WO2019049943A1 - Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass - Google Patents

Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass Download PDF

Info

Publication number
WO2019049943A1
WO2019049943A1 PCT/JP2018/033076 JP2018033076W WO2019049943A1 WO 2019049943 A1 WO2019049943 A1 WO 2019049943A1 JP 2018033076 W JP2018033076 W JP 2018033076W WO 2019049943 A1 WO2019049943 A1 WO 2019049943A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin film
thermoelectric conversion
laminated glass
film
Prior art date
Application number
PCT/JP2018/033076
Other languages
French (fr)
Japanese (ja)
Inventor
中島 大輔
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018562137A priority Critical patent/JP7221697B2/en
Publication of WO2019049943A1 publication Critical patent/WO2019049943A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a thermoplastic resin film containing a thermoplastic resin. Moreover, this invention relates to the laminated glass provided with the said thermoplastic resin film. In addition, the present invention relates to a thermoelectric conversion film and a thermoelectric conversion laminated glass having a thermoelectric conversion function.
  • the glass plate containing laminated body by which the thermoplastic resin film was bonded together to the glass plate is known.
  • laminated glass is widely used.
  • Laminated glass is excellent in safety because the amount of scattered glass fragments is small even if it is broken due to external impact. For this reason, the laminated glass is widely used in automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the laminated glass is manufactured by sandwiching a thermoplastic resin film between a pair of glass plates. Moreover, a thermoplastic resin film may be bonded together and used for members other than a glass plate besides laminated glass.
  • Patent Document 1 proposes a laminated glass which can thaw a frozen material on the surface of the laminated glass.
  • the laminated glass described in Patent Document 1 has a structure in which a plurality of glass plates and an intermediate film are provided, and the glass plates are laminated via the intermediate film.
  • the synthetic thermal resistance of the plurality of glass plates and the intermediate film is 0.014 to 0.25 m 2 K / W.
  • the laminated glass is provided with the function of thawing the frozen material.
  • the present inventor examined giving a function different from the function described in Patent Document 1 to a laminated glass or the like, and came to complete the present invention.
  • An object of the present invention is to provide a thermoplastic resin film which has excellent flexibility and can exhibit a thermoelectric conversion function. Another object of the present invention is to provide a laminated glass using the above-mentioned thermoplastic resin film. Another object of the present invention is to provide a thermoelectric conversion film and a thermoelectric conversion laminated glass having excellent flexibility and having a thermoelectric conversion function.
  • thermoplastic resin film used by being connected to an electrode, wherein a thermoplastic resin and a thermoelectric conversion function are exhibited in a state where the thermoplastic resin film is connected to the electrode.
  • thermoplastic resin film containing a conversion material and having a bending stiffness of 0.49 N ⁇ cm 2 / cm or less.
  • thermoplastic resin film and an electrode are provided, the thermoplastic resin film includes a thermoplastic resin and a thermoelectric conversion material, and the thermoplastic resin film is connected to the electrode A thermoelectric conversion film is provided, wherein the thermoplastic resin film has a flexural rigidity of 0.49 N ⁇ cm 2 / cm or less.
  • thermoelectric conversion material is particulate form or fibrous form.
  • the thermoelectric conversion material is preferably an organic compound. It is preferable that the said thermoplastic resin is polyvinyl acetal resin.
  • the thermoplastic resin film preferably contains a plasticizer. It is preferable that content of the said plasticizer with respect to 100 weight part of said thermoplastic resins is 20 weight part or more and 100 weight part or less. It is preferable that content of the said thermoelectric conversion material is 0.01 weight% or more and 0.5 weight% or less in 100 weight% of the said thermoplastic resin films.
  • thermoplastic resin film is preferably an intermediate film for laminated glass.
  • thermoelectric conversion film is preferably an intermediate film for laminated glass having a thermoelectric conversion function.
  • thermoplastic resin film is the first laminated glass member.
  • a laminated glass is provided, which is disposed between the second laminated glass member, and the thermoplastic resin film is used by being connected to an electrode.
  • thermoplastic resin film is the first laminated member.
  • thermoelectric conversion laminated glass is provided, which is disposed between a glass member and the second laminated glass member, and the thermoplastic resin film is connected to the electrode.
  • thermoelectric conversion film a first laminated glass member, a second laminated glass member, and the above-described thermoelectric conversion film are provided, and the thermoplastic resin film in the thermoelectric conversion film is the first one.
  • thermoelectric conversion laminated glass is provided, which is disposed between the laminated glass member and the second laminated glass member.
  • the thermoplastic resin film according to the present invention includes a thermoplastic resin and a thermoelectric conversion material that exhibits a thermoelectric conversion function in a state where the thermoplastic resin film is connected to the electrode, and the bending hardness is 0.49 N ⁇ cm 2 / Since it is cm or less, it has excellent flexibility, and by connecting the thermoplastic resin film according to the present invention to an electrode, the thermoelectric conversion function can be exhibited.
  • thermoelectric conversion film comprises a thermoplastic resin film and an electrode, wherein the thermoplastic resin film includes a thermoplastic resin and a thermoelectric conversion material, and the thermoplastic resin film is connected to the electrode. Since the thermoplastic resin film has a flexural rigidity of 0.49 N ⁇ cm 2 / cm or less, it has excellent flexibility and a thermoelectric conversion function.
  • FIG. 1 is a cross-sectional view schematically showing a thermoelectric conversion film according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a thermoelectric conversion film according to a second embodiment of the present invention.
  • FIG. 3 is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
  • FIG. 4 is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
  • the thermoplastic resin film according to the present invention is a thermoplastic resin film used by being connected to an electrode.
  • the thermoplastic resin film according to the present invention is a thermoplastic resin film which can be used by being connected to an electrode.
  • the thermoplastic resin film according to the present invention contains a thermoplastic resin and a thermoelectric conversion material.
  • the thermoelectric conversion material exhibits a thermoelectric conversion function in a state where the thermoplastic resin film is connected to the electrode.
  • the thermoelectric conversion material converts thermal energy into electrical energy.
  • the Seebeck coefficient of the thermoplastic resin film is measured, it is considered that the thermoelectric conversion function is exhibited when the value of the Seebeck coefficient is 10 ⁇ 7 V / K or more.
  • thermoplastic resin film For example, by connecting electrodes to two distant positions in the thermoplastic resin film and connecting the electrodes with a conducting wire, electricity can be extracted from the electrical extraction portion.
  • the bending hardness of the thermoplastic resin film according to the present invention is 0.49 N ⁇ cm 2 / cm or less.
  • thermoplastic resin film according to the present invention Since the thermoplastic resin film according to the present invention is provided with the above-described configuration, it has excellent flexibility, and by connecting the thermoplastic resin film according to the present invention to an electrode, a thermoelectric conversion function can be obtained. It can be expressed.
  • the thermoelectric conversion film according to the present invention comprises a thermoplastic resin film and an electrode.
  • the thermoplastic resin film contains a thermoplastic resin and a thermoelectric conversion material.
  • the thermoelectric conversion material converts thermal energy into electrical energy.
  • the thermoplastic resin film is connected to the electrode. For example, by connecting electrodes to two distant positions in the thermoplastic resin film and connecting the electrodes with a conducting wire, electricity can be extracted from the electrical extraction portion.
  • the bending hardness of the thermoplastic resin film is 0.49 N ⁇ cm 2 / cm or less.
  • thermoelectric conversion film according to the present invention Since the thermoelectric conversion film according to the present invention is provided with the above configuration, it has excellent flexibility and has a thermoelectric conversion function.
  • the followability to the curved surface of a thermoplastic resin film can be improved as bending hardness is below the above-mentioned upper limit.
  • the bending hardness of the thermoplastic resin film is preferably 0.3 N ⁇ cm 2 / cm or less, more preferably 0.2 N ⁇ cm 2 / cm or less, still more preferably 0. It is 13 N ⁇ cm 2 / cm or less.
  • the bending hardness is measured as follows.
  • the bending recovery of the thermoplastic resin film is preferably 0.58 N ⁇ cm / cm or less.
  • the followability to the curved surface of a thermoplastic resin film can be improved as bending recovery nature is below the above-mentioned maximum.
  • the bending recovery is measured as follows.
  • the thermoplastic resin film may have a structure of one layer, may have a structure of two or more layers, may have a structure of three or more layers, a structure of four or more layers May be included.
  • the thermoplastic resin film may have a structure of two or more layers, and may include a first surface layer and a second surface layer.
  • the thermoplastic resin film may have a structure of three or more layers, and may include an intermediate layer between the first surface layer and the second surface layer.
  • the thermoplastic resin film may have two or more layers of the intermediate layer.
  • the thermoplastic resin film may comprise a first intermediate layer and a second intermediate layer.
  • the visible light transmittance of the thermoplastic resin film is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, particularly preferably Is at least 85%, particularly preferably at least 88%, most preferably at least 90%. Transparency can be further improved as the visible light transmittance of the said thermoplastic resin film is more than the said lower limit, and the visibility through a thermoplastic resin film can be improved effectively.
  • the interlayer for laminated glass may have a shade region.
  • the visible light transmittance of the interlayer for a laminated glass (thermoplastic resin film) in a region excluding the shade region in the interlayer for a laminated glass is defined as a visible light transmittance A.
  • the visible light transmittance A is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, particularly preferably 85% or more Particularly preferably 88% or more, most preferably 90% or more.
  • the thermoplastic resin film according to the present invention preferably has a region in which the visible light transmittance is equal to or more than the above lower limit. It is preferable that the visible light transmittance of the central portion of the thermoplastic resin film is not less than the lower limit.
  • the area of the region where the visible light transmittance of the thermoplastic resin film is 40% or more (or the lower limit or more) in the plane area 100% of the thermoplastic resin film is preferably 50% or more, more preferably 80%. It is above.
  • permeability can be measured using the laminated glass obtained by arrange
  • the visible light transmittance of the obtained laminated glass at a wavelength of 380 nm to 780 nm can be measured according to JIS R 3211: 1998 using a spectrophotometer (“U-4100” manufactured by Hitachi High-Technologies Corporation).
  • FIG. 1 is a cross-sectional view schematically showing a thermoelectric conversion film according to a first embodiment of the present invention.
  • size and dimension of the thermoelectric conversion film in FIG. 1 and the figure mentioned later are suitably changed from the actual magnitude
  • the thermoelectric conversion film 1 shown in FIG. 1 includes a thermoplastic resin film 10 and an electrode 21.
  • the thermoplastic resin film 10 contains a thermoplastic resin and a thermoelectric conversion material. One end of the thermoplastic resin film 10 is connected to the electrode 21, and the other end is connected to the electrode 21.
  • the two electrodes 21 are connected by a conducting wire 22.
  • An electrical outlet 23 is disposed in the lead 22.
  • the thermoplastic resin film 10 includes a first layer 11 (intermediate layer), a second layer 12 (surface layer), and a third layer 13 (surface layer).
  • the second layer 12 is disposed on the first surface side of the first layer 11 and stacked.
  • the third layer 13 is disposed on the second surface side opposite to the first surface of the first layer 11 and is laminated.
  • the first layer 11 is disposed between the second layer 12 and the third layer 13 and is sandwiched.
  • the thermoplastic resin film 10 is a multilayer film.
  • the first layer 11 contains a thermoelectric conversion material. One end of the first layer 11 is connected to the electrode 21, and the other end is connected to the electrode 21.
  • the outer surface on the opposite side to the 1st layer 11 side of the 2nd layer 12 is a surface where a laminated glass member is laminated. It is preferable that the outer surface on the opposite side to the 1st layer 11 side of the 3rd layer 13 is a surface where a laminated glass member is laminated.
  • FIG. 2 is a cross-sectional view schematically showing a thermoelectric conversion film according to a second embodiment of the present invention.
  • the thermoelectric conversion film 1A shown in FIG. 2 includes a thermoplastic resin film 10A and an electrode 21.
  • the thermoplastic resin film 10A contains a thermoplastic resin and a thermoelectric conversion material.
  • One end of the thermoplastic resin film 10A is connected to the electrode 21, and the other end is connected to the electrode 21.
  • the two electrodes 21 are connected by a conducting wire 22.
  • An electrical outlet 23 is disposed in the lead 22.
  • the thermoplastic resin film 10A includes a first layer.
  • the thermoplastic resin film 10A has a structure of one layer of only the first layer, and is a single layer film.
  • the thermoplastic resin film 10A is a first layer.
  • thermoplastic resin film may be a multilayer film or a single layer film.
  • first layer including a monolayer film
  • second layer and the third layer constituting the thermoplastic resin film according to the present invention
  • first layer, the second layer The details of each component contained in the third layer and the second layer will be described.
  • thermoplastic resin It is preferable that the said thermoplastic film contains a thermoplastic resin (Hereinafter, it may describe as a thermoplastic resin (0).). It is preferable that the said thermoplastic film contains polyvinyl acetal resin (Hereafter, it may describe as polyvinyl acetal resin (0)) as thermoplastic resin (0).
  • the first layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (1)).
  • the first layer preferably contains, as the thermoplastic resin (1), a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (1)).
  • the second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (2)).
  • the second layer preferably contains, as the thermoplastic resin (2), a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (2)).
  • the third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (3)).
  • the third layer preferably contains, as the thermoplastic resin (3), a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (3)).
  • the thermoplastic resin (1), the thermoplastic resin (2) and the thermoplastic resin (3) may be identical or different.
  • the thermoplastic resin (1) is preferably different from the thermoplastic resin (2) and the thermoplastic resin (3) because the sound insulation property is further enhanced.
  • the polyvinyl acetal resin (1), the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) may be the same or different. It is preferable that the polyvinyl acetal resin (1) is different from the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) because the sound insulation property is further enhanced.
  • the thermoplastic resin (0), the thermoplastic resin (1), the thermoplastic resin (2) and the thermoplastic resin (3) may be used alone or in combination of two or more. May be
  • the polyvinyl acetal resin (0), the polyvinyl acetal resin (1), the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) may be used alone or in combination of two or more. May be
  • thermoplastic resin examples include polyvinyl acetal resin, ionomer resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, polyvinyl alcohol resin, cycloolefin resin and the like. Only one type of the thermoplastic resin may be used, or two or more types may be used in combination.
  • the thermoplastic resin film preferably contains, as the thermoplastic resin, a polyvinyl acetal resin or an ionomer resin, and more preferably a polyvinyl acetal resin.
  • a polyvinyl acetal resin or an ionomer resin By the combined use of the polyvinyl acetal resin and the plasticizer, the adhesion of the thermoplastic resin film according to the present invention to a glass plate, a laminated glass member or another film is further enhanced.
  • the surface layer and the intermediate layer contain a polyvinyl acetal resin or an ionomer resin.
  • One type of each of the polyvinyl acetal resin and the ionomer resin may be used, or two or more types may be used in combination.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
  • PVA polyvinyl alcohol
  • the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
  • the polyvinyl alcohol is obtained, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of the polyvinyl alcohol is generally in the range of 70 mol% to 99.9 mol%.
  • the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, and most preferably 2700 or more. Preferably it is 5000 or less, More preferably, it is 4000 or less, More preferably, it is 3500 or less.
  • the average degree of polymerization is at least the lower limit, the penetration resistance is further enhanced. Molding of a thermoplastic resin film becomes it easy that the above-mentioned average polymerization degree is below the above-mentioned maximum.
  • the average degree of polymerization of the polyvinyl alcohol is determined by a method in accordance with JIS K 6726 "Polyvinyl alcohol test method".
  • the carbon number of the acetal group contained in the polyvinyl acetal resin is not particularly limited.
  • the aldehyde used in producing the polyvinyl acetal resin is not particularly limited.
  • the carbon number of the acetal group in the polyvinyl acetal resin is preferably 3 to 5, and more preferably 3 or 4.
  • the glass transition temperature of a thermoplastic resin film becomes it low enough that carbon number of the acetal group in the said polyvinyl acetal resin is three or more.
  • the aldehyde is not particularly limited. In general, aldehydes having 1 to 10 carbon atoms are preferably used. Examples of the above aldehydes having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexyl aldehyde and n-octyl aldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde and benzaldehyde.
  • Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexyl aldehyde or n-valeraldehyde is preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferred, and n-butyraldehyde is even more preferred. Only one type of aldehyde may be used, or two or more types may be used in combination.
  • the hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (0) is preferably 15 mol% or more, more preferably 18 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less is there.
  • the adhesive force of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum.
  • flexibility of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is below the said upper limit, and the handling of a thermoplastic resin film becomes easy.
  • the hydroxyl content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, and preferably 28 mol% or less. More preferably, it is 27 mol% or less, still more preferably 25 mol% or less, and particularly preferably 24 mol% or less.
  • the mechanical strength of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum.
  • the reaction efficiency is high and the productivity is excellent, and when it is 28 mol% or less, the sound insulation of the laminated glass is further enhanced. .
  • flexibility of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is below the said upper limit, and the handling of a thermoplastic resin film becomes easy.
  • the content of each of hydroxyl groups of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, still more preferably 30 mol% or more, still more preferably It is 31.5 mol% or more, still more preferably 32 mol% or more, and particularly preferably 33 mol% or more.
  • the content of each hydroxyl group of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 38 mol% or less, more preferably 37 mol% or less, still more preferably 36.5 mol% or less, particularly preferably Is 36 mol% or less.
  • thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum. Moreover, the softness
  • the hydroxyl content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl content of the polyvinyl acetal resin (2).
  • the hydroxyl content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl content of the polyvinyl acetal resin (3).
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 1 mol% or more.
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more.
  • the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2), the hydroxyl group content of the polyvinyl acetal resin (1), and The absolute value of the difference from the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 20 mol% or less.
  • the hydroxyl group content of the polyvinyl acetal resin is a value indicating the molar fraction obtained by dividing the amount of ethylene groups to which hydroxyl groups are bonded by the total amount of ethylene groups in the main chain as a percentage.
  • the amount of ethylene groups to which the above hydroxyl groups are bonded can be measured, for example, in accordance with JIS K 6728 "Polyvinyl butyral test method".
  • the degree of acetylation (the amount of acetyl groups) of the polyvinyl acetal resin (0) is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and still more preferably 0.5 mol% or more. Is 30 mol% or less, more preferably 25 mol% or less, and still more preferably 20 mol% or less.
  • the compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum.
  • the moisture resistance of a thermoplastic resin film and a laminated glass becomes it high that the said degree of acetylation is below the said upper limit.
  • the degree of acetylation (amount of acetyl group) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, and still more preferably 9 It is preferably at most 30 mol%, more preferably at most 25 mol%, still more preferably at most 24 mol%, particularly preferably at most 20 mol%.
  • the compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum.
  • the moisture resistance of a thermoplastic resin film and a laminated glass becomes it high that the said degree of acetylation is below the said upper limit.
  • the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol% or more and 25 mol% or less, the penetration resistance is excellent.
  • the degree of acetylation of each of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, and preferably 10 mol% or less. More preferably, it is 2 mol% or less.
  • the compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum.
  • the moisture resistance of a thermoplastic resin film and a laminated glass becomes it high that the said degree of acetylation is below the said upper limit.
  • the degree of acetylation is a value indicating the molar fraction obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain as a percentage.
  • the amount of ethylene groups to which the acetyl group is bonded can be measured, for example, in accordance with JIS K 6728 "Polyvinyl butyral test method".
  • the degree of acetalization (the degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (0) is preferably 60 mol% or more, more preferably 63 mol% or more, preferably 85 mol% or less, more Preferably it is 75 mol% or less, More preferably, it is 70 mol% or less.
  • the compatibility with polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum.
  • the reaction time required in order to manufacture polyvinyl acetal resin as the said degree of acetalization is below the said upper limit becomes short.
  • the degree of acetalization (the degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (1) is preferably 47 mol% or more, more preferably 60 mol% or more, preferably 85 mol% or less Preferably it is 80 mol% or less, More preferably, it is 75 mol% or less.
  • the compatibility with polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum.
  • the reaction time required in order to manufacture polyvinyl acetal resin as the said degree of acetalization is below the said upper limit becomes short.
  • the acetalization degree (butyralization degree in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 60 mol% or more Preferably it is 75 mol% or less, More preferably, it is 71 mol% or less.
  • the compatibility with polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum.
  • the reaction time required in order to manufacture polyvinyl acetal resin as the said degree of acetalization is below the said upper limit becomes short.
  • the degree of acetalization is determined as follows. First, a value obtained by subtracting the amount of ethylene groups bonded to hydroxyl groups and the amount of ethylene groups bonded to acetyl groups from the total amount of ethylene groups in the main chain is determined. The obtained value is divided by the total amount of ethylene groups in the main chain to determine the mole fraction. The value which showed this mole fraction in percentage is a degree of acetalization.
  • the hydroxyl group content (hydroxyl content), the degree of acetalization (butyralization) and the degree of acetylation are preferably calculated from the results measured by the method according to JIS K 6728 "Polyvinyl butyral test method". However, measurement according to ASTM D1396-92 may be used.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the content of the hydroxyl group (hydroxyl content), the degree of acetalization (degree of butyralization) and the degree of acetylation are methods according to JIS K 6728 "Polyvinyl butyral test method" It can be calculated from the result measured by
  • the thermoplastic resin film preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (0)).
  • the first layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (1)).
  • the second layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (2)).
  • the third layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (3)).
  • the thermoplastic resin contained in the thermoplastic resin film is a polyvinyl acetal resin
  • the thermoplastic resin film (each layer) contains a plasticizer.
  • the layer containing polyvinyl acetal resin contains a plasticizer.
  • the plasticizer is not particularly limited. Conventionally known plasticizers can be used as the above-mentioned plasticizer. The plasticizer may be used alone or in combination of two or more.
  • plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphoric acid plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. .
  • organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • the glycol ester etc. which are obtained by reaction of glycol and a monobasic organic acid are mentioned.
  • the glycol include triethylene glycol, tetraethylene glycol and tripropylene glycol.
  • the monobasic organic acids include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid and decylic acid.
  • polybasic organic acid ester examples include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • polybasic organic acids examples include adipic acid, sebacic acid and azelaic acid.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-2-ethyl hexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-butanoate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene Glycol di-2-ethyl butyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Tylate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethyl
  • organic phosphoric acid plasticizer examples include tributoxyethyl phosphate, isodecyl phenyl phosphate and triisopropyl phosphate.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group having 5 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10
  • Each of R 1 and R 2 in the above formula (1) is preferably an organic group having 6 to 10 carbon atoms.
  • the above plasticizers are triethylene glycol di-n-butanoate (3 GB), bis (2-ethylhexyl) phthalate, triethylene glycol di-2-ethylhexanoate (3GO) or triethylene glycol di-2-ethyl butyrate It is preferred to include a rate (3 GH).
  • the plasticizer preferably includes triethylene glycol di-n-butanoate (3 GB), triethylene glycol di-2-ethylhexanoate (3GO) or triethylene glycol di-2-ethyl butyrate (3GH).
  • triethylene glycol di-2-ethylhexanoate is more preferably included.
  • content of the said plasticizer (0) with respect to 100 weight part of said thermoplastic resins (0) in the said thermoplastic resin film be content (0).
  • the content (0) is preferably 20 parts by weight or more, more preferably 25 parts by weight or more, still more preferably 30 parts by weight or more, preferably 100 parts by weight or less, more preferably 60 parts by weight or less, more preferably Is 50 parts by weight or less.
  • the penetration resistance is further enhanced.
  • the transparency of the thermoplastic resin film is further enhanced when the content (0) is less than or equal to the upper limit.
  • the content of the plasticizer (1) with respect to 100 parts by weight of the thermoplastic resin (1) is taken as the content (1).
  • the content (1) is preferably 50 parts by weight or more, more preferably 55 parts by weight or more, still more preferably 60 parts by weight or more, preferably 100 parts by weight or less, more preferably 90 parts by weight or less, more preferably Is at most 85 parts by weight, particularly preferably at most 80 parts by weight.
  • flexibility of a thermoplastic resin film becomes it high that the said content (1) is more than the said lower limit, and the handling of a thermoplastic resin film becomes easy.
  • the penetration resistance is further enhanced.
  • the content of the plasticizer (2) with respect to 100 parts by weight of the thermoplastic resin (2) is taken as the content (2).
  • the content of the plasticizer (3) with respect to 100 parts by weight of the thermoplastic resin (3) is taken as the content (3).
  • the content (2) and the content (3) are each preferably 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, particularly preferably 24 parts by weight or more, most preferably 25 parts by weight or more.
  • the content (2) and the content (3) are each preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 35 parts by weight or less, particularly preferably 32 parts by weight or less, most preferably It is 30 parts by weight or less.
  • flexibility of a thermoplastic resin film becomes it high that the said content (2) and the said content (3) are more than the said lower limit, and the handling of a thermoplastic resin film becomes easy.
  • penetration resistance is further enhanced.
  • the content (1) is preferably larger than the content (2), and the content (1) is preferably larger than the content (3).
  • the absolute value of the difference between the content (2) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and further preferably Preferably it is 20 parts by weight or more.
  • the absolute value of the difference between the content (3) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and further preferably Preferably it is 20 parts by weight or more.
  • the absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are each preferably at most 80 parts by weight, More preferably, it is 75 parts by weight or less, still more preferably 70 parts by weight or less.
  • thermoplastic resin film contains a thermoelectric conversion material.
  • the surface layer may contain the thermoelectric conversion material. It is preferable that the said intermediate
  • the property of the thermoelectric conversion material is preferably particulate or fibrous, and more preferably fibrous.
  • thermoelectric conversion material may be an inorganic compound or an organic compound. From the viewpoint of effectively enhancing the thermoelectric conversion efficiency, the thermoelectric conversion material is preferably an organic compound.
  • thermoelectric conversion material examples include polythiophene and carbon nanotubes.
  • the thermoelectric conversion material may be a charge transfer complex containing polythiophene such as PEDOT PSS.
  • PEDOT PSS polythiophene
  • carbon nanotube as a thermoelectric conversion material.
  • carbon nanotubes it may be difficult to increase the visible light transmittance of the thermoplastic resin film.
  • thermoelectric conversion material preferably contains polythiophene.
  • thermoelectric conversion material When the said thermoelectric conversion material is contained in the surface of a thermoplastic resin film, the adhesiveness of a thermoplastic resin film may fall.
  • the intermediate layer preferably contains a thermoelectric conversion material.
  • the first layer in which the first layer is disposed between the second layer and the third layer, the first layer preferably contains a thermoelectric conversion material.
  • the content of the thermoelectric conversion material in the first layer is the second layer and the third layer.
  • the content is preferably more than the content of the thermoelectric conversion material in, more preferably 0.005% by weight or more, and still more preferably 0.01% by weight or more.
  • Each of the second layer and the third layer may not contain the thermoelectric conversion material.
  • the content of the thermoelectric conversion material in the second layer and the third layer may be 0.05% by weight or less, may be less than 0.03% by weight, and less than 0.01% by weight. It may be.
  • the content of the thermoelectric conversion material is preferably 0.01% by weight or more, more preferably 0.03% by weight or more, and more preferably 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the thermoelectric conversion material. Is 0.05% by weight or more.
  • the content of the thermoelectric conversion material is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, more preferably 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the thermoelectric conversion material. Is 0.1 wt% or less, particularly preferably 0.05 wt% or less.
  • the thermoelectric conversion function becomes high effectively as content of the said thermoelectric conversion material is below the said upper limit.
  • the thermoplastic resin film preferably contains a dopant.
  • the use of the dopant improves the thermoelectric conversion efficiency and conductivity of the resulting thermoplastic resin film. Only one type of the dopant may be used, or two or more types may be used in combination.
  • Examples of the dopant include halogens, Lewis acids, protic acids, fiber metal compounds, anions and acidic compounds.
  • the halogen is preferably Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr or IF.
  • the Lewis acid is preferably PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 or SO 3 .
  • the protonic acid is preferably HF, HCl, HNO 3 , H 2 SO 4 , HClO 4 , FSO 3 H, CISO 3 H or CF 3 SO 3 H.
  • the anion is preferably Cl ⁇ , Br ⁇ , I ⁇ , ClO 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ or BF 4 ⁇ .
  • the content of the dopant is preferably 5 parts by weight or more with respect to 100 parts by weight of the thermoelectric conversion material in the thermoplastic resin film.
  • the content of the dopant is preferably 10 parts by weight or more based on 100 parts by weight of the thermoelectric conversion material in the thermoplastic resin film from the viewpoint of further enhancing the effect by doping or effectively enhancing the effect.
  • it is 40 parts by weight or less, more preferably 30 parts by weight or less.
  • thermoplastic resin film, the surface layer, and the intermediate layer contain a light stabilizer.
  • a light stabilizer Even if the thermoplastic resin film is used for a long time or exposed to sunlight, the color change is further suppressed and the visible light transmittance is less likely to be further reduced.
  • the light stabilizers may be used alone or in combination of two or more.
  • the light stabilizer is preferably a hindered amine light stabilizer.
  • hindered amine light stabilizers examples include hindered amine light stabilizers in which an alkyl group, an alkoxy group or a hydrogen atom is bonded to a nitrogen atom of a piperidine structure. From the viewpoint of further suppressing the color change, hindered amine light stabilizers in which an alkyl group or an alkoxy group is bonded to the nitrogen atom of the piperidine structure are preferable.
  • the hindered amine light stabilizer is preferably a hindered amine light stabilizer in which an alkyl group is bonded to a nitrogen atom of a piperidine structure, and a hindered amine light stabilizer in which an alkoxy group is bonded to a nitrogen atom of a piperidine structure Is also preferred.
  • hindered amine light stabilizers in which an alkyl group is bonded to the nitrogen atom of the piperidine structure include “Tinuvin 765” and “Tinuvin 622 SF” manufactured by BASF, and “Adekastab LA-52” manufactured by ADEKA.
  • hindered amine light stabilizers having an alkoxy group bonded to the nitrogen atom of the piperidine structure examples include “Tinuvin XT-850FF” and “Tinuvin XT-855FF” manufactured by BASF, and “Adekastab LA-81” manufactured by ADEKA. .
  • hindered amine light stabilizers in which a hydrogen atom is bonded to the nitrogen atom of the piperidine structure include “Tinuvin 770 DF” manufactured by BASF, and “Hostavin N24” manufactured by Clariant.
  • the molecular weight of the light stabilizer is preferably 2000 or less, more preferably 1000 or less, and still more preferably 700 or less.
  • the content of the light stabilizer is preferably 0.0025% in 100% by weight of the thermoplastic resin film and in 100% by weight of the layer containing the light stabilizer. % Or more, more preferably 0.025% by weight or more, preferably 0.5% by weight or less, more preferably 0.3% by weight or less.
  • the thermoplastic resin film and the surface layer preferably contain a magnesium salt, an alkali metal salt or an alkaline earth metal salt (hereinafter, these may be collectively referred to as a metal salt M).
  • the intermediate layer may contain the metal salt M.
  • the use of the metal salt M makes it easier to control the adhesion of the thermoplastic resin film according to the present invention to a glass plate, a laminated glass member, another film or the like.
  • the metal salt M may be used alone or in combination of two or more.
  • the metal salt M preferably contains Li, Na, K, Rb, Cs, Mg, Ca, Sr or Ba as a metal.
  • the metal salt contained in the thermoplastic resin film is preferably K or Mg. In this case, both K and Mg may be included.
  • the metal salt M is an alkali metal salt of an organic acid having 2 to 16 carbon atoms, an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms or a magnesium salt of an organic acid having 2 to 16 carbon atoms. Is more preferable, and a carboxylic acid magnesium salt having 2 to 16 carbon atoms or a potassium salt of carboxylic acid having 2 to 16 carbon atoms is more preferable.
  • the above-mentioned magnesium salt of carboxylic acid having 2 to 16 carbon atoms and potassium salt of carboxylic acid having 2 to 16 carbon atoms include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethyl butyric acid, 2-ethyl butanoic acid Examples thereof include potassium, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate.
  • the total content of Mg and K in the thermoplastic resin film and the total content of Mg and K in a layer containing Mg or K (such as a surface layer) is preferably 5 ppm or more, more preferably 10 ppm or more. More preferably, it is 20 ppm or more, preferably 300 ppm or less, more preferably 250 ppm or less, and still more preferably 200 ppm or less.
  • the adhesive force of the thermoplastic resin film with respect to a glass plate, a laminated glass member, another film, etc. as the sum total of content of Mg and K is more than the said lower limit and below the said upper limit can be controlled still more favorably.
  • thermoplastic resin film, the surface layer and the intermediate layer preferably contain an ultraviolet shielding agent. Even when the thermoplastic resin film is used for a long time or under high temperature, the use of the above-mentioned ultraviolet shielding agent further suppresses the color change, and the visible light transmittance is less likely to be reduced.
  • the ultraviolet screening agent may be used alone or in combination of two or more.
  • the ultraviolet shielding agent includes an ultraviolet absorber.
  • the ultraviolet shielding agent is preferably an ultraviolet absorber.
  • UV shielding agent examples include metal UV shielding agents (UV shielding agents containing metal), metal oxide UV shielding agents (UV shielding agents including metal oxide), benzotriazole UV shielding agents ( UV screening agent having a benzotriazole structure), benzophenone UV shielding agent (UV screening agent having a benzophenone structure), triazine UV shielding agent (UV screening agent having a triazine structure), malonic acid ester UV shielding agent (malonic acid) UV shielding agents having an ester structure), oxalic acid anilide UV shielding agents (UV shielding agents having an anilide oxalate structure), and benzoate based UV shielding agents (a UV shielding agent having a benzoate structure).
  • metal UV shielding agents UV shielding agents containing metal
  • metal oxide UV shielding agents UV shielding agents including metal oxide
  • benzotriazole UV shielding agents UV screening agent having a benzotriazole structure
  • benzophenone UV shielding agent UV screening agent having a benzophenone structure
  • the metal-based ultraviolet shielding agent examples include platinum particles, particles obtained by coating the surface of platinum particles with silica, palladium particles, particles obtained by coating the surface of palladium particles with silica, and the like.
  • the UV screening agent is not a thermal barrier particle.
  • the UV screening agent is preferably a benzotriazole UV screening agent, a benzophenone UV screening agent, a triazine UV screening agent or a benzoate UV screening agent, more preferably a benzotriazole UV screening agent or a benzophenone UV shielding agent More preferably, it is a benzotriazole-based ultraviolet screening agent.
  • the metal oxide ultraviolet shielding agent examples include zinc oxide, titanium oxide and cerium oxide. Furthermore, the surface may be coat
  • the insulating metal oxide examples include silica, alumina and zirconia.
  • the insulating metal oxide has a band gap energy of, for example, 5.0 eV or more.
  • benzotriazole-based ultraviolet screening agent examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinuvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5 ′). -Di-t-butylphenyl) benzotriazole (“Tinuvin 320” manufactured by BASF), 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (manufactured by BASF) Tinuvin 326 ′ ′) and 2- (2′-hydroxy-3 ′, 5′-di-amylphenyl) benzotriazole (“Tinuvin 328” manufactured by BASF Corporation).
  • it is a benzotriazole-type ultraviolet-ray shielding agent containing a halogen atom, and it is more preferable that it is a benzotriazole-type ultraviolet-ray shielding agent containing a chlorine atom, since it is excellent in the performance which absorbs an ultraviolet-ray.
  • octabenzone (Chimassorb 81" by BASF Corporation) etc. are mentioned, for example.
  • triazine-based ultraviolet screening agent examples include “LA-F70” manufactured by ADEKA Corporation and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -Phenol (“Tinuvin 1577FF” manufactured by BASF Corporation) and the like can be mentioned.
  • Examples of commercially available products of the malonic acid ester-based ultraviolet screening agent include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant Co.).
  • Oxalic acid diamides having an aryl group or the like substituted on a nitrogen atom such as-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2'-ethoxy-oxyanilide ("Sanduvor VSU" manufactured by Clariant) It can be mentioned.
  • benzoate series ultraviolet screening agent examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate ("Tinuvin 120" manufactured by BASF Corp.).
  • the content of the UV shielding agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the UV shielding agent. Preferably, it is 0.3% by weight or more, particularly preferably 0.5% by weight or more.
  • the content of the UV shielding agent is preferably 2.5% by weight or less, more preferably 2% by weight or less, and further preferably 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the UV shielding agent. It is 1% by weight or less, particularly preferably 0.8% by weight or less.
  • thermoplastic resin film, the surface layer and the intermediate layer preferably contain an antioxidant.
  • an antioxidant By the use of the above-mentioned antioxidant, even if the thermoplastic resin film is used for a long time or under high temperature, the color change is further suppressed and the visible light transmittance is less likely to be reduced.
  • the above-mentioned antioxidant only 1 type may be used and 2 or more types may be used together.
  • the said antioxidant As said antioxidant, a phenol type antioxidant, a sulfur type antioxidant, phosphorus type antioxidant etc. are mentioned.
  • the said phenolic antioxidant is an antioxidant which has a phenol frame.
  • the sulfur-based antioxidant is a sulfur atom-containing antioxidant.
  • the phosphorus-based antioxidant is a phosphorus atom-containing antioxidant.
  • the said antioxidant is a phenolic antioxidant or phosphorus type antioxidant.
  • phenolic antioxidants examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-butylphenol), 2,2'-methylenebis- (4-ethyl-6) -T-Butylphenol), 4,4'-Butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydride) Roxy-5-tert-butylphenol) butane, 1,3,
  • the above-mentioned phosphorus-based antioxidants include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, torinylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos Phytos, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butyl-6-methylphenyl) ethyl ester phosphorous acid, and 2,2′-methylene bis (4 And 6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus.
  • One or more of these antioxidants are preferably used.
  • antioxidant for example, "IRGANOX 245" made by BASF, "IRGAFOS 168" made by BASF, “IRGAFOS 38” made by BASF, “Sumilyzer BHT” made by Sumitomo Chemical Co., Ltd., Sakai Chemical Industry Co., Ltd. Examples thereof include “H-BHT”, “IRGANOX 1010” manufactured by BASF, and "Adekastab AO-40” manufactured by ADEKA.
  • the content of the antioxidant is 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing an antioxidant. It is preferable that it is 0.1 weight% or more. Moreover, since the addition effect of antioxidant is saturated, it is preferable that content of the said antioxidant is 2 weight% or less in 100 weight% of said thermoplastic resin films.
  • thermoplastic resin film, the surface layer, and the intermediate layer are, if necessary, an adhesive force modifier other than a coupling agent, a dispersant, a surfactant, a flame retardant, an antistatic agent, a pigment, a dye, and a metal salt.
  • Additives such as moisture proofing agents, optical brighteners and infrared absorbers may be included. One of these additives may be used alone, or two or more thereof may be used in combination.
  • the intermediate layer preferably includes a layer having a glass transition temperature of 10 ° C. or less.
  • the thickness of the thermoplastic resin film is not particularly limited.
  • the thickness of the thermoplastic resin film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more preferably from the viewpoint of practical use and from the viewpoint of sufficiently enhancing the heat shielding properties. It is 1.5 mm or less.
  • the penetration resistance of a glass plate containing laminated body becomes it still higher that the thickness of the said thermoplastic resin film is more than the said minimum.
  • the thickness of the thermoplastic resin film is equal to or less than the upper limit, the transparency of the thermoplastic resin film is further improved.
  • the manufacturing method of the said thermoplastic resin film is not specifically limited.
  • a conventionally known method can be used as a method for producing the thermoplastic resin film.
  • the manufacturing method etc. which knead
  • the method of kneading is not particularly limited. Examples of this method include a method using an extruder, a plastograph, a kneader, a Banbury mixer, a calender roll, or the like. As it is suitable for continuous production, a method using an extruder is preferred, and a method using a twin screw extruder is more preferred.
  • thermoplastic resin film is preferably an intermediate film for laminated glass. It is preferable that the said thermoelectric conversion film is an intermediate film for laminated glasses which has a thermoelectric conversion function.
  • thermoplastic resin film and the said thermoelectric conversion film are bonded together to a glass plate, and in order to obtain a glass plate containing laminated body, it is used suitably.
  • thermoelectric conversion-glass plate containing laminate By connecting an electrode to the above-mentioned thermoplastic resin film, a thermoelectric conversion-glass plate containing laminate can be obtained.
  • thermoplastic resin film is arrange
  • a thermoelectric conversion laminated glass can be obtained by connecting an electrode to the thermoplastic resin film in the laminated glass.
  • the thermoelectric conversion laminated glass is a laminated glass having a thermoelectric conversion function.
  • the said laminated glass is equipped with a 1st laminated glass member, a 2nd laminated glass member, and the thermoplastic resin film mentioned above. It is preferable that the said thermoplastic resin film is arrange
  • thermoelectric conversion laminated glass is equipped with a 1st laminated glass member, a 2nd laminated glass member, the thermoplastic resin film mentioned above, and an electrode.
  • the thermoplastic resin film is disposed between the first laminated glass member and the second laminated glass member.
  • the thermoplastic resin film is connected to the electrode.
  • thermoelectric conversion laminated glass is equipped with a 1st laminated glass member, a 2nd laminated glass member, and the thermoelectric conversion film mentioned above.
  • thermoplastic resin film in the thermoelectric conversion film is disposed between the first laminated glass member and the second laminated glass member.
  • FIG. 3 is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
  • thermoelectric conversion laminated glass 31 shown in FIG. 3 includes a laminated glass 40, an electrode 21, a conducting wire 22, and an electrical extraction portion 23.
  • the thermoelectric conversion laminated glass 31 includes the thermoelectric conversion film 1.
  • the laminated glass 40 includes a first laminated glass member 41, a second laminated glass member 42, and the thermoplastic resin film 10.
  • thermoplastic resin film 10 is disposed between the first laminated glass member 41 and the second laminated glass member 42 and is sandwiched.
  • the first laminated glass member 41 is laminated on the first surface (one surface) of the thermoplastic resin film 10.
  • a second laminated glass member 42 is laminated on a second surface (the other surface) opposite to the first surface of the thermoplastic resin film 10.
  • FIG. 4 is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
  • thermoelectric conversion laminated glass 31A shown in FIG. 4 includes a laminated glass 40A, an electrode 21, a lead 22, and an electrical extraction part 23.
  • the thermoelectric conversion laminated glass 31A includes the thermoelectric conversion film 1A.
  • the laminated glass 40A includes a first laminated glass member 41, a second laminated glass member 42, and a thermoplastic resin film 10A.
  • thermoplastic resin film 10A is disposed between the first laminated glass member 41 and the second laminated glass member 42, and is sandwiched.
  • the first laminated glass member 41 is laminated on the first surface (one surface) of the thermoplastic resin film 10A.
  • the second laminated glass member 42 is laminated on a second surface (the other surface) opposite to the first surface of the thermoplastic resin film 10A.
  • the laminated glass member examples include a glass plate and a PET (polyethylene terephthalate) film.
  • the laminated glass includes not only laminated glass in which a thermoplastic resin film is sandwiched between two glass plates, but also laminated glass in which a thermoplastic resin film is sandwiched between a glass plate and a PET film or the like.
  • Laminated glass is a laminated body provided with a glass plate, and it is preferable that at least one glass plate is used.
  • the second laminated glass member is preferably a glass plate or a PET film.
  • Inorganic glass and organic glass are mentioned as said glass plate.
  • the inorganic glass include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, template glass, and lined plate glass.
  • the organic glass is a synthetic resin glass instead of inorganic glass.
  • a polycarbonate board, a poly (meta) acrylic resin board, etc. are mentioned.
  • a poly (meth) acryl resin board a polymethyl (meth) acrylate board etc. are mentioned.
  • the thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, and more preferably 3 mm or less. Moreover, the thickness of the said glass plate becomes like this. Preferably it is 1 mm or more, Preferably it is 5 mm or less, More preferably, it is 3 mm or less.
  • the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
  • the manufacturing method of the said glass plate containing laminated body is not specifically limited.
  • a glass plate containing laminated body can be obtained by bonding the said thermoplastic resin film together to the said 1st glass plate.
  • a thermoplastic resin film is sandwiched between the first laminated glass member and the second laminated glass member, and the thermoplastic resin film is inserted into a pressure roll or put into a rubber bag and suctioned under reduced pressure.
  • the air remaining between the first laminated glass member and the thermoplastic resin film and between the second laminated glass member and the thermoplastic resin film is degassed. Thereafter, pre-bonding is performed at about 70 ° C. to 110 ° C. to obtain a laminate.
  • laminated glass which is a glass plate containing laminated body can be obtained.
  • the thermoplastic resin film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings and the like.
  • the said thermoplastic resin film and the said laminated glass can be used besides these uses.
  • the thermoplastic resin film and the laminated glass are preferably a thermoplastic resin film and a laminated glass for vehicles or for construction, and more preferably a thermoplastic resin film and a laminated glass for vehicles.
  • the thermoplastic resin film and the laminated glass can be used as a front glass, a side glass, a rear glass or a roof glass of an automobile.
  • the thermoplastic resin film and the laminated glass are suitably used in automobiles.
  • the said thermoplastic resin film is used in order to obtain the laminated glass of a motor vehicle.
  • n-butyraldehyde having 4 carbon atoms is used for acetalization.
  • the degree of acetalization (butyralization), the degree of acetylation and the hydroxyl group content were measured by a method according to JIS K 6728 "Polyvinyl butyral test method”.
  • ASTM D1396-92 the same numerical value as the method according to JIS K6728 "polyvinyl butyral test method” was shown.
  • Polyvinyl acetal resin (in the table, “PVB”, average polymerization degree 1700, hydroxyl content 30.5 mol%, degree of acetylation 1 mol%, degree of acetalization 68.5 mol%)
  • Example 1 Preparation of composition for forming interlayer: The following blending components were blended and sufficiently kneaded with a mixing roll to obtain a composition for forming an intermediate film.
  • Polyvinyl acetal resin (average polymerization degree 1700, hydroxyl content 30.5 mol%, acetylation degree 1 mol%, acetalization degree 68.5 mol%) 100 parts by weight triethylene glycol di-2-ethylhexanoate ( 3GO) 40 parts by weight Thermoelectric conversion material (PEDOT PSS) in an amount of 0.05% by weight in the obtained interlayer film Mixture of magnesium acetate and magnesium 2-ethyl butyric acid in an amount of 60 ppm of Mg in the resulting interlayer film BASF "Tinuvin 326" in an amount of 0.2 wt% in the resulting interlayer film BHT (2,6-di-t-butyl-p-cresol) in an amount of 0.2% by weight in the resulting interlayer film Anhydrous iron chloride (III) in an amount of 12.5 parts by weight with respect to 100 parts by weight of the thermoelectric conversion material in the resulting interlayer film
  • Preparation of interlayer The composition for forming the intermediate film was extruded using an extruder to obtain an intermediate film (thermoplastic resin film) having a thickness of 760 ⁇ m.
  • Preparation of laminated glass (for visible light transmittance measurement): The obtained interlayer was cut into a size of 5 cm long ⁇ 5 cm wide. Next, two sheets of green glass (5 cm long ⁇ 5 cm wide ⁇ 2 mm thick) in accordance with JIS R3208 were prepared. The obtained interlayer film was sandwiched between the two sheets of green glass, held at 90 ° C. for 30 minutes with a vacuum laminator, and vacuum pressed to obtain a laminate. In the laminated body, the intermediate film portion protruding from the glass plate was cut off to obtain a laminated glass.
  • thermoelectric conversion laminated glass An electrode was connected to the intermediate film (thermoplastic resin film) exposed at both ends of the laminated glass. The electrode was connected to an electrical extraction part (provided with a power meter) via a conducting wire to obtain a thermoelectric conversion laminated glass.
  • Example 2 to 12 An interlayer film, a laminated glass, and a thermoelectric material were prepared in the same manner as in Example 1 except that the type and blending amount of the thermoelectric conversion material, and the type and blending amount of the plasticizer were set as shown in Tables 1 and 2 below. A conversion laminated glass was obtained.
  • the polyester film was stuck on the glass substrate.
  • an aqueous solution of poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonate) (PEDOT PSS) is applied on a polyester film by spin coating, and the applied PEDOT PSS aqueous solution is heated and dried.
  • the PEDOT PSS membrane was formed on a polyester film.
  • the laminate of the polyester film and the PEDOT PSS film was peeled off from the glass substrate. This laminate was used as an intermediate film to obtain laminated glass and thermoelectric conversion laminated glass.
  • thermoelectric conversion laminated glass An intermediate film, a laminated glass, and a thermoelectric conversion laminated glass were obtained in the same manner as in Example 1 except that the thermoelectric conversion material was not used.
  • thermoelectric conversion laminated glass An intermediate film, a laminated glass, and a thermoelectric conversion laminated glass were obtained in the same manner as in Example 1 except that the type and blending amount of the thermoelectric conversion material were set as shown in Table 3 below.
  • thermo conductivity Thermoelectric conversion function (thermal conductivity) The thermal conductivity ⁇ was determined based on the following equation.
  • Cp is the specific heat
  • is the thermal diffusivity
  • is the density of the test piece (intermediate film).
  • the thermal diffusivity ⁇ was measured by the laser flash method
  • the specific heat Cp was measured by the differential scanning calorimetry (DSC) method
  • the density ⁇ of the test piece was measured from the weight measurement value and the volume measurement value of the test piece.
  • a constant current was supplied from a current source to the test piece (intermediate film) in a vacuum atmosphere by the four-terminal method, and the voltage value was read by a digital multimeter to calculate the conductivity.
  • the test piece was fixed to the wiring board arrange
  • a heater was provided on one electrode side of the wiring substrate on which the test piece was fixed, and the heater was placed in a vacuum chamber to heat one end of the test piece in a vacuum environment.
  • a chromel-almel thermocouple was disposed at a position adjacent to the electrode to measure a temperature difference generated at both ends of the sample.
  • Each electrode was connected to a voltmeter, and the thermoelectromotive force generated at both ends of the test piece was measured.
  • the one end which is not heated is kept at about 20 degreeC, and the other end heated by the heater rose in temperature from 21 degreeC to 31 degreeC. The thermal electromotive force at that time was measured, and the Seebeck coefficient was calculated from the slope.
  • Tables 1 to 3 Details and results are shown in Tables 1 to 3 below.
  • Tables 1 to 3 the descriptions of the dopant, metal salt, UV shielding agent and antioxidant used in Examples 1 to 12 and Comparative Examples 3 to 5 are omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is a thermoplastic resin film that has excellent flexibility and that is capable of realizing a thermoelectric conversion function. The thermoplastic resin film pertaining to the present invention is used in a state of being connected to an electrode, the thermoplastic resin film including a thermoplastic resin and a thermoelectric conversion material for realizing a thermoelectric conversion function in the thermoplastic resin film connected to the electrode, and the bending rigidity of the thermoplastic resin film being 0.49 N∙cm2/cm or less.

Description

熱可塑性樹脂フィルム、熱電変換フィルム、合わせガラス及び熱電変換合わせガラスThermoplastic resin film, thermoelectric conversion film, laminated glass and thermoelectric conversion laminated glass
 本発明は、熱可塑性樹脂を含む熱可塑性樹脂フィルムに関する。また、本発明は、上記熱可塑性樹脂フィルムを備える合わせガラスに関する。また、本発明は、熱電変換機能を有する熱電変換フィルム及び熱電変換合わせガラスに関する。 The present invention relates to a thermoplastic resin film containing a thermoplastic resin. Moreover, this invention relates to the laminated glass provided with the said thermoplastic resin film. In addition, the present invention relates to a thermoelectric conversion film and a thermoelectric conversion laminated glass having a thermoelectric conversion function.
 熱可塑性樹脂フィルムが、ガラス板に貼り合わされたガラス板含有積層体が知られている。ガラス板含有積層体の中でも、合わせガラスが広く用いられている。 The glass plate containing laminated body by which the thermoplastic resin film was bonded together to the glass plate is known. Among the glass plate-containing laminates, laminated glass is widely used.
 合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く使用されている。上記合わせガラスは、一対のガラス板の間に熱可塑性樹脂フィルムを挟み込むことにより、製造されている。また、合わせガラス以外にも、ガラス板以外の他の部材に、熱可塑性樹脂フィルムが貼り合わされて用いられることがある。 Laminated glass is excellent in safety because the amount of scattered glass fragments is small even if it is broken due to external impact. For this reason, the laminated glass is widely used in automobiles, railway vehicles, aircraft, ships, buildings, and the like. The laminated glass is manufactured by sandwiching a thermoplastic resin film between a pair of glass plates. Moreover, a thermoplastic resin film may be bonded together and used for members other than a glass plate besides laminated glass.
 近年、合わせガラスに、新たな機能を付与する試みが行われている。 In recent years, attempts have been made to impart new functions to laminated glass.
 下記の特許文献1には、合わせガラスの表面の凍結物を解凍することができる合わせガラスが提案されている。特許文献1に記載の合わせガラスは、複数枚のガラス板と中間膜とを有し、上記ガラス板が中間膜を介して積層された構造を有する。上記複数枚のガラス板及び中間膜の合成熱抵抗は0.014~0.25mK/Wである。 Patent Document 1 below proposes a laminated glass which can thaw a frozen material on the surface of the laminated glass. The laminated glass described in Patent Document 1 has a structure in which a plurality of glass plates and an intermediate film are provided, and the glass plates are laminated via the intermediate film. The synthetic thermal resistance of the plurality of glass plates and the intermediate film is 0.014 to 0.25 m 2 K / W.
特開2006-137648号公報JP, 2006-137648, A
 上記のように、特許文献1では、合わせガラスに、凍結物を解凍する機能を付与している。 As described above, in Patent Document 1, the laminated glass is provided with the function of thawing the frozen material.
 本発明者は、特許文献1に記載の機能とは異なる機能を合わせガラス等に付与することを検討し、本発明を完成させるに至った。 The present inventor examined giving a function different from the function described in Patent Document 1 to a laminated glass or the like, and came to complete the present invention.
 本発明の目的は、優れた柔軟性を有し、かつ熱電変換機能を発現させることができる熱可塑性樹脂フィルムを提供することである。また、本発明の目的は、上記熱可塑性樹脂フィルムを用いた合わせガラスを提供することである。また、本発明の目的は、優れた柔軟性を有し、かつ熱電変換機能を有する熱電変換フィルム及び熱電変換合わせガラスを提供することである。 An object of the present invention is to provide a thermoplastic resin film which has excellent flexibility and can exhibit a thermoelectric conversion function. Another object of the present invention is to provide a laminated glass using the above-mentioned thermoplastic resin film. Another object of the present invention is to provide a thermoelectric conversion film and a thermoelectric conversion laminated glass having excellent flexibility and having a thermoelectric conversion function.
 本発明の広い局面によれば、電極に接続されて用いられる熱可塑性樹脂フィルムであって、熱可塑性樹脂と、前記熱可塑性樹脂フィルムが前記電極に接続された状態で熱電変換機能を発現する熱電変換材料とを含み、曲げかたさが0.49N・cm/cm以下である、熱可塑性樹脂フィルムが提供される。 According to a broad aspect of the present invention, it is a thermoplastic resin film used by being connected to an electrode, wherein a thermoplastic resin and a thermoelectric conversion function are exhibited in a state where the thermoplastic resin film is connected to the electrode There is provided a thermoplastic resin film containing a conversion material and having a bending stiffness of 0.49 N · cm 2 / cm or less.
 本発明の広い局面によれば、熱可塑性樹脂フィルムと、電極とを備え、前記熱可塑性樹脂フィルムは、熱可塑性樹脂と、熱電変換材料とを含み、前記熱可塑性樹脂フィルムが前記電極に接続されており、前記熱可塑性樹脂フィルムの曲げかたさが0.49N・cm/cm以下である、熱電変換フィルムが提供される。 According to a broad aspect of the present invention, a thermoplastic resin film and an electrode are provided, the thermoplastic resin film includes a thermoplastic resin and a thermoelectric conversion material, and the thermoplastic resin film is connected to the electrode A thermoelectric conversion film is provided, wherein the thermoplastic resin film has a flexural rigidity of 0.49 N · cm 2 / cm or less.
 前記熱電変換材料の性状が、粒子状又は繊維状であることが好ましい。前記熱電変換材料が有機化合物であることが好ましい。前記熱可塑性樹脂がポリビニルアセタール樹脂であることが好ましい。前記熱可塑性樹脂フィルムは、可塑剤を含むことが好ましい。前記熱可塑性樹脂100重量部に対する前記可塑剤の含有量が20重量部以上、100重量部以下であることが好ましい。前記熱可塑性樹脂フィルム100重量%中、前記熱電変換材料の含有量が0.01重量%以上、0.5重量%以下であることが好ましい。 It is preferable that the property of the said thermoelectric conversion material is particulate form or fibrous form. The thermoelectric conversion material is preferably an organic compound. It is preferable that the said thermoplastic resin is polyvinyl acetal resin. The thermoplastic resin film preferably contains a plasticizer. It is preferable that content of the said plasticizer with respect to 100 weight part of said thermoplastic resins is 20 weight part or more and 100 weight part or less. It is preferable that content of the said thermoelectric conversion material is 0.01 weight% or more and 0.5 weight% or less in 100 weight% of the said thermoplastic resin films.
 前記熱可塑性樹脂フィルムは、合わせガラス用中間膜であることが好ましい。前記熱電変換フィルムは、熱電変換機能を有する合わせガラス用中間膜であることが好ましい。 The thermoplastic resin film is preferably an intermediate film for laminated glass. The thermoelectric conversion film is preferably an intermediate film for laminated glass having a thermoelectric conversion function.
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱可塑性樹脂フィルムとを備え、前記熱可塑性樹脂フィルムが、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されており、前記熱可塑性樹脂フィルムが電極に接続されて用いられる、合わせガラスが提供される。 According to a broad aspect of the present invention, a first laminated glass member, a second laminated glass member, and the above-mentioned thermoplastic resin film are provided, and the thermoplastic resin film is the first laminated glass member. A laminated glass is provided, which is disposed between the second laminated glass member, and the thermoplastic resin film is used by being connected to an electrode.
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱可塑性樹脂フィルムと、電極とを備え、前記熱可塑性樹脂フィルムが、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されており、前記熱可塑性樹脂フィルムが前記電極に接続されている、熱電変換合わせガラスが提供される。 According to a broad aspect of the present invention, a first laminated glass member, a second laminated glass member, the above-described thermoplastic resin film, and an electrode are provided, and the thermoplastic resin film is the first laminated member. A thermoelectric conversion laminated glass is provided, which is disposed between a glass member and the second laminated glass member, and the thermoplastic resin film is connected to the electrode.
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱電変換フィルムとを備え、前記熱電変換フィルムにおける前記熱可塑性樹脂フィルムが、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されている、熱電変換合わせガラスが提供される。 According to a broad aspect of the present invention, a first laminated glass member, a second laminated glass member, and the above-described thermoelectric conversion film are provided, and the thermoplastic resin film in the thermoelectric conversion film is the first one. A thermoelectric conversion laminated glass is provided, which is disposed between the laminated glass member and the second laminated glass member.
 本発明に係る熱可塑性樹脂フィルムは、熱可塑性樹脂と、熱可塑性樹脂フィルムが電極に接続された状態で熱電変換機能を発現する熱電変換材料とを含み、曲げかたさが0.49N・cm/cm以下であるので、優れた柔軟性を有し、かつ、本発明に係る熱可塑性樹脂フィルムを電極に接続することにより、熱電変換機能を発現させることができる。 The thermoplastic resin film according to the present invention includes a thermoplastic resin and a thermoelectric conversion material that exhibits a thermoelectric conversion function in a state where the thermoplastic resin film is connected to the electrode, and the bending hardness is 0.49 N · cm 2 / Since it is cm or less, it has excellent flexibility, and by connecting the thermoplastic resin film according to the present invention to an electrode, the thermoelectric conversion function can be exhibited.
 本発明に係る熱電変換フィルムは、熱可塑性樹脂フィルムと、電極とを備え、上記熱可塑性樹脂フィルムは、熱可塑性樹脂と、熱電変換材料とを含み、上記熱可塑性樹脂フィルムが上記電極に接続されており、上記熱可塑性樹脂フィルムの曲げかたさが0.49N・cm/cm以下であるので、優れた柔軟性を有し、かつ熱電変換機能を有する。 The thermoelectric conversion film according to the present invention comprises a thermoplastic resin film and an electrode, wherein the thermoplastic resin film includes a thermoplastic resin and a thermoelectric conversion material, and the thermoplastic resin film is connected to the electrode. Since the thermoplastic resin film has a flexural rigidity of 0.49 N · cm 2 / cm or less, it has excellent flexibility and a thermoelectric conversion function.
図1は、本発明の第1の実施形態に係る熱電変換フィルムを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a thermoelectric conversion film according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る熱電変換フィルムを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a thermoelectric conversion film according to a second embodiment of the present invention. 図3は、図1に示す熱電変換フィルムを用いた熱電変換合わせガラスの一例を示す断面図である。FIG. 3: is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG. 図4は、図2に示す熱電変換フィルムを用いた熱電変換合わせガラスの一例を示す断面図である。FIG. 4: is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
 以下、本発明の詳細を説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る熱可塑性樹脂フィルムは、電極に接続されて用いられる熱可塑性樹脂フィルムである。本発明に係る熱可塑性樹脂フィルムは、電極に接続されて用いることができる熱可塑性樹脂フィルムである。本発明に係る熱可塑性樹脂フィルムは、熱可塑性樹脂と、熱電変換材料とを含む。本発明に係る熱可塑性樹脂フィルムでは、上記熱電変換材料は、上記熱可塑性樹脂フィルムが上記電極に接続された状態で熱電変換機能を発現する。上記熱電変換材料は、熱エネルギーを電気エネルギーに変換する。本発明では、熱可塑性樹脂フィルムについてゼーベック係数を測定した際に、ゼーベック係数の値が10-7V/K以上である場合に、熱電変換機能を発現するとみなす。例えば、熱可塑性樹脂フィルムにおける離れた2つの位置に電極を接続し、電極間を導線で接続することで、電気取出部から電気を取り出すことができる。本発明に係る熱可塑性樹脂フィルムの曲げかたさは0.49N・cm/cm以下である。 The thermoplastic resin film according to the present invention is a thermoplastic resin film used by being connected to an electrode. The thermoplastic resin film according to the present invention is a thermoplastic resin film which can be used by being connected to an electrode. The thermoplastic resin film according to the present invention contains a thermoplastic resin and a thermoelectric conversion material. In the thermoplastic resin film according to the present invention, the thermoelectric conversion material exhibits a thermoelectric conversion function in a state where the thermoplastic resin film is connected to the electrode. The thermoelectric conversion material converts thermal energy into electrical energy. In the present invention, when the Seebeck coefficient of the thermoplastic resin film is measured, it is considered that the thermoelectric conversion function is exhibited when the value of the Seebeck coefficient is 10 −7 V / K or more. For example, by connecting electrodes to two distant positions in the thermoplastic resin film and connecting the electrodes with a conducting wire, electricity can be extracted from the electrical extraction portion. The bending hardness of the thermoplastic resin film according to the present invention is 0.49 N · cm 2 / cm or less.
 本発明に係る熱可塑性樹脂フィルムでは、上記の構成が備えられているので、優れた柔軟性を有し、かつ、本発明に係る熱可塑性樹脂フィルムを電極に接続することにより、熱電変換機能を発現させることができる。 Since the thermoplastic resin film according to the present invention is provided with the above-described configuration, it has excellent flexibility, and by connecting the thermoplastic resin film according to the present invention to an electrode, a thermoelectric conversion function can be obtained. It can be expressed.
 本発明に係る熱電変換フィルムは、熱可塑性樹脂フィルムと、電極とを備える。本発明に係る熱電変換フィルムでは、上記熱可塑性樹脂フィルムは、熱可塑性樹脂と、熱電変換材料とを含む。上記熱電変換材料は、熱エネルギーを電気エネルギーに変換する。本発明に係る熱電変換フィルムでは、上記熱可塑性樹脂フィルムが上記電極に接続されている。例えば、熱可塑性樹脂フィルムにおける離れた2つの位置に電極を接続し、電極間を導線で接続することで、電気取出部から電気を取り出すことができる。本発明に係る熱電変換フィルムでは、上記熱可塑性樹脂フィルムの曲げかたさが0.49N・cm/cm以下である。 The thermoelectric conversion film according to the present invention comprises a thermoplastic resin film and an electrode. In the thermoelectric conversion film according to the present invention, the thermoplastic resin film contains a thermoplastic resin and a thermoelectric conversion material. The thermoelectric conversion material converts thermal energy into electrical energy. In the thermoelectric conversion film according to the present invention, the thermoplastic resin film is connected to the electrode. For example, by connecting electrodes to two distant positions in the thermoplastic resin film and connecting the electrodes with a conducting wire, electricity can be extracted from the electrical extraction portion. In the thermoelectric conversion film according to the present invention, the bending hardness of the thermoplastic resin film is 0.49 N · cm 2 / cm or less.
 本発明に係る熱電変換フィルムは、上記の構成を備えているので、優れた柔軟性を有し、かつ熱電変換機能を有する。曲げかたさが上記上限以下であると、熱可塑性樹脂フィルムの曲面に対する追従性を高めることができる。 Since the thermoelectric conversion film according to the present invention is provided with the above configuration, it has excellent flexibility and has a thermoelectric conversion function. The followability to the curved surface of a thermoplastic resin film can be improved as bending hardness is below the above-mentioned upper limit.
 柔軟性をより一層高める観点からは、上記熱可塑性樹脂フィルムの曲げかたさは、好ましくは0.3N・cm/cm以下、より好ましくは0.2N・cm/cm以下、更に好ましくは0.13N・cm/cm以下である。 From the viewpoint of further enhancing the flexibility, the bending hardness of the thermoplastic resin film is preferably 0.3 N · cm 2 / cm or less, more preferably 0.2 N · cm 2 / cm or less, still more preferably 0. It is 13 N · cm 2 / cm or less.
 曲げかたさは、具体的には以下のようにして測定される。 Specifically, the bending hardness is measured as follows.
 (曲げかたさ)
 試験片を23℃、50%RHで調湿した後、純曲げ試験機(カトーテック社製「KES-FB2-A」)を用いて、試験片を変形速度0.5cm/秒で曲げ変形させる。その際の曲率とトルクを測定し、単位曲率変化あたりの曲げモーメント変化量(単位試験片幅当たり)を求め、求められた値を純曲げかたさとする(なお、本件明細書においては、単に「曲げかたさ」という)。
(Bending hardness)
After the test pieces are conditioned at 23 ° C. and 50% RH, the test pieces are bent and deformed at a deformation rate of 0.5 cm / sec using a pure bending tester (“KES-FB2-A” manufactured by Kato Tech Co., Ltd.) . The curvature and torque at that time are measured, the bending moment change amount per unit curvature change (per unit specimen width) is determined, and the determined value is regarded as a pure bending hardness (in the present specification, simply “ It is called "flexible hardness").
 柔軟性をより一層高める観点からは、上記熱可塑性樹脂フィルムの曲げ回復性は、好ましくは0.58N・cm/cm以下である。曲げ回復性が上記上限以下であると、熱可塑性樹脂フィルムの曲面に対する追従性を高めることができる。 From the viewpoint of further enhancing the flexibility, the bending recovery of the thermoplastic resin film is preferably 0.58 N · cm / cm or less. The followability to the curved surface of a thermoplastic resin film can be improved as bending recovery nature is below the above-mentioned maximum.
 曲げ回復性は、具体的には以下のようにして測定される。 Specifically, the bending recovery is measured as follows.
 (曲げ回復性)
 試験片を23℃、50%RHで調湿した後、純曲げ試験機(カトーテック社製「KES-FB2-A」)を用いて、試験片の2HB値を測定し、測定された値を曲げ回復性とする。
(Bend recovery)
After the test pieces are conditioned at 23 ° C. and 50% RH, the 2HB value of the test pieces is measured using a pure bending tester (“KES-FB2-A” manufactured by Kato Tech Co., Ltd.), and the measured values are Make it bend recoverable.
 上記熱可塑性樹脂フィルムは、1層の構造を有していてもよく、2層以上の構造を有していてもよく、3層以上の構造を有していてもよく、4層以上の構造を有していてもよい。上記熱可塑性樹脂フィルムは、2層以上の構造を有し、第1の表面層と、第2の表面層とを備えていてもよい。上記熱可塑性樹脂フィルムは、3層以上の構造を有し、上記第1の表面層と上記第2の表面層との間に、中間層を備えていてもよい。上記熱可塑性樹脂フィルムは、上記中間層を2層以上備えていてもよい。上記熱可塑性樹脂フィルムは、第1の中間層と第2の中間層とを備えていてもよい。 The thermoplastic resin film may have a structure of one layer, may have a structure of two or more layers, may have a structure of three or more layers, a structure of four or more layers May be included. The thermoplastic resin film may have a structure of two or more layers, and may include a first surface layer and a second surface layer. The thermoplastic resin film may have a structure of three or more layers, and may include an intermediate layer between the first surface layer and the second surface layer. The thermoplastic resin film may have two or more layers of the intermediate layer. The thermoplastic resin film may comprise a first intermediate layer and a second intermediate layer.
 上記熱可塑性樹脂フィルムの可視光線透過率は、好ましくは40%以上、より好ましくは50%以上、より一層好ましくは60%以上、更に好ましくは70%以上、更に一層好ましくは80%以上、特に好ましくは85%以上、特に一層好ましくは88%以上、最も好ましくは90%以上である。上記熱可塑性樹脂フィルムの可視光線透過率が上記下限以上であると、透明性をより一層高めることができ、熱可塑性樹脂フィルムを介した視認性を効果的に高めることができる。 The visible light transmittance of the thermoplastic resin film is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, particularly preferably Is at least 85%, particularly preferably at least 88%, most preferably at least 90%. Transparency can be further improved as the visible light transmittance of the said thermoplastic resin film is more than the said lower limit, and the visibility through a thermoplastic resin film can be improved effectively.
 なお、上記熱可塑性樹脂フィルムが合わせガラス用中間膜である場合に、合わせガラス用中間膜は、シェード領域を有していてもよい。上記合わせガラス用中間膜におけるシェード領域を除く領域の上記合わせガラス用中間膜(熱可塑性樹脂フィルム)の可視光線透過率を可視光線透過率Aとする。上記可視光線透過率Aは、好ましくは40%以上、より好ましくは50%以上、より一層好ましくは60%以上、更に好ましくは70%以上、更に一層好ましくは80%以上、特に好ましくは85%以上、特に一層好ましくは88%以上、最も好ましくは90%以上である。本発明に係る熱可塑性樹脂フィルムは、可視光線透過率が上記下限以上である領域を有することが好ましい。上記熱可塑性樹脂フィルムの中央部の可視光線透過率が上記下限以上であることが好ましい。 In the case where the thermoplastic resin film is an interlayer for laminated glass, the interlayer for laminated glass may have a shade region. The visible light transmittance of the interlayer for a laminated glass (thermoplastic resin film) in a region excluding the shade region in the interlayer for a laminated glass is defined as a visible light transmittance A. The visible light transmittance A is preferably 40% or more, more preferably 50% or more, still more preferably 60% or more, still more preferably 70% or more, still more preferably 80% or more, particularly preferably 85% or more Particularly preferably 88% or more, most preferably 90% or more. The thermoplastic resin film according to the present invention preferably has a region in which the visible light transmittance is equal to or more than the above lower limit. It is preferable that the visible light transmittance of the central portion of the thermoplastic resin film is not less than the lower limit.
 上記熱可塑性樹脂フィルムの平面積100%中、上記熱可塑性樹脂フィルムの可視光線透過率が40%以上(又は上記下限以上)である領域の面積は、好ましくは50%以上、より好ましくは80%以上である。 The area of the region where the visible light transmittance of the thermoplastic resin film is 40% or more (or the lower limit or more) in the plane area 100% of the thermoplastic resin film is preferably 50% or more, more preferably 80%. It is above.
 上記可視光線透過率は、熱可塑性樹脂フィルムを、JIS R3208に準拠した2枚のグリーンガラスの間に配置して得られる合わせガラスを用いて測定することができる。分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R3211:1998に準拠して、得られた合わせガラスの波長380nm~780nmにおける可視光線透過率を測定することができる。 The said visible light transmittance | permeability can be measured using the laminated glass obtained by arrange | positioning a thermoplastic resin film between two sheets of green glass based on JISR3208. The visible light transmittance of the obtained laminated glass at a wavelength of 380 nm to 780 nm can be measured according to JIS R 3211: 1998 using a spectrophotometer (“U-4100” manufactured by Hitachi High-Technologies Corporation).
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る熱電変換フィルムを模式的に示す断面図である。なお、図1及び後述する図における熱電変換フィルムの大きさ及び寸法は、図示の便宜上、実際の大きさ及び形状から適宜変更している。 FIG. 1 is a cross-sectional view schematically showing a thermoelectric conversion film according to a first embodiment of the present invention. In addition, the magnitude | size and dimension of the thermoelectric conversion film in FIG. 1 and the figure mentioned later are suitably changed from the actual magnitude | size and shape for convenience of illustration.
 図1に示す熱電変換フィルム1は、熱可塑性樹脂フィルム10と、電極21とを備える。熱可塑性樹脂フィルム10は、熱可塑性樹脂と熱電変換材料とを含む。熱可塑性樹脂フィルム10の一端が電極21に接続されており、他端が電極21に接続されている。2つの電極21は、導線22により接続されている。導線22中に、電気取出部23が配置されている。 The thermoelectric conversion film 1 shown in FIG. 1 includes a thermoplastic resin film 10 and an electrode 21. The thermoplastic resin film 10 contains a thermoplastic resin and a thermoelectric conversion material. One end of the thermoplastic resin film 10 is connected to the electrode 21, and the other end is connected to the electrode 21. The two electrodes 21 are connected by a conducting wire 22. An electrical outlet 23 is disposed in the lead 22.
 熱可塑性樹脂フィルム10は、第1の層11(中間層)と、第2の層12(表面層)と、第3の層13(表面層)とを備える。第1の層11の第1の表面側に、第2の層12が配置されており、積層されている。第1の層11の第1の表面とは反対の第2の表面側に、第3の層13が配置されており、積層されている。第1の層11は、第2の層12と第3の層13との間に配置されており、挟み込まれている。熱可塑性樹脂フィルム10は、多層フィルムである。 The thermoplastic resin film 10 includes a first layer 11 (intermediate layer), a second layer 12 (surface layer), and a third layer 13 (surface layer). The second layer 12 is disposed on the first surface side of the first layer 11 and stacked. The third layer 13 is disposed on the second surface side opposite to the first surface of the first layer 11 and is laminated. The first layer 11 is disposed between the second layer 12 and the third layer 13 and is sandwiched. The thermoplastic resin film 10 is a multilayer film.
 本実施形態では、第1の層11が熱電変換材料を含む。第1の層11の一端が電極21に接続されており、他端が電極21に接続されている。 In the present embodiment, the first layer 11 contains a thermoelectric conversion material. One end of the first layer 11 is connected to the electrode 21, and the other end is connected to the electrode 21.
 第2の層12の第1の層11側とは反対側の外側の表面は、合わせガラス部材が積層される表面であることが好ましい。第3の層13の第1の層11側とは反対側の外側の表面は、合わせガラス部材が積層される表面であることが好ましい。 It is preferable that the outer surface on the opposite side to the 1st layer 11 side of the 2nd layer 12 is a surface where a laminated glass member is laminated. It is preferable that the outer surface on the opposite side to the 1st layer 11 side of the 3rd layer 13 is a surface where a laminated glass member is laminated.
 図2は、本発明の第2の実施形態に係る熱電変換フィルムを模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing a thermoelectric conversion film according to a second embodiment of the present invention.
 図2に示す熱電変換フィルム1Aは、熱可塑性樹脂フィルム10Aと、電極21とを備える。熱可塑性樹脂フィルム10Aは、熱可塑性樹脂と熱電変換材料とを含む。熱可塑性樹脂フィルム10Aの一端が電極21に接続されており、他端が電極21に接続されている。2つの電極21は、導線22により接続されている。導線22中に、電気取出部23が配置されている。 The thermoelectric conversion film 1A shown in FIG. 2 includes a thermoplastic resin film 10A and an electrode 21. The thermoplastic resin film 10A contains a thermoplastic resin and a thermoelectric conversion material. One end of the thermoplastic resin film 10A is connected to the electrode 21, and the other end is connected to the electrode 21. The two electrodes 21 are connected by a conducting wire 22. An electrical outlet 23 is disposed in the lead 22.
 熱可塑性樹脂フィルム10Aは、第1の層を備える。熱可塑性樹脂フィルム10Aは、第1の層のみの1層の構造を有し、単層フィルムである。熱可塑性樹脂フィルム10Aは、第1の層である。 The thermoplastic resin film 10A includes a first layer. The thermoplastic resin film 10A has a structure of one layer of only the first layer, and is a single layer film. The thermoplastic resin film 10A is a first layer.
 図1,2に示すように、熱可塑性樹脂フィルムは、多層フィルムであってもよく、単層フィルムであってもよい。 As shown in FIGS. 1 and 2, the thermoplastic resin film may be a multilayer film or a single layer film.
 以下、本発明に係る熱可塑性樹脂フィルムを構成する上記第1の層(単層フィルムを含む)、上記第2の層及び上記第3の層の詳細、並びに上記第1の層、上記第2の層及び上記第3の層に含まれる各成分の詳細を説明する。 Hereinafter, details of the first layer (including a monolayer film), the second layer and the third layer constituting the thermoplastic resin film according to the present invention, and the first layer, the second layer The details of each component contained in the third layer and the second layer will be described.
 (熱可塑性樹脂)
 上記熱可塑性フィルムは、熱可塑性樹脂(以下、熱可塑性樹脂(0)と記載することがある)を含むことが好ましい。上記熱可塑性フィルムは、熱可塑性樹脂(0)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(0)と記載することがある)を含むことが好ましい。上記第1の層は、熱可塑性樹脂(以下、熱可塑性樹脂(1)と記載することがある)を含むことが好ましい。上記第1の層は、熱可塑性樹脂(1)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(1)と記載することがある)を含むことが好ましい。上記第2の層は、熱可塑性樹脂(以下、熱可塑性樹脂(2)と記載することがある)を含むことが好ましい。上記第2の層は、熱可塑性樹脂(2)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(2)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(以下、熱可塑性樹脂(3)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(3)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(3)と記載することがある)を含むことが好ましい。上記熱可塑性樹脂(1)と上記熱可塑性樹脂(2)と上記熱可塑性樹脂(3)とは、同一であってもよく、異なっていてもよい。遮音性がより一層高くなることから、上記熱可塑性樹脂(1)は、上記熱可塑性樹脂(2)及び上記熱可塑性樹脂(3)と異なることが好ましい。上記ポリビニルアセタール樹脂(1)と上記ポリビニルアセタール樹脂(2)と上記ポリビニルアセタール樹脂(3)とは、同一であってもよく、異なっていてもよい。遮音性がより一層高くなることから、上記ポリビニルアセタール樹脂(1)は、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)と異なることが好ましい。上記熱可塑性樹脂(0)、上記熱可塑性樹脂(1)、上記熱可塑性樹脂(2)及び上記熱可塑性樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記ポリビニルアセタール樹脂(0)、上記ポリビニルアセタール樹脂(1)、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermoplastic resin)
It is preferable that the said thermoplastic film contains a thermoplastic resin (Hereinafter, it may describe as a thermoplastic resin (0).). It is preferable that the said thermoplastic film contains polyvinyl acetal resin (Hereafter, it may describe as polyvinyl acetal resin (0)) as thermoplastic resin (0). The first layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (1)). The first layer preferably contains, as the thermoplastic resin (1), a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (1)). The second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (2)). The second layer preferably contains, as the thermoplastic resin (2), a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (2)). The third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (3)). The third layer preferably contains, as the thermoplastic resin (3), a polyvinyl acetal resin (hereinafter sometimes referred to as a polyvinyl acetal resin (3)). The thermoplastic resin (1), the thermoplastic resin (2) and the thermoplastic resin (3) may be identical or different. The thermoplastic resin (1) is preferably different from the thermoplastic resin (2) and the thermoplastic resin (3) because the sound insulation property is further enhanced. The polyvinyl acetal resin (1), the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) may be the same or different. It is preferable that the polyvinyl acetal resin (1) is different from the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) because the sound insulation property is further enhanced. The thermoplastic resin (0), the thermoplastic resin (1), the thermoplastic resin (2) and the thermoplastic resin (3) may be used alone or in combination of two or more. May be The polyvinyl acetal resin (0), the polyvinyl acetal resin (1), the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) may be used alone or in combination of two or more. May be
 上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、アイオノマー樹脂、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル酸共重合体樹脂、ポリウレタン樹脂、ポリビニルアルコール樹脂及びシクロオレフィン樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the thermoplastic resin include polyvinyl acetal resin, ionomer resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, polyvinyl alcohol resin, cycloolefin resin and the like. Only one type of the thermoplastic resin may be used, or two or more types may be used in combination.
 上記熱可塑性樹脂フィルムは、上記熱可塑性樹脂として、ポリビニルアセタール樹脂又はアイオノマー樹脂を含むことが好ましく、ポリビニルアセタール樹脂を含むことがより好ましい。ポリビニルアセタール樹脂と可塑剤との併用により、ガラス板、合わせガラス部材又は他のフィルム等に対する本発明に係る熱可塑性樹脂フィルムの接着力がより一層高くなる。上記表面層及び上記中間層が、ポリビニルアセタール樹脂又はアイオノマー樹脂を含むことが好ましい。上記ポリビニルアセタール樹脂及び上記アイオノマー樹脂はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。 The thermoplastic resin film preferably contains, as the thermoplastic resin, a polyvinyl acetal resin or an ionomer resin, and more preferably a polyvinyl acetal resin. By the combined use of the polyvinyl acetal resin and the plasticizer, the adhesion of the thermoplastic resin film according to the present invention to a glass plate, a laminated glass member or another film is further enhanced. It is preferable that the surface layer and the intermediate layer contain a polyvinyl acetal resin or an ionomer resin. One type of each of the polyvinyl acetal resin and the ionomer resin may be used, or two or more types may be used in combination.
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコール(PVA)をアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアセタール樹脂は、ポリビニルアルコールのアセタール化物であることが好ましい。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に70モル%~99.9モル%の範囲内である。 The polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde. The polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol. The polyvinyl alcohol is obtained, for example, by saponifying polyvinyl acetate. The degree of saponification of the polyvinyl alcohol is generally in the range of 70 mol% to 99.9 mol%.
 上記ポリビニルアルコール(PVA)の平均重合度は、好ましくは200以上、より好ましくは500以上、より一層好ましくは1500以上、更に好ましくは1600以上、特に好ましくは2600以上、最も好ましくは2700以上であり、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3500以下である。上記平均重合度が上記下限以上であると、耐貫通性がより一層高くなる。上記平均重合度が上記上限以下であると、熱可塑性樹脂フィルムの成形が容易になる。 The average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, and most preferably 2700 or more. Preferably it is 5000 or less, More preferably, it is 4000 or less, More preferably, it is 3500 or less. When the average degree of polymerization is at least the lower limit, the penetration resistance is further enhanced. Molding of a thermoplastic resin film becomes it easy that the above-mentioned average polymerization degree is below the above-mentioned maximum.
 上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。 The average degree of polymerization of the polyvinyl alcohol is determined by a method in accordance with JIS K 6726 "Polyvinyl alcohol test method".
 上記ポリビニルアセタール樹脂に含まれているアセタール基の炭素数は特に限定されない。上記ポリビニルアセタール樹脂を製造する際に用いるアルデヒドは特に限定されない。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数は3~5であることが好ましく、3又は4であることがより好ましい。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数が3以上であると、熱可塑性樹脂フィルムのガラス転移温度が充分に低くなる。 The carbon number of the acetal group contained in the polyvinyl acetal resin is not particularly limited. The aldehyde used in producing the polyvinyl acetal resin is not particularly limited. The carbon number of the acetal group in the polyvinyl acetal resin is preferably 3 to 5, and more preferably 3 or 4. The glass transition temperature of a thermoplastic resin film becomes it low enough that carbon number of the acetal group in the said polyvinyl acetal resin is three or more.
 上記アルデヒドは特に限定されない。一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド及びベンズアルデヒド等が挙げられる。プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The aldehyde is not particularly limited. In general, aldehydes having 1 to 10 carbon atoms are preferably used. Examples of the above aldehydes having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexyl aldehyde and n-octyl aldehyde, Examples include n-nonyl aldehyde, n-decyl aldehyde and benzaldehyde. Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexyl aldehyde or n-valeraldehyde is preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferred, and n-butyraldehyde is even more preferred. Only one type of aldehyde may be used, or two or more types may be used in combination.
 上記ポリビニルアセタール樹脂(0)の水酸基の含有率(水酸基量)は、好ましくは15モル%以上、より好ましくは18モル%以上であり、好ましくは40モル%以下、より好ましくは35モル%以下である。上記水酸基の含有率が上記下限以上であると、熱可塑性樹脂フィルムの接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、熱可塑性樹脂フィルムの柔軟性がより一層高くなり、熱可塑性樹脂フィルムの取扱いが容易になる。 The hydroxyl group content (hydroxyl content) of the polyvinyl acetal resin (0) is preferably 15 mol% or more, more preferably 18 mol% or more, preferably 40 mol% or less, more preferably 35 mol% or less is there. The adhesive force of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum. Moreover, the softness | flexibility of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is below the said upper limit, and the handling of a thermoplastic resin film becomes easy.
 上記ポリビニルアセタール樹脂(1)の水酸基の含有率(水酸基量)は、好ましくは17モル%以上、より好ましくは20モル%以上、更に好ましくは22モル%以上であり、好ましくは28モル%以下、より好ましくは27モル%以下、更に好ましくは25モル%以下、特に好ましくは24モル%以下である。上記水酸基の含有率が上記下限以上であると、熱可塑性樹脂フィルムの機械強度がより一層高くなる。特に、上記ポリビニルアセタール樹脂(1)の水酸基の含有率が20モル%以上であると反応効率が高く生産性に優れ、また28モル%以下であると、合わせガラスの遮音性がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、熱可塑性樹脂フィルムの柔軟性がより一層高くなり、熱可塑性樹脂フィルムの取扱いが容易になる。 The hydroxyl content (hydroxyl content) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, and preferably 28 mol% or less. More preferably, it is 27 mol% or less, still more preferably 25 mol% or less, and particularly preferably 24 mol% or less. The mechanical strength of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum. In particular, when the content of hydroxyl group of the polyvinyl acetal resin (1) is 20 mol% or more, the reaction efficiency is high and the productivity is excellent, and when it is 28 mol% or less, the sound insulation of the laminated glass is further enhanced. . Moreover, the softness | flexibility of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is below the said upper limit, and the handling of a thermoplastic resin film becomes easy.
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の各含有率は、好ましくは25モル%以上、より好ましくは28モル%以上、より一層好ましくは30モル%以上、更に好ましくは31.5モル%以上、更に一層好ましくは32モル%以上、特に好ましくは33モル%以上である。上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の水酸基の各含有率は、好ましくは38モル%以下、より好ましくは37モル%以下、更に好ましくは36.5モル%以下、特に好ましくは36モル%以下である。上記水酸基の含有率が上記下限以上であると、熱可塑性樹脂フィルムの接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、熱可塑性樹脂フィルムの柔軟性が高くなり、熱可塑性樹脂フィルムの取扱いが容易になる。 The content of each of hydroxyl groups of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, still more preferably 30 mol% or more, still more preferably It is 31.5 mol% or more, still more preferably 32 mol% or more, and particularly preferably 33 mol% or more. The content of each hydroxyl group of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 38 mol% or less, more preferably 37 mol% or less, still more preferably 36.5 mol% or less, particularly preferably Is 36 mol% or less. The adhesive force of a thermoplastic resin film becomes it still higher that the content rate of the said hydroxyl group is more than the said minimum. Moreover, the softness | flexibility of a thermoplastic resin film becomes it high that the content rate of the said hydroxyl group is below the said upper limit, and the handling of a thermoplastic resin film becomes easy.
 遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(2)の水酸基の含有率よりも低いことが好ましい。遮音性をより一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率は、上記ポリビニルアセタール樹脂(3)の水酸基の含有率よりも低いことが好ましい。遮音性を更に一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(2)の水酸基の含有率との差の絶対値は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。遮音性を更に一層高める観点からは、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(3)の水酸基の含有率との差の絶対値は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは9モル%以上、特に好ましくは10モル%以上、最も好ましくは12モル%以上である。上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(2)の水酸基の含有率との差の絶対値、及び、上記ポリビニルアセタール樹脂(1)の水酸基の含有率と、上記ポリビニルアセタール樹脂(3)の水酸基の含有率との差の絶対値は、好ましくは20モル%以下である。 From the viewpoint of further enhancing the sound insulation, the hydroxyl content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl content of the polyvinyl acetal resin (2). From the viewpoint of further enhancing the sound insulation, the hydroxyl content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl content of the polyvinyl acetal resin (3). From the viewpoint of further enhancing the sound insulation, the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more. From the viewpoint of further enhancing the sound insulation, the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 1 mol% or more. More preferably, it is 5 mol% or more, more preferably 9 mol% or more, particularly preferably 10 mol% or more, and most preferably 12 mol% or more. The absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2), the hydroxyl group content of the polyvinyl acetal resin (1), and The absolute value of the difference from the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 20 mol% or less.
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。 The hydroxyl group content of the polyvinyl acetal resin is a value indicating the molar fraction obtained by dividing the amount of ethylene groups to which hydroxyl groups are bonded by the total amount of ethylene groups in the main chain as a percentage. The amount of ethylene groups to which the above hydroxyl groups are bonded can be measured, for example, in accordance with JIS K 6728 "Polyvinyl butyral test method".
 上記ポリビニルアセタール樹脂(0)のアセチル化度(アセチル基量)は、好ましくは0.1モル%以上、より好ましくは0.3モル%以上、更に好ましくは0.5モル%以上であり、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、熱可塑性樹脂フィルム及び合わせガラスの耐湿性が高くなる。 The degree of acetylation (the amount of acetyl groups) of the polyvinyl acetal resin (0) is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, and still more preferably 0.5 mol% or more. Is 30 mol% or less, more preferably 25 mol% or less, and still more preferably 20 mol% or less. The compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum. The moisture resistance of a thermoplastic resin film and a laminated glass becomes it high that the said degree of acetylation is below the said upper limit.
 上記ポリビニルアセタール樹脂(1)のアセチル化度(アセチル基量)は、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、より一層好ましくは7モル%以上、更に好ましくは9モル%以上であり、好ましくは30モル%以下、より好ましくは25モル%以下、更に好ましくは24モル%以下、特に好ましくは20モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、熱可塑性樹脂フィルム及び合わせガラスの耐湿性が高くなる。特に、上記ポリビニルアセタール樹脂(1)のアセチル化度が0.1モル%以上25モル%以下であると、耐貫通性に優れる。 The degree of acetylation (amount of acetyl group) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, and still more preferably 9 It is preferably at most 30 mol%, more preferably at most 25 mol%, still more preferably at most 24 mol%, particularly preferably at most 20 mol%. The compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum. The moisture resistance of a thermoplastic resin film and a laminated glass becomes it high that the said degree of acetylation is below the said upper limit. In particular, when the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol% or more and 25 mol% or less, the penetration resistance is excellent.
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の各アセチル化度は、好ましくは0.01モル%以上、より好ましくは0.5モル%以上であり、好ましくは10モル%以下、より好ましくは2モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、熱可塑性樹脂フィルム及び合わせガラスの耐湿性が高くなる。 The degree of acetylation of each of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, and preferably 10 mol% or less. More preferably, it is 2 mol% or less. The compatibility of polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetylation is more than the said minimum. The moisture resistance of a thermoplastic resin film and a laminated glass becomes it high that the said degree of acetylation is below the said upper limit.
 上記アセチル化度は、アセチル基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセチル基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。 The degree of acetylation is a value indicating the molar fraction obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain as a percentage. The amount of ethylene groups to which the acetyl group is bonded can be measured, for example, in accordance with JIS K 6728 "Polyvinyl butyral test method".
 上記ポリビニルアセタール樹脂(0)のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは60モル%以上、より好ましくは63モル%以上であり、好ましくは85モル%以下、より好ましくは75モル%以下、更に好ましくは70モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。 The degree of acetalization (the degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (0) is preferably 60 mol% or more, more preferably 63 mol% or more, preferably 85 mol% or less, more Preferably it is 75 mol% or less, More preferably, it is 70 mol% or less. The compatibility with polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum. The reaction time required in order to manufacture polyvinyl acetal resin as the said degree of acetalization is below the said upper limit becomes short.
 上記ポリビニルアセタール樹脂(1)のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは47モル%以上、より好ましくは60モル%以上であり、好ましくは85モル%以下、より好ましくは80モル%以下、更に好ましくは75モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。 The degree of acetalization (the degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (1) is preferably 47 mol% or more, more preferably 60 mol% or more, preferably 85 mol% or less Preferably it is 80 mol% or less, More preferably, it is 75 mol% or less. The compatibility with polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum. The reaction time required in order to manufacture polyvinyl acetal resin as the said degree of acetalization is below the said upper limit becomes short.
 上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)の各アセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは55モル%以上、より好ましくは60モル%以上であり、好ましくは75モル%以下、より好ましくは71モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。 The acetalization degree (butyralization degree in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 60 mol% or more Preferably it is 75 mol% or less, More preferably, it is 71 mol% or less. The compatibility with polyvinyl acetal resin and a plasticizer becomes it high that the said degree of acetalization is more than the said minimum. The reaction time required in order to manufacture polyvinyl acetal resin as the said degree of acetalization is below the said upper limit becomes short.
 上記アセタール化度は、以下のようにして求める。先ず、主鎖の全エチレン基量から、水酸基が結合しているエチレン基量と、アセチル基が結合しているエチレン基量とを差し引いた値を求める。得られた値を、主鎖の全エチレン基量で除算してモル分率を求める。このモル分率を百分率で示した値がアセタール化度である。 The degree of acetalization is determined as follows. First, a value obtained by subtracting the amount of ethylene groups bonded to hydroxyl groups and the amount of ethylene groups bonded to acetyl groups from the total amount of ethylene groups in the main chain is determined. The obtained value is divided by the total amount of ethylene groups in the main chain to determine the mole fraction. The value which showed this mole fraction in percentage is a degree of acetalization.
 なお、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。但し、ASTM D1396-92による測定を用いてもよい。ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記水酸基の含有率(水酸基量)、上記アセタール化度(ブチラール化度)及び上記アセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。 The hydroxyl group content (hydroxyl content), the degree of acetalization (butyralization) and the degree of acetylation are preferably calculated from the results measured by the method according to JIS K 6728 "Polyvinyl butyral test method". However, measurement according to ASTM D1396-92 may be used. When the polyvinyl acetal resin is a polyvinyl butyral resin, the content of the hydroxyl group (hydroxyl content), the degree of acetalization (degree of butyralization) and the degree of acetylation are methods according to JIS K 6728 "Polyvinyl butyral test method" It can be calculated from the result measured by
 (可塑剤)
 熱可塑性樹脂フィルムの接着力をより一層高める観点からは、上記熱可塑性樹脂フィルムは、可塑剤(以下、可塑剤(0)と記載することがある)を含むことが好ましい。上記第1の層は、可塑剤(以下、可塑剤(1)と記載することがある)を含むことが好ましい。上記第2の層は、可塑剤(以下、可塑剤(2)と記載することがある)を含むことが好ましい。上記第3の層は、可塑剤(以下、可塑剤(3)と記載することがある)を含むことが好ましい。熱可塑性樹脂フィルムに含まれている熱可塑性樹脂が、ポリビニルアセタール樹脂である場合に、熱可塑性樹脂フィルム(各層)は、可塑剤を含むことが特に好ましい。ポリビニルアセタール樹脂を含む層は、可塑剤を含むことが好ましい。
(Plasticizer)
From the viewpoint of further enhancing the adhesive strength of the thermoplastic resin film, the thermoplastic resin film preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (0)). The first layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (1)). The second layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (2)). The third layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (3)). When the thermoplastic resin contained in the thermoplastic resin film is a polyvinyl acetal resin, it is particularly preferable that the thermoplastic resin film (each layer) contains a plasticizer. It is preferable that the layer containing polyvinyl acetal resin contains a plasticizer.
 上記可塑剤は特に限定されない。上記可塑剤として、従来公知の可塑剤を用いることができる。上記可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The plasticizer is not particularly limited. Conventionally known plasticizers can be used as the above-mentioned plasticizer. The plasticizer may be used alone or in combination of two or more.
 上記可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などの有機リン酸可塑剤等が挙げられる。有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。 Examples of the plasticizer include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphoric acid plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. . Organic ester plasticizers are preferred. The plasticizer is preferably a liquid plasticizer.
 上記一塩基性有機酸エステルとしては、グリコールと一塩基性有機酸との反応によって得られるグリコールエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。 As said monobasic organic acid ester, the glycol ester etc. which are obtained by reaction of glycol and a monobasic organic acid are mentioned. Examples of the glycol include triethylene glycol, tetraethylene glycol and tripropylene glycol. Examples of the monobasic organic acids include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid and decylic acid.
 上記多塩基性有機酸エステルとしては、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物等が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。 Examples of the polybasic organic acid ester include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms. Examples of the polybasic organic acids include adipic acid, sebacic acid and azelaic acid.
 上記有機エステル可塑剤としては、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-ブタノエート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、マレイン酸ジブチル、アジピン酸ビス(2-ブトキシエチル)、アジピン酸ジブチル、アジピン酸ジイソブチル、アジピン酸2,2―ブトキシエトキシエチル、安息香酸グリコールエステル、アジピン酸1,3-ブチレングリコールポリエステル、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、クエン酸トリブチル、アセチルクエン酸トリブチル、炭酸ジエチル、セバシン酸ジブチル、フタル酸ビス(2-エチルヘキシル)、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。上述のアジピン酸エステル以外の他のアジピン酸エステルを用いてもよい。 Examples of the organic ester plasticizer include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-2-ethyl hexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-butanoate, triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene Glycol di-2-ethyl butyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Tylate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethyl butyrate, triethylene glycol di-2-ethyl pentanoate, tetraethylene glycol di-2-ethyl butyrate, diethylene glycol dicaprylate Maleic acid dibutyl, bis (2-butoxyethyl) adipate, dibutyl adipate, diisobutyl adipate, 2,2-butoxyethoxy adipate, glycol ester of benzoic acid, 1,3-butylene glycol adipate polyester, adipic acid Dihexyl, dioctyl adipate, hexyl cyclohexyl adipate, a mixture of heptyl adipate and nonyl adipate, diisononyl adipate, diisodecyl adipate, heptyl noni adipate , Tributyl citrate, acetyl tributyl citrate, diethyl carbonate, dibutyl sebacate, bis (2-ethylhexyl) phthalate, oil-modified sebacic alkyds, and mixtures of phosphoric acid esters and adipic acid esters. Organic ester plasticizers other than these may be used. Other adipates may be used other than the adipates described above.
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。 Examples of the organic phosphoric acid plasticizer include tributoxyethyl phosphate, isodecyl phenyl phosphate and triisopropyl phosphate.
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。 The plasticizer is preferably a diester plasticizer represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ、炭素数5~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数6~10の有機基であることが好ましい。 In the above formula (1), R1 and R2 each represent an organic group having 5 to 10 carbon atoms, R3 represents an ethylene group, an isopropylene group or an n-propylene group, and p represents an integer of 3 to 10 . Each of R 1 and R 2 in the above formula (1) is preferably an organic group having 6 to 10 carbon atoms.
 上記可塑剤は、トリエチレングリコールジ-n-ブタノエート(3GB)、フタル酸ビス(2-エチルヘキシル)、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)又はトリエチレングリコールジ-2-エチルブチレート(3GH)を含むことが好ましい。上記可塑剤は、トリエチレングリコールジ-n-ブタノエート(3GB)、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)又はトリエチレングリコールジ-2-エチルブチレート(3GH)を含むことがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートを含むことが更に好ましい。 The above plasticizers are triethylene glycol di-n-butanoate (3 GB), bis (2-ethylhexyl) phthalate, triethylene glycol di-2-ethylhexanoate (3GO) or triethylene glycol di-2-ethyl butyrate It is preferred to include a rate (3 GH). The plasticizer preferably includes triethylene glycol di-n-butanoate (3 GB), triethylene glycol di-2-ethylhexanoate (3GO) or triethylene glycol di-2-ethyl butyrate (3GH). Preferably, triethylene glycol di-2-ethylhexanoate is more preferably included.
 上記熱可塑性樹脂フィルムにおける上記熱可塑性樹脂(0)100重量部に対する上記可塑剤(0)の含有量を、含有量(0)とする。上記含有量(0)は、好ましくは20重量部以上、より好ましくは25重量部以上、更に好ましくは30重量部以上であり、好ましくは100重量部以下、より好ましくは60重量部以下、更に好ましくは50重量部以下である。上記含有量(0)が上記下限以上であると、耐貫通性がより一層高くなる。上記含有量(0)が上記上限以下であると、熱可塑性樹脂フィルムの透明性がより一層高くなる。 Let content of the said plasticizer (0) with respect to 100 weight part of said thermoplastic resins (0) in the said thermoplastic resin film be content (0). The content (0) is preferably 20 parts by weight or more, more preferably 25 parts by weight or more, still more preferably 30 parts by weight or more, preferably 100 parts by weight or less, more preferably 60 parts by weight or less, more preferably Is 50 parts by weight or less. When the content (0) is at least the lower limit, the penetration resistance is further enhanced. The transparency of the thermoplastic resin film is further enhanced when the content (0) is less than or equal to the upper limit.
 上記第1の層において、上記熱可塑性樹脂(1)100重量部に対する上記可塑剤(1)の含有量を、含有量(1)とする。上記含有量(1)は、好ましくは50重量部以上、より好ましくは55重量部以上、更に好ましくは60重量部以上であり、好ましくは100重量部以下、より好ましくは90重量部以下、更に好ましくは85重量部以下、特に好ましくは80重量部以下である。上記含有量(1)が上記下限以上であると、熱可塑性樹脂フィルムの柔軟性が高くなり、熱可塑性樹脂フィルムの取扱いが容易になる。上記含有量(1)が上記上限以下であると、耐貫通性がより一層高くなる。 In the first layer, the content of the plasticizer (1) with respect to 100 parts by weight of the thermoplastic resin (1) is taken as the content (1). The content (1) is preferably 50 parts by weight or more, more preferably 55 parts by weight or more, still more preferably 60 parts by weight or more, preferably 100 parts by weight or less, more preferably 90 parts by weight or less, more preferably Is at most 85 parts by weight, particularly preferably at most 80 parts by weight. The softness | flexibility of a thermoplastic resin film becomes it high that the said content (1) is more than the said lower limit, and the handling of a thermoplastic resin film becomes easy. When the content (1) is less than or equal to the upper limit, the penetration resistance is further enhanced.
 上記第2の層において、上記熱可塑性樹脂(2)100重量部に対する上記可塑剤(2)の含有量を、含有量(2)とする。上記第3の層において、上記熱可塑性樹脂(3)100重量部に対する上記可塑剤(3)の含有量を、含有量(3)とする。上記含有量(2)及び上記含有量(3)はそれぞれ、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上、特に好ましくは24重量部以上、最も好ましくは25重量部以上である。上記含有量(2)及び上記含有量(3)はそれぞれ、好ましくは45重量部以下、より好ましくは40重量部以下、更に好ましくは35重量部以下、特に好ましくは32重量部以下、最も好ましくは30重量部以下である。上記含有量(2)及び上記含有量(3)が上記下限以上であると、熱可塑性樹脂フィルムの柔軟性が高くなり、熱可塑性樹脂フィルムの取扱いが容易になる。上記含有量(2)及び上記含有量(3)が上記上限以下であると、耐貫通性がより一層高くなる。 In the second layer, the content of the plasticizer (2) with respect to 100 parts by weight of the thermoplastic resin (2) is taken as the content (2). In the third layer, the content of the plasticizer (3) with respect to 100 parts by weight of the thermoplastic resin (3) is taken as the content (3). The content (2) and the content (3) are each preferably 10 parts by weight or more, more preferably 15 parts by weight or more, still more preferably 20 parts by weight or more, particularly preferably 24 parts by weight or more, most preferably 25 parts by weight or more. The content (2) and the content (3) are each preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 35 parts by weight or less, particularly preferably 32 parts by weight or less, most preferably It is 30 parts by weight or less. The softness | flexibility of a thermoplastic resin film becomes it high that the said content (2) and the said content (3) are more than the said lower limit, and the handling of a thermoplastic resin film becomes easy. When the content (2) and the content (3) are less than or equal to the upper limit, penetration resistance is further enhanced.
 合わせガラスの遮音性を高めるために、上記含有量(1)は上記含有量(2)よりも多いことが好ましく、上記含有量(1)は上記含有量(3)よりも多いことが好ましい。 In order to enhance the sound insulation of the laminated glass, the content (1) is preferably larger than the content (2), and the content (1) is preferably larger than the content (3).
 合わせガラスの遮音性をより一層高める観点からは、上記含有量(2)と上記含有量(1)との差の絶対値は、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上である。合わせガラスの遮音性をより一層高める観点からは、上記含有量(3)と上記含有量(1)との差の絶対値は、好ましくは10重量部以上、より好ましくは15重量部以上、更に好ましくは20重量部以上である。上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは80重量部以下、より好ましくは75重量部以下、更に好ましくは70重量部以下である。 From the viewpoint of further enhancing the sound insulation of laminated glass, the absolute value of the difference between the content (2) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and further preferably Preferably it is 20 parts by weight or more. From the viewpoint of further enhancing the sound insulation of laminated glass, the absolute value of the difference between the content (3) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and further preferably Preferably it is 20 parts by weight or more. The absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are each preferably at most 80 parts by weight, More preferably, it is 75 parts by weight or less, still more preferably 70 parts by weight or less.
 (熱電変換材料)
 上記熱可塑性樹脂フィルムは、熱電変換材料を含む。上記表面層が上記熱電変換材料を含んでいてもよい。上記中間層が上記熱電変換材料を含むことが好ましい。
(Thermoelectric material)
The thermoplastic resin film contains a thermoelectric conversion material. The surface layer may contain the thermoelectric conversion material. It is preferable that the said intermediate | middle layer contains the said thermoelectric conversion material.
 熱電変換効率を効果的に高める観点からは、上記熱電変換材料の性状が、粒子状又は繊維状であることが好ましく、繊維状であることがより好ましい。 From the viewpoint of effectively enhancing the thermoelectric conversion efficiency, the property of the thermoelectric conversion material is preferably particulate or fibrous, and more preferably fibrous.
 上記熱電変換材料は、無機化合物であってもよく、有機化合物であってもよい。熱電変換効率を効果的に高める観点からは、上記熱電変換材料は、有機化合物であることが好ましい。 The thermoelectric conversion material may be an inorganic compound or an organic compound. From the viewpoint of effectively enhancing the thermoelectric conversion efficiency, the thermoelectric conversion material is preferably an organic compound.
 上記熱電変換材料としては、ポリチオフェン、カーボンナノチューブ等が挙げられる。上記熱電変換材料は、PEDOT PSSなどのポリチオフェンを含む電荷移動錯体であってもよい。熱電変換材料として、カーボンナノチューブがある。しかし、カーボンナノチューブを用いると、熱可塑性樹脂フィルムの可視光線透過率を高くすることが困難な場合がある。 Examples of the thermoelectric conversion material include polythiophene and carbon nanotubes. The thermoelectric conversion material may be a charge transfer complex containing polythiophene such as PEDOT PSS. There is a carbon nanotube as a thermoelectric conversion material. However, when carbon nanotubes are used, it may be difficult to increase the visible light transmittance of the thermoplastic resin film.
 熱可塑性樹脂フィルムの透明性をより一層高める観点からは、上記熱電変換材料は、ポリチオフェンを含むことが好ましい。 From the viewpoint of further enhancing the transparency of the thermoplastic resin film, the thermoelectric conversion material preferably contains polythiophene.
 上記熱電変換材料が熱可塑性樹脂フィルムの表面に含まれている場合に、熱可塑性樹脂フィルムの接着性が低下する可能性がある。 When the said thermoelectric conversion material is contained in the surface of a thermoplastic resin film, the adhesiveness of a thermoplastic resin film may fall.
 多層フィルムにおいては、中間層が熱電変換材料を含むことが好ましい。第2の層と第3の層との間に第1の層が配置されている多層フィルムにおいては、第1の層が、熱電変換材料を含むことが好ましい。 In the multilayer film, the intermediate layer preferably contains a thermoelectric conversion material. In the multilayer film in which the first layer is disposed between the second layer and the third layer, the first layer preferably contains a thermoelectric conversion material.
 第2の層と第3の層との間に第1の層が配置されている多層フィルムにおいては、第1の層中の熱電変換材料の含有量は、第2の層及び第3の層中の熱電変換材料の含有量よりも多いことが好ましく、0.005重量%以上多いことがより好ましく、0.01重量%以上多いことが更に好ましい。第2の層及び第3の層はそれぞれ、熱電変換材料を含んでいなくてもよい。第2の層及び第3の層中の熱電変換材料の含有量は、0.05重量%以下であってもよく、0.03重量%未満であってもよく、0.01重量%未満であってもよい。 In the multilayer film in which the first layer is disposed between the second layer and the third layer, the content of the thermoelectric conversion material in the first layer is the second layer and the third layer. The content is preferably more than the content of the thermoelectric conversion material in, more preferably 0.005% by weight or more, and still more preferably 0.01% by weight or more. Each of the second layer and the third layer may not contain the thermoelectric conversion material. The content of the thermoelectric conversion material in the second layer and the third layer may be 0.05% by weight or less, may be less than 0.03% by weight, and less than 0.01% by weight. It may be.
 上記熱可塑性樹脂フィルム100重量%中及び熱電変換材料を含む層100重量%中、上記熱電変換材料の含有量は好ましくは0.01重量%以上、より好ましくは0.03重量%以上、更に好ましくは0.05重量%以上である。上記熱電変換材料の含有量が上記下限以上であると、熱電変換機能がより一層高くなる。上記熱可塑性樹脂フィルム100重量%中及び熱電変換材料を含む層100重量%中、上記熱電変換材料の含有量は好ましくは0.5重量%以下、より好ましくは0.2重量%以下、更に好ましくは0.1重量%以下、特に好ましくは0.05重量%以下である。上記熱電変換材料の含有量が上記上限以下であると、熱電変換機能が効果的に高くなる。 The content of the thermoelectric conversion material is preferably 0.01% by weight or more, more preferably 0.03% by weight or more, and more preferably 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the thermoelectric conversion material. Is 0.05% by weight or more. When the content of the thermoelectric conversion material is at least the lower limit, the thermoelectric conversion function is further enhanced. The content of the thermoelectric conversion material is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, more preferably 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the thermoelectric conversion material. Is 0.1 wt% or less, particularly preferably 0.05 wt% or less. The thermoelectric conversion function becomes high effectively as content of the said thermoelectric conversion material is below the said upper limit.
 (ドーパント)
 上記熱可塑性樹脂フィルムは、ドーパントを含むことが好ましい。ドーパントの使用により、得られる熱可塑性樹脂フィルムの熱電変換効率及び導電率が向上する。上記ドーパントは、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Dopant)
The thermoplastic resin film preferably contains a dopant. The use of the dopant improves the thermoelectric conversion efficiency and conductivity of the resulting thermoplastic resin film. Only one type of the dopant may be used, or two or more types may be used in combination.
 上記ドーパントとしては、例えば、ハロゲン、ルイス酸、プロトン酸、繊維金属化合物、アニオン及び酸性化合物等が挙げられる。上記ハロゲンは、Cl、Br、I、ICl、ICl、IBr又はIFであることが好ましい。上記ルイス酸は、PF、AsF、SbF、BF、BCl、BBr又はSOであることが好ましい。上記プロトン酸は、HF、HCl、HNO、HSO、HClO、FSOH、CISOH又はCFSOHであることが好ましい。上記遷移金属化合物は、FeCl、FeOCl、AgCl、AuCl、TiCl、ZrCl、HfCl、NbF、NbCl、TaCl、MoF、MoCl、WF、WCl、UF又はLnCl(Ln=La、Ce、Pr、Nd、Smなどのランタノイド)であることが好ましい。上記アニオンは、Cl、Br、I、ClO 、PF 、AsF 、SbF 又はBF であることが好ましい。 Examples of the dopant include halogens, Lewis acids, protic acids, fiber metal compounds, anions and acidic compounds. The halogen is preferably Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr or IF. The Lewis acid is preferably PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 or SO 3 . The protonic acid is preferably HF, HCl, HNO 3 , H 2 SO 4 , HClO 4 , FSO 3 H, CISO 3 H or CF 3 SO 3 H. The transition metal compounds are FeCl 3 , FeOCl, AgCl, AuCl 3 , TiCl 4 , ZrCl 4 , ZrCl 4 , HfCl 4 , NbF 5 , NbCl 5 , TaCl 5 , MoF 5 , MoCl 5 , WF 6 , WCl 6 , UF 6 or LnCl 3 (Ln = lanthanoid such as La, Ce, Pr, Nd or Sm) is preferable. The anion is preferably Cl , Br , I , ClO 4 , PF 6 , AsF 6 , SbF 6 or BF 4 .
 ドーピングによる効果をより一層高める観点からは、上記熱可塑性樹脂フィルム中の上記熱電変換材料100重量部に対して、上記ドーパントの含有量は、好ましくは5重量部以上である。ドーピングによる効果を更に一層高めたり、効果的に高めたりする観点からは、上記熱可塑性樹脂フィルム中の上記熱電変換材料100重量部に対して、上記ドーパントの含有量は、好ましくは10重量部以上であり、好ましくは40重量部以下、より好ましくは30重量部以下である。 From the viewpoint of further enhancing the effect by doping, the content of the dopant is preferably 5 parts by weight or more with respect to 100 parts by weight of the thermoelectric conversion material in the thermoplastic resin film. The content of the dopant is preferably 10 parts by weight or more based on 100 parts by weight of the thermoelectric conversion material in the thermoplastic resin film from the viewpoint of further enhancing the effect by doping or effectively enhancing the effect. Preferably it is 40 parts by weight or less, more preferably 30 parts by weight or less.
 (光安定剤)
 上記熱可塑性樹脂フィルム、上記表面層及び上記中間層は、光安定剤を含むことが好ましい。光安定剤の使用により、熱可塑性樹脂フィルムが長期間使用されたり、太陽光に晒されたりしても、変色がより一層抑えられ、可視光線透過率がより一層低下し難くなる。上記光安定剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Light stabilizer)
It is preferable that the thermoplastic resin film, the surface layer, and the intermediate layer contain a light stabilizer. By the use of the light stabilizer, even if the thermoplastic resin film is used for a long time or exposed to sunlight, the color change is further suppressed and the visible light transmittance is less likely to be further reduced. The light stabilizers may be used alone or in combination of two or more.
 変色をより一層抑える観点からは、上記光安定剤は、ヒンダードアミン光安定剤であることが好ましい。 From the viewpoint of further suppressing the discoloration, the light stabilizer is preferably a hindered amine light stabilizer.
 上記ヒンダードアミン光安定剤としては、ピペリジン構造の窒素原子にアルキル基、アルコキシ基又は水素原子が結合しているヒンダードアミン光安定剤等が挙げられる。変色をより一層抑える観点からは、ピペリジン構造の窒素原子にアルキル基又はアルコキシ基が結合しているヒンダードアミン光安定剤が好ましい。上記ヒンダードアミン光安定剤は、ピペリジン構造の窒素原子にアルキル基が結合しているヒンダードアミン光安定剤であることが好ましく、ピペリジン構造の窒素原子にアルコキシ基が結合しているヒンダードアミン光安定剤であることも好ましい。 Examples of the hindered amine light stabilizers include hindered amine light stabilizers in which an alkyl group, an alkoxy group or a hydrogen atom is bonded to a nitrogen atom of a piperidine structure. From the viewpoint of further suppressing the color change, hindered amine light stabilizers in which an alkyl group or an alkoxy group is bonded to the nitrogen atom of the piperidine structure are preferable. The hindered amine light stabilizer is preferably a hindered amine light stabilizer in which an alkyl group is bonded to a nitrogen atom of a piperidine structure, and a hindered amine light stabilizer in which an alkoxy group is bonded to a nitrogen atom of a piperidine structure Is also preferred.
 上記ピペリジン構造の窒素原子にアルキル基が結合しているヒンダードアミン光安定剤としては、BASF社製「Tinuvin765」及び「Tinuvin622SF」、並びにADEKA社製「アデカスタブ LA-52」等が挙げられる。 Examples of hindered amine light stabilizers in which an alkyl group is bonded to the nitrogen atom of the piperidine structure include “Tinuvin 765” and “Tinuvin 622 SF” manufactured by BASF, and “Adekastab LA-52” manufactured by ADEKA.
 上記ピペリジン構造の窒素原子にアルコキシ基が結合しているヒンダードアミン光安定剤としては、BASF社製「TinuvinXT-850FF」及び「TinuvinXT-855FF」、並びにADEKA社製「アデカスタブ LA-81」等が挙げられる。 Examples of hindered amine light stabilizers having an alkoxy group bonded to the nitrogen atom of the piperidine structure include "Tinuvin XT-850FF" and "Tinuvin XT-855FF" manufactured by BASF, and "Adekastab LA-81" manufactured by ADEKA. .
 上記ピペリジン構造の窒素原子に水素原子が結合しているヒンダードアミン光安定剤としては、BASF社製「Tinuvin770DF」、及びクラリアント社製「Hostavin N24」等が挙げられる。 Examples of hindered amine light stabilizers in which a hydrogen atom is bonded to the nitrogen atom of the piperidine structure include “Tinuvin 770 DF” manufactured by BASF, and “Hostavin N24” manufactured by Clariant.
 変色をより一層抑える観点からは、上記光安定剤の分子量は好ましくは2000以下、より好ましくは1000以下、更に好ましくは700以下である。 From the viewpoint of further suppressing the color change, the molecular weight of the light stabilizer is preferably 2000 or less, more preferably 1000 or less, and still more preferably 700 or less.
 過度の色むら、及び変色をより一層抑える観点からは、上記熱可塑性樹脂フィルム100重量%中及び光安定剤を含む層100重量%中、上記光安定剤の含有量は好ましくは0.0025重量%以上、より好ましくは0.025重量%以上であり、好ましくは0.5重量%以下、より好ましくは0.3重量%以下である。 From the viewpoint of further suppressing excessive color unevenness and discoloration, the content of the light stabilizer is preferably 0.0025% in 100% by weight of the thermoplastic resin film and in 100% by weight of the layer containing the light stabilizer. % Or more, more preferably 0.025% by weight or more, preferably 0.5% by weight or less, more preferably 0.3% by weight or less.
 (金属塩)
 上記熱可塑性樹脂フィルム及び上記表面層は、マグネシウム塩、アルカリ金属塩又はアルカリ土類金属塩(以下、これらを併せて金属塩Mと記載することがある)を含むことが好ましい。上記中間層は、上記金属塩Mを含んでいてもよい。上記金属塩Mの使用により、ガラス板、合わせガラス部材又は他のフィルム等に対する本発明に係る熱可塑性樹脂フィルムの接着力を制御することがより一層容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Metal salt)
The thermoplastic resin film and the surface layer preferably contain a magnesium salt, an alkali metal salt or an alkaline earth metal salt (hereinafter, these may be collectively referred to as a metal salt M). The intermediate layer may contain the metal salt M. The use of the metal salt M makes it easier to control the adhesion of the thermoplastic resin film according to the present invention to a glass plate, a laminated glass member, another film or the like. The metal salt M may be used alone or in combination of two or more.
 上記金属塩Mは、金属として、Li、Na、K、Rb、Cs、Mg、Ca、Sr又はBaを含むことが好ましい。熱可塑性樹脂フィルム中に含まれている金属塩は、K又はMgであることが好ましい。この場合に、KとMgとの双方が含まれていてもよい。 The metal salt M preferably contains Li, Na, K, Rb, Cs, Mg, Ca, Sr or Ba as a metal. The metal salt contained in the thermoplastic resin film is preferably K or Mg. In this case, both K and Mg may be included.
 また、上記金属塩Mは、炭素数2~16の有機酸のアルカリ金属塩、炭素数2~16の有機酸のアルカリ土類金属塩又は炭素数2~16の有機酸のマグネシウム塩であることがより好ましく、炭素数2~16のカルボン酸マグネシウム塩又は炭素数2~16のカルボン酸カリウム塩であることが更に好ましい。 The metal salt M is an alkali metal salt of an organic acid having 2 to 16 carbon atoms, an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms or a magnesium salt of an organic acid having 2 to 16 carbon atoms. Is more preferable, and a carboxylic acid magnesium salt having 2 to 16 carbon atoms or a potassium salt of carboxylic acid having 2 to 16 carbon atoms is more preferable.
 上記炭素数2~16のカルボン酸マグネシウム塩及び上記炭素数2~16のカルボン酸カリウム塩としては、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチル酪酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム及び2-エチルヘキサン酸カリウム等が挙げられる。 The above-mentioned magnesium salt of carboxylic acid having 2 to 16 carbon atoms and potassium salt of carboxylic acid having 2 to 16 carbon atoms include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethyl butyric acid, 2-ethyl butanoic acid Examples thereof include potassium, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate.
 上記熱可塑性樹脂フィルムにおけるMg及びKの含有量の合計、及び、Mg又はKを含む層(表面層など)におけるMg及びKの含有量の合計は、好ましくは5ppm以上、より好ましくは10ppm以上、更に好ましくは20ppm以上であり、好ましくは300ppm以下、より好ましくは250ppm以下、更に好ましくは200ppm以下である。Mg及びKの含有量の合計が上記下限以上及び上記上限以下であると、ガラス板、合わせガラス部材又は他のフィルム等に対する熱可塑性樹脂フィルムの接着力をより一層良好に制御できる。 The total content of Mg and K in the thermoplastic resin film and the total content of Mg and K in a layer containing Mg or K (such as a surface layer) is preferably 5 ppm or more, more preferably 10 ppm or more. More preferably, it is 20 ppm or more, preferably 300 ppm or less, more preferably 250 ppm or less, and still more preferably 200 ppm or less. The adhesive force of the thermoplastic resin film with respect to a glass plate, a laminated glass member, another film, etc. as the sum total of content of Mg and K is more than the said lower limit and below the said upper limit can be controlled still more favorably.
 (紫外線遮蔽剤)
 上記熱可塑性樹脂フィルム、上記表面層及び上記中間層は、紫外線遮蔽剤を含むことが好ましい。上記紫外線遮蔽剤の使用により、熱可塑性樹脂フィルムが長期間使用されたり、高温下で使用されたりしても、変色がより一層抑えられ、可視光線透過率がより一層低下し難くなる。上記紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(UV screening agent)
The thermoplastic resin film, the surface layer and the intermediate layer preferably contain an ultraviolet shielding agent. Even when the thermoplastic resin film is used for a long time or under high temperature, the use of the above-mentioned ultraviolet shielding agent further suppresses the color change, and the visible light transmittance is less likely to be reduced. The ultraviolet screening agent may be used alone or in combination of two or more.
 上記紫外線遮蔽剤には、紫外線吸収剤が含まれる。上記紫外線遮蔽剤は、紫外線吸収剤であることが好ましい。 The ultraviolet shielding agent includes an ultraviolet absorber. The ultraviolet shielding agent is preferably an ultraviolet absorber.
 上記紫外線遮蔽剤としては、例えば、金属系紫外線遮蔽剤(金属を含有する紫外線遮蔽剤)、金属酸化物系紫外線遮蔽剤(金属酸化物を含有する紫外線遮蔽剤)、ベンゾトリアゾール系紫外線遮蔽剤(ベンゾトリアゾール構造を有する紫外線遮蔽剤)、ベンゾフェノン系紫外線遮蔽剤(ベンゾフェノン構造を有する紫外線遮蔽剤)、トリアジン系紫外線遮蔽剤(トリアジン構造を有する紫外線遮蔽剤)、マロン酸エステル系紫外線遮蔽剤(マロン酸エステル構造を有する紫外線遮蔽剤)、シュウ酸アニリド系紫外線遮蔽剤(シュウ酸アニリド構造を有する紫外線遮蔽剤)及びベンゾエート系紫外線遮蔽剤(ベンゾエート構造を有する紫外線遮蔽剤)等が挙げられる。 Examples of the UV shielding agent include metal UV shielding agents (UV shielding agents containing metal), metal oxide UV shielding agents (UV shielding agents including metal oxide), benzotriazole UV shielding agents ( UV screening agent having a benzotriazole structure), benzophenone UV shielding agent (UV screening agent having a benzophenone structure), triazine UV shielding agent (UV screening agent having a triazine structure), malonic acid ester UV shielding agent (malonic acid) UV shielding agents having an ester structure), oxalic acid anilide UV shielding agents (UV shielding agents having an anilide oxalate structure), and benzoate based UV shielding agents (a UV shielding agent having a benzoate structure).
 上記金属系紫外線遮蔽剤としては、例えば、白金粒子、白金粒子の表面をシリカで被覆した粒子、パラジウム粒子及びパラジウム粒子の表面をシリカで被覆した粒子等が挙げられる。紫外線遮蔽剤は、遮熱粒子ではないことが好ましい。 Examples of the metal-based ultraviolet shielding agent include platinum particles, particles obtained by coating the surface of platinum particles with silica, palladium particles, particles obtained by coating the surface of palladium particles with silica, and the like. Preferably, the UV screening agent is not a thermal barrier particle.
 上記紫外線遮蔽剤は、好ましくはベンゾトリアゾール系紫外線遮蔽剤、ベンゾフェノン系紫外線遮蔽剤、トリアジン系紫外線遮蔽剤又はベンゾエート系紫外線遮蔽剤であり、より好ましくはベンゾトリアゾール系紫外線遮蔽剤又はベンゾフェノン系紫外線遮蔽剤であり、更に好ましくはベンゾトリアゾール系紫外線遮蔽剤である。 The UV screening agent is preferably a benzotriazole UV screening agent, a benzophenone UV screening agent, a triazine UV screening agent or a benzoate UV screening agent, more preferably a benzotriazole UV screening agent or a benzophenone UV shielding agent More preferably, it is a benzotriazole-based ultraviolet screening agent.
 上記金属酸化物系紫外線遮蔽剤としては、例えば、酸化亜鉛、酸化チタン及び酸化セリウム等が挙げられる。さらに、上記金属酸化物系紫外線遮蔽剤に関して、表面が被覆されていてもよい。上記金属酸化物系紫外線遮蔽剤の表面の被覆材料としては、絶縁性金属酸化物、加水分解性有機ケイ素化合物及びシリコーン化合物等が挙げられる。 Examples of the metal oxide ultraviolet shielding agent include zinc oxide, titanium oxide and cerium oxide. Furthermore, the surface may be coat | covered regarding the said metal oxide type ultraviolet-ray shielding agent. As a coating material of the surface of the said metal oxide type ultraviolet-ray shielding agent, an insulating metal oxide, a hydrolysable organosilicon compound, a silicone compound, etc. are mentioned.
 上記絶縁性金属酸化物としては、シリカ、アルミナ及びジルコニア等が挙げられる。上記絶縁性金属酸化物は、例えば5.0eV以上のバンドギャップエネルギーを有する。 Examples of the insulating metal oxide include silica, alumina and zirconia. The insulating metal oxide has a band gap energy of, for example, 5.0 eV or more.
 上記ベンゾトリアゾール系紫外線遮蔽剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(BASF社製「TinuvinP」)、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin320」)、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、及び2-(2’-ヒドロキシ-3’,5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)等が挙げられる。紫外線を吸収する性能に優れることから、上記紫外線遮蔽剤は、ハロゲン原子を含むベンゾトリアゾール系紫外線遮蔽剤であることが好ましく、塩素原子を含むベンゾトリアゾール系紫外線遮蔽剤であることがより好ましい。 Examples of the benzotriazole-based ultraviolet screening agent include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinuvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5 ′). -Di-t-butylphenyl) benzotriazole ("Tinuvin 320" manufactured by BASF), 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (manufactured by BASF) Tinuvin 326 ′ ′) and 2- (2′-hydroxy-3 ′, 5′-di-amylphenyl) benzotriazole (“Tinuvin 328” manufactured by BASF Corporation). It is preferable that it is a benzotriazole-type ultraviolet-ray shielding agent containing a halogen atom, and it is more preferable that it is a benzotriazole-type ultraviolet-ray shielding agent containing a chlorine atom, since it is excellent in the performance which absorbs an ultraviolet-ray.
 上記ベンゾフェノン系紫外線遮蔽剤としては、例えば、オクタベンゾン(BASF社製「Chimassorb81」)等が挙げられる。 As said benzophenone series ultraviolet screening agent, octabenzone ("Chimassorb 81" by BASF Corporation) etc. are mentioned, for example.
 上記トリアジン系紫外線遮蔽剤としては、例えば、ADEKA社製「LA-F70」及び2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製「Tinuvin1577FF」)等が挙げられる。 Examples of the triazine-based ultraviolet screening agent include “LA-F70” manufactured by ADEKA Corporation and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -Phenol ("Tinuvin 1577FF" manufactured by BASF Corporation) and the like can be mentioned.
 上記マロン酸エステル系紫外線遮蔽剤としては、2-(p-メトキシベンジリデン)マロン酸ジメチル、テトラエチル-2,2-(1,4-フェニレンジメチリデン)ビスマロネート、2-(p-メトキシベンジリデン)-ビス(1,2,2,6,6-ペンタメチル4-ピペリジニル)マロネート等が挙げられる。 As the above-mentioned malonic acid ester-based ultraviolet screening agent, dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylene dimethylidene) bismalonate, 2- (p-methoxybenzylidene) -bis (1,2,2,6,6-pentamethyl 4-piperidinyl) malonate and the like can be mentioned.
 上記マロン酸エステル系紫外線遮蔽剤の市販品としては、Hostavin B-CAP、Hostavin PR-25、Hostavin PR-31(いずれもクラリアント社製)が挙げられる。 Examples of commercially available products of the malonic acid ester-based ultraviolet screening agent include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant Co.).
 上記シュウ酸アニリド系紫外線遮蔽剤としては、N-(2-エチルフェニル)-N’-(2-エトキシ-5-t-ブチルフェニル)シュウ酸ジアミド、N-(2-エチルフェニル)-N’-(2-エトキシ-フェニル)シュウ酸ジアミド、2-エチル-2’-エトキシ-オキシアニリド(クラリアント社製「SanduvorVSU」)などの窒素原子上に置換されたアリール基などを有するシュウ酸ジアミド類が挙げられる。 N- (2-ethylphenyl) -N '-(2-ethoxy-5-t-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl) -N' as the above oxalic acid anilide type ultraviolet screening agent Oxalic acid diamides having an aryl group or the like substituted on a nitrogen atom, such as-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2'-ethoxy-oxyanilide ("Sanduvor VSU" manufactured by Clariant) It can be mentioned.
 上記ベンゾエート系紫外線遮蔽剤としては、例えば、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASF社製「Tinuvin120」)等が挙げられる。 Examples of the benzoate series ultraviolet screening agent include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate ("Tinuvin 120" manufactured by BASF Corp.).
 上記熱可塑性樹脂フィルム100重量%中及び紫外線遮蔽剤を含む層100重量%中、上記紫外線遮蔽剤の含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上、更に好ましくは0.3重量%以上、特に好ましくは0.5重量%以上である。上記熱可塑性樹脂フィルム100重量%中及び紫外線遮蔽剤を含む層100重量%中、上記紫外線遮蔽剤の含有量は、好ましくは2.5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下、特に好ましくは0.8重量%以下である。上記紫外線遮蔽剤の含有量が上記下限以上及び上記上限以下であると、変色がより一層抑えられ、可視光線透過率の低下がより一層抑えられる。 The content of the UV shielding agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the UV shielding agent. Preferably, it is 0.3% by weight or more, particularly preferably 0.5% by weight or more. The content of the UV shielding agent is preferably 2.5% by weight or less, more preferably 2% by weight or less, and further preferably 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing the UV shielding agent. It is 1% by weight or less, particularly preferably 0.8% by weight or less. When the content of the ultraviolet shielding agent is not less than the lower limit and not more than the upper limit, the discoloration is further suppressed, and the decrease in visible light transmittance is further suppressed.
 (酸化防止剤)
 上記熱可塑性樹脂フィルム、上記表面層及び上記中間層は、酸化防止剤を含むことが好ましい。上記酸化防止剤の使用により、熱可塑性樹脂フィルムが長期間使用されたり、高温下で使用されたりしても、変色がより一層抑えられ、可視光線透過率がより一層低下し難くなる。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Antioxidant)
The thermoplastic resin film, the surface layer and the intermediate layer preferably contain an antioxidant. By the use of the above-mentioned antioxidant, even if the thermoplastic resin film is used for a long time or under high temperature, the color change is further suppressed and the visible light transmittance is less likely to be reduced. As the above-mentioned antioxidant, only 1 type may be used and 2 or more types may be used together.
 上記酸化防止剤としては、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。上記フェノール系酸化防止剤はフェノール骨格を有する酸化防止剤である。上記硫黄系酸化防止剤は硫黄原子を含有する酸化防止剤である。上記リン系酸化防止剤はリン原子を含有する酸化防止剤である。 As said antioxidant, a phenol type antioxidant, a sulfur type antioxidant, phosphorus type antioxidant etc. are mentioned. The said phenolic antioxidant is an antioxidant which has a phenol frame. The sulfur-based antioxidant is a sulfur atom-containing antioxidant. The phosphorus-based antioxidant is a phosphorus atom-containing antioxidant.
 上記酸化防止剤は、フェノール系酸化防止剤又はリン系酸化防止剤であることが好ましい。 It is preferable that the said antioxidant is a phenolic antioxidant or phosphorus type antioxidant.
 上記フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。 Examples of the above-mentioned phenolic antioxidants include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-butylphenol), 2,2'-methylenebis- (4-ethyl-6) -T-Butylphenol), 4,4'-Butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydride) Roxy-5-tert-butylphenol) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, bis (3,3'-) t-Butylphenol) butyric acid glycol ester and bis (3-t-butyl-4-hydroxy-5-methylbenzenepropanoic acid) ethylene bis (oxyethylene). One or more of these antioxidants are preferably used.
 上記リン系酸化防止剤としては、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。 The above-mentioned phosphorus-based antioxidants include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, torinylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos Phytos, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butyl-6-methylphenyl) ethyl ester phosphorous acid, and 2,2′-methylene bis (4 And 6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorus. One or more of these antioxidants are preferably used.
 上記酸化防止剤の市販品としては、例えばBASF社製「IRGANOX 245」、BASF社製「IRGAFOS 168」、BASF社製「IRGAFOS 38」、住友化学工業社製「スミライザーBHT」、堺化学工業社製「H-BHT」、BASF社製「IRGANOX 1010」、並びにADEKA社製「アデカスタブ AO-40」等が挙げられる。 As a commercial item of the above-mentioned antioxidant, for example, "IRGANOX 245" made by BASF, "IRGAFOS 168" made by BASF, "IRGAFOS 38" made by BASF, "Sumilyzer BHT" made by Sumitomo Chemical Co., Ltd., Sakai Chemical Industry Co., Ltd. Examples thereof include "H-BHT", "IRGANOX 1010" manufactured by BASF, and "Adekastab AO-40" manufactured by ADEKA.
 変色をより一層抑え、可視光線透過率の低下をより一層抑制する観点からは、上記熱可塑性樹脂フィルム100重量%中及び酸化防止剤を含む層100重量%中、上記酸化防止剤の含有量は0.1重量%以上であることが好ましい。また、酸化防止剤の添加効果が飽和するので、上記熱可塑性樹脂フィルム100重量%中、上記酸化防止剤の含有量は2重量%以下であることが好ましい。 From the viewpoint of further suppressing the color change and further suppressing the decrease in the visible light transmittance, the content of the antioxidant is 100% by weight of the thermoplastic resin film and 100% by weight of the layer containing an antioxidant. It is preferable that it is 0.1 weight% or more. Moreover, since the addition effect of antioxidant is saturated, it is preferable that content of the said antioxidant is 2 weight% or less in 100 weight% of said thermoplastic resin films.
 (他の成分)
 上記熱可塑性樹脂フィルム、上記表面層及び上記中間層は、必要に応じて、カップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、顔料、染料、金属塩以外の接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Other ingredients)
The thermoplastic resin film, the surface layer, and the intermediate layer are, if necessary, an adhesive force modifier other than a coupling agent, a dispersant, a surfactant, a flame retardant, an antistatic agent, a pigment, a dye, and a metal salt. Additives such as moisture proofing agents, optical brighteners and infrared absorbers may be included. One of these additives may be used alone, or two or more thereof may be used in combination.
 (熱可塑性樹脂フィルムの他の詳細)
 遮音性を効果的に高める観点からは、上記中間層が、ガラス転移温度が10℃以下である層を含むことが好ましい。
(Other details of thermoplastic resin film)
From the viewpoint of effectively enhancing the sound insulation, the intermediate layer preferably includes a layer having a glass transition temperature of 10 ° C. or less.
 上記熱可塑性樹脂フィルムの厚みは特に限定されない。実用面の観点、並びに遮熱性を充分に高める観点からは、上記熱可塑性樹脂フィルムの厚みは、好ましくは0.1mm以上、より好ましくは0.25mm以上であり、好ましくは3mm以下、より好ましくは1.5mm以下である。上記熱可塑性樹脂フィルムの厚みが上記下限以上であると、ガラス板含有積層体の耐貫通性がより一層高くなる。上記熱可塑性樹脂フィルムの厚みが上記上限以下であると、熱可塑性樹脂フィルムの透明性がより一層良好になる。 The thickness of the thermoplastic resin film is not particularly limited. The thickness of the thermoplastic resin film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, more preferably from the viewpoint of practical use and from the viewpoint of sufficiently enhancing the heat shielding properties. It is 1.5 mm or less. The penetration resistance of a glass plate containing laminated body becomes it still higher that the thickness of the said thermoplastic resin film is more than the said minimum. When the thickness of the thermoplastic resin film is equal to or less than the upper limit, the transparency of the thermoplastic resin film is further improved.
 上記熱可塑性樹脂フィルムの製造方法は特に限定されない。該熱可塑性樹脂フィルムの製造方法として、従来公知の方法を用いることができる。例えば、配合成分を混練し、熱可塑性樹脂フィルムを成形する製造方法等が挙げられる。連続的な生産に適しているため、押出成形する製造方法が好ましい。 The manufacturing method of the said thermoplastic resin film is not specifically limited. A conventionally known method can be used as a method for producing the thermoplastic resin film. For example, the manufacturing method etc. which knead | mix a compounding component and shape | mold a thermoplastic resin film are mentioned. Extrusion is preferred because it is suitable for continuous production.
 上記混練の方法は特に限定されない。この方法として、例えば、押出機、プラストグラフ、ニーダー、バンバリーミキサー又はカレンダーロール等を用いる方法が挙げられる。連続的な生産に適しているため、押出機を用いる方法が好適であり、二軸押出機を用いる方法がより好適である。 The method of kneading is not particularly limited. Examples of this method include a method using an extruder, a plastograph, a kneader, a Banbury mixer, a calender roll, or the like. As it is suitable for continuous production, a method using an extruder is preferred, and a method using a twin screw extruder is more preferred.
 (熱可塑性樹脂フィルム及び熱電変換フィルムの用途)
 上記熱可塑性樹脂フィルムは、合わせガラス用中間膜であることが好ましい。上記熱電変換フィルムは、熱電変換機能を有する合わせガラス用中間膜であることが好ましい。
(Uses of thermoplastic resin film and thermoelectric conversion film)
The thermoplastic resin film is preferably an intermediate film for laminated glass. It is preferable that the said thermoelectric conversion film is an intermediate film for laminated glasses which has a thermoelectric conversion function.
 上記熱可塑性樹脂フィルム及び上記熱電変換フィルムは、ガラス板に貼り合わされ、ガラス板含有積層体を得るために好適に用いられる。上記熱可塑性樹脂フィルムに電極を接続することにより、熱電変換-ガラス板含有積層体を得ることができる。 The said thermoplastic resin film and the said thermoelectric conversion film are bonded together to a glass plate, and in order to obtain a glass plate containing laminated body, it is used suitably. By connecting an electrode to the above-mentioned thermoplastic resin film, a thermoelectric conversion-glass plate containing laminate can be obtained.
 上記熱可塑性樹脂フィルムは、第1の合わせガラス部材と第2の合わせガラス部材との間に配置され、合わせガラスを得るために好適に用いられる。上記合わせガラスにおける上記熱可塑性樹脂フィルムに電極を接続することにより、熱電変換合わせガラスを得ることができる。上記熱電変換合わせガラスは、熱電変換機能を有する合わせガラスである。 The said thermoplastic resin film is arrange | positioned between a 1st laminated glass member and a 2nd laminated glass member, and in order to obtain laminated glass, it is used suitably. A thermoelectric conversion laminated glass can be obtained by connecting an electrode to the thermoplastic resin film in the laminated glass. The thermoelectric conversion laminated glass is a laminated glass having a thermoelectric conversion function.
 上記合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱可塑性樹脂フィルムとを備えることが好ましい。上記熱可塑性樹脂フィルムが、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に配置されていることが好ましい。上記熱可塑性樹脂フィルムが電極に接続されて用いられることが好ましい。 It is preferable that the said laminated glass is equipped with a 1st laminated glass member, a 2nd laminated glass member, and the thermoplastic resin film mentioned above. It is preferable that the said thermoplastic resin film is arrange | positioned between a said 1st laminated glass member and a said 2nd laminated glass member. It is preferable that the said thermoplastic resin film is connected and used for an electrode.
 上記熱電変換合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱可塑性樹脂フィルムと、電極とを備えることが好ましい。上記熱可塑性樹脂フィルムが、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に配置されている。上記熱可塑性樹脂フィルムが上記電極に接続されている。 It is preferable that the said thermoelectric conversion laminated glass is equipped with a 1st laminated glass member, a 2nd laminated glass member, the thermoplastic resin film mentioned above, and an electrode. The thermoplastic resin film is disposed between the first laminated glass member and the second laminated glass member. The thermoplastic resin film is connected to the electrode.
 また、上記熱電変換合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した熱電変換フィルムとを備えることが好ましい。上記熱電変換フィルムにおける上記熱可塑性樹脂フィルムが、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に配置されていることが好ましい。 Moreover, it is preferable that the said thermoelectric conversion laminated glass is equipped with a 1st laminated glass member, a 2nd laminated glass member, and the thermoelectric conversion film mentioned above. Preferably, the thermoplastic resin film in the thermoelectric conversion film is disposed between the first laminated glass member and the second laminated glass member.
 図3は、図1に示す熱電変換フィルムを用いた熱電変換合わせガラスの一例を示す断面図である。 FIG. 3: is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
 図3に示す熱電変換合わせガラス31は、合わせガラス40と、電極21と、導線22と、電気取出部23とを備える。熱電変換合わせガラス31は、熱電変換フィルム1を備える。 The thermoelectric conversion laminated glass 31 shown in FIG. 3 includes a laminated glass 40, an electrode 21, a conducting wire 22, and an electrical extraction portion 23. The thermoelectric conversion laminated glass 31 includes the thermoelectric conversion film 1.
 合わせガラス40は、第1の合わせガラス部材41と、第2の合わせガラス部材42と、熱可塑性樹脂フィルム10とを備える。 The laminated glass 40 includes a first laminated glass member 41, a second laminated glass member 42, and the thermoplastic resin film 10.
 熱可塑性樹脂フィルム10は、第1の合わせガラス部材41と第2の合わせガラス部材42との間に配置されており、挟み込まれている。熱可塑性樹脂フィルム10の第1の表面(一方の表面)に、第1の合わせガラス部材41が積層されている。熱可塑性樹脂フィルム10の第1の表面とは反対の第2の表面(他方の表面)に、第2の合わせガラス部材42が積層されている。 The thermoplastic resin film 10 is disposed between the first laminated glass member 41 and the second laminated glass member 42 and is sandwiched. The first laminated glass member 41 is laminated on the first surface (one surface) of the thermoplastic resin film 10. A second laminated glass member 42 is laminated on a second surface (the other surface) opposite to the first surface of the thermoplastic resin film 10.
 図4は、図2に示す熱電変換フィルムを用いた熱電変換合わせガラスの一例を示す断面図である。 FIG. 4: is sectional drawing which shows an example of the thermoelectric conversion laminated glass using the thermoelectric conversion film shown in FIG.
 図4に示す熱電変換合わせガラス31Aは、合わせガラス40Aと、電極21と、導線22と、電気取出部23とを備える。熱電変換合わせガラス31Aは、熱電変換フィルム1Aを備える。 The thermoelectric conversion laminated glass 31A shown in FIG. 4 includes a laminated glass 40A, an electrode 21, a lead 22, and an electrical extraction part 23. The thermoelectric conversion laminated glass 31A includes the thermoelectric conversion film 1A.
 合わせガラス40Aは、第1の合わせガラス部材41と、第2の合わせガラス部材42と、熱可塑性樹脂フィルム10Aとを備える。 The laminated glass 40A includes a first laminated glass member 41, a second laminated glass member 42, and a thermoplastic resin film 10A.
 熱可塑性樹脂フィルム10Aは、第1の合わせガラス部材41と第2の合わせガラス部材42との間に配置されており、挟み込まれている。熱可塑性樹脂フィルム10Aの第1の表面(一方の表面)に、第1の合わせガラス部材41が積層されている。熱可塑性樹脂フィルム10Aの第1の表面とは反対の第2の表面(他方の表面)に、第2の合わせガラス部材42が積層されている。 The thermoplastic resin film 10A is disposed between the first laminated glass member 41 and the second laminated glass member 42, and is sandwiched. The first laminated glass member 41 is laminated on the first surface (one surface) of the thermoplastic resin film 10A. The second laminated glass member 42 is laminated on a second surface (the other surface) opposite to the first surface of the thermoplastic resin film 10A.
 上記合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。合わせガラスには、2枚のガラス板の間に熱可塑性樹脂フィルムが挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に熱可塑性樹脂フィルムが挟み込まれている合わせガラスも含まれる。合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。上記第2の合わせガラス部材がガラス板又はPETフィルムであることが好ましい。 Examples of the laminated glass member include a glass plate and a PET (polyethylene terephthalate) film. The laminated glass includes not only laminated glass in which a thermoplastic resin film is sandwiched between two glass plates, but also laminated glass in which a thermoplastic resin film is sandwiched between a glass plate and a PET film or the like. . Laminated glass is a laminated body provided with a glass plate, and it is preferable that at least one glass plate is used. The second laminated glass member is preferably a glass plate or a PET film.
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、及び線入り板ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代わる合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。 Inorganic glass and organic glass are mentioned as said glass plate. Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, template glass, and lined plate glass. The organic glass is a synthetic resin glass instead of inorganic glass. As said organic glass, a polycarbonate board, a poly (meta) acrylic resin board, etc. are mentioned. As said poly (meth) acryl resin board, a polymethyl (meth) acrylate board etc. are mentioned.
 上記合わせガラス部材の厚みは、好ましくは1mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。また、上記ガラス板の厚みは、好ましくは1mm以上であり、好ましくは5mm以下、より好ましくは3mm以下である。上記合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上であり、好ましくは0.5mm以下である。 The thickness of the laminated glass member is preferably 1 mm or more, preferably 5 mm or less, and more preferably 3 mm or less. Moreover, the thickness of the said glass plate becomes like this. Preferably it is 1 mm or more, Preferably it is 5 mm or less, More preferably, it is 3 mm or less. When the laminated glass member is a PET film, the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
 上記ガラス板含有積層体の製造方法は特に限定されない。上記第1のガラス板に、上記熱可塑性樹脂フィルムを貼り合わせることにより、ガラス板含有積層体を得ることができる。さらに、例えば、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、熱可塑性樹脂フィルムを挟んで、押圧ロールに通したり、又はゴムバッグに入れて減圧吸引したりして、第1の合わせガラス部材と熱可塑性樹脂フィルムとの間及び上記第2の合わせガラス部材と熱可塑性樹脂フィルムとの間に残留する空気を脱気する。その後、約70℃~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120℃~150℃及び1MPa~1.5MPaの圧力で圧着する。このようにして、ガラス板含有積層体である合わせガラスを得ることができる。 The manufacturing method of the said glass plate containing laminated body is not specifically limited. A glass plate containing laminated body can be obtained by bonding the said thermoplastic resin film together to the said 1st glass plate. Furthermore, for example, a thermoplastic resin film is sandwiched between the first laminated glass member and the second laminated glass member, and the thermoplastic resin film is inserted into a pressure roll or put into a rubber bag and suctioned under reduced pressure. The air remaining between the first laminated glass member and the thermoplastic resin film and between the second laminated glass member and the thermoplastic resin film is degassed. Thereafter, pre-bonding is performed at about 70 ° C. to 110 ° C. to obtain a laminate. The laminate is then placed in an autoclave or pressed and pressed at a pressure of about 120 ° C. to 150 ° C. and a pressure of 1 MPa to 1.5 MPa. Thus, laminated glass which is a glass plate containing laminated body can be obtained.
 上記熱可塑性樹脂フィルム及び上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。上記熱可塑性樹脂フィルム及び上記合わせガラスは、これらの用途以外にも使用できる。上記熱可塑性樹脂フィルム及び上記合わせガラスは、車両用又は建築用の熱可塑性樹脂フィルム及び合わせガラスであることが好ましく、車両用の熱可塑性樹脂フィルム及び合わせガラスであることがより好ましい。上記熱可塑性樹脂フィルム及び上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。上記熱可塑性樹脂フィルム及び上記合わせガラスは、自動車に好適に用いられる。上記熱可塑性樹脂フィルムは、自動車の合わせガラスを得るために用いられる。 The thermoplastic resin film and the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings and the like. The said thermoplastic resin film and the said laminated glass can be used besides these uses. The thermoplastic resin film and the laminated glass are preferably a thermoplastic resin film and a laminated glass for vehicles or for construction, and more preferably a thermoplastic resin film and a laminated glass for vehicles. The thermoplastic resin film and the laminated glass can be used as a front glass, a side glass, a rear glass or a roof glass of an automobile. The thermoplastic resin film and the laminated glass are suitably used in automobiles. The said thermoplastic resin film is used in order to obtain the laminated glass of a motor vehicle.
 以下に実施例及び比較例を掲げて本発明を更に詳しく説明する。本発明はこれら実施例のみに限定されない。 The present invention will be described in more detail by way of the following Examples and Comparative Examples. The present invention is not limited to these examples.
 以下の材料を用いた。 The following materials were used.
 用いたポリビニルアセタール樹脂では、アセタール化に、炭素数4のn-ブチルアルデヒドが用いられている。ポリビニルアセタール樹脂に関しては、アセタール化度(ブチラール化度)、アセチル化度及び水酸基の含有率はJIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定した。なお、ASTM D1396-92により測定した場合も、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法と同様の数値を示した。 In the polyvinyl acetal resin used, n-butyraldehyde having 4 carbon atoms is used for acetalization. With respect to the polyvinyl acetal resin, the degree of acetalization (butyralization), the degree of acetylation and the hydroxyl group content were measured by a method according to JIS K 6728 "Polyvinyl butyral test method". In addition, when measured by ASTM D1396-92, the same numerical value as the method according to JIS K6728 "polyvinyl butyral test method" was shown.
 (熱可塑性樹脂)
 ポリビニルアセタール樹脂(表中「PVB」、平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、アセタール化度68.5モル%)
(Thermoplastic resin)
Polyvinyl acetal resin (in the table, “PVB”, average polymerization degree 1700, hydroxyl content 30.5 mol%, degree of acetylation 1 mol%, degree of acetalization 68.5 mol%)
 (可塑剤)
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
 トリエチレングリコールジ-n-ブタノエート(3GB)
(Plasticizer)
Triethylene glycol di-2-ethylhexanoate (3GO)
Triethylene glycol di-n-butanoate (3 GB)
 (熱電変換材料)
 ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)(PEDOT PSS)
 ポリチオフェン
 カーボンナノチューブ(CNT)
(Thermoelectric material)
Poly (3,4-ethylenedioxythiophene): Poly (4-styrene sulfonate) (PEDOT PSS)
Polythiophene carbon nanotube (CNT)
 (ドーパント)
 無水塩化鉄(III)
(Dopant)
Anhydrous ferric chloride (III)
 (金属塩)
 酢酸マグネシウムと2-エチル酪酸マグネシウムとの混合物(酢酸マグネシウムの重量比:2-エチル酪酸マグネシウムの重量比=50重量%:50重量%)
 (紫外線遮蔽剤)
 BASF社製「Tinuvin326」
 (酸化防止剤)
 BHT(2,6-ジ-t-ブチル-p-クレゾール)
(Metal salt)
Mixture of magnesium acetate and magnesium 2-ethylbutyrate (weight ratio of magnesium acetate: weight ratio of magnesium 2-ethylbutyrate = 50% by weight: 50% by weight)
(UV screening agent)
BASF "Tinuvin 326"
(Antioxidant)
BHT (2,6-di-t-butyl-p-cresol)
 (実施例1)
 中間膜を形成するための組成物の作製:
 以下の配合成分を配合し、ミキシングロールで充分に混練し、中間膜を形成するための組成物を得た。
Example 1
Preparation of composition for forming interlayer:
The following blending components were blended and sufficiently kneaded with a mixing roll to obtain a composition for forming an intermediate film.
 ポリビニルアセタール樹脂(平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、アセタール化度68.5モル%)100重量部
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)40重量部
 得られる中間膜中で0.05重量%となる量の熱電変換材料(PEDOT PSS)
 得られる中間膜中でMgが60ppmとなる量の酢酸マグネシウムと2-エチル酪酸マグネシウムとの混合物
 得られる中間膜中で0.2重量%となる量のBASF社製「Tinuvin326」)
 得られる中間膜中で0.2重量%となる量のBHT(2,6-ジ-t-ブチル-p-クレゾール)
 得られる中間膜中の熱電変換材料100重量部に対して12.5重量部となる量の無水塩化鉄(III)
Polyvinyl acetal resin (average polymerization degree 1700, hydroxyl content 30.5 mol%, acetylation degree 1 mol%, acetalization degree 68.5 mol%) 100 parts by weight triethylene glycol di-2-ethylhexanoate ( 3GO) 40 parts by weight Thermoelectric conversion material (PEDOT PSS) in an amount of 0.05% by weight in the obtained interlayer film
Mixture of magnesium acetate and magnesium 2-ethyl butyric acid in an amount of 60 ppm of Mg in the resulting interlayer film BASF "Tinuvin 326" in an amount of 0.2 wt% in the resulting interlayer film
BHT (2,6-di-t-butyl-p-cresol) in an amount of 0.2% by weight in the resulting interlayer film
Anhydrous iron chloride (III) in an amount of 12.5 parts by weight with respect to 100 parts by weight of the thermoelectric conversion material in the resulting interlayer film
 中間膜の作製:
 中間膜形成するための組成物を、押出機を用いて押出して、厚みが760μmである中間膜(熱可塑性樹脂フィルム)を得た。
Preparation of interlayer:
The composition for forming the intermediate film was extruded using an extruder to obtain an intermediate film (thermoplastic resin film) having a thickness of 760 μm.
 合わせガラスの作製(可視光線透過率測定用):
 得られた中間膜を、縦5cm×横5cmの大きさに切断した。次に、JIS R3208に準拠した2枚のグリーンガラス(縦5cm×横5cm×厚み2mm)を用意した。この2枚のグリーンガラスの間に、得られた中間膜を挟み込み、真空ラミネーターにて90℃で30分間保持し、真空プレスし、積層体を得た。積層体において、ガラス板からはみ出た中間膜部分を切り落とし、合わせガラスを得た。
Preparation of laminated glass (for visible light transmittance measurement):
The obtained interlayer was cut into a size of 5 cm long × 5 cm wide. Next, two sheets of green glass (5 cm long × 5 cm wide × 2 mm thick) in accordance with JIS R3208 were prepared. The obtained interlayer film was sandwiched between the two sheets of green glass, held at 90 ° C. for 30 minutes with a vacuum laminator, and vacuum pressed to obtain a laminate. In the laminated body, the intermediate film portion protruding from the glass plate was cut off to obtain a laminated glass.
 熱電変換合わせガラスの作製:
 上記合わせガラスの両端にて露出している中間膜(熱可塑性樹脂フィルム)に、電極を接続した。電極を導線を介して電気取出部(電力計を備える)に接続して、熱電変換合わせガラスを得た。
Preparation of thermoelectric conversion laminated glass:
An electrode was connected to the intermediate film (thermoplastic resin film) exposed at both ends of the laminated glass. The electrode was connected to an electrical extraction part (provided with a power meter) via a conducting wire to obtain a thermoelectric conversion laminated glass.
 (実施例2~12)
 熱電変換材料の種類及び配合量、並びに、可塑剤の種類及び配合量を下記の表1,2に示すように設定したこと以外は実施例1と同様にして、中間膜、合わせガラス、及び熱電変換合わせガラスを得た。
(Examples 2 to 12)
An interlayer film, a laminated glass, and a thermoelectric material were prepared in the same manner as in Example 1 except that the type and blending amount of the thermoelectric conversion material, and the type and blending amount of the plasticizer were set as shown in Tables 1 and 2 below. A conversion laminated glass was obtained.
 (比較例1)
 ガラス基板の上にポリエステルフィルムを貼り付けた。次いで、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)(PEDOT PSS)の水溶液をポリエステルフィルム上にスピンコート法にて塗布し、塗布したPEDOT PSS水溶液を加熱乾燥させてPEDOT PSS膜をポリエステルフィルム上に形成させた。次いで、ガラス基板から、ポリエステルフィルムとPEDOT PSS膜との積層体を剥離した。この積層体を、中間膜として用いて、合わせガラス、及び熱電変換合わせガラスを得た。
(Comparative example 1)
The polyester film was stuck on the glass substrate. Next, an aqueous solution of poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonate) (PEDOT PSS) is applied on a polyester film by spin coating, and the applied PEDOT PSS aqueous solution is heated and dried. The PEDOT PSS membrane was formed on a polyester film. Next, the laminate of the polyester film and the PEDOT PSS film was peeled off from the glass substrate. This laminate was used as an intermediate film to obtain laminated glass and thermoelectric conversion laminated glass.
 (比較例2)
 ガラス基板の上にポリエステルフィルムを貼り付けた。次いで、カーボンナノチューブ(CNT)をポリビニルアルコールを含む水溶液に分散させてCNT分散液を調製した。得られたCNT分散液をポリエステルフィルム上にスピンコート法にて塗布し、塗布したCNT分散液を加熱乾燥させてCNT膜をポリエステルフィルム上に形成させた。次いで、ガラス基板から、ポリエステルフィルムとCNT膜との積層体を剥離した。この積層体を、中間膜として用いて、合わせガラス、及び熱電変換合わせガラスを得た。
(Comparative example 2)
The polyester film was stuck on the glass substrate. Then, carbon nanotubes (CNTs) were dispersed in an aqueous solution containing polyvinyl alcohol to prepare a CNT dispersion. The obtained CNT dispersion was applied onto a polyester film by spin coating, and the coated CNT dispersion was dried by heating to form a CNT film on the polyester film. Subsequently, the laminated body of a polyester film and a CNT film | membrane was peeled from the glass substrate. This laminate was used as an intermediate film to obtain laminated glass and thermoelectric conversion laminated glass.
 (比較例3)
 熱電変換材料を用いなかったこと以外は実施例1と同様にして、中間膜、合わせガラス、及び熱電変換合わせガラスを得た。
(Comparative example 3)
An intermediate film, a laminated glass, and a thermoelectric conversion laminated glass were obtained in the same manner as in Example 1 except that the thermoelectric conversion material was not used.
 (比較例4~5)
 熱電変換材料の種類及び配合量を下記の表3に示すように設定したこと以外は実施例1と同様にして、中間膜、合わせガラス、及び熱電変換合わせガラスを得た。
(Comparative Examples 4 to 5)
An intermediate film, a laminated glass, and a thermoelectric conversion laminated glass were obtained in the same manner as in Example 1 except that the type and blending amount of the thermoelectric conversion material were set as shown in Table 3 below.
 (評価)
 (1)曲げかたさ
 試験片を23℃、50%RHで調湿した後、純曲げ試験機(カトーテック社製「KES-FB2-A」)を用いて、試験片を変形速度0.5cm/秒で曲げ変形させた。その際の曲率とトルクを測定し、単位曲率変化あたりの曲げモーメント変化量(単位試験片幅当たり)を求め、求められた値を純曲げかたさとした(なお、本件明細書においては、単に「曲げかたさ」という)。
(Evaluation)
(1) Bending hardness After conditioning the test piece at 23 ° C. and 50% RH, using a pure bending tester (“KES-FB2-A” manufactured by Kato Tech Co., Ltd.), the deformation rate of the test piece is 0.5 cm / It was bent and deformed in seconds. The curvature and torque at that time were measured, the bending moment change amount per unit curvature change (per unit specimen width) was determined, and the determined value was used as the pure bending hardness (in the present specification, simply " It is called "flexible hardness").
 (2)折り曲げ試験
 1回曲げた後の中間膜(熱可塑組成樹脂フィルム)と10回曲げた後の中間膜(熱可塑組成樹脂フィルム)とを観察し、折り曲げ性を以下の基準で判定した。
(2) Bending test The intermediate film (thermoplastic composition resin film) after bending once and the intermediate film (thermoplastic composition resin film) after bending 10 times were observed, and the bending property was judged based on the following criteria. .
 [折り曲げ試験]
 ○:10回折り曲げた後の中間膜(熱可塑組成樹脂フィルム)に折り目が観察されなかった
 ×:1回折り曲げた後の中間膜(熱可塑組成樹脂フィルム)に折り目が観察された
[Bending test]
:: No fold was observed in the interlayer (thermoplastic composition resin film) after bending 10 times. X: a fold was observed in the interlayer (thermoplastic composition resin film) after bending.
 (3)可視光線透過率(A光Y値、初期A-Y(380nm~780nm))
 分光光度計(日立ハイテク社製「U-4100」)を用いて、JIS R3211:1998に準拠して、得られた合わせガラスEの波長380nm~780nmにおける可視光線透過率(Visible Transmittance)を測定した。
(3) Visible light transmittance (A light Y value, initial A-Y (380 nm to 780 nm))
The visible light transmittance (Visible Transmittance) at a wavelength of 380 nm to 780 nm of the obtained laminated glass E was measured according to JIS R 3211: 1998 using a spectrophotometer ("U-4100" manufactured by Hitachi High-Technologies Corporation) .
 (4)熱電変換機能
 (熱伝導率)
 熱伝導率λを次式に基づいて求めた。
(4) Thermoelectric conversion function (thermal conductivity)
The thermal conductivity λ was determined based on the following equation.
 λ=α・Cp・ρ Λ = α · Cp · ρ
 なお、Cpは比熱、αは熱拡散率、ρは試験片(中間膜)の密度である。熱拡散率αは、レーザーフラッシュ法により、比熱Cpは、示差走査熱量測定(DSC)法により、試験片の密度ρは、試験片の重量測定値及び体積測定値より、それぞれ測定した。 Cp is the specific heat, α is the thermal diffusivity, and ρ is the density of the test piece (intermediate film). The thermal diffusivity α was measured by the laser flash method, the specific heat Cp was measured by the differential scanning calorimetry (DSC) method, and the density ρ of the test piece was measured from the weight measurement value and the volume measurement value of the test piece.
 (導電率)
 4端子法にて真空雰囲気下、電流源より試験片(中間膜)に一定電流を流して、デジタルマルチメーターにて電圧値を読み取り、導電率を算出した。
(conductivity)
A constant current was supplied from a current source to the test piece (intermediate film) in a vacuum atmosphere by the four-terminal method, and the voltage value was read by a digital multimeter to calculate the conductivity.
 (ゼーベック係数)
 試験片(中間膜)の両端にそれぞれ電極が接するように配置した配線基板に試験片を固定した。試験片を固定した配線基板の一方の電極側にヒータを設け、真空チャンバー内に入れて真空環境下で試験片の一端を加熱した。なお、電極からに隣接する位置にクロメル-アルメル熱電対を配置して試料の両端に生じる温度差を測定した。各電極を電圧計に接続し、試験片の両端に生じた熱起電力を測定した。なお、加熱されていない一端はほぼ20℃に保たれており、ヒータにより加熱された他端は21℃から31℃まで温度上昇した。その際の熱起電力を測定して、傾きからゼーベック係数を算出した。
(Seebeck coefficient)
The test piece was fixed to the wiring board arrange | positioned so that an electrode might each contact at the both ends of a test piece (intermediate film). A heater was provided on one electrode side of the wiring substrate on which the test piece was fixed, and the heater was placed in a vacuum chamber to heat one end of the test piece in a vacuum environment. In addition, a chromel-almel thermocouple was disposed at a position adjacent to the electrode to measure a temperature difference generated at both ends of the sample. Each electrode was connected to a voltmeter, and the thermoelectromotive force generated at both ends of the test piece was measured. In addition, the one end which is not heated is kept at about 20 degreeC, and the other end heated by the heater rose in temperature from 21 degreeC to 31 degreeC. The thermal electromotive force at that time was measured, and the Seebeck coefficient was calculated from the slope.
 詳細及び結果を下記の表1~3に示す。なお、表1~3において、実施例1~12及び比較例3~5で用いたドーパント、金属塩、紫外線遮蔽剤及び酸化防止剤の記載は省略した。 Details and results are shown in Tables 1 to 3 below. In Tables 1 to 3, the descriptions of the dopant, metal salt, UV shielding agent and antioxidant used in Examples 1 to 12 and Comparative Examples 3 to 5 are omitted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1,1A…熱電変換フィルム
 10,10A…熱可塑性樹脂フィルム
 11…第1の層
 12…第2の層
 13…第3の層
 21…電極
 22…導線
 23…電気取出部
 31,31A…熱電変換合わせガラス
 40,40A…合わせガラス
 41…第1の合わせガラス部材
 42…第2の合わせガラス部材
DESCRIPTION OF SYMBOLS 1, 1A ... Thermoelectric conversion film 10, 10A ... Thermoplastic resin film 11 ... 1st layer 12 ... 2nd layer 13 ... 3rd layer 21 ... Electrode 22 ... Lead wire 23 ... Electric extraction part 31, 31A ... Thermoelectric conversion Laminated glass 40, 40A: laminated glass 41: first laminated glass member 42: second laminated glass member

Claims (19)

  1.  電極に接続されて用いられる熱可塑性樹脂フィルムであって、
     熱可塑性樹脂と、
     前記熱可塑性樹脂フィルムが前記電極に接続された状態で熱電変換機能を発現する熱電変換材料とを含み、
     曲げかたさが0.49N・cm/cm以下である、熱可塑性樹脂フィルム。
    A thermoplastic resin film used by being connected to an electrode,
    With thermoplastic resin,
    And a thermoelectric conversion material that exhibits a thermoelectric conversion function in a state where the thermoplastic resin film is connected to the electrode,
    The thermoplastic resin film whose bending hardness is 0.49 N * cm < 2 > / cm or less.
  2.  前記熱電変換材料の性状が、粒子状又は繊維状である、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the property of the thermoelectric conversion material is particulate or fibrous.
  3.  前記熱電変換材料が有機化合物である、請求項1又は2に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the thermoelectric conversion material is an organic compound.
  4.  前記熱可塑性樹脂がポリビニルアセタール樹脂である、請求項1~3のいずれか1項に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to any one of claims 1 to 3, wherein the thermoplastic resin is a polyvinyl acetal resin.
  5.  可塑剤を含む、請求項1~4のいずれか1項に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to any one of claims 1 to 4, which contains a plasticizer.
  6.  前記熱可塑性樹脂100重量部に対する前記可塑剤の含有量が20重量部以上、100重量部以下である、請求項5記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 5, wherein a content of the plasticizer with respect to 100 parts by weight of the thermoplastic resin is 20 parts by weight or more and 100 parts by weight or less.
  7.  前記熱可塑性樹脂フィルム100重量%中、前記熱電変換材料の含有量が0.01重量%以上、0.5重量%以下である、請求項1~6のいずれか1項に記載の熱可塑性樹脂フィルム。 The thermoplastic resin according to any one of claims 1 to 6, wherein the content of the thermoelectric conversion material is 0.01 wt% or more and 0.5 wt% or less in 100 wt% of the thermoplastic resin film. the film.
  8.  合わせガラス用中間膜である、請求項1~7のいずれか1項に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to any one of claims 1 to 7, which is an interlayer for laminated glass.
  9.  熱可塑性樹脂フィルムと、
     電極とを備え、
     前記熱可塑性樹脂フィルムは、熱可塑性樹脂と、熱電変換材料とを含み、
     前記熱可塑性樹脂フィルムが前記電極に接続されており、
     前記熱可塑性樹脂フィルムの曲げかたさが0.49N・cm/cm以下である、熱電変換フィルム。
    Thermoplastic resin film,
    Equipped with electrodes,
    The thermoplastic resin film includes a thermoplastic resin and a thermoelectric conversion material,
    The thermoplastic resin film is connected to the electrode,
    The thermoelectric conversion film whose bending hardness of the said thermoplastic resin film is 0.49 N * cm < 2 > / cm or less.
  10.  前記熱電変換材料の性状が、粒子状又は繊維状である、請求項9に記載の熱電変換フィルム。 The thermoelectric conversion film according to claim 9, wherein the property of the thermoelectric conversion material is particulate or fibrous.
  11.  前記熱電変換材料が有機化合物である、請求項9又は10に記載の熱電変換フィルム。 The thermoelectric conversion film according to claim 9, wherein the thermoelectric conversion material is an organic compound.
  12.  前記熱可塑性樹脂がポリビニルアセタール樹脂である、請求項9~11のいずれか1項に記載の熱電変換フィルム。 The thermoelectric conversion film according to any one of claims 9 to 11, wherein the thermoplastic resin is a polyvinyl acetal resin.
  13.  前記熱可塑性樹脂フィルムは、可塑剤を含む、請求項9~12のいずれか1項に記載の熱電変換フィルム。 The thermoelectric conversion film according to any one of claims 9 to 12, wherein the thermoplastic resin film contains a plasticizer.
  14.  前記熱可塑性樹脂100重量部に対する前記可塑剤の含有量が20重量部以上、100重量部以下である、請求項13に記載の熱電変換フィルム。 The thermoelectric conversion film according to claim 13, wherein a content of the plasticizer with respect to 100 parts by weight of the thermoplastic resin is 20 parts by weight or more and 100 parts by weight or less.
  15.  前記熱可塑性樹脂フィルム100重量%中、前記熱電変換材料の含有量が0.01重量%以上、0.5重量%以下である、請求項9~14のいずれか1項に記載の熱電変換フィルム。 The thermoelectric conversion film according to any one of claims 9 to 14, wherein the content of the thermoelectric conversion material is 0.01 wt% or more and 0.5 wt% or less in 100 wt% of the thermoplastic resin film. .
  16.  熱電変換機能を有する合わせガラス用中間膜である、請求項9~15のいずれか1項に記載の熱電変換フィルム。 The thermoelectric conversion film according to any one of claims 9 to 15, which is an intermediate film for laminated glass having a thermoelectric conversion function.
  17.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項8に記載の熱可塑性樹脂フィルムとを備え、
     前記熱可塑性樹脂フィルムが、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されており、
     前記熱可塑性樹脂フィルムが電極に接続されて用いられる、合わせガラス。
    A first laminated glass member,
    A second laminated glass member,
    And the thermoplastic resin film according to claim 8.
    The thermoplastic resin film is disposed between the first laminated glass member and the second laminated glass member,
    Laminated glass, wherein the thermoplastic resin film is used by being connected to an electrode.
  18.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項8に記載の熱可塑性樹脂フィルムと、
     電極とを備え、
     前記熱可塑性樹脂フィルムが、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されており、
     前記熱可塑性樹脂フィルムが前記電極に接続されている、熱電変換合わせガラス。
    A first laminated glass member,
    A second laminated glass member,
    The thermoplastic resin film according to claim 8,
    Equipped with electrodes,
    The thermoplastic resin film is disposed between the first laminated glass member and the second laminated glass member,
    Thermoelectric conversion laminated glass, wherein the thermoplastic resin film is connected to the electrode.
  19.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項16に記載の熱電変換フィルムとを備え、
     前記熱電変換フィルムにおける前記熱可塑性樹脂フィルムが、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に配置されている、熱電変換合わせガラス。
    A first laminated glass member,
    A second laminated glass member,
    And the thermoelectric conversion film according to claim 16;
    The thermoelectric conversion laminated glass, wherein the thermoplastic resin film in the thermoelectric conversion film is disposed between the first laminated glass member and the second laminated glass member.
PCT/JP2018/033076 2017-09-06 2018-09-06 Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass WO2019049943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018562137A JP7221697B2 (en) 2017-09-06 2018-09-06 Thermoplastic resin film, thermoelectric conversion film, laminated glass and thermoelectric conversion laminated glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-171347 2017-09-06
JP2017171346 2017-09-06
JP2017-171346 2017-09-06
JP2017171347 2017-09-06

Publications (1)

Publication Number Publication Date
WO2019049943A1 true WO2019049943A1 (en) 2019-03-14

Family

ID=65634575

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/033076 WO2019049943A1 (en) 2017-09-06 2018-09-06 Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass
PCT/JP2018/033075 WO2019049942A1 (en) 2017-09-06 2018-09-06 Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033075 WO2019049942A1 (en) 2017-09-06 2018-09-06 Thermoplastic resin film, thermoelectric conversion film, laminated glass, and thermoelectric conversion laminated glass

Country Status (2)

Country Link
JP (2) JP6683844B2 (en)
WO (2) WO2019049943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145776A1 (en) * 2022-01-27 2023-08-03 積水化学工業株式会社 Polymer film and laminated glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084821A (en) * 2010-10-13 2012-04-26 Nihon Sentan Kagaku Kk Thermoelectric conversion material and thermoelectric conversion element
JP2016171322A (en) * 2015-03-09 2016-09-23 日本ゼオン株式会社 Composition for thermoelectric conversion element, mold for thermoelectric conversion element, thermoelectric conversion element, thermoelectric conversion module, method for manufacturing composition for thermoelectric conversion element, and method for manufacturing mold for thermoelectric conversion element
JP2016171313A (en) * 2015-03-10 2016-09-23 三洋化成工業株式会社 Thermoelectric conversion material and method for manufacturing the same
WO2017122808A1 (en) * 2016-01-15 2017-07-20 日本ゼオン株式会社 Method for manufacturing film for thermoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084821A (en) * 2010-10-13 2012-04-26 Nihon Sentan Kagaku Kk Thermoelectric conversion material and thermoelectric conversion element
JP2016171322A (en) * 2015-03-09 2016-09-23 日本ゼオン株式会社 Composition for thermoelectric conversion element, mold for thermoelectric conversion element, thermoelectric conversion element, thermoelectric conversion module, method for manufacturing composition for thermoelectric conversion element, and method for manufacturing mold for thermoelectric conversion element
JP2016171313A (en) * 2015-03-10 2016-09-23 三洋化成工業株式会社 Thermoelectric conversion material and method for manufacturing the same
WO2017122808A1 (en) * 2016-01-15 2017-07-20 日本ゼオン株式会社 Method for manufacturing film for thermoelectric conversion element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145776A1 (en) * 2022-01-27 2023-08-03 積水化学工業株式会社 Polymer film and laminated glass

Also Published As

Publication number Publication date
JPWO2019049942A1 (en) 2019-11-07
JP6683844B2 (en) 2020-04-22
JPWO2019049943A1 (en) 2020-08-20
JP7221697B2 (en) 2023-02-14
WO2019049942A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
TWI780024B (en) Interlayer film for laminated glass and laminated glass
WO2018182032A1 (en) Laminated glass
TWI725993B (en) Interlayer film for laminated glass and laminated glass
WO2017135441A1 (en) Interlayer for laminated glass, and laminated glass
TWI673312B (en) Intermediate film and laminated glass for laminated glass
WO2017057499A1 (en) Interlayer film for laminated glass, and laminated glass
TWI745573B (en) Interlayer film, roll body and laminated glass for laminated glass
JP6683844B2 (en) Thermoplastic resin film, thermoelectric conversion film, laminated glass and thermoelectric conversion laminated glass
JP7252531B2 (en) Method for producing resin film, method for producing thermoelectric conversion film, method for producing laminated glass, and method for producing thermoelectric conversion laminated glass
WO2018198678A1 (en) Laminated glass
WO2018198677A1 (en) Laminated glass
WO2017171041A1 (en) Polyvinyl acetal ionomer resin material, polyvinyl acetal ionomer resin film, and laminated glass
TWI737897B (en) Interlayer film for laminated glass and laminated glass
JP7323291B2 (en) laminated glass
JP6484351B2 (en) Interlayer film for laminated glass, roll body and laminated glass
WO2021241592A1 (en) Interlayer film for laminated glass, and laminated glass
JP6539313B2 (en) Intermediate film for laminated glass and laminated glass
KR20240009412A (en) Dispersions, resin compositions, interlayers for laminated glass and laminated glass
WO2019065837A1 (en) Laminated glass
JPWO2019124375A1 (en) Laminated glass interlayer film and laminated glass
JP2019023257A (en) Thermoplastic resin film and glass plate-containing laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562137

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854481

Country of ref document: EP

Kind code of ref document: A1