WO2019052246A1 - 一种便携式视觉电生理检测系统 - Google Patents

一种便携式视觉电生理检测系统 Download PDF

Info

Publication number
WO2019052246A1
WO2019052246A1 PCT/CN2018/091840 CN2018091840W WO2019052246A1 WO 2019052246 A1 WO2019052246 A1 WO 2019052246A1 CN 2018091840 W CN2018091840 W CN 2018091840W WO 2019052246 A1 WO2019052246 A1 WO 2019052246A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
detection system
vep
portable visual
mobile device
Prior art date
Application number
PCT/CN2018/091840
Other languages
English (en)
French (fr)
Inventor
赵英军
柏伦马腾•艾瑞克
Original Assignee
深圳麦格米特电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦格米特电气股份有限公司 filed Critical 深圳麦格米特电气股份有限公司
Publication of WO2019052246A1 publication Critical patent/WO2019052246A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6821Eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation

Definitions

  • the present invention relates to the field of ophthalmic medical technology, and in particular to a portable visual electrophysiological detection system.
  • Visual electrophysiological testing is a technique for recording changes in potential released from the eye, optic nerve, or brain under visual or visual stimuli. It can objectively measure the function of the retina, optic nerve and visual pathway.
  • Visual electrophysiological testing mainly includes:
  • Electroretinogram (ERG) Electroretinogram
  • Electroretinogram The main retina reflects the function of photoreceptor cells to bipolar cells and amacrine cells. Retinal current map is commonly used in clinical diagnosis of hereditary retinal degeneration (such as retinitis pigmentosa), diabetic retinopathy, retinal detachment, ocular trauma (such as retinal ironosis and sympathetic ophthalmia), color blindness and other diseases. .
  • hereditary retinal degeneration such as retinitis pigmentosa
  • diabetic retinopathy diabetic retinopathy
  • retinal detachment ocular trauma (such as retinal ironosis and sympathetic ophthalmia), color blindness and other diseases. .
  • Electro-oculogram is a measure of the retinal electrostatic potential present between the retinal pigment epithelium and photoreceptor cells. According to the change of retinal resting potential under light and dark adaptation conditions, it can reflect the photochemical reaction of photoreceptor cells and the functional status of the outer layer of the retina, and can also be used to determine the physiological changes of eye position and eye movement.
  • Visual evoked potential is a functional state of the retinal ganglion cells to the visual cortex.
  • the purpose of the examination is to presume the health of the conductive fibers from the retina to the cerebral cortex and the status of visual cortical function.
  • the lesion is between the ganglion cells and the cerebral cortex.
  • the multifocal electroretinogram (MfERG) system allows assessment of electroretinogram activity in small areas of the retina. In this way, multifocal electroretinograms can be recorded from hundreds of retinal regions in a matter of minutes.
  • the test instrument generally consists of three main components, including: detection electrodes, light or graphic stimulators, and data recording and processing devices.
  • Electrodes for visual electrophysiological testing are commercially available, but most are passive electrodes and do not contain any active electronic components. It is well known that passive electrodes have problems with low interference resistance. Therefore, in visual electrophysiological detection, electromagnetic noise from the environment usually interferes with the signal. 50Hz/60Hz noise is especially common, it is called line noise because it is emitted by the power cable. Therefore, the quality of the visual electrophysiological detection signals is affected, thereby reducing their diagnostic capabilities. Most commercial visual electrophysiological detection electrodes have very long transmission lines that facilitate connection to remote devices, but make the electrodes more susceptible to electromagnetic noise. For passive electrodes, there is always a trade-off between convenience and recording quality. Also because the active electrode is susceptible to electromagnetic noise. It is easy to have deviations in the analysis and affect the accurate judgment.
  • the invention solves the problems of large size, inconvenient use and low precision of the existing visual electrophysiological detecting device, and provides a portable visual electrophysiological detecting system.
  • a portable visual electrophysiological detection system includes a headgear device for placing a mobile device, a detection electrode, and a signal amplifier, the headset device further comprising a multi-channel structure, and signals of each detection electrode pass through a signal amplifier The signals of the respective detection electrodes are then collected and output to the mobile device through a multi-channel structure.
  • the detecting electrodes are an ERG electrode, an EOG electrode, and a VEP electrode.
  • the signal amplifier is a pre-signal amplifier and a VEP signal amplifier
  • the pre-signal amplifier has an adjustable gain knob for amplifying the ERG electrode and the EOG electrode signal
  • the VEP signal amplifier has an adjustable gain knob for amplifying the VEP electrode.
  • Signal; the detected signal is connected to the mobile device through a separate channel after the multi-channel structure is converted.
  • the preamplifier has an LCD display for reading test data in real time.
  • the signal amplifier is also provided with a separate battery module.
  • the pre-signal amplifier further comprises a ground electrode and a reference electrode, and the ERG electrode and the EOG electrode share one ground electrode and a reference electrode.
  • ERG electrodes there are three types of ERG electrodes, namely corneal contact type, conjunctival contact type and skin contact type.
  • the ERG electrode, the EOG electrode, the VEP electrode, the ground electrode and the reference electrode are detachably connected to respective signal amplifiers by magnetic members.
  • the magnetic component connection portion is plated with gold or silver plated.
  • the mobile device is provided with a display screen, a processor, a software module and a stimulation module, that is, the mobile device integrates data processing, display, stimulation functions, and can also convert the detected electrical signals into a graphical display.
  • the software module controls the display screen for stimulation, and the display screen is an OLED display that is used by the standard of the international ISCEV.
  • the wearing device further has a VEP electrode placement frame, and the placement frame has five VEP electrode slots distributed in a cross shape for placing the VEP electrode.
  • the headgear device is provided with an elastic structure for placing the mobile device.
  • the headgear device is capable of forming a dark room, that is, a space formed by seeing the mobile device through both eyes after being put on the mobile device is a dark room, and no light is leaked.
  • the headset further comprises two power lenses, and the eye needs to see the screen of the mobile device through the power lens.
  • the invention provides a portable visual electrophysiological detection system, which can simultaneously perform retinal cell function examination and functional examination of retinal pigment epithelium and photoreceptor complex by sharing one reference electrode and ground electrode by ERG electrode and EOG electrode.
  • the VEP electrode enables inspection of visual path conditions.
  • the preamplifier is attached to the face through the reference electrode, as close as possible to the signal source, reducing the length of the wire, eliminating noise from the cable wire, and solving the problem that the conventional detecting device has weak signal and interference during use.
  • the problem is that by setting the battery module, the active electrode is more resistant to electrical interference because it amplifies the signal from the source.
  • the head-wearing device can form a dark room with the mobile device to achieve the detection condition.
  • the head-wearing device is light and convenient, small in size, convenient to carry, and the detected data is directly connected to the data processing display device through the wire, and the detection result can be obtained in real time.
  • FIG. 1 is a schematic diagram of wearing a portable visual electrophysiological detection system of the present invention
  • Figure 2 is a perspective view of the portable visual electrophysiological detection system of the present invention.
  • FIG. 3 is a schematic diagram of a headset and a mobile device of a portable visual electrophysiological detection system according to the present invention
  • FIG. 4 is a schematic diagram of wearing a portable visual electrophysiological detection system of the present invention.
  • Figure 5 is a structural view of a VEP electrode and a VEP electrode placement frame of the present invention.
  • Fig. 6 is a structural view showing an ERG electrode and an EOG electrode detecting device of the present invention.
  • Fig. 7 is a schematic view showing the structure of the conjunctival contact type and the skin contact type of the ERG electrode of the present invention.
  • Figure 8 is a schematic view of the ERG electrode conjunctival contact type and skin contact type of the present invention.
  • FIG. 9 is a circuit diagram of an ERG electrode and an EOG electrode pre-signal amplifier of the present invention.
  • ERG electrogram of the ERG electrode of the present invention compared with a conventional ERG electrode in the same detection time
  • Figure 12 is a waveform diagram of an EOG electrode of the present invention.
  • Figure 13 is a waveform diagram of a VEP electrode of the present invention.
  • VEP electrode slot 1 is a head-mounted device, 101 is a loose structure, 102 is a multi-channel structure, 103 is a dark room, 104 is a power lens, 2 is a mobile device, 3 is a VEP electrode placement frame, and 31 is a VEP electrode slot, 4
  • the VEP electrode, the first VEP electrode 401, the second VEP electrode 402, the third VEP electrode 403, the fourth VEP electrode 404, the fifth VEP electrode 405, 41 are VEP signal amplifiers
  • 42 is an adjustable gain knob
  • 5 is the front Set the signal amplifier
  • 51 is the LCD display
  • 53 is the adjustable gain knob
  • 6 is the reference electrode
  • 7 is the ground electrode
  • 8 is the EOG electrode
  • 9 is the ERG electrode / corneal contact type ERG electrode
  • 91 is the conjunctival contact type ERG electrode
  • 92 is a skin contact type ERG electrode.
  • a portable visual electrophysiological detection system includes a headset 1 for placing a mobile device 2, a detection electrode, a signal amplifier, and the headset 1 further includes In the multi-channel structure 102, the signals of the respective detecting electrodes pass through the signal amplifier, and then the signals of the detecting electrodes are collected and output to the mobile device 2 through the multi-channel structure 102.
  • Each of the detecting electrodes is connected to the signal amplifier through a wire, and the wire is twisted to reduce the interference of the remaining signals on the respective detecting signals.
  • the detecting electrodes are the ERG electrode 9, the EOG electrode 8, and the VEP electrode 4, wherein the VEP electrode 4 is five, which are a first VEP electrode 401, a second VEP electrode 402, a third VEP electrode 403, and a fourth VEP electrode 404, respectively. And a fifth VEP electrode 405.
  • the signal amplifier is a pre-signal amplifier 5 and a VEP signal amplifier 41.
  • Each VEP signal amplifier has a VEP electrode.
  • a VEP electrode is selected for description, and the remaining VEP electrodes are the same, that is, the VEP signal amplifier 41 has an adjustable gain knob 42 for The signal of the VEP electrode is amplified; the detected signal is connected to the mobile device 2 through a separate channel after the multi-channel structure 102 is switched.
  • the preamplifier 5 has an LCD display 51 for reading test data and the like in real time, such as impedance values.
  • the signal amplifier is also equipped with a separate battery module, using a medical battery that meets the standard.
  • the pre-signal amplifier 5 further includes a ground electrode 7 and a reference electrode 6, and the ERG electrode 9 and the EOG electrode 8 share a ground electrode 7 and a reference electrode 6, and the ERG is a contact electrode with the cornea to record the potential of the cells in the retina.
  • EOG records the resting potential change of the eye through the contact of the electrodes with the skin positions on both sides of the eyelid, and a reference electrode 6 is used together with the ERG electrode and the EOG electrode.
  • the reference electrode 6 is attached to the surface of the human face.
  • the front signal amplifier 5 is also placed close to the signal source of the human eye.
  • the reference electrode 6 is placed at the inner position of the preamplifier 5, that is, the position of the reference electrode 6 after the wear is applied to the temple.
  • the pre-signal amplifier 5 further includes a signal amplifying circuit.
  • the pre-signal amplifier 5 is provided with two adjustable gain knobs 53 for changing the signals of the ERG electrode 4 and the EOG electrode 5, respectively, and the detected signal is in the pre-signal.
  • the multi-channel structure 102 is connected by two wires, one of which transmits the ERG electrode signal and the other of which transmits the EOG electrode signal.
  • the ERG electrodes can be designed in three forms to contact the eyeball: corneal contact type 9, conjunctival contact type 91 and skin contact type 92, and the contact end of the contact lens type ERG electrode is mirror contact, as shown in FIG.
  • the contact end of the conjunctival contact type ERG electrode is a line contact, as shown in the left of Figure 7.
  • the contact end of the skin contact type ERG electrode is an adhesive contact, as shown in Fig. 7.
  • the ERG electrode 9, the EOG electrode 8, the VEP electrode 4, the ground electrode 7, and the reference electrode 6 are detachably connected to a signal amplifier through a magnetic member.
  • the pre-signal amplifier 5 is provided with a magnetic connector that is connected to the ERG electrode, the EOG electrode, the ground electrode 7, and the reference electrode 6.
  • the magnetic parts are gold plated or silver plated.
  • the mobile device 2 is provided with a display screen, a processor, a software module and a stimulation module, that is, the mobile device 2 integrates data processing, display, stimulation functions, and can also convert the detected electrical signals into a graphic display, and the software module in the mobile device can Control the screen to perform the desired display.
  • the software module controls the display screen for stimulation, and the display screen is an OLED display that is standard for international ISCEV.
  • the head-mounted device also has a VEP electrode placement frame 3, and there are five VEP electrode slots 31 on the placement frame, which are distributed in a cross shape for placing the VEP electrode 4.
  • the headgear 1 is provided with a slack structure 101 for placing the mobile device 2, facilitating the placement of different sized mobile devices 2 or adjusting the position of the mobile device 2.
  • the headgear device can form a dark room 103, that is, a space formed by seeing the mobile device through both eyes after being placed on the mobile device 2 is a dark room, and no light is leaked.
  • the headgear device 1 further includes two power lens 104, that is, a convex lens, and the eye needs to see the screen of the mobile device 2 through the power lens 104, so that when the patient uses the stereo lens, the stereoscopic effect of the space is generated by the power lens. Displayed in the brain to detect the response of the human eye in a particular mode.
  • Figure 1-8 shows the single-eye detection.
  • the present invention can also be used to detect both eyes by setting two preamplifiers. The principle is the same.
  • Figure 9 is a schematic diagram showing the circuit design of the preamplifier 5 of the apparatus of the present invention.
  • the working process of the invention is:
  • the reference electrode is attached to the skin of the human face, preferably the position of the temple of the face.
  • connection is connected to a multi-channel structure.
  • the pre-signal amplifier is connected to the multi-channel structure on the head-mounted device through a signal wire; one of the two wires is a signal line of the ERG electrode, and the other is a signal line of the EOG electrode, and the wire of the multi-channel structure is connected Interface connection on the mobile device;
  • the software of the mobile device records the electrical signals detected by each electrode and converts the electrical signals into waveforms for display.
  • the reference electrode, the ground electrode, the ERG electrode, the EOG electrode, and the VEP electrode are removed for the next replacement of the new electrode for detection, and the pre-signal amplifier can be reused.
  • the invention connects the ERG electrode and the EOG electrode to a pre-signal amplifier at the same time, and uses the signal pickup electrode to pick up the signal of the eyeball together, and uses the same reference electrode together, and the ground electrode acts as an anti-interference electrode, in order to reduce the common mode of the power grid.
  • the influence of the interference voltage on the signal is connected to the circuit.
  • the ERG records the potential change of the cells in the retina through the contact of the electrode with the cornea.
  • the EOG records the resting potential change of the eye through the contact of the electrode with a specific position around the eyelid.
  • the two signals are Independently, the signals from the two locations are used as a reference to help analyze and diagnose the disease. From a medical point of view, the ERG signal is mainly the detection of retinal cell function, and the EOG is an auxiliary reference signal for the retinal pigment epithelium and photoreceptor complex. Functional testing of the body.
  • the invention utilizes the wearing device to form the dark room in the flash stimulator and the wearing device to achieve the detection condition, and the wearing device is light and convenient, and the corresponding electrode is directly disposed on the wearing device, which is more convenient to use, and the detected data is directly connected through the wire.
  • the data processing display device can obtain the detection result in real time.
  • a portable visual electrophysiological detection system of the present invention is superior in sensitivity and repeatability to previous detection devices.
  • Figure 10 shows the comparison of the single detection in the same detection time.
  • the active electrode detection device of the improved visual electrophysiological detection system has a higher threshold than the previous detection electrogram, and the sensitivity of the detection is improved.
  • Figure 11 shows that the repeatability of the electrograms that are detected multiple times during the same detection time is better.
  • the design of the preamplifier and VEP signal amplifier makes the EOG electrode, reference electrode, ground electrode, VEP electrode and signal amplifier itself close to the signal source, and the connection line is short, which greatly reduces external signal interference, and the twisted pair offsets two. Channel detection interferes with each other.
  • the gold-plated magnetic connector facilitates the installation of ERG electrodes, EOG electrodes, and VEP electrodes.
  • Gold-plated or silver-plated joints reduce contact resistance, increase electrical conductivity, and prevent rust.
  • the new active electrode is designed to improve the accuracy and repeatability of recorded signals.
  • the main feature of the design is the short connection between the sensor and the amplifier. With a short transmission line, most of the external noise and interference will be eliminated. This design gives the signal a high signal to noise ratio, high reproducibility, a high common mode rejection ratio and a low level of stimulation.
  • the electrodes can be made into disposable electrodes to prevent infection, benefit patients and doctors, and meet hospital infection control standards.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Ophthalmology & Optometry (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明提供了一种便携式视觉电生理检测系统,包括头戴设备(1),所述头戴设备(1)用于放置移动设备(2)、检测电极(4,6,7,8,9)、信号放大器(5),所述头戴设备(1)还包含多通道结构(102),各检测电极(4,6,7,8,9)的信号通过信号放大器(5)后再通过多通道结构(102)将各检测电极(4,6,7,8,9)的信号收集输出至移动设备(2)。本发明的传感器和放大器之间的短连接线,大部分的外部噪音和干扰将被消除,电极可以制成一次性电极,防止感染。

Description

一种便携式视觉电生理检测系统 [技术领域]
本发明涉及眼科医疗技术领域,具体是涉及一种便携式视觉电生理检测系统。
[背景技术]
视觉电生理检测是一种记录来自眼睛、视神经或大脑在光或图形视觉刺激下所释放电位改变的技术。能客观测量视网膜、视神经和视觉通路的功能。
视觉电生理检测主要包括:
1.视网膜电图(ERG)
视网膜电图(ERG)主要视网膜反映感光细胞到双极细胞及无长突细胞的功能。视网膜电流图在临床上常用于遗传性视网膜变性(如视网膜色素变性等)、糖尿病性视网膜病变、视网膜脱离、眼外伤(如视网膜铁质沉着症以及交感性眼炎等),色盲等疾病的诊断。
2.电眼图(EOG)
眼电图(EOG)是测量在视网膜色素上皮和光感受器细胞之间存在的视网膜静电位。根据在明、暗适应条件下视网膜静止电位的变化,可反映光感受器细胞的光化学反应和视网膜外层的功能状况,也可用于测定眼球位置及眼球运动的生理变化。
3.视觉诱发电位(VEP)
视觉诱发电位(VEP)网膜神经节细胞到视皮层的功能状态。其检查的目的是用以推测自视网膜到大脑皮质之间传导纤维的健康状况以及视皮质功能活动状况。当视力丧失患者的EOG和ERG检查都正常时,则病变在神经节细胞以上到大脑皮质之间。
4.多焦视网膜电图(MfERG)
多焦视网膜电图(MfERG)系统允许在视网膜的小区域评估视网膜电图活动。通过这种方法,可以在数分钟内从数百个视网膜区域记录多焦视网膜电图。
视觉电生理检测在临床上提供眼部疾病诊断,排除特定条件,预后和治疗期间视觉功能评估等,亦对病人在早期的眼部疾病诊断有重要作用。检测仪器一般由三个主要部分组成,包括:检测电极、光或图形刺激器,及数据的记录和处理装置。
视觉电生理检测的电极都是可商用的,但大多数都是被动电极,不包含任何活跃的电子元件。众所周知,被动电极有低干扰电阻的问题。因此,在视觉电生理检测中,来自环境的电磁噪声通常会干扰信号。50Hz/60Hz的噪音是特别常见的,它被称为线路噪音,因为它是由电源电缆发出的。因此,视觉电生理检测信号的质量受到了影响,从而降低了它们的诊断能力。大多数商用的视觉电生理检测电极都有很长的传输电线,这方便接驳到较远的装置上,但却使电极更容易受到电磁噪的干扰。对于被动电极来说,在方便和记录质量之间一直存在 取舍。也因为有源电极容易受到电磁噪的干扰。在分析上容易出现偏差而影响准确判断。
另一方面,一般整合所有视觉电生理检查的仪器价格较为昂贵,而且体积都较大,没有一种能够结合电极检测及穿戴于一体的产品出现。而在某些情况下,例如在医院的床边或治疗室中,病人因不便移动,其姿势可能是坐着,倾斜或是躺着,这时我们需要一种可以容易放在病人面前做检测的装置,所以视觉电生理检测器的移动性是相当重要的。而在暗室观察时,需要到专门的暗室房里才能实现,浪费较大的空间。随着智能便携装置技术变得成熟和普及,现今的智能便携装置能容易地操作而且相对便宜。我们针对智能便携装置的可用性技术,使智能便携装置可扩展为眼科临床视觉电生理检测装置。配合我们研制的可兼容于智能便携装置的有源电极,使其成为在一般检测环境和世界偏远地区之外使用的理想选择。
[发明内容]
本发明解决现有的视觉电生理检测设备体积大、使用不方便、精确度低的问题提供了一种便携式视觉电生理检测系统。
本发明的一种便携式视觉电生理的检测系统采用了如下技术方案:
一种便携式视觉电生理检测系统,包括头戴设备,所述头戴设备用于放置移动设备、检测电极、信号放大器,所述头戴设备还包含多通道结构,各检测电极的信号通过信号放大器后再通过多通道结构将各检测电极的信号收集输出至移动设备。
优选地,所述的检测电极为ERG电极、EOG电极和VEP电极。
优选地,所述信号放大器为前置信号放大器和VEP信号放大器,前置信号放大器有可调增益旋钮用于放大ERG电极和EOG电极信号,VEP信号放大器有可调增益旋钮用于放大VEP电极的信号;检测的信号在多通道结构转换后通过独立信道连接移动设备。
优选地,前置信号放大器上有一LCD显示屏,用于实时读取测试数据。
优选地,信号放大器还设有独立的电池模块。
优选地,所述前置信号放大器还包含地电极和参考电极,所述的ERG电极和EOG电极共用一个地电极和参考电极。
优选地,ERG电极有三个类型,分别是角膜接触型,结膜接触型及皮肤接触型。
优选地,ERG电极、EOG电极、VEP电极、地电极和参考电极通过磁性部件可拆卸的与各自的信号放大器相连。
优选地,所述磁性部件连接部位镀金或镀氯化银。
优选地,所述的移动设备设有显示屏、处理器、软件模块和刺激模块,即移动设备集成数据处理、显示、刺激功能,并且还能将检测的电信号转换为图形显示。
优选地,所述软件模块控制显示屏进行刺激,所述显示屏为国际ISCEV的标准使用的OLED 显示屏。
优选地,所述的头戴设备还有VEP电极放置架,放置架上有5个VEP电极槽,呈十字型分布,用于放置VEP电极。
优选地,头戴设备设有用于放置移动设备的松紧结构。
优选地,头戴设备能够形成暗室,即在放上移动设备穿戴后通过双眼看到移动设备所形成的空间为暗室,不漏光。
优选地,所述的头戴设备还包含两个焦度镜片,眼睛需通过焦度镜片看到移动设备的屏幕。
本发明提供的一种便携式视觉电生理检测系统,通过ERG电极和EOG电极共用一个参考电极和地电极,能够同时实现视网膜细胞功能检查和视网膜色素上皮与光感受器复合体功能检查。另外,VEP电极能够实现视觉通路状况的检查。
通过头戴设备实现前置放大器通过参考电极贴于人脸,尽可能靠近信号源,减少导线长度的方式,消除来自电缆导线的噪声,解决目前传统检测装置在使用过程中信号微弱、干扰多等问题,通过设置电池模块,有源电极对电子干扰更有抵抗力,因为它放大了源的信号。
头戴设备能够和移动设备形成暗室,达到检测的条件,头戴设备轻巧方便,体积小,方便携带,检测的数据直接通过导线连接数据处理显示装置,能够实时得到检测结果。
[附图说明]
图1为本发明便携式视觉电生理检测系统佩戴示意图;
图2为本发明便携式视觉电生理检测系统透视图;
图3为本发明便携式视觉电生理检测系统头戴设备和移动设备示意图;
图4为本发明便携式视觉电生理检测系统佩戴示意图;
图5为本发明VEP电极及VEP电极放置架结构图。
图6为本发明ERG电极和EOG电极检测装置结构图。
图7为本发明ERG电极结膜接触型和皮肤接触型结构示意图。
图8为本发明ERG电极结膜接触型和皮肤接触型佩戴示意图。
图9为本发明ERG电极和EOG电极前置信号放大器电路图;
图10为本发明的ERG电极与传统ERG电极在同一个检测时间内对比的ERG电图;
图11为本发明的ERG电极在同一个检测时间内多次检测得到的ERG电图重复度更好;
图12为本发明的EOG电极波形图;
图13为本发明的VEP电极波形图;
其中,图中1为头戴设备,101为松紧结构,102为多通道结构,103为暗室,104为焦度镜片,2为移动设备,3为VEP电极放置架,31为VEP电极槽,4为VEP电极,第一VEP 电极401,第二VEP电极402,第三VEP电极403,第四VEP电极404,第五VEP电极405,41为VEP信号放大器,42为可调增益旋钮,5为前置信号放大器,51为LCD显示屏,53为可调增益旋钮,6为参考电极,7为地电极,8为EOG电极,9为ERG电极/角膜接触型ERG电极,91为结膜接触型ERG电极,92为皮肤接触型ERG电极。
[具体实施方式]
为了使本发明实现的技术手段清晰明了,下面结合附图进一步阐述本发明,其中术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
如图1-8所示,一种便携式视觉电生理检测系统,包括头戴设备1,所述头戴设备1用于放置移动设备2、检测电极、信号放大器,所述头戴设备1还包含多通道结构102,各检测电极的信号通过信号放大器后再通过多通道结构102将各检测电极的信号收集输出至移动设备2。各检测电极通过导线连接信号放大器,并且导线采用双绞线,减小其余信号对各检测信号的干扰。
其中,检测电极为ERG电极9、EOG电极8和VEP电极4,其中VEP电极4为5个,分别是第一VEP电极401、第二VEP电极402、第三VEP电极403、第四VEP电极404、第五VEP电极405。
信号放大器为前置信号放大器5和VEP信号放大器41,VEP信号放大器每一个VEP电极都有,这里选取一个VEP电极进行说明,其余VEP电极相同,即VEP信号放大器41有可调增益旋钮42用于放大VEP电极的信号;检测的信号在多通道结构102转换后通过独立信道连接移动设备2。
前置信号放大器5上有一LCD显示屏51,用于实时读取测试数据等,例如阻抗值。
信号放大器还设有独立的电池模块,选用符合标准的医用电池。
前置信号放大器5还包含地电极7和参考电极6,所述的ERG电极9和EOG电极8共用一个地电极7和参考电极6,ERG是透过电极与角膜接触来记录视网膜内细胞的电位变化,EOG是透过电极与眼眶两侧皮肤位置的接触来记录眼球静息电位变化,ERG电极和EOG电极共同使用一个参考电极6。参考电极6贴于人脸皮肤表面。同时也将前置信号放大器5靠近人眼部的信号源,优选的,参考电极6放置在前置放大器5的内侧位置,即穿戴后参考电极6贴着太阳穴的位置。
前置信号放大器5内部还包括一个信号放大电路,所述前置信号放大器5上设有两个可调增益旋钮53分别用来改变ERG电极4和EOG电极5信号,检测的信号在前置信号放大器5改变之后通过两条导线连接多通道结构102,其中一条导线传输ERG电极信号,另一条导线 传输EOG电极信号。
ERG电极可以设计成三种形式与眼球接触:分别是角膜接触型9,结膜接触型91及皮肤接触型92,角膜接触型ERG电极的接触一端为镜面接触,如图6所示。结膜接触型ERG电极的接触一端为线式接触,如图7左所示。皮肤接触型ERG电极的接触一端为黏贴式接触,图7右。
ERG电极9、EOG电极8、VEP电极4、地电极7和参考电极6通过磁性部件可拆卸的与信号放大器相连。前置信号放大器5设有与ERG电极、EOG电极、地电极7和参考电极6对应连接的磁性接头。
磁性部件连接部位镀金或镀氯化银。
移动设备2设有显示屏、处理器、软件模块和刺激模块,即移动设备2集成数据处理、显示、刺激功能,并且还能将检测的电信号转换为图形显示,移动设备内的软件模块能够控制屏幕进行需要的显示。
软件模块控制显示屏进行刺激,所述显示屏为国际ISCEV的标准使用的OLED显示屏。
头戴设备还有VEP电极放置架3,放置架上有5个VEP电极槽31,呈十字型分布,用于放置VEP电极4。头戴设备1设有用于放置移动设备2的松紧结构101,利于方便放置不同大小的移动设备2或者调整移动设备2的位置。头戴设备能够形成暗室103,即在放上移动设备2穿戴后通过双眼看到移动设备所形成的空间为暗室,不漏光。
头戴设备1还包含两个焦度镜片104,即凸透镜,眼睛需通过焦度镜片104看到移动设备2的屏幕,使得患者使用时,利用焦度镜片产生出有空间感的立体视觉效果在大脑中显示,以便检测特定的模式下人眼的反应。
图1-8显示的为单眼检测,本发明亦可通过设置2个前置放大器同时对双眼检测,原理相同。
图9为本发明装置的前置信号放大器5的电路设计原理图。
本发明的工作过程为:
a、选择合适的ERG电极和EOG电极,将ERG电极放置在人眼靠近眼球的地方,将EOG电极放在人脸的眼睑附近不同部位;
b、将地电极紧贴在额头中间,再将对应的磁性部件与磁性接头接到一起。
c、参考电极贴在人面部皮肤上,优选的为人脸的太阳穴位置。
d、将ERG电极和EOG电极的信号导线和地电极的导线一同接到前置放大器上
e、穿戴头戴设备,将VEP电极也一起连同头戴设备戴上,将VEP电极支架的最下面一个第五VEP电极405对准人后脑枕骨外的突出位置,放置5个VEP电极,同时将连线接到多通道结构。
f、前置信号放大器通过信号导线连接到头戴设备的上的多通道结构;两条导线其中一条为ERG电极的信号线,另一条为EOG电极的信号线,将多通道结构的导线接到移动设备上的接口连接;
g、人眼处于暗室一定时间后,打开移动设备进行刺激,通过内置的APP或者软件,选择合适的刺激模式;
h、移动设备的软件会记录各电极检测的电信号,并将电信号转化为波形图显示出来。
i、检测完毕后,拆除参考电极、地电极、ERG电极、EOG电极、VEP电极以备下一次更换新的电极进行检测,前置信号放大器可以重复利用。
本发明将ERG电极和EOG电极同时连接一个前置信号放大器,作为信号拾取电极共同对眼球的信号进行拾取,共同使用同一个参考电极,而地电极作为抗干扰电极,是为了减少电网共模的干扰电压对信号的影响连接电路,ERG是透过电极与角膜接触来记录视网膜内细胞的电位变化,EOG是透过电极与眼眶周边特定位置的接触来记录眼球静息电位变化,两个信号是独立的,通过两个位置的信号互为参考,以帮助病症的分析和诊治,从医学角度看,ERG信号主要是视网膜细胞功能的检测,EOG是辅助参考信号针对于视网膜色素上皮与光感受器复合体的功能检测。
本发明利用头戴设备将闪光刺激器与穿戴设备形成暗室,达到检测的条件,穿戴设备轻巧方便,同时相应的电极直接设置在头戴设备上,使用起来更加方便,检测的数据直接通过导线连接数据处理显示装置,能够实时得到检测结果。
本发明的一种便携式视觉电生理检测系统灵敏度和重复灵敏度上比以前的检测装置更优。图10为在同一个检测时间内,单次检测对比,改进后视觉电生理检测系统的有源电极检测装置比以前的检测电图的阀值更高,检测的灵敏度提高。图11为在同一个检测时间内,多次检测的电图的阀值重复度更好。同时,这种前置放大器和VEP信号放大器的设计使EOG电极、参考电极、地电极、VEP电极以及信号放大器本身靠近信号源,连接线短,大大减少了外部信号干扰,双绞线抵消了二通道检测互相干扰,镀金的磁性接头方便了ERG电极、EOG电极、VEP电极的安装,镀金或镀氯化银的接头能够减少接触电阻,增加导电力,同时还能防锈。
与无源电极相比,该新型有源电极的设计能提高记录信号的准确性和可重复性。该设计的主要特点是传感器和放大器之间的短连接线。有了一条短的传输线路,大部分的外部噪音和干扰将被消除。该设计使信号具有较高的信噪比、较高的再现性、较高的共模抑制比和较低的刺激水平。电极可以制成一次性电极,防止感染,有益患者和医生,并符合医院感染控制标准。
以上所述仅为本发明的优选实施方式,本发明的保护范围并不仅限于上述实施方式,其中导线不采用双绞线,其它线也能够实现信号的传输,不采用磁性接头连接,直接导线连接 也能够对信号进行检查,但其精准度不如以上实施例。
凡是属于本发明原理的技术方案均属于本发明的保护范围。对于本领域的技术人员而言,在不脱离本发明的原理的前提下进行的若干改进,这些改进也应视为本发明的保护范围。

Claims (15)

  1. 一种便携式视觉电生理检测系统,其特征在于,包括头戴设备,所述头戴设备用于放置移动设备、检测电极、信号放大器,所述头戴设备还包含多通道结构,各检测电极的信号通过信号放大器后再通过多通道结构将各检测电极的信号收集输出至移动设备。
  2. 根据权利要求1所述的一种便携式视觉电生理检测系统,其特征在于,所述的检测电极为ERG电极、EOG电极和VEP电极。
  3. 根据权利要求2所述的一种便携式视觉电生理检测系统,其特征在于,所述信号放大器为前置信号放大器和VEP信号放大器,前置信号放大器有可调增益旋钮用于放大ERG电极和EOG电极信号,VEP信号放大器有可调增益旋钮用于放大VEP电极的信号;检测的信号在多通道结构转换后通过独立信道连接移动设备。
  4. 根据权利要求3所述的一种便携式视觉电生理检测系统,其特征在于,前置信号放大器上有一LCD显示屏,用于实时读取测试数据。
  5. 根据权利要求3所述的一种便携式视觉电生理检测系统,其特征在于,信号放大器还设有独立的电池模块。
  6. 根据权利要求3所述的一种便携式视觉电生理检测系统,其特征在于,所述前置信号放大器还包含地电极和参考电极,所述的ERG电极和EOG电极共用一个地电极和参考电极。
  7. 根据权利要求3所述的一种便携式视觉电生理检测系统,其特征在于,ERG电极、EOG电极、VEP电极、地电极和参考电极通过磁性部件可拆卸的与各自的信号放大器相连。
  8. 根据权利要求3所述的一种便携式视觉电生理检测系统,其特征在于,所述磁性部件连接部位镀金或镀氯化银。
  9. 根据权利要求7所述的一种便携式视觉电生理检测系统,其特征在于,ERG电极有三个类型,分别是角膜接触型,结膜接触型及皮肤接触型。
  10. 根据权利要求1所述的一种便携式视觉电生理检测系统,其特征在于,所述的移动设备设有显示屏、处理器、软件模块和刺激模块,即移动设备集成数据处理、显示、刺激功能,并且还能将检测的电信号转换为图形显示。
  11. 根据权利要求10所述的一种便携式视觉电生理检测系统,其特征在于,所述软件模块控制显示屏进行刺激,所述显示屏为国际ISCEV的标准使用的OLED显示屏。
  12. 根据权利要求1所述的一种便携式视觉电生理检测系统,其特征在于,所述的头戴设备还有VEP电极放置架,放置架上有5个VEP电极槽,呈十字型分布,用于放置VEP电极。
  13. 根据权利要求1所述的一种便携式视觉电生理检测系统,其特征在于,头戴设备设有 用于放置移动设备的松紧结构。
  14. 根据权利要求1所述的一种便携式视觉电生理检测系统,其特征在于,头戴设备能够形成暗室,即在放上移动设备穿戴后通过双眼看到移动设备所形成的空间为暗室,不漏光。
  15. 根据权利要求1所述的一种便携式视觉电生理检测系统,其特征在于,所述的头戴设备还包含两个焦度镜片,眼睛需通过焦度镜片看到移动设备的屏幕。
PCT/CN2018/091840 2017-09-12 2018-06-19 一种便携式视觉电生理检测系统 WO2019052246A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710819496.9 2017-09-12
CN201710819496 2017-09-12

Publications (1)

Publication Number Publication Date
WO2019052246A1 true WO2019052246A1 (zh) 2019-03-21

Family

ID=61870926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091840 WO2019052246A1 (zh) 2017-09-12 2018-06-19 一种便携式视觉电生理检测系统

Country Status (2)

Country Link
CN (1) CN107898459A (zh)
WO (1) WO2019052246A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107898459A (zh) * 2017-09-12 2018-04-13 深圳麦格米特电气股份有限公司 一种便携式视觉电生理检测系统
CN107582053B (zh) * 2017-09-12 2020-05-05 湖南麦格米特电气技术有限公司 一种视网膜电图和动眼电图的有源电极检测装置
CN109700428A (zh) * 2019-02-28 2019-05-03 中国人民解放军第306医院 一种内置眼睛注视跟踪系统的角膜接触电极及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314201A1 (en) * 2009-10-20 2011-04-27 Tomey Corporation Apparatus for measuring electrical potential of retina
CN205458678U (zh) * 2016-01-20 2016-08-17 攀枝花市中西医结合医院 视觉电生理检查新型专用头带
CN106413599A (zh) * 2014-03-31 2017-02-15 拉普罗舍奇有限公司 可变流量烟雾排出设备
CN106943142A (zh) * 2017-03-16 2017-07-14 深圳麦格米特电气股份有限公司 一种视网膜电图(erg)便携检测系统的信号放大器
CN107049311A (zh) * 2017-03-16 2017-08-18 深圳麦格米特电气股份有限公司 一种带前置放大器的双通道视网膜电图(erg)便携检测系统
CN107898459A (zh) * 2017-09-12 2018-04-13 深圳麦格米特电气股份有限公司 一种便携式视觉电生理检测系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104490387B (zh) * 2014-09-17 2016-09-21 中国科学院上海微系统与信息技术研究所 能够抑制运动干扰的无线便携与穿戴式心电检测器
CN208659362U (zh) * 2017-09-12 2019-03-29 深圳麦格米特电气股份有限公司 一种便携式视觉电生理检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314201A1 (en) * 2009-10-20 2011-04-27 Tomey Corporation Apparatus for measuring electrical potential of retina
CN106413599A (zh) * 2014-03-31 2017-02-15 拉普罗舍奇有限公司 可变流量烟雾排出设备
CN205458678U (zh) * 2016-01-20 2016-08-17 攀枝花市中西医结合医院 视觉电生理检查新型专用头带
CN106943142A (zh) * 2017-03-16 2017-07-14 深圳麦格米特电气股份有限公司 一种视网膜电图(erg)便携检测系统的信号放大器
CN107049311A (zh) * 2017-03-16 2017-08-18 深圳麦格米特电气股份有限公司 一种带前置放大器的双通道视网膜电图(erg)便携检测系统
CN107898459A (zh) * 2017-09-12 2018-04-13 深圳麦格米特电气股份有限公司 一种便携式视觉电生理检测系统

Also Published As

Publication number Publication date
CN107898459A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Odom et al. ISCEV standard for clinical visual evoked potentials (2009 update)
Odom et al. Visual evoked potentials standard (2004)
JP4817582B2 (ja) 視覚機能の対物電気生理学的評価方法および装置
US10182736B2 (en) Configuration and spatial placement of frontal electrode sensors to detect physiological signals
US7384145B2 (en) Mapping retinal function using corneal electrode array
CN107582053B (zh) 一种视网膜电图和动眼电图的有源电极检测装置
US4386831A (en) Device for the measurement of electrical potentials of the eye
US20090281451A2 (en) Apparatus and methods for mapping retinal function
US4874237A (en) Electroretinogram apparatus
McCandless et al. Evoked responses to auditory stimuli in man using a summing computer
US20180333066A1 (en) Apparatus for measuring electroencephalogram, system and method for diagnosing and preventing dementia
JP6796642B2 (ja) 電気生理学的信号を評価するための方法および装置
CN107468241A (zh) 脑电帽
Goff Human average evoked potentials: Procedures for stimulating and recording
WO2019052246A1 (zh) 一种便携式视觉电生理检测系统
US11109795B2 (en) Device and method for measuring and displaying bioelectrical function of the eyes and brain
US10398340B2 (en) Device and method for non-invasive recording of the ERG and VEP response of an eye
Kappel et al. Real-life dry-contact ear-EEG
CN208659362U (zh) 一种便携式视觉电生理检测系统
MOGENSEN et al. Auditory double click evoked potentials in multiple sclerosis
CN208573738U (zh) 一种视网膜电图和动眼电图的有源电极检测装置
CN207666589U (zh) 一种带前置放大器的双通道视网膜电图(erg)便携检测系统
CN107049311A (zh) 一种带前置放大器的双通道视网膜电图(erg)便携检测系统
CN207640379U (zh) 一种视网膜电图(erg)便携检测系统的信号放大器
US20200405172A1 (en) Device for exploring the visual system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856641

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18856641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE