WO2019049917A1 - Flux - Google Patents

Flux Download PDF

Info

Publication number
WO2019049917A1
WO2019049917A1 PCT/JP2018/032958 JP2018032958W WO2019049917A1 WO 2019049917 A1 WO2019049917 A1 WO 2019049917A1 JP 2018032958 W JP2018032958 W JP 2018032958W WO 2019049917 A1 WO2019049917 A1 WO 2019049917A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mass
flux
organic acid
solvent
Prior art date
Application number
PCT/JP2018/032958
Other languages
French (fr)
Japanese (ja)
Inventor
知久 川中子
美幸 平岡
貴洋 西▲崎▼
直克 児島
浩由 川▲崎▼
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to CN201880057163.XA priority Critical patent/CN111107961A/en
Priority to KR1020207007820A priority patent/KR20200051649A/en
Priority to US16/644,362 priority patent/US20210060713A1/en
Publication of WO2019049917A1 publication Critical patent/WO2019049917A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the present invention relates to a water-containing flux.
  • solder bumps There are various methods for forming solder bumps on a substrate. With the recent miniaturization of solder balls, a method of transferring flux to the solder balls and mounting the fluxed solder balls on the electrodes has come to be adopted. By reflowing and cooling the substrate on which the solder balls are mounted, solder bumps are formed.
  • the flux chemically removes the metal oxide film present on the metal surface of the solder alloy and the object to be joined which is to be soldered, and enables the movement of the metal element at the boundary between the two. For this reason, by soldering using a flux, an intermetallic compound is formed between the solder alloy and the metal surface of the bonding object, and a strong bonding can be obtained.
  • fluxes containing an organic acid, a solvent and the like The organic acid is added as an activator component for removing the metal oxide film, and the solvent has a role of dissolving solid components in the flux.
  • Patent Document 1 discloses a flux containing 0.1 to 0.4% by weight of water based on the total amount.
  • a low residue flux can be designed by replacing a part or all of the base agent which has low reactivity with organic acids and is difficult to volatilize during reflow with a highly volatile solvent or the like.
  • the organic acid gradually reacts with the hydroxyl group (—OH group) of the alcohol in the solvent, which is contained in a larger amount than the conventional one, and becomes easy to esterify with the passage of time from the preparation of the flux to the use.
  • the present invention solves such problems, and suppresses the formation of an ester by the reaction of the organic acid and the hydroxyl group of the alcohol contained in the solvent, and maintains the activity, as well as the solder
  • the purpose is to provide a flux that improves the stickability.
  • Organic acid carboxyl which contains 40% by mass or more and 90% by mass or less of water, 2% by mass or more and 15% by mass or less of an organic acid, and 0% by mass to 48% by mass or less of a solvent having a hydroxy group
  • the content ratio of the carboxylic acid ester unit esterified by the hydroxy group and the organic acid contained in the solvent is 0 unit mol% or more and 50 unit mol% or less, when the molar mass% of the group unit is 100 unit mol%.
  • the "organic acid carboxyl group unit” indicates a functional group of a carboxyl group having activity as an organic acid
  • the “carboxylic acid ester unit” indicates a functional group in a state where the carboxyl group is esterified.
  • unit mol% means mol mass% of each "unit”.
  • the amine contains more than 0% by mass and 10% or less by mass, and the amine is imidazoles, aliphatic amines, aromatic amines, amino alcohols, polyoxyalkylene type alkylamines, terminal amine polyoxyalkylenes, amine hydrogen halides
  • the flux according to any one of the above (1) to (3), which contains at least one of acid salts.
  • the hydrolysis occurs due to the water content, it is possible to suppress the reaction between the organic acid and the hydroxy group contained in the solvent to form an ester. Therefore, the metal oxide film can be sufficiently removed. Also, the solderability is good.
  • the flux of the present embodiment contains 40% by mass to 90% by mass of water, 2% by mass to 15% by mass of an organic acid, and 0% by mass to 48% by mass of a solvent having a hydroxy group.
  • Pure water can be used as water, and the content ratio of water is more preferably 40% by mass to 80% by mass.
  • the content ratio of the solvent is more preferably 8% by mass to 48% by mass.
  • the organic acid is preferably a water-soluble organic acid, and is added as an activator component in the flux.
  • the activator component at the time of soldering, the solder alloy and the metal oxide present on the metal surface of the object to be soldered are chemically removed.
  • organic acids examples include glutaric acid, phenylsuccinic acid, succinic acid, malonic acid, adipic acid, azelaic acid, glycolic acid, diglycolic acid, thioglycolic acid, thiodiglycolic acid, propionic acid, 2,2-bishydroxymethyl At least one of propionic acid, 2,2-bishydroxymethylbutanoic acid, malic acid, tartaric acid, dimer acid, hydrogenated dimer acid, trimer acid and the like is used.
  • These organic acids have a carboxyl group.
  • a monofunctional organic acid has one carboxyl group and is represented by the following chemical formula.
  • R1 in the formula is a linear or branched alkyl group, an alkyl ether group or the like. Also, R1 may contain an aromatic ring.
  • the bifunctional organic acid has two carboxyl groups, and the trifunctional or higher organic acid has three or more carboxyl groups. As the functional group molar number of the carboxyl group having activity as an organic acid (hereinafter referred to as "organic acid carboxyl group unit") increases in the flux, the activity acting on the removal of the metal oxide film is stronger.
  • a monofunctional organic acid has 1 mol of an organic acid carboxyl group unit
  • a bifunctional organic acid has 2 mol of an organic acid carboxyl group unit
  • a trifunctional organic acid has 1 mol of organic acid per 1 mol of organic acid.
  • the organic acid carboxyl group unit is 3 moles.
  • the solvent one having a hydroxy group is used.
  • the solvent preferably has water solubility, and preferably does not volatilize in a low temperature range of 120 ° C. to 150 ° C. in order to efficiently bring about the action of the active agent. If the solvent is volatilized, the flux becomes dry, and it becomes difficult for the flux to wet and spread at the joint. Therefore, the boiling point of the solvent is preferably 200 ° C. or more. Further, it is preferable to use a solvent that volatilizes at the reflow temperature, and the boiling point of the solvent is preferably 280 ° C. or less.
  • These solvents are represented by the following chemical formula.
  • R 2 in the formula is a linear or branched alkyl group, an alkyl ether group or the like, and R 2 may contain an aromatic ring.
  • the flux of the present embodiment for example, imidazoles, aliphatic amines, aromatic amines, amino alcohols, polyoxyalkylene type alkylamines, terminal amine polyoxyalkylenes, amine hydrohalide salts, etc. described below. It may contain at least one of amines.
  • An amine is added as an active auxiliary component in the flux. Amines react with organic acids to form salts and increase heat resistance. When a large amount of amine is added, the amount of flux residue increases. Therefore, it is preferable that the content be 0% by mass or more and 10% by mass or less.
  • the amine in the present embodiment is preferably an amine having a molecular weight of 700 or less, more preferably 600 or less.
  • the imidazoles include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-phenylimidazole and the like.
  • Aliphatic amines include methylamine, ethylamine, dimethylamine, 1-aminopropane, isopropylamine, trimethylamine, n-ethylmethylamine, allylamine, n-butylamine, diethylamine, sec-butylamine, tert-butylamine, N, N- Dimethylethylamine, isobutylamine, pyrrolidine, 3-pyrroline, n-pentylamine, dimethylaminopropane, 1-aminohexane, triethylamine, diisopropylamine, dipropylamine, hexamethyleneimine, 1-methylpiperidine, 2-methylpiperidine, 4 -Methylpiperidine, cyclohexylamine, dial
  • Aromatic amines include aniline, diethylaniline, pyridine, diphenyl guanidine, ditolyl guanidine and the like.
  • amino alcohols include 2-ethylaminoethanol, diethanolamine, diisopropanolamine, N-butyldiethanolamine, triisopropanolamine, N, N-bis (2-hydroxyethyl) -N-cyclohexylamine, triethanolamine, N, N And N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine, N, N, N', N '', N ''-pentakis (2-hydroxypropyl) diethylene triamine and the like.
  • polyoxyalkylene type alkylamines examples include polyoxyalkylene alkylamines, polyoxyalkylene ethylenediamines, and polyoxyalkylene diethylenetriamines.
  • the terminal amine polyoxyalkylene includes terminal amino polyethylene glycol-polypropylene glycol copolymer (terminal amino PEG-PPG copolymer) and the like.
  • hydrohalide salt for the hydrohalide salts (hydrofluoride, borohydrofluoride, hydrochloride, hydrobromide, hydroiodide) of the various amines mentioned above
  • hydrohalide salts hydrofluoride, borohydrofluoride, hydrochloride, hydrobromide, hydroiodide
  • ethylamine hydrochloride, ethylamine hydrobromide, cyclohexylamine hydrochloride, cyclohexylamine hydrobromide and the like for the hydrohalide salts (hydrofluoride, borohydrofluoride, hydrochloride, hydrobromide, hydroiodide) of the various amines mentioned above
  • ethylamine hydrochloride, ethylamine hydrobromide, cyclohexylamine hydrochloride, cyclohexylamine hydrobromide and the like for the hydrohalide salts (hydrofluoride, borohydroflu
  • polyoxyethylene ethylene diamine, polyoxypropylene ethylene diamine, polyoxyethylene polyoxypropylene ethylene diamine, polyoxyethylene alkylamine, polyoxyethylene tallow amine, polyoxyethylene alkylpropyl diamine, poly At least one surfactant of oxyethylene tallow propyl diamine, polyoxyethylene alkyl ether, polyoxyethylene alkyl amide, aliphatic alcohol ethylene oxide adduct, etc. may be contained within the range not to impair the performance of the present flux.
  • Surfactants adjust the surface tension of the flux.
  • the surfactant of the present embodiment preferably has a molecular weight of more than 700.
  • colorants such as dyes, pigments and dyes, antifoaming agents, thixotropic agents and the like may be appropriately added to the flux of the present embodiment as long as the performance of the flux is not impaired.
  • the organic acid reacts with the hydroxy group contained in the solvent, the organic acid forms an esterified organic acid ester to produce water.
  • a monofunctional organic acid is used as an example of an organic acid
  • a monofunctional alcohol is used as an example of a solvent.
  • the reaction of an organic acid and a hydroxy group in the solvent is shown by the following reaction formula (1) Be
  • the reaction of a bifunctional or trifunctional or higher organic acid or alcohol also occurs with a hydroxyl group for each carboxyl group, and thus the description thereof is omitted.
  • the organic acid ester (R1COOR2) does not have the activity of removing the metal oxide film as a flux that the organic acid had. Therefore, the flux containing the organic acid and the solvent having a hydroxy group may lose the activity as a flux for removing the metal oxide film.
  • the esterification reaction of the reaction formula (1) is a reversible equilibrium reaction, and in the environment where the organic acid ester and water coexist, the hydrolysis shown in the following reaction formula (2) also occurs.
  • the number of moles of the functional group unit due to the esterification of the organic acid when the reactions of the reaction formulas (1) and (2) are in equilibrium will be described.
  • the activity of the organic acid is higher as the number of moles of the organic acid carboxyl group is larger, and the activity of the organic acid is weaker as the number of moles of the organic acid carboxyl group is smaller.
  • reaction formula (3) the reaction of monofunctional organic acid being esterified is shown in reaction formula (3).
  • the organic acid and the hydroxy group react, as described in the reaction formula (1), a dehydration reaction occurs to form an organic acid ester.
  • the functional group in the state in which the carboxyl group is esterified is referred to as a "carboxylic acid ester unit”
  • the molar mass% of the functional group is referred to as a "unit molar%”.
  • the total of organic acid and organic acid ester is 100 mol%. 50 mol% of the organic acid and 50 mol% of the organic acid ester. Since one carboxyl group possessed by one organic acid and one ester group possessed by one organic acid ester are also present, the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%, The acid carboxyl group unit is 50 unit mol%, and the carboxylic acid ester unit is 50 unit mol%. That is, the unit mole percent of the carboxyl group and the unit mole percent of the ester group have the same value.
  • reaction formula (4) a reaction for esterifying a bifunctional organic acid is shown in reaction formula (4).
  • the carboxyl group possessed by the organic acid and the ester group possessed by the organic acid diester are also two, so when the same number of organic acid and organic acid diester exist, the organic acid carboxyl is The abundance ratio of the base unit to the carboxylic acid ester unit is 1: 1.
  • the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%, 50 unit mol% of the carboxyl group unit and 50 unit mol% of the carboxylic acid ester unit are obtained.
  • the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%
  • the reaction constant of equation (2) is promoted by raising the concentration of water [H 2 O] to keep the equilibrium constant constant, and the organic acid not esterified is It is believed that the concentration [R1 COOH] can be increased.
  • the flux contains a large amount of water, when the heated water bumps during the reflow, a state in which the solder is detached from the electrode (ball missing) occurs. Ball missing causes solder joint failure and conduction failure. Therefore, in order to determine the proportion of the composition contained in the flux which improves the solderability while suppressing the formation of the ester, the flux shown in Table 1 and Table 2 shows the flux of each Example and each Comparative Example. Were prepared, and each flux was subjected to esterification suppression verification and ball-missing suppression verification as follows.
  • the acid value refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid contained in 1 g of flux. The higher the acid number of the flux, the larger the number of moles of organic acid carboxyl group units in the flux, and the lower the acid number of the flux, the smaller the number of moles of organic acid carboxyl group units in the flux.
  • the activity of removing the metal oxide film is lost.
  • the flux in which the esterification of the organic acid is suppressed can sufficiently remove the metal oxide film present on the metal surface, so that the solder alloy and the object to be joined can be firmly joined.
  • the reduction rate of the acid value is 50% or less
  • the content ratio of esterified carboxylic acid ester unit is 0 unit mol% when the organic acid carboxyl group unit added to the flux is 100 unit mol%
  • the content is 50 unit mol% or less, it can be said that the organic acid has the property of removing the metal oxide film sufficiently. Therefore, the inventors found that the flux in which the reduction rate of the acid value became 50% or less was a flux capable of suppressing the esterification of the organic acid.
  • Ball missing causes solder joint failure and conduction failure.
  • a solder bump can be formed in which bonding failure or conduction failure is suppressed.
  • the temperature condition is stricter than the condition 1 under the condition 2, it can be judged that the flux in which the ball missing is not found in the verification according to the condition 1 is a flux having a sufficiently good solderability.
  • the flux for which ball missing was not found in the verification according to the conditions 1 and 2 is judged to be a flux with better solderability.
  • the flux of Example 1 contains 40% by mass of pure water, 15% by mass of malic acid as an organic acid, and 45% by mass of 1,3-propanediol as a solvent.
  • the flux of Example 1 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 2 contains 40% by mass of pure water, 15% by mass of malic acid, 10% by mass of imidazole as an amine, and 35% by mass of 1,3-propanediol.
  • the flux of Example 2 was able to suppress esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 3 contains 50% by mass of pure water, 2% by mass of malonic acid as an organic acid, and 48% by mass of 1,3-propanediol.
  • the flux of Example 3 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 4 contains 50% by mass of pure water, 2% by mass of malic acid, and 48% by mass of 1,3-propanediol. The flux of Example 4 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 5 contains 60% by mass of pure water, 2% by mass of malonic acid, and 38% by mass of 1,3-propanediol. The flux of Example 5 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 6 contains 70% by mass of pure water, 2% by mass of malonic acid, and 28% by mass of 1,3-propanediol. The flux of Example 6 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 7 contains 80% by mass of pure water, 2% by mass of malonic acid, and 18% by mass of 1,3-propanediol. The flux of Example 7 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Example 8 contains 90% by mass of pure water, 2% by mass of malonic acid, and 8% by mass of 1,3-propanediol. The flux of Example 8 was able to suppress the esterification, and no ball missing occurred under the condition 1.
  • the flux of Example 9 contains 40% by mass of pure water, 15% by mass of malic acid, 1% by mass of imidazole, and 44% by mass of 1,3-propanediol.
  • the flux of Example 9 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
  • the flux of Comparative Example 1 does not contain pure water, and contains 2% by mass of malonic acid and 98% by mass of 1,3-propanediol. In the flux of Comparative Example 1, no ball missing occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so the suppression of esterification was insufficient.
  • the flux of Comparative Example 2 does not contain pure water, and contains 5% by mass of malic acid, 1% by mass of imidazole, and 94% by mass of 1,3-propanediol. In the flux of Comparative Example 2, no ball misting occurred under the conditions 1 and 2, but the reduction in acid value exceeded 50%, so that the suppression of esterification was insufficient.
  • the flux of Comparative Example 3 contains 0.1% by mass of pure water, 2% by mass of malonic acid, and 97.9% by mass of 1,3-propanediol. In the flux of Comparative Example 3, no ball misting occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so that the suppression of esterification was insufficient.
  • the flux of Comparative Example 4 contains 5% by mass of pure water, 2% by mass of malonic acid, and 93% by mass of 1,3-propanediol. Although no ball missing occurred under conditions 1 and 2, the reduction of the acid value exceeded 50%, so that the suppression of esterification was insufficient.
  • the flux of Comparative Example 5 contains 10% by mass of pure water, 2% by mass of malonic acid, and 88% by mass of 1,3-propanediol. In the flux of Comparative Example 5, no ball misting occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so the suppression of esterification was insufficient.
  • the flux of Comparative Example 6 contains 10% by mass of pure water, 2% by mass of malic acid, and 88% by mass of 1,3-propanediol. In the flux of Comparative Example 6, no ball misting occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so the suppression of esterification was insufficient.
  • the flux of Comparative Example 7 contains 20% by mass of pure water, 2% by mass of malonic acid, and 78% by mass of 1,3-propanediol. In the flux of Comparative Example 7, no ball missing occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so that the suppression of esterification was insufficient.
  • the flux of Comparative Example 8 contains 30% by mass of pure water, 2% by mass of malonic acid, and 68% by mass of 1,3-propanediol. In the flux of Comparative Example 8, no ball missing occurred under the conditions 1 and 2, but the reduction in acid value exceeded 50%, so that the suppression of esterification was insufficient.
  • the flux of Comparative Example 9 contains 98% by mass of pure water and 2% by mass of malonic acid. In the flux of Comparative Example 9, ball missing occurred under conditions 1 and 2. Since the flux of Comparative Example 9 did not contain a solvent, the organic acid was not esterified.
  • Example 7 Example 8, and Comparative Example 9 contained the same components, but in Example 7, no ball missing occurred under conditions 1 and 2 in Example 7, and no ball occurred in Condition 1 in Example 8 Without the ball, in Comparative Example 9, ball missing occurred under conditions 1 and 2. It can be said that this is because the proportions of water contained in the fluxes of Examples 7 and 8 and Comparative Example 9 are different from each other, and if the proportion of water is large, it can be said to cause ball missing. From these results, the content ratio of water is preferably 90% by mass or less, and more preferably 80% by mass or less.
  • Example 1 In the flux of Example 1 in which the content ratio of water is 40% by mass, esterification could be suppressed, but in the flux of Comparative Example 8 in which the content ratio of water is 30% by mass, the decrease in acid value exceeds 50%, Of esterification could not be sufficiently suppressed. From the results of Example 1 and Comparative Example 8, it can be said that suppression of esterification is insufficient when the content ratio of water is small, but the content ratio of water is preferably 40% by mass or more, and the content ratio of water is It can be said that esterification of the organic acid is suppressed as the amount is larger.
  • the fluxes of Examples 1 to 9 all contain water in an amount of 40% by mass to 90% by mass. In any of the examples, esterification could be suppressed, and no ball missing occurred under condition 1. Therefore, it can be said that the content ratio of water is preferably 40% by mass or more and 90% by mass or less. Furthermore, in the flux of Examples 1 to 7 and 9 in which the content ratio of water is 40% by mass to 80% by mass, no ball missing occurs even under the condition 2. From this, it can be said that the content ratio of water is more preferably 40% by mass to 80% by mass. In addition, although each verification was performed using a pure water in this example, the same result was obtained, even if it used various pure waters, such as distilled water and ion exchange water.
  • the water in the flux is contained so as to be as small as possible. The reason is that, as described above, when the flux contains a large amount of water, when the water is heated and bumped, the solder is detached from the electrode and leads to ball-mising, causing a solder joint failure or a conductive failure.
  • the flux of this example even if it contained 40% by mass or more and 90% by mass, which is more water than the conventional flux, it was possible to suppress the ball missing. This is considered to be because water in the flux was used for decomposition of the organic acid ester as shown in reaction formula (2).
  • the fluxes of Examples 1 to 9 contained 2% by mass to 15% by mass of the organic acid, and in any of the examples, esterification was suppressed, and no ball missing occurred under the condition 1. From this, it can be said that the content rate of the organic acid is preferably 2% by mass or more and 15% by mass or less.
  • Examples 2 and 9 contained 10% by mass and 1% by mass of imidazole, and good results were obtained in the esterification suppression verification and the ball-Missing suppression verification. Therefore, it can be said that good results can be obtained by the esterification suppression verification and the ball-missing suppression verification even if the content of imidazole is more than 0% by mass and 10% by mass or less.
  • imidazole was used for the amine of this example, any amine can be used, and for example, a flux containing more than 0% by mass and 10% by mass or less of the amine described in paragraph [0021] of this specification Also, good results were obtained in the esterification suppression verification and the ball missing suppression verification.
  • the fluxes of Examples 1 to 9 all contain 8% by mass or more and 48% by mass or less of the solvent. Although not shown in the table, even if the content ratio of the solvent in each example is set to more than 0% by mass and 48% by mass or less, good results are obtained in the esterification suppression verification and the ball misting suppression verification. From these results, the content ratio of the solvent is preferably more than 0% by mass and 48% by mass or less, and more preferably 8% by mass or more and 48% by mass or less.
  • 1,3-propanediol was used as the solvent in this example, the type of solvent is not limited to this, and even if the solvent described in paragraph [0018] of this specification is used, the esterification suppression verification and the ball are performed. Good results were obtained in the missing suppression verification.
  • the content ratio of each composition is not limited to the ratio described above.
  • a flux containing these combinations within the range that does not impair the performance of the present flux has also obtained good results in the esterification suppression verification and the ball-missing suppression verification.
  • coated the flux of each Example had few flux residues, and it was not necessary to wash
  • the esterification of the organic acid is suppressed by hydrolyzing the organic acid ester by increasing the water content ratio more than before, but the present invention is not limited thereto.
  • the concentration formula (4) it is considered that the concentration of the organic acid [R1COOH] can also be increased by increasing the concentration [R1COOR2] of the organic acid ester. Therefore, esterification of the organic acid may be suppressed by forming an organic acid ester in advance and adding it to the flux of the present embodiment.
  • an organic acid ester to add the ester compound produced
  • the ball missing suppression verification is performed using solder balls, but the present invention is not limited to this.
  • the core ball is also a metal core
  • the column can be stably mounted without moving and solder bumps can be formed at desired positions.

Abstract

Provided is a flux which enables improvement of solderability, while maintaining activeness by suppressing the formation of an ester by a reaction between an organic acid and a hydroxy group of an alcohol that is contained in a solvent. A flux which contains from 40 mass% to 90 mass% (inclusive) of water, from 2 mass% to 15 mass% (inclusive) of an organic acid, and more than 0 mass% but 48 mass% or less of a solvent that has a hydroxy group, and which is configured such that the content ratio of carboxylic acid ester units that are esterified by the organic acid and the hydroxy group contained in the solvent is from 0 unit mol% to 50 unit mol% (inclusive) if the molar mass% of organic acid carboxyl group units in the organic acid is taken as 100 unit mol%.

Description

フラックスflux
 本発明は、水を含有するフラックスに関する。 The present invention relates to a water-containing flux.
 基板上にはんだバンプを作る方法としては種々の方法がある。近年のはんだボールの小型化に伴い、はんだボールにフラックスを転写して、フラックスの付いたはんだボールを電極上に搭載する方法が採られるようになってきた。はんだボールが搭載された基板をリフローし、冷却することで、はんだバンプが形成する。 There are various methods for forming solder bumps on a substrate. With the recent miniaturization of solder balls, a method of transferring flux to the solder balls and mounting the fluxed solder balls on the electrodes has come to be adopted. By reflowing and cooling the substrate on which the solder balls are mounted, solder bumps are formed.
 フラックスは、はんだ合金およびはんだ付けの対象となる接合対象物の金属表面に存在する金属酸化膜を化学的に除去し、両者の境界で金属元素の移動を可能にする。このため、フラックスを使用してはんだ付けを行うことで、はんだ合金と接合対象物の金属表面との間に金属間化合物が形成され、強固な接合が得られる。フラックスには、有機酸、溶剤等を含有するものがある。有機酸は金属酸化膜を除去するための活性剤成分として添加され、溶剤はフラックス中の固形成分を溶解する役割がある。水を含有するフラックスもあり、例えば、特許文献1には、水を総量に対して0.1~0.4重量%含有するフラックスが開示されている。 The flux chemically removes the metal oxide film present on the metal surface of the solder alloy and the object to be joined which is to be soldered, and enables the movement of the metal element at the boundary between the two. For this reason, by soldering using a flux, an intermetallic compound is formed between the solder alloy and the metal surface of the bonding object, and a strong bonding can be obtained. There are fluxes containing an organic acid, a solvent and the like. The organic acid is added as an activator component for removing the metal oxide film, and the solvent has a role of dissolving solid components in the flux. There is also a flux containing water, for example, Patent Document 1 discloses a flux containing 0.1 to 0.4% by weight of water based on the total amount.
特開2005-74449号公報JP 2005-74449 A
 フラックスには、はんだ付け後に洗浄を前提としてフラックス残渣が多く残るものがある。フラックス残渣は、はんだの接合不良、導電不良等、はんだ付け性の低下に繋がる。そこで、洗浄の必要のないフラックス又は水洗浄可能なフラックスの組成を構築するために、フラックス残渣が少なくなるように試みた。有機酸との反応性が乏しくリフロー時に揮発しにくいベース剤の一部または全てを、揮発性の高い溶剤などに置換することで低残渣フラックスを設計できる。しかしながら有機酸が、従来よりも多く含まれる溶剤中のアルコールのヒドロキシ基(-OH基)と徐々に反応して、フラックス作製後から使用時までの間の経時変化において、エステル化しやすくなった。 Among the fluxes, there are some flux residues that remain on the premise of cleaning after soldering. The flux residue leads to deterioration of solderability such as solder joint failure, conduction failure and the like. Therefore, in order to construct the composition of the flux which does not require cleaning or the composition of the water-cleanable flux, an attempt is made to reduce the flux residue. A low residue flux can be designed by replacing a part or all of the base agent which has low reactivity with organic acids and is difficult to volatilize during reflow with a highly volatile solvent or the like. However, the organic acid gradually reacts with the hydroxyl group (—OH group) of the alcohol in the solvent, which is contained in a larger amount than the conventional one, and becomes easy to esterify with the passage of time from the preparation of the flux to the use.
 有機酸がエステルを形成すると、有機酸が有していた金属酸化膜の除去に作用する活性が失活してしまう。金属酸化膜の除去が不十分だと、はんだ合金と接合対象物が強固に接合できないという問題がある。上述した特許文献1に開示されるフラックスも、このような問題について何等考慮していなかった。 When the organic acid forms an ester, the activity of removing the metal oxide film possessed by the organic acid is inactivated. If the removal of the metal oxide film is insufficient, there is a problem that the solder alloy and the object to be joined can not be firmly joined. The flux disclosed in Patent Document 1 mentioned above has not taken into consideration such a problem at all.
 そこで、本発明はこのような課題を解決したものであって、有機酸と、溶剤に含まれるアルコールのヒドロキシ基とが反応してエステルを形成することを抑制して活性を維持するとともに、はんだ付け性を良好にするフラックスを提供することを目的とする。 Therefore, the present invention solves such problems, and suppresses the formation of an ester by the reaction of the organic acid and the hydroxyl group of the alcohol contained in the solvent, and maintains the activity, as well as the solder The purpose is to provide a flux that improves the stickability.
 上述の課題を解決するために採った本発明の技術手段は、次の通りである。
 (1)水を40質量%以上90質量%以下、有機酸を2質量%以上15質量%以下、ヒドロキシ基を有する溶剤を0質量%超48質量%以下含有し、有機酸が有する有機酸カルボキシル基ユニットのモル質量%を100ユニットモル%としたときに、溶剤に含まれるヒドロキシ基と有機酸とによってエステル化したカルボン酸エステルユニットの含有割合が0ユニットモル%以上50ユニットモル%以下であり、有機酸が、グルタル酸、フェニルコハク酸、コハク酸、マロン酸、アジピン酸、アゼライン酸、グリコール酸、ジグリコール酸、チオグリコール酸、チオジグリコール酸、プロピオン酸、2,2-ビスヒドロキシメチルプロピオン酸、2,2-ビスヒドロキシメチルブタン酸、リンゴ酸、酒石酸、トリマー酸のうち、少なくとも1種を含有することを特徴とするフラックス。
The technical means of the present invention adopted to solve the above-mentioned problems are as follows.
(1) Organic acid carboxyl, which contains 40% by mass or more and 90% by mass or less of water, 2% by mass or more and 15% by mass or less of an organic acid, and 0% by mass to 48% by mass or less of a solvent having a hydroxy group The content ratio of the carboxylic acid ester unit esterified by the hydroxy group and the organic acid contained in the solvent is 0 unit mol% or more and 50 unit mol% or less, when the molar mass% of the group unit is 100 unit mol%. Organic acid, glutaric acid, phenyl succinic acid, succinic acid, malonic acid, adipic acid, azelaic acid, glycolic acid, diglycolic acid, thioglycolic acid, thiodiglycolic acid, propionic acid, 2,2-bishydroxymethyl acid At least one of propionic acid, 2,2-bishydroxymethylbutanoic acid, malic acid, tartaric acid and trimer acid Flux, characterized in that it contains.
 なお、本発明において、「有機酸カルボキシル基ユニット」とは、有機酸としての活性を有するカルボキシル基の官能基を示し、「カルボン酸エステルユニット」とは、カルボキシル基がエステル化した状態の官能基であり、「ユニットモル%」とは、それぞれの「ユニット」のモル質量%を意味する。 In the present invention, the "organic acid carboxyl group unit" indicates a functional group of a carboxyl group having activity as an organic acid, and the "carboxylic acid ester unit" indicates a functional group in a state where the carboxyl group is esterified. And "unit mol%" means mol mass% of each "unit".
 (2)水の含有割合が40質量%以上80質量%以下であることを特徴とする前記(1)に記載のフラックス。 (2) The flux described in the above (1), wherein the content ratio of water is 40% by mass to 80% by mass.
 (3)溶剤の含有割合が8質量%以上48質量%以下であることを特徴とする前記(1)または(2)に記載のフラックス。 (3) The flux described in the above (1) or (2), wherein the content ratio of the solvent is 8% by mass to 48% by mass.
 (4)アミンを0質量%超10質量%以下含有し、アミンは、イミダゾール類、脂肪族アミン、芳香族アミン、アミノアルコール、ポリオキシアルキレン型アルキルアミン、末端アミンポリオキシアルキレン、アミンハロゲン化水素酸塩のうち、少なくとも1種を含有することを特徴とする前記(1)から(3)のいずれかに記載のフラックス。 (4) The amine contains more than 0% by mass and 10% or less by mass, and the amine is imidazoles, aliphatic amines, aromatic amines, amino alcohols, polyoxyalkylene type alkylamines, terminal amine polyoxyalkylenes, amine hydrogen halides The flux according to any one of the above (1) to (3), which contains at least one of acid salts.
 本発明のフラックスは、水の含有により加水分解が起きるため、有機酸と、溶剤に含まれるヒドロキシ基とが反応してエステルを形成することを抑制できる。そのため、金属酸化膜を十分に除去できる。また、はんだ付け性が良好である。 In the flux of the present invention, since the hydrolysis occurs due to the water content, it is possible to suppress the reaction between the organic acid and the hydroxy group contained in the solvent to form an ester. Therefore, the metal oxide film can be sufficiently removed. Also, the solderability is good.
 以下、本発明に係る実施の形態としてのフラックスについて説明する。本実施の形態のフラックスは、水を40質量%以上90質量%以下、有機酸を2質量%以上15質量%以下、ヒドロキシ基を有する溶剤を0質量%超48質量%以下含有する。水には純水が使用でき、水の含有割合は、40質量%以上80質量%以下であることがより好ましい。溶剤の含有割合は、8質量%以上48質量%以下であることがより好ましい。 Hereinafter, the flux as an embodiment concerning the present invention is explained. The flux of the present embodiment contains 40% by mass to 90% by mass of water, 2% by mass to 15% by mass of an organic acid, and 0% by mass to 48% by mass of a solvent having a hydroxy group. Pure water can be used as water, and the content ratio of water is more preferably 40% by mass to 80% by mass. The content ratio of the solvent is more preferably 8% by mass to 48% by mass.
 有機酸は、水溶性のある有機酸を使用することが好ましく、フラックス中で、活性剤成分として添加される。この活性剤成分により、はんだ付け時に、はんだ合金およびはんだ付けの対象となる接合対象物の金属表面に存在する金属酸化物が、化学的に除去される。有機酸には、グルタル酸、フェニルコハク酸、コハク酸、マロン酸、アジピン酸、アゼライン酸、グリコール酸、ジグリコール酸、チオグリコール酸、チオジグリコール酸、プロピオン酸、2,2-ビスヒドロキシメチルプロピオン酸、2,2-ビスヒドロキシメチルブタン酸、リンゴ酸、酒石酸、ダイマー酸、水添ダイマー酸、トリマー酸等のうち、少なくとも1種が使用される。これらの有機酸はカルボキシル基を有している。有機酸の一例として、1官能の有機酸は、カルボキシル基を1つ有しており、下記の化学式で表される。 The organic acid is preferably a water-soluble organic acid, and is added as an activator component in the flux. By this activator component, at the time of soldering, the solder alloy and the metal oxide present on the metal surface of the object to be soldered are chemically removed. Examples of organic acids include glutaric acid, phenylsuccinic acid, succinic acid, malonic acid, adipic acid, azelaic acid, glycolic acid, diglycolic acid, thioglycolic acid, thiodiglycolic acid, propionic acid, 2,2-bishydroxymethyl At least one of propionic acid, 2,2-bishydroxymethylbutanoic acid, malic acid, tartaric acid, dimer acid, hydrogenated dimer acid, trimer acid and the like is used. These organic acids have a carboxyl group. As an example of the organic acid, a monofunctional organic acid has one carboxyl group and is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000001
 但し、式中のR1は、直鎖状又は分枝鎖状のアルキル基、アルキルエーテル基等である。また、R1には、芳香環を含んでもよい。2官能の有機酸はカルボキシル基を2つ有し、3官能以上の有機酸はカルボキシル基を3つ以上有する。フラックス中で、有機酸としての活性を有するカルボキシル基の官能基モル(以下で、「有機酸カルボキシル基ユニット」という)が多いほど、金属酸化膜の除去に作用する活性が強い。例えば、有機酸1モルに対して、1官能の有機酸は有機酸カルボキシル基ユニットが1モルであり、2官能の有機酸は有機酸カルボキシル基ユニットが2モルであり、3官能の有機酸は有機酸カルボキシル基ユニットが3モルである。
Figure JPOXMLDOC01-appb-C000001
However, R1 in the formula is a linear or branched alkyl group, an alkyl ether group or the like. Also, R1 may contain an aromatic ring. The bifunctional organic acid has two carboxyl groups, and the trifunctional or higher organic acid has three or more carboxyl groups. As the functional group molar number of the carboxyl group having activity as an organic acid (hereinafter referred to as "organic acid carboxyl group unit") increases in the flux, the activity acting on the removal of the metal oxide film is stronger. For example, a monofunctional organic acid has 1 mol of an organic acid carboxyl group unit, a bifunctional organic acid has 2 mol of an organic acid carboxyl group unit, and a trifunctional organic acid has 1 mol of organic acid per 1 mol of organic acid. The organic acid carboxyl group unit is 3 moles.
 溶剤には、ヒドロキシ基を有するものを使用する。溶剤は、水溶性を有していることが好ましく、活性剤の作用を効率よくもたらすために、120℃~150℃の低温域において揮発しないことが好ましい。溶剤が揮発してしまうとフラックスが乾固してしまい、フラックスが接合箇所に濡れ広がることが難しくなる。そのため、溶剤の沸点は200℃以上であることが好ましい。また、リフロー温度で揮発する溶剤を使用することが好ましく、溶剤の沸点は、280℃以下であることが好ましい。溶剤には、1,3-プロパンジオール、ヘキシレングリコール、ヘキシルジグリコール、1,3-ブタンジオール、2-エチル-1,3-ヘキサンジオール、2-エチルヘキシルジグリコール、フェニルグリコール、ブチルトリグリコール、ターピネオール等のうち、少なくとも1種が使用されることが好ましい。これらの溶剤は、下記の化学式で表される。 As the solvent, one having a hydroxy group is used. The solvent preferably has water solubility, and preferably does not volatilize in a low temperature range of 120 ° C. to 150 ° C. in order to efficiently bring about the action of the active agent. If the solvent is volatilized, the flux becomes dry, and it becomes difficult for the flux to wet and spread at the joint. Therefore, the boiling point of the solvent is preferably 200 ° C. or more. Further, it is preferable to use a solvent that volatilizes at the reflow temperature, and the boiling point of the solvent is preferably 280 ° C. or less. As the solvent, 1,3-propanediol, hexylene glycol, hexyl diglycol, 1,3-butanediol, 2-ethyl-1,3-hexanediol, 2-ethylhexyl diglycol, phenyl glycol, butyl triglycol, Preferably, at least one of terpineol and the like is used. These solvents are represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000002
 但し、式中のR2は、直鎖状又は分枝鎖状のアルキル基、アルキルエーテル基等であり、また、R2には、芳香環を含んでもよい。
Figure JPOXMLDOC01-appb-C000002
However, R 2 in the formula is a linear or branched alkyl group, an alkyl ether group or the like, and R 2 may contain an aromatic ring.
 本実施の形態のフラックスに対して、例えば下に記す、イミダゾール類、脂肪族アミン、芳香族アミン、アミノアルコール、ポリオキシアルキレン型アルキルアミン、末端アミンポリオキシアルキレン、アミンハロゲン化水素酸塩等のアミンのうち、少なくとも1種を含有してもよい。アミンは、フラックスにおける活性補助成分として添加される。アミンは、有機酸と反応すると、塩を形成し、耐熱性を高くする。アミンを多く添加すると、フラックス残渣が多くなるため、0質量%以上10質量%以下で含有することが好ましい。本実施の形態のアミンは、分子量700以下のアミンであることが好ましく、分子量600以下であることがより好ましい。 For the flux of the present embodiment, for example, imidazoles, aliphatic amines, aromatic amines, amino alcohols, polyoxyalkylene type alkylamines, terminal amine polyoxyalkylenes, amine hydrohalide salts, etc. described below. It may contain at least one of amines. An amine is added as an active auxiliary component in the flux. Amines react with organic acids to form salts and increase heat resistance. When a large amount of amine is added, the amount of flux residue increases. Therefore, it is preferable that the content be 0% by mass or more and 10% by mass or less. The amine in the present embodiment is preferably an amine having a molecular weight of 700 or less, more preferably 600 or less.
 イミダゾール類には、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。脂肪族アミンには、メチルアミン、エチルアミン、ジメチルアミン、1-アミノプロパン、イソプロピルアミン、トリメチルアミン、n-エチルメチルアミン、アリルアミン、n-ブチルアミン、ジエチルアミン、sec-ブチルアミン、tert-ブチルアミン、N,N-ジメチルエチルアミン、イソブチルアミン、ピロリジン、3-ピロリン、n-ペンチルアミン、ジメチルアミノプロパン、1-アミノヘキサン、トリエチルアミン、ジイソプロピルアミン、ジプロピルアミン、ヘキサメチレンイミン、1-メチルピペリジン、2-メチルピペリジン、4-メチルピペリジン、シクロヘキシルアミン、ジアリルアミン、n-オクチルアミン、アミノメチル、シクロヘキサン、n-オクチルアミン、2-エチルヘキシルアミン、ジブチルアミン、ジイソブチルアミン、1,1,3,3-テトラメチルブチルアミン、1-シクロヘキシルエチルアミン、N,N-ジメチルシクロヘキシルアミン等が挙げられる。芳香族アミンには、アニリン、ジエチルアニリン、ピリジン、ジフェニルグアニジン、ジトリルグアニジン等が挙げられる。アミノアルコールには、2-エチルアミノエタノール、ジエタノールアミン、ジイソプロパノールアミン、N-ブチルジエタノールアミン、トリイソプロパノールアミン、N,N-ビス(2-ヒドロキシエチル)-N-シクロヘキシルアミン、トリエタノールアミン、N,N,N,N',N'-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N',N'',N''-ペンタキス(2-ヒドロキシプロピル)ジエチレントリアミン等が挙げられる。ポリオキシアルキレン型アルキルアミンには、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレンエチレンジアミン、ポリオキシアルキレンジエチレントリアミンが挙げられる。末端アミンポリオキシアルキレンには、末端アミノポリエチレングリコール-ポリプロピレングリコールコポリマー(末端アミノPEG-PPGコポリマー)等が挙げられる。アミンハロゲン化水素酸塩として、前述の各種アミンのハロゲン化水素酸塩(フッ化水素酸塩、ホウフッ化水素酸塩、塩化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩)には、エチルアミン塩酸塩、エチルアミン臭化水素酸塩、シクロヘキシルアミン塩化水素酸塩、シクロヘキシルアミン臭化水素酸塩等が挙げられる。 The imidazoles include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-phenylimidazole and the like. Aliphatic amines include methylamine, ethylamine, dimethylamine, 1-aminopropane, isopropylamine, trimethylamine, n-ethylmethylamine, allylamine, n-butylamine, diethylamine, sec-butylamine, tert-butylamine, N, N- Dimethylethylamine, isobutylamine, pyrrolidine, 3-pyrroline, n-pentylamine, dimethylaminopropane, 1-aminohexane, triethylamine, diisopropylamine, dipropylamine, hexamethyleneimine, 1-methylpiperidine, 2-methylpiperidine, 4 -Methylpiperidine, cyclohexylamine, diallylamine, n-octylamine, aminomethyl, cyclohexane, n-octylamine, 2-ethylhexylamine, dibutylamine Emissions, diisobutyl amine, 1,1,3,3-tetramethylbutyl amine, 1-cyclohexylethyl amine, N, N-dimethylcyclohexylamine, and the like. Aromatic amines include aniline, diethylaniline, pyridine, diphenyl guanidine, ditolyl guanidine and the like. Examples of amino alcohols include 2-ethylaminoethanol, diethanolamine, diisopropanolamine, N-butyldiethanolamine, triisopropanolamine, N, N-bis (2-hydroxyethyl) -N-cyclohexylamine, triethanolamine, N, N And N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine, N, N, N', N '', N ''-pentakis (2-hydroxypropyl) diethylene triamine and the like. Examples of polyoxyalkylene type alkylamines include polyoxyalkylene alkylamines, polyoxyalkylene ethylenediamines, and polyoxyalkylene diethylenetriamines. The terminal amine polyoxyalkylene includes terminal amino polyethylene glycol-polypropylene glycol copolymer (terminal amino PEG-PPG copolymer) and the like. As the amine hydrohalide salt, for the hydrohalide salts (hydrofluoride, borohydrofluoride, hydrochloride, hydrobromide, hydroiodide) of the various amines mentioned above And ethylamine hydrochloride, ethylamine hydrobromide, cyclohexylamine hydrochloride, cyclohexylamine hydrobromide and the like.
 本実施の形態のフラックスに対して、例えば、トランス-2,3-ジブロモ-2-ブテン-1,4-ジオール、2,3-ジブロモ-1,4-ブタンジオール、2,3-ジブロモ-1-プロパノール、2,3-ジクロロ-1-プロパノール、2,2,2-トリブロモエタノール、1,1,2,2-テトラブロモエタン等のうち、少なくとも1種のハロゲン化合物を本フラックスの性能を損なわない範囲で含有してもよい。 For the flux of the present embodiment, for example, trans-2,3-dibromo-2-butene-1,4-diol, 2,3-dibromo-1,4-butanediol, 2,3-dibromo-1 Of at least one halogen compound of propanol, 2,3-dichloro-1-propanol, 2,2,2-tribromoethanol, 1,1,2,2-tetrabromoethane etc. You may contain in the range which does not impair.
 本実施の形態のフラックスに対して、例えば、ポリオキシエチレンエチレンジアミン、ポリオキシプロピレンエチレンジアミン、ポリオキシエチレンポリオキシプロピレンエチレンジアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレン牛脂アミン、ポリオキシエチレンアルキルプロピルジアミン、ポリオキシエチレン牛脂プロピルジアミン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアミド、脂肪族アルコールエチレンオキシド付加体等のうち、少なくとも1種の界面活性剤を本フラックスの性能を損なわない範囲で含有してもよい。界面活性剤は、フラックスの表面張力を調整する。本実施の形態の界面活性剤は、分子量700超であることが好ましい。 For the flux of the present embodiment, for example, polyoxyethylene ethylene diamine, polyoxypropylene ethylene diamine, polyoxyethylene polyoxypropylene ethylene diamine, polyoxyethylene alkylamine, polyoxyethylene tallow amine, polyoxyethylene alkylpropyl diamine, poly At least one surfactant of oxyethylene tallow propyl diamine, polyoxyethylene alkyl ether, polyoxyethylene alkyl amide, aliphatic alcohol ethylene oxide adduct, etc. may be contained within the range not to impair the performance of the present flux. . Surfactants adjust the surface tension of the flux. The surfactant of the present embodiment preferably has a molecular weight of more than 700.
 更に、本実施の形態のフラックスに対して、色素、顔料、染料等の着色剤、消泡剤、チキソ剤等をフラックスの性能を損なわない範囲で適宜添加してもよい。 Furthermore, colorants such as dyes, pigments and dyes, antifoaming agents, thixotropic agents and the like may be appropriately added to the flux of the present embodiment as long as the performance of the flux is not impaired.
 有機酸と、溶剤に含まれるヒドロキシ基とが反応すると、有機酸がエステル化した有機酸エステルを形成し、水が生成される。有機酸の一例として、1官能の有機酸を用い、溶剤の一例として、1官能のアルコールを用いて説明すると、有機酸と溶剤中のヒドロキシ基の反応は、下記の反応式(1)で示される。2官能や3官能以上の有機酸、アルコールの反応も、各カルボキシル基に対して、ヒドロキシ基との反応が起きるため、その説明を省略する。 When the organic acid reacts with the hydroxy group contained in the solvent, the organic acid forms an esterified organic acid ester to produce water. A monofunctional organic acid is used as an example of an organic acid, and a monofunctional alcohol is used as an example of a solvent. The reaction of an organic acid and a hydroxy group in the solvent is shown by the following reaction formula (1) Be The reaction of a bifunctional or trifunctional or higher organic acid or alcohol also occurs with a hydroxyl group for each carboxyl group, and thus the description thereof is omitted.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 有機酸エステル(R1COOR2)は、金属酸化膜を除去するという、有機酸が有していたフラックスとしての活性を有していない。そのため、有機酸とヒドロキシ基を有する溶剤とを含有するフラックスは、金属酸化膜を除去するというフラックスとしての活性を失ってしまうことがある。 The organic acid ester (R1COOR2) does not have the activity of removing the metal oxide film as a flux that the organic acid had. Therefore, the flux containing the organic acid and the solvent having a hydroxy group may lose the activity as a flux for removing the metal oxide film.
 反応式(1)のエステル化反応は、可逆的な平衡反応であり、有機酸エステルと水が混在する環境下では、下記の反応式(2)に示す加水分解もおきる。 The esterification reaction of the reaction formula (1) is a reversible equilibrium reaction, and in the environment where the organic acid ester and water coexist, the hydrolysis shown in the following reaction formula (2) also occurs.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 すなわち、有機酸とヒドロキシ基を有する溶剤をフラックス中で混ぜると、反応式(1)、(2)の反応が両方起こり、所定時間経過後に、それぞれの反応速度が一緒になった状態で平衡状態になる。 That is, when an organic acid and a solvent having a hydroxy group are mixed in a flux, both reactions of reaction formulas (1) and (2) take place, and after a predetermined time has elapsed, the respective reaction rates become equilibrium. become.
 ここで、反応式(1)、(2)の反応が平衡状態になったときの、有機酸のエステル化による官能基ユニットのモル数について説明をする。有機酸カルボキシル基ユニットのモル数が多いほど有機酸の活性が強く、有機酸カルボキシル基ユニットのモル数が少ないほど有機酸の活性が弱い。 Here, the number of moles of the functional group unit due to the esterification of the organic acid when the reactions of the reaction formulas (1) and (2) are in equilibrium will be described. The activity of the organic acid is higher as the number of moles of the organic acid carboxyl group is larger, and the activity of the organic acid is weaker as the number of moles of the organic acid carboxyl group is smaller.
 まず、1官能の有機酸がエステル化する反応を反応式(3)に示す。有機酸とヒドロキシ基が反応すると、反応式(1)で述べた通り脱水反応がおきて有機酸エステルが形成される。なお、以下で、カルボキシル基がエステル化した状態の官能基を「カルボン酸エステルユニット」といい、官能基モル質量%を「ユニットモル%」という。 First, the reaction of monofunctional organic acid being esterified is shown in reaction formula (3). When the organic acid and the hydroxy group react, as described in the reaction formula (1), a dehydration reaction occurs to form an organic acid ester. Hereinafter, the functional group in the state in which the carboxyl group is esterified is referred to as a "carboxylic acid ester unit", and the molar mass% of the functional group is referred to as a "unit molar%".
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 反応式(1)、(2)の反応が平衡状態であり、フラックス中の有機酸と有機酸エステルの存在するモル数が同じとき、有機酸と有機酸エステルとの合計を100モル%とすると、有機酸が50モル%、有機酸エステルが50モル%である。1つの有機酸が有するカルボキシル基は1つ、1つの有機酸エステルが有するエステル基も1つなので、フラックス中に投入した有機酸の有機酸カルボキシル基ユニットを100ユニットモル%としたときに、有機酸カルボキシル基ユニットが50ユニットモル%、カルボン酸エステルユニットが50ユニットモル%である。すなわち、カルボキシル基のユニットモル%とエステル基のユニットモル%が同じ値となる。 Assuming that the reaction of reaction formulas (1) and (2) is in equilibrium and the number of moles of organic acid and organic acid ester in the flux is the same, the total of organic acid and organic acid ester is 100 mol%. 50 mol% of the organic acid and 50 mol% of the organic acid ester. Since one carboxyl group possessed by one organic acid and one ester group possessed by one organic acid ester are also present, the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%, The acid carboxyl group unit is 50 unit mol%, and the carboxylic acid ester unit is 50 unit mol%. That is, the unit mole percent of the carboxyl group and the unit mole percent of the ester group have the same value.
 次に、2官能の有機酸がエステル化する反応を反応式(4)に示す。 Next, a reaction for esterifying a bifunctional organic acid is shown in reaction formula (4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 反応式(4)の最も左に示す2官能の有機酸がエステル化するとき、まず2つのカルボキシル基のうち1つのカルボキシル基がエステル化した、反応式(4)の中央に示す有機酸モノエステルが形成される。更にエステル化が進むと、2つのカルボキシル基がエステル化した、反応式(4)の最も右に示す有機酸ジエステルが形成される。 When the bifunctional organic acid shown in the leftmost of reaction formula (4) is esterified, first, an organic acid monoester shown in the center of reaction formula (4) in which one carboxyl group out of two carboxyl groups is esterified Is formed. When the esterification proceeds further, the organic acid diester shown in the rightmost of the reaction formula (4) is formed in which two carboxyl groups are esterified.
 平衡状態に達して、有機酸モノエステルが形成された場合、フラックス中の有機酸と有機酸モノエステルのモル数が同じとき、有機酸と有機酸モノエステルの合計を100モル%とすると、有機酸が50モル%、有機酸モノエステルが50モル%である。1つの有機酸が有するカルボキシル基は2つ、1つの有機酸モノエステルが有するカルボキシル基が1つ、エステル基が1つなので、有機酸カルボキシル基ユニットとカルボン酸エステルユニットの存在比は、3:1である。よって、フラックス中に投入した有機酸の有機酸カルボキシル基ユニットを100ユニットモル%としたときに、有機酸カルボキシル基ユニットが75ユニットモル%で、カルボン酸エステルユニットが25ユニットモル%である。 When an equilibrium state is reached and an organic acid monoester is formed, when the total number of organic acid and organic acid monoester is 100 mol%, when the number of moles of organic acid and organic acid monoester in the flux is the same, The acid is 50 mole% and the organic acid monoester is 50 mole%. Since there are two carboxyl groups possessed by one organic acid, one carboxyl group possessed by one organic acid monoester, and one ester group, the ratio of the organic acid carboxyl group unit to the carboxylic acid ester unit is 3: It is 1. Therefore, when the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%, the organic acid carboxyl group unit is 75 unit mol% and the carboxylic acid ester unit is 25 unit mol%.
 平衡状態に達して、有機酸ジエステルが形成された場合、有機酸が有するカルボキシル基も、有機酸ジエステルが有するエステル基も2つなので、有機酸と有機酸ジエステルが同数存在する場合、有機酸カルボキシル基ユニットと、カルボン酸エステルユニットの存在比は1:1となる。フラックス中に投入した有機酸の有機酸カルボキシル基ユニットを100ユニットモル%とした場合、カルボキシル基ユニットが50ユニットモル%で、カルボン酸エステルユニットが50ユニットモル%となる。 When an equilibrium state is reached and an organic acid diester is formed, the carboxyl group possessed by the organic acid and the ester group possessed by the organic acid diester are also two, so when the same number of organic acid and organic acid diester exist, the organic acid carboxyl is The abundance ratio of the base unit to the carboxylic acid ester unit is 1: 1. When the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%, 50 unit mol% of the carboxyl group unit and 50 unit mol% of the carboxylic acid ester unit are obtained.
 フラックス中に投入した有機酸の有機酸カルボキシル基ユニットを100ユニットモル%としたときに、カルボン酸エステルユニットの含有割合が0ユニットモル%以上50ユニットモル%以下であれば、有機酸カルボキシル基ユニットが50モル%以上100モル%以下存在する状態であるので、有機酸の活性が十分に存在する状態である。 When the content ratio of the carboxylic acid ester unit is 0 unit mol% to 50 unit mol% when the organic acid carboxyl group unit of the organic acid added to the flux is 100 unit mol%, the organic acid carboxyl group unit Is present in the range of 50 mol% to 100 mol%, the activity of the organic acid is sufficiently present.
 次に、反応式(1)、(2)の反応が平衡状態であるときの、有機酸と有機酸エステルの濃度の関係について説明をする。有機酸と溶剤の種類、フラックス温度を固定した場合、下記の平衡定数式(5)によって、フラックス中のエステル濃度が決定される。 Next, the relationship between the concentrations of the organic acid and the organic acid ester when the reactions of the reaction formulas (1) and (2) are in equilibrium will be described. When the type of organic acid and solvent, and the flux temperature are fixed, the ester concentration in the flux is determined by the following equilibrium constant equation (5).
Figure JPOXMLDOC01-appb-M000007
 但し、K1:平衡定数
 [R1COOR2]:有機酸エステルの濃度
 [HO]:水の濃度
 [R1COOH]:有機酸の濃度
 [R2OH]:アルコールの濃度
 ここで、アルコールは溶剤中に過剰量存在するため、変動はないとみなしてよい。そのため、平衡定数式(5)は、平衡定数式(6)と近似できる。
Figure JPOXMLDOC01-appb-M000007
However, K1: equilibrium constant [R1COOR2]: concentration of organic acid ester [H 2 O]: concentration of water [R 1 COOH]: concentration of organic acid [R 2 OH]: concentration of alcohol There is no change in the Therefore, the equilibrium constant equation (5) can be approximated to the equilibrium constant equation (6).
Figure JPOXMLDOC01-appb-M000008
 但し、K2:平衡定数
Figure JPOXMLDOC01-appb-M000008
However, K2: equilibrium constant
 平衡定数式(6)を参照すると、平衡定数は一定値を保つため水の濃度[HO]を高くすることで、反応式(2)の反応を促進させ、エステル化していない有機酸の濃度[R1COOH]を高くすることができると考えられる。一方、フラックス中に水を多く含む場合、リフロー時に加熱された水が突沸すると、はんだが電極から外れた状態(ボールミッシング)が発生する。ボールミッシングは、はんだの接合不良や導電不良の原因となる。そこで発明者らは、エステルの形成を抑制するとともに、はんだ付け性を良好にするフラックスに含まれる組成の割合を見極めるため、表1、表2に示す組成で各実施例および各比較例のフラックスを用意し、各フラックスについて、次のように、エステル化抑制検証とボールミッシング抑制検証を行った。 Referring to the equilibrium constant equation (6), the reaction constant of equation (2) is promoted by raising the concentration of water [H 2 O] to keep the equilibrium constant constant, and the organic acid not esterified is It is believed that the concentration [R1 COOH] can be increased. On the other hand, when the flux contains a large amount of water, when the heated water bumps during the reflow, a state in which the solder is detached from the electrode (ball missing) occurs. Ball missing causes solder joint failure and conduction failure. Therefore, in order to determine the proportion of the composition contained in the flux which improves the solderability while suppressing the formation of the ester, the flux shown in Table 1 and Table 2 shows the flux of each Example and each Comparative Example. Were prepared, and each flux was subjected to esterification suppression verification and ball-missing suppression verification as follows.
 以下、実施例で本発明に係るフラックスの具体例を示すが、本発明は、以下の具体例に限定されるものではない。また、以下の表中で単位のない数値は、質量%を示す。 Hereinafter, although the specific example of the flux which concerns on this invention is shown in an Example, this invention is not limited to the following specific examples. Moreover, the numerical value without a unit shows mass% in the following tables.
 (I)エステル化抑制検証について
 (A)評価方法
 各実施例および比較例の各フラックスの酸価を、水酸化カリウムを用いてJIS K0070に準じて計測した。フラックスを40℃で4週間保管した後、各フラックスの酸価を計測した。各フラックスの酸価の低下率を算出した。
(I) About esterification suppression verification (A) Evaluation method The acid value of each flux of each example and comparative example was measured according to JIS K 0070 using potassium hydroxide. After storing the flux at 40 ° C. for 4 weeks, the acid value of each flux was measured. The reduction rate of the acid value of each flux was calculated.
 (B)判定基準
 ○:酸価の低下率が50%以内だった
 ×:酸価の低下率が50%を超えた
(B) Judgment criteria ○: The decrease rate of the acid value was within 50%. ×: The decrease rate of the acid value exceeded 50%.
 酸価は、フラックス1g中に含まれる酸を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価が高いフラックスほど、フラックス中の有機酸カルボキシル基ユニットのモル数が大きく、酸価が低いフラックスほど、フラックス中の有機酸カルボキシル基ユニットのモル数が小さい。 The acid value refers to the number of milligrams of potassium hydroxide necessary to neutralize the acid contained in 1 g of flux. The higher the acid number of the flux, the larger the number of moles of organic acid carboxyl group units in the flux, and the lower the acid number of the flux, the smaller the number of moles of organic acid carboxyl group units in the flux.
 つまり、有機酸が、溶剤に含まれるヒドロキシ基と反応して有機酸エステルを形成すると、フラックス中の有機酸カルボキシル基ユニットのモル数が減るため、酸価が低下する。そのため、4週間後の酸価の低下率が高いフラックスほど、有機酸がエステル化した割合が高いフラックスであるといえ、酸価の低下率が低いフラックスほど、有機酸のエステル化が抑制されたフラックスであるといえる。 That is, when the organic acid reacts with the hydroxy group contained in the solvent to form an organic acid ester, the number of moles of the organic acid carboxyl group unit in the flux decreases, and the acid value decreases. Therefore, it can be said that the flux with a higher rate of decrease in acid value after 4 weeks has a higher percentage of esterified organic acid, but the lower the rate of decrease in acid number, the more esterification of the organic acid was suppressed It can be said that it is flux.
 有機酸がエステル化すると、金属酸化膜を除去するという活性が失われる。有機酸のエステル化が抑制されたフラックスは、金属表面に存在する金属酸化膜を十分に除去することができるため、はんだ合金と接合対象物とを、強固に接合できる。酸価の低下率が50%以内となったフラックスは、フラックス中に投入した有機酸カルボキシル基ユニットを100ユニットモル%としたときに、エステル化したカルボン酸エステルユニットの含有割合が0ユニットモル%以上50ユニットモル%以下であるといえ、有機酸が有する金属酸化膜除去の性質を十分に有した状態といえる。そのため、発明者らは、酸価の低下率が50%以内となったフラックスが、有機酸のエステル化を抑制できるフラックスであることを見出だした。 When the organic acid is esterified, the activity of removing the metal oxide film is lost. The flux in which the esterification of the organic acid is suppressed can sufficiently remove the metal oxide film present on the metal surface, so that the solder alloy and the object to be joined can be firmly joined. When the reduction rate of the acid value is 50% or less, the content ratio of esterified carboxylic acid ester unit is 0 unit mol% when the organic acid carboxyl group unit added to the flux is 100 unit mol% Although the content is 50 unit mol% or less, it can be said that the organic acid has the property of removing the metal oxide film sufficiently. Therefore, the inventors found that the flux in which the reduction rate of the acid value became 50% or less was a flux capable of suppressing the esterification of the organic acid.
 (II)ボールミッシング抑制検証について
 ボールミッシング抑制検証では、各実施例および比較例のフラックスについて、下記の条件1と条件2の2つの条件で検証を行った。
(II) Ball-Missing Suppression Verification In the ball-Missing suppression verification, the flux of each Example and Comparative Example was verified under the following two conditions: Condition 1 and Condition 2.
 (A)評価方法:条件1
 Sn-3Ag-0.5Cuの組成で、直径600μmのはんだボールを用意した。用意したはんだボールに、各実施例および比較例のフラックスをそれぞれ塗布した後、フラックスが塗布された各はんだボールを基板の電極に搭載した。そして、ハイスピードヒータを用いて基板を100℃設定で1分加熱した後、250℃で5秒加熱した。その後、室温で冷却した。室温まで冷却した後の電極の様子を目視で確認した。
(A) Evaluation method: Condition 1
Solder balls having a diameter of 600 μm were prepared with a composition of Sn-3Ag-0.5Cu. Each of the prepared solder balls was coated with the flux of each Example and Comparative Example, and then each solder ball to which the flux was applied was mounted on the electrode of the substrate. Then, the substrate was heated at a temperature of 100 ° C. for 1 minute using a high-speed heater, and then heated at 250 ° C. for 5 seconds. Then, it cooled at room temperature. The appearance of the electrode after cooling to room temperature was visually confirmed.
 (B)評価方法:条件2
 Sn-3Ag-0.5Cuの組成で、直径600μmのはんだボールを用意した。用意したはんだボールに、各実施例および比較例のフラックスをそれぞれ塗布した後、フラックスが塗布された各はんだボールを基板の電極に搭載した。そして、ハイスピードヒータを用いて基板を110℃設定で1分加熱した後、250℃で5秒加熱した。その後、室温で冷却した。室温まで冷却した後の電極の様子を目視で確認した。
(B) Evaluation method: Condition 2
Solder balls having a diameter of 600 μm were prepared with a composition of Sn-3Ag-0.5Cu. Each of the prepared solder balls was coated with the flux of each Example and Comparative Example, and then each solder ball to which the flux was applied was mounted on the electrode of the substrate. Then, the substrate was heated at 110 ° C. for 1 minute using a high-speed heater, and then heated at 250 ° C. for 5 seconds. Then, it cooled at room temperature. The appearance of the electrode after cooling to room temperature was visually confirmed.
 (C)判定基準
 ○○:条件1および条件2による検証で、はんだが、電極から外れずに残った。
 ○:条件1による検証で、はんだが、電極から外れずに残った。
 ×:条件1および条件2による検証で、はんだが電極から外れてボールミッシングが発生した。
(C) Judgment criteria ○: In the verification under conditions 1 and 2, the solder remained without coming off the electrode.
○: In the verification according to condition 1, the solder remained without coming off the electrode.
X: In the verification according to the conditions 1 and 2, the solder detached from the electrode and a ball missing occurred.
 ボールミッシングは、はんだの接合不良や導電不良の原因となる。加熱後に電極上にはんだが残ると、接合不良や導電不良を抑制したはんだバンプを形成できる。なお、条件2は、条件1よりも温度条件が厳しいため、条件1による検証でボールミッシングが見られなかったフラックスは、はんだ付け性が十分に良好なフラックスであると判断できる。条件1および条件2による検証でボールミッシングが見られなかったフラックスは、はんだ付け性が更に良好なフラックスであると判断する。 Ball missing causes solder joint failure and conduction failure. When the solder remains on the electrode after heating, a solder bump can be formed in which bonding failure or conduction failure is suppressed. Incidentally, since the temperature condition is stricter than the condition 1 under the condition 2, it can be judged that the flux in which the ball missing is not found in the verification according to the condition 1 is a flux having a sufficiently good solderability. The flux for which ball missing was not found in the verification according to the conditions 1 and 2 is judged to be a flux with better solderability.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例1のフラックスは、純水を40質量%、有機酸としてリンゴ酸を15質量%、溶剤として1,3-プロパンジオールを45質量%含有する。実施例1のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 1 contains 40% by mass of pure water, 15% by mass of malic acid as an organic acid, and 45% by mass of 1,3-propanediol as a solvent. The flux of Example 1 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例2のフラックスは、純水を40質量%、リンゴ酸を15質量%、アミンとしてイミダゾールを10質量%、1,3-プロパンジオールを35質量%含有する。実施例2のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 2 contains 40% by mass of pure water, 15% by mass of malic acid, 10% by mass of imidazole as an amine, and 35% by mass of 1,3-propanediol. The flux of Example 2 was able to suppress esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例3のフラックスは、純水を50質量%、有機酸としてマロン酸を2質量%、1,3-プロパンジオールを48質量%含有する。実施例3のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 3 contains 50% by mass of pure water, 2% by mass of malonic acid as an organic acid, and 48% by mass of 1,3-propanediol. The flux of Example 3 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例4のフラックスは、純水を50質量%、リンゴ酸を2質量%、1,3-プロパンジオールを48質量%含有する。実施例4のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 4 contains 50% by mass of pure water, 2% by mass of malic acid, and 48% by mass of 1,3-propanediol. The flux of Example 4 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例5のフラックスは、純水を60質量%、マロン酸を2質量%、1,3-プロパンジオールを38質量%含有する。実施例5のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 5 contains 60% by mass of pure water, 2% by mass of malonic acid, and 38% by mass of 1,3-propanediol. The flux of Example 5 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例6のフラックスは、純水を70質量%、マロン酸を2質量%、1,3-プロパンジオールを28質量%含有する。実施例6のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 6 contains 70% by mass of pure water, 2% by mass of malonic acid, and 28% by mass of 1,3-propanediol. The flux of Example 6 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例7のフラックスは、純水を80質量%、マロン酸を2質量%、1,3-プロパンジオールを18質量%含有する。実施例7のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 7 contains 80% by mass of pure water, 2% by mass of malonic acid, and 18% by mass of 1,3-propanediol. The flux of Example 7 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 実施例8のフラックスは、純水を90質量%、マロン酸を2質量%、1,3-プロパンジオールを8質量%含有する。実施例8のフラックスは、エステル化を抑制できた上に、条件1でボールミッシングも発生しなかった。 The flux of Example 8 contains 90% by mass of pure water, 2% by mass of malonic acid, and 8% by mass of 1,3-propanediol. The flux of Example 8 was able to suppress the esterification, and no ball missing occurred under the condition 1.
 実施例9のフラックスは、純水を40質量%、リンゴ酸を15質量%、イミダゾールを1質量%、1,3-プロパンジオールを44質量%含有する。実施例9のフラックスは、エステル化を抑制できた上に、条件1および条件2でボールミッシングも発生しなかった。 The flux of Example 9 contains 40% by mass of pure water, 15% by mass of malic acid, 1% by mass of imidazole, and 44% by mass of 1,3-propanediol. The flux of Example 9 was able to suppress the esterification, and in the conditions 1 and 2, no ball missing occurred.
 比較例1のフラックスは、純水を含有せず、マロン酸を2質量%、1,3-プロパンジオールを98質量%含有する。比較例1のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 1 does not contain pure water, and contains 2% by mass of malonic acid and 98% by mass of 1,3-propanediol. In the flux of Comparative Example 1, no ball missing occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so the suppression of esterification was insufficient.
 比較例2のフラックスは、純水を含有せず、リンゴ酸を5質量%、イミダゾールを1質量%、1,3-プロパンジオールを94質量%含有する。比較例2のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 2 does not contain pure water, and contains 5% by mass of malic acid, 1% by mass of imidazole, and 94% by mass of 1,3-propanediol. In the flux of Comparative Example 2, no ball misting occurred under the conditions 1 and 2, but the reduction in acid value exceeded 50%, so that the suppression of esterification was insufficient.
 比較例3のフラックスは、純水を0.1質量%、マロン酸を2質量%、1,3-プロパンジオールを97.9質量%含有する。比較例3のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 3 contains 0.1% by mass of pure water, 2% by mass of malonic acid, and 97.9% by mass of 1,3-propanediol. In the flux of Comparative Example 3, no ball misting occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so that the suppression of esterification was insufficient.
 比較例4のフラックスは、純水を5質量%、マロン酸を2質量%、1,3-プロパンジオールを93質量%含有する。条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 4 contains 5% by mass of pure water, 2% by mass of malonic acid, and 93% by mass of 1,3-propanediol. Although no ball missing occurred under conditions 1 and 2, the reduction of the acid value exceeded 50%, so that the suppression of esterification was insufficient.
 比較例5のフラックスは、純水を10質量%、マロン酸を2質量%、1,3-プロパンジオールを88質量%含有する。比較例5のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 5 contains 10% by mass of pure water, 2% by mass of malonic acid, and 88% by mass of 1,3-propanediol. In the flux of Comparative Example 5, no ball misting occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so the suppression of esterification was insufficient.
 比較例6のフラックスは、純水を10質量%、リンゴ酸を2質量%、1,3-プロパンジオールを88質量%含有する。比較例6のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 6 contains 10% by mass of pure water, 2% by mass of malic acid, and 88% by mass of 1,3-propanediol. In the flux of Comparative Example 6, no ball misting occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so the suppression of esterification was insufficient.
 比較例7のフラックスは、純水を20質量%、マロン酸を2質量%、1,3-プロパンジオールを78質量%含有する。比較例7のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 7 contains 20% by mass of pure water, 2% by mass of malonic acid, and 78% by mass of 1,3-propanediol. In the flux of Comparative Example 7, no ball missing occurred under the conditions 1 and 2, but the decrease in acid value exceeded 50%, so that the suppression of esterification was insufficient.
 比較例8のフラックスは、純水を30質量%、マロン酸を2質量%、1,3-プロパンジオールを68質量%含有する。比較例8のフラックスは、条件1および条件2でボールミッシングは発生しなかったが、酸価の低下が50%を超えたため、エステル化の抑制が不十分であった。 The flux of Comparative Example 8 contains 30% by mass of pure water, 2% by mass of malonic acid, and 68% by mass of 1,3-propanediol. In the flux of Comparative Example 8, no ball missing occurred under the conditions 1 and 2, but the reduction in acid value exceeded 50%, so that the suppression of esterification was insufficient.
 比較例9のフラックスは、純水を98質量%、マロン酸を2質量%含有する。比較例9のフラックスは、条件1および条件2でボールミッシングが発生した。比較例9のフラックスは、溶剤を含有しないため、有機酸がエステル化しなかった。 The flux of Comparative Example 9 contains 98% by mass of pure water and 2% by mass of malonic acid. In the flux of Comparative Example 9, ball missing occurred under conditions 1 and 2. Since the flux of Comparative Example 9 did not contain a solvent, the organic acid was not esterified.
 実施例7、実施例8、比較例9のフラックスは、含有する成分が同じだが、実施例7では条件1および条件2でボールミッシングが発生せず、実施例8では条件1でボールミッシングが発生せず、比較例9では条件1および2でボールミッシングが発生した。これは、実施例7、8、比較例9のフラックスが含有する水の割合がそれぞれ違うからであるといえ、水の含有割合が多いとボールミッシングの原因になるといえる。これらの結果から、水の含有割合は、90質量%以下であることが好ましく、80質量%以下であることがより好ましいといえる。 The flux in Example 7, Example 8, and Comparative Example 9 contained the same components, but in Example 7, no ball missing occurred under conditions 1 and 2 in Example 7, and no ball occurred in Condition 1 in Example 8 Without the ball, in Comparative Example 9, ball missing occurred under conditions 1 and 2. It can be said that this is because the proportions of water contained in the fluxes of Examples 7 and 8 and Comparative Example 9 are different from each other, and if the proportion of water is large, it can be said to cause ball missing. From these results, the content ratio of water is preferably 90% by mass or less, and more preferably 80% by mass or less.
 水の含有割合が40質量%の実施例1のフラックスではエステル化を抑制できたが、水の含有割合が30質量%の比較例8のフラックスでは、酸価の低下が50%を超え、フラックスのエステル化を十分に抑制できなかった。実施例1と比較例8の結果から、水の含有割合が少ないとエステル化の抑制が不十分になるといえ、水の含有割合は、40質量%以上であることが好ましく、水の含有割合が多いほど、有機酸のエステル化が抑制されるといえる。 In the flux of Example 1 in which the content ratio of water is 40% by mass, esterification could be suppressed, but in the flux of Comparative Example 8 in which the content ratio of water is 30% by mass, the decrease in acid value exceeds 50%, Of esterification could not be sufficiently suppressed. From the results of Example 1 and Comparative Example 8, it can be said that suppression of esterification is insufficient when the content ratio of water is small, but the content ratio of water is preferably 40% by mass or more, and the content ratio of water is It can be said that esterification of the organic acid is suppressed as the amount is larger.
 実施例1~9のフラックスは、いずれも水を40質量%以上90質量%以下含有する。いずれの実施例も、エステル化を抑制できた上に、条件1でボールミッシングが発生しなかった。よって、水の含有割合は40質量%以上90質量%以下であることが好ましいといえる。更に、水の含有割合が40質量%以上80質量%以下の実施例1~7、9のフラックスは、条件2でもボールミッシングが発生しなかった。このことから、水の含有割合は40質量%以上80質量%以下であることがより好ましいといえる。なお、本例では純水を用いて各検証を行ったが、蒸留水やイオン交換水等、各種純水を用いても同じ結果となった。 The fluxes of Examples 1 to 9 all contain water in an amount of 40% by mass to 90% by mass. In any of the examples, esterification could be suppressed, and no ball missing occurred under condition 1. Therefore, it can be said that the content ratio of water is preferably 40% by mass or more and 90% by mass or less. Furthermore, in the flux of Examples 1 to 7 and 9 in which the content ratio of water is 40% by mass to 80% by mass, no ball missing occurs even under the condition 2. From this, it can be said that the content ratio of water is more preferably 40% by mass to 80% by mass. In addition, although each verification was performed using a pure water in this example, the same result was obtained, even if it used various pure waters, such as distilled water and ion exchange water.
 従来のフラックスでは、フラックス中の水が極力少量となるように含有されていた。それは、上述の通り、フラックス中に水を多く含む場合、水が加熱されて突沸すると、はんだが電極から外れてボールミッシングに繋がり、はんだの接合不良や導電不良を引き起こしていたからである。本例のフラックスでは、40質量%以上90質量%と、従来のフラックスに比べて多くの水を含有していてもボールミッシングを抑制できた。これは、フラックス中の水が反応式(2)に示すように、有機酸エステルの分解に使用されたからだと考えられる。 In the conventional flux, the water in the flux is contained so as to be as small as possible. The reason is that, as described above, when the flux contains a large amount of water, when the water is heated and bumped, the solder is detached from the electrode and leads to ball-mising, causing a solder joint failure or a conductive failure. In the flux of this example, even if it contained 40% by mass or more and 90% by mass, which is more water than the conventional flux, it was possible to suppress the ball missing. This is considered to be because water in the flux was used for decomposition of the organic acid ester as shown in reaction formula (2).
 実施例1~9のフラックスは、有機酸を2質量%以上15質量%以下含有し、いずれの実施例においてもエステル化が抑制された上に、条件1でボールミッシングが発生しなかった。このことから、有機酸の含有割合は2質量%以上15質量%以下が好ましいといえる。 The fluxes of Examples 1 to 9 contained 2% by mass to 15% by mass of the organic acid, and in any of the examples, esterification was suppressed, and no ball missing occurred under the condition 1. From this, it can be said that the content rate of the organic acid is preferably 2% by mass or more and 15% by mass or less.
 実施例1、4と、他の実施例とでは、異なる有機酸を使用したが、どちらの有機酸も、いずれの検証でも良好な結果を得られた。他にも本明細書の段落[0016]に記載した有機酸を2質量%以上15質量%以下含有するフラックスも、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られたため、あらゆる有機酸を使用して好ましいといえる。 Although different organic acids were used in Examples 1 and 4 and the other examples, good results were obtained in any of the verifications of both organic acids. In addition, as for the flux containing 2% by mass or more and 15% by mass or less of the organic acid described in paragraph [0016] of the present specification as well, good results were obtained in the esterification suppression verification and the ball misting suppression verification. It is preferable to use an acid.
 実施例2、9は、イミダゾールを10質量%、1質量%含有し、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られた。よって、イミダゾールを0質量%超10質量%以下含有しても、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られるといえる。 Examples 2 and 9 contained 10% by mass and 1% by mass of imidazole, and good results were obtained in the esterification suppression verification and the ball-Missing suppression verification. Therefore, it can be said that good results can be obtained by the esterification suppression verification and the ball-missing suppression verification even if the content of imidazole is more than 0% by mass and 10% by mass or less.
 本例のアミンには、イミダゾールを使用したが、あらゆるアミンを使用することができ、他にも例えば本明細書の段落[0021]に記載したアミンを0質量%超10質量%以下含有するフラックスも、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られた。 Although imidazole was used for the amine of this example, any amine can be used, and for example, a flux containing more than 0% by mass and 10% by mass or less of the amine described in paragraph [0021] of this specification Also, good results were obtained in the esterification suppression verification and the ball missing suppression verification.
 実施例1~9のフラックスは、いずれも溶剤を8質量%以上48質量%以下含有する。なお、表に示さないが、各実施例における溶剤の含有割合を0質量%超48質量%以下としても、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られた。これらの結果から、溶剤の含有割合は、0質量%超48質量%以下が好ましく、8質量%以上48質量%以下がより好ましいといえる。本例の溶剤には、1,3-プロパンジオールを使用したが、溶剤の種類はこれに限られず、本明細書の段落[0018]に記載した溶剤を使用してもエステル化抑制検証とボールミッシング抑制検証で良好な結果を得られた。 The fluxes of Examples 1 to 9 all contain 8% by mass or more and 48% by mass or less of the solvent. Although not shown in the table, even if the content ratio of the solvent in each example is set to more than 0% by mass and 48% by mass or less, good results are obtained in the esterification suppression verification and the ball misting suppression verification. From these results, the content ratio of the solvent is preferably more than 0% by mass and 48% by mass or less, and more preferably 8% by mass or more and 48% by mass or less. Although 1,3-propanediol was used as the solvent in this example, the type of solvent is not limited to this, and even if the solvent described in paragraph [0018] of this specification is used, the esterification suppression verification and the ball are performed. Good results were obtained in the missing suppression verification.
 なお、本実施例において、各組成の含有割合は、上に記載した割合に限られない。また、上述した実施例に、本明細書の段落[0023]に記載した界面活性剤、段落[0022]に記載したハロゲン化合物、色素・顔料・染料等の着色剤、および消泡剤のいずれか、またはこれらの組み合わせを、本フラックスの性能を損なわない範囲で含有したフラックスも、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られた。 In the present embodiment, the content ratio of each composition is not limited to the ratio described above. Further, any of the surfactant described in paragraph [0023] of the present specification, the halogen compound described in paragraph [0022], the coloring agent such as pigment / pigment / dye, and the antifoaming agent in the above-mentioned example. Also, a flux containing these combinations within the range that does not impair the performance of the present flux has also obtained good results in the esterification suppression verification and the ball-missing suppression verification.
 なお、上述したボールミッシング抑制検証の後、各基板の電極の様子を目視で確認したところ、各実施例のフラックスを塗布した基板の電極は、フラックス残渣が少なく、洗浄の必要がなかった。また、残渣が残っていても、水洗浄可能なものであった。このことからも、各実施例のフラックスは、はんだ付け性の良好なフラックスであるといえる。 In addition, after confirming the state of the electrode of each board | substrate visually after the ball | bowling suppression suppression verification mentioned above, the electrode of the board | substrate which apply | coated the flux of each Example had few flux residues, and it was not necessary to wash | clean. Moreover, even if the residue remained, it was water washable. Also from this, it can be said that the flux of each example is a flux having good solderability.
 本実施例では、水の含有割合を従来よりも多くして有機酸エステルを加水分解させることにより有機酸のエステル化を抑制したが、これに限られない。濃度式(4)を参照すると、有機酸エステルの濃度[R1COOR2]を高くすることでも、有機酸[R1COOH]の濃度を高くできると考えられる。そのため、事前に有機酸エステルを形成しておき、本実施例のフラックスに添加することで、有機酸のエステル化を抑制してもよい。添加する有機酸エステルとしては、添加する有機酸と溶剤から生成されるエステル化合物が好ましい。 In this example, the esterification of the organic acid is suppressed by hydrolyzing the organic acid ester by increasing the water content ratio more than before, but the present invention is not limited thereto. Referring to the concentration formula (4), it is considered that the concentration of the organic acid [R1COOH] can also be increased by increasing the concentration [R1COOR2] of the organic acid ester. Therefore, esterification of the organic acid may be suppressed by forming an organic acid ester in advance and adding it to the flux of the present embodiment. As an organic acid ester to add, the ester compound produced | generated from the organic acid to add and a solvent is preferable.
 本実施の形態では、はんだボールを用いてボールミッシング抑制検証を行ったが、これに限られない。上述の、エステル化抑制検証とボールミッシング抑制検証で良好な結果を得られたフラックスを、金属を核とする核ボールや金属核カラムの基板への実装にそれぞれ用いたところ、核ボールも金属核カラムも移動せずに安定して実装でき、所望の位置にはんだバンプを形成できた。 In the present embodiment, the ball missing suppression verification is performed using solder balls, but the present invention is not limited to this. When the flux obtained good results in the above-mentioned esterification suppression verification and ball-missing suppression verification is used for mounting a metal-cored core ball or metal core column on a substrate, the core ball is also a metal core The column can be stably mounted without moving and solder bumps can be formed at desired positions.

Claims (4)

  1.  水を40質量%以上90質量%以下、有機酸を2質量%以上15質量%以下、ヒドロキシ基を有する溶剤を0質量%超48質量%以下含有し、
     前記有機酸が有する有機酸カルボキシル基ユニットのモル質量%を100ユニットモル%としたときに、溶剤に含まれるヒドロキシ基と有機酸とによってエステル化したカルボン酸エステルユニットの含有割合が0ユニットモル%以上50ユニットモル%以下であり、
     前記有機酸が、グルタル酸、フェニルコハク酸、コハク酸、マロン酸、アジピン酸、アゼライン酸、グリコール酸、ジグリコール酸、チオグリコール酸、チオジグリコール酸、プロピオン酸、2,2-ビスヒドロキシメチルプロピオン酸、2,2-ビスヒドロキシメチルブタン酸、リンゴ酸、酒石酸、トリマー酸のうち、少なくとも1種を含有する
     ことを特徴とするフラックス。
    40% by weight or more and 90% by weight or less of water, 2% by weight or more and 15% by weight or less of organic acid, and 0% by weight or more and 48% by weight or less of a solvent having a hydroxy group,
    The content ratio of the carboxylic acid ester unit esterified by the hydroxy group and the organic acid contained in the solvent is 0 unit mol% when the molar mass% of the organic acid carboxyl group unit possessed by the organic acid is 100 unit mol% More than 50 unit mol% or less,
    The organic acid is glutaric acid, phenyl succinic acid, succinic acid, malonic acid, adipic acid, azelaic acid, glycolic acid, diglycolic acid, thioglycolic acid, thiodiglycolic acid, propionic acid, 2,2-bishydroxymethyl A flux characterized by containing at least one of propionic acid, 2,2-bishydroxymethylbutanoic acid, malic acid, tartaric acid and trimer acid.
  2.  前記水の含有割合が40質量%以上80質量%以下であることを特徴とする
    請求項1に記載のフラックス。
    The flux according to claim 1, wherein a content ratio of the water is 40% by mass to 80% by mass.
  3.  前記溶剤の含有割合が8質量%以上48質量%以下であることを特徴とする
     請求項1または請求項2に記載のフラックス。
    The flux according to claim 1 or 2, wherein a content ratio of the solvent is 8% by mass or more and 48% by mass or less.
  4.  アミンを0質量%超10質量%以下含有し、
     前記アミンは、イミダゾール類、脂肪族アミン、芳香族アミン、アミノアルコール、ポリオキシアルキレン型アルキルアミン、末端アミンポリオキシアルキレン、アミンハロゲン化水素酸塩のうち、少なくとも1種を含有する
     請求項1から請求項3のいずれか1項に記載のフラックス。
    Containing more than 0% by mass and 10% by mass or less of amine
    The above-mentioned amine contains at least one selected from imidazoles, aliphatic amines, aromatic amines, amino alcohols, polyoxyalkylene type alkylamines, terminal amine polyoxyalkylenes, and amine hydrohalides. A flux according to any one of the preceding claims.
PCT/JP2018/032958 2017-09-06 2018-09-06 Flux WO2019049917A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880057163.XA CN111107961A (en) 2017-09-06 2018-09-06 Soldering flux
KR1020207007820A KR20200051649A (en) 2017-09-06 2018-09-06 Flux
US16/644,362 US20210060713A1 (en) 2017-09-06 2018-09-06 Flux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-171274 2017-09-06
JP2017171274A JP6688267B2 (en) 2017-09-06 2017-09-06 Flux manufacturing method

Publications (1)

Publication Number Publication Date
WO2019049917A1 true WO2019049917A1 (en) 2019-03-14

Family

ID=65634039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032958 WO2019049917A1 (en) 2017-09-06 2018-09-06 Flux

Country Status (6)

Country Link
US (1) US20210060713A1 (en)
JP (1) JP6688267B2 (en)
KR (1) KR20200051649A (en)
CN (1) CN111107961A (en)
TW (1) TW201917113A (en)
WO (1) WO2019049917A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6849934B1 (en) * 2020-03-18 2021-03-31 千住金属工業株式会社 Flux and solder paste
CN113798720A (en) * 2021-09-23 2021-12-17 沭阳县壹陆捌助剂有限公司 Production process of C9 type neutral soldering flux

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151015A (en) * 1977-12-02 1979-04-24 Lake Chemical Company Flux for use in soldering
US4428780A (en) * 1983-02-07 1984-01-31 Lake Chemical Co. Solutions for use in bonding plates of storage batteries to connecting systems
WO2007086433A1 (en) * 2006-01-26 2007-08-02 Toeikasei Co., Ltd. Water-dispersed flux composition, electronic circuit board with electronic component, and their production methods
CN106493487A (en) * 2016-12-08 2017-03-15 深圳市合明科技有限公司 Water-based scaling powder and preparation method and application

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773795B2 (en) * 1985-07-02 1995-08-09 太陽インキ製造株式会社 Washable flux composition for soldering
JPH0638992B2 (en) * 1986-05-16 1994-05-25 内橋エステック株式会社 Flux cored solder
US5571340A (en) * 1994-09-09 1996-11-05 Fry's Metals, Inc. Rosin-free, low VOC, no-clean soldering flux and method using the same
JP2719311B2 (en) * 1994-12-07 1998-02-25 双葉電子工業株式会社 No-cleaning flux for soldering
JP4079026B2 (en) * 2002-04-16 2008-04-23 唯知 須賀 No residue solder paste
US6887319B2 (en) * 2002-04-16 2005-05-03 Senju Metal Industry Co., Ltd. Residue-free solder paste
JP2005074449A (en) 2003-08-29 2005-03-24 Harima Chem Inc Flux for soldering, and soldering paste composition
JP2005074484A (en) * 2003-09-01 2005-03-24 Matsushita Electric Works Ltd Water flux for soldering
JP4352866B2 (en) * 2003-11-18 2009-10-28 パナソニック株式会社 Soldering flux
CN102357748A (en) * 2011-10-18 2012-02-22 苏州之侨新材料科技有限公司 Halogen-and-rosin-free antibacterial no-clean soldering flux for lead-free solder
CN103286477B (en) * 2013-05-22 2015-09-30 中南大学 A kind of lead-free solder scaling powder and preparation method thereof
WO2017122341A1 (en) * 2016-01-15 2017-07-20 千住金属工業株式会社 Flux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151015A (en) * 1977-12-02 1979-04-24 Lake Chemical Company Flux for use in soldering
US4428780A (en) * 1983-02-07 1984-01-31 Lake Chemical Co. Solutions for use in bonding plates of storage batteries to connecting systems
WO2007086433A1 (en) * 2006-01-26 2007-08-02 Toeikasei Co., Ltd. Water-dispersed flux composition, electronic circuit board with electronic component, and their production methods
CN106493487A (en) * 2016-12-08 2017-03-15 深圳市合明科技有限公司 Water-based scaling powder and preparation method and application

Also Published As

Publication number Publication date
JP6688267B2 (en) 2020-04-28
US20210060713A1 (en) 2021-03-04
TW201917113A (en) 2019-05-01
KR20200051649A (en) 2020-05-13
CN111107961A (en) 2020-05-05
JP2019042788A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6160788B1 (en) flux
JP6322881B1 (en) Flux and resin composition for flux
TWI641442B (en) Flux for rosin-containing solder, flux for flux coated solder, rosin-containing solder, and flux coated solder,and uses of flux
CN109996646B (en) Flux and solder paste
KR101923877B1 (en) Flux
WO2016135938A1 (en) Flux
CN115103736B (en) Soldering flux and soldering paste
WO2019049917A1 (en) Flux
TW201945330A (en) Flux and solder paste
CN108941978B (en) Soldering flux
CN112867583B (en) Flux and solder paste
JP2012166226A (en) Flux, and method for forming electrical connection structure
JP2019042811A (en) flux
KR101947827B1 (en) Flux composition for solder
JP2005144518A (en) Flux for soldering
KR101671525B1 (en) Flux composition for solder
TW202140184A (en) Flux, solder paste and method for manufacturing soldered product
WO2022113556A1 (en) Flux and solder paste
JP2023034204A (en) Flux composition, solder composition, and electronic substrate
TW202043348A (en) Flux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854654

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007820

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18854654

Country of ref document: EP

Kind code of ref document: A1