WO2019052431A1 - 一种摄像装置、摄像系统及减小摄像装置功耗的方法 - Google Patents

一种摄像装置、摄像系统及减小摄像装置功耗的方法 Download PDF

Info

Publication number
WO2019052431A1
WO2019052431A1 PCT/CN2018/104899 CN2018104899W WO2019052431A1 WO 2019052431 A1 WO2019052431 A1 WO 2019052431A1 CN 2018104899 W CN2018104899 W CN 2018104899W WO 2019052431 A1 WO2019052431 A1 WO 2019052431A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication module
camera
processor
peer
Prior art date
Application number
PCT/CN2018/104899
Other languages
English (en)
French (fr)
Inventor
李琳琅
Original Assignee
安克创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安克创新科技股份有限公司 filed Critical 安克创新科技股份有限公司
Publication of WO2019052431A1 publication Critical patent/WO2019052431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present application relates to the field of monitoring equipment, and in particular, to an imaging apparatus, an imaging system, and a method of reducing power consumption of an imaging apparatus.
  • the monitoring device replaces the cable with wireless, and uses the mobile power to get rid of the power socket.
  • the WiFi module of the camera device needs to maintain communication with the wireless gateway of the communication peer at all times. Since the WiFi module consumes more power, the power consumption of the camera device is faster, and the battery life is shorter. If the battery life does not meet the user's requirements, the user experience is poor.
  • the technical problem to be solved by the present application is to provide an imaging device, an imaging system, and a method for reducing the power consumption of the imaging device, which can reduce the standby power consumption of the imaging device and prolong the battery life of the imaging device.
  • a technical solution adopted by the present application is to provide a camera device, which includes a first communication module, a second communication module, and a first processor.
  • the first communication module and the second communication module are configured to perform data interaction with the communication peer end; wherein, the power consumption of the first communication module is smaller than the power consumption of the second communication module; the first processor is configured to When the communication device sends communication data to the communication peer to lower than the preset condition, switching to the first communication module, and when the communication request of the camera transmitting data to the communication peer is higher than or equal to the preset condition, switching to The second communication module.
  • the camera system includes the above camera device and a communication partner.
  • another technical solution adopted by the present application is to provide a method for reducing power consumption of an imaging device, including the following steps: the imaging device determines whether the communication request for transmitting data to the communication peer is lower than a preset condition. When it is determined that the preset condition is lower than the preset condition, switching to the first communication module of the camera device, when it is determined to be higher than or equal to the preset condition, switching to the second communication module of the camera device; wherein, the first communication module The power consumption of the module is less than the power consumption of the second communication module.
  • the utility model has the beneficial effects that the camera device disclosed in the present application comprises a first communication module, a second communication module, and a first processor, which are different from the prior art.
  • the first communication module and the second communication module are used for data interaction with the communication peer.
  • the power consumption of the first communication module is smaller than the power consumption of the second communication module.
  • a first processor configured to switch to the first communication module when the communication requirement of the imaging device transmitting data to the communication peer is lower than a preset condition, and a communication requirement that the imaging device sends data to the communication peer is higher than or When it is equal to the preset condition, it switches to the second communication module.
  • the communication modules using different power consumptions can be selected according to the communication requirements in the data interaction process, and the communication device requires less communication time for data interaction most of the time. Therefore, the present application switches to the first communication module with low power consumption when the communication requirement of the data interaction is low, which effectively reduces the power consumption of the imaging device and prolongs the battery life of the imaging device.
  • FIG. 1 is a schematic structural diagram of an embodiment of an image pickup apparatus provided by the present application.
  • FIG. 2 is a schematic structural diagram of another embodiment of an image pickup apparatus provided by the present application.
  • FIG. 3 is a schematic structural diagram of an embodiment of the image pickup apparatus provided in FIG. 2;
  • FIG. 4 is a schematic structural diagram of still another embodiment of an image pickup apparatus provided by the present application.
  • FIG. 5 is a schematic diagram of a specific structure of an embodiment of the image pickup apparatus provided in FIG. 4; FIG.
  • FIG. 6 is a schematic structural diagram of still another embodiment of an image pickup apparatus provided by the present application.
  • FIG. 7 is a schematic flow chart of an embodiment of the image pickup apparatus provided in FIG. 6;
  • FIG. 8 is another schematic flowchart of the embodiment of the image pickup apparatus provided in FIG. 6; FIG.
  • FIG. 9 is a schematic diagram showing a specific structure of an embodiment of the image pickup apparatus provided in FIG. 6; FIG.
  • FIG. 10 is a schematic flow chart of an embodiment of a method for reducing power consumption of an imaging device provided by the present application.
  • the present application relates to an image pickup apparatus and a method of reducing power consumption of an image pickup apparatus.
  • the purpose of improving the life time of the camera device is achieved.
  • FIG. 1 is a schematic structural diagram of an embodiment of an image pickup apparatus provided by the present application.
  • the imaging device 10 and the communication partner 20 are connected by wire or wirelessly.
  • the communication peer end may be a router, a base station host, a mobile terminal, a PC, etc., and a device that can communicate with the camera device can be used as a communication peer.
  • the camera device 10 includes a first communication module 11 , a second communication module 12 , and a first processor 13 .
  • the first communication module 11 and the second communication module 12 are used to communicate with the peer 20 . Perform data interaction.
  • the power consumption of the first communication module 11 is smaller than the power consumption of the second communication module 12.
  • the first processor 13 is configured to switch to the first communication module 11 when the communication requirement that the imaging device 10 transmits data to the communication peer 20 is lower than a preset condition, and send the data to the communication peer 20 at the camera device 10 When the communication request is higher than or equal to the preset condition, the second communication module 12 is switched.
  • the first communication module 11 when the camera device 10 does not activate any communication module (for example, when the device is turned on), the first communication module 11 is activated when the communication request of the camera device 10 to transmit data to the communication partner 20 is lower than a preset condition.
  • the second communication module 12 is activated when the communication request of the imaging device 10 to transmit data to the communication peer 20 is higher than or equal to the preset condition.
  • the first communication module 11 is turned on, the first communication module 11 is switched to the second communication mode when the communication request of the data transmitted by the camera 10 to the communication partner 20 is higher than or equal to the preset condition.
  • Group 12 when the camera device 10 has turned on the second communication module 12, when the communication request of the camera device 10 to transmit data to the communication peer 20 is lower than a preset condition, the second communication module 12 is switched to the first communication mode.
  • Group 11 when the camera device 10 has turned on the second communication module 12, when the communication request of the camera device 10 to transmit data to the communication peer 20 is lower than a preset condition, the second communication module 12
  • the first communication module 11 and the second communication module 12 perform data interaction with the communication peer 20, and specifically, the first communication module 11 or the second communication module 12 sends the camera to the communication peer 20
  • the working state information of the device 10, such as the working mode, the power, and the signal connection strength between the camera device 10 and the communication partner 20, may also be the first communication module 11 or the second communication module 12 to the communication peer. 20:
  • the recorded video is sent.
  • the first communication module 11 or the second communication module 12 may receive the command sent by the communication peer 20.
  • the command may include an instruction for controlling the turning on and off of the camera device 10, and an instruction to control the camera device 10 to adjust the shooting parameters; wherein the shooting parameter may be a focal length, brightness, contrast, and the like captured by the camera device 10.
  • the communication requirement when sending data may be specifically: the total amount of data sent by the video and video stream, or the size of the data stream when the monitoring image is viewed in real time, or parameters of the camera device.
  • the speed of response of the camera device during adjustment and mode setting such as the sharpness and smoothness of the real-time image, the application system of the remote upgrade camera device or the control algorithm of the upgrade sensor.
  • the communication requirement when transmitting data may also be determined according to the working mode of the camera device 10.
  • the camera device 10 may include multiple working modes, such as a standby mode and a monitoring mode. , data interaction mode, real-time image mode, etc.
  • the first processor 13 switches the communication module of the imaging device 10 to the first communication module 11 with lower power consumption; if the imaging device 10 is in the data In the interactive mode or the real-time image mode, the first processor 13 switches the communication module of the camera device 10 to the second communication module 12 with higher power consumption but better data transmission performance.
  • the communication requirement that the camera device 10 transmits data to the communication peer 20 is lower than a preset condition, and the first communication module 11 that uses less power consumption can completely satisfy the general between the camera device 10 and the communication peer 20. Communication requirements for sexual data interaction.
  • the first processor 13 is configured to implement switching of the communication module according to the received instruction sent by the communication peer 20, and different instructions may correspond to different communication requirements. For example, if the communication requirement corresponding to the first instruction is higher than or equal to the preset condition, and the communication requirement corresponding to the second instruction is lower than the preset condition, when the camera device 10 receives the first instruction sent by the communication peer 20, The second communication module 12, and when the camera device 10 receives the second command sent by the communication peer 20, switches to the first communication module 11.
  • the communication requirement does not refer to the type of data transmitted, but refers to the total amount of data sent by the video and video stream, or the size of the data stream when the monitoring image is viewed in real time, or to the camera.
  • the camera 10 automatically turns on the camera component or periodically turns on the camera assembly to capture images.
  • the image resolution and the communication requirement of the transmitted image data stream are lower than the preset condition, and the camera 10 communicates with the communication partner 20 through the first communication module 11.
  • the communication request of the camera device 10 to transmit data to the communication partner 20 is higher than a preset condition, and the camera device 10 transmits the real-time image to the communication partner 20 through the second communication module 12 and performs communication.
  • the first processor 13 can also be connected to the sensor, and the camera device 10 further includes a camera assembly.
  • the sensor can use an infrared sensor to detect the presence of organisms in the environment.
  • the infrared sensor detects the presence of the living body in the environment, and transmits the feedback signal to the first processor 13.
  • the first processor 13 activates the camera component and switches to the second communication module 12, and communicates to the communication pair through the second communication module 12. End 20 sends a live image.
  • the first processor 13 also sends an alarm signal to the communication peer 20 through the first communication module 11 or the second communication module 12.
  • the camera component includes a camera and a second processor.
  • the camera is configured to capture images
  • the second processor is configured to: when receiving the third command sent by the first processor 13, turn on the camera and perform image processing on the image, and pass the processed image to the first communication module 11 or the first
  • the second communication module 12 sends to the communication peer 20; or when the fourth command sent by the first processor 13 is received, the camera is turned off.
  • the third instruction is sent by the first processor 13 to the second processor when the sensor detects the presence of the organism in the environment or receives the first instruction sent by the communication peer 20 for capturing the image, and fourth.
  • the instruction is sent by the first processor 13 to the second processor when the sensor detects that the organism in the environment has disappeared or receives a second instruction sent by the communication peer 20 to end the retrieval of the image.
  • the first processor 13 and the second processor may be a separately configured Micro Control Unit (MCU) and a Central Processing Unit (CPU), wherein the central processing unit is mainly used for the camera.
  • the captured image is processed and the micro control unit is responsible for controlling the execution of the logic. That is, the micro control unit is configured to receive the feedback signal from the sensor and the instruction of the communication peer 20 to switch the first communication module 11 or the second communication module 12.
  • the second processor processes the image captured by the camera, and sends the image to the communication peer 20 through the first communication module 11 or the second communication module 12.
  • the first processor 13 and the second processor may also be uniformly integrated in a system on chip (SOC), and the chip level system may simultaneously include the above functions of the first processor 13 and the second processor.
  • the existing communication module usually includes a processor.
  • the processor built in the sub-1G can execute the control logic of the micro control unit MCU, that is, the first communication mode of the camera device 10 is switched by the built-in processor of the communication module.
  • Group 11 or second communication module 12 maintains data interaction with communication peer 20.
  • the first communication module 11 may adopt any one of Zigbee, Z-WAVE or SUB-1G, and the second communication module 12 is a WiFi module.
  • the working frequency band of the first communication module 11 may be any one of 433 MHz, 868 MHz, 915 MHz, 920 MHz, and 2.4 GHz.
  • the camera device 10 obtains a service set identifier, a WiFi connection password, and channel information that are connected to the communication peer 20 by using the first communication module 11 to enable the camera.
  • the device 10 enables the second communication module 12 (ie, the WIFI communication module), it forms a WiFi connection with the communication peer 20.
  • the camera device 10 after the camera device 10 is activated, the camera device 10 maintains data interaction with the communication partner 20 through at least one communication module.
  • the camera device disclosed in this embodiment includes: a first communication module and a second communication module, configured to perform data interaction with a communication peer; wherein, the power consumption of the first communication module is less than the second The power consumption of the communication module; the first processor is configured to switch to the first communication module when the communication requirement of the camera device transmitting data to the communication peer is lower than a preset condition, and send the image to the communication peer When the communication requirement of the data is higher than or equal to the preset condition, switching to the second communication module.
  • the communication modules using different power consumptions can be selected according to the communication requirements in the data interaction process, and the communication device requires less communication time for data interaction most of the time.
  • the present application switches to the first communication module with low power consumption when the communication requirement of the data interaction is low, which effectively reduces the power consumption of the imaging device and prolongs the battery life of the imaging device.
  • the communication module generally includes a normal power consumption and a low power consumption mode
  • the power consumption comparison between the first communication module and the second communication module is compared in the same mode, for example, the first communication.
  • the module and the second communication module are power consumption comparisons in the normal power consumption mode, or the first communication module and the second communication module are power consumption comparisons in the low power mode.
  • FIG. 2 a schematic structural diagram of another embodiment of an image pickup apparatus provided by the present application is provided.
  • the camera device 10 includes a first communication module 11 , a second communication module 12 , a first processor 13 , a camera assembly 14 , a sensor 15 , and a battery assembly 16 .
  • the camera device 10 maintains data interaction with the communication peer 20 through the first communication module 11 and the second communication module 12, the camera component 14 is used for capturing images and processing images, and the sensor 15 is configured to detect whether a living body is present in the environment.
  • the battery assembly 16 is used to provide power to the entire device.
  • the senor 15 is for detecting whether or not a living body is present in the environment, and the sensor 15 transmits a corresponding feedback signal to the first processor 13 upon detecting the occurrence of the living body in the environment or detecting the disappearance of the living body in the environment.
  • the first processor 13 is specifically configured to enable the camera component 14 when the sensor 15 detects the presence of a living being in the environment or receives a first instruction sent by the communication peer 20 for retrieving the monitoring screen. And switching to the second communication module 12, and transmitting the image to the communication peer 20 through the second communication module 12.
  • the first processor 13 is further configured to: when the sensor 15 detects that the living organism in the environment disappears, or receives the second instruction sent by the communication peer 20 to end the retrieval monitoring screen, turn off the camera component 14 and switch to The first communication module 11.
  • the communication peer 20 sends a first command to the camera device 10 to retrieve the real-time monitoring image. After receiving the first command, the camera device 10 turns on the camera component 14 to perform imaging, and transmits the real-time monitoring image to the communication. Opposite end 20.
  • the camera device 10 maintains data interaction with the communication peer 20 by using the first communication module 11 in the standby state.
  • the communication peer 20 sends a first instruction to the first processor 13 through the first communication module 11.
  • the first processor 13 activates the camera component 14, and the first processor 13 switches the first communication module 11 that communicates with the communication peer 20 to the second communication mode.
  • Group 12. The camera component 14 starts capturing images, and the first processor 13 performs image processing on the captured images, and transmits the processed images to the communication peer 20 through the second communication module 12, so that the user can view the real-time monitoring images.
  • the communication peer 20 sends a second command to the first processor 13 through the second communication module 12.
  • the first processor 13 switches the communication module to the first communication module 11 and maintains data interaction with the communication peer 20.
  • the sensor 15 is configured to detect whether a living body is present in the environment.
  • the sensor 15 in this embodiment is an infrared sensor, and the infrared sensor can detect the heat of the object in the environment to determine whether there is a living body in the environment. .
  • a signal is sent to the first processor 13.
  • the first processor 13 activates the camera component 14 and switches the communication module to the second communication module 12, and sends a monitoring screen to the communication peer 20 through the second communication module 12 while maintaining the A communication module 11 is in a non-operational state.
  • a signal is sent to the first processor 13.
  • the first processor 13 turns off the camera component 14, switches the communication module to the first communication module 11, and maintains data interaction with the communication peer 20 through the first communication module 11 while maintaining the second communication.
  • Module 12 is in an inactive state.
  • the first processor 13 when the sensor 15 detects the presence of a living being in the environment, the first processor 13 only turns on the camera assembly 14 without switching the communication module; in another embodiment, the sensor 15 When it is detected that a living body appears in the environment, the first processor 13 turns on the camera assembly 14 and simultaneously switches the communication module to the second communication module 12.
  • the first processor 13 when receiving the first instruction of the call monitoring screen sent by the communication peer 20, the first processor 13 only turns on the camera component 14 without switching the communication module; In another embodiment, when the first processor 13 receives the first instruction of the call monitoring screen sent by the communication peer 20, the first processor 13 turns on the camera component 14 and simultaneously switches the communication module to the second. Communication module 12.
  • the first processor 13 is further configured to send a warning signal to the communication peer 20 through the second communication module 12 when the monitoring screen is sent to the communication peer 20, so that the user can view the monitoring screen in time.
  • the first communication module 11 of the camera device 10 is a Sub-1G module 11a
  • the second communication module 12 is a WiFi module 12a
  • the first processor 13 is a chip-level system (SOC) 13a
  • the camera component 14 is a camera 14a.
  • the sensor 15 is an infrared sensor 15a.
  • the communication peer 20 is the base station host 20a.
  • the chip level system 13a integrates a logic control function and an image processing function. That is, the chip-level system 13a controls the switching of the Sub-1G module 11a and the WiFi module 12a, and performs image processing on the image captured by the camera 14a, and transmits the processed image through the WiFi module 12a or the Sub-1G module 11a. To the base station host 20a.
  • the power consumption of the Sub-1G module 11a is smaller than the power consumption of the WiFi module 12a.
  • the camera device 10 includes a first communication module 11 , a second communication module 12 , a camera assembly 14 , a sensor 15 , and a battery assembly 16 .
  • the camera assembly 14 includes a second processor 141 and a camera 142.
  • the functions of the first processor 13 defined in the foregoing FIG. 1 and FIG. 2 are replaced by a processor built in the first communication module 11 or the second communication module 12.
  • the communication peer 20 sends a first command to the camera device 10 to retrieve the real-time monitoring image. After receiving the first command, the camera device 10 turns on the camera component 14 to perform imaging, and transmits the real-time monitoring image to the communication. Opposite end 20.
  • the camera device 10 maintains data interaction with the communication peer 20 by using the first communication module 11 in the standby state.
  • the communication peer 20 sends a first instruction to the camera device 10 through the first communication module 11.
  • the processor built in the first communication module 11 or the second communication module 12 activates the camera 142, and the first communication module 11 or the second communication module 12 is built in.
  • the processor switches the first communication module 11 that communicates with the communication peer 20 to the second communication module 12.
  • the camera 142 starts capturing images, and the second processor 141 performs image processing on the captured images, and transmits the processed images to the communication peer 20 through the second communication module 12, so that the user can view the real-time monitoring images.
  • the communication peer 20 sends a second command to the camera device 10 through the second communication module 12.
  • the processor built in the first communication module 11 or the second communication module 12 receives the second command through the second communication module 12, the processor built in the first communication module 11 or the second communication module 12 switches communication.
  • the module is connected to the first communication module 11 and maintains data interaction with the communication peer 20.
  • the senor 15 is configured to detect whether a living body is present in the environment.
  • the sensor 15 in this embodiment is an infrared sensor, and the infrared sensor can detect the heat of the object in the environment to determine whether there is a living body in the environment. .
  • the sensor 15 detects the occurrence of a living body in the environment, it sends a signal to the processor built in the first communication module 11 or the second communication module 12.
  • the camera 142 is activated, and the communication module is switched to the second communication module 12, and communicated to the communication pair through the second communication module 12.
  • the terminal 20 transmits a monitoring screen while keeping the first communication module 11 in an inoperative state.
  • the sensor 15 When the sensor 15 detects the disappearance of the living body appearing in the environment, it sends a signal to the processor built in the first communication module 11 or the second communication module 12. After receiving the signal, the processor built in the first communication module 11 or the second communication module 12 turns off the camera 142, switches the communication module to the first communication module 11, and passes the first communication module 11 and the communication pair. End 20 maintains data interaction while maintaining second communication module 12 in an inactive state.
  • the first communication module 11 of the imaging device 10 is a Sub-1G module 11a
  • the second communication module 12 is a WiFi module 12a
  • the camera assembly 14 and the sensor 15 is an infrared sensor 15a.
  • the communication peer 20 is the base station host 20a.
  • the camera assembly 14 includes a central processing unit (CPU) 141a and a camera 142.
  • the central processing unit (CPU) 141a is for performing image processing on the image captured by the camera 142, and transmits the processed image to the base station host 20a via the WiFi module 12a or the Sub-1G module 11a.
  • the function of the first processor 13 defined above is replaced by a processor built in the first communication module 11 or the second communication module 12, that is, a processor built in the Sub-1G module 11a or the WiFi module 12a. Switching between the Sub-1G module 11a and the WiFi module 12a is implemented.
  • the power consumption of the Sub-1G module 11a is smaller than the power consumption of the WiFi module 12a.
  • FIG. 6 a schematic structural diagram of still another embodiment of an image pickup apparatus provided by the present application.
  • the camera device 10 includes a first communication module 11 , a second communication module 12 , a first processor 13 , a camera assembly 14 , a sensor 15 , and a battery assembly 16 .
  • the camera assembly 14 includes a second processor 141 and a camera 142.
  • the camera device 10 and the communication peer 20 perform data interaction through the first communication module 11 and the second communication module 12.
  • the first processor 13 is configured to receive an instruction from the communication peer 20 or a feedback signal from the sensor 15, and switch the communication module.
  • the second processor 141 is configured to perform image processing on the image captured by the camera 142, and send the processed image to the communication peer 20 through the first communication module 11 or the second communication module 12.
  • the battery assembly 16 specifically includes a battery 161 and a power manager 162.
  • Battery 161 is used to power the camera device, and power manager 162 is used to manage power distribution.
  • the battery 161 may be a dry battery, a rechargeable battery, or a lithium battery, and the power manager 162 may be a power management integrated circuit (power management IC, referred to as a power management chip) that satisfies requirements or other functions that satisfy the function.
  • power management IC power management integrated circuit
  • FIG. 7 is a schematic flowchart of an embodiment of a camera apparatus provided in FIG. 6. The process includes:
  • the camera device is in a standby state, and the data communication is maintained with the communication peer through the first communication module.
  • step S73 is performed, and if the result of the determination in step S72 is NO, step S71 is executed.
  • the first processor receives the first instruction, sends a third instruction to the second processor, and switches to the second communication module.
  • the first instruction is sent by the communication peer when the communication peer picks up the image of the camera.
  • the second processor activates the camera and establishes a data connection with the second communication module.
  • S75 The camera starts to capture images, and the second processor establishes a second communication module connection with the communication peer.
  • the second processor processes the captured image, and transmits the image to the communication peer end through the second communication module.
  • the first processor receives the second instruction, sends a fourth instruction to the second processor, and switches to the first communication module.
  • the second instruction is sent by the communication peer end when the communication peer end finishes capturing the image of the camera device.
  • FIG. 8 is another schematic flowchart of the embodiment of the camera apparatus provided in FIG. 6. The process includes:
  • the camera device is in a standby state, and the data communication is maintained with the communication peer through the first communication module.
  • S82 The first processor determines whether the infrared sensor detects the living body.
  • step S83 is performed, and when the determined result at step S82 is NO, step S81 is executed.
  • the first processor sends a third instruction to the second processor, and switches to the second communication module.
  • the third instruction is sent by the first processor when the infrared sensor detects the living body.
  • the second processor activates the camera and establishes a data connection with the second communication module.
  • the camera starts to capture images, and the second processor establishes a second communication module connection with the communication peer.
  • S86 The second processor processes the captured image, and transmits the image to the communication peer through the second communication module.
  • S87 The first processor sends a fourth instruction to the second processor, and switches to the first communication module.
  • the fourth instruction is sent by the first processor when the infrared sensor detects that the living body disappears, or when the first processor receives the second instruction sent by the communication peer.
  • FIG. 9 is a schematic structural diagram of an embodiment of the image pickup apparatus provided in FIG.
  • the camera system includes an imaging device 10 and a communication pair 20.
  • the first communication module 11 is a Sub-1G module 11a
  • the second communication module 12 is a WiFi module 12a.
  • the power consumption of the Sub-1G module 11a is smaller than the power consumption of the WiFi module 12a.
  • the first processor 13 is a microprocessor (MCU) 13a
  • the second processor 141 is a central processing unit (CPU) 141a
  • the sensor 15 is an infrared sensor 15a.
  • the battery assembly 16 includes a battery 161 and a power manager 162.
  • the communication peer 20 is the base station host 20a.
  • the microprocessor (MCU) 13a is used for logic control, specifically for receiving an instruction from the base station host 20 and a feedback signal from the infrared sensor 15a, and switching the communication module.
  • the central processing unit (CPU) 141a is for processing the picture taken by the camera 142, and transmits the processed image to the base station host 20a via the Sub-1G module 11a or the WiFi module 12a.
  • the camera device 10 and the communication peer 20 perform data interaction through the WiFi module 12a and the Sub-1G module 11a.
  • the power consumption of the Sub-1G module 11a is smaller than the power consumption of the WiFi module 12a.
  • the communication peer 20 stores the WiFi physical address and the static IP address of the camera 10 for a long time. After the WiFi module 12a of the camera 10 is turned on, the IP connection can be reduced, and the reconnection time can be reduced. Similarly, the camera 10 passes.
  • the Sub-1G module 11a obtains the service set identifier, the WiFi connection password, and the channel information that the base station host 20a and the WiFi module 12a are connected to, and can be directly connected when the WiFi module 12a in the camera device 10 is activated.
  • the WiFi module 12a In the standby state of the imaging apparatus 10, the WiFi module 12a is in a power-off state, and the imaging apparatus 10 maintains data interaction with the base station host 20a via the Sub-1G module 11a.
  • the base station host 20a issues a first command to the microprocessor (MCU) 13a via the Sub-1G module 11a.
  • the microprocessor (MCU) 13a receives the first command, and then issues a third command to activate the central processing unit (CPU) 141a, and switches to the WiFi module 12a to perform data interaction with the base station host 20a.
  • a central processing unit (CPU) 141a turns on the camera 142 and establishes a data connection with the WiFi module 12a.
  • the microprocessor (MCU) 13a issues an instruction to the power manager 162, the power manager 162 distributes power to the WiFi module 12a, and the microprocessor (MCU) 13a establishes a WiFi connection with the base station host 20a, and then issues commands to the power management.
  • the 162 powers down the Sub-1G module 11a.
  • the camera 142 starts capturing images, and the central processing unit (CPU) 141a processes the ingested image screen, and transmits the image to the base station host 20a through the WiFi module 12a, and the user views the monitoring image in real time.
  • the base station host 20a transmits the second finger issued by the WiFi module 12a to the microprocessor (MCU) 13a.
  • the microprocessor (MCU) 13a issues a fourth command to turn off the camera assembly 14.
  • the camera 142 stops capturing images, and the central processing unit (CPU) 141a disconnects from the WiFi module 12a.
  • the microprocessor (MCU) 13a switches to the Sub-1G module 11a to connect with the base station host 20a.
  • the microprocessor (MCU) 13a issues an instruction to the power manager 162, which distributes power to the Sub-1G module 11a, and then powers down the WiFi module 12a.
  • the imaging device 10 is connected to the base station host 20a via the Sub-1G module 11a, and stands by.
  • the infrared sensor 15a detects the presence of a living body in the monitoring environment and signals the microprocessor (MCU) 13a.
  • the microprocessor (MCU) 13a issues a third command to the central processing unit (CPU) 141a, simultaneously switches to the WiFi module 12a to perform data interaction with the base station host 20a, and issues an instruction to the power manager 162, and the power manager 162 gives the WiFi.
  • Module 12a distributes power.
  • the microprocessor (MCU) 13a issues a warning signal to the base station host 20a via the Sub-1G module 11a.
  • the central processing unit (CPU) 141a turns on the camera 142 and establishes a data connection with the WiFi module 12a.
  • the power manager 162 powers off the Sub-1G module 11a, and continues to be directed by the microprocessor (MCU) 13a through the WiFi module 12a.
  • the base station host 20a transmits a warning signal.
  • the camera 142 captures the image, and the microprocessor (MCU) 13a processes the captured image frame and transmits the image to the base station host 20a through the WiFi module 12a. The user can confirm the warning information and view the monitoring image in real time.
  • the image pickup apparatus 10 resumes the state of maintaining data interaction with the base station host 20a through the Sub-1G module 11a.
  • the camera device 10 normally maintains data interaction with the base station host 20a through the Sub-1G module 11a, and uses the WiFi module 12a to perform data interaction with the base station host 20a when the user views the real-time monitoring image.
  • the standby power consumption of the camera device 10 is effectively reduced, the battery life time is extended, and the base station host 20a can be quickly connected after the WiFi is started, and the user does not have to wait for 1 second. For too long, the experience can be guaranteed.
  • the camera device disclosed in this embodiment includes: a first communication module and a second communication module, configured to perform data interaction with a communication peer; wherein, the power consumption of the first communication module is less than the second The power consumption of the communication module; the first processor is configured to switch to the first communication module when the communication requirement of the camera device transmitting data to the communication peer is lower than a preset condition, and send the image to the communication peer When the communication requirement of the data is higher than or equal to the preset condition, switching to the second communication module.
  • the communication modules using different power consumptions can be selected according to the communication requirements in the data interaction process, and the communication device requires less communication time for data interaction most of the time.
  • the present application switches to the first communication module with low power consumption when the communication requirement of the data interaction is low, which effectively reduces the power consumption of the imaging device and prolongs the battery life of the imaging device.
  • the communication module generally includes a normal power consumption and a low power consumption mode
  • the power consumption comparison between the first communication module and the second communication module is compared in the same mode, for example, the first communication.
  • the module and the second communication module are power consumption comparisons in the normal power consumption mode, or the first communication module and the second communication module are power consumption comparisons in the low power mode.
  • FIG. 10 is a schematic flowchart of an embodiment of a method for reducing power consumption of a camera device, where the method includes:
  • the imaging device determines whether the communication request for transmitting data to the communication peer is lower than a preset condition.
  • step S102 is performed, and when the determined result of step S101 is NO, step S103 is executed.
  • the communication requirement when sending data may be specifically: a total amount of data sent by the video and video stream, or a data stream size when the monitoring image is viewed in real time, or a parameter adjustment and mode setting of the camera device.
  • the speed of response such as the clarity and smoothness of real-time images, the application system of remotely upgraded camera devices or the control algorithm for upgrading sensors.
  • S102 Switch to the first communication module of the imaging device.
  • the camera device does not need to perform a large amount of data interaction with the communication peer end, and the first communication module with less power consumption can completely satisfy the general between the camera device and the communication peer end.
  • sexual data interaction the first communication module with less power consumption.
  • the first processor switches the communication module of the camera device to a second communication module with higher power consumption but better data transmission performance.
  • the method further comprises detecting whether an organism is present in the environment.
  • Step S103 may be specifically: when detecting an organism in the environment, or receiving an instruction sent by the communication peer for retrieving the monitoring screen, the first communication module of the camera device The communication path of the communication peer is switched to the communication path of the second communication module of the camera device and the communication peer.
  • Step S102 may be specifically: when detecting that the living organism in the environment disappears, or receiving an instruction sent by the communication peer end to end the acquisition of the monitoring screen, the second communication module of the camera device is The communication path of the communication peer end is switched to a communication path between the first communication module of the camera device and the communication peer end.
  • the embodiment of the method for reducing the power consumption of the camera device disclosed in this embodiment is a method based on the above-mentioned camera device, and the steps and principles of the implementation are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种摄像装置、摄像系统及减小摄像装置功耗的方法,该摄像装置包括:第一通信模组和第二通信模组,用于与通信对端进行数据交互;其中,第一通信模组的功耗小于第二通信模组的功耗;第一处理器,用于在摄像装置向通信对端发送数据的通信要求低于预设条件时,切换至第一通信模组,以及在摄像装置向通信对端发送数据的通信要求高于或等于预设条件时,切换至第二通信模组。通过上述方式,本申请能够有效降低摄像装置的待机功耗,延长摄像装置的续航时间,提升用户的使用体验。

Description

一种摄像装置、摄像系统及减小摄像装置功耗的方法 技术领域
本申请涉及监控设备领域,特别是涉及一种摄像装置、摄像系统及减小摄像装置功耗的方法。
背景技术
随着现代生活品质的提升,人们对安防监控领域设备的要求越来越高。为了便于安装使用,监控设备多用无线替代了有线,用移动电源摆脱了电源插座的束缚。
由于要随时支持用户查看实时监控画面,摄像装置的WiFi模组需要一直保持与通信对端无线网关的通信,由于WiFi模组比较耗电,使得摄像装置的电量消耗较快,续航时间较短,若续航时间满足不了用户的要求,导致用户体验糟糕。
发明内容
本申请主要解决的技术问题是提供一种摄像装置、摄像系统及减小摄像装置功耗的方法,能够降低摄像设备待机功耗从而延长摄像装置的续航时间。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种摄像装置,其包括第一通信模组、第二通信模组、第一处理器。第一通信模组和第二通信模组,用于与通信对端进行数据交互;其中,第一通信模组的功耗小于第二通信模组的功耗;第一处理器,用于在摄像装置向通信对端发送数据的通信要求低于预设条件时,切换至第一通信模组,以及在摄像装置向通信对端发送数据的通信要求高于或等于预设条件时,切换至第二通信模组。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种摄像系统。该摄像系统包括上述摄像装置与通信对端。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种减小摄 像装置功耗的方法,包括如下步骤:摄像装置判断向通信对端发送数据的通信要求是否低于预设条件;在判断为低于预设条件时,切换至摄像装置的第一通信模组,在判断为高于或等于预设条件时,切换至摄像装置的第二通信模组;其中,第一通信模组的功耗小于第二通信模组的功耗。
本申请的有益效果是:区别于现有技术的情况,本申请公开的摄像装置包括第一通信模组、第二通信模组、第一处理器。第一通信模组和第二通信模组用于与通信对端进行数据交互。其中,第一通信模组的功耗小于第二通信模组的功耗。第一处理器,用于在摄像装置向通信对端发送数据的通信要求低于预设条件时,切换至第一通信模组,以及在摄像装置向通信对端发送数据的通信要求高于或等于预设条件时,切换至第二通信模组。通过上述方式,能够根据数据交互过程中的通信要求来选择使用不同功耗的通信模组,而摄像装置大多时间进行数据交互的通信要求较低。因此,本申请在摄像装置在数据交互的通信要求较低时切换至功耗低的第一通信模组,有效地降低了摄像装置的功耗,延长了摄像装置的续航时间。
附图说明
图1是本申请提供的摄像装置一实施例的结构示意图;
图2是本申请提供的摄像装置另一实施例的结构示意图;
图3是图2提供的摄像装置实施例的具体结构示意图;
图4是本申请提供的摄像装置又一实施例的结构示意图;
图5是图4提供的摄像装置实施例的具体结构示意图;
图6是本申请提供的摄像装置又一实施例的结构示意图;
图7是图6提供的摄像装置实施例的流程示意图;
图8是图6提供的摄像装置实施例的另一流程示意图;
图9是图6提供的摄像装置实施例的具体结构示意图;
图10是本申请提供的减小摄像装置功耗的方法一实施例的流程示意图。
具体实施方式
在下文中,将参照附图来描述本申请的示例性实施例。为了清楚和简要的目的,不详细描述公知的功能和构造,这是因为所述公知的功能和构造会使本申请在不必要的细节上变模糊。考虑到本申请中的功能而限定的下面描述的术语可以根据用户和操作者的意图或实施而不同。因此,应该在整个说明书的公开的基础上来限定所述术语。
简要的说,本申请涉及一种摄像装置、减小摄像装置功耗的方法。通过降低摄像系统待机功耗,达到提升摄像装置续航时间的目的。
参阅图1,本申请提供的摄像装置一实施例的结构示意图。该摄像装置10与通信对端20之间通过有线或无线的方式进行连接。
可选的,通信对端可以是路由器、基站主机、移动终端、PC等,可以与摄像装置进行通信的装置均可作为通信对端。
在本实施例中,摄像装置10包括第一通信模组11、第二通信模组12以及第一处理器13,第一通信模组11和第二通信模组12用于与通信对端20进行数据交互。其中,第一通信模组11的功耗小于第二通信模组12的功耗。
第一处理器13,用于在摄像装置10向通信对端20发送数据的通信要求低于预设条件时,切换至第一通信模组11,以及在摄像装置10向通信对端20发送数据的通信要求高于或等于预设条件时,切换至第二通信模组12。
例如,当摄像装置10未有启动任何通信模组(例如刚开机时),则在摄像装置10向通信对端20发送数据的通信要求低于预设条件时,启动第一通信模组11,在摄像装置10向通信对端20发送数据的通信要求高于或等于预设条件时,启动第二通信模组12。当摄像装置10已开启第一通信模组11,则在摄像装置10向通信对端20发送数据的通信要求高于或等于预设条件时,将第一通信模组11切换至第二通信模组12;当摄像装置10已开启第二通信模组12,在摄像装置10向通信对端20发送数据的通信要求低于预设条件时,将第二通信模组12切换至第一通信模组11。
可选的,第一通信模组11和第二通信模组12与通信对端20进行数据交互,可以具体为:第一通信模组11或第二通信模组12向通信对端20发送摄像装置10的工作状态信息,例如工作模式、电量以及摄像装置10与通信对端20之间 的信号连接强度等等,还可以是第一通信模组11或第二通信模组12向通信对端20发送拍摄的录像,另外,还可以是第一通信模组11或第二通信模组12接收通信对端20发送的指令。其中,该指令可以包括用于控制摄像装置10开启和关闭的指令,控制摄像装置10调节拍摄参数的指令;其中,拍摄参数可以是摄像装置10拍摄的焦距、亮度、对比度等。
可选的,在一具体实施例中,发送数据时的通信要求,可以具体为:发送影像视频流的数据总量大小,或实时查看监控影像时的数据码流大小,或对摄像装置进行参数调节、模式设置时摄像装置的响应速度的快慢;如实时影像的清晰度、流畅度,远程升级摄像装置的应用系统或升级传感器的控制算法等。
可选的,在另一具体实施例中,发送数据时的通信要求还可以根据摄像装置10的工作模式来确定,可以理解的,摄像装置10可以包括多种工作模式,例如待机模式、监控模式、数据交互模式、实时影像模式等。在具体工作中,若摄像装置10处于待机模式或监控模式,则第一处理器13将摄像装置10的通信模组切换为功耗较低的第一通信模组11;若摄像装置10处于数据交互模式或实时影像模式,则第一处理器13将摄像装置10的通信模组切换为功耗较高但是数据传输性能更好的第二通信模组12。
可以理解的,摄像装置10向通信对端20发送数据的通信要求低于预设条件,采用功耗较小的第一通信模组11完全可以满足摄像装置10与通信对端20之间的一般性数据交互的通信要求。
可选的,在又一具体实施例中,第一处理器13用于根据接收到的通信对端20发送的指令来实现通信模组的切换,不同的指令可以对应不同的通信要求。例如第一指令对应的通信要求高于或等于预设条件,第二指令对应的通信要求低于预设条件,则在摄像装置10接收到通信对端20发送的第一指令时,切换至第二通信模组12,以及在摄像装置10接收到通信对端20发送的第二指令时,切换至第一通信模组11。
可以理解的,在一实施例中,通信要求并不是指传输的数据的类型,而是指发送影像视频流的数据总量大小,或实时查看监控影像时的数据码流大小,或对摄像装置进行参数调节、模式设置时摄像装置的响应速度的快慢中的一种,例如,当传输的视频数据量较小或传输速度要求较低时,仍然可以采用第一通信模组11来进行数据交互。
例如,摄像装置10在监控模式下,即摄像装置10定时自动开启摄像头组 件或周期性开启摄像头组件,摄取影像。此时,影像清晰度、传输影像数据码流的通信要求低于预设条件,摄像装置10通过第一通信模组11与通信对端20进行通信。在用户查看实时影像时,摄像摄像装置10向通信对端20发送数据的通信要求高于预设条件,摄像装置10通过第二通信模组12向通信对端20发送实时影像以及进行通信。
可选的,第一处理器13还可以连接传感器,摄像装置10还包括摄像头组件。传感器可采用红外传感器,用来检测环境中是否出现生物体。红外传感器检测到环境中出现生物体,将反馈信号传递给第一处理器13,第一处理器13启用摄像头组件及切换至第二通信模组12,并通过第二通信模组12向通信对端20发送实时影像。同时,第一处理器13还通过第一通信模组11或第二通行模组12向通信对端20发出警报信号。
可选的,摄像头组件包括摄像头及第二处理器。摄像头用于摄取影像,第二处理器用于在接收到第一处理器13发送的第三指令时,开启摄像头和对影像进行图像处理,并将处理后的图像通过第一通信模组11或第二通信模组12发送给通信对端20;或接收到第一处理器13发送的第四指令时,关闭摄像头。
其中,第三指令是第一处理器13在传感器检测到环境中出现生物体、或接收到通信对端20发送的用于调取影像的第一指令时向第二处理器发送的,第四指令是第一处理器13在传感器检测到环境中的生物体消失、或接收到通信对端20发送的用于结束调取影像的第二指令时向第二处理器发送的。
可选的,第一处理器13和第二处理器可以是单独设置的微控制单元(Microcontroller Unit,MCU)和中央处理器(Central Processing Unit,CPU),其中,中央处理器主要用于对摄像头摄取的图像进行处理,微控制单元负责控制逻辑的执行。即微控制单元用于接收来自传感器的反馈信号和通信对端20的指令,以对第一通信模组11或第二通信模组12进行切换。第二处理器处理摄像头摄取的影像,并将影像通过第一通信模组11或第二通信模组12发送给通信对端20。
第一处理器13和第二处理器还可以统一集成于芯片级系统(System on Chip,SOC),芯片级系统可同时包含第一处理器13和第二处理器的上述功能。另外,现有的通信模组通常包括有处理器,例如sub-1G内置的处理器可执行微控制单元MCU的控制逻辑,即通过通信模组的内置处理器切换摄像装置10的第一通信模组11或第二通信模组12与通信对端20保持数据交互。
可选的,第一通信模组11可采用Zigbee、Z-WAVE或SUB-1G中的任意一种通信方案,第二通信模组12是WiFi模组。
其中,第一通信模组11的工作频段可以是433MHz、868MHz、915MHz、920MHz、2.4GHz中的任意一种。
可选的,在第二通信模组12为WiFi模组时,摄像装置10还通过第一通信模组11获取与通信对端20WiFi连接的服务集标识、WiFi连接口令和信道信息,以使摄像装置10启用第二通信模组12(即WIFI通信模组)时,与通信对端20形成WiFi连接。
可以理解的,在一实施例中,自摄像装置10启动后,摄像装置10至少通过一种通信模组与通信对端20保持数据交互。
区别于现有技术,本实施例公开的摄像装置包括:第一通信模组和第二通信模组,用于与通信对端进行数据交互;其中,第一通信模组的功耗小于第二通信模组的功耗;第一处理器,用于在摄像装置向通信对端发送数据的通信要求低于预设条件时,切换至第一通信模组,以及在摄像装置向通信对端发送数据的通信要求高于或等于预设条件时,切换至所述第二通信模组。通过上述方式,能够根据数据交互过程中的通信要求来选择使用不同功耗的通信模组,而摄像装置大多时间进行数据交互的通信要求较低。因此,本申请在摄像装置在数据交互的通信要求较低时切换至功耗低的第一通信模组,有效地降低了摄像装置的功耗,延长了摄像装置的续航时间。考虑到通信模组一般都包括正常功耗和低功耗的工作模式,上述第一通信模组和第二通信模组的功耗对比均是在各自的同一模式下的对比,例如第一通信模组和第二通信模组均为正常功耗模式下的功耗对比,或第一通信模组和第二通信模组均为低功耗模式下的功耗对比。
参阅图2,本申请提供的摄像装置另一实施例的结构示意图。
该摄像装置10包括第一通信模组11、第二通信模组12、第一处理器13、摄像头组件14、传感器15、电池组件16。
其中,摄像装置10通过第一通信模组11和第二通信模组12与通信对端20保持数据交互,摄像头组件14用于摄取影像和处理影像,传感器15用于检测环境中是否出现生物体,电池组件16用于给整个装置提供电力。
具体地,传感器15用于检测环境中是否出现生物体,传感器15在检测到环境中出现生物体或检测到环境中的生物体消失时向第一处理器13发送相应的 反馈信号。
在本实施例中,第一处理器13具体用于在传感器15检测到环境中出现生物体、或接收到通信对端20发送的用于调取监控画面的第一指令时,启用摄像头组件14及切换至第二通信模组12,并通过第二通信模组12向通信对端20发送所述影像。
第一处理器13具体还用于在传感器15检测到环境中的生物体消失、或接收到通信对端20发送的用于结束调取监控画面的第二指令时,关闭摄像头组件14及切换至第一通信模组11。
在一情景中,通信对端20向摄像装置10发送调取实时监控影像的第一指令,摄像装置10在收到第一指令后,开启摄像头组件14进行摄像,并把实时监控影像发送给通信对端20。
具体地,摄像装置10在待机状态下,采用第一通信模组11与通信对端20保持数据交互。在用户查看实时监控影像时,通信对端20通过第一通信模组11给第一处理器13发出第一指令。第一处理器13通过第一通信模组11接收到第一指令后,启动摄像头组件14,同时第一处理器13将与通信对端20通信的第一通信模组11切换至第二通信模组12。摄像头组件14开始摄取影像,第一处理器13对摄取的影像进行图像处理,并通过第二通信模组12向通信对端20传输处理后的影像,用户即可查看实时监控影像。待用户结束查看影像,通信对端20通过第二通信模组12给第一处理器13发出第二指令。第一处理器13通过第二通信模组12接收到第二指令后,第一处理器13切换通信模组至第一通信模组11,并与通信对端20保持数据交互。
在另一情景中,传感器15用于检测到环境中是否出现生物体,例如,本实施例中的传感器15为红外传感器,红外传感器可以检测环境中物体的热量,以判断环境中是否有生物体。当传感器15检测到环境中出现生物体,发出信号给第一处理器13。第一处理器13接收信号后,启动摄像头组件14,并将通信模组切换至第二通信模组12,并通过第二通信模组12向通信对端20发送监控画面,同时保持所述第一通信模组11处于非工作状态。当传感器15检测到环境中出现的生物体消失,发出信号给第一处理器13。第一处理器13接收信号后,关闭摄像头组件14,并将通信模组切换至第一通信模组11,并通过第一通信模组11与通信对端20保持数据交互,同时保持第二通信模组12处于非工作状态。
可以理解的,在一实施例中,传感器15在检测到环境中出现生物体时,第 一处理器13仅开启摄像头组件14,而不进行通信模组的切换;在另一实施例中,传感器15在检测到环境中出现生物体时,第一处理器13开启摄像头组件14,并同时将通信模组切换为第二通信模组12。
可以理解的,在一实施例中,第一处理器13在接收到通信对端20发送的调取监控画面的第一指令时,仅开启摄像头组件14,而不进行通信模组的切换;在另一实施例中,第一处理器13在接收到通信对端20发送的调取监控画面的第一指令时,第一处理器13开启摄像头组件14,并同时将通信模组切换为第二通信模组12。
此外,第一处理器13还用于在向通信对端20发送监控画面时,通过第二通信模组12向通信对端20发出警告信号,以便用户及时查看监控画面。
同时参阅图2和图3,下面以一种摄像装置的具体结构进行说明。
摄像装置10的第一通信模组11为Sub-1G模组11a、第二通信模组12为WiFi模组12a、第一处理器13为芯片级系统(SOC)13a、摄像头组件14为摄像头14a、传感器15为红外传感器15a。通信对端20为基站主机20a。
其中,芯片级系统13a集成有逻辑控制功能及图像处理功能。即芯片级系统13a控制Sub-1G模组11a和WiFi模组12a的切换,同时对摄像头14a摄取的影像进行图像处理,并将处理后的影像通过WiFi模组12a或Sub-1G模组11a发送给基站主机20a。
其中,Sub-1G模组11a的功耗小于WiFi模组12a的功耗。
参阅图4,本申请提供的摄像装置又一实施例的结构示意图。该摄像装置10包括第一通信模组11、第二通信模组12、摄像头组件14、传感器15、电池组件16。
其中,摄像头组件14包括第二处理器141和摄像头142。
其中,上述图1和图2中定义的第一处理器13的功能由第一通信模组11或第二通信模组12内置的处理器代替。
在一情景中,通信对端20向摄像装置10发送调取实时监控影像的第一指令,摄像装置10在收到第一指令后,开启摄像头组件14进行摄像,并把实时监控影像发送给通信对端20。
具体地,摄像装置10在待机状态下,采用第一通信模组11与通信对端20保持数据交互。在用户查看实时监控影像时,通信对端20通过第一通信模组11给摄像装置10发出第一指令。第一通信模组11或第二通信模组12内置的处理 器通过第一通信模组11接收到第一指令后,启动摄像头142,同时第一通信模组11或第二通信模组12内置的处理器将与通信对端20通信的第一通信模组11切换至第二通信模组12。摄像头142开始摄取影像,第二处理器141对摄取的影像进行图像处理,并通过第二通信模组12向通信对端20传输处理后的影像,用户即可查看实时监控影像。待用户结束查看影像,通信对端20通过第二通信模组12给摄像装置10发出第二指令。第一通信模组11或第二通信模组12内置的处理器通过第二通信模组12接收到第二指令后,第一通信模组11或第二通信模组12内置的处理器切换通信模组至第一通信模组11,并与通信对端20保持数据交互。
在另一情景中,传感器15用于检测到环境中是否出现生物体,例如,本实施例中的传感器15为红外传感器,红外传感器可以检测环境中物体的热量,以判断环境中是否有生物体。当传感器15检测到环境中出现生物体,发出信号给第一通信模组11或第二通信模组12内置的处理器。第一通信模组11或第二通信模组12内置的处理器接收信号后,启动摄像头142,并将通信模组切换至第二通信模组12,并通过第二通信模组12向通信对端20发送监控画面,同时保持所述第一通信模组11处于非工作状态。当传感器15检测到环境中出现的生物体消失,发出信号给第一通信模组11或第二通信模组12内置的处理器。第一通信模组11或第二通信模组12内置的处理器接收信号后,关闭摄像头142,并将通信模组切换至第一通信模组11,并通过第一通信模组11与通信对端20保持数据交互,同时保持第二通信模组12处于非工作状态。
同时参阅图4和图5,下面以一种摄像装置的具体结构进行说明。
摄像装置10的第一通信模组11为Sub-1G模组11a、第二通信模组12为WiFi模组12a、摄像头组件14、传感器15为红外传感器15a。通信对端20为基站主机20a。
其中,摄像头组件14包括中央处理器(CPU)141a和摄像头142。中央处理器(CPU)141a用于对摄像头142摄取的影像进行图像处理,并将处理后的影像通过WiFi模组12a或Sub-1G模组11a发送给基站主机20a。
其中,上述定义的第一处理器13的功能由第一通信模组11或第二通信模组12内置的处理器代替,即Sub-1G模组11a或WiFi模组12a内置的处理器,用于实现Sub-1G模组11a和WiFi模组12a的切换。
其中,Sub-1G模组11a的功耗小于WiFi模组12a的功耗。
参阅图6,本申请提供的摄像装置又一实施例的结构示意图。
该摄像装置10包括第一通信模组11、第二通信模组12、第一处理器13、摄像头组件14、传感器15、电池组件16。
其中,摄像头组件14包括第二处理器141和摄像头142。
在本实施例中,摄像装置10与通信对端20通过第一通信模组11和第二通信模组12进行数据交互。第一处理器13用于接收通信对端20发出的指令或传感器15发出的反馈信号,并切换通信模组。第二处理器141用于对摄像头142摄取的影像进行图像处理,并将处理后的影像通过第一通信模组11或第二通信模组12发送给通信对端20。
电池组件16具体包括电池161和电源管理器162。电池161用于给摄像装置供电,电源管理器162用于管理电力分配。电池161可以是干电池、可充电电池、锂电池,电源管理器162可以是满足要求的电源管理集成电路(电源管理IC,简称电源管理芯片)或者其他满足功能的元件。
参阅图7,图7是图6提供的摄像装置实施例的一种流程示意图,该流程包括:
S71:摄像装置处于待机状态,通过第一通信模组与通信对端保持数据交互。
S72:判断用户是否通过通信对端访问摄像装置。
在步骤S72的判断结果为是时,执行步骤S73,在步骤S72的判断结果为否时,执行步骤S71。
S73:第一处理器接收到第一指令,向第二处理器发送第三指令,并切换至第二通信模组。
其中,所述第一指令是通信对端在调取摄像装置的影像时由通信对端发送的。
S74:第二处理器激活摄像头,并与第二通信模组建立数据连接。
S75:摄像头开始摄取影像,第二处理器与通信对端建立第二通信模组连接。
S76:第二处理器处理摄取的影像,并将影像通过第二通信模组传递给通信对端。
S77:第一处理器接收到第二指令,向第二处理器发送第四指令,并切换至第一通信模组。
其中,所述第二指令是通信对端在结束调取摄像装置的影像时由通信对端发送的。
参阅图8,图8是图6提供的摄像装置实施例的另一种流程示意图,该流程包括:
S81:摄像装置处于待机状态,通过第一通信模组与通信对端保持数据交互。
S82:第一处理器判断红外传感器是否检测到生物体。
在步骤S82的判断结果为是时,执行步骤S83,在步骤S82的判断结果为否时,执行步骤S81。
S83:第一处理器向第二处理器发出第三指令,并切换至第二通信模组。
其中,所述第三指令是在红外传感器检测到生物体时由第一处理器发送的。
S84:第二处理器激活摄像头,并与第二通信模组建立数据连接。
S85:摄像头开始摄取影像,第二处理器与通信对端建立第二通信模组连接。
S86:第二处理器处理摄取的影像,并将影像通过第二通信模组传递给通信对端。
S87:第一处理器向第二处理器发出第四指令,并切换至第一通信模组。
其中,所述第四指令是在红外传感器检测到生物体消失时,或第一处理器接收到通信对端发送的第二指令时由第一处理器发送的。
参阅图9,图9是图6提供的摄像装置实施例的具体结构示意图。
该摄像系统包括摄像装置10和通信对端20。
其中,第一通信模组11是Sub-1G模组11a,第二通信模组12为WiFi模组12a,Sub-1G模组11a的功耗小于WiFi模组12a的功耗。第一处理器13为微处理器(MCU)13a,第二处理器141为中央处理器(CPU)141a,传感器15为红外传感器15a。电池组件16包括电池161、电源管理器162。通信对端20为基站主机20a。
微处理器(MCU)13a用于逻辑控制,具体用于接收基站主机20发出的指令和红外传感器15a发出的反馈信号,并切换通信模组。中央处理器(CPU)141a用于处理摄像头142摄取的画面,并将处理后的影像通过Sub-1G模组11a或WiFi模组12a发送给基站主机20a。
摄像装置10与通信对端20通过WiFi模组12a和Sub-1G模组11a进行数据交互。其中,Sub-1G模组11a的功耗小于WiFi模组12a的功耗。
进一步的,通信对端20会将摄像装置10的WiFi物理地址和静态IP地址长期保存,在摄像装置10WiFi模组12a开启后不用重新配置IP,能减少重新连接的时间,同样摄像装置10会通过Sub-1G模组11a拿到基站主机20a与WiFi模 组12a连接的的服务集标识、WiFi连接口令和信道信息,等摄像装置10中的WiFi模组12a启动的时候可以直接连接。
在摄像装置10待机状态下,WiFi模组12a处于断电状态,摄像装置10通过Sub-1G模组11a与基站主机20a保持数据交互。当用户通过基站主机20a查看实时影像时,基站主机20a通过Sub-1G模组11a给微处理器(MCU)13a发出第一指令。微处理器(MCU)13a接收第一指令,之后发出第三指令激活中央处理器(CPU)141a,并切换至WiFi模组12a与基站主机20a进行数据交互。中央处理器(CPU)141a开启摄像头142,并与WiFi模组12a建立数据连接。同时,微处理器(MCU)13a发出指令给电源管理器162,电源管理器162给WiFi模组12a分配电力,微处理器(MCU)13a与基站主机20a建立WiFi连接,之后发出指令给电源管理器162将Sub-1G模组11a断电。摄像头142开始摄取影像,中央处理器(CPU)141a处理摄入影像画面,并将影像通过WiFi模组12a传递给基站主机20a,用户实时查看监控影像。
用户结束观看影像,基站主机20a通过WiFi模组12a发出的第二指传递给微处理器(MCU)13a。微处理器(MCU)13a接收指令后,发出第四指令关闭摄像头组件14。摄像头142停止摄入影像,中央处理器(CPU)141a断开与WiFi模组12a的连接。同时,微处理器(MCU)13a切换至Sub-1G模组11a与基站主机20a连接。在此之前,微处理器(MCU)13a发出指令给电源管理器162,电源管理器162给Sub-1G模组11a分配电力,之后将WiFi模组12a断电。摄像装置10通过Sub-1G模组11a与基站主机20a保持连接,待机。
另一种情形中,红外传感器15a检测到监控环境中出现生物体,向微处理器(MCU)13a发出信号。微处理器(MCU)13a向中央处理器(CPU)141a发出第三指令,同时切换至WiFi模组12a与基站主机20a进行数据交互,并给电源管理器162发出指令,电源管理器162给WiFi模组12a分配电力。在同一时间,微处理器(MCU)13a通过Sub-1G模组11a向基站主机20a发出警告信号。中央处理器(CPU)141a接收到第二指令后,开启摄像头142,并与WiFi模组12a建立数据连接。待微处理器(MCU)13a与基站主机20a建立WiFi模组12a连接后,电源管理器162将Sub-1G模组11a断电,并由微处理器(MCU)13a通过WiFi模组12a继续向基站主机20a发送警告信号。摄像头142摄取影像,微处理器(MCU)13a处理摄取的影像画面,并通过WiFi模组12a将影像传递给基站主机20a,待用户确认警告信息并可实时查看监控影像。
用户确认一切正常后,摄像装置10再恢复到通过Sub-1G模组11a与基站主机20a保持数据交互的状态。
如上面所描述的,摄像装置10平时通过Sub-1G模组11a保持与基站主机20a的数据交互,在用户查看实时监控影像时采用WiFi模组12a与基站主机20a进行数据交互。通过上述方式,不仅可以保证远程观看影像功能,而且摄像装置10的待机功耗有效减少,延长了电池的续航时间,并且WiFi启动后可以快速连接基站主机20a,时间在1秒内,用户无需等待太长时间,体验可以得到保证。
区别于现有技术,本实施例公开的摄像装置包括:第一通信模组和第二通信模组,用于与通信对端进行数据交互;其中,第一通信模组的功耗小于第二通信模组的功耗;第一处理器,用于在摄像装置向通信对端发送数据的通信要求低于预设条件时,切换至第一通信模组,以及在摄像装置向通信对端发送数据的通信要求高于或等于预设条件时,切换至所述第二通信模组。通过上述方式,能够根据数据交互过程中的通信要求来选择使用不同功耗的通信模组,而摄像装置大多时间进行数据交互的通信要求较低。因此,本申请在摄像装置在数据交互的通信要求较低时切换至功耗低的第一通信模组,有效地降低了摄像装置的功耗,延长了摄像装置的续航时间。考虑到通信模组一般都包括正常功耗和低功耗的工作模式,上述第一通信模组和第二通信模组的功耗对比均是在各自的同一模式下的对比,例如第一通信模组和第二通信模组均为正常功耗模式下的功耗对比,或第一通信模组和第二通信模组均为低功耗模式下的功耗对比。
参阅图10,本申请提供的减小摄像装置功耗的方法一实施例的流程示意图,该方法包括:
S101:摄像装置判断向通信对端发送数据的通信要求是否低于预设条件。
在步骤S101的判断结果为是时,执行步骤S102,在步骤S101的判断结果为否时,执行步骤S103。
可选的,发送数据时的通信要求,可以具体为:发送影像视频流的数据总量大小,或实时查看监控影像时的数据码流大小,或对摄像装置进行参数调节、模式设置时摄像装置的响应速度的快慢;如实时影像的清晰度、流畅度,远程升级摄像装置的应用系统或升级传感器的控制算法等。
S102:切换至所述摄像装置的第一通信模组。
S103:切换至所述摄像装置的第二通信模组。
可选的,在待机模式和监控模式下,摄像装置不需要与通信对端进行大量的数据交互,采用功耗较小的第一通信模组完全可以满足摄像装置与通信对端之间的一般性数据交互。
可选的,摄像装置在数据交互模式下,第一处理器将摄像装置的通信模组切换为功耗较高但是数据传输性能更好的第二通信模组。
可选的,在一实施例中,该方法还包括检测环境中是否出现生物体。
则步骤S103可以具体为:在检测到环境中的生物体出现、或接收到所述通信对端发送的用于调取监控画面的指令时,将所述摄像装置的第一通信模组与所述通信对端的通信路径切换至所述摄像装置的第二通信模组与所述通信对端的通信路径。
则步骤S102可以具体为:在检测到环境中的生物体消失、或接收到所述通信对端发送的用于结束调取监控画面的指令时,将所述摄像装置的第二通信模组与所述通信对端的通信路径切换至所述摄像装置的第一通信模组与所述通信对端的通信路径。
可以理解的,本实施例公开的减小摄像装置功耗的方法的实施例是基于上述摄像装置的一种方法,其实施的步骤和原理类似,这里不再赘述。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种摄像系统,其中,包括摄像装置和通信对端;
    所述摄像装置包括:
    第一通信模组和第二通信模组,用于与所述通信对端进行数据交互;其中,所述第一通信模组的功耗小于所述第二通信模组的功耗;
    第一处理器,用于在所述摄像装置向所述通信对端发送数据的通信要求低于预设条件时,切换至所述第一通信模组,以及在所述摄像装置向所述通信对端发送数据的通信要求高于或等于所述预设条件时,切换至所述第二通信模组。
  2. 根据权利要求1所述的摄像系统,其中,
    所述摄像装置还包括与所述第一处理器连接的传感器以及摄像头组件;
    所述传感器用于检测环境中是否出现生物体;
    所述摄像头组件用于摄取影像;
    所述第一处理器用于在所述传感器检测到环境中出现生物体、或接收到所述通信对端发送的用于调取监控画面的第一指令时,启用所述摄像头组件及切换至所述第二通信模组,并通过所述第二通信模组向所述通信对端发送所述影像。
  3. 根据权利要求2所述的摄像系统,其中,
    所述第一处理器还用于在所述传感器检测到环境中的生物体消失、或接收到所述通信对端发送的用于结束调取监控画面的第二指令时,关闭所述摄像头组件及切换至所述第一通信模组。
  4. 根据权利要求2或3所述的摄像系统,其中,
    所述传感器为红外传感器。
  5. 根据权利要求2所述的摄像系统,其中,
    所述摄像头组件包括摄像头以及第二处理器;
    所述摄像头用于摄取影像;
    所述第二处理器用于在接收到所述第一处理器发送的第三指令时,开启所述摄像头和对所述影像进行图像处理,并将处理后的图像通过所述第一通信模组或所述第二通信模组发送给所述通信对端,或
    接收到所述第一处理器发送的第四指令时,关闭所述摄像头;
    其中,所述第三指令是所述第一处理器在所述传感器检测到环境中出现生物体、或接收到所述通信对端发送的用于调取所述影像的第一指令时向所述第二处理器发送的,所述第四指令是所述第一处理器在所述传感器检测到环境中的生物体消失、或接收到所述通信对端发送的用于结束调取所述影像的第二指令时向所述第二处理器发送的。
  6. 根据权利要求1所述的摄像系统,其中,
    所述第一通信模组为无线通信模组,其工作频段是433MHz、868MHz、915MHz、920MHz、2.4GHz中的任意一种。
  7. 根据权利要求1所述的摄像系统,其中,
    所述第一通信模组采用Zigbee、Z-WAVE或Sub-1G的任意一种通信方案;
    所述第二通信模组为WiFi通信模组。
  8. 根据权利要求7所述的摄像系统,其中,
    所述第一处理器还用于通过所述第一通信模组获取与所述通信对端WiFi连接的服务集标识、WiFi连接口令和信道信息,以使所述摄像装置启用所述WIFI通信模组时,与所述通信对端形成WiFi连接。
  9. 一种摄像装置,其中,包括:
    第一通信模组和第二通信模组,用于与通信对端进行数据交互;其中,所述第一通信模组的功耗小于所述第二通信模组的功耗;
    第一处理器,用于在所述摄像装置向所述通信对端发送数据的通信要求低于预设条件时,切换至所述第一通信模组,以及在所述摄像装置向所述通信对端发送数据的通信要求高于或等于所述预设条件时,切换至所述第二通信模组。
  10. 根据权利要求9所述的摄像装置,其中,
    所述摄像装置还包括与所述第一处理器连接的传感器以及摄像头组件;
    所述传感器用于检测环境中是否出现生物体;
    所述摄像头组件用于摄取影像;
    所述第一处理器用于在所述传感器检测到环境中出现生物体、或接收到所述通信对端发送的用于调取监控画面的第一指令时,启用所述摄像头组件及切换至所述第二通信模组,并通过所述第二通信模组向所述通信对端发送所述影像。
  11. 根据权利要求10所述的摄像装置,其中,
    所述第一处理器还用于在所述传感器检测到环境中的生物体消失、或接收到所述通信对端发送的用于结束调取监控画面的第二指令时,关闭所述摄像头组件及切换至所述第一通信模组。
  12. 根据权利要求10或11所述的摄像装置,其中,
    所述传感器为红外传感器。
  13. 根据权利要求10所述的摄像装置,其中,
    所述摄像头组件包括摄像头以及第二处理器;
    所述摄像头用于摄取影像;
    所述第二处理器用于在接收到所述第一处理器发送的第三指令时,开启所述摄像头和对所述影像进行图像处理,并将处理后的图像通过所述第一通信模组或所述第二通信模组发送给所述通信对端,或
    接收到所述第一处理器发送的第四指令时,关闭所述摄像头;
    其中,所述第三指令是所述第一处理器在所述传感器检测到环境中出现生物体、或接收到所述通信对端发送的用于调取所述影像的第一指令时向所述第二处理器发送的,所述第四指令是所述第一处理器在所述传感器检测到环境中的生物体消失、或接收到所述通信对端发送的用于结束调取所述影像的第二指令时向所述第二处理器发送的。
  14. 根据权利要求9所述的摄像装置,其中,
    所述第一通信模组为无线通信模组,其工作频段是433MHz、868MHz、915MHz、920MHz、2.4GHz中的任意一种。
  15. 根据权利要求9所述的摄像装置,其中,
    所述第一通信模组采用Zigbee、Z-WAVE或Sub-1G的任意一种通信方案;
    所述第二通信模组为WiFi通信模组。
  16. 根据权利要求15所述的摄像装置,其中,
    所述第一处理器还用于通过所述第一通信模组获取与所述通信对端WiFi连接的服务集标识、WiFi连接口令和信道信息,以使所述摄像装置启用所述WIFI通信模组时,与所述通信对端形成WiFi连接。
  17. 一种减小摄像装置功耗的方法,其中,包括:
    所述摄像装置判断向通信对端发送数据的通信要求是否低于预设条件;
    在判断为低于所述预设条件时,切换至所述摄像装置的第一通信模组,在判断为高于或等于所述预设条件时,切换至所述摄像装置的第二通信模组;
    其中,所述第一通信模组的功耗小于所述第二通信模组的功耗。
  18. 根据权利要求17所述的通信方法,其中,
    所述方法还包括:
    检测环境中是否出现生物体;
    所述在判断为低于所述预设条件时,切换至所述摄像装置的第一通信模组,在判断为高于或等于所述预设条件时,切换至所述摄像装置的第二通信模组,包括:
    在检测到环境中出现生物体、或接收到所述通信对端发送的用于调取监控画面的第一指令时,启用摄像头组件及切换至所述第二通信模组,并通过所述第二通信模组向所述通信对端发送所述摄像头组件摄取的影像;以及,
    在检测到环境中的生物体消失、或接收到所述通信对端发送的用于结束调取监控画面的第二指令时,关闭所述摄像头组件及切换至所述第一通信模组。
PCT/CN2018/104899 2017-09-15 2018-09-10 一种摄像装置、摄像系统及减小摄像装置功耗的方法 WO2019052431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710838020.X 2017-09-15
CN201710838020.XA CN107749943B (zh) 2017-09-15 2017-09-15 一种摄像装置、减小摄像装置功耗的方法

Publications (1)

Publication Number Publication Date
WO2019052431A1 true WO2019052431A1 (zh) 2019-03-21

Family

ID=61255326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104899 WO2019052431A1 (zh) 2017-09-15 2018-09-10 一种摄像装置、摄像系统及减小摄像装置功耗的方法

Country Status (2)

Country Link
CN (1) CN107749943B (zh)
WO (1) WO2019052431A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107749943B (zh) * 2017-09-15 2020-05-08 安克创新科技股份有限公司 一种摄像装置、减小摄像装置功耗的方法
CN110958658A (zh) * 2019-11-20 2020-04-03 北京思存通信技术有限公司 一种通信设备及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297756A (zh) * 2013-05-22 2013-09-11 沈凌 一种集中式图像监控系统
CN106125621A (zh) * 2016-08-10 2016-11-16 深圳市奥尼电子工业有限公司 安防监控系统及安防监控方法
CN106303416A (zh) * 2016-08-10 2017-01-04 深圳市奥尼电子工业有限公司 安防监控设备、安防监控系统及安防监控方法
CN206117815U (zh) * 2016-08-17 2017-04-19 杭州萤石网络有限公司 一种Wi‑Fi无线网络摄像机和监控摄像系统
US20170178476A1 (en) * 2015-12-18 2017-06-22 Hanwha Techwin Co., Ltd. Surveillance system and method of controlling the same
US20170214852A1 (en) * 2016-01-21 2017-07-27 Samsung Electronics Co., Ltd. Image capturing apparatus and control mehtod thereof
CN107734608A (zh) * 2017-09-15 2018-02-23 湖南海翼电子商务股份有限公司 一种摄像装置以及减少摄像装置功耗的方法
CN107749943A (zh) * 2017-09-15 2018-03-02 湖南海翼电子商务股份有限公司 一种摄像装置、减小摄像装置功耗的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297756A (zh) * 2013-05-22 2013-09-11 沈凌 一种集中式图像监控系统
US20170178476A1 (en) * 2015-12-18 2017-06-22 Hanwha Techwin Co., Ltd. Surveillance system and method of controlling the same
US20170214852A1 (en) * 2016-01-21 2017-07-27 Samsung Electronics Co., Ltd. Image capturing apparatus and control mehtod thereof
CN106125621A (zh) * 2016-08-10 2016-11-16 深圳市奥尼电子工业有限公司 安防监控系统及安防监控方法
CN106303416A (zh) * 2016-08-10 2017-01-04 深圳市奥尼电子工业有限公司 安防监控设备、安防监控系统及安防监控方法
CN206117815U (zh) * 2016-08-17 2017-04-19 杭州萤石网络有限公司 一种Wi‑Fi无线网络摄像机和监控摄像系统
CN107734608A (zh) * 2017-09-15 2018-02-23 湖南海翼电子商务股份有限公司 一种摄像装置以及减少摄像装置功耗的方法
CN107749943A (zh) * 2017-09-15 2018-03-02 湖南海翼电子商务股份有限公司 一种摄像装置、减小摄像装置功耗的方法

Also Published As

Publication number Publication date
CN107749943A (zh) 2018-03-02
CN107749943B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US10136060B2 (en) IP camera control method, apparatus, and system
US10728504B2 (en) Monitoring camera system and monitoring method
JP5849457B2 (ja) 無線操作端末および情報処理装置
WO2018028129A1 (zh) 安防监控设备、安防监控系统及安防监控方法
CN107580198A (zh) 一种低功耗远程唤醒网络摄像机及视频监控系统
CN105357483A (zh) 一种低功耗网络摄像系统及便携式低功耗网络摄像机
CN206442461U (zh) 低耗电且快速反应的监视装置
TW201331893A (zh) 主動通報之智慧型監控系統及其智慧型監控裝置
CN104284486A (zh) 智能照明装置、系统及智能照明控制方法
US10958836B2 (en) Image capturing apparatus and control method thereof
CN111522250A (zh) 智能家居系统及其控制方法与装置
CN111669494B (zh) 一种网络摄像机控制方法和网络摄像机
TWI603619B (zh) A low power consumption and fast response and low false alarm rate of the video surveillance system
WO2021244018A1 (zh) 一种摄像头共享方法、智能家居控制方法及系统
WO2019052431A1 (zh) 一种摄像装置、摄像系统及减小摄像装置功耗的方法
CN107809626A (zh) 一种智能监控摄像头
KR101073605B1 (ko) 영상 전송장치의 구동 방법
US20190306468A1 (en) Wireless monitoring system and power saving method of wireless monitor
CN111447422A (zh) 音视频数据采集方法、装置和计算机设备
US20230012675A1 (en) Battery-Powered Wireless Electronic Device Switchable Between High and Low Power Operating Modes
CN108495360B (zh) 基站及其数据传输的方法
US20160142526A1 (en) Remote monitoring system and remote monitoring method
CN107734608B (zh) 一种摄像装置以及减少摄像装置功耗的方法
CN209375807U (zh) 一种远程监控可视化网络门铃和系统
CN205353818U (zh) 基于互联网的无人值守库房的远程监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856004

Country of ref document: EP

Kind code of ref document: A1