および、取扱い性がより一層優れる観点から、図1に示す一実施形態(上記割合が100%)が挙げられる。 Also in the embodiment shown in FIG. 4, the same operation and effect as the embodiment shown in FIG. 1 can be obtained. From the viewpoint that the wiring layer 3 can be transferred onto the curved surface more reliably, and from the viewpoint of much better handleability, one embodiment (the above ratio is 100%) shown in FIG. 1 can be mentioned.
 (2)図3A~図3Cに示す転写方法では、被着体7の接触面8は、曲面を有しているが、例えば、被着体7の接触面8は平坦であってもよい。 (2) In the transfer method shown in FIGS. 3A to 3C, the contact surface 8 of the adherend 7 has a curved surface, but for example, the contact surface 8 of the adherend 7 may be flat.
 この実施形態においても、図3A~図3Cに示す一実施形態と同様の作用効果を奏する。 Also in this embodiment, the same effects as those of the embodiment shown in FIGS. 3A to 3C can be obtained.
 (3)図3A~図3Cに示す転写方法では、水溶性樹脂層2を膨潤させずに配線構造体1を被着体7に接触させているが、例えば、図示しないが、水溶性樹脂層2を膨潤させてから配線構造体1を被着体7に接触させてもよい。 (3) In the transfer method shown in FIGS. 3A to 3C, the wiring structure 1 is brought into contact with the adherend 7 without swelling the water-soluble resin layer 2. For example, although not shown, the water-soluble resin layer After swelling 2, the wiring structure 1 may be brought into contact with the adherend 7.
 この実施形態では、例えば、水に対する溶解温度が高い水溶性樹脂(例えば、溶解温度が70℃以上である水溶性樹脂)を用いる。このような水溶性樹脂としては、例えば、ケン化度が95モル%以上のポリビニルアルコールなどが挙げられる。 In this embodiment, for example, a water-soluble resin having a high dissolution temperature in water (for example, a water-soluble resin having a dissolution temperature of 70 ° C. or more) is used. As such a water-soluble resin, for example, polyvinyl alcohol having a saponification degree of 95 mol% or more can be mentioned.
 具体的には、まず、工程(B)の前に、配線構造体1を溶解温度以下の水(例えば、60℃以下の水)に接触させ、水溶性樹脂層2を膨潤させる。次いで、工程(B)において、図3Bに参照されるように、配線構造体1を被着体7の接触面8に接触および追従させる。次いで、工程(C)にて、溶解温度以上の水(例えば、80℃以上の水)を用いて水溶性樹脂層2を除去する。 Specifically, first, before the step (B), the wiring structure 1 is brought into contact with water at a temperature equal to or lower than the melting temperature (for example, water at 60 ° C. or lower) to swell the water-soluble resin layer 2. Next, in the step (B), as shown in FIG. 3B, the wiring structure 1 is made to contact and follow the contact surface 8 of the adherend 7. Next, in step (C), the water-soluble resin layer 2 is removed using water (for example, water at 80 ° C. or higher) that is at or above the dissolution temperature.
 この実施形態においても、図3A~図3Cに示す一実施形態と同様の作用効果を奏する。なお、この実施形態では、転写時に、水溶性樹脂層2が膨潤し、柔軟化するため、配線構造体1が、接触面8である曲面により一層追従および接触しやすく、より容易にかつ確実に曲面に転写することができる。 Also in this embodiment, the same effects as those of the embodiment shown in FIGS. 3A to 3C can be obtained. In this embodiment, since the water-soluble resin layer 2 swells and softens at the time of transfer, the wiring structure 1 can be more easily followed and contacted by the curved surface which is the contact surface 8, and more easily and reliably. It can be transferred to a curved surface.
 (4)図3A~図3Cに示す転写方法では、水溶性樹脂層2を除去しているが、例えば、図示しないが、水溶性樹脂層2を除去せずに残存させることもできる。 (4) In the transfer method shown in FIGS. 3A to 3C, although the water-soluble resin layer 2 is removed, for example, although not shown, the water-soluble resin layer 2 can be left without being removed.
 この実施形態では、必要に応じて、水溶性樹脂層2(ひいては、水溶性樹脂組成物)は、ポリビニルアルコールおよび架橋剤を含有している。 In this embodiment, the water-soluble resin layer 2 (and, consequently, the water-soluble resin composition) optionally contains a polyvinyl alcohol and a crosslinking agent.
 そして、工程(B)の後に、水溶性樹脂層2を除去する代わりに、配線構造体1を加熱する。これにより、ポリビニルアルコールが架橋し、水溶性樹脂層が非水溶性樹脂層(架橋ポリビニルアルコール層)となり、非水溶性樹脂層が、水に不要なカバー層として機能する。すなわち、被着体7に、配線層3とその配線層3を保護する非水溶性樹脂層(カバー層)とを転写することができる。 Then, after the step (B), the wiring structure 1 is heated instead of removing the water-soluble resin layer 2. Thus, the polyvinyl alcohol is crosslinked, the water-soluble resin layer becomes a non-water-soluble resin layer (cross-linked polyvinyl alcohol layer), and the non-water-soluble resin layer functions as an unnecessary cover layer in water. That is, the wiring layer 3 and the water-insoluble resin layer (cover layer) for protecting the wiring layer 3 can be transferred to the adherend 7.
 (5)図2A~図2Gに示す製造方法では、第2剥離層13を除去しているが、例えば、第2剥離層13は、使用(転写)直前に除去してもよく、また、流通段階で、配線構造体1は、第2剥離層13を備えていてもよい。 (5) Although the second peeling layer 13 is removed in the manufacturing method shown in FIGS. 2A to 2G, for example, the second peeling layer 13 may be removed immediately before use (transfer), and the flow At the stage, the wiring structure 1 may include the second peeling layer 13.
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Specific numerical values such as blending ratios (content ratios), physical property values, parameters, etc. used in the following description are the blending ratios (content ratios) corresponding to those described in the above-mentioned "embodiments for carrying out the invention" ), Physical property values, parameters, etc. may be substituted for the upper limit (numerical values defined as “below”, “less than”) or lower limit (numerical values defined as “above”, “exceed”), etc. it can.
  実施例1
 第1剥離層(ステンレス、厚み50μm)を用意し、続いて、電解銅めっきにより、シード層(銅、厚み1.0μmの)を第1剥離層の上面に形成した(図2A参照)。
Example 1
A first release layer (stainless steel, 50 μm in thickness) was prepared, and then a seed layer (copper, 1.0 μm in thickness) was formed on the upper surface of the first release layer by electrolytic copper plating (see FIG. 2A).
 次いで、ドライフィルムレジストをシード層の上面全面に積層し、続いて、ドライフィルムレジストを露光および現像することにより、めっきレジストをシード層の上面に、配線層の逆パターンで形成した(図2B参照)。 Next, a dry film resist was laminated on the entire top surface of the seed layer, and then the plating resist was formed on the top surface of the seed layer in a reverse pattern of the wiring layer by exposing and developing the dry film resist (see FIG. 2B). ).
 次いで、シード層から給電する電解銅めっきによって、銅からなる配線層を、シード層の上面に積層した。その後、めっきレジストを、剥離液を用いて除去した(図2C参照)。 Then, a copper wiring layer was laminated on the upper surface of the seed layer by electrolytic copper plating in which power is supplied from the seed layer. Thereafter, the plating resist was removed using a stripping solution (see FIG. 2C).
 配線パターンは、格子状であり、各配線の幅Lは、50μmであり、隣接する配線同士の間隔Sは、200μmであり、各配線の厚みTは、50μmであった。 The wiring pattern was grid-like, the width L of each wiring was 50 μm, the spacing S between adjacent wirings was 200 μm, and the thickness T 2 of each wiring was 50 μm.
 次いで、第2剥離層(シリコーン系粘着テープ)を配線層3の上面に積層した(図2D参照)。 Then, a second release layer (silicone pressure-sensitive adhesive tape) was laminated on the top surface of the wiring layer 3 (see FIG. 2D).
 次いで、第1剥離層をシード層から剥離し、続いて、ウエットエッチングによって、シード層10を除去した(図2Dの仮想線、図2E参照)。これにより、第2剥離層と配線層との積層体を得た。 The first release layer was then removed from the seed layer, followed by wet etching to remove the seed layer 10 (see phantom lines in FIG. 2D, see FIG. 2E). Thus, a laminate of the second peeling layer and the wiring layer was obtained.
 次いで、ポリビニルアルコール(日本酢ビ・ポバール社製、「JF-10」)3.2g、ポリエーテル変性シリコーン(界面活性剤、日信化学工業社製、「SAG002」)0.02質量部、水35.78gおよびイソプロピルアルコール1.00gを混合し、PVA水溶液を用意した。得られた積層体を上下反転させ、続いて、PVA水溶液を配線層およびそれから露出する第2剥離層の表面に、塗燥後の厚みTが1000μmとなるように、塗布し、100℃で乾燥させた。これにより、配線構造体1が、第2剥離層13に被覆された状態で、得た。その後、配線積層体を再度上下反転させた(図2F参照)。 Next, 3.2 g of polyvinyl alcohol (manufactured by Nippon Shokubai Bi-Poval, “JF-10”), 0.02 parts by mass of polyether-modified silicone (surfactant, manufactured by Nisshin Chemical Industry, “SAG 002”), water 35.78 g and 1.00 g of isopropyl alcohol were mixed to prepare a PVA aqueous solution. The resulting laminate is turned upside down, and then the PVA aqueous solution is applied to the surface of the wiring layer and the second release layer exposed therefrom so that the thickness T 1 after coating becomes 1000 μm, and at 100 ° C. It was allowed to dry. As a result, the wiring structure 1 was obtained in a state of being covered by the second peeling layer 13. Thereafter, the wiring stack was turned upside down again (see FIG. 2F).
 次いで、配線積層体から第2剥離層を剥離した。 Then, the second release layer was peeled off from the wiring laminate.
 これによって、水溶性樹脂層および配線層を備える配線積層体を製造した(図1および図2G参照)。 Thus, a wiring laminate including the water-soluble resin layer and the wiring layer was manufactured (see FIGS. 1 and 2G).
  実施例2~14
 水溶性樹脂層に用いる材料の種類や厚み、配線層の厚みや寸法などを、表1に記載に従って変更した以外は、実施例1と同様にして、配線構造体を製造した。
Examples 2 to 14
A wiring structure was manufactured in the same manner as Example 1, except that the type and thickness of the material used for the water-soluble resin layer, the thickness and dimensions of the wiring layer, and the like were changed according to the description in Table 1.
 なお、PVA水溶液の調製について、実施例6においては、ポリビニルアルコール(日本酢ビ・ポバール社製、「JF-17」)3.2g、ポリエーテル変性シリコーン(界面活性剤、日信化学工業社製、「SAG002」)0.02質量部、水35.78g、および、イソプロピルアルコール1.00gを混合した。実施例7においては、ポリビニルアルコール(日本酢ビ・ポバール社製、「JF-20」)3.2g、ポリエーテル変性シリコーン(界面活性剤、日信化学工業社製、「SAG002」)0.02質量部、および、水36.78gを混合した。実施例8~14においては、ポリビニルアルコール(永久糊社製、「クラノール」、乾燥固形化物)10g、ポリエーテル変性シリコーン(界面活性剤、日信化学工業社製、「SAG002」)0.05質量部、および、水90.05gを混合した。 In addition, about preparation of PVA aqueous solution, in Example 6, polyvinyl alcohol (Nippon-Acetates Bpobar company make, "JF-17") 3.2g, polyether modified silicone (surfactant, Nisshin Chemical Industry Co., Ltd. make) , "SAG002"), 0.02 parts by mass, 35.78 g of water, and 1.00 g of isopropyl alcohol were mixed. In Example 7, 3.2 g of polyvinyl alcohol ("JF-20", manufactured by Nippon Shokuhin-Bi-Poval Co., Ltd.), polyether-modified silicone (surfactant, manufactured by Nisshin Chemical Industry Co., Ltd., "SAG002") 0.02 The parts by mass and 36.78 g of water were mixed. In Examples 8 to 14, 10 g of polyvinyl alcohol (manufactured by Permanent Paste Co., Ltd., "Kranol", dried and solidified product), polyether modified silicone (surfactant, manufactured by Nisshin Chemical Industry, "SAG 002") 0.05 mass Parts and 90.05 g of water were mixed.
  比較例1
 水溶性樹脂層の表面に配線層が載置するように、すなわち、水溶性樹脂層に配線層が埋没しないように、配線構造体を製造した(図5参照)。
Comparative Example 1
The wiring structure was manufactured such that the wiring layer was placed on the surface of the water-soluble resin layer, that is, the wiring layer was not buried in the water-soluble resin layer (see FIG. 5).
 <水溶性試験>
 各実施例および比較例に用いた水溶性樹脂層を、30mm×30mm×厚み0.1mmに成形し、樹脂サンプルを製造した。
<Water solubility test>
The water-soluble resin layer used in each example and comparative example was molded into 30 mm × 30 mm × thickness 0.1 mm to manufacture a resin sample.
 この樹脂サンプルを、各温度(20℃、40℃、60℃、80℃)の水に24時間浸漬し、樹脂サンプルが完全に溶解しているか否かを確認した。 The resin sample was immersed in water at each temperature (20 ° C., 40 ° C., 60 ° C., 80 ° C.) for 24 hours, and it was confirmed whether the resin sample was completely dissolved.
 完全に溶解している場合を「溶解」と評価し、一部でも樹脂サンプルが残存している場合を「不溶」と評価した。結果を表1に示す。 The case in which the resin sample was completely dissolved was evaluated as "dissolved", and the case in which the resin sample remained even in part was evaluated as "insoluble". The results are shown in Table 1.
 <弾性率の測定>
 各実施例および比較例に用いた水溶性樹脂層を、長さ20mm×幅5mm×厚みT(各実施例または比較例の水溶性樹脂層の厚み)に成形し、樹脂サンプルを製造した。
<Measurement of elastic modulus>
The water-soluble resin layer used in each Example and Comparative Example was molded into a length of 20 mm × width 5 mm × thickness T 1 (the thickness of the water-soluble resin layer of each Example or Comparative Example) to produce a resin sample.
 測定サンプルの弾性率Eを、23℃、50%RHの条件下で、引張圧縮試験機(ミネベアミツミ社製、「テクノグラフ TG-1kN」)を用いて、測定した。なお、引張速度は、300mm/minとした。結果を表1に示す。 The elastic modulus E of the measurement sample was measured using a tensile compression tester (“Technograph TG-1 kN” manufactured by Minebea Mitsumi Co., Ltd.) under conditions of 23 ° C. and 50% RH. The tensile speed was 300 mm / min. The results are shown in Table 1.
 <曲げ剛性の算出>
 幅を10mmとした際の水溶性樹脂層の曲げ剛性を、以下の式で算出した。結果を表1に示す。
<Calculation of bending stiffness>
The flexural rigidity of the water-soluble resin layer when the width was 10 mm was calculated by the following equation. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 Eiは、上記<弾性率の測定>で測定した弾性率とし、Aiは、断面積(幅biと厚みhiとの積により得られる断面積)とし、Giは、重心座標とし、biは、幅(すなわち、10mm)とし、hiは、厚み(すなわち、表1に記載の水溶性樹脂層の厚みT)とした。なお、実施例1では、Ei:2.4GPa、Ai:1.00×10μm、Gi(Y座標):500μm、bi:10000μm、hi:1000μm、y:500μm、Bi:5.0×10μm、Ii:8.33×1011μmとなり、曲げ剛性Zは、2.0×1012GPa・μmとなった。 Ei is the elastic modulus measured in the above <Measurement of elastic modulus>, Ai is the cross-sectional area (cross-sectional area obtained by the product of the width bi and the thickness hi), Gi is the barycentric coordinate, and bi is the width (I.e., 10 mm) and hi was the thickness (i.e., the thickness T1 of the water-soluble resin layer described in Table 1 ). In Example 1, Ei: 2.4 GPa, Ai: 1.00 × 10 7 μm 2 , Gi (Y coordinate): 500 μm, bi: 10000 μm, hi: 1000 μm, y: 500 μm, Bi: 5.0 × 10 9 μm 3 and Ii: 8.33 × 10 11 μm 4 , and the flexural rigidity Z was 2.0 × 10 12 GPa · μm 4 .
 <曲面追従性:配線層の転写>
 人工皮膚(レジーナ社製、バイオスキン(登録商標)、「BPW-05L」、表面粗さRa4.6μm)を用い、これを、外形寸法3cmφ、曲率半径R5cmの曲面形状に整え、被着体とした。
<Surface following ability: Transfer of wiring layer>
An artificial skin (Regina, Bioskin (registered trademark), “BPW-05L”, surface roughness Ra 4.6 μm) is used, and this is arranged into a curved surface having an outer dimension of 3 cmφ and a curvature radius of 5 cm. did.
 次いで、被着体の表面を水で濡らし、その被着体の表面に、各実施例および比較例の配線構造体を、被着体と配線層が接触するようにかつ被着体の曲面に配線構造体が沿うように、押し当てた。 Next, the surface of the adherend is wetted with water, and the wiring structures of the respective examples and comparative examples are brought into contact with the adherend and the wiring layer on the surface of the adherend and on the curved surface of the adherend. The wiring structure was pressed along.
 次いで、多量の水を配線構造体に塗布し、水溶性樹脂層を溶解および除去した。 Then, a large amount of water was applied to the wiring structure to dissolve and remove the water-soluble resin layer.
 これにより、被着体に配線層を転写した。 Thus, the wiring layer was transferred to the adherend.
 このとき、配線層全体が、被着体に密着し、配線層に浮きが生じなかった場合を○と評価した。配線層の端部にのみ配線層の浮きが観察された場合を△と評価した。配線層の平面視中央部分が、被着体から浮いていた場合を×と評価した。 At this time, the case where the entire wiring layer was in close contact with the adherend and no floating occurred in the wiring layer was evaluated as ○. The case where the floating of the wiring layer was observed only at the end of the wiring layer was evaluated as Δ. The case where the center part in plan view of the wiring layer floated from the adherend was evaluated as x.
 さらに、評価が○であった各実施例において、配線構造体の配線層が下側となるように、配線構造体を被着体の上面に押圧せずに載置して、配線層の自重により、配線構造体が被着体の曲面に沿うか否かを観察した。配線構造体が被着体の曲面に沿った場合を◎と評価した。結果を表1に示す。 Furthermore, in each of the examples in which the evaluation was ○, the wiring structure is mounted without being pressed against the top surface of the adherend so that the wiring layer of the wiring structure is on the lower side, and the weight of the wiring layer is reduced. Thus, it was observed whether or not the wiring structure was along the curved surface of the adherend. The case where the wiring structure was along the curved surface of the adherend was evaluated as ◎. The results are shown in Table 1.
 <取扱い性>
 各実施例および比較例の配線構造体の裏面(配線露出面とは反対側の面)に、曲率半径R2cmの棒20を押し当てることにより、配線構造体を折り曲げた(図6参照)。
<Handling ability>
The wiring structure was bent by pressing the rod 20 having a radius of curvature R2 cm against the back surface (surface opposite to the wiring exposed surface) of the wiring structures of the respective examples and comparative examples (see FIG. 6).
 このとき、配線層が、水溶性樹脂層から剥離しておらず、かつ、配線が断線していない場合を○と評価した。配線の剥離および断線は生じなかったが、取扱い中に、配線構造体にしわや破損が生じた場合を△と評価した。配線層が、水溶性樹脂層から剥離したか、また、配線が断線した場合を×と評価した。結果を表1に示す。 At this time, the case where the wiring layer was not peeled off from the water-soluble resin layer and the wiring was not broken was evaluated as ○. Although peeling and disconnection of the wiring did not occur, the case where wrinkles and breakage occurred in the wiring structure during handling was evaluated as Δ. The case where the wiring layer peeled off from the water-soluble resin layer or the wiring was broken was evaluated as x. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、実施例および比較例で用いたPVAの詳細を以下に示す。 In addition, the detail of PVA used by the Example and the comparative example is shown below.
 JF-10:日本酢ビ・ポバール社製、ケン化度98.2モル%、重合度1000、粘度(4質量%水溶液(20℃))10~12mPa・s
 JF-17:日本酢ビ・ポバール社製、ケン化度98.4モル%、重合度1700、粘度(4質量%水溶液(20℃))28~32mPa・s
 JF-20:日本酢ビ・ポバール社製、ケン化度97.8モル%、重合度2000、粘度(4質量%水溶液(20℃))35~45mPa・s
 クラノール:永久糊社製、ケン化度90モル%、重合度1500~2000、粘度(4質量%水溶液(20℃))20~28mPa・s
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
JF-10: Nippon Shokubai Bi-Poval Co., Ltd., saponification degree 98.2 mol%, polymerization degree 1000, viscosity (4 mass% aqueous solution (20 ° C.)) 10 to 12 mPa · s
JF-17: Nippon Shokubai Bi-Poval Co., Ltd., Saponification degree 98.4 mol%, polymerization degree 1700, viscosity (4 mass% aqueous solution (20 ° C.)) 28 to 32 mPa · s
JF-20: manufactured by Nippon Shokubai Bi-Poval Co., Ltd., saponification degree 97.8 mol%, polymerization degree 2000, viscosity (4 mass% aqueous solution (20 ° C.)) 35 to 45 mPa · s
Kranol: manufactured by Permanent Paste Co., Ltd., saponification degree 90 mol%, polymerization degree 1500 to 2000, viscosity (4% by mass aqueous solution (20 ° C.)) 20 to 28 mPa · s
Although the above invention is provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the invention that are apparent to those skilled in the art are within the scope of the following claims.
本発明の配線構造体は、各種の工業製品に適用することができ、例えば、貼付型生体センサなどに好適に用いられる。 The wiring structure of the present invention can be applied to various industrial products, and is suitably used, for example, as a patch-type biosensor.
1 配線構造体
2 水溶性樹脂層
3 配線層
6 配線露出面
7 被着体
8 接触面
DESCRIPTION OF SYMBOLS 1 wiring structure 2 water-soluble resin layer 3 wiring layer 6 wiring exposed surface 7 adherend 8 contact surface

Claims (7)

  1.  水溶性樹脂層および配線層を備え、
     前記配線層が、前記水溶性樹脂層に埋設され、
     前記配線層の厚み方向一方面が、前記水溶性樹脂層から露出することを特徴とする、配線構造体。
    It has a water-soluble resin layer and a wiring layer,
    The wiring layer is embedded in the water-soluble resin layer;
    A wiring structure, wherein one surface in the thickness direction of the wiring layer is exposed from the water-soluble resin layer.
  2.  前記水溶性樹脂層の厚みが、300μm以下であることを特徴とする、請求項1に記載の配線構造体。 The wiring structure according to claim 1, wherein a thickness of the water-soluble resin layer is 300 μm or less.
  3.  幅10mmにおける前記水溶性樹脂層の曲げ剛性が、1.0×10GPa・μm以上、3.0×1012GPa・μm以下であることを特徴とする、請求項1に記載の配線構造体。 The flexural rigidity of the water-soluble resin layer at a width of 10 mm is 1.0 × 10 3 GPa · μm 4 or more and 3.0 × 10 12 GPa · μm 4 or less. Wiring structure.
  4.  前記水溶性樹脂層が、ポリビニルアルコールおよびポリビニルピロリドンの少なくとも1種を含有することを特徴とする、請求項1に記載の配線構造体。 The wiring structure according to claim 1, wherein the water-soluble resin layer contains at least one of polyvinyl alcohol and polyvinyl pyrrolidone.
  5.  請求項1に記載の配線構造体、および、被着体を用意する工程、
     前記配線構造体を、前記配線層の厚み方向一方面が前記被着体に接触するように、前記被着体に積層する工程、および、
     続いて、前記水溶性樹脂層を除去する工程
    を備えることを特徴とする、配線層の転写方法。
    Preparing the wiring structure according to claim 1 and an adherend;
    Laminating the wiring structure on the adherend such that one surface in the thickness direction of the wiring layer is in contact with the adherend;
    Subsequently, the method for transferring a wiring layer includes the step of removing the water-soluble resin layer.
  6.  前記配線構造体が接触する前記被着体の接触面が、曲面を有することを特徴とする、請求項5に記載の配線層の転写方法。 The method according to claim 5, wherein the contact surface of the adherend to which the wiring structure contacts has a curved surface.
  7.  前記配線構造体が接触する前記被着体が、粘着層を備えることを特徴とする、請求項5に記載の配線層の転写方法。 The method according to claim 5, wherein the adherend in contact with the wiring structure includes an adhesive layer.
PCT/JP2018/019011 2017-09-13 2018-05-17 Wiring structure and wiring layer transfer method WO2019053947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175430A JP2019054033A (en) 2017-09-13 2017-09-13 Wiring structure and method of transferring wiring layer
JP2017-175430 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019053947A1 true WO2019053947A1 (en) 2019-03-21

Family

ID=65723566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019011 WO2019053947A1 (en) 2017-09-13 2018-05-17 Wiring structure and wiring layer transfer method

Country Status (3)

Country Link
JP (1) JP2019054033A (en)
TW (1) TW201914827A (en)
WO (1) WO2019053947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115713165B (en) 2022-11-28 2024-01-02 中国长江电力股份有限公司 Reservoir ultra-short-term water level prediction method, system and storage medium considering dynamic reservoir capacity influence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116997A (en) * 1990-09-07 1992-04-17 Asahi Chem Ind Co Ltd Manufacture of printed circuit board
JP2004082511A (en) * 2002-08-27 2004-03-18 Mitsubishi Plastics Ind Ltd Method for press processing of printed board using release film
WO2008105481A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Process for producing circuit board
WO2009131091A1 (en) * 2008-04-21 2009-10-29 日本電気株式会社 Transfer film for forming circuit pattern and method for forming circuit pattern using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116997A (en) * 1990-09-07 1992-04-17 Asahi Chem Ind Co Ltd Manufacture of printed circuit board
JP2004082511A (en) * 2002-08-27 2004-03-18 Mitsubishi Plastics Ind Ltd Method for press processing of printed board using release film
WO2008105481A1 (en) * 2007-03-01 2008-09-04 Ajinomoto Co., Inc. Process for producing circuit board
WO2009131091A1 (en) * 2008-04-21 2009-10-29 日本電気株式会社 Transfer film for forming circuit pattern and method for forming circuit pattern using the same

Also Published As

Publication number Publication date
TW201914827A (en) 2019-04-16
JP2019054033A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP7450659B2 (en) Conductive compositions and biosensors
EP3322265B1 (en) Producing method of wired circuit board
JP6491556B2 (en) Printed circuit board
JP2000057292A5 (en)
KR20190087422A (en) Pressure-sensitive adhesive sheet and its peeling method
CA2901789A1 (en) Strain isolation structures for stretchable electronics cross-reference to related applications
EP1363319A3 (en) Method of transferring a laminate and method of manufacturing a semiconductor device
JP2008162240A (en) Adhesion sheet
WO2019053947A1 (en) Wiring structure and wiring layer transfer method
US20180107244A1 (en) Electronic device and method for manufacturing same
TW201209724A (en) Antenna circuit constituent body for IC card/tag and method for manufacturing the same
JP6325776B2 (en) Adhesive sheet for processing electronic parts and method for manufacturing semiconductor device
Wang et al. Highly Adhesive Epidermal Sensors with Superior Water‐Interference‐Resistance for Aquatic Applications
CN114980812A (en) Electrode for living body, method for manufacturing same, and method for wearing same
TWI835757B (en) Attached biosensor
EP4035508A1 (en) Methods and devices using microchannels for interconnections
US20190192036A1 (en) Electronic device and method of manufacturing electronic device
JP2020142013A (en) Manufacturing method for electrode sheet
JPS61190333A (en) Non-photosensitive transfer resist
WO2020195796A1 (en) Electrode joining structure and biological sensor
Kim et al. Transparent and Skin‐Attachable Silver Nanowire Electrodes Embedded on Dissolvable Polyurethane for Highly Conformable Wearable Electronics
EP4129662A1 (en) Biosensor
WO2023054267A1 (en) Electrode pad and biometric sensor
JP7397041B2 (en) biosensor
CN114136508A (en) Flexible boron-olefin pressure sensor and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856476

Country of ref document: EP

Kind code of ref document: A1