WO2019050009A1 - Light control glass and method for manufacturing same - Google Patents

Light control glass and method for manufacturing same Download PDF

Info

Publication number
WO2019050009A1
WO2019050009A1 PCT/JP2018/033285 JP2018033285W WO2019050009A1 WO 2019050009 A1 WO2019050009 A1 WO 2019050009A1 JP 2018033285 W JP2018033285 W JP 2018033285W WO 2019050009 A1 WO2019050009 A1 WO 2019050009A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
light control
layer
light
control glass
Prior art date
Application number
PCT/JP2018/033285
Other languages
French (fr)
Japanese (ja)
Inventor
慶彦 貸谷
広茂 伊藤
榮一 佐野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2019050009A1 publication Critical patent/WO2019050009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a light control glass and a method of manufacturing the same.
  • Light control materials also referred to as light-storing pigments
  • light-storing pigments that absorb ultraviolet light or visible light and emit visible light phosphorescence
  • known light-emitting materials using rare earths such as europium or terbium are known as light control materials. It is done.
  • Patent Document 1 discloses a luminous glass product. This luminous glass product is manufactured by heating a set of glass cullet containing phosphorescent cullet in which a powder luminous material is adhered to the outer periphery of the glass cullet, and the glass cullet is fused.
  • Patent Document 2 discloses a fluorescent glass. This fluorescent glass is manufactured by mixing and melting a glass raw material and a luminescent agent containing europium and terbium, and pouring it into a mold for molding.
  • Patent Document 3 discloses a light emitting glass. This luminescent glass is produced by adsorbing rare earth atoms to porous glass and then firing the porous glass.
  • Patent Document 4 discloses an intermediate film for glass.
  • the interlayer for glass has a light emitting layer containing a polyvinyl acetal resin and a lanthanoid complex as light emitting particles.
  • JP JP 2007-1832 Japanese Patent Application Laid-Open No. 10-167755 Japanese Patent Laid-Open No. 2004-224686 Japanese Patent Application Laid-Open No. 2016-216357
  • the luminous glass of Patent Document 1 has the following problems in its manufacturing method. That is, when the firing temperature of the glass cullet is low, it becomes a glass product having a grain pattern of glass cullet, and when the firing temperature is high, it becomes a glass product which is translucent and a marble-like pattern is formed on the surface. That is, the luminous glass of Patent Document 1 has a problem that the bright spots of the powder luminous substance are not sharp and are blurred.
  • the glass (fluorescent glass, luminescent glass) of Patent Documents 2 and 3 can not localize and arrange the luminescent material in the thickness direction of the glass in the manufacturing method. That is, if the light emitting material can be localized and arranged in the thickness direction of the glass, the bright spots by the light emitting material become fine (clear), but the glasses of Patent Documents 2 and 3 have the thickness of the glass Since the light emitting materials are scattered in the directions, there is a problem that the bright spots by the light emitting materials are blurred as in Patent Document 1.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a light control glass which can obtain a fine bright spot and can improve the quality with an inexpensive configuration, and a method of manufacturing the same. Do.
  • a light control layer is interposed between a plate-like first glass layer made of a glass material and a plate-like second glass layer made of a glass material, the light control layer does not contain an organic substance, and light control is performed.
  • a light control glass characterized by containing a material. 2.
  • the light control glass according to the above 1 or 2, wherein the light control material is a light emitting material or a light scattering material. 4.
  • the light control layer is disposed at a position excluding the central portion in the thickness direction of the light control glass.
  • 11. The light control glass according to any one of the above 1 to 10, which has a wire mesh between the first glass layer and the second glass layer.
  • 12. The light control glass according to any one of 1 to 11, wherein the first glass layer or the second glass layer has a surface treated portion.
  • the manufacturing method of the light control glass of the said 13 which manufactures by the said double flow method, and the strengthening process of at least any one of the said 1st glass layer and the said 2nd glass layer is then carried out.
  • the present invention provides a method of producing a light control glass, wherein the light control glass is produced by a double flow method to achieve the object of the present invention.
  • FIG. 1 Schematic perspective view of the light control glass according to the first embodiment
  • FIG. 1 Diagram showing the concentration distribution of the phosphorescent material of the light control glass shown in FIG. 1
  • a schematic sectional view showing an outline of a manufacturing apparatus of light control glass Flow chart showing a method of manufacturing light control glass
  • Schematic cross-sectional view of light control glass according to the third embodiment A schematic front view of the light control glass shown in FIG. 8 The schematic cross section which showed the outline of the manufacturing apparatus of the light control glass of FIG.
  • FIG. 1 is a schematic perspective view showing the appearance of a light control glass 10 according to the first embodiment
  • FIG. 2 is a schematic cross-sectional view of the light control glass 10.
  • the light control glass 10 according to the first embodiment is applied to, for example, a luminous guide sign, an interior member such as a partition or a row partition, or a display member such as a laser projection which emits a laser beam to emit light. .
  • the light control glass 10 includes a plate-like first glass layer 12 made of a known glass material and a plate-like second glass layer 14 also made of a glass material, and the first glass layer 12 And the second glass layer 14, the light control layer 16 is interposed.
  • FIG. 2 shows that there is an interface between the first glass layer 12 and the second glass layer 14, the first glass layer 12 and the second glass layer 14 are integrated at the time of manufacture. If so, there is no interface in the light control glass 10.
  • reference numeral 12A is a main surface of the first glass layer 12
  • reference numeral 14A is a main surface of the second glass layer 14.
  • the light control layer 16 is a layer that does not contain a resin material such as the interlayer for laminated glass disclosed in Patent Document 4 or other organic substances, but contains a light control material.
  • the light control layer 16 is preferably made of only a light control material.
  • that the light control layer does not contain an organic substance means that the content of the organic substance is preferably 0.5% by mass or less, in particular 0.1% by mass or less.
  • a light control material a luminescent material, a light-scattering material, or a color tone adjustment material can be illustrated.
  • a luminous material or a fluorescent material can be illustrated as a luminescent material.
  • light-scattering material light-scattering particle or glass cullet (glass particle) can be illustrated.
  • a color tone adjustment material glass cullet and a vitreous material can be illustrated.
  • the light control layer 16 may be formed in a layer form in which a part of the glass material constituting the first glass layer or the second glass layer is contained in the light control material in addition to the layer made of only the light control material. It is included.
  • the light control layer 16 may be in the form as described above in terms of the manufacturing method. That is, the light control layer 16 of the present invention may be a layer which does not contain an organic substance in the layer.
  • the light control layer 16 also includes a form in which light control materials are scattered in layers.
  • the light control layer 16 is formed by diffusing the light control material with respect to the glass when manufacturing the light control glass 10.
  • the amount of the light control material thus formed in the light control glass is appropriately set according to the application of the light control glass 10, but preferably 30 g / m 2 or less per area of the light control glass. It is 70 g / m 2 and more preferably 40 g / m 2 to 60 g / m 2 .
  • FIG. 3 shows the concentration distribution of the light control material in the thickness (t) direction of the light control glass 10.
  • the peak position (P) of the distribution concentration of the light control material is at one position in the thickness (t) direction of the light control glass 10 and at the central portion C in the thickness (t) direction. It is arranged. That is, in the light control glass 10 of the first embodiment, the thicknesses of the first glass layer 12 and the second glass layer 14 are equal.
  • the peak position (P) is not limited to the central portion C. An example is shown in FIG.
  • FIG. 4 is a schematic perspective view showing the appearance of the light control glass 50 of the second embodiment.
  • FIG. 5 shows the concentration distribution of the light control material in the thickness (t) direction of the light control glass 50.
  • the peak position (P) is located at one position in the thickness (t) direction, and is disposed at a position (A) closer to the main surface 14A of the second glass layer 14 with respect to the central portion C. ing. That is, in the light control glass 50 of the second embodiment, the thickness of the second glass layer 14 is thinner than the thickness of the first glass layer 12.
  • positioned the peak position (P) in the position near the main surface 12A of the 1st glass layer 12 with respect to the center part C it is contained in the light control glass of this invention.
  • a material obtained by adding and firing an activator of a rare earth element and a coactivator based on an aluminate compound of an alkaline earth metal as a main component can be used.
  • alkaline earth metals include at least one or more metals such as strontium, calcium and barium, or alloys of these metals and magnesium.
  • the aluminate compound, SrAl 2 O 4: Eu, Dy, or Sr 4 Al 14 O 25: Eu can be exemplified Dy.
  • activators of rare earth elements include dysprosium and europium
  • coactivators include elements such as lanthanum, cerium, praseodymium, neodymium, samarium, cadmium, terbium, dysprosium and the like.
  • a phosphorescent material has a characteristic of emitting, for example, green, blue, yellow, white or orange when irradiated with ultraviolet light (excitation light) from an LED (Light Emitting Diode) or a black light.
  • europium or terbium can be illustrated.
  • titanium oxide can be exemplified.
  • glass cullet glass particle
  • Glass cullet may have no color and be transparent. By having a glass cullet, bubbles can be interposed between the first glass layer and the second glass layer, and light can be scattered.
  • a glaze can be illustrated as a glassy material.
  • the light control layer 16 may also have a plurality of light control materials.
  • the plurality of light control materials may be different in color and may be different in refractive index.
  • the light control material may also have UV cut performance and IR cut performance.
  • the maximum length of the light control material in the thickness (t) direction of the light control glass 10, 50 is preferably 2 ⁇ m or more. If the maximum length is 2 ⁇ m or more, light control is facilitated, and for example, light emission characteristics and light scattering properties are improved.
  • the maximum length is more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, particularly preferably 50 ⁇ m or more, and most preferably 100 ⁇ m or more. 5 mm or less is preferable, 1 mm or less is more preferable, 500 micrometers or less are more preferable, and 300 micrometers or less are especially preferable.
  • the maximum length of the light control material means the maximum length of the light control material in the thickness direction of the manufactured light control glass 10, 50.
  • the light control material formed by diffusion in the light control glass has various shapes, but regardless of the shape, it means the maximum length in a predetermined cross section parallel to the thickness direction of the light control glass.
  • the thickness of the first glass layer 12 and the second glass layer 14 can be increased by manufacturing the light control glass 10, 50 by, for example, a double flow method described later, so the thickness direction of the light control glass 10, 50.
  • the light control material having a maximum length of 2 ⁇ m or more can be enclosed in the light control glass 10, 50.
  • each of the first glass layer 12 and the second glass layer 14 is preferably 1 to 20 mm. If the thickness is 1 mm or more, a light control material having a large diameter can be interposed in the light control glass 10, 50.
  • the thickness is preferably 2 mm or more, more preferably 3 mm or more, and particularly preferably 5 mm or more. If this thickness is 20 mm or less, it is easy to cool the glass ribbon mentioned later in a manufacturing process, and productivity is good.
  • the thickness is preferably 15 mm or less, more preferably 10 mm or less, particularly preferably 8 mm or less, and most preferably 6 mm or less.
  • FIG. 6 is a schematic cross-sectional view showing a schematic configuration of an apparatus 20 for manufacturing the light control glass 10, 50.
  • FIG. 7 is a flow chart showing an example of a method of manufacturing the light control glass 10, 50.
  • the manufacturing process of the light control glass 10, 50 includes the glass ribbon forming process (S10), the luminous material supply process (S12), the integration process (S14), the cutting process (S16), and the polishing process (S18) and the surface treatment step (S20).
  • the manufacturing apparatus 20 of FIG. 6 is an apparatus for performing the glass ribbon forming process (S10), the luminous material supply process (S12), and the integration process (S14) in the flowchart of FIG.
  • the light control glass 10, 50 is manufactured by the double flow method described above among the roll out forming method. That is, as shown in FIG. 6, the molten glass 24 is supplied from the crucible 23 of the melting furnace 22 to the gap 30 between the pair of upper and lower water-cooled rolls 26 and 28 and the molten glass 24 is allowed to pass through the gap 30 to make the first glass A glass ribbon 32 to be the layer 12 (see FIG. 1 or FIG. 2) is formed. The thickness of the glass ribbon 32 can be changed by adjusting the size of the gap 30.
  • the phosphorescent material 34 is continuously supplied to the upper surface of the glass ribbon 32.
  • the luminous material 34 is diffused toward the upper surface of the glass ribbon 32 by being sprayed toward the upper surface of the glass ribbon 32 from the plurality of nozzles 35.
  • the plurality of nozzles 35 are disposed in a direction perpendicular to the forming direction of the glass ribbon 32 indicated by the arrow B and in parallel with the upper surface of the glass ribbon 32.
  • the device for interposing the light control layer 16 in the light control glass 10 is not limited to the spray device of the luminous material 34 using the nozzle 35 described above, and the light control layer 16 may be formed on the light control glass 10. It is applicable if it is an apparatus which can be made to intervene.
  • the molten glass 38 to be the second glass layer 14 is continuously supplied to the upper surface of the glass ribbon 32 from the crucible 37 of the molten crucible 36. Then, while supplying the molten glass 38, the glass ribbon 32, the luminous material 34, and the molten glass 38 are allowed to pass through the gap 44 between the upper and lower water-cooled rolls 40 and 42, and the glass ribbon 32, the luminous material 34 and the molten glass 38 forms the glass ribbon 46 containing luminous material integrated.
  • Arrow C in FIG. 6 indicates the rotation direction of the water cooling rolls 26 and 40
  • arrow D indicates the rotation direction of the water cooling rolls 28 and 42.
  • the thickness of the phosphorescent material-containing glass ribbon 46 can be changed by adjusting the size of the gap 44.
  • the light storing glass ribbon 46 integrated with the light storing material is cut into a predetermined size required for the light controlling glass 10, 50 to obtain the light controlling glass 10, 50.
  • this cutting step is performed after the glass ribbon 46 containing the luminous material is gradually cooled to about 25 to 80.degree.
  • cutting from the glass ribbon containing luminous material 46 to a predetermined size can be performed using a diamond saw as an example. Also, instead of the diamond saw, a laser cut, a water jet, or the like can be used to cut the glass ribbon 46 containing the luminous material.
  • ⁇ Polishing process S18> At least one main surface (main surfaces 12A, 14A) of the light control glass 10, 50 is polished by a polishing tool, and at least one main surface (main surfaces 12A, 14A) is processed to be smooth.
  • the thickness of the light control glass 10 can be obtained by polishing at least one main surface in the polishing step and changing the thickness of at least one of the first glass layer 12 and the second glass layer 14 The localized position of the light control layer 16 in the t) direction can also be adjusted.
  • This polishing step is not an essential step but an optional step carried out as needed.
  • ⁇ Surface treatment process S20> At least one main surface (main surfaces 12A, 14A) of the light control glass 10, 50 after polishing is surface-treated to form a surface treated portion on at least one main surface (main surfaces 12A, 14A).
  • surface treatment antiglare treatment, antireflective treatment or antifouling treatment can be exemplified.
  • Other surface treatments may be exemplified by heat ray reflection treatment, coloring treatment, sand blasting, and decoration treatment by edging.
  • the first glass layer 12 or the second glass layer 14 is protected by the film. It is possible to solve the problem that the glass layer 12 or the second glass layer 14 contacts the external member and is damaged.
  • This surface treatment step is not an essential step but an optional step carried out as required.
  • the position where the light control layer 16 is disposed in the thickness (t) direction of the light control glass 10, 50 can be changed by adjusting the thickness of the glass ribbons 32, 46 according to the size of the gaps 30, 44 it can. Further, the light control glass 10, 50 having one light control layer 16 can be manufactured by the double flow method.
  • the method of producing the light control glass 10, 50 by the double flow method has been described, but the production of the light control glass 10, 50 is not limited to the double flow method.
  • the light control glass 10, 50 can also be manufactured by the fusion method or the down draw method.
  • the light control glass 10 and 50 manufactured as described above only the light control material is interposed between the plate-like first glass layer 12 made of the glass material and the plate-like second glass layer 14 made of the glass material Since the light control layer 16 consisting of these is interposed and comprised, a fine bright point can be obtained and quality can be improved by cheap structure.
  • the light control layer 16 is localized and arranged in the thickness (t) direction of the light control glass 10, 50, it is possible to obtain a fine bright spot. Further, the light control layer 16 is made of only the light control material, there is no resin that degrades even when irradiated with the laser light, and there is no expensive fluorine material, so the quality is improved with an inexpensive configuration. It is done. In addition, even if the output of the laser light is increased to increase the excitation intensity, the quality is improved because there is no resin which may be melted in the light control layer 16.
  • the light control layer 16 is localized at the central portion C in the thickness (t) direction of the light control glass 10. .
  • the light control layer 16 is irradiated with laser light from the bright spot when the laser light is irradiated to the light control layer 16 from the main surface 12A side of the first glass layer 12 and from the main surface 14A side of the second glass layer 14
  • Such a light control glass 10 is suitable for a mode in which both main surfaces 12A and 14A of the light control glass 10 are used as a display surface.
  • the light control layer 16 is localized at a position (A) excluding the central portion C in the thickness (t) direction of the light control glass 50. It is arranged.
  • the main surface 14A side of the second glass layer 14 is It is preferable to irradiate a laser beam.
  • the laser light is controlled from the main surface 14A side of the second glass layer 14 This is because the bright spots when the layer 16 is irradiated become sharper than the bright spots when the light control layer 16 is irradiated with the laser light from the main surface 12A side of the first glass layer 12.
  • the light control glass 10, 50 is preferably a tempered glass.
  • the intensity of the light control glass 10 can be improved as compared to the non-strengthened light control glass.
  • the laminated glass to which the interlayer film for laminated glass (see, for example, Patent Document 4) containing a resin and light emitting particles is applied it is difficult to perform reinforcement processing such as air cooling reinforcement or chemical reinforcement. is there. That is, although the heating temperature in the bonding step of laminated glass using a pressure bonding apparatus such as an autoclave is, for example, 120 ° C. to 150 ° C., the temperature for heating the glass in the step prior to the air cooling reinforcement step is near the softening point of the glass (E.g., about 500.degree. C.). That is, in the case of tempering and cooling the laminated glass, the resin intermediate film for laminated glass is oxidized or burned off in the heating step of the previous step.
  • the chemical strengthening treatment step it is necessary to immerse the glass, for example, in a molten salt of potassium nitrate at 350 to 550.degree. That is, when it is going to chemically strengthen laminated glass, the interlayer film for laminated glass made of resin will deteriorate in a chemical strengthening process process.
  • reinforcement processing such as air cooling reinforcement or chemical reinforcement can be performed.
  • FIG. 8 is a schematic cross-sectional view of the light control glass 60 of the third embodiment.
  • FIG. 9 is a schematic front view of the light control glass 60.
  • the light control glass 60 of the third embodiment has a light control layer 16 and a wire mesh 62 (see FIG. 9) between the first glass layer 12 and the second glass layer 14 as shown in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a schematic configuration of a manufacturing apparatus 70 for manufacturing the light control glass 60. As shown in FIG.
  • the manufacturing apparatus 70 is a manufacturing apparatus based on the double flow method similar to the manufacturing apparatus 20 shown in FIG. According to the manufacturing apparatus 70, the molten glass 24 is supplied from the crucible 23 of the melting furnace 22 to the gap 30 between the pair of upper and lower water-cooled rolls 26 and 28, and the molten glass 24 is allowed to pass through the gap 30. A glass ribbon 32 to be the glass layer 12 is formed.
  • the phosphorescent material 34 is continuously supplied to the upper surface of the glass ribbon 32.
  • the luminous material 34 is diffused toward the upper surface of the glass ribbon 32 by being sprayed toward the upper surface of the glass ribbon 32 from the plurality of nozzles 35.
  • the wire mesh 62 is continuously supplied along the upper surface of the glass ribbon 32.
  • the supply position of the wire mesh 62 may be downstream (FIG. 10) or upstream of the supply position of the luminous material 34.
  • the molten glass 38 to be the second glass layer 14 is continuously supplied to the upper surface of the glass ribbon 32 from the crucible 37 of the molten crucible 36. Then, while supplying the molten glass 38, the glass ribbon 32, the luminous material 34, the wire mesh 62 and the molten glass 38 are allowed to pass through the gap 44 between the upper and lower water-cooled rolls 40 and 42, and the glass ribbon 32, luminous material 34, The luminous material integrated with the wire mesh 62 and the molten glass 38 and the glass ribbon 64 containing wire mesh are formed.
  • the integrated phosphorescent material and the wire mesh glass ribbon 64 are cut into a predetermined size required for the light control glass 60 to obtain the light control glass 60.
  • the light control glass 60 configured as described above, since the wire mesh 62 is interposed between the first glass layer 12 and the second glass layer 14, the light control glass 60 is suitable for a fire protection glass having a display function.
  • the light control glass 60 can also be provided with a surface treated portion on the main surface by surface treatment of the main surface of the light control glass 60.
  • a linear metal member may be used instead of the wire mesh.
  • the present invention is not limited to the above first to third embodiments. Modifications and improvements as long as the object of the present invention can be achieved are included in the present invention. Further, the application of the light control glass 10, 50, 60 is not limited to the luminous guide sign, the interior interior member, the display member or the fire prevention glass described above, and can be applied to various applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Luminescent Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a light control glass, and a method for manufacturing the light control glass, with which it is possible to obtain a precise luminescent spot and to improve quality with a low-cost structure. A light control glass characterized by being obtained by interposing a light control layer, which comprises a light control material that contains a light control material and does not include any organic substance, between a plate-form first glass layer comprising a glass material and a plate-form second glass layer comprising a glass material. A method for manufacturing the light control glass, the method being such that the light control glass is manufactured using a double-flow method.

Description

光制御ガラスおよびその製造方法Light control glass and method of manufacturing the same
 本発明は、光制御ガラスおよびその製造方法に関する。 The present invention relates to a light control glass and a method of manufacturing the same.
 光制御材料を含有するガラス板が従来から知られている。光制御材料としては、紫外光又は可視光を吸収して可視光の燐光を発光する既知の蓄光材料(蓄光顔料とも言う。)、又はユウロピウム又はテルビウム等の希土類を用いた既知の蛍光材料が知られている。 Glass plates containing light control materials are known in the art. Known light control materials (also referred to as light-storing pigments) that absorb ultraviolet light or visible light and emit visible light phosphorescence (also called light-storing pigments), or known light-emitting materials using rare earths such as europium or terbium are known as light control materials. It is done.
 特許文献1には、蓄光性ガラス製品が開示されている。この蓄光性ガラス製品は、ガラスカレット外周に粉末蓄光物質を接着した蓄光カレットを含むガラスカレットの集合を加熱し、ガラスカレットどうしを融着させることにより製造される。 Patent Document 1 discloses a luminous glass product. This luminous glass product is manufactured by heating a set of glass cullet containing phosphorescent cullet in which a powder luminous material is adhered to the outer periphery of the glass cullet, and the glass cullet is fused.
 特許文献2には、蛍光ガラスが開示されている。この蛍光ガラスは、ガラス原料とユウロピウム、テルビウムを含む発光剤とを混合溶融し、これを金型に流し出して成形することにより製造される。 Patent Document 2 discloses a fluorescent glass. This fluorescent glass is manufactured by mixing and melting a glass raw material and a luminescent agent containing europium and terbium, and pouring it into a mold for molding.
 特許文献3には、発光ガラスが開示されている。この発光ガラスは、多孔質ガラスに希土類原子を吸着させた後、この多孔質ガラスを焼成することにより製造される。 Patent Document 3 discloses a light emitting glass. This luminescent glass is produced by adsorbing rare earth atoms to porous glass and then firing the porous glass.
 特許文献4には、ガラス用中間膜が開示されている。このガラス用中間膜は、ポリビニルアセタール樹脂と、発光粒子としてランタノイド錯体を含有する発光層を有している。 Patent Document 4 discloses an intermediate film for glass. The interlayer for glass has a light emitting layer containing a polyvinyl acetal resin and a lanthanoid complex as light emitting particles.
日本特開2007-1832号公報JP JP 2007-1832 日本特開平10-167755号公報Japanese Patent Application Laid-Open No. 10-167755 日本特開2004-224686号公報Japanese Patent Laid-Open No. 2004-224686 日本特開2016-216357号公報Japanese Patent Application Laid-Open No. 2016-216357
 しかしながら、特許文献1の蓄光性ガラスは、その製法上、以下の問題を有している。すなわち、ガラスカレットの焼成温度が低い場合には、ガラスカレットの粒模様を有するガラス製品となり、焼成温度が高い場合には、半透明で表面に大理石風の模様が形成されたガラス製品となる。つまり、特許文献1の蓄光性ガラスは、粉末蓄光物質による輝点が鮮明とならず、ぼやけてしまうという問題がある。 However, the luminous glass of Patent Document 1 has the following problems in its manufacturing method. That is, when the firing temperature of the glass cullet is low, it becomes a glass product having a grain pattern of glass cullet, and when the firing temperature is high, it becomes a glass product which is translucent and a marble-like pattern is formed on the surface. That is, the luminous glass of Patent Document 1 has a problem that the bright spots of the powder luminous substance are not sharp and are blurred.
 特許文献2、3のガラス(蛍光ガラス、発光ガラス)は、その製法上、ガラスの厚さ方向で発光材料を局在して配置することができない。つまり、ガラスの厚さ方向で発光材料を局在して配置することができれば、発光材料による輝点が精細(鮮明)なものとなるが、特許文献2、3のガラスは、ガラスの厚さ方向で発光材料が散在しているので、特許文献1と同様に発光材料による輝点がぼやけるという問題があった。 The glass (fluorescent glass, luminescent glass) of Patent Documents 2 and 3 can not localize and arrange the luminescent material in the thickness direction of the glass in the manufacturing method. That is, if the light emitting material can be localized and arranged in the thickness direction of the glass, the bright spots by the light emitting material become fine (clear), but the glasses of Patent Documents 2 and 3 have the thickness of the glass Since the light emitting materials are scattered in the directions, there is a problem that the bright spots by the light emitting materials are blurred as in Patent Document 1.
 一方、合わせガラスの中間膜として特許文献4のガラス用中間膜を適用した場合には、合わせガラスの厚さ方向で発光粒子を局在して配置することが可能となる。しかしながら、特許文献4では、発光粒子を励起させるためにレーザー光等の短波長光を発光層に照射すると樹脂の劣化により、発光層の品質が低下するという問題があった。この問題は、樹脂材料として結合エネルギーの大きいフッ素材料を用いることにより低減することができるが、発光層が高額になるという課題がある。 On the other hand, when the interlayer for glass of Patent Document 4 is applied as an interlayer of laminated glass, it becomes possible to localize and arrange light emitting particles in the thickness direction of the laminated glass. However, in patent document 4, when short wavelength lights, such as a laser beam, are irradiated to a light emitting layer in order to excite light emitting particles, there existed a problem that the quality of a light emitting layer will fall by deterioration of resin. This problem can be reduced by using a fluorine material having a large bonding energy as the resin material, but there is a problem that the light emitting layer becomes expensive.
 本発明は上記事情に鑑みてなされたもので、精細な輝点を得ることができ、且つ安価な構成で品質を向上させることができる光制御ガラス、およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a light control glass which can obtain a fine bright spot and can improve the quality with an inexpensive configuration, and a method of manufacturing the same. Do.
 本発明は、本発明の目的を達成するためのものであり、下記の態様を有する。
 1.ガラス材料からなる板状の第1ガラス層とガラス材料からなる板状の第2ガラス層との間に、光制御層が介在されてなり、該光制御層は、有機物を含まず、光制御材料を含有することを特徴とする光制御ガラス。
 2.前記光制御層は、光制御材料のみからなる、上記1に記載の光制御ガラス。
 3.前記光制御材料は、発光材料又は光散乱材料である、上記1又は2に記載の光制御ガラス。
 4.前記発光材料は、蓄光材料又は蛍光材料である、上記3に記載の光制御ガラス。
 5.前記光制御ガラスの厚さ方向における前記光制御材料の最大長さは、2μm~5mmである、上記1~4のいずれか1項に記載の光制御ガラス。
 6.前記第1ガラス層及び前記第2ガラス層の厚さは、それぞれ、1~50mmである、上記1~5のいずれか1項に記載の光制御ガラス。
 7.前記光制御ガラスの厚さ方向において、前記光制御層は中央部に配置されてなる、上記1~6のいずれか1項に記載の光制御ガラス。
 8.前記光制御ガラスの厚さ方向において、前記光制御層は中央部を除く位置に配置されてなる、上記1~6のいずれか1項に記載の光制御ガラス。
 9.前記第1ガラス層及び前記第2ガラス層が強化ガラスである、上記1~8のいずれか1項に記載の光制御ガラス。
 10.前記強化ガラスが、風冷強化ガラス又は化学強化ガラスである、上記9に記載の光制御ガラス。
 11.前記第1ガラス層と前記第2ガラス層との間に金網を有する、上記1~10のいずれか1項に記載の光制御ガラス。
 12.前記第1ガラス層又は前記第2ガラス層が表面処理部を有する、上記1~11のいずれか1項に記載の光制御ガラス。
 13.上記1~12のいずれか1項に記載の光制御ガラスをダブルフロー法によって製造する、光制御ガラスの製造方法。
 14.前記ダブルフロー法によって製造し、次いで前記第1ガラス層及び前記第2ガラス層の少なくともいずれかを強化処理する、上記13に記載の光制御ガラスの製造方法。
The present invention is to achieve the object of the present invention, and has the following aspects.
1. A light control layer is interposed between a plate-like first glass layer made of a glass material and a plate-like second glass layer made of a glass material, the light control layer does not contain an organic substance, and light control is performed. A light control glass characterized by containing a material.
2. The light control glass according to the above 1, wherein the light control layer comprises only a light control material.
3. The light control glass according to the above 1 or 2, wherein the light control material is a light emitting material or a light scattering material.
4. The light control glass according to the above 3, wherein the light emitting material is a phosphorescent material or a fluorescent material.
5. The light control glass according to any one of the above 1 to 4, wherein the maximum length of the light control material in the thickness direction of the light control glass is 2 μm to 5 mm.
6. The light control glass according to any one of 1 to 5, wherein the thickness of each of the first glass layer and the second glass layer is 1 to 50 mm.
7. The light control glass according to any one of the above 1 to 6, wherein the light control layer is disposed at a central portion in the thickness direction of the light control glass.
8. The light control glass according to any one of the above 1 to 6, wherein the light control layer is disposed at a position excluding the central portion in the thickness direction of the light control glass.
9. 9. The light control glass according to any one of the above 1 to 8, wherein the first glass layer and the second glass layer are tempered glass.
10. The light control glass according to the above 9, wherein the tempered glass is a wind-cooled tempered glass or a chemically tempered glass.
11. 11. The light control glass according to any one of the above 1 to 10, which has a wire mesh between the first glass layer and the second glass layer.
12. 12. The light control glass according to any one of 1 to 11, wherein the first glass layer or the second glass layer has a surface treated portion.
13. A method for producing a light control glass according to any one of the above 1 to 12, wherein the light control glass is produced by a double flow method.
14. The manufacturing method of the light control glass of the said 13 which manufactures by the said double flow method, and the strengthening process of at least any one of the said 1st glass layer and the said 2nd glass layer is then carried out.
 本発明は、本発明の目的を達成するために、上記光制御ガラスをダブルフロー法によって製造する、光制御ガラスの製造方法を提供する。 The present invention provides a method of producing a light control glass, wherein the light control glass is produced by a double flow method to achieve the object of the present invention.
 本発明によれば、精細な輝点を得ることができ、且つ安価な構成で品質を向上させることができる新規な光制御ガラス、及び該光制御ガラスの効率的な新規な製造方法が提供される。 According to the present invention, it is possible to provide a novel light control glass which can obtain fine bright spots and improve the quality with an inexpensive configuration, and an efficient new manufacturing method of the light control glass. Ru.
第1実施形態に係る光制御ガラスの模式斜視図Schematic perspective view of the light control glass according to the first embodiment 図1に示した光制御ガラスの模式断面図A schematic cross-sectional view of the light control glass shown in FIG. 1 図1に示した光制御ガラスの蓄光材料の濃度分布を示した図Diagram showing the concentration distribution of the phosphorescent material of the light control glass shown in FIG. 1 第2実施形態に係る光制御ガラスの模式斜視図Model perspective view of light control glass according to the second embodiment 図4に示した光制御ガラスの蓄光材料の濃度分布を示した図Diagram showing the concentration distribution of the luminous material of the light control glass shown in FIG. 4 光制御ガラスの製造装置の概略を示した模式断面図A schematic sectional view showing an outline of a manufacturing apparatus of light control glass 光制御ガラスの製造方法を示したフローチャートFlow chart showing a method of manufacturing light control glass 第3実施形態に係る光制御ガラスの模式断面図Schematic cross-sectional view of light control glass according to the third embodiment 図8に示した光制御ガラスの模式正面図A schematic front view of the light control glass shown in FIG. 8 図8の光制御ガラスの製造装置の概略を示した模式断面図The schematic cross section which showed the outline of the manufacturing apparatus of the light control glass of FIG.
 以下、添付図面を参照して本発明に係る光制御ガラスの実施形態について説明する。
 なお、図面中の記載において、同一又は類似する部材には、同一の符号を付すことにより重複する説明を省略する。
Hereinafter, an embodiment of a light control glass according to the present invention will be described with reference to the attached drawings.
In the description in the drawings, the same or similar members will be denoted by the same reference signs, and overlapping descriptions will be omitted.
 (第1実施形態)
 図1は、第1実施形態に係る光制御ガラス10の外観を示した模式斜視図であり、図2は、かかる光制御ガラス10の模式断面図である。
First Embodiment
FIG. 1 is a schematic perspective view showing the appearance of a light control glass 10 according to the first embodiment, and FIG. 2 is a schematic cross-sectional view of the light control glass 10.
 第1実施形態の光制御ガラス10は、一例として蓄光式誘導標識、パーテーション又はローパーテーション等の室内インテリア部材、又はレーザー光を照射して発光させるレーザープロジェクション等の表示部材に適用されるものである。 The light control glass 10 according to the first embodiment is applied to, for example, a luminous guide sign, an interior member such as a partition or a row partition, or a display member such as a laser projection which emits a laser beam to emit light. .
 第1実施形態の光制御ガラス10は、既知のガラス材料からなる板状の第1ガラス層12と、同じくガラス材料からなる板状の第2ガラス層14とを有し、第1ガラス層12と第2ガラス層14との間に、光制御層16が介在されて構成される。なお、図2では、第1ガラス層12と第2ガラス層14との間に界面があるかの如く記載しているが、第1ガラス層12と第2ガラス層14とが製造時に一体化される場合は、光制御ガラス10には界面は存在しない。また、図1及び図2において、符号12Aは第1ガラス層12の主面であり、符号14Aは第2ガラス層14の主面である。 The light control glass 10 according to the first embodiment includes a plate-like first glass layer 12 made of a known glass material and a plate-like second glass layer 14 also made of a glass material, and the first glass layer 12 And the second glass layer 14, the light control layer 16 is interposed. Although FIG. 2 shows that there is an interface between the first glass layer 12 and the second glass layer 14, the first glass layer 12 and the second glass layer 14 are integrated at the time of manufacture. If so, there is no interface in the light control glass 10. Further, in FIG. 1 and FIG. 2, reference numeral 12A is a main surface of the first glass layer 12, and reference numeral 14A is a main surface of the second glass layer 14.
 光制御層16は、特許文献4の合わせガラス用中間膜のような樹脂材料や、その他の有機物を含まず、光制御材料を含有する層である。光制御層16は、光制御材料のみから構成されたものが好ましい。ここで、光制御層は有機物を含有していないとは、有機物の含有量が、好ましくは0.5質量%以下、特には0.1質量%以下であることを意味する。
 光制御材料としては、発光材料、光散乱材料又は色調調整材料を例示することができる。また、発光材料としては、蓄光材料又は蛍光材料を例示することができる。また、光散乱材料としては、光散乱粒子又はガラスカレット(ガラス粒子)を例示することができる。また、色調調整材料としては、ガラスカレットやガラス質材料を例示することができる。
The light control layer 16 is a layer that does not contain a resin material such as the interlayer for laminated glass disclosed in Patent Document 4 or other organic substances, but contains a light control material. The light control layer 16 is preferably made of only a light control material. Here, that the light control layer does not contain an organic substance means that the content of the organic substance is preferably 0.5% by mass or less, in particular 0.1% by mass or less.
As a light control material, a luminescent material, a light-scattering material, or a color tone adjustment material can be illustrated. Moreover, a luminous material or a fluorescent material can be illustrated as a luminescent material. Moreover, as a light-scattering material, light-scattering particle or glass cullet (glass particle) can be illustrated. Moreover, as a color tone adjustment material, glass cullet and a vitreous material can be illustrated.
 また、光制御層16は、光制御材料のみからなる層の他、第1ガラス層又は第2ガラス層を構成するガラス材料の一部が光制御材料に含有されて層状に形成された形態も含むものである。後述するダブルフロー法により製造される光制御ガラス10は、その製法上、光制御層16が上記のような形態となる場合がある。つまり、本発明の光制御層16は、層内に有機物を含まない層であればよい。また、光制御層16は、光制御材料が層状に点在している形態も含むものである。 Further, the light control layer 16 may be formed in a layer form in which a part of the glass material constituting the first glass layer or the second glass layer is contained in the light control material in addition to the layer made of only the light control material. It is included. In the light control glass 10 manufactured by the double flow method described later, the light control layer 16 may be in the form as described above in terms of the manufacturing method. That is, the light control layer 16 of the present invention may be a layer which does not contain an organic substance in the layer. The light control layer 16 also includes a form in which light control materials are scattered in layers.
 光制御層16は、光制御ガラス10の製造時において光制御材料をガラスに対して拡散させることにより形成される。このように形成された光制御材料の光制御ガラスにおける存在量は、光制御ガラス10の用途に応じて適宜設定されるが、光制御ガラスの面積当たりにして、好ましくは、30g/m~70g/mであり、40g/m~60g/mであるのがより好ましい。 The light control layer 16 is formed by diffusing the light control material with respect to the glass when manufacturing the light control glass 10. The amount of the light control material thus formed in the light control glass is appropriately set according to the application of the light control glass 10, but preferably 30 g / m 2 or less per area of the light control glass. It is 70 g / m 2 and more preferably 40 g / m 2 to 60 g / m 2 .
 図3は、光制御ガラス10の厚さ(t)方向における光制御材料の濃度分布を示す。図3によれば、光制御材料の分布濃度のピーク位置(P)が、光制御ガラス10の厚さ(t)方向の一か所であって、厚さ(t)方向の中央部Cに配置されている。つまり、第1実施形態の光制御ガラス10は、第1ガラス層12と第2ガラス層14の厚さが等しく構成されたものである。なお、ピーク位置(P)は、中央部Cに限定されるものでない。その一例が図4に示される。 FIG. 3 shows the concentration distribution of the light control material in the thickness (t) direction of the light control glass 10. According to FIG. 3, the peak position (P) of the distribution concentration of the light control material is at one position in the thickness (t) direction of the light control glass 10 and at the central portion C in the thickness (t) direction. It is arranged. That is, in the light control glass 10 of the first embodiment, the thicknesses of the first glass layer 12 and the second glass layer 14 are equal. The peak position (P) is not limited to the central portion C. An example is shown in FIG.
 (第2実施形態)
 図4は、第2実施形態の光制御ガラス50の外観を示した模式斜視図である。図5は、光制御ガラス50の厚さ(t)方向における光制御材料の濃度分布を示す。図5によれば、ピーク位置(P)が、厚さ(t)方向の一か所であって、中央部Cに対し第2ガラス層14の主面14A寄りの位置(A)に配置されている。つまり、第2実施形態の光制御ガラス50は、第1ガラス層12の厚さよりも第2ガラス層14の厚さが薄く構成されたものである。なお、ピーク位置(P)を、中央部Cに対し第1ガラス層12の主面12A寄りの位置に配置した光制御ガラスであっても、本発明の光制御ガラスに含まれるものである。
Second Embodiment
FIG. 4 is a schematic perspective view showing the appearance of the light control glass 50 of the second embodiment. FIG. 5 shows the concentration distribution of the light control material in the thickness (t) direction of the light control glass 50. According to FIG. 5, the peak position (P) is located at one position in the thickness (t) direction, and is disposed at a position (A) closer to the main surface 14A of the second glass layer 14 with respect to the central portion C. ing. That is, in the light control glass 50 of the second embodiment, the thickness of the second glass layer 14 is thinner than the thickness of the first glass layer 12. In addition, even if it is the light control glass arrange | positioned the peak position (P) in the position near the main surface 12A of the 1st glass layer 12 with respect to the center part C, it is contained in the light control glass of this invention.
 蓄光材料としては、例えばアルカリ土類金属のアルミン酸塩化合物を主成分に希土類元素の賦活剤、共賦活剤を添加焼成して得られたものを用いることができる。アルカリ土類金属としては、ストロンチウム、カルシウム、バリウム等の少なくとも1以上の金属、又はこれらの金属とマグネシウムの合金を例示することができる。アルミン酸塩化合物としては、SrAl:Eu,Dy、又はSrAl1425:Eu,Dyを例示することができる。
 希土類元素の賦活剤としては、ジスプロシウム、ユウロピウム等を例示することができ、共賦活剤としては、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、カドミウム、テルビウム、ジスプロシウム等の元素を例示することができる。このような蓄光材料は、LED(Light Emitting Diode)又はブラックライトから紫外光(励起光)が照射されることにより、例えば緑色、青色、黄色、白色又は橙色に発光する特性を有している。
As the luminous material, for example, a material obtained by adding and firing an activator of a rare earth element and a coactivator based on an aluminate compound of an alkaline earth metal as a main component can be used. Examples of alkaline earth metals include at least one or more metals such as strontium, calcium and barium, or alloys of these metals and magnesium. The aluminate compound, SrAl 2 O 4: Eu, Dy, or Sr 4 Al 14 O 25: Eu , can be exemplified Dy.
Examples of activators of rare earth elements include dysprosium and europium, and examples of coactivators include elements such as lanthanum, cerium, praseodymium, neodymium, samarium, cadmium, terbium, dysprosium and the like. Such a phosphorescent material has a characteristic of emitting, for example, green, blue, yellow, white or orange when irradiated with ultraviolet light (excitation light) from an LED (Light Emitting Diode) or a black light.
 蛍光材料としては、ユウロピウム又はテルビウムを例示することができる。
 光散乱粒子としては、酸化チタンを例示することができる。
 ガラスカレット(ガラス粒子)としては、色ガラスカレットを例示することができる。ガラスカレットは、色を有さず透明であってもよい。ガラスカレットを有することにより、第1ガラス層と第2ガラス層との間に泡を介在させることができ、光散乱させることができる。
 ガラス質材料としては、釉薬を例示することができる。
As a fluorescent material, europium or terbium can be illustrated.
As light scattering particles, titanium oxide can be exemplified.
As glass cullet (glass particle), a color glass cullet can be illustrated. Glass cullet may have no color and be transparent. By having a glass cullet, bubbles can be interposed between the first glass layer and the second glass layer, and light can be scattered.
A glaze can be illustrated as a glassy material.
 また、光制御層16は、複数の光制御材料を有してもよい。複数の光制御材料は、色が異なっていてもよく、屈折率が異なっていてもよい。また、光制御材料は、UVカット性能やIRカット性能を有していてもよい。 The light control layer 16 may also have a plurality of light control materials. The plurality of light control materials may be different in color and may be different in refractive index. The light control material may also have UV cut performance and IR cut performance.
 光制御ガラス10、50の厚さ(t)方向における光制御材料の最大長さは、2μm以上が好ましい。最大長さが2μm以上であれば、光制御しやすくなり、例えば、発光特性や光散乱性が向上する。最大長さは、5μm以上がより好ましく、10μm以上がさらに好ましく、50μm以上が特に好ましく、100μm以上が最も好ましい。最大長さは、5mm以下が好ましく、1mm以下がより好ましく、500μm以下がさらに好ましく、300μm以下が特に好ましい。
 ここで、光制御材料の最大長さは、製造された光制御ガラス10、50におけるその厚さ方向における光制御材料の最大長さを意味する。光制御ガラスにおいて拡散により形成される光制御材料は種々の形状を有するが、その形状を問わず、光制御ガラスの厚み方向に平行な所定の断面における最大の長さを意味する。
 光制御ガラス10、50が、例えば、後述するダブルフロー法によって製造されることにより第1ガラス層12及び第2ガラス層14の厚さを厚くできるため、光制御ガラス10、50の厚さ方向における最大長さが2μm以上の光制御材料を光制御ガラス10、50に封入することができる。
The maximum length of the light control material in the thickness (t) direction of the light control glass 10, 50 is preferably 2 μm or more. If the maximum length is 2 μm or more, light control is facilitated, and for example, light emission characteristics and light scattering properties are improved. The maximum length is more preferably 5 μm or more, further preferably 10 μm or more, particularly preferably 50 μm or more, and most preferably 100 μm or more. 5 mm or less is preferable, 1 mm or less is more preferable, 500 micrometers or less are more preferable, and 300 micrometers or less are especially preferable.
Here, the maximum length of the light control material means the maximum length of the light control material in the thickness direction of the manufactured light control glass 10, 50. The light control material formed by diffusion in the light control glass has various shapes, but regardless of the shape, it means the maximum length in a predetermined cross section parallel to the thickness direction of the light control glass.
The thickness of the first glass layer 12 and the second glass layer 14 can be increased by manufacturing the light control glass 10, 50 by, for example, a double flow method described later, so the thickness direction of the light control glass 10, 50 The light control material having a maximum length of 2 μm or more can be enclosed in the light control glass 10, 50.
 第1ガラス層12、第2ガラス層14の厚さは、それぞれ、1~20mmが好ましい。かかる厚さがそれぞれ1mm以上であれば、径の大きな光制御材料を光制御ガラス10、50に介在させることができる。かかる厚さは、それぞれ2mm以上がより好ましく、3mm以上がさらに好ましく、5mm以上が特に好ましい。かかる厚さがそれぞれ20mm以下であれば、製造工程において後述するガラスリボンを冷却しやすく、生産性がよい。かかる厚さは、それぞれ15mm以下がより好ましく、10mm以下がさらに好ましく、8mm以下が特に好ましく、6mm以下が最も好ましい。 The thickness of each of the first glass layer 12 and the second glass layer 14 is preferably 1 to 20 mm. If the thickness is 1 mm or more, a light control material having a large diameter can be interposed in the light control glass 10, 50. The thickness is preferably 2 mm or more, more preferably 3 mm or more, and particularly preferably 5 mm or more. If this thickness is 20 mm or less, it is easy to cool the glass ribbon mentioned later in a manufacturing process, and productivity is good. The thickness is preferably 15 mm or less, more preferably 10 mm or less, particularly preferably 8 mm or less, and most preferably 6 mm or less.
 以下、光制御層16として、蓄光材料を適用した例について説明する。
 図6は、光制御ガラス10、50を製造する装置20の概略構成を示した模式断面図である。図7は、光制御ガラス10、50の製造方法の一例を示したフローチャートである。
Hereinafter, an example in which a phosphorescent material is applied as the light control layer 16 will be described.
FIG. 6 is a schematic cross-sectional view showing a schematic configuration of an apparatus 20 for manufacturing the light control glass 10, 50. As shown in FIG. FIG. 7 is a flow chart showing an example of a method of manufacturing the light control glass 10, 50.
 図7のフローチャートによれば、光制御ガラス10、50の製造工程は、ガラスリボン成形工程(S10)、蓄光材料供給工程(S12)、一体化工程(S14)、切断工程(S16)、研磨工程(S18)及び表面処理工程(S20)を備える。図6の製造装置20は、図7のフローチャートにおいて、ガラスリボン成形工程(S10)、蓄光材料供給工程(S12)及び一体化工程(S14)を実施する装置である。 According to the flowchart of FIG. 7, the manufacturing process of the light control glass 10, 50 includes the glass ribbon forming process (S10), the luminous material supply process (S12), the integration process (S14), the cutting process (S16), and the polishing process (S18) and the surface treatment step (S20). The manufacturing apparatus 20 of FIG. 6 is an apparatus for performing the glass ribbon forming process (S10), the luminous material supply process (S12), and the integration process (S14) in the flowchart of FIG.
 〈ガラスリボン成形工程:S10〉
 光制御ガラス10、50は、ロールアウト成形法のうち、上述したダブルフロー法によって製造される。すなわち、図6の如く、溶融窯22の堰23から溶融ガラス24を、上下一対の水冷ロール26、28の間のギャップ30に供給し、このギャップ30に溶融ガラス24を通過させて第1ガラス層12(図1又は図2参照)となるガラスリボン32を成形する。なお、ガラスリボン32の厚さは、ギャップ30の大きさを調整することにより、変更することができる。
<Glass ribbon forming process: S10>
The light control glass 10, 50 is manufactured by the double flow method described above among the roll out forming method. That is, as shown in FIG. 6, the molten glass 24 is supplied from the crucible 23 of the melting furnace 22 to the gap 30 between the pair of upper and lower water-cooled rolls 26 and 28 and the molten glass 24 is allowed to pass through the gap 30 to make the first glass A glass ribbon 32 to be the layer 12 (see FIG. 1 or FIG. 2) is formed. The thickness of the glass ribbon 32 can be changed by adjusting the size of the gap 30.
 〈蓄光材料供給工程:S12〉
 次に、蓄光材料34を、ガラスリボン32の上面に連続して供給する。蓄光材料34は、複数のノズル35からガラスリボン32の上面に向けて噴霧されることにより、ガラスリボン32の上面に拡散されて形成される。複数のノズル35は、矢印Bで示すガラスリボン32の形成方向に直交する方向であって、ガラスリボン32の上面と平行な方向に沿って配置されている。なお、光制御ガラス10に光制御層16を介在させるための装置は、前述のノズル35を使用した蓄光材料34の噴霧装置に限定されるものではなく、光制御ガラス10に光制御層16を介在させることが可能な装置であれば適用することができる。
<Luminous material supply process: S12>
Next, the phosphorescent material 34 is continuously supplied to the upper surface of the glass ribbon 32. The luminous material 34 is diffused toward the upper surface of the glass ribbon 32 by being sprayed toward the upper surface of the glass ribbon 32 from the plurality of nozzles 35. The plurality of nozzles 35 are disposed in a direction perpendicular to the forming direction of the glass ribbon 32 indicated by the arrow B and in parallel with the upper surface of the glass ribbon 32. The device for interposing the light control layer 16 in the light control glass 10 is not limited to the spray device of the luminous material 34 using the nozzle 35 described above, and the light control layer 16 may be formed on the light control glass 10. It is applicable if it is an apparatus which can be made to intervene.
 〈一体化工程:S14〉
 次に、溶融窯36の堰37から、第2ガラス層14(図1又は図2参照)となる溶融ガラス38を、ガラスリボン32の上面に連続して供給する。そして、溶融ガラス38を供給しながら、ガラスリボン32、蓄光材料34、及び溶融ガラス38を上下一対の水冷ロール40、42の間のギャップ44に通過させ、ガラスリボン32、蓄光材料34及び溶融ガラス38が一体化した蓄光材料入りガラスリボン46を成形する。図6の矢印Cは、水冷ロール26、40の回転方向を示し、矢印Dは、水冷ロール28、42の回転方向を示している。なお、蓄光材料入りガラスリボン46の厚さは、ギャップ44の大きさを調整することにより、変更することができる。
<Integration process: S14>
Next, the molten glass 38 to be the second glass layer 14 (see FIG. 1 or FIG. 2) is continuously supplied to the upper surface of the glass ribbon 32 from the crucible 37 of the molten crucible 36. Then, while supplying the molten glass 38, the glass ribbon 32, the luminous material 34, and the molten glass 38 are allowed to pass through the gap 44 between the upper and lower water-cooled rolls 40 and 42, and the glass ribbon 32, the luminous material 34 and the molten glass 38 forms the glass ribbon 46 containing luminous material integrated. Arrow C in FIG. 6 indicates the rotation direction of the water cooling rolls 26 and 40, and arrow D indicates the rotation direction of the water cooling rolls 28 and 42. The thickness of the phosphorescent material-containing glass ribbon 46 can be changed by adjusting the size of the gap 44.
 〈切断工程:S16〉
 次に、一体化した蓄光材料入りガラスリボン46を、光制御ガラス10、50に要求される所定のサイズに切断して光制御ガラス10、50を得る。当然であるが、この切断工程は、蓄光材料入りガラスリボン46が25~80℃程度にまで徐冷されたのちに行われる。
<Cutting process: S16>
Next, the light storing glass ribbon 46 integrated with the light storing material is cut into a predetermined size required for the light controlling glass 10, 50 to obtain the light controlling glass 10, 50. As a matter of course, this cutting step is performed after the glass ribbon 46 containing the luminous material is gradually cooled to about 25 to 80.degree.
 切断工程における、蓄光材料入りガラスリボン46から所定サイズへの切断は、一例としてダイヤモンドソーを使用して行うことができる。また、ダイヤモンドソーに代えて、レーザーカットやウォータージェットなどを使用して蓄光材料入りガラスリボン46を切断することもできる。 In the cutting step, cutting from the glass ribbon containing luminous material 46 to a predetermined size can be performed using a diamond saw as an example. Also, instead of the diamond saw, a laser cut, a water jet, or the like can be used to cut the glass ribbon 46 containing the luminous material.
 〈研磨工程:S18〉
 光制御ガラス10、50の少なくとも一方の主面(主面12A、14A)を研磨具によって研磨し、少なくとも一方の主面(主面12A、14A)を平滑に加工する。なお、研磨工程で少なくとも一方の主面を研磨して、第1ガラス層12及び第2ガラス層14のうち少なくとも一方のガラス層の厚さを変更することにより、光制御ガラス10の厚さ(t)方向における光制御層16の局在位置を調整することもできる。この研磨工程は、必須の工程ではなく、必要に応じて実施されるオプション工程である。
<Polishing process: S18>
At least one main surface ( main surfaces 12A, 14A) of the light control glass 10, 50 is polished by a polishing tool, and at least one main surface ( main surfaces 12A, 14A) is processed to be smooth. In addition, the thickness of the light control glass 10 can be obtained by polishing at least one main surface in the polishing step and changing the thickness of at least one of the first glass layer 12 and the second glass layer 14 The localized position of the light control layer 16 in the t) direction can also be adjusted. This polishing step is not an essential step but an optional step carried out as needed.
 〈表面処理工程:S20〉
 研磨終了した光制御ガラス10、50の少なくとも一方の主面(主面12A、14A)を表面処理し、少なくとも一方の主面(主面12A、14A)に表面処理部を形成する。表面処理としては、防眩処理、反射防止処理又は防汚処理を例示することができる。その他の表面処理として、熱線反射処理、着色処理、サンドブラスト、エッジングによる装飾処理を例示することもできる。また、光制御ガラス10、50の少なくとも一方の主面(主面12A、14A)に膜を形成することにより、第1ガラス層12又は第2ガラス層14が膜によって保護されるので、第1ガラス層12又は第2ガラス層14が外部部材に接触して傷付くという問題を解消することができる。この表面処理工程は、必須の工程ではなく、必要に応じて実施されるオプション工程である。
<Surface treatment process: S20>
At least one main surface ( main surfaces 12A, 14A) of the light control glass 10, 50 after polishing is surface-treated to form a surface treated portion on at least one main surface ( main surfaces 12A, 14A). As surface treatment, antiglare treatment, antireflective treatment or antifouling treatment can be exemplified. Other surface treatments may be exemplified by heat ray reflection treatment, coloring treatment, sand blasting, and decoration treatment by edging. Further, by forming a film on at least one of the main surfaces ( main surfaces 12A and 14A) of the light control glass 10 and 50, the first glass layer 12 or the second glass layer 14 is protected by the film. It is possible to solve the problem that the glass layer 12 or the second glass layer 14 contacts the external member and is damaged. This surface treatment step is not an essential step but an optional step carried out as required.
 光制御ガラス10、50の厚さ(t)方向において光制御層16が配置される位置は、ギャップ30、44の大きさによりガラスリボン32、46の厚さを調整することで変更することができる。
 また、ダブルフロー法によって光制御層16を1層有する光制御ガラス10、50を製造することができる。
The position where the light control layer 16 is disposed in the thickness (t) direction of the light control glass 10, 50 can be changed by adjusting the thickness of the glass ribbons 32, 46 according to the size of the gaps 30, 44 it can.
Further, the light control glass 10, 50 having one light control layer 16 can be manufactured by the double flow method.
 なお、上記第1実施形態では、ダブルフロー法によって光制御ガラス10、50を製造する方法を説明したが、光制御ガラス10、50の製造はダブルフロー法に限定されるものではない。例えば、フュージョン法又はダウンドロー法によって光制御ガラス10、50を製造することもできる。 In the first embodiment, the method of producing the light control glass 10, 50 by the double flow method has been described, but the production of the light control glass 10, 50 is not limited to the double flow method. For example, the light control glass 10, 50 can also be manufactured by the fusion method or the down draw method.
 上記の如く製造された光制御ガラス10、50によれば、ガラス材料からなる板状の第1ガラス層12とガラス材料からなる板状の第2ガラス層14との間に、光制御材料のみからなる光制御層16が介在されて構成されているので、精細な輝点を得ることができ、且つ安価な構成で品質を向上させることができる。 According to the light control glass 10 and 50 manufactured as described above, only the light control material is interposed between the plate-like first glass layer 12 made of the glass material and the plate-like second glass layer 14 made of the glass material Since the light control layer 16 consisting of these is interposed and comprised, a fine bright point can be obtained and quality can be improved by cheap structure.
 つまり、光制御ガラス10、50は、光制御ガラス10、50の厚さ(t)方向において、光制御層16が局在して配置されているので、精細な輝点を得ることができる。また、光制御層16は、光制御材料のみから構成されており、レーザー光が照射されても劣化する樹脂はなく、また、高価なフッ素材材料も存在しないので、安価な構成で品質が向上されている。
 また、励起強度を上げるためにレーザー光の出力を上げても、光制御層16に溶融するおそれのある樹脂がないため、品質が向上されている。
That is, in the light control glass 10, 50, since the light control layer 16 is localized and arranged in the thickness (t) direction of the light control glass 10, 50, it is possible to obtain a fine bright spot. Further, the light control layer 16 is made of only the light control material, there is no resin that degrades even when irradiated with the laser light, and there is no expensive fluorine material, so the quality is improved with an inexpensive configuration. It is done.
In addition, even if the output of the laser light is increased to increase the excitation intensity, the quality is improved because there is no resin which may be melted in the light control layer 16.
 また、光制御ガラスの外面に光制御層が露出する光制御ガラス(例えば、特許文献1、2参照)では、光制御層が外部部材に接触して傷付く問題があるが、光制御ガラス10、50では、光制御層16が第1ガラス層12と第2ガラス層14とによって保護されているので、光制御層16が外部部材に接触して傷付くという問題を解消することができる。 In addition, in the light control glass (see, for example, Patent Documents 1 and 2) in which the light control layer is exposed on the outer surface of the light control glass, there is a problem that the light control layer contacts the external member and is damaged. 50, since the light control layer 16 is protected by the first glass layer 12 and the second glass layer 14, it is possible to solve the problem that the light control layer 16 contacts the external member and is damaged.
 また、第1実施形態の光制御ガラス10によれば、図3の如く、光制御ガラス10の厚さ(t)方向において、光制御層16が中央部Cに局在して配置されている。これにより、第1ガラス層12の主面12A側からレーザー光を光制御層16に照射したときの輝点と、第2ガラス層14の主面14A側からレーザー光を光制御層16に照射したときの輝点の鮮明さが等しくなる。このような光制御ガラス10は、光制御ガラス10の両方の主面12A、14Aを表示面として使用する形態に好適である。 Further, according to the light control glass 10 of the first embodiment, as shown in FIG. 3, the light control layer 16 is localized at the central portion C in the thickness (t) direction of the light control glass 10. . Thereby, the light control layer 16 is irradiated with laser light from the bright spot when the laser light is irradiated to the light control layer 16 from the main surface 12A side of the first glass layer 12 and from the main surface 14A side of the second glass layer 14 The sharpness of the bright spots when they are Such a light control glass 10 is suitable for a mode in which both main surfaces 12A and 14A of the light control glass 10 are used as a display surface.
 また、第2実施形態の光制御ガラス50は、図5の如く、光制御ガラス50の厚さ(t)方向において、光制御層16が中央部Cを除く位置(A)に局在して配置されている。第2実施形態の光制御ガラス50のように、光制御層16を中央部Cに対し第2ガラス層14の主面14A寄りに配置した場合には、第2ガラス層14の主面14A側からレーザー光を照射することが好ましい。つまり、第2実施形態の光制御ガラス50は、第2ガラス層14の厚さが第1ガラス層12の厚さよりも薄いので、第2ガラス層14の主面14A側からレーザー光を光制御層16に照射した場合の輝点が、第1ガラス層12の主面12A側からレーザー光を光制御層16に照射した場合の輝点よりも鮮明になるからである。 In the light control glass 50 of the second embodiment, as shown in FIG. 5, the light control layer 16 is localized at a position (A) excluding the central portion C in the thickness (t) direction of the light control glass 50. It is arranged. When the light control layer 16 is disposed closer to the main surface 14A of the second glass layer 14 with respect to the central portion C as in the light control glass 50 of the second embodiment, the main surface 14A side of the second glass layer 14 is It is preferable to irradiate a laser beam. That is, since the thickness of the second glass layer 14 is thinner than the thickness of the first glass layer 12 in the light control glass 50 of the second embodiment, the laser light is controlled from the main surface 14A side of the second glass layer 14 This is because the bright spots when the layer 16 is irradiated become sharper than the bright spots when the light control layer 16 is irradiated with the laser light from the main surface 12A side of the first glass layer 12.
 更に、光制御ガラス10、50は、強化ガラスであることが好ましい。これにより、光制御ガラス10の強度を、非強化の光制御ガラスと比較して向上させることができる。
 これに対して、樹脂と発光粒子とを含有した合わせガラス用中間膜(例えば、特許文献4参照)が適用された合わせガラスは、風冷強化または化学強化等の強化処理を行うことは困難である。つまり、オートクレーブ等の圧着装置を使用した合わせガラスの接合工程における加熱温度は、例えば120℃~150℃であるが、風冷強化工程の前工程でガラスを加熱する温度は、ガラスの軟化点付近の温度(例えば500℃程度)である。つまり、合わせガラスを風冷強化しようとした場合には、その前工程の加熱工程で樹脂製の合わせガラス用中間膜が酸化又は焼失してしまうからである。
Furthermore, the light control glass 10, 50 is preferably a tempered glass. Thereby, the intensity of the light control glass 10 can be improved as compared to the non-strengthened light control glass.
On the other hand, in the laminated glass to which the interlayer film for laminated glass (see, for example, Patent Document 4) containing a resin and light emitting particles is applied, it is difficult to perform reinforcement processing such as air cooling reinforcement or chemical reinforcement. is there. That is, although the heating temperature in the bonding step of laminated glass using a pressure bonding apparatus such as an autoclave is, for example, 120 ° C. to 150 ° C., the temperature for heating the glass in the step prior to the air cooling reinforcement step is near the softening point of the glass (E.g., about 500.degree. C.). That is, in the case of tempering and cooling the laminated glass, the resin intermediate film for laminated glass is oxidized or burned off in the heating step of the previous step.
 また、化学強化処理工程では、例えば350~550℃の硝酸カリウム溶融塩にガラスを浸漬させる必要がある。つまり、合わせガラスを化学強化しようとした場合には、化学強化処理工程で樹脂製の合わせガラス用中間膜が劣化してしまう。これに対して、本発明の光制御ガラス10、50は、光制御層16に樹脂等の有機物が存在しないため、風冷強化または化学強化等の強化処理が可能となる。
 また、樹脂と発光粒子とを含有した合わせガラス用中間膜が適用された合わせガラスは、中間膜の経年劣化又は紫外線による劣化により、湿気等による水が合わせガラスに侵入し、光制御機能が低下する恐れがある。
Further, in the chemical strengthening treatment step, it is necessary to immerse the glass, for example, in a molten salt of potassium nitrate at 350 to 550.degree. That is, when it is going to chemically strengthen laminated glass, the interlayer film for laminated glass made of resin will deteriorate in a chemical strengthening process process. On the other hand, in the light control glass 10, 50 of the present invention, since there is no organic substance such as resin in the light control layer 16, reinforcement processing such as air cooling reinforcement or chemical reinforcement can be performed.
In addition, in the laminated glass to which the intermediate film for laminated glass containing a resin and light emitting particles is applied, water due to moisture or the like penetrates the laminated glass due to the aged deterioration of the intermediate film or the deterioration due to ultraviolet light, and the light control function is deteriorated. There is a risk of
 (第3実施形態)
 図8は、第3実施形態の光制御ガラス60の模式断面図である。図9は、光制御ガラス60の模式正面図である。
 第3実施形態の光制御ガラス60は、図8の如く、第1ガラス層12と第2ガラス層14との間に光制御層16及び金網62(図9参照)を有する。
 図10は、光制御ガラス60を製造する製造装置70の概略構成を示した模式断面図である。
Third Embodiment
FIG. 8 is a schematic cross-sectional view of the light control glass 60 of the third embodiment. FIG. 9 is a schematic front view of the light control glass 60.
The light control glass 60 of the third embodiment has a light control layer 16 and a wire mesh 62 (see FIG. 9) between the first glass layer 12 and the second glass layer 14 as shown in FIG.
FIG. 10 is a schematic cross-sectional view showing a schematic configuration of a manufacturing apparatus 70 for manufacturing the light control glass 60. As shown in FIG.
 製造装置70は、図6に示した製造装置20と同様のダブルフロー法による製造装置である。この製造装置70によれば、溶融窯22の堰23から溶融ガラス24を、上下一対の水冷ロール26、28の間のギャップ30に供給し、このギャップ30に溶融ガラス24を通過させて第1ガラス層12となるガラスリボン32を成形する。 The manufacturing apparatus 70 is a manufacturing apparatus based on the double flow method similar to the manufacturing apparatus 20 shown in FIG. According to the manufacturing apparatus 70, the molten glass 24 is supplied from the crucible 23 of the melting furnace 22 to the gap 30 between the pair of upper and lower water-cooled rolls 26 and 28, and the molten glass 24 is allowed to pass through the gap 30. A glass ribbon 32 to be the glass layer 12 is formed.
 〈蓄光材料及び金網供給工程〉
 次に、蓄光材料34を、ガラスリボン32の上面に連続して供給する。蓄光材料34は、複数のノズル35からガラスリボン32の上面に向けて噴霧されることにより、ガラスリボン32の上面に拡散されて形成される。そして、蓄光材料34の供給と同時に金網62を、ガラスリボン32の上面に沿って連続的に供給する。金網62の供給位置は、蓄光材料34の供給位置に対して下流側(図10)でもよく、上流側でもよい。
<Luminous material and wire mesh supply process>
Next, the phosphorescent material 34 is continuously supplied to the upper surface of the glass ribbon 32. The luminous material 34 is diffused toward the upper surface of the glass ribbon 32 by being sprayed toward the upper surface of the glass ribbon 32 from the plurality of nozzles 35. Then, simultaneously with the supply of the phosphorescent material 34, the wire mesh 62 is continuously supplied along the upper surface of the glass ribbon 32. The supply position of the wire mesh 62 may be downstream (FIG. 10) or upstream of the supply position of the luminous material 34.
 〈一体化工程〉
 次に、溶融窯36の堰37から、第2ガラス層14となる溶融ガラス38を、ガラスリボン32の上面に連続して供給する。そして、溶融ガラス38を供給しながら、ガラスリボン32、蓄光材料34、金網62及び溶融ガラス38を上下一対の水冷ロール40、42の間のギャップ44に通過させ、ガラスリボン32、蓄光材料34、金網62及び溶融ガラス38が一体化した蓄光材料及び金網入りガラスリボン64を成形する。
<Integration process>
Next, the molten glass 38 to be the second glass layer 14 is continuously supplied to the upper surface of the glass ribbon 32 from the crucible 37 of the molten crucible 36. Then, while supplying the molten glass 38, the glass ribbon 32, the luminous material 34, the wire mesh 62 and the molten glass 38 are allowed to pass through the gap 44 between the upper and lower water-cooled rolls 40 and 42, and the glass ribbon 32, luminous material 34, The luminous material integrated with the wire mesh 62 and the molten glass 38 and the glass ribbon 64 containing wire mesh are formed.
 〈切断工程〉
 次に、一体化した蓄光材料及び金網入りガラスリボン64を、光制御ガラス60に要求される所定のサイズに切断して光制御ガラス60を得る。
 このように構成された光制御ガラス60によれば、第1ガラス層12と第2ガラス層14との間に金網62が介在されているので、表示機能を備えた防火ガラスに好適である。光制御ガラス60も光制御ガラス10、50と同様に光制御ガラス60の主面を表面処理することにより、主面に表面処理部を形成することも可能である。
 第3実施形態では金網を有する光制御ガラスを例示したが、金網の代わりに線状の金属部材であってもよい。
Cutting process
Next, the integrated phosphorescent material and the wire mesh glass ribbon 64 are cut into a predetermined size required for the light control glass 60 to obtain the light control glass 60.
According to the light control glass 60 configured as described above, since the wire mesh 62 is interposed between the first glass layer 12 and the second glass layer 14, the light control glass 60 is suitable for a fire protection glass having a display function. Similarly to the light control glasses 10 and 50, the light control glass 60 can also be provided with a surface treated portion on the main surface by surface treatment of the main surface of the light control glass 60.
Although the light control glass having a wire mesh is illustrated in the third embodiment, a linear metal member may be used instead of the wire mesh.
 本発明は上記第1~第3実施形態に限定されない。本発明の目的を達成できる範囲での変形や改良等は本発明に含まれる。また、光制御ガラス10、50、60の用途は、上述した蓄光式誘導標識、室内インテリア部材、表示部材又は防火ガラスに限定されるものではなく、多種多様の用途に適用可能である。 The present invention is not limited to the above first to third embodiments. Modifications and improvements as long as the object of the present invention can be achieved are included in the present invention. Further, the application of the light control glass 10, 50, 60 is not limited to the luminous guide sign, the interior interior member, the display member or the fire prevention glass described above, and can be applied to various applications.
 なお、2017年9月11日に出願された日本特許出願2017-174108号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-174108 filed on Sep. 11, 2017 are hereby incorporated by reference as the disclosure of the specification of the present invention. , Is to introduce.
10…光制御ガラス、12…第1ガラス層、12A…主面、14…第2ガラス層、14A…主面、16…光制御層、20…製造装置、22…溶融窯、23…堰、24…溶融ガラス、26…水冷ロール、28…水冷ロール、30…ギャップ、32…ガラスリボン、34…蓄光材料、35…ノズル、36…溶融窯、37…堰、38…溶融ガラス、40…水冷ロール、42…水冷ロール、44…ギャップ、46…蓄光材料入りガラスリボン、50…光制御ガラス、60…光制御ガラス、62…金網、64…蓄光材料及び金網入りガラスリボン、70…製造装置 DESCRIPTION OF SYMBOLS 10 ... Light control glass, 12 ... 1st glass layer, 12A ... Principal surface, 14 ... 2nd glass layer, 14A ... Principal surface, 16 ... Light control layer, 20 ... Manufacturing apparatus, 22 ... Molten crucible, 23 ... 堰, 24: molten glass, 26: water cooling roll, 28: water cooling roll, 30: gap, 32: glass ribbon, 34: luminous material, 35: nozzle, 36: molten glass, 37: molten glass, 38: molten glass, 40: water cooled Rolls, 42: water-cooled rolls, 44: gaps, 46: glass ribbons containing luminous material, 50: light control glasses, 60: light control glasses, 62: wire mesh, 64: luminous materials and glass ribbons containing wire mesh, 70: manufacturing equipment

Claims (14)

  1.  ガラス材料からなる板状の第1ガラス層とガラス材料からなる板状の第2ガラス層との間に、光制御層が介在されてなり、
     前記光制御層は、有機物を含まず、光制御材料を含有することを特徴とする光制御ガラス。
    A light control layer is interposed between a plate-like first glass layer made of a glass material and a plate-like second glass layer made of a glass material,
    A light control glass characterized in that the light control layer does not contain an organic substance and contains a light control material.
  2.  前記光制御層は、光制御材料のみからなる、請求項1に記載の光制御ガラス。 The light control glass according to claim 1, wherein the light control layer consists only of a light control material.
  3.  前記光制御材料は、発光材料又は光散乱材料である、請求項1又は2に記載の光制御ガラス。 The light control glass according to claim 1, wherein the light control material is a light emitting material or a light scattering material.
  4.  前記発光材料は、蓄光材料又は蛍光材料である、請求項3に記載の光制御ガラス。 The light control glass according to claim 3, wherein the light emitting material is a luminous material or a fluorescent material.
  5.  前記光制御ガラスの厚さ方向における前記光制御材料の最大長さは、2μm~5mmである、請求項1~4のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 4, wherein the maximum length of the light control material in the thickness direction of the light control glass is 2 μm to 5 mm.
  6.  前記第1ガラス層及び前記第2ガラス層の厚さは、それぞれ、1~50mmである、請求項1~5のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 5, wherein the thickness of each of the first glass layer and the second glass layer is 1 to 50 mm.
  7.  前記光制御ガラスの厚さ方向において、前記光制御層は中央部に配置されてなる、請求項1~6のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 6, wherein the light control layer is disposed at a central portion in the thickness direction of the light control glass.
  8.  前記光制御ガラスの厚さ方向において、前記光制御層は中央部を除く位置に配置されてなる、請求項1~6のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 6, wherein the light control layer is disposed at a position excluding the central portion in the thickness direction of the light control glass.
  9.  前記第1ガラス層及び前記第2ガラス層が強化ガラスである、請求項1~8のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 8, wherein the first glass layer and the second glass layer are tempered glass.
  10.  前記強化ガラスが、風冷強化ガラス又は化学強化ガラスである、請求項9に記載の光制御ガラス。 The light control glass according to claim 9, wherein the tempered glass is air-cooled tempered glass or chemically tempered glass.
  11.  前記第1ガラス層と前記第2ガラス層との間に金網を有する、請求項1~10のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 10, further comprising a wire mesh between the first glass layer and the second glass layer.
  12.  前記第1ガラス層又は前記第2ガラス層が表面処理部を有する、請求項1~11のいずれか1項に記載の光制御ガラス。 The light control glass according to any one of claims 1 to 11, wherein the first glass layer or the second glass layer has a surface treated portion.
  13.  請求項1~12のいずれか1項に記載の光制御ガラスをダブルフロー法によって製造する、光制御ガラスの製造方法。 A method for producing a light control glass according to any one of claims 1 to 12, wherein the light control glass is produced by a double flow method.
  14.  前記ダブルフロー法によって製造し、次いで前記第1ガラス層及び前記第2ガラス層の少なくともいずれかを強化処理する、請求項13に記載の光制御ガラスの製造方法。 The method for producing a light control glass according to claim 13, wherein the light control glass is produced by the double flow method and then at least one of the first glass layer and the second glass layer is subjected to a strengthening treatment.
PCT/JP2018/033285 2017-09-11 2018-09-07 Light control glass and method for manufacturing same WO2019050009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174108 2017-09-11
JP2017174108A JP2021004906A (en) 2017-09-11 2017-09-11 Light control glass

Publications (1)

Publication Number Publication Date
WO2019050009A1 true WO2019050009A1 (en) 2019-03-14

Family

ID=65634149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033285 WO2019050009A1 (en) 2017-09-11 2018-09-07 Light control glass and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2021004906A (en)
WO (1) WO2019050009A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954630A (en) * 1982-09-20 1984-03-29 Natl House Ind Co Ltd Manufacture of colored glass plate
JP2002193629A (en) * 2000-12-22 2002-07-10 Asahi Glass Co Ltd Method of producing wired glass
JP2013047155A (en) * 2011-08-29 2013-03-07 Nippon Electric Glass Co Ltd Method of producing glass composite sheet, and glass composite sheet
WO2013054856A1 (en) * 2011-10-11 2013-04-18 国立大学法人 熊本大学 Intermediate film for laminated glass and laminated glass
JP2017019715A (en) * 2015-07-07 2017-01-26 旭硝子株式会社 Glass sheet for inner package, and production method of glass sheet for inner package
WO2017073328A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Wavelength conversion member and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954630A (en) * 1982-09-20 1984-03-29 Natl House Ind Co Ltd Manufacture of colored glass plate
JP2002193629A (en) * 2000-12-22 2002-07-10 Asahi Glass Co Ltd Method of producing wired glass
JP2013047155A (en) * 2011-08-29 2013-03-07 Nippon Electric Glass Co Ltd Method of producing glass composite sheet, and glass composite sheet
WO2013054856A1 (en) * 2011-10-11 2013-04-18 国立大学法人 熊本大学 Intermediate film for laminated glass and laminated glass
JP2017019715A (en) * 2015-07-07 2017-01-26 旭硝子株式会社 Glass sheet for inner package, and production method of glass sheet for inner package
WO2017073328A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Wavelength conversion member and production method therefor

Also Published As

Publication number Publication date
JP2021004906A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
US20100214788A1 (en) Glass Substrate With Light Directivity and Illuminator Employing the Same
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
US9816684B2 (en) Light emitting device, cell for light emitting device, and method for manufacturing light emitting device
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
KR20110003377A (en) Conversion material, especially for a white or colored light source comprising a semiconductor light source, method for producing the same and light source comprising said conversion material
EP2481571B1 (en) Luminescent glass, producing method thereof and luminescent device
WO2015178254A1 (en) Glass plate for light guide plate
WO2019050009A1 (en) Light control glass and method for manufacturing same
JP5724685B2 (en) Method for manufacturing cell for light emitting device and method for manufacturing light emitting device
EP2481570B1 (en) Luminescent glass, producing method thereof and luminescent device
KR102265057B1 (en) Multiple wavelength emitting color conversion material and fabrication method thereof
JP2001278636A (en) Ultraviolet light fluoroglass, product of ultraviolet light fluoroglass and manufacturing method of ultraviolet light fluoroglass
CN110799862B (en) Phosphor layer composition, phosphor member, light source device, and projection device
EP2481576B1 (en) Luminescent glass, producing method thereof and luminescent device
CN109476534A (en) Glassware and its manufacturing method comprising light extraction features
JP2014513437A (en) Light emitting diode conversion element and manufacturing method thereof
JP2012186436A (en) Production method of capillary tube for enclosing phosphor and manufacturing method of wavelength conversion member
WO2022163604A1 (en) Light emitter, wristwatch, and method for manufacturing light emitter
JP2013047155A (en) Method of producing glass composite sheet, and glass composite sheet
US20120270056A1 (en) Luminescent glass, producing method thereof and luminescent device
JP2001282153A (en) Ultraviolet fluorescence method and display device using the same
JP2022153703A (en) Ceramic composite, wristwatch or name plate provided with ceramic composite, and manufacturing method of ceramic composite
EP2481575B1 (en) Luminescent glass, producing method thereof and luminescent device
EP2481573A1 (en) Luminescent glass, producing method thereof and luminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP