WO2019051669A1 - 一种应用于智能终端的主动式电容笔及触控装置 - Google Patents

一种应用于智能终端的主动式电容笔及触控装置 Download PDF

Info

Publication number
WO2019051669A1
WO2019051669A1 PCT/CN2017/101575 CN2017101575W WO2019051669A1 WO 2019051669 A1 WO2019051669 A1 WO 2019051669A1 CN 2017101575 W CN2017101575 W CN 2017101575W WO 2019051669 A1 WO2019051669 A1 WO 2019051669A1
Authority
WO
WIPO (PCT)
Prior art keywords
pen
pen tip
signal
touch
active capacitive
Prior art date
Application number
PCT/CN2017/101575
Other languages
English (en)
French (fr)
Inventor
刘劲
Original Assignee
深圳传音制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音制造有限公司 filed Critical 深圳传音制造有限公司
Priority to CN201780096727.6A priority Critical patent/CN111344653A/zh
Priority to PCT/CN2017/101575 priority patent/WO2019051669A1/zh
Publication of WO2019051669A1 publication Critical patent/WO2019051669A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form

Definitions

  • the present invention relates to the field of intelligent terminals, and in particular to an active capacitive pen and a touch device applied to a smart terminal.
  • the stylus on the market is mainly divided into electromagnetic and capacitive, and the two methods are also divided into active (active) and passive (passive).
  • the operation principle of the electromagnetic input technology is mainly a circuit board having a plurality of sensing antenna loops or antennas distributed along the axial direction, and an electromagnetic pen capable of emitting electromagnetic signals for inputting. Therefore, the sensing plane of the electromagnetic input device is composed of an antenna or an induction coil. The antenna or induction coil is placed under the working surface of the input device or behind the display screen. When the electromagnetic pen is operated, the coordinate position of the electromagnetic pen is obtained by signal processing and calculation by electromagnetic waves transmitted between the internal oscillation circuit of the electromagnetic pen and the antenna or the induction coil.
  • Input devices using electromagnetic input technology include smart mobile devices (Smart Phones), digital tablets (Digitizer tablets) or e-books (E-books/Green books), etc., and must be used with an electromagnetic pen or digital pen (stylus). Make an input operation.
  • the oscillating circuit of the electromagnetic pen usually consists of an inductor, a capacitor and related components and is placed inside the pen case.
  • the inductor comprises a metal coil wound by a ferrite core and a related component such as a capacitor forms an oscillating circuit to transmit and receive an electromagnetic wave signal with an antenna loop or an induction coil of the input device.
  • the oscillating circuit determines the oscillating frequency of the circuit according to the inductance value of the metal coil connected in parallel and the capacitance value connected to the circuit.
  • the tip of the pen in the electromagnetic pen causes the capacitance value.
  • the inductance value continuously changes, and then the frequency of the oscillating circuit is continuously changed, and the input device can detect and calculate the frequency of the received electromagnetic signal by using an internal circuit to obtain The pressure level of the electromagnetic pen tip.
  • Electromagnetic pens rely on electromagnetic signals to achieve handwriting writing. According to the difference between active and passive, they are divided into active and passive.
  • the active electromagnetic pen needs a battery to supply power (such as the SurfacePro3 stylus), which continuously emits electromagnetic waves through the built-in oscillating circuit to communicate with the intelligent terminal (in fact, it also needs to pass Bluetooth and smart terminals). Communicate to achieve more button functions).
  • the performance of the active electromagnetic pen is not worse than the passive one, it is always a trouble to change the battery, and the weight is hard to reduce after adding the battery, so its advantage is that it is convenient for the manufacturer in the existing equipment.
  • the electromagnetic pen can be installed at any time, as long as the control unit of the touch screen supports it.
  • the energy required for the passive electromagnetic pen to work is supplied through the electromagnetic screen of the intelligent terminal, so there is no need for a battery.
  • Its internal part is mainly composed of a set of coils and a resonant circuit of the capacitor.
  • the resonant line can simultaneously receive and store the electromagnetic.
  • the electromagnetic energy transmitted from the screen can also transmit electromagnetic signals between them to realize handwriting writing.
  • Capacitive touch screens use the current sensing of the human body. It is a four-layer composite glass screen. The inner surface and interlayer of the glass screen are coated with a layer of ITO (ie, coated conductive glass), and the outermost layer is a thin layer of bauxite glass protective layer. The ITO coating is used as the working surface, four electrodes are led out at the four corners, and the inner layer of ITO is the shielding layer to ensure a good working environment.
  • the finger touches the metal layer since the human body electric field, the user and the touch screen surface form a coupling capacitor, for the high frequency current, the capacitor is a direct conductor, and the finger sucks a small current from the contact point. This current flows out from the electrodes on the four corners of the touch screen, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners.
  • the controller calculates the touch point by accurately calculating the ratio of the four currents. location information.
  • the capacitive pen is an auxiliary device made of conductive material and used for touch-capacitive screen to complete man-machine dialogue operation. It can be applied to most capacitive screen devices. It is also divided into active and passive, the difference is that the mechanism for generating current signals is different.
  • Passive capacitive pens are low cost, and the tip of the pen is a conductive material, generally a conductive rubber.
  • the passive capacitive pen needs to be made thicker, otherwise the problem of the handwriting being intermittent may occur if the contact area is insufficient. Therefore, the passive capacitive pen can only be used for simple line drawing, and it is impossible to achieve fine drawing.
  • the active capacitive pen is powered by the battery, and the internal circuit generates a current through the connection of the pen tip and the capacitive screen to realize the handwriting function. Compared with the passive capacitive pen, it can greatly reduce the contact area of the pen tip.
  • the diameter of the pen tip of the passive capacitive pen is about 5mm ⁇ 8mm, and the diameter of the active tip can be 2.4mm or less, and the pen can be accessed. s level.
  • the active capacitive pen connected to the device via Bluetooth can also achieve 1024-level pressure sensitivity. In addition to the accuracy and electromagnetic pen, there is still a certain gap between it and the passive capacitive pen, but the price is also expensive. Hundreds of times.
  • the mainstream stylus technology on the market currently has various shortcomings.
  • passive pens its low precision and non-inductive response are difficult to meet high requirements such as painting and handwriting applications
  • electromagnetic pen technology Although it has occupied the high-end market with its high-quality writing experience, with its special architectural requirements, additional chips and electromagnetic boards need to be added.
  • the price of all handwriting devices that add electromagnetic pen function is much higher than that without this function.
  • the existing capacitive pen is externally charged through a USB connection, and the power source is often powered by a lithium battery and a dry battery.
  • Capacitive pen technology is a hand implemented on the widely used mutual-capacitive touch screen architecture.
  • the writing technology does not change the architecture of the existing touch screen, and utilizes the original capacitive touch screen control chip to synchronously sense the stylus signal, thereby realizing a low-cost and high-quality user experience.
  • the present invention provides an active capacitive pen and a touch device applied to a smart terminal, which breaks the design mode of the conventional capacitive pen, and adjusts the original lithium battery and the dry battery to a super capacitor, and the super capacitor has a small volume and is handwritten.
  • the pen can be made finer, has a better experience, and is convenient for direct connection with the smart terminal for charging, convenient charging, short charging time, and is connected by designing a metal contact on the side of the stylus.
  • the smart terminal is charged to the stylus, which facilitates the interaction mode of the whole machine and also plays a role of low carbon and environmental protection.
  • an object of the present invention is to provide an active capacitive pen and a touch device applied to a smart terminal.
  • the invention discloses an active capacitive pen applied to a smart terminal, comprising a conductive pen tip, a housing pen body connected to the conductive pen tip, and a pen disposed in the housing pen body and electrically connected to the conductive pen tip Core assembly
  • the refill assembly includes a pressure sensor, a microcontroller, and a power module;
  • the power module includes a charging interface and an electrochemical capacitor
  • the conductive pen head is configured to detect a touch signal when contacting the touch screen of the smart terminal, send the touch signal to the pressure sensor, and transmit a feedback signal output by the microcontroller;
  • the pressure sensor is connected to the conductive pen tip, receives the touch signal, detects a touch pressure of the conductive pen tip, and sends the touch signal to the microcontroller;
  • the microcontroller is connected to the pressure sensor, receives and processes the touch signal, and generates the synchronized feedback signal;
  • the charging interface is disposed on a side of the housing pen away from the conductive pen tip, and when the smart terminal is connected, charges the active capacitive pen;
  • the electrochemical capacitor is coupled to the charging interface for storing power and powering the active capacitive pen.
  • the charging interface is one of a charging contact and a charging spring
  • the charging contact When the charging is connected to the smart terminal, the charging contact is electrically connected to the charging pin extending along the side of the smart terminal.
  • the power module further includes an energy converter disposed between the conductive pen tip and the electrochemical capacitor to convert mechanical energy of the conductive pen tip into electrical energy and stored in the electrochemical capacitor.
  • the refill assembly further includes a boosting module coupled to the microcontroller to convert the feedback signal generated by the microcontroller into a high voltage signal.
  • the refill assembly further comprises a gyroscope, a Bluetooth module;
  • the gyroscope is connected to the conductive pen tip, and calculates a tilt direction and an angle of the conductive pen tip when contacting the touch screen by a self-detection algorithm, thereby calculating a position of the conductive pen tip in contact with the touch screen a compensation value, generating a compensation signal, and transmitting the compensation signal to the Bluetooth module;
  • the Bluetooth module performs a Bluetooth connection with the smart terminal, and sends the compensation signal to the smart terminal, where the touch screen of the smart terminal corrects the position of the active capacitive pen according to the compensation signal.
  • the refill assembly further includes a signal booster disposed between the gyroscope and the Bluetooth module to amplify and transmit the compensation signal to the Bluetooth module.
  • a signal booster disposed between the gyroscope and the Bluetooth module to amplify and transmit the compensation signal to the Bluetooth module.
  • the conductive pen tip comprises a pen tip, a pen tip, and a shield cover;
  • the pen tip is located at an end of the conductive pen tip away from the pen body of the housing, and is disposed in the shielding cover as an elongated electric conductor;
  • the pen tip is disposed outside the shield cover and forms a truncated cone-shaped electric conductor around the pen tip.
  • the pen tip and/or the pen tip detects a touch signal when contacting the touch screen of the smart terminal, sends the touch signal to the pressure sensor, and transmits the microcontroller output. a feedback signal.
  • the pen tip detects a touch signal when contacting the touch screen of the smart terminal, and sends the touch signal to the pressure sensor;
  • the pen tip transmits a feedback signal output by the microcontroller.
  • the invention also discloses a touch device, comprising an intelligent terminal and an active capacitive pen applied to the smart terminal;
  • the active capacitive pen includes a conductive pen tip, a housing pen body connected to the conductive pen tip, and a refill assembly disposed in the housing pen body and electrically connected to the conductive pen tip;
  • the refill assembly includes a pressure sensor, a microcontroller, and a power module;
  • the power module includes a charging interface and an electrochemical capacitor
  • the conductive pen head is configured to detect a touch signal when contacting the touch screen of the smart terminal, send the touch signal to the pressure sensor, and transmit a feedback signal output by the microcontroller;
  • the pressure sensor is connected to the conductive pen tip, receives the touch signal, detects a touch pressure of the conductive pen tip, and sends the touch signal to the microcontroller;
  • the microcontroller is connected to the pressure sensor, receives and processes the touch signal, and generates the synchronized feedback signal;
  • the charging interface is disposed on a side of the housing pen away from the conductive pen tip, and when the smart terminal is connected, charges the active capacitive pen;
  • the electrochemical capacitor is coupled to the charging interface for storing power and powering the active capacitive pen.
  • the active capacitive pen and touch device applied to the intelligent terminal provided by the invention breaks the design mode of the traditional capacitive pen, and adjusts the original lithium battery and the dry battery to a super capacitor, and the super capacitor has a small volume, and the stylus can Made more fine and have a better experience;
  • the active capacitive pen and touch device applied to the intelligent terminal provided by the invention facilitates direct connection with the intelligent terminal for charging, convenient charging and short charging time;
  • FIG. 1 is a schematic structural view of an active capacitive pen according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the operation of an active capacitive pen according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the operation of an active capacitive pen according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the operation of an active capacitive pen according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a touch device according to a preferred embodiment of the present invention.
  • Reference numerals 1000-touch device; 100-active capacitive pen; 110-smart terminal; 11-conductive pen tip; 12-shell pen body; 13-fill assembly; 14-pressure sensor; 15-microcontroller ; 16 - power module; 17 - charging interface; 18 - electrochemical capacitor; 19 - boost module; 20 - gyroscope; 21 - Bluetooth module; 22 - signal booster.
  • the active capacitive pen of the present invention can be applied to various smart terminals having a touch screen, and the smart terminal can be implemented in various forms.
  • the smart terminal described in the present invention may include mobiles such as mobile phones, smart phones, notebook computers, PDAs (Personal Digital Assistants), PADs (Tablets), PMPs (Portable Multimedia Players), navigation devices, smart watches, and the like.
  • Terminals, as well as fixed terminals such as digital TVs, desktop computers, and the like.
  • the present invention will be described assuming that the terminal is a mobile terminal and assuming that the mobile terminal is a smart phone.
  • the active capacitive pen 100 of the present invention comprises a conductive pen tip 11, a housing pen body 12 connected to the conductive pen tip 11, and a cap placed in the housing pen body 12 and the conductive pen tip. 11 electrically connected refill assembly 13;
  • the refill assembly 13 includes a pressure sensor 14, a microcontroller 15, and a power module 16;
  • the power module 16 includes a charging interface 17, an electrochemical capacitor 18;
  • the conductive pen tip 11 is configured to detect a touch signal when contacting the touch screen of the smart terminal 110, send the touch signal to the pressure sensor 14, and transmit the output of the microcontroller 15 Feedback signal;
  • the pressure sensor 14 is connected to the conductive pen tip 11, receives the touch signal, detects the touch pressure of the conductive pen tip 11, and sends the touch signal to the microcontroller 15;
  • the microcontroller 15 is connected to the pressure sensor 14 to receive and process the touch signal to generate the synchronized feedback signal.
  • the charging interface 17 is disposed on a side of the housing pen body 12 away from the conductive pen tip 11 and is connected to the smart terminal 110 to charge the active capacitive pen 100;
  • the electrochemical capacitor 18 is connected to the charging interface 17 for storing power and supplying power to the active capacitive pen 100.
  • the conductive pen tip 11 is configured to detect a touch signal when the touch screen of the smart terminal 110 is in contact, send the touch signal to the pressure sensor 14, and transmit a feedback output by the microcontroller 15 signal.
  • the conductive pen tip 11 can be designed as a single body, or can be a split type design, such as a pen tip, a pen tip, etc., the pen tip is elongated, and the tip of the conductive pen tip 11 can be 2.4 mm or less, made of a conductor material; It is in the shape of a truncated cone and wraps the nib, and can be made of a conductor or a non-conductor material as needed.
  • the conductive pen tip 11 includes a pen tip, a pen tip, and a shield cover;
  • the pen tip is located at one end of the conductive pen tip 11 away from the housing, and is disposed in the shielding cover as an elongated electric conductor;
  • the pen tip is disposed outside the shield cover and forms a truncated cone-shaped electric conductor around the pen tip.
  • the pen tip and the pen tip detect a touch signal when contacting the touch screen of the smart terminal 110, send the touch signal to the pressure sensor 14, and transmit the A feedback signal output by the microcontroller 15.
  • the pen tip or the pen tip detects a touch signal when contacting the touch screen of the smart terminal 110, sends the touch signal to the pressure sensor 14, and transmits the A feedback signal output by the microcontroller 15.
  • the pen tip detects a touch signal when contacting the touch screen of the smart terminal 110, and sends the touch signal to the pressure sensor 14;
  • the pen tip transmits a feedback signal output by the microcontroller 15.
  • the pen tip detects a touch signal when contacting the touch screen of the smart terminal 110, and sends the touch signal to the pressure sensor 14;
  • the pen tip transmits a feedback signal output by the microcontroller 15.
  • the receiving and transmitting portion of the active capacitive pen 100 is composed of a pen tip, a pen tip, and a shield cover.
  • the nib is located inside the shield and is an elongated conductor.
  • the tip of the pen is located outside the shield and is an electrical conductor surrounding the shield. Since the pen tip and the pen tip are both electrical conductors, a coupling capacitor can be respectively formed between the receiving electrode and the transmitting electrode of the touch screen of the smart terminal 110, and the purpose of receiving and transmitting signals can be realized by the coupling capacitor.
  • the shield separates the nib from the tip to prevent mutual interference between the nib and the tip.
  • the signal of the touch screen can be received by the pen tip, and the signal is sent from the pen tip to the touch screen; the signal of the touch screen can also be received by the pen tip, and the signal is sent by the pen tip to the touch screen.
  • the receiving part may not be needed, and only the sending part can complete the positioning and data transmission.
  • the housing pen body 12 is coupled to the conductive pen tip 11.
  • the housing pen body 12 can be designed in three parts, respectively including a connecting portion, an intermediate portion, and an end portion connected to the conductive pen tip 11, and all three portions are made of a non-conductor material.
  • the connecting portion of the housing pen body 12 and the conductive pen tip 11 can be designed as a spiral connection, a fixed connection or the like;
  • the middle portion of the housing pen body 12 is designed as an elongated cylindrical shape, which can be close to the middle portion for easy finger grasping.
  • the conductive pen tip 11 portion is designed with one or more ergonomic circular transitions;
  • the end portion of the housing pen body 12 can be designed as a hemispherical shape, a truncated cone shape which is gradually narrowed toward the end, or a distal end portion.
  • the refill assembly 13 is disposed in the housing body 12 and electrically connected to the conductive pen tip 11 .
  • the refill assembly 13 includes a pressure sensor 14, a microcontroller 15, and a power module 16;
  • the power module 16 includes a charging interface 17, an electrochemical capacitor 18;
  • the pressure sensor 14 is connected to the conductive pen tip 11, receives the touch signal, detects the touch pressure of the conductive pen tip 11, and sends the touch signal to the microcontroller 15;
  • the microcontroller 15 is connected to the pressure sensor 14 to receive and process the touch signal to generate the synchronized feedback signal.
  • the charging interface 17 is disposed on a side of the housing pen body 12 away from the conductive pen tip 11 and is connected to the smart terminal 110 to charge the active capacitive pen 100;
  • the electrochemical capacitor 18 is connected to the charging interface 17 for storing power and supplying power to the active capacitive pen 100.
  • a spring, a slider and a screw rod connected to the nib of the conductive pen tip 11 may be further included, the slider is set on the screw rod, the slider is matched with the screw rod, and one end of the spring is connected to the slider The other end is connected to the conductive pen tip 11 to realize the elastic movement of the pen tip in the conductive pen tip 11, thereby reducing the damage of the conductive pen tip 11 of the active capacitive pen 100 during use.
  • the pressure sensor 14 is connected to the conductive pen tip 11 for detecting the touch pressure of the conductive pen tip 11, receiving the touch signal, and transmitting the touch signal to the microcontroller 15; and providing writing strokes of different thicknesses.
  • MCU Use Microcontroller Unit
  • CPU Central Process Unit
  • memory memory
  • Counter Timer
  • USB USB
  • a / D conversion UART
  • PLC PLC
  • DMA DMA
  • other peripheral interfaces and even LCD driver circuits are integrated on a single chip, forming a chip-level computer, for different combinations of different applications.
  • the MCU is used to generate an excitation signal of the active capacitive pen 100, and receives the touch signal and pressure data transmitted by the analysis pressure sensor 14.
  • the existing capacitive pen is externally charged through a USB connection, and the power source is often powered by a lithium battery and a dry battery.
  • the active capacitive pen 100 power supply module 16 of the present invention includes a charging interface 17 and an electrochemical capacitor 18.
  • the charging interface 17 is disposed on the housing pen body 12 and is ergonomically adapted to the human body to grasp the active capacitive pen 100.
  • the charging body is disposed on a side of the housing body 12 away from the conductive pen tip 11 in a
  • the charging interface 17 is one of a charging contact and a charging spring.
  • the charging contacts may be plural, evenly distributed in a square area of the housing body 12 away from the conductive pen tip 11 on the smart terminal 110 used with it. Corresponding positions, such as a square area on one side, are provided with charging pins that charge the active capacitive pen 100 when used in conjunction with the smart terminal 110.
  • a protective cover for use with the smart terminal 110 is configured, and a cylindrical space corresponding to the active capacitive pen 100 is disposed on the left side of the protective cover for placing the active capacitive pen 100 on the left side of the smart terminal 110.
  • a charging pin is disposed on the side surface.
  • the electrochemical capacitor 18 is connected to the charging interface 17 for storing power and supplying power to the active capacitive pen 100.
  • Electrochemical capacitors also known as supercapacitors, electric double layer capacitors, gold capacitors, and farad capacitors, are electrochemical components that have been developed by polarizing electrolytes since the 1970s and 1980s. It is different from the traditional chemical power source. It is a kind of power source with special performance between the traditional capacitor and the battery. It mainly relies on the electric double layer and the redox tantalum capacitor to store electric energy. However, there is no chemical reaction in the process of energy storage. This energy storage process is reversible, and it is precisely because this supercapacitor can be repeatedly charged and discharged hundreds of thousands of times.
  • the specific details of the supercapacitor structure depend on the application and use of the supercapacitor. These materials may vary slightly due to manufacturer or specific application requirements.
  • the commonality of all supercapacitors is that they all contain a positive electrode, a negative electrode, and a separator between the two electrodes, and the electrolyte fills the two pores separated by the two electrodes and the separator.
  • the supercapacitor is composed of a porous electrode material having a high specific surface area, a current collector, a porous battery separator, and an electrolyte.
  • the electrode material and the current collector should be closely connected to reduce the contact resistance; the separator should meet the conditions of having the highest possible ion conductance and the lowest possible electronic conductance, generally a fibrous structure of an electronic insulating material such as a polypropylene film. .
  • the type of electrolyte is selected according to the nature of the electrode material.
  • the components of a supercapacitor can vary from product to product. This is determined by the geometry of the supercapacitor package.
  • the internal structure is based on the placement of the internal components, ie the inner collector is extruded from the stack of each electrode. These collector pads will be soldered to the termination, thereby expanding the current path outside the capacitor.
  • the electrodes are cut into a reel configuration. At last The electrode foil is soldered to the termination to extend the external capacitive current path.
  • the basic principle of supercapacitors is to obtain an extra large capacity by using an electric double layer structure composed of an activated carbon porous electrode and an electrolyte.
  • Electric double layer capacitor It is produced by the alignment of charges caused by the alignment of electrons or ions at the electrode/solution interface.
  • an electric double layer is formed at the interface of the electrically conductive electrode and the ionically conductive electrolyte solution.
  • the anions and cations in the solution migrate to the positive and negative electrodes, respectively, forming an electric double layer on the surface of the electrode; after the electric field is removed, the positive and negative charges on the electrode are opposite to the oppositely charged ions in the solution.
  • the electric double layer is stabilized by attraction, and a relatively stable potential difference is generated between the positive and negative electrodes.
  • an equal amount of anisotropic ionic charge with the charge on the electrode is generated within a certain distance (distribution layer) to keep it electrically neutral; when the two poles are connected to the external circuit, the electrode The charge is transferred to generate current in the external circuit, and the ions in the solution migrate to the solution to be electrically neutral, which is the charge and discharge principle of the electric double layer capacitor.
  • Faraday quasi-capacitor its theoretical model was first proposed by Conway, in the two-dimensional or quasi-two-dimensional space on the surface of the electrode and near the surface or bulk, electroactive substances for underpotential deposition, highly reversible chemical absorption Desorption and redox reactions produce a capacitance associated with the charge potential of the electrode.
  • the process of storing charge includes not only the storage on the electric double layer but also the redox reaction of the electrolyte ions and the electrode active material.
  • Supercapacitors have the following outstanding features and are the largest of the world's largest production of electric double layer capacitors:
  • the charging speed is fast, and the charging can reach more than 95% of its rated capacity in 10 seconds to 10 minutes;
  • the charging and discharging circuit is simple, no charging circuit like rechargeable battery is needed, and the safety factor is high, and maintenance is free for long-term use;
  • the capacity range is usually 0.1F--1000F.
  • the power module 16 further includes an energy converter disposed between the conductive pen tip 11 and the electrochemical capacitor 18, and connected to the electrochemical capacitor 18, the conductive pen tip 11 The mechanical energy is converted to electrical energy and stored in the electrochemical capacitor 18.
  • the energy converter collects the mechanical energy generated by the conductive tip 11 of the active capacitive pen 100 during use, converting it into electrical energy storage.
  • the energy converter can convert mechanical energy into electrical energy, and the design principle is the mechanical energy converter principle.
  • the main components are connected in series: a rotor oscillating weight, a gear sequence, a power generating coil, the power generating coil and the battery electrochemical capacitor 18 Connected, wherein the principle of the energy converter is: using the active capacitive pen 100 to operate, the rotor sway is rotated according to the use of the motion; the rotation of the rotor yaw is expanded by the gear train; the rotation of the micro-rotor after the rotation is generated Magnetic charge; magnetic charge is electromagnetically converted through a power generating coil to convert magnetic charges into electrical energy.
  • the refill assembly 13 further includes a boosting module 19 coupled to the microcontroller 15 to convert the feedback signal generated by the microcontroller 15 into a high voltage signal. .
  • the refill assembly 13 further includes a gyroscope 20, a signal booster 22, and a Bluetooth module 21;
  • the gyroscope 20 is connected to the conductive pen tip 11 and calculates a tilt direction and an angle when the conductive pen tip 11 is in contact with the touch screen by a self-detection algorithm, thereby calculating the conductive pen tip 11 on the touch screen.
  • the compensation value required to contact the position generate a compensation signal, and send the compensation signal to the Bluetooth module 21;
  • the Bluetooth module 21 performs a Bluetooth connection with the smart terminal 110, and sends the compensation signal to the smart terminal 110.
  • the touch screen of the smart terminal 110 pairs the active capacitive pen according to the compensation signal.
  • the position of 100 is corrected.
  • the refill assembly 13 further includes a signal booster 22 disposed between the gyroscope 20 and the Bluetooth module 21 to amplify and transmit the compensation signal to the Bluetooth module 21.
  • the conductive pen tip 11 serves as a receiving end of the touch screen touch signal, and transmits the touch signal to the pressure.
  • the sensor 14 and the pressure sensor 14 calculate the pressure data, and transmit the touch signal and the pressure data to the gyro 20.
  • the gyro 20 is configured to sense the tilt direction and the angle of the active capacitive stylus 100 when the user is operating, and calculate The compensation value required due to the deformation caused by the contact between the conductive pen tip 11 and the touch screen is fed back to the signal booster 22, and the signal booster 22 generates a compensation pulse signal for the induced pulse signal generated by the pressure sensor 14.
  • a working process according to the above embodiment is as follows:
  • Step 1 The active capacitive pen 100 and the smart terminal 110 both turn on the Bluetooth function, and the smart terminal 110 searches for the Bluetooth ID of the active capacitive pen 100 to achieve docking;
  • Step 2 The conductive pen tip 11 of the active capacitive pen 100 contacts the touch screen panel, and the conductive pen tip 11 forms a coupling capacitance with the touch pattern on the touch screen panel;
  • Step 3 the pulsed electronic part of the touch screen panel flows through the conductive pen tip 11 into the active capacitive pen 100, and the pressure sensor 14 calculates the pressure value, and transmits the value to the gyroscope 20;
  • Step 4 The gyroscope 20 calculates the tilting direction and angle of the active capacitive pen 100 during the actual operation by the self-detection algorithm, and calculates the compensation value required for the contact position of the conductive pen tip 22, and feeds back to the signal booster 22;
  • Step 5 The electrons flowing in through the conductive pen tip 11 flow to the signal booster 22.
  • the signal enhancer 22 generates a compensation value generated by the step 4 to generate a pulse to compensate the signal while enhancing the input signal.
  • the signal enhancement factor is about 10 ⁇ . 30 times;
  • Step 6 The signal amplified by the signal booster 22 is transmitted to the Bluetooth module 21, and the compensated signal is directly sent by the Bluetooth module 21 to the touch screen.
  • the present disclosure further discloses a touch device 1000, including an intelligent terminal 110, an active capacitive pen 100 applied to the smart terminal 110;
  • the active capacitive pen 100 includes a conductive pen tip 11 , a housing pen body 12 connected to the conductive pen tip 11 , and a refill assembly disposed in the housing pen body 12 and electrically connected to the conductive pen tip 11 . 13;
  • the refill assembly 13 includes a pressure sensor 14, a microcontroller 15, and a power module 16;
  • the power module 16 includes a charging interface 17, an electrochemical capacitor 18;
  • the conductive pen tip 11 is configured to detect a touch signal when the touch screen of the smart terminal 110 is in contact, send the touch signal to the pressure sensor 14, and transmit a feedback output by the microcontroller 15 signal;
  • the pressure sensor 14 is connected to the conductive pen tip 11, receives the touch signal, detects the touch pressure of the conductive pen tip 11, and sends the touch signal to the microcontroller 15;
  • the microcontroller 15 is connected to the pressure sensor 14 to receive and process the touch signal to generate synchronization The feedback signal;
  • the charging interface 17 is disposed on a side of the housing pen body 12 away from the conductive pen tip 11 and is connected to the smart terminal 110 to charge the active capacitive pen 100;
  • the electrochemical capacitor 18 is connected to the charging interface 17 for storing power and supplying power to the active capacitive pen 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种应用于智能终端的主动式电容笔(100)及触控装置(1000),其中,主动式电容笔(100)包括导电笔头(11)、壳体笔身(12)、笔芯组件(13);笔芯组件(13)包括压力传感器(14)、微控制器(15)、充电接口(17)、电化学电容(18);导电笔头(11),检测与触摸屏接触时的触控信号,并发射微控制器(15)输出的反馈信号;压力传感器(14),检测导电笔头(11)的触摸压力;微控制器(15),接收并处理触控信号,产生同步的反馈信号;充电接口(17),与智能终端连接时,对主动式电容笔(100)充电;电化学电容(18),存储电量及为主动式电容笔(100)供电。上述主动式电容笔(100)将原有的锂电池、干电池调整为超级电容,超级电容体积小,主动式电容笔更细,有更好的使用体验,使用充电触点充电方便,充电时间短,利于整机的交互方式,也起到低碳环保的作用。

Description

一种应用于智能终端的主动式电容笔及触控装置 技术领域
本发明涉及智能终端领域,尤其涉及一种应用于智能终端的主动式电容笔及触控装置。
背景技术
随着信息技术的发展,便携式智能终端与人们的生活越发密切相关,触摸屏在日常生活中已经得到广泛应用。但是在使用触摸屏智能终端时,使用手指进行操作有其局限性,手指较粗,很难在尺寸较小的屏幕上进行精确和快速书写,于是,催生了各种各样应用于触摸屏的手写笔。
按照工作原理,市面上的手写笔主要分为电磁式和电容式,而这两种方式也各自又分为主动式(有源)和被动式(无源)。
电磁式输入技术的运作原理主要是以具有多个沿轴向分布的感应天线回路或天线的电路板,搭配可发出电磁信号的电磁笔以进行输入动作。因此电磁式输入装置的感应平面是由天线或感应线圈构成。而天线或感应线圈布局在输入装置的工作表面下或显示屏幕之后。电磁笔进行操作时,电磁笔的坐标位置借由电磁笔内振荡电路与天线或感应线圈之间传送的电磁波经信号处理与计算而获得。
应用电磁式输入技术的输入装置包含智能型行动通讯装置(Smart Phone)、数字板(Digitizer tablets)或电子书(E-book/Green book)等,须搭配使用电磁笔或数字笔(stylus)以进行输入操作。
电磁笔的振荡电路通常包含由电感、电容及相关元件所组成并置于笔壳之内。电感包含由铁粉心(ferrite core)搭配缠绕的金属线圈所构成与电容等相关元件形成振荡电路以与输入装置的天线回路或感应线圈之间传送与接收电磁波信号。振荡电路将依并联的金属线圈的电感值及电路上连接的电容值,以决定此电路的振荡频率,当使用者以电磁笔于输入装置上作书写时,电磁笔内的笔尖会使电容值或电感值连续性地变化,并进而使振荡电路的频率也伴随着发生连续性地变化,输入装置则可借由内部电路,去侦测并计算出所收到的电磁信号的频率,以求得电磁笔尖的压力阶度。
电磁笔都是依靠电磁讯号来实现笔迹书写,根据有源和无源的区别,分为了主动式和被动式两种。
主动式电磁笔需要电池来进行供电(比如SurfacePro3的手写笔),它通过内置的振荡电路持续发射电磁波,实现与智能终端的通讯(实际上它还需要通过蓝牙与智能终端 进行通讯,实现更多的按键功能)。虽然从理论上讲,主动式电磁笔的性能不会比被动式差,但换电池始终是个麻烦事,而且加了电池后重量也很难减下来,所以它的优势是方便厂商在现有的设备上随时加装电磁笔,只要触控屏的控制单元支持就可以。
被动式电磁笔工作时需要的能量通过智能终端的电磁屏“隔空”供应,所以就不需要电池了,它的内部主要由一组线圈以及电容的共振线路组成,共振线路可以同时接收与储存电磁屏传送来的电磁能量,也可以在它们之间传递电磁信号,实现笔迹书写。
电容式触控屏是利用人体的电流感应工作的。其是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO(即镀膜导电玻璃),最外层是一薄层矽土玻璃保护层。ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。当手指触摸在金属层上时,由于人体电场、用户和触控屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分别从触控屏四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置信息。
电容笔是利用导体材料制作的具有导电特性、用来触控电容式屏幕完成人机对话操作用的一种辅助装置,可以适用于大多数电容屏设备。它也分了主动式和被动式,区别在于产生电流信号的机制不同。
被动式电容笔成本低,笔尖为导电的材料,一般是导电橡胶。为了模拟手指的触控效果,被动式电容笔需要做得比较粗,否则接触面积不够就会出现笔迹断断续续的问题。所以,被动式电容笔只能用来进行简单的画线,无法实现精细地绘画。
主动式电容笔要靠电池供电,内部电路通过笔尖与电容屏连接产生电流来实现手写功能。它相比被动式电容笔来说,可以大大地减少笔尖的接触面积,被动式电容笔的笔尖直径大约为5mm~8mm,而主动式的笔尖直径可以做到2.4mm甚至更小,已经可以接近电磁笔的水平。另外,通过蓝牙连接设备的主动式电容笔,还能实现1024级压感,除了精度与电磁笔还有一定差距外,它的表现比被动式电容笔要亮眼许多,但价格也贵了几十上百倍。
综上,目前市场上主流的手写笔技术均有着各种各样的缺点,以被动笔来说,其较低的精度和无感响应难以满足诸如绘画等高要求和手写应用,而电磁笔技术虽以其优质的书写体验占领了高端市场,但以其特殊的架构需求,需要增加额外芯片及电磁板,所有增加电磁笔功能的手写设备价格要远远高于没有此功能的设备。而且,现有的电容笔通过USB连接外部进行充电,其电源往往采用锂电池和干电池来进行供电。
针对以上的问题,需要有一种既有价格优势,又有良好性能的手写笔技术来满足日益增长的市场需求,电容笔技术是一种在现有广泛使用的互容式触摸屏架构上实现的手 写技术,不改变现有触摸屏的架构,利用原有的电容触摸屏控制芯片来同步感测手写笔信号,实现了低价质优的用户体验。
因此,本发明提供了一种应用于智能终端的主动式电容笔及触控装置,打破传统电容笔的设计方式,将原有的锂电池以及干电池调整为超级电容,超级电容体积较小,手写笔可以做的更细,有更好的使用体验,且便于直接与智能终端连接进行充电,充电方便,充电时间较短,通过在手写笔的侧边设计带有金属的触点,来连接到智能终端上,从而对手写笔进行充电智能终端,利于整机的交互方式,也起到低碳环保的作用。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种应用于智能终端的主动式电容笔及触控装置。
本发明公开了一种应用于智能终端的主动式电容笔,包括导电笔头、与所述导电笔头连接的壳体笔身、设置在所述壳体笔身内与所述导电笔头电性连接的笔芯组件;
所述笔芯组件包括压力传感器、微控制器、电源模块;
所述电源模块包括充电接口、电化学电容;
所述导电笔头,用于检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器,并发射所述微控制器输出的一反馈信号;
所述压力传感器,与所述导电笔头连接,接收所述触控信号,检测所述导电笔头的触摸压力,将所述触控信号发送至所述微控制器;
所述微控制器,与所述压力传感器连接,接收并处理所述触控信号,产生同步的所述反馈信号;
所述充电接口,设于所述壳体笔身上远离所述导电笔头一侧,与所述智能终端连接时,对所述主动式电容笔充电;
所述电化学电容,与所述充电接口连接,用于存储电量及为所述主动式电容笔供电。
优选地,所述充电接口为充电触点、充电弹片中的一种;
与所述智能终端连接充电时,所述充电触点与所述智能终端旁侧延伸的充电针脚电性连接。
优选地,所述电源模块还包括能量转换器,设于所述导电笔头与所述电化学电容之间,将所述导电笔头的机械能转换为电能,存储于所述电化学电容中。
优选地,所述笔芯组件还包括升压模块,与所述微控制器连接,将所述微控制器产生的所述反馈信号转换为高压信号。
优选地,所述笔芯组件还包括陀螺仪,蓝牙模块;
所述陀螺仪,与所述导电笔头连接,通过自侦测算法计算所述导电笔头与所述触摸屏接触时的倾斜方向及角度,从而计算所述导电笔头在与所述触摸屏的接触位置所需的补偿值,生成一补偿信号,将所述补偿信号发送至所述蓝牙模块;
所述蓝牙模块,与所述智能终端进行蓝牙连接,将所述补偿信号发送至所述智能终端,所述智能终端的所述触摸屏依据所述补偿信号对所述主动式电容笔的位置进行校正。
优选地,所述笔芯组件还包括信号增强器,设于所述陀螺仪、蓝牙模块之间,将所述补偿信号放大并发送至所述蓝牙模块。
优选地,所述导电笔头包括笔尖、笔头、屏蔽罩;
所述笔尖,位于所述导电笔头远离所述壳体笔身一端,设于所述屏蔽罩内,为细长形导电体;
所述笔头,设于所述屏蔽罩外,围绕所述笔尖,形成圆台形导电体。
优选地,所述笔尖和/或所述笔头,检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器,并发射所述微控制器输出的一反馈信号。
优选地,所述笔尖,检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器;
所述笔头,发射所述微控制器输出的一反馈信号。
本发明还公开了一种触控装置,包括智能终端、应用于所述智能终端的主动式电容笔;
所述主动式电容笔,包括导电笔头、与所述导电笔头连接的壳体笔身、设置在所述壳体笔身内与所述导电笔头电性连接的笔芯组件;
所述笔芯组件包括压力传感器、微控制器、电源模块;
所述电源模块包括充电接口、电化学电容;
所述导电笔头,用于检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器,并发射所述微控制器输出的一反馈信号;
所述压力传感器,与所述导电笔头连接,接收所述触控信号,检测所述导电笔头的触摸压力,将所述触控信号发送至所述微控制器;
所述微控制器,与所述压力传感器连接,接收并处理所述触控信号,产生同步的所述反馈信号;
所述充电接口,设于所述壳体笔身上远离所述导电笔头一侧,与所述智能终端连接时,对所述主动式电容笔充电;
所述电化学电容,与所述充电接口连接,用于存储电量及为所述主动式电容笔供电。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.本发明提供的应用于智能终端的主动式电容笔及触控装置,打破传统电容笔的设计方式,将原有的锂电池以及干电池调整为超级电容,超级电容体积较小,手写笔可以做的更细,有更好的使用体验;
2.本发明提供的应用于智能终端的主动式电容笔及触控装置,便于直接与智能终端连接进行充电,充电方便,充电时间较短;
3.便于直接与智能终端连接进行充电,通过在手写笔的侧边设计带有金属的触点,来连接到智能终端上,从而对手写笔进行充电,利于整机的交互方式,也起到低碳环保的作用。
附图说明
图1为符合本发明一优选实施例的主动式电容笔的结构示意图;
图2为符合本发明一优选实施例的主动式电容笔的工作原理图;
图3为符合本发明一优选实施例的主动式电容笔的工作原理图;
图4为符合本发明一优选实施例的主动式电容笔的工作原理图;
图5为符合本发明一优选实施例的触控装置的结构示意图。
附图标记:1000-触控装置;100-主动式电容笔;110-智能终端;11-导电笔头;12-壳体笔身;13-笔芯组件;14-压力传感器;15-微控制器;16-电源模块;17-充电接口;18-电化学电容;19-升压模块;20-陀螺仪;21-蓝牙模块;22-信号增强器。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本发明使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本发明和所附权利要求书中所使用的单数形式的“一”、“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
在本发明的描述中,除非另有规定和限定,对于本领域的普通技术人员而言,可以根据具体情况理解术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”或“单元”的后缀仅为了有利 于本发明的说明,其本身并没有特定的意义。因此,“模块”与“单元”可以混合地使用。
本发明的主动式电容笔,可以应用于各种具有触摸屏的智能终端,智能终端可以以各种形式来实施。例如,本发明中描述的智能终端可以包括诸如移动电话、智能电话、笔记本电脑、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置、智能手表等的移动终端,以及诸如数字TV、台式计算机等的固定终端。下面,假设终端是移动终端,并假设该移动终端为智能手机,对本发明进行说明。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明的实施方式的构造也能够应用于固定类型的终端。为便于描述,本发明实施例均以智能手机为例进行说明,其它应用场景相互参照即可。
参考图1、图2,本发明的主动式电容笔100,包括导电笔头11、与所述导电笔头11连接的壳体笔身12、设置在所述壳体笔身12内与所述导电笔头11电性连接的笔芯组件13;
所述笔芯组件13包括压力传感器14、微控制器15、电源模块16;
所述电源模块16包括充电接口17、电化学电容18;
所述导电笔头11,用于检测与所述智能终端110的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器14,并发射所述微控制器15输出的一反馈信号;
所述压力传感器14,与所述导电笔头11连接,接收所述触控信号,检测所述导电笔头11的触摸压力,将所述触控信号发送至所述微控制器15;
所述微控制器15,与所述压力传感器14连接,接收并处理所述触控信号,产生同步的所述反馈信号;
所述充电接口17,设于所述壳体笔身12上远离所述导电笔头11一侧,与所述智能终端110连接时,对所述主动式电容笔100充电;
所述电化学电容18,与所述充电接口17连接,用于存储电量及为所述主动式电容笔100供电。
-导电笔头11
所述导电笔头11,用于检测与所述智能终端110的触摸屏接触时的触控信号,将所述触控信号发送至所述压力传感器14,并发射所述微控制器15输出的一反馈信号。
导电笔头11可设计为一体,也可以为分体式设计,如包括笔尖、笔头等,笔尖呈细长形,导电笔头11的笔尖直径可以做到2.4mm甚至更小,由导体材料制成;笔头呈圆台形,包裹所述笔尖,根据需要,可由导体或非导体材料制成。
在一优选实施例中,所述导电笔头11包括笔尖、笔头、屏蔽罩;
所述笔尖,位于所述导电笔头11远离所述壳体一端,设于所述屏蔽罩内,为细长形导电体;
所述笔头,设于所述屏蔽罩外,围绕所述笔尖,形成圆台形导电体。
在一优选实施例中,所述笔尖和所述笔头,检测与所述智能终端110的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器14,并发射所述微控制器15输出的一反馈信号。
在一优选实施例中,所述笔尖或所述笔头,检测与所述智能终端110的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器14,并发射所述微控制器15输出的一反馈信号。
在一优选实施例中,所述笔尖,检测与所述智能终端110的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器14;
所述笔头,发射所述微控制器15输出的一反馈信号。
在一优选实施例中,所述笔头,检测与所述智能终端110的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器14;
所述笔尖,发射所述微控制器15输出的一反馈信号。
在上述实施例中,主动式电容笔100的接收和发送部分,即导电笔头11,由笔尖、笔头、屏蔽罩三部分构成。笔尖位于屏蔽罩内,是细长的导电体。笔头位于屏蔽罩外,是围绕屏蔽罩的导电体。由于笔尖和笔头均为导电体,因而与智能终端110触摸屏的接收电极、发送电极之间可以分别形成耦合电容,通过耦合电容可以实现接收和发送信号的目的。屏蔽罩将笔尖和笔头隔离开,以防止笔尖和笔头之间的相互干扰。
由于笔尖和笔头均具有接收和发送信号的功能,所以既可以由笔头来接收触摸屏的信号,由笔尖向触摸屏发送信号;也可以由笔尖来接收触摸屏的信号,由笔头向触摸屏发送信号。对于某些智能而言,可能不需要接收部分,只有发送部分即可完成定位和数据传输。
-壳体笔身12
所述壳体笔身12与所述导电笔头11连接。
壳体笔身12可以设计为三部分,分别包括与所述导电笔头11连接的连接部、中间部、端部,三个部分均采用非导体材料制成。壳体笔身12与导电笔头11的连接部可以设计为螺旋连接、固定连接等连接方式;壳体笔身12的中间部设计为细长圆柱形,为便于手指把握,可在中间部的靠近导电笔头11部分设计一个或多个符合人体工学的圆弧过渡的凸起部;壳体笔身12的端部可设计为半球形、向端部逐渐变窄的圆台形,或向端部 逐渐变窄的带有圆弧形过渡的圆台形等。
-笔芯组件13
所述笔芯组件13设置在所述壳体笔身12内与所述导电笔头11电性连接。
所述笔芯组件13包括压力传感器14、微控制器15、电源模块16;
所述电源模块16包括充电接口17、电化学电容18;
所述压力传感器14,与所述导电笔头11连接,接收所述触控信号,检测所述导电笔头11的触摸压力,将所述触控信号发送至所述微控制器15;
所述微控制器15,与所述压力传感器14连接,接收并处理所述触控信号,产生同步的所述反馈信号;
所述充电接口17,设于所述壳体笔身12上远离所述导电笔头11一侧,与所述智能终端110连接时,对所述主动式电容笔100充电;
所述电化学电容18,与所述充电接口17连接,用于存储电量及为所述主动式电容笔100供电。
--弹簧、滑块、丝杆组件
在笔芯组件13中,还可包括与导电笔头11内笔尖连接的弹簧、滑块和丝杆等,滑块套装在丝杆上,滑块与丝杆相配合,弹簧的一端连接在滑块上,另一端与导电笔头11部分连接,实现笔尖在导电笔头11内的弹性移动,减少使用时主动式电容笔100的导电笔头11的损坏。
--压力传感器14
压力传感器14与所述导电笔头11连接,用于检测导电笔头11的触摸压力,接收所述触控信号,将所述触控信号发送至所述微控制器15;提供不同粗细的书写笔迹。
--微控制器15
使用微控制单元(Microcontroller Unit,MCU),又称单片微型计算机(Single Chip Microcomputer)或者单片机,是把中央处理器(Central Process Unit,CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。MCU用于产生主动式电容笔100的激励信号,接受分析压力传感器14传送来的触控信号及压力数据。
现有的电容笔通过USB连接外部进行充电,其电源往往采用锂电池和干电池来进行供电,本发明的主动式电容笔100电源模块16包括充电接口17、电化学电容18。
--充电接口17
所述充电接口17,设于所述壳体笔身12上,为符合人体把握主动式电容笔100的人体工学,设于壳体笔身12上远离所述导电笔头11的一侧,在一优选实施例中,所述充电接口17为充电触点、充电弹片中的一种。
以充电接口17为充电触点为例,充电触点可以为多个,均匀分布在壳体笔身12远离导电笔头11一侧的一正方形区域内,在与之配合使用的智能终端110上的相应位置,如一侧面上的一正方形区域内,设置有充电针脚,其与所述智能终端110配合使用时,对所述主动式电容笔100充电。例如,配置一与智能终端110配合使用的保护套,在保护套的左侧设置一与主动式电容笔100相适应的圆柱形空间,用于放置主动式电容笔100,在智能终端110的左侧面上设置有充电针脚,当将主动式电容笔100收入保护套时,主动式电容笔100的充电触点与智能终端110的充电针脚配合连接,对主动式电容笔100进行在充电。
--电化学电容18
所述电化学电容18,与所述充电接口17连接,用于存储电量及为所述主动式电容笔100供电。
电化学电容,又名超级电容,双电层电容器、黄金电容、法拉电容,是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原赝电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。
超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。由于制造商或特定的应用需求,这些材料可能略有不同。所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。
超级电容器是由高比表面积的多孔电极材料、集流体、多孔性电池隔膜及电解液组成。电极材料与集流体之间要紧密相连,以减小接触电阻;隔膜应满足具有尽可能高的离子电导和尽可能低的电子电导的条件,一般为纤维结构的电子绝缘材料,如聚丙烯膜。电解液的类型根据电极材料的性质进行选择。
超级电容器的部件从产品到产品可以有所不同。这是由超级电容器包装的几何结构决定的。对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。最后 将电极箔焊接到终端,使外部的电容电流路径扩展。
超级电容器的基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
根据储能机理的不同可以分为以下两类:
1、双电层电容:是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙而产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中呈电中性,这便是双电层电容的充放电原理。
2、法拉第准电容:其理论模型是由Conway首先提出,是在电极表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH-、K+或Li+)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。
超级电容具有以下突出特点,是世界上已投入量产的双电层电容器中容量最大的一种:
(1)体积小,很小的体积下达到法拉级的电容量;
(2)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;
(3)循环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;
(4)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;
(5)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;
(6)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;
(7)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;
(8)超低温特性好,温度范围宽-40℃~+70℃;
(0)检测方便,剩余电量可直接读出;
(10)容量范围通常0.1F--1000F。
--能量转换器
在一优选实施例中,所述电源模块16还包括能量转换器,设于所述导电笔头11与所述电化学电容18之间,与所述电化学电容18连接,将所述导电笔头11的机械能转换为电能,存储于所述电化学电容18中。
能量转换器采集所述主动式电容笔100的导电笔头11在使用操作时产生的机械能,将其转化为电能存储。能量转换器能将机械能转换为电能,设计原理为机械表能量转换器原理,主要组成部件为依次相连的:转子摆陀、齿轮序列、发电线圈,所述发电线圈与所述电池电化学电容18相连,其中,上述能量转换器的原理为:使用主动式电容笔100进行操作,转子摆舵根据运动使用进行转动;转子摆舵的转动通过齿轮序列将转速扩大;加速后转动的微型转子旋转产生磁性电荷;磁性电荷通过发电线圈进行电磁转换将磁性电荷转化为电能。
--升压模块19
参考图3,在一优选实施例中,所述笔芯组件13还包括升压模块19,与所述微控制器15连接,将所述微控制器15产生的所述反馈信号转换为高压信号。
--陀螺仪20、信号增强器22、蓝牙模块21
参考图4,在一优选实施例中,笔芯组件13还包括陀螺仪20、信号增强器22、蓝牙模块21;
所述陀螺仪20,与所述导电笔头11连接,通过自侦测算法计算所述导电笔头11与所述触摸屏接触时的倾斜方向及角度,从而计算所述导电笔头11在与所述触摸屏的接触位置所需的补偿值,生成一补偿信号,将所述补偿信号发送至所述蓝牙模块21;
所述蓝牙模块21,与所述智能终端110进行蓝牙连接,将所述补偿信号发送至所述智能终端110,所述智能终端110的所述触摸屏依据所述补偿信号对所述主动式电容笔100的位置进行校正。
在一优选实施例中,所述笔芯组件13还包括信号增强器22,设于所述陀螺仪20、蓝牙模块21之间,将所述补偿信号放大并发送至所述蓝牙模块21。
上述实施例中,导电笔头11作为触摸屏触控信号的接收端,将触控信号传送至压力 传感器14,压力传感器14计算出压力数据,将该触控信号及压力数据传送于陀螺仪20,陀螺仪20用于感测用户在操作时的主动式电容笔100的倾斜方向及角度,并且计算出由于导电笔头11和触摸屏接触时所产生的形变而所需要的补偿值,并将该补偿值反馈至信号增强器22,信号增强器22产生补偿脉冲信号对压力传感器14产生的感应脉冲信号进行补偿,最后将该信号传输为具有信号发射功能的蓝牙模块21将该信号发出,从而由触摸屏接收该信号识别主动式电容笔100的补偿后的位置,从而实现精确地反馈主动式电容笔100的触控信息。按照上述实施例的一种工作过程如下所示:
步骤一:主动式电容笔100、智能终端110均开启蓝牙功能,智能终端110搜索主动式电容笔100的蓝牙ID实现对接;
步骤二:主动式电容笔100的导电笔头11接触触摸屏面板,导电笔头11与触摸屏面板上的触控图形形成耦合电容;
步骤三:触摸屏面板的脉冲电子部分通过导电笔头11流向主动式电容笔100内,同时压力传感器14计算出压力值,将该值传送于陀螺仪20;
步骤四:陀螺仪20通过自侦测算法计算实际操作时主动式电容笔100倾斜方向及角度,计算出导电笔头22接触位置所需的补偿值,反馈至信号增强器22;
步骤五:通过导电笔头11流入的电子流向信号增强器22,信号增强器22产生由步骤四计算出的补偿值产生脉冲对该信号进行补偿同时将输入信号增强,该信号增强倍数约为10~30倍;
步骤六:经过信号增强器22放大后的信号传送到蓝牙模块21,该通过补偿过后的信号直接由蓝牙模块21发送到触摸屏。
参考图5,本发明还公开了一种触控装置1000,包括智能终端110、应用于所述智能终端110的主动式电容笔100;
所述主动式电容笔100,包括导电笔头11、与所述导电笔头11连接的壳体笔身12、设置在所述壳体笔身12内与所述导电笔头11电性连接的笔芯组件13;
所述笔芯组件13包括压力传感器14、微控制器15、电源模块16;
所述电源模块16包括充电接口17、电化学电容18;
所述导电笔头11,用于检测与所述智能终端110的触摸屏接触时的触控信号,将所述触控信号发送至所述压力传感器14,并发射所述微控制器15输出的一反馈信号;
所述压力传感器14,与所述导电笔头11连接,接收所述触控信号,检测所述导电笔头11的触摸压力,将所述触控信号发送至所述微控制器15;
所述微控制器15,与所述压力传感器14连接,接收并处理所述触控信号,产生同步 的所述反馈信号;
所述充电接口17,设于所述壳体笔身12上远离所述导电笔头11一侧,与所述智能终端110连接时,对所述主动式电容笔100充电;
所述电化学电容18,与所述充电接口17连接,用于存储电量及为所述主动式电容笔100供电。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种应用于智能终端的主动式电容笔,其特征在于,
    包括导电笔头、与所述导电笔头连接的壳体笔身、设置在所述壳体笔身内与所述导电笔头电性连接的笔芯组件;
    所述笔芯组件包括压力传感器、微控制器、电源模块;
    所述电源模块包括充电接口、电化学电容;
    所述导电笔头,用于检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器,并发射所述微控制器输出的一反馈信号;
    所述压力传感器,与所述导电笔头连接,接收所述触控信号,检测所述导电笔头的触摸压力,将所述触控信号发送至所述微控制器;
    所述微控制器,与所述压力传感器连接,接收并处理所述触控信号,产生同步的所述反馈信号;
    所述充电接口,设于所述壳体笔身上远离所述导电笔头一侧,与所述智能终端连接时,对所述主动式电容笔充电;
    所述电化学电容,与所述充电接口连接,用于存储电量及为所述主动式电容笔供电。
  2. 如权利要求1所述的主动式电容笔,其特征在于,
    所述充电接口为充电触点、充电弹片中的一种;
    与所述智能终端连接充电时,所述充电触点与所述智能终端旁侧延伸的充电针脚电性连接。
  3. 如权利要求1所述的主动式电容笔,其特征在于,
    所述电源模块还包括能量转换器,设于所述导电笔头与所述电化学电容之间,将所述导电笔头的机械能转换为电能,存储于所述电化学电容中。
  4. 如权利要求1所述的主动式电容笔,其特征在于,
    所述笔芯组件还包括升压模块,与所述微控制器连接,将所述微控制器产生的所述反馈信号转换为高压信号。
  5. 如权利要求1所述的主动式电容笔,其特征在于,
    所述笔芯组件还包括陀螺仪,蓝牙模块;
    所述陀螺仪,与所述导电笔头连接,通过自侦测算法计算所述导电笔头与所述触摸屏接触时的倾斜方向及角度,从而计算所述导电笔头在与所述触摸屏的接触位置所需的补偿值,生成一补偿信号,将所述补偿信号发送至所述蓝牙模块;
    所述蓝牙模块,与所述智能终端进行蓝牙连接,将所述补偿信号发送至所述智能终端, 所述智能终端的所述触摸屏依据所述补偿信号对所述主动式电容笔的位置进行校正。
  6. 如权利要求5所述的主动式电容笔,其特征在于,
    所述笔芯组件还包括信号增强器,设于所述陀螺仪、蓝牙模块之间,将所述补偿信号放大并发送至所述蓝牙模块。
  7. 如权利要求1所述的主动式电容笔,其特征在于,
    所述导电笔头包括笔尖、笔头、屏蔽罩;
    所述笔尖,位于所述导电笔头远离所述壳体笔身一端,设于所述屏蔽罩内,为细长形导电体;
    所述笔头,设于所述屏蔽罩外,围绕所述笔尖,形成圆台形导电体。
  8. 如权利要求7所述的主动式电容笔,其特征在于,
    所述笔尖和/或所述笔头,检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器,并发射所述微控制器输出的一反馈信号。
  9. 如权利要求7所述的主动式电容笔,其特征在于,
    所述笔尖,检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器;
    所述笔头,发射所述微控制器输出的一反馈信号。
  10. 一种触控装置,其特征在于,
    包括智能终端、应用于所述智能终端的主动式电容笔;
    所述主动式电容笔,包括导电笔头、与所述导电笔头连接的壳体笔身、设置在所述壳体笔身内与所述导电笔头电性连接的笔芯组件;
    所述笔芯组件包括压力传感器、微控制器、电源模块;
    所述电源模块包括充电接口、电化学电容;
    所述导电笔头,用于检测与所述智能终端的触摸屏接触时的一触控信号,将所述触控信号发送至所述压力传感器,并发射所述微控制器输出的一反馈信号;
    所述压力传感器,与所述导电笔头连接,接收所述触控信号,检测所述导电笔头的触摸压力,将所述触控信号发送至所述微控制器;
    所述微控制器,与所述压力传感器连接,接收并处理所述触控信号,产生同步的所述反馈信号;
    所述充电接口,设于所述壳体笔身上远离所述导电笔头一侧,与所述智能终端连接时,对所述主动式电容笔充电;
    所述电化学电容,与所述充电接口连接,用于存储电量及为所述主动式电容笔供电。
PCT/CN2017/101575 2017-09-13 2017-09-13 一种应用于智能终端的主动式电容笔及触控装置 WO2019051669A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780096727.6A CN111344653A (zh) 2017-09-13 2017-09-13 一种应用于智能终端的主动式电容笔及触控装置
PCT/CN2017/101575 WO2019051669A1 (zh) 2017-09-13 2017-09-13 一种应用于智能终端的主动式电容笔及触控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101575 WO2019051669A1 (zh) 2017-09-13 2017-09-13 一种应用于智能终端的主动式电容笔及触控装置

Publications (1)

Publication Number Publication Date
WO2019051669A1 true WO2019051669A1 (zh) 2019-03-21

Family

ID=65723190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101575 WO2019051669A1 (zh) 2017-09-13 2017-09-13 一种应用于智能终端的主动式电容笔及触控装置

Country Status (2)

Country Link
CN (1) CN111344653A (zh)
WO (1) WO2019051669A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937276A (zh) * 2005-12-12 2011-01-05 株式会社和冠 位置输入装置以及计算机系统
CN104049778A (zh) * 2014-06-23 2014-09-17 吴凯锋 主动式电容笔
CN104156088A (zh) * 2013-05-14 2014-11-19 汉王科技股份有限公司 主动式电容笔及触控装置
CN105474137A (zh) * 2013-09-27 2016-04-06 株式会社和冠 位置检测装置以及其位置指示器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941891B (zh) * 2014-04-29 2017-09-08 汉王科技股份有限公司 电容笔、电容触控方法和电容触控装置
CN204945958U (zh) * 2015-07-14 2016-01-06 武汉精测电子技术股份有限公司 一种主动式电容笔

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937276A (zh) * 2005-12-12 2011-01-05 株式会社和冠 位置输入装置以及计算机系统
CN104156088A (zh) * 2013-05-14 2014-11-19 汉王科技股份有限公司 主动式电容笔及触控装置
CN105474137A (zh) * 2013-09-27 2016-04-06 株式会社和冠 位置检测装置以及其位置指示器
CN104049778A (zh) * 2014-06-23 2014-09-17 吴凯锋 主动式电容笔

Also Published As

Publication number Publication date
CN111344653A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN113268173B (zh) 触控笔及电子设备组件
TWI638291B (zh) 發信器的偵測方法、觸控處理裝置與觸控系統
CN105929985B (zh) 带射频收发传输功能的真笔迹触控笔和触控装置
KR102390706B1 (ko) 실제 필기 스타일러스와 터치 장치
CN109613996B (zh) 多模式触控笔及触控系统
CN102622104A (zh) 具有压力感测的电容手写笔
CN203233195U (zh) 主动式触控笔
WO2022247347A1 (zh) 触控笔及电子设备组件
CN208890404U (zh) 电子设备
CN107179841A (zh) 一种多功能智能笔及包括该智能笔的记录装置
CN203084669U (zh) 一种电容笔及其无线充电系统
TWM526118U (zh) 主動式壓感電容觸控筆
US20180314364A1 (en) Stylus and electronic system thereof
WO2019051669A1 (zh) 一种应用于智能终端的主动式电容笔及触控装置
TWI488077B (zh) 觸控筆
CN201741118U (zh) 一种新型电磁笔
CN217010442U (zh) 无线充电定位输入系统及无线充电输入装置
CN202404539U (zh) 便于收纳连接线的鼠标

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925102

Country of ref document: EP

Kind code of ref document: A1