WO2019053893A1 - Tire inspection apparatus - Google Patents

Tire inspection apparatus Download PDF

Info

Publication number
WO2019053893A1
WO2019053893A1 PCT/JP2017/033570 JP2017033570W WO2019053893A1 WO 2019053893 A1 WO2019053893 A1 WO 2019053893A1 JP 2017033570 W JP2017033570 W JP 2017033570W WO 2019053893 A1 WO2019053893 A1 WO 2019053893A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
tire
upper rim
rim
shaft
Prior art date
Application number
PCT/JP2017/033570
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 伊東
宮崎 晋一
雅人 北本
Original Assignee
大和製衡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65722585&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019053893(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大和製衡株式会社 filed Critical 大和製衡株式会社
Priority to PCT/JP2017/033570 priority Critical patent/WO2019053893A1/en
Priority to CN201780094854.2A priority patent/CN111094929B/en
Priority to JP2019541608A priority patent/JP6804174B2/en
Publication of WO2019053893A1 publication Critical patent/WO2019053893A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present invention relates to a tire inspection device, and more particularly to measures against dust, for example, rubber scraps, which may be present in a tire when air is supplied to the tire for inspection.
  • Patent Document 1 Conventionally, as a tire inspection device, there is a device as disclosed, for example, in Patent Document 1. According to the technique of Patent Document 1, after the tire is held between the upper rim and the lower rim, air is supplied into the tire to inflate the tire, and then the inspection is performed. The air was supplied to the tire through the upper rim and the lower rim, and was penetrated in the radial direction of the communicating pipe in a portion positioned between the upper rim and the lower rim of the communicating pipe in which the air was supplied internally. A plurality of injection ports are provided at predetermined angles, and air is injected from the injection ports into the tire. The communication pipe is formed in a shaft inserted into the upper rim, and the shaft is fitted to the upper rim.
  • a chuck mechanism for locking the vertical movement of the upper rim to fix the vertical distance between the lower rim and the lower rim.
  • the change in the fixed state of the upper rim and the lower rim by the chuck mechanism affects the measurement accuracy of the load cell provided in the tire inspection device.
  • a material having high hardness is used for the shaft, and the shaft is subjected to surface treatment such that the wear does not occur. Furthermore, a lubricant is applied to the shaft contact portion so as not to cause wear or seizing.
  • Patent Document 1 is an example in which the shaft fitted to the upper rim is inserted into the chuck mechanism below the lower rim, an example in which the shaft mounted to the lower rim is inserted into the chuck mechanism above the upper rim There is also, in that case, the same.
  • An object of the present invention is to provide a tire inspection device which prevents rubber debris from entering the chuck mechanism when air is supplied to the tire.
  • the tire is rotated together with the upper rim and the lower rim in a state where air is supplied into the tire held between the upper rim and the lower rim, and the tire is inspected. is there.
  • the air swirl supply swirls the air in the tire held by the upper rim and the lower rim. This swirling flow of air gradually forms a vortex of air.
  • the air swirl supply unit includes an injection unit that injects air substantially along a tangent direction of a virtual curve virtually drawn in the tire.
  • the air is jetted in the tangential direction of the virtual curve in the tire to generate air swirl in the tire.
  • a plurality of the injection parts can be spaced apart along the virtual curve. With such a configuration, it is possible to more reliably generate an air vortex.
  • the injection unit can be provided on the upper rim, the lower rim, or between the upper rim and the lower rim.
  • the air swirl supply portion is formed, for example, through at least one of the upper rim and the lower rim, and has an air passage, and the virtual curve is virtually drawn around the air passage. It can be configured as shown in FIG.
  • a shaft serving as the air passage is inserted between the upper rim and the lower rim, and the shaft is penetrated between the upper rim and the lower rim.
  • the formed branched air passage may be provided, and the virtual curve may be virtually drawn around the branched air passage.
  • a tire inspection apparatus 1 according to a first embodiment of the present invention is shown in FIGS. 1 to 3.
  • air is supplied into the tire 6 to inflate the tire 6 in a state where the upper rim 2 and the lower rim 4 shown in FIG. 1 sandwich the tire 6.
  • the tire 6 is rotated at a predetermined speed to inspect the dynamic balance of the tire 6.
  • the lower rim 4 is attached to the supporting and rotating device 5, the upper rim 2 is attached to the lifting device shown by a broken line, and with the tire 6 attached to the lower rim 4, the upper rim 2 is lowered by the lifting device, Hold the tire 6.
  • a through hole 8 is formed at the center of the upper rim 2, and the upper rim shaft 10 is inserted through the through hole 8, and the flange 12 at the head of the through hole 8 is a flat concave (upper portion) of the upper rim 2 Bottom surface 14) and coupled to the concave surface 14 by bolts (not shown).
  • an air supply passage 16 is formed along the length direction.
  • the upper rim shaft 10 passes through a through hole 18 formed at the center of the lower rim 4 and enters the supporting and rotating device 5 attached to the lower portion of the lower rim 4.
  • the upper rim shaft 10 is coupled to an air supply (not shown) inside the support and rotation device 5, and the upper rim 2, the lower rim 4 and the tire 6 are integrated.
  • the rotation given by the support and rotation device 5 to the lower rim 4 is transmitted to the tire 6, the upper rim shaft 10 and the upper rim 2, and the upper rim 2, the lower rim 4 and the tire 6 rotate integrally.
  • a chuck mechanism for fixing the positional relationship between the upper rim 2 and the lower rim 4 in the upper and lower directions is provided in the tire inspection device 1.
  • a plurality of grooves 500 are formed on the lower outer peripheral surface of the upper rim shaft 10 at intervals along the length direction, and these grooves 500 are formed as other parts of the chuck mechanism.
  • the four claw blocks 502 are located at predetermined intervals of 90 degrees at predetermined positions around the.
  • Each claw block 502 is attached to the housing 504 of the support and rotation device 5, and the housing 504 is attached to the lower rim 4.
  • a claw 506 that can enter the groove 500 is formed.
  • Each claw block 502 is attached to the housing 504 so as to be movable back and forth to the upper rim shaft 10. The end opposite to the upper rim shaft 10 of each claw block 502 protrudes from the housing 504 to the outside.
  • Guide pins 508 are attached to the projecting portions, and the guide pins 508 are inserted into guide grooves 512 of a guide block 510 disposed outside the housing 504.
  • the guide groove 512 linearly extends from the upper part to the lower part, inclines obliquely downward from the part to the outer side, and then extends linearly to the lower part.
  • FIG. 1 shows that the claws 506 of the claw block 502 shown on the right side thereof have entered the groove 500, and the claws 506 of the claw block 502 shown on the left side thereof have been retracted from the groove 500.
  • the claws 506 entering one groove 500, the upper and lower positional relationship between the upper rim 2 and the lower rim 4 is fixed.
  • the claws 506 retracted from the grooves 500, the fixing of the upper and lower positional relationship between the upper rim 2 and the lower rim 4 is released.
  • the upper rim shaft 10 Since the change in the fixed state of the upper rim 2 and the lower rim 4 affects the measurement accuracy, the upper rim shaft 10 has hardness so that wear does not occur at the contact portion between the upper rim shaft 10 and the housing 504 The surface of the upper rim shaft 10 is treated so as not to cause wear. Furthermore, a lubricant is applied to the contact portion between the upper rim shaft 10 and the housing 504 so as to prevent wear and seizing.
  • a flange 22 formed at the lower end of the support shaft 20 is coupled to the flange 12 of the upper rim shaft 10 by a bolt not shown, and the support shaft 20 and the upper rim shaft 10 are arranged concentrically.
  • the support shaft 20 is coupled to the lifting device, and the upper rim 2 is raised and lowered together with the upper rim shaft 10 by raising and lowering the support shaft 20.
  • An annular body 24 is disposed around the flange 12 of the upper rim shaft 10 and is fixed to the concave surface 14 of the upper rim 2 by a bolt (not shown).
  • the annular body 24 has an annular annular bore 26 at its center.
  • the annular bore 26 contacts the outer peripheral surface of the flange 12 of the upper rim shaft 12 to position the annular body 24.
  • the annular body 24 has a substantially flange-like shape, and the recess forms a first air passage 28 with the concave surface 14.
  • An air communication passage 30 is formed in the flange 12 so that the first air passage 28 communicates with the air supply passage 16 of the upper rim shaft 10.
  • the air communication passage 30 is formed along the radial direction of the flange 12.
  • a plurality of, for example, six air communication passages 30 are provided as shown in FIG.
  • the plurality of air communication passages 30 are disposed around the center of the flange 12 and are disposed, for example, at a predetermined angle, for example, every 60 degrees.
  • An annular groove 32 is formed on the lower surface of the upper rim 2.
  • the groove 32 has a width from a position corresponding to the outer peripheral surface of the annular body 24 to a position slightly on the upper rim shaft 10 side, and the lower rim 4 side is open.
  • An imaginary curve (here, an imaginary circle) is drawn by the grooves 32.
  • a plurality of, specifically, six injection parts 34 are provided in each groove 32 at predetermined angles, for example, 60 degrees. There is.
  • This virtual circle is located outward of the outer circumferential surface of the upper rim shaft 10.
  • the virtual curve is a curve virtually drawn in the tire 6, and in the present embodiment, the center (for example, the central axis of the upper rim shaft 10) is used as the curve of this kind, and the upper rim 2 An imaginary circle drawn on the side, the lower rim 4 side, and between the upper rim 2 and the lower rim 4 is used.
  • a curve of this kind not only a circular shape but also a closed curve such as an oval shape or a cross-sectional shape of an almond can be considered.
  • the closed curve which does not have a center may be drawn.
  • One or more injection parts 34 can be arranged on the above-mentioned open curve or closed curve such as a virtual arc or ellipse.
  • Each of the injection units 34 is in communication with the first air passage 28, and blows the air supplied from the first air passage 28 into the tire 6 to inflate the tire 6.
  • the air pressure and the air amount of the injection unit 34 are set in advance so as to generate a swirling flow in the tire 6 and to gradually form an air vortex. It is considered that this air vortex is at least a tornado (tornado-like) vortex in which the air flow rolls up from the imaginary circle.
  • each injection portion 34 a communication hole (second air passage) 36 parallel to the upper rim shaft 10 so as to connect the first air passage 28 and the groove 32. Is formed.
  • the first air passage 28 and the communication hole 36 form an "air passage" in the present invention.
  • Each communication hole 36 is located on an imaginary circle 38 drawn around the central axis of the upper rim shaft 10 in plan view.
  • the pipe 40 which is a component of the injection part 34 is penetrated by each of these communicating holes 36. As shown in FIG. A close contact state is maintained between the communication hole 36 and the pipe 40 by sealing or the like so that air does not flow between the communication hole 36 and the pipe 40.
  • One end of each of the pipes 40 is located on the communication hole 36 side, and the other end is located in the annular groove 32.
  • the end of the pipe 40 on the side of the communication hole 36 is open and the end on the side of the groove 32 is closed, but a jet hole 42 is formed in the peripheral wall on the side of the groove 32. As shown by the arrows in FIG.
  • these ejection holes 42 are directed along the same tangential direction in different positions of the imaginary circle 38 and in the same direction.
  • Each pipe 40 is attached by various methods such as welding to a fan-shaped flange 46 shown in FIG. 3 (b), and this flange 46 is fixed by a bolt 49 inserted into a long hole 48 formed in the flange 46. It is fixed to the bottom 33 of the groove 32. Air is ejected from these ejection holes 42 at the same speed and flow rate.
  • the air communication passage 30, the first air passage 28, the communication hole 36 and the injection unit 34 constitute an air swirl supply unit.
  • the tire inspection device 1 when the tire is held between the upper rim 2 and the lower rim 4 and air is supplied from the air supply source in the supporting and rotating device 5 to the air supply passage 16, the air is supplied to each air communication passage 30, The air is ejected from the ejection holes 42 of the injection unit 34 through the first air passage 28 and the communication hole 36, and the tire 6 is expanded. At this time, the jet holes 42 face the same direction along the tangential direction of the imaginary circle 38 shown in FIG. 2, so that a swirling flow is formed in the tire 6 around the upper rim shaft 10. This swirling flow gradually becomes a vortex of air.
  • a tire inspection apparatus 1a according to a second embodiment of the present invention is shown in FIG.
  • the injection portion 34 is provided on the upper rim 4 and the annular body 24 is provided around the flange 12 of the upper rim shaft 10.
  • these are removed It is done.
  • an annular groove 32a is open to the upper rim 2 side.
  • an injection part 34a configured similarly to the injection part 34 of the first embodiment is provided in a state in which the injection part 34 is upside down.
  • the injection portions 34a are positioned on the imaginary circle, and their respective ejection holes are in the tangential direction of the imaginary circle. It is provided along the same direction.
  • the virtual circle is drawn on the lower rim 4 side, and the injection parts 34a are provided on the virtual circle.
  • the pipe 50 penetrates the lower rim 4 at a position outside the outer peripheral surface of the upper rim shaft 10. And is provided linearly toward the injection part 32a.
  • the pipe 50 exits the housing 504 and is connected to an air supply (not shown).
  • each injection unit 34a may be disposed on a virtual arc also in the second embodiment.
  • the other configuration is the same as that of the tire inspection device according to the first embodiment, so the detailed description will be omitted.
  • the air is The pressure is supplied to the injection unit 34 a via the nozzle 50 and injected to inflate the tire 6.
  • the jet holes are directed in the same direction along the tangential direction of the imaginary circle, a swirling flow of air is formed in the tire 6. This swirling flow gradually becomes an air vortex.
  • the air vortex becomes a wall, and the rubber waste present in the tire is prevented from being wound up above the air vortex, and the rubber waste staying in the tire maintains a stagnant state.
  • the rubber scraps even if rubber scraps are caught in a vortex of air, the rubber scraps only rotate along the swirling flow of air. As a result, it is possible to appropriately prevent the rubber waste in the tire from intruding into the chuck mechanism due to inflation.
  • the lower rim 4 is penetrated through the pipe 50 as the air supply passage at a position outside the outer peripheral surface of the upper rim shaft 10 from the air supply source (not shown), and the injection portion Since it is provided linearly toward 32a, a pipe serving as an air flow path which penetrates the upper rim shaft 12 and traverses the inside of the tire 6 and communicates with the air supply passage 18 of the upper rim shaft 10 may be provided.
  • the pipe 50 is not caught on the lower rim 4 and the adjustment of the upper and lower positions of the upper rim 2 is not hindered.
  • a tire inspection device 1b of a third embodiment is shown in FIG.
  • the injection parts 34 and 34a are provided on the upper rim 2 or the lower rim 4, but in the tire inspection device 1b of the third embodiment, the upper rim 2 and the lower rim of the upper rim shaft 10
  • an injection unit 34 b is provided in a portion positioned between the two.
  • a virtual circle is drawn between the upper rim 2 and the lower rim 4, and the injection portion 34b is located on the virtual circle.
  • virtual open curves or closed curves may be drawn, and even if one or more injection parts 34b are provided on these open curves or closed curves. Good.
  • a plurality of injection parts 34b are located at different positions on a virtual circle drawn about the central axis of the upper rim shaft 10, and their respective ejection holes 42a are tangents at different positions of the virtual circle. It is provided in the same direction along the direction.
  • Each of these injection parts 34b penetrates the air supply passage 16 in the upper rim shaft 10 and bends the tip of the pipe 54 projected to the tire 6 side to the lower rim 4 side to make the injection hole 42a a first embodiment. It is formed similarly to the ejection hole 42 of a form.
  • the other configuration is the same as that of the tire inspection device 1 of the first embodiment, and thus the detailed description will be omitted.
  • the air inspection apparatus 1b configured as above, when the upper rim 2 and the lower rim 4 sandwich the tire and air is supplied from the air supply source in the support rotation device to the air supply passage 16, the air is It is supplied to each injection part 34b via 54 and jetted out to inflate the tire 6.
  • the jet holes 42 a face the same direction along the tangential direction at different positions of the imaginary circle, so that a swirling flow of air is formed in the tire 6.
  • the swirling flow is considered to gradually become a vortex of tornado-like air.
  • the injection part 34c of the tire inspection apparatus of 4th Embodiment is shown in FIG.
  • the injection portion 34c has a jet hole 42b formed on the side wall near the end of the square pipe, and an inclined wall 56 is provided inside the pipe so as to face the jet hole 42b.
  • the other configuration is the same as any of the first to third embodiments.
  • the jet holes 42, 42a, 42b are arranged to face the tangential direction of the imaginary circle, but may be arranged offset from the tangential direction.
  • the ejection holes 42, 42a, 42b may be arranged offset to the upper rim shaft 10 side or the tire 6 side with respect to the tangential direction, for example, disposed about 30 degrees offset to the upper rim shaft 10 side or the tire 6 side You can also
  • the number of the injection units 34, 34a, 34b is six. However, the number of the injection units 34, 34a, 34b is not limited to six. Also, in the first to third embodiments, the injection parts 34, 34a, 34b are provided along each tangential direction of one virtual circle, but virtual curves (virtual open curves, closed curves, etc.) are concentrically formed It is also possible to provide at least one each in the tangential direction of each virtual curve.
  • the air passage is formed in the annular body 24.
  • the air passage may be removed, and for example, the air communication passage 30 and the pipe 40 of the injection unit 34 may be connected by a pipe.
  • the air supply source (not shown) and the injection unit 34a are connected by the pipe 50, but the lower rim 4 has the same configuration as the air communication passage 30 as in the first embodiment.
  • the air communication passage and the air passage may be formed to connect the air supply passage 16 and the injection portion 34a.
  • the second embodiment is the same air supply path as the first embodiment, it is different from the case where a pipe which penetrates the shaft and serves as an air flow path crossing the inside of the tire 6 is provided.
  • the adjustment of the upper and lower positions thereof does not occur because the pipe is not caught by the lower rim.
  • the virtual circle 38 is drawn about the central axis of the upper rim shaft 10, but if it generates a swirling flow and is within a range where air vortices can be formed in the tire Alternatively, it may be a virtual circle centered on a position shifted in the horizontal direction from the central axis of the upper rim shaft 10.
  • the configuration of the air flow passage in the present invention is not limited to the examples of the first to third embodiments. Any configuration may be used as long as the air can be supplied from outside the tire 6 to the injection parts 34a to 34c in the tire 6.
  • the air flow passage opens in the opposing area between the upper rim 2 and the lower rim 4, but the invention is not particularly limited thereto. Although this depends on the places where the injection parts 34a to 34c are provided, there may be a special case in which these injection parts are installed on the outer peripheral surface of the upper rim 2 or the lower rim 4 outside. In such a case, the air flow path may be finally opened in the direction of the injection portions 34a to 34c, so it is not particularly necessary to open in the opposite area.
  • the structure of the air flow path is not limited to those exemplified in the first to third embodiments, and for example, one or more of the air paths having a plurality of branch flow paths from the tip of the main air flow path
  • the upper rim 2 or the lower rim 4 may be penetrated from the outside of 6 and the branch flow paths may be opened in the direction of the injection portions 34a to 34c. In short, it is sufficient if the swirling flow can be formed by the injection parts 34a to 34c.
  • an air supply not having the function of the upper rim shaft 12 may be provided without passing through the upper rim 2 or the lower rim 4 and opened in the direction of the jet parts 34a to 34c.
  • the diameter of the imaginary circle 38 is also drawn to be approximately the same as or smaller than the diameter of the upper rim 2 or the lower rim 4 in the first to third embodiments, it affects the operation and effect of the present invention If not, it may be larger than the diameter of the upper rim 2 or the lower rim 4.
  • the air vortex is like a tornado as if the air is rolled up above the imaginary circle, rubber scraps existing below the imaginary circle (for example, tires) It is particularly useful for dealing with rubber scraps below the imaginary circle, since the bottom accumulations) are blocked by the air vortex and do not roll up in the tire 6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Balance (AREA)

Abstract

This tire inspection apparatus inspects a tire (6) held between an upper rim (2) and lower rim (4) by turning the tire (6) together with the upper rim (2) and lower rim (4) in a state in which the inside of the tire (6) has been supplied with air. The tire inspection apparatus comprises a rotating air supply unit (28, 30, 34) for supplying the inside of the tire (6) held between the upper rim (2) and lower rim (4) with air while causing the air to rotate.

Description

タイヤ検査装置Tire inspection device
 本発明は、タイヤ検査装置に関し、特に検査のためにタイヤに空気を供給する際にタイヤ内に存在することがある粉塵、例えばゴムくず対策に関するものである。 The present invention relates to a tire inspection device, and more particularly to measures against dust, for example, rubber scraps, which may be present in a tire when air is supplied to the tire for inspection.
 従来、タイヤ検査装置としては、例えば特許文献1に開示されているようなものがある。特許文献1の技術によれば、タイヤを上リムと下リムとで挟持した後に、空気をタイヤ内に供給して、タイヤを膨張させた後に、検査を行う。タイヤへの空気の供給は、上リムと下リムとを貫通し、内部に空気が供給される連通管の上リムと下リムとの間に位置する部分に、連通管の半径方向に貫通した複数の噴射口を所定角度ごとに設け、これら噴射口からタイヤ内に空気を噴射させることによって、行っていた。なお、連通管は、上リムに挿通されたシャフト内に形成され、シャフトは、上リムに嵌合されている。 Conventionally, as a tire inspection device, there is a device as disclosed, for example, in Patent Document 1. According to the technique of Patent Document 1, after the tire is held between the upper rim and the lower rim, air is supplied into the tire to inflate the tire, and then the inspection is performed. The air was supplied to the tire through the upper rim and the lower rim, and was penetrated in the radial direction of the communicating pipe in a portion positioned between the upper rim and the lower rim of the communicating pipe in which the air was supplied internally. A plurality of injection ports are provided at predetermined angles, and air is injected from the injection ports into the tire. The communication pipe is formed in a shaft inserted into the upper rim, and the shaft is fitted to the upper rim.
特開2013-83549号公報JP, 2013-83549, A
 ところで、下リムの下方には、上リムの上下移動をロックして下リムとの上下間隔を固定するチャック機構が設けられている。チャック機構による上リムと下リムとの固定状態の変化は、タイヤ検査装置が備えるロードセルによる計測精度に影響を及ぼす。 By the way, below the lower rim, there is provided a chuck mechanism for locking the vertical movement of the upper rim to fix the vertical distance between the lower rim and the lower rim. The change in the fixed state of the upper rim and the lower rim by the chuck mechanism affects the measurement accuracy of the load cell provided in the tire inspection device.
 そのため、例えば、シャフトとチャック機構との接触部で摩耗が発生しないように、シャフトには、硬度の高い材質を使用し、またシャフトには摩耗が発生しないような表面処理が行われている。さらには、シャフト接触部には摩耗や焼き付きが起こらないように潤滑剤が塗布される。 Therefore, for example, in order to prevent the occurrence of wear at the contact portion between the shaft and the chuck mechanism, a material having high hardness is used for the shaft, and the shaft is subjected to surface treatment such that the wear does not occur. Furthermore, a lubricant is applied to the shaft contact portion so as not to cause wear or seizing.
 しかし、タイヤに空気を供給する際に、タイヤ内のゴムくずが巻き上げられ、たとえば、チャック機構のシャフトとの接触部にゴムくずが侵入すると、上記接触部が摩耗したり、接触部にゴムくずを噛み込んだまま上リムを固定したりすることがある。その結果、上リムの固定状態が変化してしまい、上記計測精度に影響を及ぼすおそれがある。チャック機構にゴムくずが侵入する原因としては、例えば、下リムとシャフトとのスキマを通じてゴムくずがチャック機構に侵入することが考えられる。
 なお、上記の特許文献1は、上リムに嵌合されたシャフトを下リム下方のチャック機構に挿入する例であるが、下リムに装着されたシャフトを上リム上方のチャック機構に挿入する例もあり、その場合にも同様である。
However, when air is supplied to the tire, rubber debris in the tire is wound up, for example, when rubber debris intrudes into the contact portion with the shaft of the chuck mechanism, the contact portion is abraded or rubber debris in the contact portion The upper rim may be fixed while biting. As a result, the fixed state of the upper rim may change, which may affect the measurement accuracy. As a cause of the rubber debris invading the chuck mechanism, for example, it is conceivable that the rubber debris intrudes into the chuck mechanism through the gap between the lower rim and the shaft.
Although Patent Document 1 mentioned above is an example in which the shaft fitted to the upper rim is inserted into the chuck mechanism below the lower rim, an example in which the shaft mounted to the lower rim is inserted into the chuck mechanism above the upper rim There is also, in that case, the same.
 本発明は、タイヤに空気を供給する際に、ゴムくずがチャック機構に侵入することを防止したタイヤ検査装置を提供することを目的とする。 An object of the present invention is to provide a tire inspection device which prevents rubber debris from entering the chuck mechanism when air is supplied to the tire.
 本発明の1態様のタイヤ検査装置は、上リム及び下リムで挟持したタイヤ内に空気を供給した状態で、前記タイヤを前記上リム及び下リムと共に回転させて、前記タイヤを検査するものである。タイヤ内に空気を供給するにあたっては、空気旋回供給部が、上リム及び下リムによって挟持されたタイヤ内で、空気を旋回させる。この空気の旋回流は、次第に空気の渦を形成する。 In the tire inspection device according to one aspect of the present invention, the tire is rotated together with the upper rim and the lower rim in a state where air is supplied into the tire held between the upper rim and the lower rim, and the tire is inspected. is there. In supplying air into the tire, the air swirl supply swirls the air in the tire held by the upper rim and the lower rim. This swirling flow of air gradually forms a vortex of air.
 このように構成したタイヤ検査装置では、タイヤ内に空気を供給する際に、タイヤ内に空気の渦が発生するので、当該空気の渦が壁となり、タイヤ内に滞留しているゴムくずが、空気の渦よりも上方に巻き上がることが防止され、当該滞留状態を維持するものと考えられる。その一方で、仮に、ゴムくずが空気の渦に巻き込まれたとした場合でも、当該ゴムくずは、空気の旋回流にのって回転するのみである。その結果、インフレートによってタイヤ内のゴムくずがチャック機構に侵入することを、適切に防止することができる。 In the tire inspection apparatus configured as described above, when air is supplied into the tire, air vortices are generated in the tire, so the vortices of the air become a wall and rubber scraps remaining in the tire are It is considered that the film is prevented from being rolled up above the air vortex, and the staying state is maintained. On the other hand, even if rubber scraps are caught in a vortex of air, the rubber scraps only rotate along the swirling flow of air. As a result, it is possible to appropriately prevent the rubber waste in the tire from intruding into the chuck mechanism due to inflation.
 上記の態様のタイヤ検査装置において、前記空気旋回供給部は、空気を前記タイヤ内に仮想的に描かれた仮想曲線の接線方向に概ね沿って噴射する噴射部を有している。 In the tire inspection device according to the above aspect, the air swirl supply unit includes an injection unit that injects air substantially along a tangent direction of a virtual curve virtually drawn in the tire.
 このように構成されたタイヤ検査装置では、タイヤ内の仮想曲線の接線方向に空気が噴射されることによってタイヤ内で空気の渦が発生する。 In the tire inspection device configured as described above, the air is jetted in the tangential direction of the virtual curve in the tire to generate air swirl in the tire.
 更に、複数の前記噴射部を前記仮想曲線に沿って間隔をあけて配置することができる。このように構成すると、より確実に空気の渦を発生させることができる。 Furthermore, a plurality of the injection parts can be spaced apart along the virtual curve. With such a configuration, it is possible to more reliably generate an air vortex.
 前記噴射部は、前記上リムに設けることもできるし、下リムに設けることもできるし、上リムと下リムとの間に設けることもできる。 The injection unit can be provided on the upper rim, the lower rim, or between the upper rim and the lower rim.
 空気旋回供給部は、具体的には、例えば、前記上リム及び前記下リムの少なくとも一方を貫通して形成され、空気通路を有し、前記仮想曲線は、概ね前記空気通路の周囲に仮想的に描かれている構成とすることができる。 Specifically, the air swirl supply portion is formed, for example, through at least one of the upper rim and the lower rim, and has an air passage, and the virtual curve is virtually drawn around the air passage. It can be configured as shown in FIG.
 あるいは、空気旋回供給部は、前記上リムと前記下リムとの間には、前記空気通路を兼ねるシャフトが挿入されており、前記上リムと前記下リムとの間で前記シャフトを貫通して形成された分岐空気通路が設けられており、前記仮想曲線は、概ね前記分岐空気通路の周囲に仮想的に描かれている構成とすることもできる。 Alternatively, in the air swirl supply unit, a shaft serving as the air passage is inserted between the upper rim and the lower rim, and the shaft is penetrated between the upper rim and the lower rim. The formed branched air passage may be provided, and the virtual curve may be virtually drawn around the branched air passage.
本発明の第1の実施形態のタイヤ検査装置の部分省略縦断正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a partial abbreviation | omission longitudinal front view of the tire inspection apparatus of the 1st Embodiment of this invention. 図1のタイヤ検査装置の部分省略平面図である。It is a partially-omission top view of the tire inspection device of FIG. 図1のタイヤ検査装置の部分拡大縦断正面図、噴射部の平面図である。It is a partially enlarged longitudinal elevation view of a tire inspection device of Drawing 1, and a top view of an injection part. 第2の実施形態のタイヤ検査装置の部分省略縦断正面図である。It is a partial abbreviation longitudinal front view of a tire inspection device of a 2nd embodiment. 第3の実施形態のタイヤ検査装置の部分省略縦断正面図である。It is a partial abbreviation longitudinal front view of a tire inspection device of a 3rd embodiment. 第4の実施形態に使用する噴射部の斜視図である。It is a perspective view of the injection part used for 4th Embodiment.
 本発明の第1の実施形態のタイヤ検査装置1を図1乃至図3に示す。このタイヤ検査装置1では、図1に示す上リム2と下リム4とがタイヤ6を挟持した状態で、タイヤ6内に空気が供給されて、タイヤ6を膨張させる。この膨張状態で、タイヤ6を所定速度で回転させて、タイヤ6の動的釣り合いを検査する。 A tire inspection apparatus 1 according to a first embodiment of the present invention is shown in FIGS. 1 to 3. In the tire inspection device 1, air is supplied into the tire 6 to inflate the tire 6 in a state where the upper rim 2 and the lower rim 4 shown in FIG. 1 sandwich the tire 6. In this inflated state, the tire 6 is rotated at a predetermined speed to inspect the dynamic balance of the tire 6.
 下リム4は支持回転装置5に取り付けられ、上リム2は破線で示す昇降装置に取り付けられ、下リム4にタイヤ6が取り付けられた状態で、上リム2が昇降装置によって降下させられて、タイヤ6を挟持する。 The lower rim 4 is attached to the supporting and rotating device 5, the upper rim 2 is attached to the lifting device shown by a broken line, and with the tire 6 attached to the lower rim 4, the upper rim 2 is lowered by the lifting device, Hold the tire 6.
 上リム2の中央には貫通孔8が形成され、この貫通孔8には上リムシャフト10が挿通されており、その頭部にあるフランジ12が上リム2の上部の平坦な凹面(凹所の底面)14に接触し、ボルト(図示せず)によって凹面14に結合されている。上リムシャフト10の内部には、その長さ方向に沿って空気供給通路16が形成されている。 A through hole 8 is formed at the center of the upper rim 2, and the upper rim shaft 10 is inserted through the through hole 8, and the flange 12 at the head of the through hole 8 is a flat concave (upper portion) of the upper rim 2 Bottom surface 14) and coupled to the concave surface 14 by bolts (not shown). Inside the upper rim shaft 10, an air supply passage 16 is formed along the length direction.
 上リムシャフト10は、下リム4の中央に形成されている貫通孔18を通過して、下リム4の下部に取り付けられている支持回転装置5内に進入している。昇降装置によって上リム2が降下したとき、支持回転装置5の内部にある空気供給源(図示せず)に上リムシャフト10が結合され、また、上リム2、下リム4、タイヤ6が一体化すると共に、下リム4に支持回転装置5によって与えられた回転がタイヤ6と上リムシャフト10と上リム2とに伝達され、上リム2、下リム4、タイヤ6が一体的に回転するように構成されている。上リム2と下リム4との上下の位置関係を固定するためのチャック機構が、このタイヤ検査装置1に設けられている。 The upper rim shaft 10 passes through a through hole 18 formed at the center of the lower rim 4 and enters the supporting and rotating device 5 attached to the lower portion of the lower rim 4. When the upper rim 2 is lowered by the lifting device, the upper rim shaft 10 is coupled to an air supply (not shown) inside the support and rotation device 5, and the upper rim 2, the lower rim 4 and the tire 6 are integrated. And the rotation given by the support and rotation device 5 to the lower rim 4 is transmitted to the tire 6, the upper rim shaft 10 and the upper rim 2, and the upper rim 2, the lower rim 4 and the tire 6 rotate integrally. Is configured as. A chuck mechanism for fixing the positional relationship between the upper rim 2 and the lower rim 4 in the upper and lower directions is provided in the tire inspection device 1.
 即ち、チャック機構の一部として、上リムシャフト10の下部外周面には、その長さ方向に沿って間隔をおいて複数の溝500が形成され、チャック機構の他の部分として、これら溝500の周囲の所定位置に90度の間隔をおいて4つの爪ブロック502が位置する。 That is, as a part of the chuck mechanism, a plurality of grooves 500 are formed on the lower outer peripheral surface of the upper rim shaft 10 at intervals along the length direction, and these grooves 500 are formed as other parts of the chuck mechanism. The four claw blocks 502 are located at predetermined intervals of 90 degrees at predetermined positions around the.
 各爪ブロック502は、支持回転装置5のハウジング504に取り付けられており、ハウジング504は、下リム4に取り付けられている。爪ブロック502の上リムシャフト10側の端には、溝500に進入可能な爪506が形成されている。各爪ブロック502は、上リムシャフト10に進退可能にハウジング504に取り付けられている。各爪ブロック502の上リムシャフト10と反対側の端部は、ハウジング504から外部に突出している。 Each claw block 502 is attached to the housing 504 of the support and rotation device 5, and the housing 504 is attached to the lower rim 4. At the upper rim shaft 10 side end of the claw block 502, a claw 506 that can enter the groove 500 is formed. Each claw block 502 is attached to the housing 504 so as to be movable back and forth to the upper rim shaft 10. The end opposite to the upper rim shaft 10 of each claw block 502 protrudes from the housing 504 to the outside.
 その突出部分にガイドピン508が取り付けられ、これらガイドピン508は、ハウジング504の外部に配置されたガイドブロック510のガイド溝512に挿通されている。ガイド溝512は、上部から下方に向かう途中までは直線状に伸び、途中から外方に向かって斜め下方に傾斜して伸び、その後直線に下部まで伸びている。図示していないガイドブロック510の駆動機構によってガイドブロック510が上下動することによってガイドピン508がガイド溝512に案内されることによって爪ブロック502が進退して、爪506が溝500に進入したり後退したりする。 Guide pins 508 are attached to the projecting portions, and the guide pins 508 are inserted into guide grooves 512 of a guide block 510 disposed outside the housing 504. The guide groove 512 linearly extends from the upper part to the lower part, inclines obliquely downward from the part to the outer side, and then extends linearly to the lower part. When the guide block 510 is moved up and down by the drive mechanism of the guide block 510 (not shown) and the guide pin 508 is guided to the guide groove 512, the claw block 502 moves back and forth and the claw 506 enters the groove 500. I go backwards.
 図1では、その右側に示した爪ブロック502の爪506が溝500に進入した状態が示され、その左側に示した爪ブロック502の爪506が溝500から後退した状態が示されている。各爪506が1つの溝500に進入した状態で、上リム2と下リム4との上下の位置関係が固定される。爪506が溝500から後退した状態で、上リム2と下リム4との上下の位置関係の固定が解除される。 FIG. 1 shows that the claws 506 of the claw block 502 shown on the right side thereof have entered the groove 500, and the claws 506 of the claw block 502 shown on the left side thereof have been retracted from the groove 500. With the claws 506 entering one groove 500, the upper and lower positional relationship between the upper rim 2 and the lower rim 4 is fixed. With the claws 506 retracted from the grooves 500, the fixing of the upper and lower positional relationship between the upper rim 2 and the lower rim 4 is released.
 上リム2と下リム4との固定状態の変化は、計測精度に影響を及ぼすので、上リムシャフト10とハウジング504との接触部で摩耗が発生しないように、上リムシャフト10には、硬度の高い材質を使用し、また上リムシャフト10には摩耗が発生しないような表面処理が行われている。さらに、上リムシャフト10とハウジング504との接触部には摩耗や焼き付きが起こらないように潤滑剤が塗布されている。 Since the change in the fixed state of the upper rim 2 and the lower rim 4 affects the measurement accuracy, the upper rim shaft 10 has hardness so that wear does not occur at the contact portion between the upper rim shaft 10 and the housing 504 The surface of the upper rim shaft 10 is treated so as not to cause wear. Furthermore, a lubricant is applied to the contact portion between the upper rim shaft 10 and the housing 504 so as to prevent wear and seizing.
 なお、下リム4と上リムシャフト10との間と、ハウジング504と上リムシャフト10との間には、微小な隙間がある。この隙間にゴムくずが侵入すると、上述したように上リム2の固定状態が変化してしまい、計測精度に影響を及ぼすおそれがある。 There is a minute gap between the lower rim 4 and the upper rim shaft 10 and between the housing 504 and the upper rim shaft 10. If rubber chips intrude into this gap, as described above, the fixed state of the upper rim 2 may change, which may affect the measurement accuracy.
 上リムシャフト10のフランジ12には、支持軸20の下端に形成したフランジ22が図示していないボルトによって結合されており、支持軸20と上リムシャフト10とは同心に配置されている。支持軸20が昇降装置に結合されて、支持軸20を昇降させることによって、上リム2が上リムシャフト10と共に昇降される。 A flange 22 formed at the lower end of the support shaft 20 is coupled to the flange 12 of the upper rim shaft 10 by a bolt not shown, and the support shaft 20 and the upper rim shaft 10 are arranged concentrically. The support shaft 20 is coupled to the lifting device, and the upper rim 2 is raised and lowered together with the upper rim shaft 10 by raising and lowering the support shaft 20.
 上リムシャフト10のフランジ12の周囲には、環状体24が配置され、上リム2の凹面14にボルト(図示せず)によって固定されている。環状体24は中央に環状の環状内孔26を有している。環状内孔26は、上リムシャフト12のフランジ12の外周面に接触して、環状体24を位置決めしている。環状体24は、略フランジ状の形状をしており、その凹所が、凹面14との間で第1空気通路28を形成している。 An annular body 24 is disposed around the flange 12 of the upper rim shaft 10 and is fixed to the concave surface 14 of the upper rim 2 by a bolt (not shown). The annular body 24 has an annular annular bore 26 at its center. The annular bore 26 contacts the outer peripheral surface of the flange 12 of the upper rim shaft 12 to position the annular body 24. The annular body 24 has a substantially flange-like shape, and the recess forms a first air passage 28 with the concave surface 14.
 この第1空気通路28が上リムシャフト10の空気供給通路16と連通するように、フランジ12には、空気連絡通路30が形成されている。空気連絡通路30は、フランジ12の半径方向に沿って形成されている。空気連絡通路30は、複数、例えば図2に示すように6個設けられている。複数の空気連絡通路30は、フランジ12の中心の周りに配置され、例えば所定角度、例えば60度間隔ごとに配置されている。 An air communication passage 30 is formed in the flange 12 so that the first air passage 28 communicates with the air supply passage 16 of the upper rim shaft 10. The air communication passage 30 is formed along the radial direction of the flange 12. A plurality of, for example, six air communication passages 30 are provided as shown in FIG. The plurality of air communication passages 30 are disposed around the center of the flange 12 and are disposed, for example, at a predetermined angle, for example, every 60 degrees.
 上リム2の下面には、環状の溝32が形成されている。この溝32は、環状体24の外周面に対応する位置から上リムシャフト10側に幾分よった位置までの幅を有し、下リム4側が開口している。この溝32によって仮想曲線(ここでは仮想円)が描かれており、各溝32内に、例えば複数、具体的には6個の噴射部34が、所定角度、例えば60度ごとに設けられている。この仮想円は、上リムシャフト10の外周面よりも外方の位置にある。 An annular groove 32 is formed on the lower surface of the upper rim 2. The groove 32 has a width from a position corresponding to the outer peripheral surface of the annular body 24 to a position slightly on the upper rim shaft 10 side, and the lower rim 4 side is open. An imaginary curve (here, an imaginary circle) is drawn by the grooves 32. For example, a plurality of, specifically, six injection parts 34 are provided in each groove 32 at predetermined angles, for example, 60 degrees. There is. This virtual circle is located outward of the outer circumferential surface of the upper rim shaft 10.
 ここに、仮想曲線とは、仮想的にタイヤ6内に描かれた曲線であり、本実施形態では、この種の曲線として、中心(例えば上リムシャフト10の中心軸)を持ち、上リム2側、下リム4側、および上リム2と下リム4との間のいずれかに描かれた仮想円が用いられている。この種の曲線としては、円形だけではなく、楕円形、アーモンドの断面形状などの閉曲線が考えられ、さらには、本発明の作用効果を発揮できる範囲内においては、閉曲線ではなく開曲線(円弧など)が描かれてもよい。また、本発明の作用効果を発揮できる範囲内においては、中心を持たない閉曲線が描かれてもよい。 Here, the virtual curve is a curve virtually drawn in the tire 6, and in the present embodiment, the center (for example, the central axis of the upper rim shaft 10) is used as the curve of this kind, and the upper rim 2 An imaginary circle drawn on the side, the lower rim 4 side, and between the upper rim 2 and the lower rim 4 is used. As a curve of this kind, not only a circular shape but also a closed curve such as an oval shape or a cross-sectional shape of an almond can be considered. Furthermore, within the range where the effects of the present invention can be exhibited ) May be drawn. Moreover, within the range which can exhibit the effect of this invention, the closed curve which does not have a center may be drawn.
 そのため、後述の第2~第4実施形態にも共通するが、仮想円38上にまんべんなく等間隔で各噴射部34を配置するのではなく、本発明の作用効果を発揮できる範囲内においては、仮想の円弧や楕円などの、上記した開曲線または閉曲線上に、噴射部34を1または複数個配置することができる。 Therefore, although it is common to the second to fourth embodiments described later, instead of arranging the injection parts 34 evenly on the virtual circle 38 at equal intervals, within the range where the effects of the present invention can be exhibited, One or more injection parts 34 can be arranged on the above-mentioned open curve or closed curve such as a virtual arc or ellipse.
 これら噴射部34それぞれは、第1空気通路28に連通しており、第1空気通路28から供給された空気をタイヤ6内に噴出して、タイヤ6を膨張させる。ここに、噴射部34の空気圧、空気量としては、タイヤ6内で旋回流を生成し、次第に空気の渦を形成できるようなものに、予め設定されている。この空気の渦は、あたかも、少なくとも、仮想円から上方に空気流が巻き上がる竜巻状(トルネード状)の渦であると考えられる。 Each of the injection units 34 is in communication with the first air passage 28, and blows the air supplied from the first air passage 28 into the tire 6 to inflate the tire 6. Here, the air pressure and the air amount of the injection unit 34 are set in advance so as to generate a swirling flow in the tire 6 and to gradually form an air vortex. It is considered that this air vortex is at least a tornado (tornado-like) vortex in which the air flow rolls up from the imaginary circle.
 図3(a)に拡大して示すように、各噴射部34では、第1空気通路28と溝32とを連通させるように、上リムシャフト10と平行に連通孔(第2空気通路)36が形成されている。第1空気通路28と連通孔36とで、本発明にいう「空気通路」が形成されている。 As shown in FIG. 3A in an enlarged manner, in each injection portion 34, a communication hole (second air passage) 36 parallel to the upper rim shaft 10 so as to connect the first air passage 28 and the groove 32. Is formed. The first air passage 28 and the communication hole 36 form an "air passage" in the present invention.
 各連通孔36は、平面視した場合、上リムシャフト10の中心軸を中心として描いた仮想円38上に位置している。これら連通孔36それぞれには、噴射部34の一構成部材であるパイプ40が、挿通されている。連通孔36とパイプ40との間は、これら連通孔36とパイプ40との間に空気が流入しないように、シーリングなどにより密着状態を保持している。これらパイプ40は、連通孔36側に一端が位置し、他端部は、環状の溝32内に位置している。パイプ40は、連通孔36側の端部が開口し、溝32側の端部は閉塞されているが、溝32側の周壁には、噴出孔42が形成されている。これら噴出孔42は、図2に矢印で示すように、仮想円38のそれぞれ異なる位置における接線方向に沿い、かつ同一方向を向いている。各パイプ40は、図3(b)に示す扇形のフランジ46に溶接等、種々可能な方法で取り付けられ、このフランジ46は、当該フランジ46に形成された長孔48に挿通されたボルト49によって溝32の底33に固定されている。これら噴出孔42から同じ速度、同じ流量で空気が噴出される。これら空気連絡通路30、第1空気通路28、連通孔36及び噴射部34が、空気旋回供給部を構成している。 Each communication hole 36 is located on an imaginary circle 38 drawn around the central axis of the upper rim shaft 10 in plan view. The pipe 40 which is a component of the injection part 34 is penetrated by each of these communicating holes 36. As shown in FIG. A close contact state is maintained between the communication hole 36 and the pipe 40 by sealing or the like so that air does not flow between the communication hole 36 and the pipe 40. One end of each of the pipes 40 is located on the communication hole 36 side, and the other end is located in the annular groove 32. The end of the pipe 40 on the side of the communication hole 36 is open and the end on the side of the groove 32 is closed, but a jet hole 42 is formed in the peripheral wall on the side of the groove 32. As shown by the arrows in FIG. 2, these ejection holes 42 are directed along the same tangential direction in different positions of the imaginary circle 38 and in the same direction. Each pipe 40 is attached by various methods such as welding to a fan-shaped flange 46 shown in FIG. 3 (b), and this flange 46 is fixed by a bolt 49 inserted into a long hole 48 formed in the flange 46. It is fixed to the bottom 33 of the groove 32. Air is ejected from these ejection holes 42 at the same speed and flow rate. The air communication passage 30, the first air passage 28, the communication hole 36 and the injection unit 34 constitute an air swirl supply unit.
 このタイヤ検査装置1では、上リム2と下リム4とでタイヤを挟持し、支持回転装置5内の空気供給源から空気供給通路16に空気を供給すると、空気は、各空気連絡通路30、第1空気通路28、連通孔36を介して噴射部34の噴出孔42から噴出され、タイヤ6を膨張させる。このとき、各噴出孔42は、図2に示す仮想円38の接線方向に沿って同一方向を向いているので、タイヤ6内に上リムシャフト10の周りを回る旋回流が形成される。この旋回流は次第に空気の渦となる。 In the tire inspection device 1, when the tire is held between the upper rim 2 and the lower rim 4 and air is supplied from the air supply source in the supporting and rotating device 5 to the air supply passage 16, the air is supplied to each air communication passage 30, The air is ejected from the ejection holes 42 of the injection unit 34 through the first air passage 28 and the communication hole 36, and the tire 6 is expanded. At this time, the jet holes 42 face the same direction along the tangential direction of the imaginary circle 38 shown in FIG. 2, so that a swirling flow is formed in the tire 6 around the upper rim shaft 10. This swirling flow gradually becomes a vortex of air.
 当該空気の渦が壁となり、タイヤ内に滞留しているゴムくずが、空気の渦よりも上方に巻き上がることが防止され、当該滞留状態を維持するものと考えられる。その一方で、仮に、ゴムくずが空気の渦に巻き込まれたとした場合でも、当該ゴムくずは、空気の旋回流にのって回転するのみである。その結果、インフレートによってタイヤ内のゴムくずがチャック機構に侵入することを、適切に防止することができる。 It is considered that the air vortex becomes a wall, and rubber scraps staying in the tire are prevented from being wound up above the air vortex, and the stay state is maintained. On the other hand, even if rubber scraps are caught in a vortex of air, the rubber scraps only rotate along the swirling flow of air. As a result, it is possible to appropriately prevent the rubber waste in the tire from intruding into the chuck mechanism due to inflation.
 本発明の第2の実施形態のタイヤ検査装置1aを図4に示す。第1の実施形態では、上リム4に噴射部34を設け、上リムシャフト10のフランジ12の周囲に環状体24を設けたが、第2の実施形態のタイヤ検査装置1aでは、これらが除去されている。下リム4の上面側に、第1の実施形態のタイヤ検査装置1の上リム2に形成した環状の溝32と同様な溝32aが形成されている。この第2実施形態のタイヤ検査装置1aでは、環状の溝32aが上リム2側に開口している。この溝32a内に第1の実施形態の噴射部34と同様に構成された噴射部34aが噴射部34と上下が逆の状態で設けられている。 A tire inspection apparatus 1a according to a second embodiment of the present invention is shown in FIG. In the first embodiment, the injection portion 34 is provided on the upper rim 4 and the annular body 24 is provided around the flange 12 of the upper rim shaft 10. However, in the tire inspection device 1a of the second embodiment, these are removed It is done. On the upper surface side of the lower rim 4, a groove 32 a similar to the annular groove 32 formed on the upper rim 2 of the tire inspection device 1 of the first embodiment is formed. In the tire inspection device 1a of the second embodiment, an annular groove 32a is open to the upper rim 2 side. In the groove 32a, an injection part 34a configured similarly to the injection part 34 of the first embodiment is provided in a state in which the injection part 34 is upside down.
 この第2実施形態のタイヤ検査装置1aでは、第1実施形態のタイヤ検査装置1と同様に、仮想円上に各噴射部34aが位置し、それらそれぞれの噴出孔は、仮想円の接線方向に沿って同一方向に設けられている。 In the tire inspection device 1a according to the second embodiment, as in the tire inspection device 1 according to the first embodiment, the injection portions 34a are positioned on the imaginary circle, and their respective ejection holes are in the tangential direction of the imaginary circle. It is provided along the same direction.
 しかしながら、第2実施形態のタイヤ検査装置1aでは、仮想円は、下リム4側に描かれており、この仮想円上に、各噴射部34aが設けられている。また、この第2実施形態では、上リム2の上下移動に影響を与えない空気路として、例えば、パイプ50が、上リムシャフト10の外周面よりも外方の位置で、下リム4を貫通し、噴射部32aに向けて直線的に設けられている。このパイプ50は、ハウジング504の外部に出て、空気供給源(不図示)に接続されている。 However, in the tire inspection device 1a of the second embodiment, the virtual circle is drawn on the lower rim 4 side, and the injection parts 34a are provided on the virtual circle. Moreover, in the second embodiment, as an air passage that does not affect the vertical movement of the upper rim 2, for example, the pipe 50 penetrates the lower rim 4 at a position outside the outer peripheral surface of the upper rim shaft 10. And is provided linearly toward the injection part 32a. The pipe 50 exits the housing 504 and is connected to an air supply (not shown).
 この第2実施形態では、上リムシャフト10の上部ではなく、下部、たとえば、概ね、空気供給のためのパイプ50の周囲に仮想的に形成された仮想円のそれぞれ異なる位置における接線方向に沿って、各噴射部34aから空気が噴射される。なお、この第2実施形態においても、仮想の円弧上に各噴射部34aを配置してもよいことはいうまでもない。 In this second embodiment, not along the upper part of the upper rim shaft 10 but in the lower part, for example, along the tangential direction at different positions of an imaginary circle virtually formed around the pipe 50 for air supply. Air is injected from each of the injection units 34a. It goes without saying that each injection unit 34a may be disposed on a virtual arc also in the second embodiment.
 他の構成は、第1の実施形態のタイヤ検査装置と同様であるので、詳細な説明は省略する。 The other configuration is the same as that of the tire inspection device according to the first embodiment, so the detailed description will be omitted.
 このように構成されたタイヤ検査装置1aにおいても、上リム2と下リム4とでタイヤを挟持し、支持回転装置内の空気供給源から空気供給通路16に空気を供給すると、空気は、パイプ50を介して噴射部34aに供給されて噴出され、タイヤ6を膨張させる。このとき、噴出孔は仮想円の接線方向に沿って同一方向を向いているので、タイヤ6内に空気の旋回流が形成される。この旋回流が次第に空気の渦となる。 Also in the tire inspection apparatus 1a configured as above, when the upper rim 2 and the lower rim 4 sandwich the tire and supply air from the air supply source in the support rotation device to the air supply passage 16, the air is The pressure is supplied to the injection unit 34 a via the nozzle 50 and injected to inflate the tire 6. At this time, since the jet holes are directed in the same direction along the tangential direction of the imaginary circle, a swirling flow of air is formed in the tire 6. This swirling flow gradually becomes an air vortex.
 当該空気の渦が壁となり、タイヤ内に存在するゴムくずが、空気の渦よりも上方に巻き上がることが防止され、タイヤ内で滞留しているゴムくずが滞留状態を維持するものと考えられる。その一方で、仮に、ゴムくずが空気の渦に巻き込まれたとした場合でも、当該ゴムくずは、空気の旋回流にのって回転するのみである。その結果、インフレートによってタイヤ内のゴムくずがチャック機構に侵入することを、適切に防止することができる。 It is considered that the air vortex becomes a wall, and the rubber waste present in the tire is prevented from being wound up above the air vortex, and the rubber waste staying in the tire maintains a stagnant state. . On the other hand, even if rubber scraps are caught in a vortex of air, the rubber scraps only rotate along the swirling flow of air. As a result, it is possible to appropriately prevent the rubber waste in the tire from intruding into the chuck mechanism due to inflation.
 また、第2実施形態では、空気供給路としてのパイプ50を、空気供給源(不図示)から、上リムシャフト10の外周面よりも外方の位置で、下リム4を貫通し、噴射部32aに向けて直線的に設けているので、上リムシャフト12を貫通し、且つ、タイヤ6内を横切り、上リムシャフト10の空気供給通路18と連通する空気流路となるパイプを設ける場合とは異なり、チャック機構を調整して上リム2の上下位置を調節する際に、パイプ50が下リム4に引っかからず、上リム2の上下位置の調節が、阻害されることがない。 Further, in the second embodiment, the lower rim 4 is penetrated through the pipe 50 as the air supply passage at a position outside the outer peripheral surface of the upper rim shaft 10 from the air supply source (not shown), and the injection portion Since it is provided linearly toward 32a, a pipe serving as an air flow path which penetrates the upper rim shaft 12 and traverses the inside of the tire 6 and communicates with the air supply passage 18 of the upper rim shaft 10 may be provided. However, when adjusting the chuck mechanism to adjust the upper and lower positions of the upper rim 2, the pipe 50 is not caught on the lower rim 4 and the adjustment of the upper and lower positions of the upper rim 2 is not hindered.
 第3の実施形態のタイヤ検査装置1bを図5に示す。第1、2の実施形態では、上リム2または下リム4に噴射部34、34aを設けたが、第3の実施形態のタイヤ検査装置1bでは、上リムシャフト10における上リム2と下リム4との間に位置する部分に、噴射部34bが設けられている。この実施形態では、上リム2と下リム4との間に、仮想円が描かれており、その仮想円上に噴射部34bが位置している。なお、この第3実施形態においても、第1実施形態と同様に、仮想の開曲線または閉曲線が描かれていてもよく、これら開曲線または閉曲線上に1または複数の噴射部34bを設けてもよい。 A tire inspection device 1b of a third embodiment is shown in FIG. In the first and second embodiments, the injection parts 34 and 34a are provided on the upper rim 2 or the lower rim 4, but in the tire inspection device 1b of the third embodiment, the upper rim 2 and the lower rim of the upper rim shaft 10 In a portion positioned between the two, an injection unit 34 b is provided. In this embodiment, a virtual circle is drawn between the upper rim 2 and the lower rim 4, and the injection portion 34b is located on the virtual circle. In the third embodiment, as in the first embodiment, virtual open curves or closed curves may be drawn, and even if one or more injection parts 34b are provided on these open curves or closed curves. Good.
 第3実施形態では、上リムシャフト10の中心軸を中心として描いた仮想円上の異なる位置に複数の噴射部34bが位置し、それらそれぞれの噴出孔42aは、仮想円のそれぞれ異なる位置における接線方向に沿って同一方向に設けられている。これら噴射部34bそれぞれは、上リムシャフト10内の空気供給通路16を貫通されてタイヤ6側に突出させたパイプ54の先端部を下リム4側に折り曲げて、噴出孔42aを第1の実施形態の噴出孔42と同様に形成したものである。他の構成は、第1の実施形態のタイヤ検査装置1と同様であるので、詳細な説明は省略する。 In the third embodiment, a plurality of injection parts 34b are located at different positions on a virtual circle drawn about the central axis of the upper rim shaft 10, and their respective ejection holes 42a are tangents at different positions of the virtual circle. It is provided in the same direction along the direction. Each of these injection parts 34b penetrates the air supply passage 16 in the upper rim shaft 10 and bends the tip of the pipe 54 projected to the tire 6 side to the lower rim 4 side to make the injection hole 42a a first embodiment. It is formed similarly to the ejection hole 42 of a form. The other configuration is the same as that of the tire inspection device 1 of the first embodiment, and thus the detailed description will be omitted.
 このように構成されたタイヤ検査装置1bにおいても、上リム2と下リム4とでタイヤを挟持し、支持回転装置内の空気供給源から空気供給通路16に空気を供給すると、空気は、パイプ54を介して各噴射部34bに供給されて噴出され、タイヤ6を膨張させる。このとき、噴出孔42aは仮想円のそれぞれ異なる位置における接線方向に沿って同一方向を向いているので、タイヤ6内に空気の旋回流が形成される。その旋回流は次第に竜巻状の空気の渦となると考えられる。 Also in the tire inspection apparatus 1b configured as above, when the upper rim 2 and the lower rim 4 sandwich the tire and air is supplied from the air supply source in the support rotation device to the air supply passage 16, the air is It is supplied to each injection part 34b via 54 and jetted out to inflate the tire 6. At this time, the jet holes 42 a face the same direction along the tangential direction at different positions of the imaginary circle, so that a swirling flow of air is formed in the tire 6. The swirling flow is considered to gradually become a vortex of tornado-like air.
 当該空気の渦が壁となり、タイヤ内に滞留しているゴムくずが、空気の渦よりも上方に巻き上がることが防止され、当該滞留状態を維持するものと考えられる。その一方で、仮に、ゴムくずが空気の渦に巻き込まれたとした場合でも、当該ゴムくずは、空気の旋回流にのって回転するのみである。その結果、インフレートによってタイヤ内のゴムくずがチャック機構に侵入することを、適切に防止することができる。 It is considered that the air vortex becomes a wall, and rubber scraps staying in the tire are prevented from being wound up above the air vortex, and the stay state is maintained. On the other hand, even if rubber scraps are caught in a vortex of air, the rubber scraps only rotate along the swirling flow of air. As a result, it is possible to appropriately prevent the rubber waste in the tire from intruding into the chuck mechanism due to inflation.
 第4の実施形態のタイヤ検査装置の噴射部34cを図6に示す。この噴射部34cは、角形のパイプの端部の近傍の側壁に噴出孔42bを形成し、この噴出孔42bと対向するように、傾斜壁56をパイプの内部に設けたものである。他の構成は、第1乃至第3の実施形態のいずれかと同様である。 The injection part 34c of the tire inspection apparatus of 4th Embodiment is shown in FIG. The injection portion 34c has a jet hole 42b formed on the side wall near the end of the square pipe, and an inclined wall 56 is provided inside the pipe so as to face the jet hole 42b. The other configuration is the same as any of the first to third embodiments.
 このように傾斜壁56を設けることによっても、仮想円の接線方向に良好に空気を噴射することができる。なお、円形のパイプを利用して、内部に傾斜壁を設けることも無論可能である。 Also by providing the inclined wall 56 in this manner, air can be jetted well in the tangential direction of the imaginary circle. Of course, it is also possible to provide an inclined wall inside using a circular pipe.
 第1乃至第3の実施形態では、噴出孔42、42a、42bは、仮想円の接線方向を向くように配置したが、接線方向からずれて配置することもできる。例えば接線方向を挟んで、上リムシャフト10側またはタイヤ6側にずれて噴出孔42、42a、42bを配置することもでき、例えば上リムシャフト10側またはタイヤ6側に30度程度ずれて配置することもできる。 In the first to third embodiments, the jet holes 42, 42a, 42b are arranged to face the tangential direction of the imaginary circle, but may be arranged offset from the tangential direction. For example, the ejection holes 42, 42a, 42b may be arranged offset to the upper rim shaft 10 side or the tire 6 side with respect to the tangential direction, for example, disposed about 30 degrees offset to the upper rim shaft 10 side or the tire 6 side You can also
 第1乃至第3の実施形態では、噴射部34、34a、34bの数を6個としたが、これに限ったものではなく、例えば最低限度1個だけ設けることもできる。また、第1乃至第3の実施形態では、噴射部34、34a、34bは、1つの仮想円の各接線方向にそって設けたが、仮想曲線(仮想の開曲線や閉曲線など)を同心状に複数設け、各仮想曲線の接線方向にそれぞれ少なくとも1つ設けることもできる。 In the first to third embodiments, the number of the injection units 34, 34a, 34b is six. However, the number of the injection units 34, 34a, 34b is not limited to six. Also, in the first to third embodiments, the injection parts 34, 34a, 34b are provided along each tangential direction of one virtual circle, but virtual curves (virtual open curves, closed curves, etc.) are concentrically formed It is also possible to provide at least one each in the tangential direction of each virtual curve.
 第1の実施形態では、環状体24内に空気通路を形成したが、これを除去し、例えばパイプによって空気連絡通路30と噴射部34のパイプ40とを結合するように構成することもできる。同様に第2の実施形態では、空気供給源(不図示)と噴射部34aとをパイプ50で接続したが、第1実施形態のように、下リム4内に、空気連絡通路30と同様構成の空気連絡通路と、空気通路(第1空気通路28及び連通孔36)とを形成し、これらによって空気供給通路16と噴射部34aとを接続してもよい。 In the first embodiment, the air passage is formed in the annular body 24. However, the air passage may be removed, and for example, the air communication passage 30 and the pipe 40 of the injection unit 34 may be connected by a pipe. Similarly, in the second embodiment, the air supply source (not shown) and the injection unit 34a are connected by the pipe 50, but the lower rim 4 has the same configuration as the air communication passage 30 as in the first embodiment. The air communication passage and the air passage (the first air passage 28 and the communication hole 36) may be formed to connect the air supply passage 16 and the injection portion 34a.
 このように、第2実施形態を第1実施形態と同様の空気供給経路とした場合には、シャフトを貫通し、且つ、タイヤ6内を横切る空気流路となるパイプを設ける場合とは異なり、チャック機構を調整して上リムの上下位置を調節する際に、その上下位置の調節が、パイプが下リムに引っかからず阻害されることがない。 As described above, when the second embodiment is the same air supply path as the first embodiment, it is different from the case where a pipe which penetrates the shaft and serves as an air flow path crossing the inside of the tire 6 is provided. When adjusting the chuck mechanism to adjust the upper and lower positions of the upper rim, the adjustment of the upper and lower positions thereof does not occur because the pipe is not caught by the lower rim.
 第1~第3実施形態では、仮想円38は、上リムシャフト10の中心軸を中心として描かれていたが、旋回流を生成し、タイヤ内に空気の渦を形成できる範囲内であれば、上リムシャフト10の中心軸から水平方向にずれた位置を中心とした仮想円であってもよい。 In the first to third embodiments, the virtual circle 38 is drawn about the central axis of the upper rim shaft 10, but if it generates a swirling flow and is within a range where air vortices can be formed in the tire Alternatively, it may be a virtual circle centered on a position shifted in the horizontal direction from the central axis of the upper rim shaft 10.
 なお、本発明における空気流路の構成は、第1~第3実施形態の例には限られない。タイヤ6の外部からタイヤ6内の噴射部34a~34cに空気を供給できる構成であれば、どのような構成であってもよい。例えば、第1~第3実施形態では、空気流路が上リム2と下リム4との間の対向領域に開口しているが、特にこれには限られない。これは、噴射部34a~34cが設けられる場所にもよるが、これら噴射部が上リム2または下リム4の外周面の外方に設置されているような特殊な場合が考えられる。このような場合、空気流路は、最終的に噴射部34a~34c方向に開口していればよいので、特に、前記対向領域に開口する必要はない。 The configuration of the air flow passage in the present invention is not limited to the examples of the first to third embodiments. Any configuration may be used as long as the air can be supplied from outside the tire 6 to the injection parts 34a to 34c in the tire 6. For example, in the first to third embodiments, the air flow passage opens in the opposing area between the upper rim 2 and the lower rim 4, but the invention is not particularly limited thereto. Although this depends on the places where the injection parts 34a to 34c are provided, there may be a special case in which these injection parts are installed on the outer peripheral surface of the upper rim 2 or the lower rim 4 outside. In such a case, the air flow path may be finally opened in the direction of the injection portions 34a to 34c, so it is not particularly necessary to open in the opposite area.
 また、空気流路の構造も、第1~第3実施形態で例示したものには限られず、たとえば、メイン空気流路の先端から複数の分岐流路を持つ空気路の1または複数を、タイヤ6の外部から上リム2または下リム4を貫通させ、各分岐流路を噴射部34a~34c方向に開口させてもよい。要するに、噴射部34a~34cによって旋回流を形成することができればよい。 Further, the structure of the air flow path is not limited to those exemplified in the first to third embodiments, and for example, one or more of the air paths having a plurality of branch flow paths from the tip of the main air flow path The upper rim 2 or the lower rim 4 may be penetrated from the outside of 6 and the branch flow paths may be opened in the direction of the injection portions 34a to 34c. In short, it is sufficient if the swirling flow can be formed by the injection parts 34a to 34c.
 あるいは、第3実施形態(図5参照)のように、上リムシャフト12の空気供給通路18から空気流路を分岐するように形成するのではなく、上リムシャフト12の機能を持たない空気供給専用の部材を、上リム2または下リム4を貫通させずに、設け、噴射部34a~34c方向に開口させてもよい。 Alternatively, as in the third embodiment (see FIG. 5), instead of forming the air flow passage from the air supply passage 18 of the upper rim shaft 12 to be branched, an air supply not having the function of the upper rim shaft 12 A dedicated member may be provided without passing through the upper rim 2 or the lower rim 4 and opened in the direction of the jet parts 34a to 34c.
 さらに、仮想円38の直径も、第1~第3実施形態では、上リム2または下リム4の直径とほぼ同じかそれよりも小さく描かれているが、本発明の作用効果に影響を与えない範囲内であれば、上リム2または下リム4の直径よりも大きくてもよい。 Furthermore, although the diameter of the imaginary circle 38 is also drawn to be approximately the same as or smaller than the diameter of the upper rim 2 or the lower rim 4 in the first to third embodiments, it affects the operation and effect of the present invention If not, it may be larger than the diameter of the upper rim 2 or the lower rim 4.
 本発明の第1~第3実施形態では、空気の渦は、仮想円よりも上方に空気が巻き上がるあたかもトルネード状であるため、特に、仮想円よりも下方に存在するゴムくず(例えば、タイヤ底のたまり屑)が、空気の渦に阻害されてタイヤ6内で巻き上がらないので、仮想円よりも下のゴムくず対策に特に有益である。 In the first to third embodiments of the present invention, since the air vortex is like a tornado as if the air is rolled up above the imaginary circle, rubber scraps existing below the imaginary circle (for example, tires) It is particularly useful for dealing with rubber scraps below the imaginary circle, since the bottom accumulations) are blocked by the air vortex and do not roll up in the tire 6.

Claims (9)

  1.  タイヤを回転させて検査するタイヤ検査装置において、
     上リム及び下リムによって挟持された前記タイヤ内に前記空気を旋回させながら供給する空気旋回供給部を設けたことを特徴とするタイヤ検査装置。
    In a tire inspection device for rotating and inspecting a tire,
    An air swirl supply portion for supplying the air while swirling is provided in the tire held by the upper rim and the lower rim.
  2.  請求項1記載のタイヤ検査装置において、前記空気旋回供給部は、前記タイヤ内に仮想的に描かれた仮想曲線の接線方向に概ね沿って前記空気を噴射する噴射部を有するタイヤ検査装置。 The tire inspection apparatus according to claim 1, wherein the air swirl supply unit includes an injection unit that injects the air substantially along a tangent direction of an imaginary curve virtually drawn in the tire.
  3.  請求項1~3のいずれか1項に記載のタイヤ検査装置において、前記仮想曲線は仮想円であるタイヤ検査装置。 The tire inspection device according to any one of claims 1 to 3, wherein the virtual curve is a virtual circle.
  4.  請求項2または3に記載のタイヤ検査装置において、複数の前記噴射部が、前記仮想曲線に沿って間隔をあけて配置されているタイヤ検査装置。 The tire inspection device according to claim 2 or 3, wherein a plurality of the injection units are arranged at intervals along the virtual curve.
  5.  請求項2~4のいずれか1項に記載のタイヤ検査装置において、前記噴射部は、前記上リムに設けられているタイヤ検査装置。 The tire inspection device according to any one of claims 2 to 4, wherein the injection unit is provided on the upper rim.
  6.  請求項2~4のいずれか1項に記載のタイヤ検査装置において、前記噴射部は、前記下リムに設けられているタイヤ検査装置。 The tire inspection device according to any one of claims 2 to 4, wherein the injection unit is provided on the lower rim.
  7.  請求項2~4のいずれか1項に記載のタイヤ検査装置において、前記噴射部は、前記上リムと下リムとの間に設けられているタイヤ検査装置。 The tire inspection device according to any one of claims 2 to 4, wherein the injection unit is provided between the upper rim and the lower rim.
  8.  請求項2~6のいずれか1項に記載のタイヤ検査装置において、前記空気旋回供給部は、前記上リム及び前記下リムの少なくとも一方を貫通して形成された空気通路を有し、前記仮想曲線は、概ね前記空気通路の周囲に仮想的に描かれているタイヤ検査装置。 The tire inspection device according to any one of claims 2 to 6, wherein the air swirl supply unit has an air passage formed through at least one of the upper rim and the lower rim, and the virtual A tire inspection system in which a curve is virtually drawn around the air passage.
  9.  請求項7項に記載のタイヤ検査装置において、前記上リムと前記下リムとの間には、前記空気通路を兼ねるシャフトが挿入されており、前記上リムと前記下リムとの間でシャフトを貫通して形成された分岐空気通路が設けられており、
     前記仮想曲線は、概ね前記分岐空気通路の周囲に仮想的に描かれているタイヤ検査装置。
    The tire inspection device according to claim 7, wherein a shaft which doubles as the air passage is inserted between the upper rim and the lower rim, and a shaft is inserted between the upper rim and the lower rim. There is a branch air passage formed through it,
    The tire inspection device in which the virtual curve is virtually drawn around the branch air passage.
PCT/JP2017/033570 2017-09-15 2017-09-15 Tire inspection apparatus WO2019053893A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/033570 WO2019053893A1 (en) 2017-09-15 2017-09-15 Tire inspection apparatus
CN201780094854.2A CN111094929B (en) 2017-09-15 2017-09-15 Tire inspection device
JP2019541608A JP6804174B2 (en) 2017-09-15 2017-09-15 Tire inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033570 WO2019053893A1 (en) 2017-09-15 2017-09-15 Tire inspection apparatus

Publications (1)

Publication Number Publication Date
WO2019053893A1 true WO2019053893A1 (en) 2019-03-21

Family

ID=65722585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033570 WO2019053893A1 (en) 2017-09-15 2017-09-15 Tire inspection apparatus

Country Status (3)

Country Link
JP (1) JP6804174B2 (en)
CN (1) CN111094929B (en)
WO (1) WO2019053893A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623865A (en) * 1992-05-11 1994-02-01 Illinois Tool Works Inc <Itw> Tire holding jig in tire production process
JPH11118655A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Tire chucking apparatus for tire uniformity machine
WO2017135100A1 (en) * 2016-02-03 2017-08-10 株式会社神戸製鋼所 Tire air filling mechanism and tire air filling method for tire testing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937327B2 (en) * 2011-10-11 2016-06-22 大和製衡株式会社 Tire inspection device
JP5851848B2 (en) * 2012-01-12 2016-02-03 三菱重工マシナリーテクノロジー株式会社 Tire testing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623865A (en) * 1992-05-11 1994-02-01 Illinois Tool Works Inc <Itw> Tire holding jig in tire production process
JPH11118655A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Tire chucking apparatus for tire uniformity machine
WO2017135100A1 (en) * 2016-02-03 2017-08-10 株式会社神戸製鋼所 Tire air filling mechanism and tire air filling method for tire testing device

Also Published As

Publication number Publication date
CN111094929B (en) 2021-11-16
CN111094929A (en) 2020-05-01
JP6804174B2 (en) 2020-12-23
JPWO2019053893A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
FI60918C (en) VRIDSPJAELLVENTIL
WO1997043076A1 (en) Welding electrode
US10307771B2 (en) Lance nozzle and excess sprayed coating removal device including the same
NZ228185A (en) Fluid jet cutting nozzle assembly
WO2019053893A1 (en) Tire inspection apparatus
JP2007092827A (en) Swiveling type clamp cylinder
JP2007268695A (en) Cutting tool and holder
CN204182697U (en) A kind of water under high pressure header device
KR101674769B1 (en) Air purge apparatus
JPH09263357A (en) Yarn guide
JP4758691B2 (en) spray nozzle
JP2001317928A (en) Method and apparatus for measuring inside diameter of hole
JP5864265B2 (en) Gas control valve for torch
JP6467101B1 (en) Inspection tool
JP4472145B2 (en) Retractable chuck
KR101779793B1 (en) Bush arranging apparatus and method of engine cover
KR20130029549A (en) Device for checking for tool to contact on a spindle
JPS6073330A (en) Leakage detector and method of detecting leakage
JP2010091176A (en) Drying method by air current
JPH11218142A (en) Backup roller for leveler
JPH07113795A (en) Water column nozzle for ultrasonic flaw detection
JP2011169356A (en) Rolling bearing device with lubricating function, and method for setting crush allowance of seal member
JPH1089941A (en) Back pressure air micrometer
JP2023104617A (en) Rotary work table with leak detection function
JP2895426B2 (en) Woodworking rotary joint for gas supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925434

Country of ref document: EP

Kind code of ref document: A1