WO2019049663A1 - Method for assessing suitability of artificial protein including amino acid residue derived from non-naturally-occurring amino acid, for synthesis by ribosomes - Google Patents

Method for assessing suitability of artificial protein including amino acid residue derived from non-naturally-occurring amino acid, for synthesis by ribosomes Download PDF

Info

Publication number
WO2019049663A1
WO2019049663A1 PCT/JP2018/030934 JP2018030934W WO2019049663A1 WO 2019049663 A1 WO2019049663 A1 WO 2019049663A1 JP 2018030934 W JP2018030934 W JP 2018030934W WO 2019049663 A1 WO2019049663 A1 WO 2019049663A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
distance
trna
amino acid
reaction
Prior art date
Application number
PCT/JP2018/030934
Other languages
French (fr)
Japanese (ja)
Inventor
賢三 小俣
Original Assignee
賢三 小俣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018101458A external-priority patent/JP2019048797A/en
Application filed by 賢三 小俣 filed Critical 賢三 小俣
Publication of WO2019049663A1 publication Critical patent/WO2019049663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to a method of estimating the suitability of artificial proteins for synthesis by ribosomes by molecular orbital method.
  • Proteins are widely used in medical and various industrial fields.
  • the biological synthesis method by E. coli etc. which is the main manufacturing method has greatly developed in recent years as protein engineering.
  • protein engineering it is also possible to arbitrarily design the sequence order of natural 20 kinds of amino acids and to produce non-naturally occurring proteins accordingly.
  • Such techniques for producing non-naturally occurring proteins can significantly improve the functions and physical properties of proteins.
  • Non-patent Document 1 As a technique for incorporating a non-naturally occurring amino acid into an artificial protein, there is a method of making a non-naturally occurring amino acid correspond to an amber codon which is one of the stop codons (Patent Document 1) or a method using four base codons (eg Patent Document 2) ), A reprogramming method of the genetic code (non-patent documents 1 to 3) of assigning a non-natural amino acid newly by emptying a specific codon (non-patent documents 1 to 3), a method of creating artificial codons using non-natural bases (non-patent document) 4) is known.
  • unnatural amino acids are naturally different in structure from natural amino acids. Therefore, it is easy to imagine that unnatural amino acids far from natural amino acid structures, such as those having a large structure in the side chain, can not be synthesized by ribosomal protein synthesis systems.
  • the problem to be solved by the present invention is to provide a method for estimating whether an artificial protein into which a specific non-natural amino acid has been introduced can be synthesized by a ribosomal synthesis system. .
  • the present inventor has clarified the details of the amidification reaction mechanism on the ribosome by the three-dimensional structure information by X-ray analysis of the ribosome and the knowledge of the amidization transition state structure by molecular orbital calculation. From this, the relationship between the amidation reaction on the ribosome and the amino acid which is the raw material is elucidated, and the condition of the non-natural amino acid suitable for the ribosomal protein synthesis system is found, and the present invention has been made.
  • the present invention which solves the above-mentioned subject is as follows.
  • Step a An aminoacyl-tRNA of the unnatural amino acid represented by the general formula (1); A peptidyl tRNA having any amino acid sequence represented by the general formula (2-1) or (2-2), Reaction transition state (general formula (3-1), (3-2), (3-3), (3-4) or (3-5)) or its structure reaction in the peptidyl group transfer reaction of A step of performing transition state structure optimization calculation (TS optimization calculation) by the molecular orbital method with a structure omitted as appropriate in order to reduce calculation load from a part far from the center as an initial structure.
  • Step b A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when it can be confirmed that the structure obtained as a result of the step a is a transition state structure.
  • a a1 represents a structural moiety other than an amino group and a carboxyl group involved in the peptide bond in the non-natural amino acid.
  • B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
  • the tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end.
  • TRNA P1 represents a tRNA covalently bound to O P1 in the 3 'end.
  • P P1 represents the peptidyl group.
  • (Structural portion of the tRNA P12 -O P12 -H P12 has the general formula and tRNA P1 in (2-1) represents the same structure. Namely, the oxygen O P12 is bound to 2 'carbon of the 3'-terminal sugar of tRNA P1 The atom, HP12 is a hydrogen atom bonded to OP12 , and tRNA P12 is a portion of tRNA P1 from which OP 12 and HP 12 have been removed.
  • the meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1).
  • H t12 is a hydrogen atom which protonated O t1 , which was carbonyl oxygen in the first step of the stepwise amidation reaction.
  • the moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
  • the distance between C t1 and O p1 is 1.45 ⁇ to 1.70 ⁇ .
  • Distance of O p1 and H t12 is 1.05 ⁇ ⁇ 1.30 ⁇
  • the distance between H t12 and O t1 is 1.10 ⁇ to 1.40 ⁇
  • the distance between O t1 and C t1 is 1.22 ⁇ to 1.42 ⁇ .
  • the meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1).
  • (Structure N t1 (H t1 ) -C t1 (O p1 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
  • the distance between N t1 and C t1 is 1.40 ⁇ to 1.65 ⁇
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.24 ⁇
  • the distance between C t1 and O p1 is 1.35 ⁇ to 2.40 ⁇ .
  • Distance O p1 and H t1 is 1.00 ⁇ ⁇ 1.84 ⁇ .
  • the meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1).
  • H s12 -O s1 -H s11 is one of the solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction, The distance between N t1 and C t1 is 1.40 ⁇ to 1.79 ⁇ .
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.26 ⁇
  • the distance between C t1 and O p1 is 1.40 ⁇ to 2.21 ⁇
  • Distance of O p1 and H s12 is 1.13 ⁇ ⁇ 1.43 ⁇
  • the distance between H s12 and O s1 is 1.00 ⁇ to 1.37 ⁇
  • the distance between O s1 and H p12 is 1.30 ⁇ to 1.69 ⁇
  • the distance between H p12 and O p12 is 0.98 ⁇ to 1.24 ⁇
  • the distance between Op 12 and H t1 is 1.17 ⁇ to 1.76 ⁇ .
  • the meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2). )
  • the structure represented by ⁇ 3> said General formula (1) is a structure represented by following General formula (4),
  • the structures represented by the general formulas (3-1), (3-2), (3-3), (3-4), and (3-5) have the following general formulas (5-1) and (5-3), respectively. 5.
  • C ⁇ 1 is an ⁇ carbon of the non-natural amino acid
  • R a1 and R a2 each independently represent a side chain structure of the non-natural amino acid (however, R a2 may be a hydrogen atom).
  • Other symbols are the same as in the general formula (1).
  • Step c Prepare three-dimensional structural data obtained by X-ray structural analysis of ribosome in which tRNA or its derivative is bound to A and P sites, In the three-dimensional structure data, according to the following conditions: An aminoacyl-tRNA of the unnatural amino acid represented by the general formula (1); A peptidyl tRNA having any amino acid sequence represented by the general formula (2-1) or (2-2), A step of incorporating the assumed reaction transition state (general formula (3-1), (3-2), (3-3), (3-4) or (3-5)) in the peptidyl group transfer reaction of (Condition 1)
  • the general formula (3) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a1 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data.
  • Step d Transition state structure optimization calculation (TS optimization calculation) by molecular orbital method with a structure obtained by appropriately removing the structure far from the reaction center of the structure obtained by the step c or the structure, in order to reduce the calculation load as an initial structure
  • Step e A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when the structure obtained as a result of the step d is confirmed to be a transition state structure.
  • a a1 represents a structural moiety other than an amino group and a carboxyl group involved in the peptide bond in the non-natural amino acid.
  • B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
  • the tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end.
  • TRNA P1 represents a tRNA covalently bound to O P1 in the 3 'end.
  • P P1 represents the peptidyl group.
  • (Structural portion of the tRNA P12 -O P12 -HP 12 has the general formula and tRNA P1 in (2-1) represents the same structure. Namely, the oxygen O P12 is bound to 2 'carbon of the 3'-terminal sugar of tRNA P1 The atom, HP12 is a hydrogen atom bonded to OP12 , and tRNA P12 is a portion of tRNA P1 from which OP 12 and HP 12 have been removed.
  • the meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1).
  • H t12 is a hydrogen atom that protonated O t1 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
  • the moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
  • the distance between C t1 and O p1 is 1.45 ⁇ to 1.70 ⁇ .
  • Distance of O p1 and H t12 is 1.05 ⁇ ⁇ 1.30 ⁇
  • the distance between H t12 and O t1 is 1.10 ⁇ to 1.40 ⁇
  • the distance between O t1 and C t1 is 1.22 ⁇ to 1.42 ⁇ .
  • the meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1).
  • (Structure N t1 (H t1 ) -C t1 (O p1 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
  • the distance between N t1 and C t1 is 1.40 ⁇ to 1.65 ⁇
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.24 ⁇
  • the distance between C t1 and O p1 is 1.35 ⁇ to 2.40 ⁇ .
  • Distance O p1 and H t1 is 1.00 ⁇ ⁇ 1.84 ⁇ .
  • the meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1).
  • H s12 -O s1 -H s11 is one of the solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction, The distance between N t1 and C t1 is 1.40 ⁇ to 1.79 ⁇ .
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.26 ⁇
  • the distance between C t1 and O p1 is 1.40 ⁇ to 2.21 ⁇
  • Distance of O p1 and H s12 is 1.13 ⁇ ⁇ 1.43 ⁇
  • the distance between H s12 and O s1 is 1.00 ⁇ to 1.37 ⁇
  • the distance between O s1 and H p12 is 1.30 ⁇ to 1.69 ⁇
  • the distance between H p12 and O p12 is 0.98 ⁇ to 1.24 ⁇
  • the distance between Op 12 and H t1 is 1.17 ⁇ to 1.76 ⁇ .
  • the meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2). )
  • (E 'process) The structure confirmed to be a transition state structure in the step e) is The cyclic structure containing the reaction center (in a form incorporating the structure represented by the general formula (3-4) or the general formula (3-5), the cyclic structure containing tRNA P12 of the general formula is included )
  • the three-dimensional carbon corresponding atom of tRNA a1 and the three-terminal carbon corresponding atom of tRNA P1 are respectively three-dimensional
  • the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 ⁇ in structural data, and fitting to the three-dimensional structural data is possible: It is judged that the adaptability of the unnatural amino acid to the protein is higher.
  • Step f The method according to any one of Items 4 to 6, further comprising the following f step: (Step f) It is confirmed that the structure obtained as a result of the step d is a transition state structure, and
  • the three-dimensional structural data is an X-ray analysis structure of a Thermus thermophilus ribosome
  • the side chain of the unnatural amino acid is formed by 2451A, 2452C, 2506U and 2585U in the ribosome
  • the three-dimensional structural data is an X-ray analysis structure of a ribosome other than Thermus thermophilus
  • the side chain of the unnatural amino acid is in the ribosome of Thermus thermophilus.
  • a step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
  • Step g An aminoacyl-tRNA of any amino acid represented by the general formula (6): A peptidyl tRNA having as a constituent an amino acid residue of the non-natural amino acid represented by the general formula (7-1) or (7-2); Reaction transition state (general formula (8-1), (8-2), (8-3), (8-4) or (8-5)) or reaction of its structure in the peptidyl group transfer reaction of A step of performing transition state structure optimization calculation (TS optimization calculation) by the molecular orbital method with a structure omitted as appropriate in order to reduce calculation load from a part far from the center as an initial structure.
  • Step h A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when it can be confirmed that the structure obtained as a result of the step g is a transition state (TS optimization calculation)
  • a a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any of the amino acids.
  • B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
  • tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end.
  • a P represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
  • B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
  • tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
  • P P2 represents the peptidyl group.
  • OP22 is an oxygen bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2
  • HP22 is a hydrogen atom bonded to OP22
  • tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
  • the meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1). )
  • H t22 is a hydrogen atom which protonated O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
  • the moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
  • the distance between C t2 and O p2 is 1.45 ⁇ to 1.70 ⁇ .
  • Distance of O p2 and H t22 is 1.05 ⁇ ⁇ 1.30 ⁇
  • the distance between H t22 and O t2 is 1.10 ⁇ to 1.40 ⁇
  • the distance between O t2 and C t2 is 1.22 ⁇ to 1.42 ⁇ .
  • the meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1). )
  • (Structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
  • the distance between N t2 and C t2 is 1.40 ⁇ to 1.65 ⁇
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.24 ⁇
  • the distance between C t2 and O p2 is 1.35 ⁇ to 2.40 ⁇
  • Distance O p2 and H t2 is 1.00 ⁇ ⁇ 1.84 ⁇ .
  • the meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1). )
  • H s21 -O s2 -H s22 is one of the solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction, The distance between N t2 and C t2 is 1.40 ⁇ to 1.79 ⁇ .
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.26 ⁇
  • the distance between C t2 and O p2 is 1.40 ⁇ to 2.21 ⁇
  • Distance of O p2 and H s21 is 1.13 ⁇ ⁇ 1.43 ⁇
  • the distance between H s21 and O s2 is 1.00 ⁇ to 1.37 ⁇
  • the distance between O s2 and H p22 is 1.30 ⁇ to 1.69 ⁇
  • the distance between H p22 and O p22 is 0.98 ⁇ to 1.24 ⁇
  • the distance between Op 22 and H t2 is 1.17 ⁇ to 1.76 ⁇ .
  • the meaning of the symbol in the general formula (8-5) is the same as in the general formulas (6) and (7-2). )
  • the structure represented by the general formula (7-1) or (7-2) is a structure represented by the following general formula (9-1) or (9-2),
  • the structures represented by the general formulas (8-1), (8-2), (8-3), (8-4), and (8-5) have the following general formulas (10-1) and (10), respectively.
  • TRNA p22 , OP 22 , and HP 22 have the same meaning as in general formula (7-2). The meanings of other symbols are the same as in general formula (9-1).)
  • Step i Prepare three-dimensional structural data obtained by X-ray structural analysis of ribosome in which tRNA or its derivative is bound to A and P sites, In the three-dimensional structure data, according to the following conditions:
  • the general formula (8) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in
  • the general formula (8) is such that atomic coordinates of the 3 'terminal carbon of tRNA P2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
  • Step j Transition state structure optimization calculation (TS optimization calculation) by molecular orbital method with the structure obtained by appropriately removing the structure far from the reaction center of the structure obtained by the step i or the structure omitted to reduce the calculation load as an initial structure
  • Step k A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when the structure obtained as a result of the step j is confirmed to be a transition state structure.
  • a a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any of the amino acids.
  • B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
  • tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end.
  • a P represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
  • B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
  • tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
  • P P2 represents the peptidyl group.
  • OP22 is an oxygen bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2
  • HP22 is a hydrogen atom bonded to OP22
  • tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
  • the meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1). )
  • H t22 is a hydrogen atom which protonated O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
  • the moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
  • the distance between C t2 and O p2 is 1.45 ⁇ to 1.70 ⁇ .
  • Distance of O p2 and H t22 is 1.05 ⁇ ⁇ 1.30 ⁇
  • the distance between H t22 and O t2 is 1.10 ⁇ to 1.40 ⁇
  • the distance between O t2 and C t2 is 1.22 ⁇ to 1.42 ⁇ .
  • the meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1). )
  • (Structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
  • the distance between N t2 and C t2 is 1.40 ⁇ to 1.65 ⁇
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.24 ⁇
  • the distance between C t2 and O p2 is 1.35 ⁇ to 2.40 ⁇
  • Distance O p2 and H t2 is 1.00 ⁇ ⁇ 1.84 ⁇ .
  • the meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1). )
  • H s21 -O s2 -H s22 is one of the solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction, The distance between N t2 and C t2 is 1.40 ⁇ to 1.79 ⁇ .
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.26 ⁇
  • the distance between C t2 and O p2 is 1.40 ⁇ to 2.21 ⁇
  • Distance of O p2 and H s21 is 1.13 ⁇ ⁇ 1.43 ⁇
  • the distance between H s21 and O s2 is 1.00 ⁇ to 1.37 ⁇
  • the distance between O s2 and H p22 is 1.30 ⁇ to 1.69 ⁇
  • the distance between H p22 and O p22 is 0.98 ⁇ to 1.24 ⁇
  • the distance between Op 22 and H t2 is 1.17 ⁇ to 1.76 ⁇ .
  • the meaning of the symbol in the general formula (8-5) is the same as in the general formulas (6) and (7-2). )
  • K 'process The structure confirmed to be a transition state structure in the k step is
  • the cyclic structure including the reaction center in a form incorporating the structure represented by the general formula (8-4) or the general formula (8-5), includes a cyclic structure containing the tRNA P22 of the general formula )
  • the three-dimensional carbon corresponding atom of tRNA a2 and the three-terminal carbon corresponding atom of tRNA P2 are respectively three-dimensional
  • the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 ⁇ in structural data, and fitting to the three-dimensional structural data is possible: It is judged that the adaptability of the unnatural amino acid to the protein is higher.
  • the structure represented by the general formula (7-1) is a structure represented by the following general formula (9-1)
  • the structure represented by the general formula (8-1) is a structure represented by the following general formula (10-1)
  • the twist angle ⁇ N t2 -C t2 -C ⁇ 2 -R P1 is 0 ° to 108 ° Determining that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
  • C ⁇ 2 is the ⁇ carbon of the non-natural amino acid
  • R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 may be a hydrogen atom)).
  • the hydrophilic atom is a group represented by the general formula (8-1), (8-2), (8-3), (8-4) or (8-5).
  • a step of judging that the adaptability of the unnatural amino acid to a protein is high in a ribosomal protein synthesis system, when it is presumed that a hydrogen bond can be formed with Ht2 and / or Ot2 .
  • Step o In the structure obtained by the i step, Furthermore, the reaction of the peptidyl group transfer reaction in the ribosome is a substance which is present in the reaction system of the biological synthesis method by the ribosome and which is confirmed or predicted to promote or not inhibit the peptidyl group transfer reaction by the ribosome A step of setting as an initial structure a structure which is disposed at the center or its periphery and a structure obtained by adding this or a portion far from the reaction center of the structure is omitted to reduce the calculation load.
  • Step p A step of performing TS optimization calculation by a molecular orbital method on the initial structure obtained by the step o.
  • Step q It is confirmed that the structure obtained as a result of the p step is a transition state structure, and ribosomal transfer reaction which proceeds by taking the transition state structure is not inhibited by the steric hindrance by the substance, the ribosome by the ribosome A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system is high.
  • the three-dimensional structure data is atomic coordinates registered as Accession number 4V5C or 4V5D in Protein Data Bank (PDB), any one of items 4 to 6 and 10 to 16 Method described in Section.
  • PDB Protein Data Bank
  • a method of improving the performance of a protein or peptide comprising 21.
  • a method for improving the productivity or production efficiency of a protein or peptide by a protein synthesis system by ribosome 21.
  • a drug design method for a drug comprising an artificial protein or artificial peptide into which a non-natural amino acid has been introduced, Selecting a non-naturally occurring amino acid that improves efficacy or reduces side effects by introducing it into a lead compound protein or peptide according to Ligand Based Drug Design (LBDD) and / or Structure-Base Drug Design (SBDD); Item 19.
  • LBDD Ligand Based Drug Design
  • SBDD Structure-Base Drug Design
  • Item 19 An inferring step of inferring the adaptability of the unnatural amino acid to the protein or peptide in a ribosomal protein synthesis system by the method according to any one of items 1 to 18;
  • a drug design method characterized in that
  • FIG. The space filling model represents the tRNA at the A site on the center left, the tRNA at the P site on the center right, and the mRNA at the center bottom.
  • Non-patent Documents 6 and 7; PDB 4V5C The tRNA at the A site in the lower left and the tRNA at the P site in the lower right are represented by a stick model.
  • 50S RNA is represented by a wire model.
  • X-ray analysis structure of amidation reaction (Non-patent documents 6 and 7; PDB 4V5C) X-ray analysis structure of amidation reaction (Non-patent documents 6 and 7; PDB 4V5D)
  • the state in which the T1'-2 structure is connected to the X-ray analysis structure is shown.
  • the X-ray analysis structure is represented by a rod model, and the T1'-2 structure is represented by a ball and rod model.
  • the state in which the T3 structure is connected to the X-ray analysis structure is shown.
  • the X-ray analysis structure is represented by a rod model, and the T3 structure is represented by a ball and rod model.
  • 2 represents the initial structure of the As1 Ps1 type.
  • FIG. 6 is a diagram showing a process of generating an initial structure for transition state structure optimization calculation in ribosomes. The initial structure of the amidation reaction on the ribosome for the structure of As2Ps1 type is shown. It shows the structure of As1 Ps1 type. It shows a structure of As1 Ps2 type. It shows the structure of As1Ps3 type. It shows the structure of As2Ps1 type.
  • As2Ps2 It shows the structure of As2Ps2. It shows the structure of As2Ps3 type. It shows the structure of As1 Ps1 type. It shows a structure of As1 Ps2 type. It shows the structure of As1Ps3 type. It shows the structure of As2Ps1 type. It shows the structure of As2Ps2. It shows the structure of As2Ps3 type.
  • positions six water molecules around it are represented.
  • the structure obtained as a result of carrying out structure optimization calculation is shown with the reaction center of the structure of As 2 Ps type 1 and a structure in which six water molecules are arranged around it as an initial structure. It shows a state in which the structure of FIG. 30 obtained as a result of the structure optimization calculation is superimposed on the X-ray analysis structure.
  • the present invention is a method for estimating the adaptability of unnatural amino acids to proteins using a ribosomal protein synthesis system.
  • the “protein synthesis system by ribosome” includes all synthesis systems utilizing peptidyl group transfer reaction by the catalytic activity of ribosome, and includes both in vivo synthesis system and in vivo synthesis system.
  • the present invention comprises steps a and b as essential steps. Each will be described in detail below.
  • Step a transition state structure optimization calculation (TS optimization calculation) in a peptidyl group transfer reaction between an aminoacyl tRNA of an unnatural amino acid whose ability to be introduced into a protein is to be estimated and a peptidyl tRNA having an arbitrary amino acid sequence is performed.
  • TS optimization calculation transition state structure optimization calculation
  • the aminoacyl tRNA of the unnatural amino acid is a structure represented by the general formula (1).
  • a a1 represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
  • B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
  • the tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end.
  • non-naturally occurring amino acids whose introduction suitability can be estimated by the method of the present invention are not limited to ⁇ -amino acids.
  • C ⁇ 1 is the ⁇ carbon of the unnatural amino acid
  • R a1 and R a2 each independently represent the side chain structure of the unnatural amino acid (however, R a2 may be a hydrogen atom) .
  • the meaning of the other symbols is the same as in the general formula (1).
  • C, N, O and H to which superscripts are attached respectively represent a carbon atom, a nitrogen atom, an oxygen atom and a hydrogen atom.
  • peptidyl-tRNA having any amino acid sequence is represented by the general formula (2-1) or (2-2).
  • tRNA P1 is, .P P1 representing a tRNA covalently bound to O P1 in the 3 'end represents the peptidyl group.
  • tRNA P12 -O P12 -H P12 has the same structure as tRNA P1 in the general formula (2-1). That is, OP12 represents an oxygen atom bonded to the 2 'carbon of 3' terminal sugar of tRNA P1 , HP12 represents a hydrogen atom bonded to OP12 , and tRNA P12 represents a portion of tRNA P1 excluding OP12 and HP12. .
  • the meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1).
  • peptidyl group refers to a group formed by polymerizing a plurality of amino acids by peptide bond.
  • bonding mode of the moiety in which the peptidyl group bonds to another structure X in the formula below
  • six types shown in formulas (i) to (vi) below can be assumed.
  • a portion surrounded by a dashed dotted line in the following formula corresponds to a peptidyl group.
  • P P1 in the general formula (2-1) or (2-2), the general formulas (3-1) to (3-5) and the general formulas (5-1) to (5-5) is (v)
  • P2 in the general formula (7-1) or (7-2), the general formulas (8-1) to (8-5), the general formula (9) and the general formulas (10-1) to (10-5) is a peptidyl group attached in the manner of (iv).
  • a in (i) to (vi) represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in an amino acid residue constituting a peptidyl group.
  • X represents another structure to which a peptidyl group is attached.
  • step a a transition state by a molecular orbital method in a peptidyl group transfer reaction from a peptidyl tRNA represented by General Formula (2-1) or (2-2) to an aminoacyl tRNA represented by General Formula (1) Perform structure optimization calculation (TS optimization calculation).
  • the structure represented by the general formula (3-1), (3-2), (3-3), (3-4) or (3-5) is used as an initial structure.
  • N t1 (H t1 ) -C t1 (O t1 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
  • the distance between N t1 and C t1 is 1.53 ⁇ to 1.77 ⁇
  • the distance between N t1 and H t1 is 1.10 ⁇ to 1.35 ⁇ .
  • the distance between H t1 and O t1 is 1.35 ⁇ to 1.45 ⁇ .
  • the meaning of the symbols in the general formula (3-1) is the same as in the general formulas (1) and (2-1).
  • H t12 is a hydrogen atom obtained by protonating O t1 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
  • the moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
  • the distance between C t1 and O p1 is 1.45 ⁇ to 1.70 ⁇ .
  • Distance of O p1 and H t12 is 1.05 ⁇ ⁇ 1.30 ⁇
  • the distance between H t12 and O t1 is 1.10 ⁇ to 1.40 ⁇
  • the distance between O t1 and C t1 is 1.22 ⁇ to 1.42 ⁇ .
  • the meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1).
  • N t1 (H t1 ) -C t1 (O p1 ) is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
  • the distance between N t1 and C t1 is 1.40 ⁇ to 1.65 ⁇
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.24 ⁇
  • the distance between C t1 and O p1 is 1.35 ⁇ to 2.40 ⁇ .
  • Distance O p1 and H t1 is 1.00 ⁇ ⁇ 1.84 ⁇ .
  • the meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1).
  • the structure N t1 -C t1 -O p1 -H p12 -O p12 -H t1 moiety is a reaction center in the transition state structure of a concerted amidation reaction having a six-membered ring structure ,
  • the distance between N t1 and C t1 is 1.40 ⁇ to 2.10 ⁇ .
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.20 ⁇
  • the distance between C t1 and O p1 is 1.35 ⁇ to 2.30 ⁇ .
  • H s12 -O s1 -H s11 is one of solvent water molecules
  • the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 part is the reaction center in the transition state structure of the concerted amidation reaction having an 8-membered ring structure,
  • the distance between N t1 and C t1 is 1.40 ⁇ to 1.79 ⁇ .
  • the distance between N t1 and H t1 is 1.00 ⁇ to 1.26 ⁇
  • the distance between C t1 and O p1 is 1.40 ⁇ to 2.21 ⁇
  • Distance of O p1 and H s12 is 1.13 ⁇ ⁇ 1.43 ⁇
  • the distance between H s12 and O s1 is 1.00 ⁇ to 1.37 ⁇
  • the distance between O s1 and H p12 is 1.30 ⁇ to 1.69 ⁇
  • the distance between H p12 and O p12 is 0.98 ⁇ to 1.24 ⁇
  • the distance between Op 12 and H t1 is 1.17 ⁇ to 1.76 ⁇ .
  • the meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2).
  • the setting of more detailed parameters in the structure represented by -3), (5-4) or (5-5) can be performed by a conventional method.
  • the maximum point of the energy profile obtained by the minimum energy path calculation can be assumed to be a structure near the transition state, and can be used as an initial structure of the transition state.
  • details of the initial structure may be set with reference to a known amidated transition state structure (for example, a report of Oie et al. (Non-patent Document 8)).
  • the method of TS optimization calculation by molecular orbital method is not particularly limited, and either semiempirical molecular orbital method or non-empirical molecular orbital method may be used. From the balance of simplicity (calculation time) and accuracy, it is preferable to use a semiempirical molecular orbital method.
  • molecular orbital calculation software known ones can be used without limitation.
  • Gaussian, HONDO, etc. by non-empirical molecular orbital method
  • MOPAC by semi-empirical molecular orbital method, etc.
  • Step b it is confirmed whether the structure obtained as a result of TS optimization calculation in step a is a transition state structure of peptidyl transfer reaction (amidation reaction).
  • the structure obtained as a result of TS optimization calculation in step a is a transition state structure, it is judged that the aptitude for introducing the unnatural amino acid into a protein in a protein synthesis system by ribosome is high.
  • vibration calculation As a method of confirming whether or not it is a transition state structure, vibration calculation, IRC calculation, or a combination of these may be mentioned.
  • the present invention also relates to a method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, and relates to a method comprising the following steps of ce.
  • step c first, three-dimensional structure data (hereinafter, also simply referred to as three-dimensional structure data) obtained by X-ray structural analysis of a ribosome in which tRNA or its derivative is bound to the A and P sites is prepared.
  • derivatives of tRNA on the A and P sites include aminoacyl-tRNA, peptidyl aminoacyl-tRNA, and derivatives of these.
  • thermophilic bacteria data can be used for examination in ribosomal synthesis systems such as E. coli used for protein engineering.
  • step c the structure represented by the general formula (3-1), (3-2), (3-3), (3-4) or (3-5) is incorporated under the following conditions.
  • the term “nearby” means a distance of 1 ⁇ or less.
  • the incorporation of atoms into three-dimensional structure data can be performed according to a conventional method using the function of molecular orbital calculation software.
  • the bond between the 3 'carbon and o a12 of the 3' end of tRNA a1 also, the bond between the 3 'carbon and o P1 of the 3' end of tRNA P1
  • An operation may be added to converge. This operation can be carried out by performing structure optimization calculation as appropriate according to a conventional method.
  • Non-Patent Document 8 a known amidated transition state structure according to the report of Oie et al.
  • step b A part of the structure obtained as a result of the step a) which has been confirmed to be a structure may be incorporated.
  • the electronic data of TS optimization structure may be input as it is, and you may adjust by manual input.
  • Step d is a step of performing TS optimization calculation with the structure obtained in step c as an initial structure.
  • the molecular orbital calculation in step d includes not only aminoacyl-tRNA and peptidyl-tRNA but also the structure of a large ribosome.
  • the ribosomal molecule is huge, and it is difficult to obtain the transition state structure in the peptidyl transfer reaction on the ribosome as it is, including the entire ribosomal molecule, by molecular orbital calculation as it is.
  • the widest possible calculation area around the transfer reaction center of the ribosome is taken out, and the optimization calculation is carried out. It is preferable to devise appropriate restraints or the like so that the peripheral structure does not diverge. That is, a structure in which a portion far from the reaction center of the structure obtained in step c may be omitted as appropriate to reduce the calculation load may be used as the initial structure. The omission can be performed by the usual method as described above.
  • step a As for the details of the molecular orbital method, the matters described in the description of step a above can be applied.
  • Step e is a step of evaluating the structure obtained as a result of the TS optimization calculation in the step d. That is, when it is confirmed that the obtained structure is a transition state structure, it is judged that the suitability for introduction of the non-natural amino acid into a protein in a protein synthesis system by ribosome is high.
  • the confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
  • the structure confirmed to be a transition state structure in the step e) is The cyclic structure containing the reaction center (in a form incorporating the structure represented by the general formula (3-4) or the general formula (3-5), the cyclic structure containing tRNA P12 of the general formula is included )
  • the three-dimensional carbon corresponding atom of tRNA a1 and the three-terminal carbon corresponding atom of tRNA P1 are respectively three-dimensional
  • the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 ⁇ in structural data, and fitting to the three-dimensional structural data is possible: It is judged that the adaptability of the unnatural amino acid to the protein is higher.
  • the e ′ step is a step of confirming that the structure that has been confirmed to be a transition state structure is a structure that can be taken inside the ribosome. According to the e ′ step, it is possible to more accurately estimate the adaptability of the unnatural amino acid to the protein.
  • Step f In Thermus thermophilus ribosomes, there is a space formed by 2451A, 2452C, 2506U and 2585U. As described above, since the structure of the reaction center of the ribosome is small among species, the probability that the space corresponding to the space is present is also high in the ribosomes of species other than Thermus thermophilus. In the present invention, in addition to the steps c to e, it is preferable to further include an step f for evaluating the space in the ribosome.
  • step f the structure obtained as a result of step d is confirmed to be a transition state structure, and the space formed by 2451A, 2452C, 2506U and 2585U in the ribosome of Thermus thermophilus (or this When the side chain of the non-natural amino acid fits into the space corresponding to (1) without steric hindrance, it is judged that the protein synthesis system by ribosome has high suitability for introducing the non-natural amino acid into protein.
  • the presence or absence of steric hindrance is evaluated on the basis of the interatomic distance between the side chain of the amino acid residue of the unnatural amino acid and the base forming the space.
  • the f step is preferably carried out in combination with the e 'step which also performs an evaluation on the space in the ribosome. This makes it possible to evaluate the adaptability of the unnatural amino acid to the protein with higher accuracy.
  • translocation occurs after peptidyl transfer reaction. That is, when the aminoacyl-tRNA located at the A site prior to the reaction undergoes peptidyl transfer, the mRNA moves to the P site.
  • the method of the present invention comprising the steps a and b and the steps c to f relates to the evaluation of the adaptability of the unnatural amino acid to a protein in the state where the aminoacyl tRNA of the unnatural amino acid is located at the A site. there were.
  • a form comprising g and h steps for evaluating the ability to introduce an unnatural amino acid into a protein in a state where the aminoacyl tRNA of the unnatural amino acid located at the A site undergoes peptidyl transfer and translocates to the P site.
  • the g step is a step of performing TS optimization calculation in a peptidyl group transfer reaction between an aminoacyl tRNA of any amino acid and a peptidyl tRNA having a residue of an unnatural amino acid.
  • aminoacyl-tRNA of any of the above amino acids is represented by the general formula (6).
  • a a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any natural amino acid.
  • B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
  • tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end.
  • the general formula (6) is not limited to the aminoacyl-tRNA of the ⁇ -amino acid, but of course it may be an aminoacyl-tRNA of the ⁇ -amino acid.
  • the above peptidyl-tRNA is represented by the general formula (7-1) or (7-2).
  • a P is in the unnatural amino acid, represents a structural part other than the amino group and a carboxyl group participating in peptide bonds.
  • B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
  • tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
  • P P2 represents the peptidyl group.
  • tRNA P22 -OP 22 -HP 22 has the same structure as tRNA P2 in general formula (7-1). That is, OP22 is an oxygen atom bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2 , HP22 is a hydrogen atom bonded to OP22 , and tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
  • the meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1).
  • the non-natural amino acid is an ⁇ -amino acid, but of course, the non-natural amino acid may be an ⁇ -amino acid.
  • the structure represented by the general formula (7-1) or (7-2) is represented by the general formula (9-1) or (9-2).
  • C ⁇ 2 is the ⁇ -carbon of the non-natural amino acid
  • R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 is also a hydrogen atom) Good).
  • the meaning of the other symbols is the same as in the general formula (7-1).
  • tRNA p22 , OP 22 and HP 22 have the same meaning as in the general formula (7-2).
  • the meaning of the other symbols is the same as in the general formula (9-1).
  • step g TS optimization calculation in the peptidyl group transfer reaction between the aminoacyl tRNA of general formula (6) and the peptidyl tRNA of general formula (7-1) or (7-2) is performed.
  • the items described in the step a can be applied to the embodiment of the TS optimization calculation.
  • Step h it is confirmed whether or not the structure obtained as a result of TS optimization calculation in step g is a transition state structure of the amidation reaction.
  • the structure obtained as a result of TS optimization calculation in step a is confirmed to be a transition state structure, it is determined that the ribosomal protein synthesis system has high adaptability for introducing the unnatural amino acid into a protein.
  • the description in the step b can be applied as it is to a method of confirming whether or not it is a transition state structure.
  • the present invention also relates to a method for estimating the adaptability of a non-natural amino acid to a protein in a ribosomal protein synthesis system, and also relates to a method comprising the following ik steps:
  • step i three-dimensional structure data is prepared as in step c.
  • the contents described in step c can be applied as they are.
  • step i the structure represented by the general formula (8-1), (8-2), (8-3), (8-4) or (8-5) is incorporated under the following conditions.
  • the structure N t2 (H t2 ) -C t2 (O t2 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
  • the distance between N t2 and C t2 is 1.53 ⁇ to 1.77 ⁇
  • the distance between N t2 and H t2 is 1.10 ⁇ to 1.35 ⁇ .
  • the distance between H t2 and O t2 is 1.35 ⁇ to 1.45 ⁇ .
  • the meaning of the symbols in the general formula (8-1) is the same as in the general formulas (6) and (7-1).
  • H t22 is a hydrogen atom obtained by protonating O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
  • the moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
  • the distance between C t2 and O p2 is 1.45 ⁇ to 1.70 ⁇ .
  • Distance of O p2 and H t22 is 1.05 ⁇ ⁇ 1.30 ⁇
  • the distance between H t22 and O t2 is 1.10 ⁇ to 1.40 ⁇
  • the distance between O t2 and C t2 is 1.22 ⁇ to 1.42 ⁇ .
  • the meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1).
  • N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
  • the distance between N t2 and C t2 is 1.40 ⁇ to 1.65 ⁇
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.24 ⁇
  • the distance between C t2 and O p2 is 1.35 ⁇ to 2.40 ⁇
  • Distance O p2 and H t2 is 1.00 ⁇ ⁇ 1.84 ⁇ .
  • the meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1).
  • the structure N t2 -C t2 -O p2 -H p22 -O p22 -H t2 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure ,
  • the distance between N t2 and C t2 is 1.40 ⁇ to 2.10 ⁇
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.20 ⁇
  • the distance between C t2 and O p2 is 1.35 ⁇ to 2.30 ⁇ .
  • H s21 -O s2 -H s22 is one of solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 part is the reaction center in the transition state structure of the concerted amidation reaction having an 8-membered ring structure, The distance between N t2 and C t2 is 1.40 ⁇ to 1.79 ⁇ .
  • the distance between N t2 and H t2 is 1.00 ⁇ to 1.26 ⁇
  • the distance between C t2 and O p2 is 1.40 ⁇ to 2.21 ⁇
  • Distance of O p2 and H s21 is 1.13 ⁇ ⁇ 1.43 ⁇
  • the distance between H s21 and O s2 is 1.00 ⁇ to 1.37 ⁇
  • the distance between O s2 and H p22 is 1.30 ⁇ to 1.69 ⁇
  • the distance between H p22 and O p22 is 0.98 ⁇ to 1.24 ⁇
  • the distance between Op 22 and H t2 is 1.17 ⁇ to 1.76 ⁇ .
  • the meaning of the symbols in the general formula (8-5) is the same as in the general formulas (6) and (7-2).
  • the non-natural amino acid is an ⁇ -amino acid
  • the non-naturally occurring amino acid may be an alpha amino acid.
  • the structures represented by general formulas (8-1), (8-2), (8-3), (8-4), and (8-5) have the general formula (10-1), respectively.
  • the distance between the structure N t2 (H t2 ) -C t2 (O t2 ) part, N t2 and C t2 , N t2 and H t2 , and H t2 and O t2 is a general formula (8- Same as 1).
  • the meaning of the symbols in the general formula (10-1) is the same as in the general formulas (6) and (7-1).
  • the general formula (8) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
  • the general formula (8) is such that atomic coordinates of the 3 'terminal carbon of tRNA P2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
  • step c For incorporation of the structure represented by general formula (8-1), (8-2), (8-3), (8-4) or (8-5) into three-dimensional structure data, in step c
  • the contents described can be applied as they are.
  • Step j is a step of performing TS optimization calculation with the structure obtained in step i or a portion far from the reaction center of the structure omitted as appropriate for reducing the calculation load in order to reduce the calculation load.
  • the matters described in the description of the steps a and d can be applied to the structure optimization calculation by the molecular orbital method in the step j.
  • the k step is a step of evaluating the structure obtained as a result of the TS optimization calculation in the j step. That is, when it is confirmed that the obtained structure is a transition state structure, it is judged that the suitability for introduction of the non-natural amino acid into a protein in a protein synthesis system by ribosome is high.
  • the confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
  • the structure confirmed to be a transition state structure in the k step is The cyclic structure including the reaction center (in a form incorporating the structure represented by the general formula (8-4) or the general formula (8-5), includes a cyclic structure containing the tRNA P22 of the general formula )
  • the three-dimensional carbon corresponding atom of tRNA a2 and the three-terminal carbon corresponding atom of tRNA P2 are respectively three-dimensional
  • the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 ⁇ in structural data, and fitting to the three-dimensional structural data is possible: It is judged that the adaptability of the unnatural amino acid to the protein is higher.
  • the k 'step is a step of confirming that the structure confirmed to be a transition state structure in the k step is a structure that can be taken within the ribosome. Therefore, by performing the k ′ step, it is possible to more accurately estimate the aptitude for introducing a non-natural amino acid into a protein.
  • Thermus thermophilus ribosomes there is a space formed by 2451A, 2452C, 2506U and 2585U. As described above, since the structure of the reaction center of the ribosome is small among species, the probability that the space corresponding to the space is present is also high in the ribosomes of species other than Thermus thermophilus. In the present invention, in addition to the h to k steps, it is preferable to further include an l step for evaluating the space in the ribosome.
  • step 1 the structure obtained as a result of step j is confirmed to be a transition state structure, and the space formed by 2451A, 2452C, 2506U and 2585U in the ribosome of Thermus thermophilus (or When the side chain of the non-natural amino acid fits into the space corresponding to (1) without steric hindrance, it is judged that the protein synthesis system by ribosome has high suitability for introducing the non-natural amino acid into protein.
  • the presence or absence of steric hindrance is evaluated on the basis of the interatomic distance between the side chain of the amino acid residue of the unnatural amino acid and the base forming the space.
  • the l step is preferably carried out in combination with the k 'step which also carries out an evaluation on the space in the ribosome. This makes it possible to evaluate the adaptability of the unnatural amino acid to the protein with higher accuracy.
  • the preferred embodiment of the present invention further comprises the following m steps.
  • a P in the general formula (7-1) or (7-2), when the hydrophilic atoms are present in the side chains of unnatural amino acids, in particular contained in A P, comprises the following n steps Is preferred.
  • the hydrophilic atom is a group represented by the general formula (8-1), (8-2), (8-3), (8-4), or (8-5)
  • the present invention may comprise the following steps o to q.
  • Step o In the step o, as in the step i, three-dimensional structure data is prepared, and the data represented by the general formula (8-1), (8-2), (8-3), (8-4), or (8) is prepared. Incorporate the structure represented by -5). Then, the above-mentioned substance is placed at or around the reaction center of the peptidyl transfer reaction in the ribosome.
  • water molecules as a solvent various ions present in the reaction system and the like can be mentioned.
  • 2 to 8 molecules, more preferably 4 to 7 molecules, still more preferably 5 to 7 molecules, still more preferably 6 molecules of water are formed around the reaction center of the peptidyl group transfer reaction and its periphery. Deploy. In this case, it is preferable to arrange so that a network of hydrogen bonds by water molecules is formed at or around the reaction center.
  • Step p structure optimization calculation by the molecular orbital method is performed on the initial structure set in the o process.
  • the q step is a step of evaluating the structure obtained as a result of the TS optimization calculation in the p step. That is, it is confirmed that the obtained structure is a transition state structure, and the ribosomal protein synthesis system is used when the peptidyl group transfer reaction which proceeds by taking the transition state structure is not inhibited by the steric hindrance caused by the substance. It is determined that the aptitude for introducing the unnatural amino acid into a protein is high.
  • the confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
  • the judgment as to whether the peptidyl transfer reaction is inhibited by the substance due to the steric hindrance by the substance or not can be made by the general formulas (8-1), (8-2), (8-3), (8-4), Alternatively, the distance between the molecule represented by (8-5) and the substance can be used as an index.
  • step q it was evaluated whether steric hindrance caused by the substance would inhibit the peptidyl group transfer reaction, but it is equipped with an r step to determine whether the substance can promote the peptidyl group transfer reaction. It is also good.
  • the r process is as described below.
  • the r step is a step of evaluating the structure obtained as a result of the TS optimization calculation in the p step. That is, it is confirmed that the structure obtained as a result of the p step is a transition state structure, and the general formulas (8-1), (8-2), (8-3), (8-4), Or introduction of the unnatural amino acid into a protein in a protein synthesis system by ribosomes, when hydrogen bonding can be formed between the substance and the molecule of the transition state optimization structure represented by (8-5) or I judge that the aptitude is high.
  • the confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
  • n step can be applied to the determination of whether or not hydrogen bonding is possible.
  • the invention also relates to a method of producing an artificial protein.
  • the production method of the present invention comprises an estimation step and a step of producing a protein.
  • the inference step is a step of evaluating the introduction suitability of a non-natural amino acid which is being studied for introduction into an artificial protein by a ribosomal protein synthesis system.
  • the estimation of the suitability for introducing unnatural amino acids into proteins can be performed by the method of the present invention described above.
  • a protein is produced by a protein synthesis system using ribosomes, using as a raw material a non-natural amino acid which is judged to be high in the introduction suitability in the estimation step.
  • the present invention also relates to a method of improving the performance of a protein or peptide, and a method of improving productivity or production efficiency. These methods comprise the steps of guessing and protein or peptide production of the embodiments described above. And it has the evaluation process of evaluating the performance of the protein or peptide manufactured at the manufacturing process, or the productivity or manufacturing efficiency of the protein or peptide at the manufacturing process.
  • the present invention can be applied to a drug design method of an artificial protein preparation into which non-natural amino acids are introduced.
  • Lead compounds also include natural proteins and peptides from plants, microorganisms and higher organisms, including hormones and transmitters.
  • LBDD Ligand Based Drug Design
  • SBDD Structure-Base Drug Design
  • the SBDD technology has a complementary relationship with each drug, and the amount of free energy change in each binding process represents the strength of pharmacological activity. It is based on the knowledge that This is a computer to estimate the binding state of the target protein and ligand and its pharmacological activity value, and expect highly accurate activity value prediction even though it does not require foresight information of structure activity relationship It has the advantage of being able to
  • the drug discovery technology LBDD (superposition analysis, quantitative structure activity relationship (QSAR), etc.) is a drug discovery technology focusing on the fact that homology is seen in its physicochemical parameters among drugs bound to a common site.
  • QSAR quantitative structure activity relationship
  • the drug design method of the present invention is characterized by combining it with a drug efficacy or side effect estimation technique of such a drug.
  • a drug efficacy or side effect estimation technique of such a drug In the first step, by introducing LBPD and / or SBDD into a protein or peptide which is a lead compound, non-naturally occurring amino acids are selected which improve drug efficacy or reduce side effects.
  • the efficacy or side effect may be estimated when an unnatural amino acid is introduced into the pharmacophore portion of a protein or peptide to be a lead compound.
  • estimation is performed by the estimation method of the present invention described above. That is, according to the above-described estimation method of the present invention, an estimation step of estimating the adaptability of the unnatural amino acid to the protein or peptide in a ribosomal protein synthesis system is performed.
  • FIG. 3 Two types of X-ray analysis structures shown in FIG. 3 and FIG. 4 are described in the documents (Non-Patent Documents 6 and 7).
  • the structure shown in FIG. 3 lacks the terminal peptidyl group on the P site side.
  • the structure shown in FIG. 3 lacks the terminal peptidyl group on the P site side.
  • Peptidyl transfer reaction is, as an organic chemical reaction, an amidation reaction with an amino group and an ester group.
  • a peptidyl transfer reaction proceeds on a ribosome, the reaction proceeds in the same manner as in the basic amidation reaction, and the ribosome has a structure that promotes the formation of a transition state structure at this time, and this structure is The structure must be consistent with the X-ray analysis structure.
  • Findings of the basic amidation reaction mechanism include molecular orbital calculation results of stepwise and concerted amidation reactions of ammonia and formic acid reported by Oie et al. (See Non-Patent Document 8, Formulas 1 and 2). However, these results are obtained by the MNDO method, STO-3G method, and 3-21G method, and it is impossible to study the amidation reaction mechanism on a large ribosome by these calculation methods. Following this result, another means is needed to study the amidation reaction mechanism on a large ribosome.
  • the amidation reaction in (2-a) and (2-b) is an amidation reaction of ammonia-formic acid which is a simple molecule. It should be examined whether there is any contradiction between this and the reaction between amino acids and also the actual transfer of peptidyl group on the ribosome.
  • the amidation reaction should be extended to a peptidyl transfer reaction such as alanylalanine, and the amidification reaction mechanism should be examined as close as possible to the actual peptidyl transfer reaction on the ribosome.
  • MOAC-PM3 semi-empirical MO method (hereinafter abbreviated as MOAC-PM3) was used for molecular orbital calculation.
  • MOAC-PM3 has the disadvantage of being inferior in reproducibility of molecules containing atoms other than carbon, but has the following features. ⁇ Quickness that can calculate the number of atoms. ⁇ Quick and flexible response to expansion of calculation target structure. • Computational power that can handle a wide range of structures away from the reaction center.
  • a phenylalanine analog structure is amide-bonded to the 3 'end of tRNA bound to the A site instead of an ester bond.
  • Such a phenylalanine analog structure is not bound to the 3 'end of the tRNA bound to the P site.
  • a phenylalanine analog structure is bound to both the A and P sites. Since a phenylalanine analog structure is bound to both sites, the structure here seems to be closer to the actual amidation transition state structure.
  • C O, which is to form an amide bond, is separated from N by a distance of 3.32 ⁇ and does not take a direction to easily form a reactive transition state.
  • the conformation of the phenylalanine analog structure on the P site side must be largely changed, and it is considered that the X-ray analysis structure and the conformation of the reaction transition state are greatly different.
  • the benzene ring of the phenylalanine analog structure at the A site is contained in the pocket formed by 2451 Adenine-2452 Cytidine of 50s RNA in both FIG. 3 and FIG. 4 (FIG. 2).
  • N forming an amide bond is directed to the P site side, it is considered that there is no significant change with this conformation even in the reaction transition state.
  • the amidation reaction in the peptidyl transfer reaction on the ribosome is considered to be common to the basic part of the reaction mechanism described in (2-a) above. If the actual reaction mechanism of the amidation reaction is Stepwise reaction mechanism, the X-ray analysis structure of ribosome is closely related to the structure of T1 (Formula 2) which is the first reaction step. It is thought that The concerted reaction mechanism is considered to be more closely related to the structure of T3 (Formula 2).
  • T1, T2 and T3 shown in the formula 2 correspond to the actual peptidyl group transfer reaction
  • either one of the two H atoms other than H bonded to the N atom in the transition state structure is A It should correspond to the C ⁇ atom (A * of Formula 3) of the terminal amino acid of the aminoacyl tRNA of the site (Formula 2, Formula 3).
  • the H atom bonded to the C atom in the transition state structure corresponds to the C ⁇ atom (P * in formula 3) of the amino acid bonded to the tRNA at the peptide end of the peptidyl tRNA of the P site;
  • the H atom attached to the atom should correspond to the 3 'carbon atom (R * in Formula 3) of the terminal sugar of the tRNA.
  • An isomer in which the H atom and the O2 atom bonded to the C atom in the formula 3 are inverted; T1 '(formula 3) is also present as a possibility of the transition state structure.
  • the H atom corresponding to the 3 'carbon atom of the terminal sugar of the tRNA bound to the O2 atom is inverted in direction by T1 and T2 in the structure by Oie et al. (Non-patent document 8) . If this structure corresponds to the actual peptidyl transfer reaction, the relative orientations of the two tRNAs at the A and P sites will largely change between T1 and T2. Therefore, it can not be made to correspond to the actual peptidyl group transfer reaction in which the portion ahead of O2 is eliminated after transitioning continuously as T1 ⁇ tetrahedral structure; THI ⁇ T2. If the structure of T1 takes the structure of T1-2 or T1'-2 of Formula 3 instead, this problem is solved.
  • Transition state structure described in Oie et al. (Non-patent document 8); TS structure is confirmed by MOAC-PM3 using X-Ability with T1 and T3 as initial structures, and then the results in this T1 And T1 ', which is an optical isomer of T1 at C as initial structure, and further twist angles of T1 and T1'; N-C-O2-H inverted by 180 ° as initial structure and TS optimization as well I did the calculation.
  • T1-2 and T1'-2 return to the structures of T1 and T1' respectively as a result of structural optimization, and T1-2 and T1'-2 are I could not confirm.
  • T1 is the initial structure and the amidation reaction of ammonia and formic acid is extended to the amidation reaction of ammonia and formate methyl ester
  • the transition state structures of T1-2 and T1'-2 are obtained, and the peptidyl group transfer reaction It was possible to confirm the transition state in the near state (Equation 4).
  • the structure of the confirmed transition state T3 (formula 2), and further, the structure of T1-2 and T1'-2 created from the structure of T1 at the P site of the structure of FIG. 3 of the X-ray analysis structure It was connected to the 3 'C atom of the terminal sugar of tRNA.
  • the corresponding carbon atoms of T1-2 and T1'-2 methyl and O2 atoms are superposed on each of the 3 'C atom and the 3' O atom, and the twist angle is N-C-O2-3 'C, and The C-O2-3'C-2'C was examined by rotating it at various angles.
  • the distance between the N atom of the T1 structure and the carbon atom corresponding to the C ⁇ of the phenylalanine-like structure bonded to the terminal of the tRNA at the A site, which is the atom to be bonded thereto, is T1′-2. It was found that the structure could be as close as 1.73 ⁇ ( Figure 5).
  • the O 1 atom is connected to the 3 'C atom of the terminal sugar of P sato tRNA in the same manner as in T 1-2 and T 1' -2 above, and the twist angle N-C-O1-
  • the 3'C and C-O1-3'C-2'C were rotated at various angles for verification.
  • the distance between the N atom of the T3 structure and the carbon atom corresponding to C ⁇ , which is the atom to be bonded to this can not be a distance closer than 2.17 ⁇ (FIG. 6).
  • the distance between the H1 atom and the 2′O atom of the terminal sugar of the A-site tRNA is only 1.54 ⁇ , and if this steric hindrance is avoided, the above interatomic distance further becomes larger than 2.17 ⁇ . It turned out that the T3 structure consistent with the line analysis structure can not be taken.
  • substitution positions of the (3-d-1) amine are as shown in Formula 7 in two ways; the possibilities of As1 and As2 are considered. [Formula 7] Possible substitution position of A (aminoacyl portion of tRNA)
  • T1 'of the formula 8 is used to examine the conformation of C ⁇ as comprehensively as possible. Twist angle in the structure of -2; NC * C ⁇ C ⁇ is divided into categories of 0 ° -108 °, 108 ° -235 °, 235 ° -360 °, and 54 °; Ps1, 171 °; Ps2 as a representative of each category 297 °; Ps3 was the initial structure of the conformation of C ⁇ (Equation 8).
  • the initial structures of As1Ps1, As1Ps2, As1Ps3, As2Ps1, As2Ps2 and As2Ps3 were obtained as the six cases obtained on the premise of (3-d-1) to (3-d-3) above. Among them, As1Ps1 is shown in FIG. Based on the six initial structures, optimization calculation of the TS structure was performed to obtain the corresponding transition state structures; FIGS. 8 to 13 were obtained (see calculation methods a, c, e, f).
  • the reactive transition state structure of alanylalanine was incorporated at the 3 'end of both the A and P sites of the X-ray analysis structure.
  • the structural optimization calculation was performed on the part excluding the reaction center of this structure, and distortion of the structure around the reaction center was removed.
  • the transition state structure was determined with the obtained optimized structure as an initial structure (calculation methods a, b, c, d, e, f).
  • the incorporation connects the O2 atom and the P site side C3 'atom, adjusts the twist angle of the C3'-O2 and O2-C bond, and the distance between the O * atom and the A site side C3' atom becomes shortest.
  • a bond is formed between O * -C3 '(the portion shown by the yellow broken line in FIG. 15 (b)).
  • This structure is used as an initial structure for optimizing other than the TS part in consideration of the computer load (FIG. 15 (b)).
  • the amidation reaction site of the transition state structure can not have a hydrogen bondable distance with 2451 Adenine (the adenine of 50S ribosomal A chain 2451) located at the closest distance among ribosomal molecules in the X-ray analysis structure. (FIGS. 23-28), there appears to be no direct involvement (hydrogen bonding to reactive site atoms) of the 2451 Adenine amidation reaction.
  • a structure corresponding to a pocket in which the side chain of the terminal amino acid of aminoacyl-tRNA bound to the P site is not found in the X-ray analysis structure. It is considered that this may be related to a mechanism having a unique selectivity that one enzyme, ribosome, can respond to the reaction of 20 amino acids (in the case of natural amino acids).
  • FIG. 30 When the structure of FIG. 30 is superimposed on the X-ray analysis structure (FIG. 31), a good agreement is obtained such that the difference with the X-ray analysis structure is almost slight compared to FIG. .
  • a water molecule hydrogen-bonded to a hydrogen atom bonded to a nitrogen atom at the reaction site is present at a position capable of hydrogen bonding with the N3 atom of the 2451 Adenine. It has been shown that 2451 Adenine may be involved in the amidation reaction via a hydrogen bond with a water molecule.
  • the hydrogen bond network arrangement of water molecules in the initial structure of the TS optimization calculation of FIG. 29 has many other possibilities, but can be obtained from the restriction of hydrogen bond to the reaction center and its surrounding hydrophilic atoms There is no significant difference between the calculated TS structures. From this, it is considered that the true aspect of the transition state of the amidation reaction in the presence of the solvent water molecule is not significantly different from FIG.
  • a protein composed of natural amino acids is synthesized by peptidyl group transfer reaction in which a transition state of As2Ps1 structure is taken on a ribosome.
  • the non-natural amino acids aminoacyl tRNA and peptidyl tRNA can adopt the transition state of the As2Ps1 structure on the ribosome, it is also possible to introduce the non-natural amino acid into the protein by the ribosome synthesis system. it can.
  • the present invention can be used to design artificial proteins containing amino acid residues of unnatural amino acids.

Abstract

The present invention addresses the problem of providing a method for assessing whether or not an artificial protein having a specific introduced non-naturally-occurring amino acid can be synthesized by the synthesis system provided by ribosomes. This method comprises steps a and b. (Step a): A step for performing transition state structure optimization calculation (TS optimization calculation) by a molecular orbital method or performing approximation calculation which can reproduce the transition state optimization structure, using, as an initial structure, a reaction transition state (general formula (3-1), (3-2), (3-3), (3-4), or (3-5)) in a peptidyl group transfer reaction between aminoacyl-tRNA of the non-naturally-occurring amino acid represented by general formula (1), and peptidyl-tRNA having any amino acid sequence represented by general formula (2-1) or (2-2). (Step b) A step for determining that the non-naturally-occurring amino acid has high enough suitability to be introduced into a protein in the protein synthesis system provided by ribosomes if the structure obtained as a result of step a can be assumed to be a transition state structure.

Description

非天然アミノ酸由来のアミノ酸残基を含む人工タンパク質のリボソームによる合成への適性推測方法Method for estimating suitability for synthesis by ribosomes of artificial proteins containing amino acid residues derived from unnatural amino acids
 本発明は、人工タンパク質のリボソームによる合成への適性を分子軌道法によって推測する方法に関する。 The present invention relates to a method of estimating the suitability of artificial proteins for synthesis by ribosomes by molecular orbital method.
 タンパク質は医療や各種産業分野で幅広く利用されている。その主な製造方法である大腸菌等による生物学的合成方法はタンパク質工学として近年大いに発展した。タンパク質工学では天然の20種のアミノ酸の配列順序を任意に設計し、それに従った非天然のタンパク質を製造することも可能である。このような非天然タンパク質を製造する技術により、タンパク質の機能や物性を優位に向上させることができる。 Proteins are widely used in medical and various industrial fields. The biological synthesis method by E. coli etc. which is the main manufacturing method has greatly developed in recent years as protein engineering. In protein engineering, it is also possible to arbitrarily design the sequence order of natural 20 kinds of amino acids and to produce non-naturally occurring proteins accordingly. Such techniques for producing non-naturally occurring proteins can significantly improve the functions and physical properties of proteins.
 従来のタンパク質工学の手法では、素材として使用できるのは天然の20種のアミノ酸に限られている。しかし、近年、非天然のアミノ酸をタンパク質に組み込んだ人工タンパク質を合成する技術が開発されている。非天然アミノ酸を組み込んだ人工タンパク質を合成する技術によれば、人工のタンパク質に付与可能な物性や機能の多様性を更に飛躍的に増大させることが可能になる。
 非天然アミノ酸を人工タンパク質に組み込む技術としては、終止コドンの一つであるアンバー・コドンに非天然型アミノ酸を対応させる方法(特許文献1)や、4塩基コドンを用いた方法(例えば特許文献2)、特定のコドンを空にして新たに非天然アミノ酸を割り当てる遺伝暗号のリプログラミング法(非特許文献1~3)、非天然型塩基を用いて人工的なコドンを創出する方法(非特許文献4)が知られている。
In conventional protein engineering methods, only 20 natural amino acids can be used as materials. However, in recent years, techniques for synthesizing artificial proteins in which non-natural amino acids are incorporated into proteins have been developed. According to the technology of synthesizing an artificial protein incorporating a non-natural amino acid, it is possible to dramatically increase the variety of physical properties and functions that can be imparted to the artificial protein.
As a technique for incorporating a non-naturally occurring amino acid into an artificial protein, there is a method of making a non-naturally occurring amino acid correspond to an amber codon which is one of the stop codons (Patent Document 1) or a method using four base codons (eg Patent Document 2) ), A reprogramming method of the genetic code (non-patent documents 1 to 3) of assigning a non-natural amino acid newly by emptying a specific codon (non-patent documents 1 to 3), a method of creating artificial codons using non-natural bases (non-patent document) 4) is known.
特開2006-180701号公報JP, 2006-180701, A 特開2006-280250号公報Japanese Patent Application Publication No. 2006-280250
 上述したように、非天然アミノ酸をタンパク質に導入する技術は種々開発されている。
 ここで、非天然アミノ酸は当然ながら天然アミノ酸とは構造が相違する。そのため、巨大な構造を側鎖に有するものなど、あまりにも天然アミノ酸の構造からかけ離れた非天然アミノ酸は、リボソームによるタンパク質合成系によっては合成できないことは想像に難くない。
As described above, various techniques for introducing unnatural amino acids into proteins have been developed.
Here, unnatural amino acids are naturally different in structure from natural amino acids. Therefore, it is easy to imagine that unnatural amino acids far from natural amino acid structures, such as those having a large structure in the side chain, can not be synthesized by ribosomal protein synthesis systems.
 このようにリボソームによるタンパク質合成系によって非天然アミノ酸をタンパク質に導入する場合、非天然アミノ酸の構造や特性にはある程度の制限がかかる。しかしながら、どのような構造の非天然アミノ酸であればリボソームによるタンパク質合成系で合成し得るのか予測は不可能であった。 Thus, when a non-natural amino acid is introduced into a protein by a ribosomal protein synthesis system, the structure and properties of the non-natural amino acid have certain limitations. However, it was impossible to predict what kind of structure of unnatural amino acids could be synthesized by a ribosomal protein synthesis system.
 このような問題に鑑み、本発明の解決しようとする課題は、特定の非天然アミノ酸を導入した人工タンパク質をリボソームによる合成系による合成が可能であるか否か推測する方法を提供することにある。 In view of these problems, the problem to be solved by the present invention is to provide a method for estimating whether an artificial protein into which a specific non-natural amino acid has been introduced can be synthesized by a ribosomal synthesis system. .
 上述したとおり、どのような構造の非天然アミノ酸であればリボソームによるタンパク質合成系で合成し得るのか予測は不可能であった。この予測不可能性の最も大きな理由は、リボソーム上でのアミド化反応の詳細が不明であることにある。 As described above, it was impossible to predict what kind of structure of unnatural amino acid could be synthesized by a ribosomal protein synthesis system. The biggest reason for this unpredictability is that the details of the amidation reaction on the ribosome are unknown.
 本発明者は、リボソームのX線解析による立体構造情報と、分子軌道計算によるアミド化反応遷移状態構造の知見により、リボソーム上でのアミド化反応機構の詳細を明らかにした。これより、リボソーム上でのアミド化反応と素材であるアミノ酸との関係が解明され、リボソームによるタンパク質合成系に適性のある非天然アミノ酸の条件を見出し、本発明に至った。 The present inventor has clarified the details of the amidification reaction mechanism on the ribosome by the three-dimensional structure information by X-ray analysis of the ribosome and the knowledge of the amidization transition state structure by molecular orbital calculation. From this, the relationship between the amidation reaction on the ribosome and the amino acid which is the raw material is elucidated, and the condition of the non-natural amino acid suitable for the ribosomal protein synthesis system is found, and the present invention has been made.
 上記課題を解決する本発明は、以下のとおりである。 The present invention which solves the above-mentioned subject is as follows.
<1>リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のa及びb工程を備えることを特徴とする方法。
  (a工程)
 一般式(1)で表される前記非天然アミノ酸のアミノアシルtRNAと、
一般式(2-1)又は(2-2)で表される任意のアミノ酸配列を有するペプチジルtRNAと、
のペプチジル基転移反応における想定される反応遷移状態(一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5))又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
  (b工程)
 前記a工程の結果得られる構造が遷移状態構造であることが確認できる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<1> A method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, comprising the following steps a and b:
(Step a)
An aminoacyl-tRNA of the unnatural amino acid represented by the general formula (1);
A peptidyl tRNA having any amino acid sequence represented by the general formula (2-1) or (2-2),
Reaction transition state (general formula (3-1), (3-2), (3-3), (3-4) or (3-5)) or its structure reaction in the peptidyl group transfer reaction of A step of performing transition state structure optimization calculation (TS optimization calculation) by the molecular orbital method with a structure omitted as appropriate in order to reduce calculation load from a part far from the center as an initial structure.
(Step b)
A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when it can be confirmed that the structure obtained as a result of the step a is a transition state structure.
Figure JPOXMLDOC01-appb-C000050
(Aa1は前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Ba1は任意の基、又は前記Aa1と一体となりBa1-Aa1-Nt1の環状構造を形成する基を表す。
 tRNAa1は、3´末端においてOa12と共有結合したtRNAを表す。)
Figure JPOXMLDOC01-appb-C000050
(A a1 represents a structural moiety other than an amino group and a carboxyl group involved in the peptide bond in the non-natural amino acid.
B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
The tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end. )
Figure JPOXMLDOC01-appb-C000051
(tRNAP1は、3´末端においてOP1と共有結合したtRNAを表す。
 PP1はペプチジル基を表す。)
Figure JPOXMLDOC01-appb-C000051
(TRNA P1 represents a tRNA covalently bound to O P1 in the 3 'end.
P P1 represents the peptidyl group. )
Figure JPOXMLDOC01-appb-C000052
(tRNAP12-OP12-HP12の構造部分は、一般式(2-1)におけるtRNAP1と同構造を表す。すなわち、OP12はtRNAP1の3´末端糖の2´炭素に結合した酸素原子、HP12はOP12に結合した水素原子、tRNAP12はtRNAP1からOP12とHP12を除いた部分を表す。
その他一般式(2-2)中の記号の意は一般式(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000052
(Structural portion of the tRNA P12 -O P12 -H P12 has the general formula and tRNA P1 in (2-1) represents the same structure. Namely, the oxygen O P12 is bound to 2 'carbon of the 3'-terminal sugar of tRNA P1 The atom, HP12 is a hydrogen atom bonded to OP12 , and tRNA P12 is a portion of tRNA P1 from which OP 12 and HP 12 have been removed.
The meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1). )
Figure JPOXMLDOC01-appb-C000053
(構造Nt1(Ht1)-Ct1(Ot1)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
t1とCt1の距離は1.53Å~1.77Å、
t1とHt1の距離は1.10Å~1.35Å、
t1とOt1の距離は1.35Å~1.45Åである。
その他一般式(3-1)中の記号の意は一般式(1)及び(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000053
(Structure N t1 (H t1 ) -C t1 (O t1 ) moiety is a reaction center in the reaction transition state structure of the first step of stepwise amidification reaction,
The distance between N t1 and C t1 is 1.53 Å to 1.77 Å,
The distance between N t1 and H t1 is 1.10 Å to 1.35 Å.
The distance between H t1 and O t1 is 1.35 Å to 1.45 Å.
The meaning of the symbols in the general formula (3-1) is the same as in the general formulas (1) and (2-1). )
Figure JPOXMLDOC01-appb-C000054
(Ht12は、段階的アミド化反応の第1段階において、カルボニル酸素であったOt1をプロトン化せしめた水素原子である。
構造Ct1-Op1-Ht12-Ot1部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
t1とOp1の距離は1.45Å~1.70Å、
p1とHt12の距離は1.05Å~1.30Å、
t12とOt1の距離は1.10Å~1.40Å、
t1とCt1の距離は1.22Å~1.42Åである。
その他一般式(3-2)中の記号の意は一般式(1)、(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000054
(H t12 is a hydrogen atom which protonated O t1 , which was carbonyl oxygen in the first step of the stepwise amidation reaction.
The moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
The distance between C t1 and O p1 is 1.45 Å to 1.70 Å.
Distance of O p1 and H t12 is 1.05Å ~ 1.30Å,
The distance between H t12 and O t1 is 1.10 Å to 1.40 Å,
The distance between O t1 and C t1 is 1.22 Å to 1.42 Å.
The meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1). )
Figure JPOXMLDOC01-appb-C000055
(構造Nt1(Ht1)-Ct1(Op1)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~1.65Å、
t1とHt1の距離は1.00Å~1.24Å、
t1とOp1の距離は1.35Å~2.40Å、
p1とHt1の距離は1.00Å~1.84Åである。
その他一般式(3-3)中の記号の意は一般式(1)、(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000055
(Structure N t1 (H t1 ) -C t1 (O p1 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
The distance between N t1 and C t1 is 1.40 Å to 1.65 Å,
The distance between N t1 and H t1 is 1.00 Å to 1.24 Å,
The distance between C t1 and O p1 is 1.35 Å to 2.40 Å.
Distance O p1 and H t1 is 1.00Å ~ 1.84Å.
The meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1). )
Figure JPOXMLDOC01-appb-C000056
(構造Nt1-Ct1-Op1-Hp12-Op12-Ht1部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~2.10Å、
t1とHt1の距離は1.00Å~1.20Å、
t1とOp1の距離は1.35Å~2.30Å、
p1とHp12の距離は1.00Å~1.56Å、
p12とOp12の距離は1.00Å~1.67Å、
p12とHt1の距離は1.20Å~1.96Åである。
その他一般式(3-4)中の記号の意は一般式(1)及び(2-2)に同じ。)
Figure JPOXMLDOC01-appb-C000056
(Structure N t1 -C t1 -O p1 -H p12 -O p12 -H t1 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
The distance between N t1 and C t1 is 1.40 Å to 2.10 Å.
The distance between N t1 and H t1 is 1.00 Å to 1.20 Å,
The distance between C t1 and O p1 is 1.35 Å to 2.30 Å.
Distance of O p1 and H p12 is 1.00Å ~ 1.56Å,
The distance between H p12 and O p12 is 1.00 Å to 1.67 Å,
The distance between Op 12 and H t1 is 1.20 Å to 1.96 Å.
The meaning of the symbols in the general formula (3-4) is the same as in the general formulas (1) and (2-2). )
Figure JPOXMLDOC01-appb-C000057
(Hs12-Os1-Hs11は溶媒水分子の一つであり、構造Nt1-Ct1-Op1-Hs11-Os1-Hp12-Op12-Ht1部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~1.79Å、
t1とHt1の距離は1.00Å~1.26Å、
t1とOp1の距離は1.40Å~2.21Å、
p1とHs12の距離は1.13Å~1.43Å、
s12とOs1の距離は1.00Å~1.37Å、
s1とHp12の距離は1.30Å~1.69Å、
p12とOp12との距離は0.98Å~1.24Å、
p12とHt1との距離は1.17Å~1.76Åである。
その他一般式(3-5)中の記号の意は一般式(1)、(2-2)に同じ。)
Figure JPOXMLDOC01-appb-C000057
(H s12 -O s1 -H s11 is one of the solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
The distance between N t1 and C t1 is 1.40 Å to 1.79 Å.
The distance between N t1 and H t1 is 1.00 Å to 1.26 Å,
The distance between C t1 and O p1 is 1.40 Å to 2.21 Å,
Distance of O p1 and H s12 is 1.13Å ~ 1.43Å,
The distance between H s12 and O s1 is 1.00 Å to 1.37 Å,
The distance between O s1 and H p12 is 1.30 Å to 1.69 Å,
The distance between H p12 and O p12 is 0.98 Å to 1.24 Å,
The distance between Op 12 and H t1 is 1.17 Å to 1.76 Å.
The meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2). )
<2>前記一般式(3-1)が、下記一般式(3-1-1)であることを特徴とする、項1に記載の方法。 <2> The method according to Item 1, wherein the general formula (3-1) is the following general formula (3-1-1).
Figure JPOXMLDOC01-appb-C000058
(一般式(3-1-1)中の記号の意は一般式(3-1)に同じ。)
Figure JPOXMLDOC01-appb-C000058
(The meaning of the symbol in the general formula (3-1-1) is the same as in the general formula (3-1).)
<3>前記一般式(1)で表される構造が下記一般式(4)で表される構造であり、
前記一般式(3-1)、(3-2)、(3-3)、(3-4)、(3-5)で表される構造が、それぞれ下記一般式(5-1)、(5-2)、(5-3)、(5-4)、(5-5)で表される構造であることを特徴とする、項1に記載の方法。
The structure represented by <3> said General formula (1) is a structure represented by following General formula (4),
The structures represented by the general formulas (3-1), (3-2), (3-3), (3-4), and (3-5) have the following general formulas (5-1) and (5-3), respectively. 5. The method according to item 1, wherein the structure is represented by 5-2), (5-3), (5-4), (5-5).
Figure JPOXMLDOC01-appb-C000059
(Cα1は前記非天然アミノ酸のα炭素であり、Ra1及びRa2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、Ra2は水素原子でもよい)。
 その他の記号は一般式(1)に同じ。)
Figure JPOXMLDOC01-appb-C000059
(C α1 is an α carbon of the non-natural amino acid, and R a1 and R a2 each independently represent a side chain structure of the non-natural amino acid (however, R a2 may be a hydrogen atom).
Other symbols are the same as in the general formula (1). )
Figure JPOXMLDOC01-appb-C000060
(Nt1とCt1、Nt1とHt1、Ht1とOt1の距離は一般式(3-1)に同じ。
その他一般式(5-1)中の記号の意は一般式(1)、(2-1)及び(4)に同じ。)
Figure JPOXMLDOC01-appb-C000060
(The distances between N t1 and C t1 , N t1 and H t1 , and H t1 and O t1 are the same as in the general formula (3-1).
The meaning of the symbols in the general formula (5-1) is the same as in the general formulas (1), (2-1) and (4). )
Figure JPOXMLDOC01-appb-C000061
(記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-2)中の記号の意、及び原子間距離は一般式(3-2)と同じ。)
Figure JPOXMLDOC01-appb-C000061
(The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meanings of the symbols in the general formula (5-2) and the interatomic distance are the same as in the general formula (3-2). )
Figure JPOXMLDOC01-appb-C000062
(記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-3)中の記号の意、及び原子間距離は一般式(3-3)と同じ。)
Figure JPOXMLDOC01-appb-C000062
(The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-3) and the interatomic distance are the same as in the general formula (3-3). )
Figure JPOXMLDOC01-appb-C000063
(記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-4)中の記号の意、及び原子間距離は一般式(3-4)と同じ。)
Figure JPOXMLDOC01-appb-C000063
(The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meanings of the symbols in the general formula (5-4) and the interatomic distance are the same as in the general formula (3-4). )
Figure JPOXMLDOC01-appb-C000064
(記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-5)中の記号の意、及び原子間距離は一般式(3-5)と同じ。)
Figure JPOXMLDOC01-appb-C000064
(The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-5) and the interatomic distance are the same as in the general formula (3-5). )
<4>リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のc~e工程を備えることを特徴とする方法。
  (c工程)
 A及びPサイトにtRNA又はその誘導体が結合したリボソームのX線構造解析により得られる三次元構造データを用意し、
該三次元構造データに、以下の条件のとおり、
一般式(1)で表される前記非天然アミノ酸のアミノアシルtRNAと、
一般式(2-1)又は(2-2)で表される任意のアミノ酸配列を有するペプチジルtRNAと、
のペプチジル基転移反応における想定される反応遷移状態(一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5))を組み込む工程。
   (条件1)前記三次元構造データにおけるAサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAa1の3´末端炭素の原子座標が位置するように、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む。
   (条件2)前記三次元構造データにおけるPサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAP1の3´末端炭素の原子座標が位置するように、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む。
  (d工程)
 前記c工程により得られた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
  (e工程)
 前記d工程の結果得られた構造が遷移状態構造であることが確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<4> A method for estimating the adaptability of an unnatural amino acid to a protein in a protein synthesis system by ribosome, comprising the following steps of c to e.
(Step c)
Prepare three-dimensional structural data obtained by X-ray structural analysis of ribosome in which tRNA or its derivative is bound to A and P sites,
In the three-dimensional structure data, according to the following conditions:
An aminoacyl-tRNA of the unnatural amino acid represented by the general formula (1);
A peptidyl tRNA having any amino acid sequence represented by the general formula (2-1) or (2-2),
A step of incorporating the assumed reaction transition state (general formula (3-1), (3-2), (3-3), (3-4) or (3-5)) in the peptidyl group transfer reaction of
(Condition 1) The general formula (3) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a1 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. 1) Incorporate the assumed structure represented by (3-2), (3-3), (3-4) or (3-5).
(Condition 2) The atomic formula of the 3 'terminal carbon of tRNA P1 is located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data, 1) Incorporate the assumed structure represented by (3-2), (3-3), (3-4) or (3-5).
(Step d)
Transition state structure optimization calculation (TS optimization calculation) by molecular orbital method with a structure obtained by appropriately removing the structure far from the reaction center of the structure obtained by the step c or the structure, in order to reduce the calculation load as an initial structure Process of
(Step e)
A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when the structure obtained as a result of the step d is confirmed to be a transition state structure.
Figure JPOXMLDOC01-appb-C000065
(Aa1は前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Ba1は任意の基、又は前記Aa1と一体となりBa1-Aa1-Nt1の環状構造を形成する基を表す。
 tRNAa1は、3´末端においてOa12と共有結合したtRNAを表す。)
Figure JPOXMLDOC01-appb-C000065
(A a1 represents a structural moiety other than an amino group and a carboxyl group involved in the peptide bond in the non-natural amino acid.
B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
The tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end. )
Figure JPOXMLDOC01-appb-C000066
(tRNAP1は、3´末端においてOP1と共有結合したtRNAを表す。
 PP1はペプチジル基を表す。)
Figure JPOXMLDOC01-appb-C000066
(TRNA P1 represents a tRNA covalently bound to O P1 in the 3 'end.
P P1 represents the peptidyl group. )
Figure JPOXMLDOC01-appb-C000067
(tRNAP12-OP12-HP12の構造部分は、一般式(2-1)におけるtRNAP1と同構造を表す。すなわち、OP12はtRNAP1の3´末端糖の2´炭素に結合した酸素原子、HP12はOP12に結合した水素原子、tRNAP12はtRNAP1からOP12とHP12を除いた部分を表す。
その他一般式(2-2)中の記号の意は一般式(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000067
(Structural portion of the tRNA P12 -O P12 -HP 12 has the general formula and tRNA P1 in (2-1) represents the same structure. Namely, the oxygen O P12 is bound to 2 'carbon of the 3'-terminal sugar of tRNA P1 The atom, HP12 is a hydrogen atom bonded to OP12 , and tRNA P12 is a portion of tRNA P1 from which OP 12 and HP 12 have been removed.
The meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1). )
Figure JPOXMLDOC01-appb-C000068
(構造Nt1(Ht1)-Ct1(Ot1)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
t1とCt1の距離は1.53Å~1.77Å、
t1とHt1の距離は1.10Å~1.35Å、
t1とOt1の距離は1.35Å~1.45Åである。
その他一般式(3-1)中の記号の意は一般式(1)及び(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000068
(Structure N t1 (H t1 ) -C t1 (O t1 ) moiety is a reaction center in the reaction transition state structure of the first step of stepwise amidification reaction,
The distance between N t1 and C t1 is 1.53 Å to 1.77 Å,
The distance between N t1 and H t1 is 1.10 Å to 1.35 Å.
The distance between H t1 and O t1 is 1.35 Å to 1.45 Å.
The meaning of the symbols in the general formula (3-1) is the same as in the general formulas (1) and (2-1). )
Figure JPOXMLDOC01-appb-C000069
(Ht12は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt1をプロトン化せしめた水素原子である。
構造Ct1-Op1-Ht12-Ot1部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
t1とOp1の距離は1.45Å~1.70Å、
p1とHt12の距離は1.05Å~1.30Å、
t12とOt1の距離は1.10Å~1.40Å、
t1とCt1の距離は1.22Å~1.42Åである。
その他一般式(3-2)中の記号の意は一般式(1)、(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000069
(H t12 is a hydrogen atom that protonated O t1 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
The moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
The distance between C t1 and O p1 is 1.45 Å to 1.70 Å.
Distance of O p1 and H t12 is 1.05Å ~ 1.30Å,
The distance between H t12 and O t1 is 1.10 Å to 1.40 Å,
The distance between O t1 and C t1 is 1.22 Å to 1.42 Å.
The meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1). )
Figure JPOXMLDOC01-appb-C000070
(構造Nt1(Ht1)-Ct1(Op1)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~1.65Å、
t1とHt1の距離は1.00Å~1.24Å、
t1とOp1の距離は1.35Å~2.40Å、
p1とHt1の距離は1.00Å~1.84Åである。
その他一般式(3-3)中の記号の意は一般式(1)、(2-1)に同じ。)
Figure JPOXMLDOC01-appb-C000070
(Structure N t1 (H t1 ) -C t1 (O p1 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
The distance between N t1 and C t1 is 1.40 Å to 1.65 Å,
The distance between N t1 and H t1 is 1.00 Å to 1.24 Å,
The distance between C t1 and O p1 is 1.35 Å to 2.40 Å.
Distance O p1 and H t1 is 1.00Å ~ 1.84Å.
The meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1). )
Figure JPOXMLDOC01-appb-C000071
(構造Nt1-Ct1-Op1-Hp12-Op12-Ht1部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~2.10Å、
t1とHt1の距離は1.00Å~1.20Å、
t1とOp1の距離は1.35Å~2.30Å、
p1とHp12の距離は1.00Å~1.56Å、
p12とOp12の距離は1.00Å~1.67Å、
p12とHt1の距離は1.20Å~1.96Åである。
その他一般式(3-4)中の記号の意は一般式(1)及び(2-2)に同じ。)
Figure JPOXMLDOC01-appb-C000071
(Structure N t1 -C t1 -O p1 -H p12 -O p12 -H t1 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
The distance between N t1 and C t1 is 1.40 Å to 2.10 Å.
The distance between N t1 and H t1 is 1.00 Å to 1.20 Å,
The distance between C t1 and O p1 is 1.35 Å to 2.30 Å.
Distance of O p1 and H p12 is 1.00Å ~ 1.56Å,
The distance between H p12 and O p12 is 1.00 Å to 1.67 Å,
The distance between Op 12 and H t1 is 1.20 Å to 1.96 Å.
The meaning of the symbols in the general formula (3-4) is the same as in the general formulas (1) and (2-2). )
Figure JPOXMLDOC01-appb-C000072
(Hs12-Os1-Hs11は溶媒水分子の一つであり、構造Nt1-Ct1-Op1-Hs11-Os1-Hp12-Op12-Ht1部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~1.79Å、
t1とHt1の距離は1.00Å~1.26Å、
t1とOp1の距離は1.40Å~2.21Å、
p1とHs12の距離は1.13Å~1.43Å、
s12とOs1の距離は1.00Å~1.37Å、
s1とHp12の距離は1.30Å~1.69Å、
p12とOp12との距離は0.98Å~1.24Å、
p12とHt1との距離は1.17Å~1.76Åである。
その他一般式(3-5)中の記号の意は一般式(1)、(2-2)に同じ。)
Figure JPOXMLDOC01-appb-C000072
(H s12 -O s1 -H s11 is one of the solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
The distance between N t1 and C t1 is 1.40 Å to 1.79 Å.
The distance between N t1 and H t1 is 1.00 Å to 1.26 Å,
The distance between C t1 and O p1 is 1.40 Å to 2.21 Å,
Distance of O p1 and H s12 is 1.13Å ~ 1.43Å,
The distance between H s12 and O s1 is 1.00 Å to 1.37 Å,
The distance between O s1 and H p12 is 1.30 Å to 1.69 Å,
The distance between H p12 and O p12 is 0.98 Å to 1.24 Å,
The distance between Op 12 and H t1 is 1.17 Å to 1.76 Å.
The meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2). )
<5>前記e工程の後に、以下のe´工程を含むことを特徴とする、項4に記載の方法。
  (e´工程)
前記e工程で遷移状態構造であることが確認された構造が、
 その反応中心部を含む環状構造部(一般式(3-4)又は一般式(3-5)で表される構造を組み込む形態にあっては、該一般式のtRNAP12を含む環状構造を含む)以外の部分の結合軸のねじれ角を、立体障害が発生しない範囲内で調整することにより、tRNAa1の3´末端炭素対応原子とtRNAP1の3´末端炭素対応原子が、それぞれ前記三次元構造データにおけるAサイト上のtRNAの末端3´炭素とPサイト上のtRNAの末端3´炭素とのずれが0.3Å以内で前記三次元構造データにフィッティング可能な場合に、
 前記非天然アミノ酸のタンパク質への導入適性がより高いと判断する。
<5> The method according to Item 4, comprising the following e ′ step after the e step.
(E 'process)
The structure confirmed to be a transition state structure in the step e) is
The cyclic structure containing the reaction center (in a form incorporating the structure represented by the general formula (3-4) or the general formula (3-5), the cyclic structure containing tRNA P12 of the general formula is included ) By adjusting the twist angle of the bond axis of the other part within the range that steric hindrance does not occur, the three-dimensional carbon corresponding atom of tRNA a1 and the three-terminal carbon corresponding atom of tRNA P1 are respectively three-dimensional In the case where the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 Å in structural data, and fitting to the three-dimensional structural data is possible:
It is judged that the adaptability of the unnatural amino acid to the protein is higher.
<6>前記c工程で一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む際に、
 遷移状態最適化構造が得られている類似構造化合物の構造の一部、又は
 項1又は2に記載の方法により、前記非天然アミノ酸のタンパク質への導入適性が高いと判断される場合であって、前記b工程で遷移状態構造であることが確認された、前記a工程の結果得られる構造の一部
 を取り込むことを特徴とする、項4又は5に記載の方法。
When incorporating the assumed structure represented by General Formula (3-1), (3-2), (3-3), (3-4), or (3-5) in the <6> step c above,
A part of the structure of a similar structural compound from which a transition state optimization structure is obtained, or a method according to item 1 or 2, when it is judged that the aptitude for introducing the unnatural amino acid into a protein is high The method according to Item 4 or 5, wherein a part of the structure obtained as a result of the a step is incorporated, which is confirmed to be a transition state structure in the b step.
<7>さらに以下のf工程を備えることを特徴とする、項4~6の何れか一項に記載の方法。
  (f工程)
 前記d工程の結果得られた構造が、遷移状態構造であることが確認され、かつ、
  前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、リボソーム中の2451A、2452C、2506U及び2585Uにより形成される空間に立体障害無く収まる場合、
  または、前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)以外のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、サーマス・サーモフィルス(Thermus thermophilus)のリボソーム中の2451A、2452C、2506U及び2585Uに対応する塩基により形成される空間に立体障害無く収まる場合、
に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<7> The method according to any one of Items 4 to 6, further comprising the following f step:
(Step f)
It is confirmed that the structure obtained as a result of the step d is a transition state structure, and
When the three-dimensional structural data is an X-ray analysis structure of a Thermus thermophilus ribosome, the side chain of the unnatural amino acid is formed by 2451A, 2452C, 2506U and 2585U in the ribosome When it fits in space without steric hindrance,
Alternatively, when the three-dimensional structural data is an X-ray analysis structure of a ribosome other than Thermus thermophilus, the side chain of the unnatural amino acid is in the ribosome of Thermus thermophilus. In the space formed by the bases corresponding to 2451A, 2452C, 2506U and 2585U of
And a step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
<8>リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のg及びh工程を備えることを特徴とする方法。
  (g工程)
 一般式(6)で表される任意のアミノ酸のアミノアシルtRNAと、
一般式(7-1)又は(7-2)で表される前記非天然アミノ酸のアミノ酸残基を構成として有するペプチジルtRNAと、
のペプチジル基転移反応における想定される反応遷移状態(一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
  (h工程)
 前記g工程の結果得られる構造が遷移状態構造であることが確認できる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<8> A method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, comprising the following g and h steps:
(Step g)
An aminoacyl-tRNA of any amino acid represented by the general formula (6):
A peptidyl tRNA having as a constituent an amino acid residue of the non-natural amino acid represented by the general formula (7-1) or (7-2);
Reaction transition state (general formula (8-1), (8-2), (8-3), (8-4) or (8-5)) or reaction of its structure in the peptidyl group transfer reaction of A step of performing transition state structure optimization calculation (TS optimization calculation) by the molecular orbital method with a structure omitted as appropriate in order to reduce calculation load from a part far from the center as an initial structure.
(Step h)
A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when it can be confirmed that the structure obtained as a result of the step g is a transition state structure.
Figure JPOXMLDOC01-appb-C000073
(Aa2は前記任意のアミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Ba2は任意の基、又は前記Aa2と一体となりBa2-Aa2-Nt2の環状構造を形成する基を表す。
 tRNAa2は、3´末端においてOa22と共有結合したtRNAを表す。)
Figure JPOXMLDOC01-appb-C000073
(A a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any of the amino acids.
B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end. )
Figure JPOXMLDOC01-appb-C000074
(Aは前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Bは任意の基、又は前記Aと一体となりB-A-Nの環状構造を形成する基を表す。
tRNAP2は、3´末端においてOP2と共有結合したtRNAを表す。
 PP2はペプチジル基を表す。)
Figure JPOXMLDOC01-appb-C000075
(tRNAP22-OP22-HP22の構造部分は、一般式(7-1)におけるtRNAP2と同構造を表す。すなわち、OP22はtRNAP2の3´末端糖の2´炭素に結合した酸素原子、HP22はOP22に結合した水素原子、tRNAP22はtRNAP2からOP22とHP22を除いた部分を表す。
その他一般式(7-2)中の記号の意は一般式(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000074
(A P represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
P P2 represents the peptidyl group. )
Figure JPOXMLDOC01-appb-C000075
(The structural portion of tRNA P22 -OP 22 -HP 22 has the same structure as tRNA P2 in the general formula (7-1). That is, OP22 is an oxygen bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2 The atom, HP22 is a hydrogen atom bonded to OP22 , and tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
The meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1). )
Figure JPOXMLDOC01-appb-C000076
(構造Nt2(Ht2)-Ct2(Ot2)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
t2とCt2の距離は1.53Å~1.77Å、
t2とHt2の距離は1.10Å~1.35Å、
t2とOt2の距離は1.35Å~1.45Åである。
その他一般式(8-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000076
(Structure N t2 (H t2 ) -C t2 (O t2 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
The distance between N t2 and C t2 is 1.53 Å to 1.77 Å,
The distance between N t2 and H t2 is 1.10 Å to 1.35 Å.
The distance between H t2 and O t2 is 1.35 Å to 1.45 Å.
The meaning of the symbols in the general formula (8-1) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000077
(Ht22は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt2をプロトン化せしめた水素原子である。
構造Ct2―Op2―Ht22―Ot2部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
t2とOp2の距離は1.45Å~1.70Å、
p2とHt22の距離は1.05Å~1.30Å、
t22とOt2の距離は1.10Å~1.40Å、
t2とCt2の距離は1.22Å~1.42Åである。
その他一般式(8-2)中の記号の意は一般式(6)、(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000077
(H t22 is a hydrogen atom which protonated O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
The moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
The distance between C t2 and O p2 is 1.45 Å to 1.70 Å.
Distance of O p2 and H t22 is 1.05Å ~ 1.30Å,
The distance between H t22 and O t2 is 1.10 Å to 1.40 Å,
The distance between O t2 and C t2 is 1.22 Å to 1.42 Å.
The meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000078
(構造Nt2(Ht2)-Ct2(Op2)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~1.65Å、
t2とHt2の距離は1.00Å~1.24Å、
t2とOp2の距離は1.35Å~2.40Å、
p2とHt2の距離は1.00Å~1.84Åである。
その他一般式(8-3)中の記号の意は一般式(6)、(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000078
(Structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
The distance between N t2 and C t2 is 1.40 Å to 1.65 Å,
The distance between N t2 and H t2 is 1.00 Å to 1.24 Å,
The distance between C t2 and O p2 is 1.35 Å to 2.40 Å,
Distance O p2 and H t2 is 1.00Å ~ 1.84Å.
The meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000079
(構造Nt2-Ct2-Op2-Hp22-Op22-Ht2部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~2.10Å、
t2とHt2の距離は1.00Å~1.20Å、
t2と Op2の距離は1.35Å~2.30Å、
p2とHp22の距離は1.00Å~1.56Å、
p22とOp22の距離は1.00Å~1.67Å、
p22とHt2の距離は1.20Å~1.96Åである。
その他一般式(8-4)中の記号の意は一般式(6)及び(7-2)に同じ。)
Figure JPOXMLDOC01-appb-C000079
(Structure N t2 -C t2 -O p2 -H p22 -O p22 -H t2 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
The distance between N t2 and C t2 is 1.40 Å to 2.10 Å,
The distance between N t2 and H t2 is 1.00 Å to 1.20 Å,
The distance between C t2 and O p2 is 1.35 Å to 2.30 Å.
Distance of O p2 and H p22 is 1.00Å ~ 1.56Å,
The distance between H p22 and O p22 is 1.00 Å to 1.67 Å,
The distance between Op 22 and H t2 is 1.20 Å to 1.96 Å.
The meaning of the symbol in the general formula (8-4) is the same as in the general formulas (6) and (7-2). )
Figure JPOXMLDOC01-appb-C000080
(Hs21―Os2-Hs22は溶媒水分子の一つであり、構造Nt2-Ct2-Op2-Hs21-Os2-Hp22-Op22-Ht2部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~1.79Å、
t2とHt2の距離は1.00Å~1.26Å、
t2とOp2の距離は1.40Å~2.21Å、
p2とHs21の距離は1.13Å~1.43Å、
s21とOs2の距離は1.00Å~1.37Å、
s2とHp22の距離は1.30Å~1.69Å、
p22とOp22との距離は0.98Å~1.24Å、
p22とHt2との距離は1.17Å~1.76Åである。
その他一般式(8-5)中の記号の意は一般式(6)、(7-2)に同じ。)
Figure JPOXMLDOC01-appb-C000080
(H s21 -O s2 -H s22 is one of the solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
The distance between N t2 and C t2 is 1.40 Å to 1.79 Å.
The distance between N t2 and H t2 is 1.00 Å to 1.26 Å,
The distance between C t2 and O p2 is 1.40 Å to 2.21 Å,
Distance of O p2 and H s21 is 1.13Å ~ 1.43Å,
The distance between H s21 and O s2 is 1.00 Å to 1.37 Å,
The distance between O s2 and H p22 is 1.30 Å to 1.69 Å,
The distance between H p22 and O p22 is 0.98 Å to 1.24 Å,
The distance between Op 22 and H t2 is 1.17 Å to 1.76 Å.
The meaning of the symbol in the general formula (8-5) is the same as in the general formulas (6) and (7-2). )
<9>前記一般式(8-1)が、下記一般式(8-1-1)であることを特徴とする、項8に記載の方法。 9. The method according to item 8, wherein the general formula (8-1) is the following general formula (8-1-1).
Figure JPOXMLDOC01-appb-C000081
(一般式(8-1-1)中の記号の意は一般式(8-1)に同じ。)
Figure JPOXMLDOC01-appb-C000081
(The meaning of the symbol in the general formula (8-1-1) is the same as in the general formula (8-1).)
<10>前記一般式(7-1)又は(7-2)で表される構造が下記一般式(9-1)又は(9-2)で表される構造であり、
前記一般式(8-1)、(8-2)、(8-3)、(8-4)、(8-5)で表される構造がそれぞれ下記一般式(10-1)、(10-2)、(10-3)、(10-4)、(10-5)で表される構造であることを特徴とする、項8に記載の方法。
<10> The structure represented by the general formula (7-1) or (7-2) is a structure represented by the following general formula (9-1) or (9-2),
The structures represented by the general formulas (8-1), (8-2), (8-3), (8-4), and (8-5) have the following general formulas (10-1) and (10), respectively. 9. A method according to item 8, which is characterized in that it has a structure represented by -2), (10-3), (10-4) or (10-5).
Figure JPOXMLDOC01-appb-C000082
(Cα2は前記非天然アミノ酸のα炭素であり、RP1及びRP2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、RP2は水素原子でもよい)。
その他の記号の意は一般式(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000082
(C α2 is the α carbon of the non-natural amino acid, and R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 may be a hydrogen atom).
The meaning of the other symbols is the same as in the general formula (7-1). )
Figure JPOXMLDOC01-appb-C000083
(tRNAp22、OP22、及びHP22は一般式(7-2)と同じ意。それ以外の記号の意は一般式(9-1)と同じ。)
Figure JPOXMLDOC01-appb-C000083
(TRNA p22 , OP 22 , and HP 22 have the same meaning as in general formula (7-2). The meanings of other symbols are the same as in general formula (9-1).)
Figure JPOXMLDOC01-appb-C000084
((構造Nt2(Ht2)-Ct2(Ot2)部分、Nt2とCt2、Nt2とHt2、 Ht2とOt2の距離は一般式(8-1)に同じ。
その他一般式(10-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000084
((Structure N t2 (H t2 ) -C t2 (O t2 ) part, the distances between N t2 and C t2 , N t2 and H t2 , and H t2 and O t2 are the same as in the general formula (8-1).
The meaning of the symbols in the general formula (10-1) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000085
(記号RP1、Cα2及びRP2の意は一般式(9-1)と同じ。その他一般式(10-2)中の記号の意、及び原子間距離は一般式(8-2)と同じ。)
Figure JPOXMLDOC01-appb-C000085
(The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-1). The meaning of the symbols in the general formula (10-2) and the interatomic distance are the same as in the general formula (8-2) the same.)
Figure JPOXMLDOC01-appb-C000086
(記号RP1、Cα2及びRP2の意は一般式(9-1)と同じ。その他一般式(10-3)中の記号の意、及び原子間距離は一般式(8-3)と同じ。)
Figure JPOXMLDOC01-appb-C000086
(The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-1). The meaning of the symbols in the general formula (10-3) and the interatomic distance are the same as in the general formula (8-3) the same.)
Figure JPOXMLDOC01-appb-C000087
(記号RP1、Cα2及びRP2の意は一般式(9-2)と同じ。その他一般式(10-4)中の記号の意、及び原子間距離は一般式(8-4)と同じ。)
Figure JPOXMLDOC01-appb-C000087
(The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-2). The meaning of the symbols in the general formula (10-4) and the interatomic distance are the same as in the general formula (8-4) the same.)
Figure JPOXMLDOC01-appb-C000088
(記号RP1、Cα2及びRP2の意は一般式(9-2)と同じ。その他一般式(10-5)中の記号の意、及び原子間距離は一般式(8-5)と同じ。)
Figure JPOXMLDOC01-appb-C000088
(The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-2). The meanings of the symbols in the general formula (10-5) and the interatomic distance are the same as in the general formula (8-5) the same.)
<11>リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のi~k工程を備えることを特徴とする方法。
  (i工程)
 A及びPサイトにtRNA又はその誘導体が結合したリボソームのX線構造解析により得られる三次元構造データを用意し、
該三次元構造データに、以下の条件のとおり、
 一般式(6)で表される任意のアミノ酸のアミノアシルtRNAと、
一般式(7-1)又は(7-2)で表される前記非天然アミノ酸のアミノ酸残基を構成として有するペプチジルtRNAと、
のペプチジル基転移反応における想定される反応遷移状態(一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))を組み込む工程。
   (条件3)前記三次元構造データにおけるAサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAa2の3´末端炭素の原子座標が位置するように、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))で表される想定構造を組み込む。
   (条件4)前記三次元構造データにおけるPサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAP2の3´末端炭素の原子座標が位置するように、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))で表される想定構造を組み込む。
  (j工程)
 前記i工程により得られた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
  (k工程)
 前記j工程の結果得られた構造が遷移状態構造であることが確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<11> A method for estimating the adaptability of an unnatural amino acid to a protein in a protein synthesis system by ribosome, comprising the following ik steps:
(Step i)
Prepare three-dimensional structural data obtained by X-ray structural analysis of ribosome in which tRNA or its derivative is bound to A and P sites,
In the three-dimensional structure data, according to the following conditions:
An aminoacyl-tRNA of any amino acid represented by the general formula (6):
A peptidyl tRNA having as a constituent an amino acid residue of the non-natural amino acid represented by the general formula (7-1) or (7-2);
A step of incorporating an assumed reaction transition state (general formula (8-1), (8-2), (8-3), (8-4) or (8-5)) in the peptidyl group transfer reaction of
(Condition 3) The general formula (8) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
(Condition 4) The general formula (8) is such that atomic coordinates of the 3 'terminal carbon of tRNA P2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
(Step j)
Transition state structure optimization calculation (TS optimization calculation) by molecular orbital method with the structure obtained by appropriately removing the structure far from the reaction center of the structure obtained by the step i or the structure omitted to reduce the calculation load as an initial structure Process of
(Step k)
A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when the structure obtained as a result of the step j is confirmed to be a transition state structure.
Figure JPOXMLDOC01-appb-C000089
(Aa2は前記任意のアミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Ba2は任意の基、又は前記Aa2と一体となりBa2-Aa2-Nt2の環状構造を形成する基を表す。
 tRNAa2は、3´末端においてOa22と共有結合したtRNAを表す。)
Figure JPOXMLDOC01-appb-C000089
(A a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any of the amino acids.
B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end. )
Figure JPOXMLDOC01-appb-C000090
(Aは前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Bは任意の基、又は前記Aと一体となりB-A-Nの環状構造を形成する基を表す。
tRNAP2は、3´末端においてOP2と共有結合したtRNAを表す。
 PP2はペプチジル基を表す。)
Figure JPOXMLDOC01-appb-C000091
(tRNAP22-OP22-HP22の構造部分は、一般式(7-1)におけるtRNAP2と同構造を表す。すなわち、OP22はtRNAP2の3´末端糖の2´炭素に結合した酸素原子、HP22はOP22に結合した水素原子、tRNAP22はtRNAP2からOP22とHP22を除いた部分を表す。
その他一般式(7-2)中の記号の意は一般式(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000090
(A P represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
P P2 represents the peptidyl group. )
Figure JPOXMLDOC01-appb-C000091
(The structural portion of tRNA P22 -OP 22 -HP 22 has the same structure as tRNA P2 in the general formula (7-1). That is, OP22 is an oxygen bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2 The atom, HP22 is a hydrogen atom bonded to OP22 , and tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
The meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1). )
Figure JPOXMLDOC01-appb-C000092
(構造Nt2(Ht2)-Ct2(Ot2)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
t2とCt2の距離は1.53Å~1.77Å、
t2とHt2の距離は1.10Å~1.35Å、
t2とOt2の距離は1.35Å~1.45Åである。
その他一般式(8-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000092
(Structure N t2 (H t2 ) -C t2 (O t2 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
The distance between N t2 and C t2 is 1.53 Å to 1.77 Å,
The distance between N t2 and H t2 is 1.10 Å to 1.35 Å.
The distance between H t2 and O t2 is 1.35 Å to 1.45 Å.
The meaning of the symbols in the general formula (8-1) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000093
(Ht22は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt2をプロトン化せしめた水素原子である。
構造Ct2―Op2―Ht22―Ot2部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
t2とOp2の距離は1.45Å~1.70Å、
p2とHt22の距離は1.05Å~1.30Å、
t22とOt2の距離は1.10Å~1.40Å、
t2とCt2の距離は1.22Å~1.42Åである。
その他一般式(8-2)中の記号の意は一般式(6)、(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000093
(H t22 is a hydrogen atom which protonated O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
The moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
The distance between C t2 and O p2 is 1.45 Å to 1.70 Å.
Distance of O p2 and H t22 is 1.05Å ~ 1.30Å,
The distance between H t22 and O t2 is 1.10 Å to 1.40 Å,
The distance between O t2 and C t2 is 1.22 Å to 1.42 Å.
The meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000094
(構造Nt2(Ht2)-Ct2(Op2)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~1.65Å、
t2とHt2の距離は1.00Å~1.24Å、
t2とOp2の距離は1.35Å~2.40Å、
p2とHt2の距離は1.00Å~1.84Åである。
その他一般式(8-3)中の記号の意は一般式(6)、(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000094
(Structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
The distance between N t2 and C t2 is 1.40 Å to 1.65 Å,
The distance between N t2 and H t2 is 1.00 Å to 1.24 Å,
The distance between C t2 and O p2 is 1.35 Å to 2.40 Å,
Distance O p2 and H t2 is 1.00Å ~ 1.84Å.
The meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1). )
Figure JPOXMLDOC01-appb-C000095
(構造Nt2-Ct2-Op2-Hp22-Op22-Ht2部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~2.10Å、
t2とHt2の距離は1.00Å~1.20Å、
t2と Op2の距離は1.35Å~2.30Å、
p2とHp22の距離は1.00Å~1.56Å、
p22とOp22の距離は1.00Å~1.67Å、
p22とHt2の距離は1.20Å~1.96Åである。
その他一般式(8-4)中の記号の意は一般式(6)及び(7-2)に同じ。)
Figure JPOXMLDOC01-appb-C000095
(Structure N t2 -C t2 -O p2 -H p22 -O p22 -H t2 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
The distance between N t2 and C t2 is 1.40 Å to 2.10 Å,
The distance between N t2 and H t2 is 1.00 Å to 1.20 Å,
The distance between C t2 and O p2 is 1.35 Å to 2.30 Å.
Distance of O p2 and H p22 is 1.00Å ~ 1.56Å,
The distance between H p22 and O p22 is 1.00 Å to 1.67 Å,
The distance between Op 22 and H t2 is 1.20 Å to 1.96 Å.
The meaning of the symbol in the general formula (8-4) is the same as in the general formulas (6) and (7-2). )
Figure JPOXMLDOC01-appb-C000096
(Hs21―Os2-Hs22は溶媒水分子の一つであり、構造Nt2-Ct2-Op2-Hs21-Os2-Hp22-Op22-Ht2部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~1.79Å、
t2とHt2の距離は1.00Å~1.26Å、
t2とOp2の距離は1.40Å~2.21Å、
p2とHs21の距離は1.13Å~1.43Å、
s21とOs2の距離は1.00Å~1.37Å、
s2とHp22の距離は1.30Å~1.69Å、
p22とOp22との距離は0.98Å~1.24Å、
p22とHt2との距離は1.17Å~1.76Åである。
その他一般式(8-5)中の記号の意は一般式(6)、(7-2)に同じ。)
Figure JPOXMLDOC01-appb-C000096
(H s21 -O s2 -H s22 is one of the solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
The distance between N t2 and C t2 is 1.40 Å to 1.79 Å.
The distance between N t2 and H t2 is 1.00 Å to 1.26 Å,
The distance between C t2 and O p2 is 1.40 Å to 2.21 Å,
Distance of O p2 and H s21 is 1.13Å ~ 1.43Å,
The distance between H s21 and O s2 is 1.00 Å to 1.37 Å,
The distance between O s2 and H p22 is 1.30 Å to 1.69 Å,
The distance between H p22 and O p22 is 0.98 Å to 1.24 Å,
The distance between Op 22 and H t2 is 1.17 Å to 1.76 Å.
The meaning of the symbol in the general formula (8-5) is the same as in the general formulas (6) and (7-2). )
<12>前記k工程の後に、以下のk´工程を含むことを特徴とする、項11に記載の方法。
  (k´工程)
 前記k工程で遷移状態構造であることが確認された構造が、
 その反応中心部を含む環状構造部(一般式(8-4)又は一般式(8-5)で表される構造を組み込む形態にあっては、該一般式のtRNAP22を含む環状構造を含む)以外の部分の結合軸のねじれ角を、立体障害が発生しない範囲内で調整することにより、tRNAa2の3´末端炭素対応原子とtRNAP2の3´末端炭素対応原子が、それぞれ前記三次元構造データにおけるAサイト上のtRNAの末端3´炭素とPサイト上のtRNAの末端3´炭素とのずれが0.3Å以内で前記三次元構造データにフィッティング可能な場合に、
 前記非天然アミノ酸のタンパク質への導入適性がより高いと判断する。
<12> The method according to item 11, comprising the following k ′ step after the k step.
(K 'process)
The structure confirmed to be a transition state structure in the k step is
The cyclic structure including the reaction center (in a form incorporating the structure represented by the general formula (8-4) or the general formula (8-5), includes a cyclic structure containing the tRNA P22 of the general formula ) By adjusting the twist angle of the bond axis of the other part within the range where steric hindrance does not occur, the three-dimensional carbon corresponding atom of tRNA a2 and the three-terminal carbon corresponding atom of tRNA P2 are respectively three-dimensional In the case where the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 Å in structural data, and fitting to the three-dimensional structural data is possible:
It is judged that the adaptability of the unnatural amino acid to the protein is higher.
<13>前記i工程で一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される想定構造を組み込む際に、
 遷移状態最適化構造が得られている類似構造化合物の構造の一部、又は
 項8又は9に記載の方法により、前記非天然アミノ酸のタンパク質への導入適性が高いと判断される場合であって、前記h工程で遷移状態構造であることが確認された、前記g工程の結果得られる構造の一部
 を取り込むことを特徴とする、項11又は12に記載の方法。
When incorporating the assumed structure represented by the general formula (8-1), (8-2), (8-3), (8-4), or (8-5) in the <13> step i,
The case where it is judged that the aptitude for introducing the unnatural amino acid into a protein is high by a part of the structure of the analogous structural compound from which the transition state optimization structure is obtained, or the method according to item 8 or 9. The method according to Item 11 or 12, wherein a part of the structure obtained as a result of the g step is incorporated, which has been confirmed to be a transition state structure in the h step.
<14>さらに以下のl工程を備えることを特徴とする、項11~13の何れか一項に記載の方法。
  (l工程)
 前記j工程の結果得られた構造が、遷移状態構造であることが想定され、かつ、
  前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、リボソーム中の2451A、2452C、2506U及び2585Uにより形成される空間に立体障害無く収まる場合、
  または、前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)以外のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、サーマス・サーモフィルス(Thermus thermophilus)のリボソーム中の2451A、2452C、2506U及び2585Uに対応する塩基により形成される空間に立体障害無く収まる場合、
に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<14> The method according to any one of Items 11 to 13, further comprising the following 1 step:
(L process)
It is assumed that the structure obtained as a result of the j step is a transition state structure, and
When the three-dimensional structural data is an X-ray analysis structure of a Thermus thermophilus ribosome, the side chain of the unnatural amino acid is formed by 2451A, 2452C, 2506U and 2585U in the ribosome When it fits in space without steric hindrance,
Alternatively, when the three-dimensional structural data is an X-ray analysis structure of a ribosome other than Thermus thermophilus, the side chain of the unnatural amino acid is in the ribosome of Thermus thermophilus. In the space formed by the bases corresponding to 2451A, 2452C, 2506U and 2585U of
And a step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
<15>
前記一般式(7-1)で表される構造が、以下の一般式(9-1)で表される構造であり、
前記一般式(8-1)で表される構造が、以下の一般式(10-1)で表される構造であり、
以下のm工程を備えることを特徴とする、項11~14の何れか一項に記載の方法。
  (m工程)
 前記i工程において一般式(10-1)で表される構造を組み込み、前記j工程の結果得られた構造におけるねじれ角∠Nt2-Ct2-Cα2-RP1が、0°~108°である場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<15>
The structure represented by the general formula (7-1) is a structure represented by the following general formula (9-1),
The structure represented by the general formula (8-1) is a structure represented by the following general formula (10-1),
The method according to any one of Items 11 to 14, characterized by comprising the following m steps:
(M process)
In the i step, the structure represented by the general formula (10-1) is incorporated, and in the structure obtained as a result of the j step, the twist angle ∠N t2 -C t2 -C α2 -R P1 is 0 ° to 108 ° Determining that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
Figure JPOXMLDOC01-appb-C000097
(Cα2は前記非天然アミノ酸のα炭素であり、RP1及びRP2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、RP2は水素原子でもよい)。)
Figure JPOXMLDOC01-appb-C000097
(C α2 is the α carbon of the non-natural amino acid, and R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 may be a hydrogen atom)).
Figure JPOXMLDOC01-appb-C000098
(構造Nt2(Ht2)-Ct2(Ot2)部分、Nt2とCt2、Nt2とHt2、 Ht2とOt2の距離は一般式(8-1)に同じ。
その他一般式(10-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
Figure JPOXMLDOC01-appb-C000098
(Structure N t2 (H t2 ) -C t2 (O t2 ) portion, the distances of N t2 and C t2 , N t2 and H t2 , and H t2 and O t2 are the same as in the general formula (8-1).
The meaning of the symbols in the general formula (10-1) is the same as in the general formulas (6) and (7-1). )
<16>一般式(7-1)又は(7-2)中のAに親水性原子が存在する場合に、以下のn工程を備えることを特徴とする、項11~13の何れか一項に記載の方法。
  (n工程)
 前記j工程の結果得られた構造において、前記親水性原子が一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)中のHt2及び/又はOt2と水素結合を形成可能であると推定される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<16> the general formula (7-1) or when the hydrophilic atoms are present in the A P in (7-2), characterized in that it comprises the following n steps, any one of claim 11 to 13 Method described in Section.
(N steps)
In the structure obtained as a result of the j step, the hydrophilic atom is a group represented by the general formula (8-1), (8-2), (8-3), (8-4) or (8-5). A step of judging that the adaptability of the unnatural amino acid to a protein is high in a ribosomal protein synthesis system, when it is presumed that a hydrogen bond can be formed with Ht2 and / or Ot2 .
<17>以下のo~q工程を備えることを特徴とする、項11~16の何れか一項に記載の方法。
  (o工程)
 前記i工程により得られた構造に、
 さらに、リボソームによる生物学的合成方法の反応系に存在する、リボソームによるペプチジル基転移反応を促進する又は同反応を阻害しないことが確認又は予測される物質を、リボソーム内のペプチジル基転移反応の反応中心若しくはその周辺に配置してこれを加えた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として設定する工程。
  (p工程)
 前記o工程により得られた初期構造について分子軌道法によるTS最適化計算を行う工程。
  (q工程)
 前記p工程の結果得られた構造が遷移状態構造であることが確認され、かつ、前記遷移状態構造をとることにより進行するペプチジル基転移反応が前記物質による立体障害で阻害されない場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
The method according to any one of items 11 to 16, wherein the following o to q steps are provided.
(Step o)
In the structure obtained by the i step,
Furthermore, the reaction of the peptidyl group transfer reaction in the ribosome is a substance which is present in the reaction system of the biological synthesis method by the ribosome and which is confirmed or predicted to promote or not inhibit the peptidyl group transfer reaction by the ribosome A step of setting as an initial structure a structure which is disposed at the center or its periphery and a structure obtained by adding this or a portion far from the reaction center of the structure is omitted to reduce the calculation load.
(Step p)
A step of performing TS optimization calculation by a molecular orbital method on the initial structure obtained by the step o.
(Step q)
It is confirmed that the structure obtained as a result of the p step is a transition state structure, and ribosomal transfer reaction which proceeds by taking the transition state structure is not inhibited by the steric hindrance by the substance, the ribosome by the ribosome A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system is high.
<18>さらに以下のr工程を備えることを特徴とする、項15に記載の方法。
  (r工程)
 前記p工程の結果得られた構造が遷移状態構造であることが確認され、かつ、一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される遷移状態最適化構造の分子と、前記物質との間で水素結合を形成可能な場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
<18> The method according to item 15, further comprising the following r step:
(R process)
It is confirmed that the structure obtained as a result of the p step is a transition state structure, and the general formula (8-1), (8-2), (8-3), (8-4), or 8-4), when it is possible to form a hydrogen bond between the molecule of the transition state optimization structure and the substance, the ribosome synthesis system of ribosomes has the adaptability to introduce the unnatural amino acid into a protein A step of determining high.
<19>前記三次元構造データが、Protein Data Bank(PDB)に、Accession number 4V5C又は4V5Dとして登録されている原子座標であることを特徴とする、項4~6及び10~16の何れか一項に記載の方法。 <19> The three-dimensional structure data is atomic coordinates registered as Accession number 4V5C or 4V5D in Protein Data Bank (PDB), any one of items 4 to 6 and 10 to 16 Method described in Section.
<20>前記分子軌道法が、半経験的分子軌道法であることを特徴とする、項1~17の何れか一項に記載の方法。 <20> The method according to any one of items 1 to 17, wherein the molecular orbital method is a semi-empirical molecular orbital method.
<21>項1~20の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する推測工程と、
推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質を製造する工程とを有する、人工タンパク質の製造方法。
<21> An estimation step of estimating adaptability of a non-natural amino acid to a protein in a ribosomal protein synthesis system by the method according to any one of items 1 to 20;
A process for producing an artificial protein, comprising the step of producing a protein by a ribosomal protein synthesis system using as a raw material a non-natural amino acid determined to have high introduction suitability in the estimation step.
<22>タンパク質又はペプチドの性能の改良方法であって、
項1~20の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する推測工程と、
推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質又はペプチドを製造する製造工程と、
前記製造工程で製造されたタンパク質又はペプチドの性能を評価する評価工程と、を有することを特徴とする方法。
<22> A method of improving the performance of a protein or peptide, comprising
21. An estimation step of estimating adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system by the method according to any one of Items 1 to 20;
A production process for producing a protein or a peptide by a protein synthesis system by ribosome using as a raw material a non-natural amino acid determined to have high introduction suitability in the estimation step;
Assessing the performance of the protein or peptide produced in the production step.
<23>リボソームによるタンパク質合成系によるタンパク質又はペプチドの生産性又は製造効率の向上方法であって、
項1~20の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する推測工程と、
推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質又はペプチドを製造する製造工程と、
前記製造工程におけるタンパク質又はペプチドの生産性又は製造効率を評価する評価工程と、を有することを特徴とする方法。
<23> A method for improving the productivity or production efficiency of a protein or peptide by a protein synthesis system by ribosome,
21. An estimation step of estimating adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system by the method according to any one of Items 1 to 20;
A production process for producing a protein or a peptide by a protein synthesis system by ribosome using as a raw material a non-natural amino acid determined to have high introduction suitability in the estimation step;
And e) evaluating the productivity or production efficiency of the protein or peptide in the production step.
<24>非天然アミノ酸が導入された人工タンパク質又は人工ペプチドからなる薬剤のドラッグデザイン方法であって、
Ligand Based Drug Design(LBDD)及び/又はStructure-Base Drug Design(SBDD)によって、リード化合物であるタンパク質又はペプチドに導入することにより、薬効を向上又は副作用を低減せしめる非天然アミノ酸を選択する工程と、
項1~18の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、該非天然アミノ酸の前記タンパク質又はペプチドへの導入適性を推測する推測工程と、
を含むことを特徴とする、ドラッグデザイン方法。
<24> A drug design method for a drug comprising an artificial protein or artificial peptide into which a non-natural amino acid has been introduced,
Selecting a non-naturally occurring amino acid that improves efficacy or reduces side effects by introducing it into a lead compound protein or peptide according to Ligand Based Drug Design (LBDD) and / or Structure-Base Drug Design (SBDD);
Item 19. An inferring step of inferring the adaptability of the unnatural amino acid to the protein or peptide in a ribosomal protein synthesis system by the method according to any one of items 1 to 18;
A drug design method characterized in that
 本発明によれば、リボソームによるタンパク質合成系を利用した非天然アミノ酸のタンパク質への導入適性を推測することができる。 According to the present invention, it is possible to infer the aptitude for introducing a non-natural amino acid into a protein using a ribosomal protein synthesis system.
 以下、各図面の簡単な説明を加えるが、図面の左上に「S」の表記があるものは、三次元の図形(ステレオグラム)である。右目で左の画像を、左目で右の画像を見ることにより立体視する。 Although a brief description of each drawing will be added below, what has the notation "S" at the upper left of the drawing is a three-dimensional figure (stereogram). Stereoscopically view the left image with the right eye and the right image with the left eye.
非特許文献6、7に記載の70sリボソームのX線構造解析写真(PDB 4V5C)。中央左側にAサイトのtRNA、中央右側にPサイトのtRNA、中央下側にmRNAを空間充填モデルで表す。針金モデルでリボソームを表す。The X-ray structural-analysis photograph (PDB 4V5C) of 70s ribosome as described in the nonpatent literatures 6 and 7. FIG. The space filling model represents the tRNA at the A site on the center left, the tRNA at the P site on the center right, and the mRNA at the center bottom. Represent ribosomes in a wire model. リボソームの反応部位の周辺を表す画像である。(非特許文献6,7;PDB 4V5C))左側下方にAサイトのtRNA、右側下方にPサイトのtRNAを棒モデルで表す。50S RNAを針金モデルで表す。It is an image showing the periphery of the reaction site of a ribosome. (Non-patent Documents 6 and 7; PDB 4V5C) The tRNA at the A site in the lower left and the tRNA at the P site in the lower right are represented by a stick model. 50S RNA is represented by a wire model. アミド化反応のX線解析構造(非特許文献6、7;PDB 4V5C)X-ray analysis structure of amidation reaction (Non-patent documents 6 and 7; PDB 4V5C) アミド化反応のX線解析構造(非特許文献6、7;PDB 4V5D)X-ray analysis structure of amidation reaction (Non-patent documents 6 and 7; PDB 4V5D) X線解析構造へT1´-2構造を接続した状態を表す。X線解析構造は棒モデル、T1´-2構造は球棒モデルで表す。The state in which the T1'-2 structure is connected to the X-ray analysis structure is shown. The X-ray analysis structure is represented by a rod model, and the T1'-2 structure is represented by a ball and rod model. X線解析構造へT3構造を接続した状態を表す。X線解析構造は棒モデル、T3構造は球棒モデルで表す。The state in which the T3 structure is connected to the X-ray analysis structure is shown. The X-ray analysis structure is represented by a rod model, and the T3 structure is represented by a ball and rod model. As1Ps1型の初期構造を表す。2 represents the initial structure of the As1 Ps1 type. TS最適化計算により最適化された As1Ps1型構造。As1Ps1 type structure optimized by TS optimization calculation. TS最適化計算により最適化された As1Ps2型構造。As1Ps2 type structure optimized by TS optimization calculation. TS最適化計算により最適化された As1Ps3型構造。As1Ps3 type structure optimized by TS optimization calculation. TS最適化計算により最適化された As2Ps1型構造。As2Ps1 type structure optimized by TS optimization calculation. TS最適化計算により最適化された As2Ps2型構造。As2Ps2 type structure optimized by TS optimization calculation. TS最適化計算により最適化された As2Ps3型構造。As2Ps3 type structure optimized by TS optimization calculation. 最適化された架橋構造を表す。It represents an optimized cross-linked structure. リボソームにおける遷移状態構造最適化計算のための初期構造を生成する工程を表す図。FIG. 6 is a diagram showing a process of generating an initial structure for transition state structure optimization calculation in ribosomes. As2Ps1型の構造に対する、リボソーム上でのアミド化反応の初期構造を表す。The initial structure of the amidation reaction on the ribosome for the structure of As2Ps1 type is shown. As1Ps1型の構造を表す。It shows the structure of As1 Ps1 type. As1Ps2型の構造を表す。It shows a structure of As1 Ps2 type. As1Ps3型の構造を表す。It shows the structure of As1Ps3 type. As2Ps1型の構造を表す。It shows the structure of As2Ps1 type. As2Ps2型の構造を表す。It shows the structure of As2Ps2. As2Ps3型の構造を表す。It shows the structure of As2Ps3 type. As1Ps1型の構造を表す。It shows the structure of As1 Ps1 type. As1Ps2型の構造を表す。It shows a structure of As1 Ps2 type. As1Ps3型の構造を表す。It shows the structure of As1Ps3 type. As2Ps1型の構造を表す。It shows the structure of As2Ps1 type. As2Ps2型の構造を表す。It shows the structure of As2Ps2. As2Ps3型の構造を表す。It shows the structure of As2Ps3 type. As2Ps1型の構造の反応中心及びその周囲に6つ水分子を配置した初期構造を表す。The reaction center of the structure of As2Ps1 type | mold and the initial structure which arrange | positions six water molecules around it are represented. As2Ps1型の構造の反応中心及びその周囲に6つ水分子を配置した構造を初期構造として、構造最適化計算を行った結果得られた構造を表す。The structure obtained as a result of carrying out structure optimization calculation is shown with the reaction center of the structure of As 2 Ps type 1 and a structure in which six water molecules are arranged around it as an initial structure. 構造最適化計算の結果得られた図30の構造をX線解析構造と重ね合わせた様子を表す。It shows a state in which the structure of FIG. 30 obtained as a result of the structure optimization calculation is superimposed on the X-ray analysis structure.
 本発明は、リボソームによるタンパク質合成系を利用した、非天然アミノ酸のタンパク質への導入適性を推測する方法である。
 本発明において「リボソームによるタンパク質合成系」には、リボソームの触媒活性によるペプチジル基転移反応を利用した合成系が全て含まれ、in viro合成系とin vivo合成系の何れもが含まれる。
The present invention is a method for estimating the adaptability of unnatural amino acids to proteins using a ribosomal protein synthesis system.
In the present invention, the “protein synthesis system by ribosome” includes all synthesis systems utilizing peptidyl group transfer reaction by the catalytic activity of ribosome, and includes both in vivo synthesis system and in vivo synthesis system.
 本発明は、a及びb工程を必須の工程として備える。以下、それぞれについて詳述する。 The present invention comprises steps a and b as essential steps. Each will be described in detail below.
  (a工程)
 a工程では、タンパク質への導入適性を推測したい非天然アミノ酸のアミノアシルtRNAと、任意のアミノ酸配列を有するペプチジルtRNAとのペプチジル基転移反応における遷移状態構造最適化計算(TS最適化計算)を行う。
(Step a)
In step a, transition state structure optimization calculation (TS optimization calculation) in a peptidyl group transfer reaction between an aminoacyl tRNA of an unnatural amino acid whose ability to be introduced into a protein is to be estimated and a peptidyl tRNA having an arbitrary amino acid sequence is performed.
 前記非天然アミノ酸のアミノアシルtRNAは一般式(1)に表される構造である。 The aminoacyl tRNA of the unnatural amino acid is a structure represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
(一般式(1)中、Aa1は前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Ba1は任意の基、又は前記Aa1と一体となりBa1-Aa1-Nt1の環状構造を形成する基を表す。
 tRNAa1は、3´末端においてOa12と共有結合したtRNAを表す。)
(In the general formula (1), A a1 represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
The tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end. )
 一般式(1)に示すように、本発明の方法により導入適性を推測することができる非天然アミノ酸はαアミノ酸に限られない。当然、以下の一般式(4)に示すような構造を有するαアミノ酸の導入適性を推測することもできる。 As shown in the general formula (1), non-naturally occurring amino acids whose introduction suitability can be estimated by the method of the present invention are not limited to α-amino acids. Naturally, it is also possible to infer the aptitude for introducing an α-amino acid having a structure as shown in the following general formula (4).
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 一般式(4)中、Cα1は前記非天然アミノ酸のα炭素であり、Ra1及びRa2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、Ra2は水素原子でもよい)。
 その他の記号の意は一般式(1)に同じである。
In the general formula (4), C α1 is the α carbon of the unnatural amino acid, and R a1 and R a2 each independently represent the side chain structure of the unnatural amino acid (however, R a2 may be a hydrogen atom) .
The meaning of the other symbols is the same as in the general formula (1).
 なお、本明細書において上付き文字が付されたC、N、O、Hはそれぞれ炭素原子、窒素原子、酸素原子、水素原子を表す。 In the present specification, C, N, O and H to which superscripts are attached respectively represent a carbon atom, a nitrogen atom, an oxygen atom and a hydrogen atom.
 一方、任意のアミノ酸配列を有するペプチジルtRNAは、一般式(2-1)又は(2-2)で表される。 On the other hand, peptidyl-tRNA having any amino acid sequence is represented by the general formula (2-1) or (2-2).
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
(一般式(2-1)において、tRNAP1は、3´末端においてOP1と共有結合したtRNAを表す。PP1はペプチジル基を表す。) (In the general formula (2-1), tRNA P1 is, .P P1 representing a tRNA covalently bound to O P1 in the 3 'end represents the peptidyl group.)
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 一般式(2-2)において、tRNAP12-OP12-HP12の構造部分は、一般式(2-1)におけるtRNAP1と同構造を表す。すなわち、OP12はtRNAP1の3´末端糖の2´炭素に結合した酸素原子、HP12はOP12に結合した水素原子、tRNAP12はtRNAP1からOP12とHP12を除いた部分を表す。
 その他一般式(2-2)中の記号の意は一般式(2-1)に同じである。
In the general formula (2-2), the structural part of tRNA P12 -O P12 -H P12 has the same structure as tRNA P1 in the general formula (2-1). That is, OP12 represents an oxygen atom bonded to the 2 'carbon of 3' terminal sugar of tRNA P1 , HP12 represents a hydrogen atom bonded to OP12 , and tRNA P12 represents a portion of tRNA P1 excluding OP12 and HP12. .
The meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1).
 なお、本明細書において「ペプチジル基」とは、複数のアミノ酸がペプチド結合により重合して構成される基のことをいう。なお、ペプチジル基が他の構造(下の式のX)と結合する部分の結合様式は、下の式(i)~(vi)に示す6種が想定できる。この場合、下の式の一点鎖線で囲んだ部分がペプチジル基に該当する。
 ただし、一般式(2-1)又は(2-2)、一般式(3-1)~(3-5)及び一般式(5-1)~(5-5)におけるPP1は(v)、一般式(7-1)又は(7-2)、一般式(8-1)~(8-5)、一般式(9)及び一般式(10-1)~(10-5)におけるPP2は(iv)の様式で結合するペプチジル基である。
In the present specification, “peptidyl group” refers to a group formed by polymerizing a plurality of amino acids by peptide bond. As the bonding mode of the moiety in which the peptidyl group bonds to another structure (X in the formula below), six types shown in formulas (i) to (vi) below can be assumed. In this case, a portion surrounded by a dashed dotted line in the following formula corresponds to a peptidyl group.
However, P P1 in the general formula (2-1) or (2-2), the general formulas (3-1) to (3-5) and the general formulas (5-1) to (5-5) is (v) In the general formula (7-1) or (7-2), the general formulas (8-1) to (8-5), the general formula (9) and the general formulas (10-1) to (10-5) P2 is a peptidyl group attached in the manner of (iv).
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 (i)~(vi)におけるAは、ペプチジル基を構成するアミノ酸残基における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。Xはペプチジル基が結合する他の構造を表す。 A in (i) to (vi) represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in an amino acid residue constituting a peptidyl group. X represents another structure to which a peptidyl group is attached.
 リボソームにおけるペプチジル基転移反応においては、リボソームのPサイトに位置するペプチジルtRNAから、Aサイトに位置するアミノアシルtRNAへのペプチジル基の転移が起こる。
 a工程においては、一般式(2-1)又は(2-2)で表されるペプチジルtRNAから、一般式(1)で表されるアミノアシルtRNAへのペプチジル基転移反応における分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う。
In the peptidyl transfer reaction at the ribosome, transfer of the peptidyl group from the peptidyl tRNA located at the P site of the ribosome to the aminoacyl tRNA located at the A site occurs.
In step a, a transition state by a molecular orbital method in a peptidyl group transfer reaction from a peptidyl tRNA represented by General Formula (2-1) or (2-2) to an aminoacyl tRNA represented by General Formula (1) Perform structure optimization calculation (TS optimization calculation).
 TS最適化計算を行うに当たっては一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)に表される構造を初期構造として用いる。 In performing TS optimization calculation, the structure represented by the general formula (3-1), (3-2), (3-3), (3-4) or (3-5) is used as an initial structure.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 一般式(3-1)において、構造Nt1(Ht1)-Ct1(Ot1)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
t1とCt1の距離は1.53Å~1.77Å、
t1とHt1の距離は1.10Å~1.35Å、
t1とOt1の距離は1.35Å~1.45Åである。
 その他一般式(3-1)中の記号の意は一般式(1)及び(2-1)に同じである。
In the general formula (3-1), the structure N t1 (H t1 ) -C t1 (O t1 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
The distance between N t1 and C t1 is 1.53 Å to 1.77 Å,
The distance between N t1 and H t1 is 1.10 Å to 1.35 Å.
The distance between H t1 and O t1 is 1.35 Å to 1.45 Å.
The meaning of the symbols in the general formula (3-1) is the same as in the general formulas (1) and (2-1).
 なお、一般式(3-1)で表される構造については、以下の一般式(3-1―1)で表される立体異性体構造を用いることができる。なお、一般式(3-1-1)中の記号の意は一般式(3-1)に同じである。 In addition, as a structure represented by General Formula (3-1), a stereoisomer structure represented by the following General Formula (3-1-1) can be used. The meaning of the symbols in the general formula (3-1-1) is the same as in the general formula (3-1).
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 一般式(3-2)において、Ht12は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt1をプロトン化せしめた水素原子である。
 構造Ct1-Op1-Ht12-Ot1部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
t1とOp1の距離は1.45Å~1.70Å、
p1とHt12の距離は1.05Å~1.30Å、
t12とOt1の距離は1.10Å~1.40Å、
t1とCt1の距離は1.22Å~1.42Åである。
 その他一般式(3-2)中の記号の意は一般式(1)、(2-1)に同じである。
In the general formula (3-2), H t12 is a hydrogen atom obtained by protonating O t1 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
The moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
The distance between C t1 and O p1 is 1.45 Å to 1.70 Å.
Distance of O p1 and H t12 is 1.05Å ~ 1.30Å,
The distance between H t12 and O t1 is 1.10 Å to 1.40 Å,
The distance between O t1 and C t1 is 1.22 Å to 1.42 Å.
The meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1).
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 一般式(3-3)において、構造Nt1(Ht1)-Ct1(Op1)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~1.65Å、
t1とHt1の距離は1.00Å~1.24Å、
t1とOp1の距離は1.35Å~2.40Å、
p1とHt1の距離は1.00Å~1.84Åである。
 その他一般式(3-3)中の記号の意は一般式(1)、(2-1)に同じである。
In the general formula (3-3), the structure N t1 (H t1 ) -C t1 (O p1 ) is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
The distance between N t1 and C t1 is 1.40 Å to 1.65 Å,
The distance between N t1 and H t1 is 1.00 Å to 1.24 Å,
The distance between C t1 and O p1 is 1.35 Å to 2.40 Å.
Distance O p1 and H t1 is 1.00Å ~ 1.84Å.
The meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1).
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 一般式(3-4)において、構造Nt1-Ct1-Op1-Hp12-Op12-Ht1部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~2.10Å、
t1とHt1の距離は1.00Å~1.20Å、
t1とOp1の距離は1.35Å~2.30Å、
p1とHp12の距離は1.00Å~1.56Å、
p12とOp12の距離は1.00Å~1.67Å、
p12とHt1の距離は1.20Å~1.96Åである。
 その他一般式(3-4)中の記号の意は一般式(1)及び(2-2)に同じである。
In the general formula (3-4), the structure N t1 -C t1 -O p1 -H p12 -O p12 -H t1 moiety is a reaction center in the transition state structure of a concerted amidation reaction having a six-membered ring structure ,
The distance between N t1 and C t1 is 1.40 Å to 2.10 Å.
The distance between N t1 and H t1 is 1.00 Å to 1.20 Å,
The distance between C t1 and O p1 is 1.35 Å to 2.30 Å.
Distance of O p1 and H p12 is 1.00Å ~ 1.56Å,
The distance between H p12 and O p12 is 1.00 Å to 1.67 Å,
The distance between Op 12 and H t1 is 1.20 Å to 1.96 Å.
The meaning of the symbols in the general formula (3-4) is the same as in the general formulas (1) and (2-2).
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 一般式(3-5)において、Hs12-Os1-Hs11は溶媒水分子の一つであり、構造Nt1-Ct1-Op1-Hs11-Os1-Hp12-Op12-Ht1部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t1とCt1の距離は1.40Å~1.79Å、
t1とHt1の距離は1.00Å~1.26Å、
t1とOp1の距離は1.40Å~2.21Å、
p1とHs12の距離は1.13Å~1.43Å、
s12とOs1の距離は1.00Å~1.37Å、
s1とHp12の距離は1.30Å~1.69Å、
p12とOp12との距離は0.98Å~1.24Å、
p12とHt1との距離は1.17Å~1.76Åである。
 その他一般式(3-5)中の記号の意は一般式(1)、(2-2)に同じである。
In the general formula (3-5), H s12 -O s1 -H s11 is one of solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 part is the reaction center in the transition state structure of the concerted amidation reaction having an 8-membered ring structure,
The distance between N t1 and C t1 is 1.40 Å to 1.79 Å.
The distance between N t1 and H t1 is 1.00 Å to 1.26 Å,
The distance between C t1 and O p1 is 1.40 Å to 2.21 Å,
Distance of O p1 and H s12 is 1.13Å ~ 1.43Å,
The distance between H s12 and O s1 is 1.00 Å to 1.37 Å,
The distance between O s1 and H p12 is 1.30 Å to 1.69 Å,
The distance between H p12 and O p12 is 0.98 Å to 1.24 Å,
The distance between Op 12 and H t1 is 1.17 Å to 1.76 Å.
The meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2).
 なお、非天然アミノ酸としてαアミノ酸を用いた場合には、特に以下の一般式(5-1)、(5-2)、(5-3)、(5-4)、(5-5)で表される構造が初期構造となる。 When an α-amino acid is used as the non-natural amino acid, it is particularly possible to use the following general formulas (5-1), (5-2), (5-3), (5-4), (5-5) The structure represented is the initial structure.
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 一般式(5-1)において、Nt1とCt1、Nt1とHt1、Ht1とOt1の距離は一般式(3-1)に同じである。
 その他一般式(5-1)中の記号の意は一般式(1)、(2-1)及び(4)に同じである。
In the general formula (5-1), the distances between N t1 and C t1 , N t1 and H t1 , and H t1 and O t1 are the same as in the general formula (3-1).
The meaning of the symbols in the general formula (5-1) is the same as in the general formulas (1), (2-1) and (4).
 なお、一般式(5-1)で表される構造については、以下の一般式(5-1―1)で表される立体異性体構造を用いることができる。なお、一般式(5-1-1)中の記号の意は一般式(5-1)に同じである。 In addition, as a structure represented by General Formula (5-1), a stereoisomer structure represented by the following General Formula (5-1-1) can be used. The meaning of the symbols in the general formula (5-1-1) is the same as in the general formula (5-1).
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
 一般式(5-2)において、記号Ra1、Cα1及びRa2の意は一般式(4)と同じである。その他一般式(5-2)中の記号の意、及び原子間距離は一般式(3-2)と同じである。 In the general formula (5-2), the meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-2) and the interatomic distance are the same as in the general formula (3-2).
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
 一般式(5-3)において、記号Ra1、Cα1及びRa2の意は一般式(4)と同じである。その他一般式(5-3)中の記号の意、及び原子間距離は一般式(3-3)と同じである。 In the general formula (5-3), the meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-3) and the interatomic distance are the same as in the general formula (3-3).
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
 一般式(5-4)において、記号Ra1、Cα1及びRa2の意は一般式(4)と同じである。その他一般式(5-4)中の記号の意、及び原子間距離は一般式(3-4)と同じである。 In the general formula (5-4), the meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-4) and the interatomic distance are the same as in the general formula (3-4).
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
 一般式(5-5)において、記号Ra1、Cα1及びRa2の意は一般式(4)と同じである。その他一般式(5-5)中の記号の意、及び原子間距離は一般式(3-5)と同じである。 In the general formula (5-5), the meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-5) and the interatomic distance are the same as in the general formula (3-5).
 なお、一般式(3-1)、(3-2)、(3-3)、(3-4)、(3-5)、(5-1)、(5-2)、(5-3)、(5-4)又は(5-5)で表される構造はtRNA構造を含むため、TS最適化計算を行う際に計算負荷が高くなることが予想される。そのため、本発明においては、これら一般式で表される構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造としてもよい。省略は常法により行うことができる。 General formulas (3-1), (3-2), (3-3), (3-4), (3-5), (5-1), (5-2), (5-3) Since the structure represented by (5-4) or (5-5) includes a tRNA structure, it is expected that computational load will be high when performing TS optimization calculation. Therefore, in the present invention, a structure in which a portion far from the reaction center of the structure represented by the general formula may be omitted as appropriate to reduce the calculation load may be used as the initial structure. The omission can be done by the usual method.
 初期構造である一般式(3-1)、(3-2)、(3-3)、(3-4)、(3-5)、(5-1)、(5-2)、(5-3)、(5-4)又は(5-5)で表される構造におけるより詳細なパラメータの設定については常法により行うことができる。例えば、ミニマムエネルギーパス計算により得られたエネルギープロファイルの極大点を、遷移状態近傍の構造であると仮定し、遷移状態の初期構造として利用することもできる。
 また、公知のアミド化反応遷移状態構造(例えば、Oieらの報告(非特許文献8))を参考に初期構造の詳細を設定してもよい。
The general structures (3-1), (3-2), (3-3), (3-4), (3-5), (5-1), (5-2), (5), which are initial structures. The setting of more detailed parameters in the structure represented by -3), (5-4) or (5-5) can be performed by a conventional method. For example, the maximum point of the energy profile obtained by the minimum energy path calculation can be assumed to be a structure near the transition state, and can be used as an initial structure of the transition state.
Further, details of the initial structure may be set with reference to a known amidated transition state structure (for example, a report of Oie et al. (Non-patent Document 8)).
 分子軌道法によるTS最適化計算の手法は特に制限されず、半経験的分子軌道法、非経験的分子軌道法の何れを用いても構わない。簡便さ(計算時間)と精度のバランスから半経験的分子軌道法を用いることが好ましい。 The method of TS optimization calculation by molecular orbital method is not particularly limited, and either semiempirical molecular orbital method or non-empirical molecular orbital method may be used. From the balance of simplicity (calculation time) and accuracy, it is preferable to use a semiempirical molecular orbital method.
 分子軌道計算ソフトは公知のものを制限なく用いることができる。例えば、非経験的分子軌道法によるGaussianやHONDOなどや、半経験的分子軌道法によるMOPACなどが挙げられる。 As molecular orbital calculation software, known ones can be used without limitation. For example, Gaussian, HONDO, etc. by non-empirical molecular orbital method, MOPAC by semi-empirical molecular orbital method, etc. can be mentioned.
  (b工程)
 b工程では、a工程のTS最適化計算の結果得られる構造が、ペプチジル基転移反応(アミド化反応)の遷移状態構造であるか否か確認する。a工程のTS最適化計算の結果得られる構造が遷移状態構造であることが確認できる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する。
(Step b)
In step b, it is confirmed whether the structure obtained as a result of TS optimization calculation in step a is a transition state structure of peptidyl transfer reaction (amidation reaction). When it is possible to confirm that the structure obtained as a result of TS optimization calculation in step a is a transition state structure, it is judged that the aptitude for introducing the unnatural amino acid into a protein in a protein synthesis system by ribosome is high.
 ここで、遷移状態構造であるか否か確認する方法は、振動計算やIRC計算またはこれらの組み合わせが挙げられる。 Here, as a method of confirming whether or not it is a transition state structure, vibration calculation, IRC calculation, or a combination of these may be mentioned.
 本発明の好ましい実施の形態では、さらに以下のc~e工程を備える。 In a preferred embodiment of the present invention, the following c to e steps are further provided.
 また、本発明はリボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のc~e工程を備える形態の方法にも関する。 The present invention also relates to a method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, and relates to a method comprising the following steps of ce.
  (c工程)
 c工程では、まず、A及びPサイトにtRNA又はその誘導体が結合したリボソームのX線構造解析により得られる三次元構造データ(以下、単に三次元構造データともいう)を用意する。
(Step c)
In step c, first, three-dimensional structure data (hereinafter, also simply referred to as three-dimensional structure data) obtained by X-ray structural analysis of a ribosome in which tRNA or its derivative is bound to the A and P sites is prepared.
 ここで、A及びPサイト上のtRNAの「誘導体」には、アミノアシルtRNAやペプチジルアミノアシルtRNA、並びにこれらの誘導体が含まれる。 Here, "derivatives" of tRNA on the A and P sites include aminoacyl-tRNA, peptidyl aminoacyl-tRNA, and derivatives of these.
 三次元構造データとしてはProtein Data Bank(PDB)に登録されているものを用いることができる。具体的には、Accession number 4V5C又は4V5Dとして登録されているデータを用いることができる。
 なお、当該データは好熱菌(サーマス・サーモフィルス(Thermus thermophilus))のリボソームの解析結果であるが、リボソームの反応中心の構造は、種間の相違が少ない。そのため、本発明においては、このような好熱菌のデータであっても、タンパク質工学に用いる大腸菌等のリボソーム合成系における検討に用いることができる。
As three-dimensional structure data, data registered in Protein Data Bank (PDB) can be used. Specifically, data registered as Accession number 4V5C or 4V5D can be used.
In addition, although the said data are the analysis result of the ribosome of the thermophile (Thermus thermophilus (Thermus thermophilus (Thermus thermophilus)), the structure of the reaction center of a ribosome has few differences between species. Therefore, in the present invention, even such thermophilic bacteria data can be used for examination in ribosomal synthesis systems such as E. coli used for protein engineering.
 c工程においては、以下の条件のとおり、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される構造を組み込む。 In step c, the structure represented by the general formula (3-1), (3-2), (3-3), (3-4) or (3-5) is incorporated under the following conditions.
  (条件1)三次元構造データにおけるAサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAa1の3´末端炭素の原子座標が位置するように、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む。 (Condition 1) The atomic formula of the 3 'terminal carbon atom of tRNA a1 is located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. 1) Incorporate the assumed structure represented by (3-2), (3-3), (3-4) or (3-5).
  (条件2)前記三次元構造データにおけるPサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAP1の3´末端炭素の原子座標が位置するように、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む。 (Condition 2) The atomic formula of the 3 'terminal carbon of tRNA P1 is located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data, 1) Incorporate the assumed structure represented by (3-2), (3-3), (3-4) or (3-5).
 なお、ここでいう「近傍」とは1Å以内の距離のことをいう。 Here, the term "nearby" means a distance of 1 Å or less.
 三次元構造データへの原子の組み込みは、分子軌道計算ソフトの機能を利用して、常法に従い行うことができる。
 なお、組み込みの際には、tRNAa1の3´末端の3´炭素とОa12との結合、また、tRNAP1の3´末端の3´炭素とОP1との結合が、通常の結合状態に収束するように操作を加えてもよい。この操作は常法に従い、適宜、構造最適化計算を行うことで実行できる。
The incorporation of atoms into three-dimensional structure data can be performed according to a conventional method using the function of molecular orbital calculation software.
At the time of integration, the bond between the 3 'carbon and o a12 of the 3' end of tRNA a1, also, the bond between the 3 'carbon and o P1 of the 3' end of tRNA P1, the normal coupling conditions An operation may be added to converge. This operation can be carried out by performing structure optimization calculation as appropriate according to a conventional method.
 また、組み込みの際には、遷移状態最適化構造が得られている類似構造化合物の構造の一部を取り込んでもよい。このような構造としては、Oieらの報告(非特許文献8)による公知のアミド化反応遷移状態構造などが挙げられる。 In addition, at the time of incorporation, part of the structure of a similar structural compound from which a transition state optimization structure is obtained may be incorporated. As such a structure, a known amidated transition state structure according to the report of Oie et al. (Non-Patent Document 8) can be mentioned.
 また、組み込みの際には、上述したa工程とb工程を備える本発明の方法により、前記非天然アミノ酸のタンパク質への導入適性が高いと判断される場合であって、前記b工程で遷移状態構造であることが確認された、前記a工程の結果得られる構造の一部を取り込んでもよい。 In addition, when incorporated, it is determined that the aptitude for introducing the unnatural amino acid into a protein is high according to the method of the present invention comprising steps a and b described above, and the transition state in step b A part of the structure obtained as a result of the step a) which has been confirmed to be a structure may be incorporated.
 なお、これらの構造を取り込む際には、TS最適化構造の電子データをそのまま入力してもよいし、また、マニュアル入力により調整してもよい。 In addition, when taking in these structures, the electronic data of TS optimization structure may be input as it is, and you may adjust by manual input.
  (d工程)
 d工程は、c工程において得られた構造を初期構造としてTS最適化計算を行う工程である。
 なお、d工程における分子軌道計算は、アミノアシルtRNAやペプチジルtRNAだけでなく、巨大分子であるリボソームの構造を含むことになる。リボソーム分子は巨大であり、このリボソーム上でのペプチジル基転移反応における遷移状態構造を、リボソーム分子全体を含めてそのまま分子軌道計算で求めるのは困難である。そのため、ペプチジル基転移反応の真の様相をできるだけ損なわずに再現するには、リボソームの転移反応中心の周辺の可能な限り広く、かつ、計算が可能な範囲を取り出し、最適化計算の際に当該周辺構造が発散してしまわないような適度な拘束を掛ける等の工夫をすることが好ましい。
 つまり、c工程において得られた構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造としてよい。省略は上述したとおり常法により行うことができる。
(Step d)
Step d is a step of performing TS optimization calculation with the structure obtained in step c as an initial structure.
The molecular orbital calculation in step d includes not only aminoacyl-tRNA and peptidyl-tRNA but also the structure of a large ribosome. The ribosomal molecule is huge, and it is difficult to obtain the transition state structure in the peptidyl transfer reaction on the ribosome as it is, including the entire ribosomal molecule, by molecular orbital calculation as it is. Therefore, in order to reproduce the true aspect of the peptidyl group transfer reaction as much as possible without losing as much as possible, the widest possible calculation area around the transfer reaction center of the ribosome is taken out, and the optimization calculation is carried out. It is preferable to devise appropriate restraints or the like so that the peripheral structure does not diverge.
That is, a structure in which a portion far from the reaction center of the structure obtained in step c may be omitted as appropriate to reduce the calculation load may be used as the initial structure. The omission can be performed by the usual method as described above.
 分子軌道法についての詳細は、上記a工程の説明で述べた事項を適用することができる。 As for the details of the molecular orbital method, the matters described in the description of step a above can be applied.
  (e工程)
 e工程は、前記d工程でのTS最適化計算の結果得られた構造を評価する工程である。すなわち、得られた構造が遷移状態構造であることが確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入の適性が高いと判断する。
 遷移状態構造であるか否かの確認はb工程の説明で述べた事項を適用できる。
(Step e)
The step e is a step of evaluating the structure obtained as a result of the TS optimization calculation in the step d. That is, when it is confirmed that the obtained structure is a transition state structure, it is judged that the suitability for introduction of the non-natural amino acid into a protein in a protein synthesis system by ribosome is high.
The confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
 また、e工程の後に、以下のe´工程を含むことが特に好ましい。
  (e´工程)
前記e工程で遷移状態構造であることが確認された構造が、
 その反応中心部を含む環状構造部(一般式(3-4)又は一般式(3-5)で表される構造を組み込む形態にあっては、該一般式のtRNAP12を含む環状構造を含む)以外の部分の結合軸のねじれ角を、立体障害が発生しない範囲内で調整することにより、tRNAa1の3´末端炭素対応原子とtRNAP1の3´末端炭素対応原子が、それぞれ前記三次元構造データにおけるAサイト上のtRNAの末端3´炭素とPサイト上のtRNAの末端3´炭素とのずれが0.3Å以内で前記三次元構造データにフィッティング可能な場合に、
 前記非天然アミノ酸のタンパク質への導入適性がより高いと判断する。
Moreover, it is particularly preferable to include the following e ′ step after the e step.
(E 'process)
The structure confirmed to be a transition state structure in the step e) is
The cyclic structure containing the reaction center (in a form incorporating the structure represented by the general formula (3-4) or the general formula (3-5), the cyclic structure containing tRNA P12 of the general formula is included ) By adjusting the twist angle of the bond axis of the other part within the range that steric hindrance does not occur, the three-dimensional carbon corresponding atom of tRNA a1 and the three-terminal carbon corresponding atom of tRNA P1 are respectively three-dimensional In the case where the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 Å in structural data, and fitting to the three-dimensional structural data is possible:
It is judged that the adaptability of the unnatural amino acid to the protein is higher.
 e´工程は、遷移状態構造であることが確認できた構造が、リボソームの内部においてとり得る構造であることを確かめる工程である。e´工程によれば、非天然アミノ酸のタンパク質への導入適性をより精度よく推測することができる。 The e ′ step is a step of confirming that the structure that has been confirmed to be a transition state structure is a structure that can be taken inside the ribosome. According to the e ′ step, it is possible to more accurately estimate the adaptability of the unnatural amino acid to the protein.
  (f工程)
 サーマス・サーモフィルスのリボソーム中には、2451A、2452C、2506U及び2585Uにより形成される空間が存在する。上述のとおり、リボソームの反応中心の構造は種間の相違が少ないため、サーマス・サーモフィルス以外の種のリボソーム中にも、当該空間に相当する空間が存在する蓋然性は高い。
 本発明においては、c~e工程に加えて、さらに、当該リボソーム中の空間に関する評価を行うf工程を備えることが好ましい。
(Step f)
In Thermus thermophilus ribosomes, there is a space formed by 2451A, 2452C, 2506U and 2585U. As described above, since the structure of the reaction center of the ribosome is small among species, the probability that the space corresponding to the space is present is also high in the ribosomes of species other than Thermus thermophilus.
In the present invention, in addition to the steps c to e, it is preferable to further include an step f for evaluating the space in the ribosome.
 f工程では、d工程の結果得られた構造が、遷移状態構造であることが確認され、かつ、サーマス・サーモフィルスのリボソーム中の2451A、2452C、2506U及び2585Uにより形成される空間(または、これに相当する空間)に、非天然アミノ酸の側鎖が、立体障害無く収まる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入の適性が高いと判断する。 In step f, the structure obtained as a result of step d is confirmed to be a transition state structure, and the space formed by 2451A, 2452C, 2506U and 2585U in the ribosome of Thermus thermophilus (or this When the side chain of the non-natural amino acid fits into the space corresponding to (1) without steric hindrance, it is judged that the protein synthesis system by ribosome has high suitability for introducing the non-natural amino acid into protein.
 立体障害の有無は、非天然アミノ酸のアミノ酸残基の側鎖と前記空間を形成する塩基との原子間距離を基準に評価する。 The presence or absence of steric hindrance is evaluated on the basis of the interatomic distance between the side chain of the amino acid residue of the unnatural amino acid and the base forming the space.
 f工程は、同様にリボソーム中の空間に関する評価を行うe´工程と組み合わせて実行することが好ましい。これにより、さらに高い精度で非天然アミノ酸のタンパク質への導入適性を評価することができる。 The f step is preferably carried out in combination with the e 'step which also performs an evaluation on the space in the ribosome. This makes it possible to evaluate the adaptability of the unnatural amino acid to the protein with higher accuracy.
 ところで、リボソームによるタンパク質合成反応においては、ペプチジル基転移反応後、トランスロケーションが起こる。つまり、反応前はAサイトに位置していたアミノアシルtRNAがペプチジル基の転移を受けると、mRNAごとPサイトに移動する。 By the way, in the protein synthesis reaction by ribosome, translocation occurs after peptidyl transfer reaction. That is, when the aminoacyl-tRNA located at the A site prior to the reaction undergoes peptidyl transfer, the mRNA moves to the P site.
 上述したa及びb、またc~f工程を備える本発明の方法は、非天然アミノ酸のアミノアシルtRNAがAサイトに位置している状態における、非天然アミノ酸のタンパク質への導入適性の評価に関するものであった。
 以下、Aサイトに位置していた非天然アミノ酸のアミノアシルtRNAがペプチジル基転移を受け、Pサイトにトランスロケーションした状態における、非天然アミノ酸のタンパク質への導入適性の評価に関するg及びh工程を備える形態の発明について説明を加える。
The method of the present invention comprising the steps a and b and the steps c to f relates to the evaluation of the adaptability of the unnatural amino acid to a protein in the state where the aminoacyl tRNA of the unnatural amino acid is located at the A site. there were.
In the following, a form comprising g and h steps for evaluating the ability to introduce an unnatural amino acid into a protein in a state where the aminoacyl tRNA of the unnatural amino acid located at the A site undergoes peptidyl transfer and translocates to the P site The description of the invention of
 なお、非天然アミノ酸のアミノアシルtRNAが、Aサイトに位置している状態の評価(a工及びb工程)と、Pサイトに位置している状態の評価(g及びh工程)を組み合わせて行うことにより、より精度よく非天然アミノ酸のタンパク質への導入適性を推定することができる。 In addition, evaluation of the state where the aminoacyl tRNA of the unnatural amino acid is located at the A site (steps a and b) and evaluation of the state where it is located at the P site (steps g and h) Thus, it is possible to more accurately estimate the aptitude for introducing a non-natural amino acid into a protein.
  (g工程)
 g工程は、任意のアミノ酸のアミノアシルtRNAと、非天然アミノ酸の残基を有するペプチジルtRNAとのペプチジル基転移反応におけるTS最適化計算を行う工程である。
(Step g)
The g step is a step of performing TS optimization calculation in a peptidyl group transfer reaction between an aminoacyl tRNA of any amino acid and a peptidyl tRNA having a residue of an unnatural amino acid.
 上記任意のアミノ酸のアミノアシルtRNAは、一般式(6)で表される。 The aminoacyl-tRNA of any of the above amino acids is represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116
 一般式(6)中、Aa2は任意の天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Ba2は任意の基、又は前記Aa2と一体となりBa2-Aa2-Nt2の環状構造を形成する基を表す。
 tRNAa2は、3´末端においてOa22と共有結合したtRNAを表す。
In the general formula (6), A a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any natural amino acid.
B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end.
 一般式(6)はαアミノ酸のアミノアシルtRNAに限定していないが、当然、αアミノ酸のアミノアシルtRNAであってもよい。 The general formula (6) is not limited to the aminoacyl-tRNA of the α-amino acid, but of course it may be an aminoacyl-tRNA of the α-amino acid.
 一方、上記ペプチジルtRNAは一般式(7-1)又は(7-2)で表される。 On the other hand, the above peptidyl-tRNA is represented by the general formula (7-1) or (7-2).
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
 一般式(7-1)において、Aは前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
 Bは任意の基、又は前記Aと一体となりB-A-Nの環状構造を形成する基を表す。tRNAP2は、3´末端においてOP2と共有結合したtRNAを表す。PP2はペプチジル基を表す。
In the general formula (7-1), A P is in the unnatural amino acid, represents a structural part other than the amino group and a carboxyl group participating in peptide bonds.
B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P. tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end. P P2 represents the peptidyl group.
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
 一般式(7-2)において、tRNAP22-OP22-HP22の構造部分は、一般式(7-1)におけるtRNAP2と同構造を表す。すなわち、OP22はtRNAP2の3´末端糖の2´炭素に結合した酸素原子、HP22はOP22に結合した水素原子、tRNAP22はtRNAP2からOP22とHP22を除いた部分を表す。
 その他一般式(7-2)中の記号の意は一般式(7-1)に同じである。
In general formula (7-2), the structural part of tRNA P22 -OP 22 -HP 22 has the same structure as tRNA P2 in general formula (7-1). That is, OP22 is an oxygen atom bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2 , HP22 is a hydrogen atom bonded to OP22 , and tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
The meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1).
 また、一般式(7-1)又は(7-2)では非天然アミノ酸がαアミノ酸であることを限定していないが、当然、非天然アミノ酸がαアミノ酸であってもよい。その場合には、一般式(7-1)又は(7-2)で表される構造は、一般式(9-1)又は(9-2)で表される。 Further, in the general formula (7-1) or (7-2), it is not limited that the non-natural amino acid is an α-amino acid, but of course, the non-natural amino acid may be an α-amino acid. In that case, the structure represented by the general formula (7-1) or (7-2) is represented by the general formula (9-1) or (9-2).
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 一般式(9-1)において、Cα2は前記非天然アミノ酸のα炭素であり、RP1及びRP2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、RP2は水素原子でもよい)。
 その他の記号の意は一般式(7-1)に同じである。
In the general formula (9-1), C α2 is the α-carbon of the non-natural amino acid, and R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 is also a hydrogen atom) Good).
The meaning of the other symbols is the same as in the general formula (7-1).
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
 一般式(9-2)において、tRNAp22、OP22、及びHP22は一般式(7-2)と同じ意である。それ以外の記号の意は一般式(9-1)と同じである。 In the general formula (9-2), tRNA p22 , OP 22 and HP 22 have the same meaning as in the general formula (7-2). The meaning of the other symbols is the same as in the general formula (9-1).
 g工程では、一般式(6)のアミノアシルtRNAと一般式(7-1)又は(7-2)のペプチジルtRNAとのペプチジル基転移反応におけるTS最適化計算を行う。
 なお、TS最適化計算の実施形態については、a工程で説明した事項を適用することができる。
In step g, TS optimization calculation in the peptidyl group transfer reaction between the aminoacyl tRNA of general formula (6) and the peptidyl tRNA of general formula (7-1) or (7-2) is performed.
The items described in the step a can be applied to the embodiment of the TS optimization calculation.
  (h工程)
 h工程では、g工程のTS最適化計算の結果得られる構造が、アミド化反応の遷移状態構造であるか否か確認する。a工程のTS最適化計算の結果得られる構造が遷移状態構造であると確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する。
 遷移状態構造であるか否か確認する方法については、b工程での説明をそのまま適用することができる。
(Step h)
In step h, it is confirmed whether or not the structure obtained as a result of TS optimization calculation in step g is a transition state structure of the amidation reaction. When the structure obtained as a result of TS optimization calculation in step a is confirmed to be a transition state structure, it is determined that the ribosomal protein synthesis system has high adaptability for introducing the unnatural amino acid into a protein.
The description in the step b can be applied as it is to a method of confirming whether or not it is a transition state structure.
 また、本発明は、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のi~k工程を備える方法にも関する。 The present invention also relates to a method for estimating the adaptability of a non-natural amino acid to a protein in a ribosomal protein synthesis system, and also relates to a method comprising the following ik steps:
  (i工程)
 i工程では、c工程と同様に三次元構造データを用意する。三次元構造データの詳細については、c工程で説明した内容をそのまま適用できる。
(Step i)
In step i, three-dimensional structure data is prepared as in step c. For details of the three-dimensional structure data, the contents described in step c can be applied as they are.
 i工程においては、以下の条件のとおり、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5)で表される構造を組み込む。 In the step i, the structure represented by the general formula (8-1), (8-2), (8-3), (8-4) or (8-5) is incorporated under the following conditions.
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
 一般式(8-1)において、構造Nt2(Ht2)-Ct2(Ot2)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
t2とCt2の距離は1.53Å~1.77Å、
t2とHt2の距離は1.10Å~1.35Å、
t2とOt2の距離は1.35Å~1.45Åである。
 その他一般式(8-1)中の記号の意は一般式(6)及び(7-1)に同じである。
In the general formula (8-1), the structure N t2 (H t2 ) -C t2 (O t2 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
The distance between N t2 and C t2 is 1.53 Å to 1.77 Å,
The distance between N t2 and H t2 is 1.10 Å to 1.35 Å.
The distance between H t2 and O t2 is 1.35 Å to 1.45 Å.
The meaning of the symbols in the general formula (8-1) is the same as in the general formulas (6) and (7-1).
 なお、一般式(8-1)で表される構造として、下記一般式(8-1-1)で表される光学異性体構造のものを使用することもできる。一般式(8-1-1)の記号の意は一般式(8-1)と同じである。 As the structure represented by the general formula (8-1), one having an optical isomer structure represented by the following general formula (8-1-1) can also be used. The meaning of the symbol of the general formula (8-1-1) is the same as that of the general formula (8-1).
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 一般式(8-2)において、Ht22は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt2をプロトン化せしめた水素原子である。
 構造Ct2―Op2―Ht22―Ot2部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
t2とOp2の距離は1.45Å~1.70Å、
p2とHt22の距離は1.05Å~1.30Å、
t22とOt2の距離は1.10Å~1.40Å、
t2とCt2の距離は1.22Å~1.42Åである。
 その他一般式(8-2)中の記号の意は一般式(6)、(7-1)に同じである。
In the general formula (8-2), H t22 is a hydrogen atom obtained by protonating O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
The moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
The distance between C t2 and O p2 is 1.45 Å to 1.70 Å.
Distance of O p2 and H t22 is 1.05Å ~ 1.30Å,
The distance between H t22 and O t2 is 1.10 Å to 1.40 Å,
The distance between O t2 and C t2 is 1.22 Å to 1.42 Å.
The meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1).
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000124
 一般式(8-3)において、構造Nt2(Ht2)-Ct2(Op2)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~1.65Å、
t2とHt2の距離は1.00Å~1.24Å、
t2とOp2の距離は1.35Å~2.40Å、
p2とHt2の距離は1.00Å~1.84Åである。
 その他一般式(8-3)中の記号の意は一般式(6)、(7-1)に同じである。
In the general formula (8-3), the structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
The distance between N t2 and C t2 is 1.40 Å to 1.65 Å,
The distance between N t2 and H t2 is 1.00 Å to 1.24 Å,
The distance between C t2 and O p2 is 1.35 Å to 2.40 Å,
Distance O p2 and H t2 is 1.00Å ~ 1.84Å.
The meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1).
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000125
 一般式(8-4)において、構造Nt2-Ct2-Op2-Hp22-Op22-Ht2部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~2.10Å、
t2とHt2の距離は1.00Å~1.20Å、
t2と Op2の距離は1.35Å~2.30Å、
p2とHp22の距離は1.00Å~1.56Å、
p22とOp22の距離は1.00Å~1.67Å、
p22とHt2の距離は1.20Å~1.96Åである。
 その他一般式(8-4)中の記号の意は一般式(6)及び(7-2)に同じである。
In the general formula (8-4), the structure N t2 -C t2 -O p2 -H p22 -O p22 -H t2 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure ,
The distance between N t2 and C t2 is 1.40 Å to 2.10 Å,
The distance between N t2 and H t2 is 1.00 Å to 1.20 Å,
The distance between C t2 and O p2 is 1.35 Å to 2.30 Å.
Distance of O p2 and H p22 is 1.00Å ~ 1.56Å,
The distance between H p22 and O p22 is 1.00 Å to 1.67 Å,
The distance between Op 22 and H t2 is 1.20 Å to 1.96 Å.
The meaning of the symbols in the general formula (8-4) is the same as in the general formulas (6) and (7-2).
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000126
 一般式(8-5)において、Hs21―Os2-Hs22は溶媒水分子の一つであり、構造Nt2-Ct2-Op2-Hs21-Os2-Hp22-Op22-Ht2部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
t2とCt2の距離は1.40Å~1.79Å、
t2とHt2の距離は1.00Å~1.26Å、
t2とOp2の距離は1.40Å~2.21Å、
p2とHs21の距離は1.13Å~1.43Å、
s21とOs2の距離は1.00Å~1.37Å、
s2とHp22の距離は1.30Å~1.69Å、
p22とOp22との距離は0.98Å~1.24Å、
p22とHt2との距離は1.17Å~1.76Åである。
 その他一般式(8-5)中の記号の意は一般式(6)、(7-2)に同じである。
In the general formula (8-5), H s21 -O s2 -H s22 is one of solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 part is the reaction center in the transition state structure of the concerted amidation reaction having an 8-membered ring structure,
The distance between N t2 and C t2 is 1.40 Å to 1.79 Å.
The distance between N t2 and H t2 is 1.00 Å to 1.26 Å,
The distance between C t2 and O p2 is 1.40 Å to 2.21 Å,
Distance of O p2 and H s21 is 1.13Å ~ 1.43Å,
The distance between H s21 and O s2 is 1.00 Å to 1.37 Å,
The distance between O s2 and H p22 is 1.30 Å to 1.69 Å,
The distance between H p22 and O p22 is 0.98 Å to 1.24 Å,
The distance between Op 22 and H t2 is 1.17 Å to 1.76 Å.
The meaning of the symbols in the general formula (8-5) is the same as in the general formulas (6) and (7-2).
 また、一般式(8-1)、(8-2)、(8-3)、(8-4)、(8-5)では非天然アミノ酸がαアミノ酸であることを限定していないが、当然、非天然アミノ酸がαアミノ酸であってもよい。その場合には、一般式(8-1)、(8-2)、(8-3)、(8-4)、(8-5)で表される構造は、それぞれ一般式(10-1)、(10-2)、(10-3)、(10-4)、(10-5)で表される。 Also, in the general formulas (8-1), (8-2), (8-3), (8-4) and (8-5), it is not limited that the non-natural amino acid is an α-amino acid, Naturally, the non-naturally occurring amino acid may be an alpha amino acid. In that case, the structures represented by general formulas (8-1), (8-2), (8-3), (8-4), and (8-5) have the general formula (10-1), respectively. And (10-2), (10-3), (10-4) and (10-5).
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000127
 一般式(10-1)において、構造Nt2(Ht2)-Ct2(Ot2)部分、Nt2とCt2、Nt2とHt2、 Ht2とOt2の距離は一般式(8-1)に同じである。
 その他一般式(10-1)中の記号の意は一般式(6)及び(7-1)に同じである。
In the general formula (10-1), the distance between the structure N t2 (H t2 ) -C t2 (O t2 ) part, N t2 and C t2 , N t2 and H t2 , and H t2 and O t2 is a general formula (8- Same as 1).
The meaning of the symbols in the general formula (10-1) is the same as in the general formulas (6) and (7-1).
 なお、一般式(10-1)で表される構造については、以下の一般式(10-1―1)で表される立体異性体構造を用いることができる。なお、一般式(10-1-1)中の記号の意は一般式(10-1)に同じである。 As the structure represented by the general formula (10-1), a stereoisomer structure represented by the following general formula (10-1-1) can be used. The meaning of the symbols in the general formula (10-1-1) is the same as in the general formula (10-1).
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
 一般式(10-2)において、記号RP1、Cα2及びRP2の意は一般式(9-1)と同じである。その他一般式(10-2)中の記号の意、及び原子間距離は一般式(8-2)と同じである。 In the general formula (10-2), the meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-1). The meaning of the symbols in the general formula (10-2) and the interatomic distance are the same as in the general formula (8-2).
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
 一般式(10-3)において、記号RP1、Cα2及びRP2の意は一般式(9-1)と同じである。その他一般式(10-3)中の記号の意、及び原子間距離は一般式(8-3)と同じである。 In the general formula (10-3), the meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-1). The meaning of the symbols in the general formula (10-3) and the interatomic distance are the same as in the general formula (8-3).
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000131
 一般式(10-4)においては、記号RP1、Cα2及びRP2の意は一般式(9-2)と同じである。その他一般式(10-4)中の記号の意、及び原子間距離は一般式(8-4)と同じである。 In the general formula (10-4), the meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-2). The meaning of the symbols in General Formula (10-4) and the interatomic distance are the same as in General Formula (8-4).
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000132
 一般式(10-5)においては、記号RP1、Cα2及びRP2の意は一般式(9-2)と同じである。その他一般式(10-5)中の記号の意、及び原子間距離は一般式(8-5)と同じである。 In the general formula (10-5), the meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-2). The meaning of the symbols in the general formula (10-5) and the interatomic distance are the same as in the general formula (8-5).
  (条件3)前記三次元構造データにおけるAサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAa2の3´末端炭素の原子座標が位置するように、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))で表される想定構造を組み込む。 (Condition 3) The general formula (8) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
  (条件4)前記三次元構造データにおけるPサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAP2の3´末端炭素の原子座標が位置するように、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))で表される想定構造を組み込む。 (Condition 4) The general formula (8) is such that atomic coordinates of the 3 'terminal carbon of tRNA P2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
 三次元構造データへの一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5)で表される構造の組み込みについては、c工程で説明した内容をそのまま適用できる。 For incorporation of the structure represented by general formula (8-1), (8-2), (8-3), (8-4) or (8-5) into three-dimensional structure data, in step c The contents described can be applied as they are.
  (j工程)
 j工程では、i工程において得られた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造としてTS最適化計算を行う工程である。
 j工程における分子軌道法による構造最適化計算については、a工程及びd工程の説明で述べた事項を適用することができる。
(Step j)
Step j is a step of performing TS optimization calculation with the structure obtained in step i or a portion far from the reaction center of the structure omitted as appropriate for reducing the calculation load in order to reduce the calculation load.
The matters described in the description of the steps a and d can be applied to the structure optimization calculation by the molecular orbital method in the step j.
  (k工程)
 k工程は、前記j工程でのTS最適化計算の結果得られた構造を評価する工程である。すなわち、得られた構造が遷移状態構造であることが確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入の適性が高いと判断する。
 遷移状態構造であるか否かの確認はb工程の説明で述べた事項を適用できる。
(Step k)
The k step is a step of evaluating the structure obtained as a result of the TS optimization calculation in the j step. That is, when it is confirmed that the obtained structure is a transition state structure, it is judged that the suitability for introduction of the non-natural amino acid into a protein in a protein synthesis system by ribosome is high.
The confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
 なお、k工程の後に、以下のk´工程を含むことが好ましい。
  (k´工程)
 前記k工程で遷移状態構造であることが確認された構造が、
 その反応中心部を含む環状構造部(一般式(8-4)又は一般式(8-5)で表される構造を組み込む形態にあっては、該一般式のtRNAP22を含む環状構造を含む)以外の部分の結合軸のねじれ角を、立体障害が発生しない範囲内で調整することにより、tRNAa2の3´末端炭素対応原子とtRNAP2の3´末端炭素対応原子が、それぞれ前記三次元構造データにおけるAサイト上のtRNAの末端3´炭素とPサイト上のtRNAの末端3´炭素とのずれが0.3Å以内で前記三次元構造データにフィッティング可能な場合に、
 前記非天然アミノ酸のタンパク質への導入適性がより高いと判断する。
In addition, it is preferable that the following k 'process is included after k process.
(K 'process)
The structure confirmed to be a transition state structure in the k step is
The cyclic structure including the reaction center (in a form incorporating the structure represented by the general formula (8-4) or the general formula (8-5), includes a cyclic structure containing the tRNA P22 of the general formula ) By adjusting the twist angle of the bond axis of the other part within the range where steric hindrance does not occur, the three-dimensional carbon corresponding atom of tRNA a2 and the three-terminal carbon corresponding atom of tRNA P2 are respectively three-dimensional In the case where the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 Å in structural data, and fitting to the three-dimensional structural data is possible:
It is judged that the adaptability of the unnatural amino acid to the protein is higher.
 k´工程はk工程で遷移状態構造であることが確認された構造が、リボソーム内で取り得る構造であることを確認する工程である。そのため、k´工程を行うことにより、非天然アミノ酸のタンパク質への導入適性をより精度よく推定することができる。 The k 'step is a step of confirming that the structure confirmed to be a transition state structure in the k step is a structure that can be taken within the ribosome. Therefore, by performing the k ′ step, it is possible to more accurately estimate the aptitude for introducing a non-natural amino acid into a protein.
  (l工程)
 サーマス・サーモフィルスのリボソーム中には、2451A、2452C、2506U及び2585Uにより形成される空間が存在する。上述のとおり、リボソームの反応中心の構造は種間の相違が少ないため、サーマス・サーモフィルス以外の種のリボソーム中にも、当該空間に相当する空間が存在する蓋然性は高い。
 本発明においては、h~k工程に加えて、さらに、当該リボソーム中の空間に関する評価を行うl工程を備えることが好ましい。
(L process)
In Thermus thermophilus ribosomes, there is a space formed by 2451A, 2452C, 2506U and 2585U. As described above, since the structure of the reaction center of the ribosome is small among species, the probability that the space corresponding to the space is present is also high in the ribosomes of species other than Thermus thermophilus.
In the present invention, in addition to the h to k steps, it is preferable to further include an l step for evaluating the space in the ribosome.
 l工程では、j工程の結果得られた構造が、遷移状態構造であることが確認され、かつ、サーマス・サーモフィルスのリボソーム中の2451A、2452C、2506U及び2585Uにより形成される空間(または、これに相当する空間)に、非天然アミノ酸の側鎖が、立体障害無く収まる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入の適性が高いと判断する。 In step 1, the structure obtained as a result of step j is confirmed to be a transition state structure, and the space formed by 2451A, 2452C, 2506U and 2585U in the ribosome of Thermus thermophilus (or When the side chain of the non-natural amino acid fits into the space corresponding to (1) without steric hindrance, it is judged that the protein synthesis system by ribosome has high suitability for introducing the non-natural amino acid into protein.
 立体障害の有無は、非天然アミノ酸のアミノ酸残基の側鎖と前記空間を形成する塩基との原子間距離を基準に評価する。 The presence or absence of steric hindrance is evaluated on the basis of the interatomic distance between the side chain of the amino acid residue of the unnatural amino acid and the base forming the space.
 l工程は、同様にリボソーム中の空間に関する評価を行うk´工程と組み合わせて実行することが好ましい。これにより、さらに高い精度で非天然アミノ酸のタンパク質への導入適性を評価することができる。 The l step is preferably carried out in combination with the k 'step which also carries out an evaluation on the space in the ribosome. This makes it possible to evaluate the adaptability of the unnatural amino acid to the protein with higher accuracy.
 本発明の好ましい実施の形態では、さらに以下のm工程を備える。 The preferred embodiment of the present invention further comprises the following m steps.
  (m工程)
 m工程では、前記i工程において一般式(10-1)で表される構造を組み込み、j工程の結果得られた構造におけるねじれ角∠Nt2-Ct2-Cα2-RP1が、0°~108°である場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する。
(M process)
In the m step, the structure represented by the general formula (10-1) is incorporated in the i step, and the twist angle ∠N t2 -C t2 -C α2 -R P1 in the structure obtained as a result of the j step is 0 ° When it is ̃108 °, it is judged that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
 また、一般式(7-1)又は(7-2)中のA、特にA中に含まれる非天然アミノ酸の側鎖に親水性原子が存在する場合には、以下のn工程を備えることが好ましい。 Also, A P in the general formula (7-1) or (7-2), when the hydrophilic atoms are present in the side chains of unnatural amino acids, in particular contained in A P, comprises the following n steps Is preferred.
  (n工程)
 n工程では、j工程の結果得られた構造において、前記親水性原子が一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)中のHt2及び/又はOt2と水素結合を形成可能であると推定される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する。
 水素結合が形成可能か否かは、原子間の距離などに基づき推定することができる。例えば、上述の2原子間の距離が1.65~1.85Åである場合に、該2原子間に水素結合が形成可能であると推定することができる。
(N steps)
In the n step, in the structure obtained as a result of the j step, the hydrophilic atom is a group represented by the general formula (8-1), (8-2), (8-3), (8-4), or (8-5) The ability to introduce the unnatural amino acid into a protein in a protein synthesis system by ribosomes is considered to be high when it is presumed that a hydrogen bond can be formed with Ht2 and / or Ot2 in
Whether or not a hydrogen bond can be formed can be estimated based on the distance between atoms and the like. For example, when the distance between the two atoms mentioned above is 1.65 to 1.85 Å, it can be estimated that a hydrogen bond can be formed between the two atoms.
 また、本発明においては、リボソームによるタンパク質合成反応系に存在する、リボソームによるペプチジル基転移反応を促進する又は同反応を阻害しないことが確認又は予測される物質がある場合には、当該物質を分子軌道計算の対象に加えることもできる。
 すなわち、本発明は以下のo~q工程を備えていてもよい。
Further, in the present invention, if there is a substance which is present in a protein synthesis reaction system by ribosome and which is confirmed or predicted to promote or do not inhibit the peptidyl transfer reaction by ribosome, the substance is It can be added to the target of orbit calculation.
That is, the present invention may comprise the following steps o to q.
  (o工程)
 o工程においては、i工程と同様に、三次元構造データを用意し、これに一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される構造を組み込む。そして、上述の物質をリボソーム内のペプチジル基転移反応の反応中心若しくはその周辺に配置する。
(Step o)
In the step o, as in the step i, three-dimensional structure data is prepared, and the data represented by the general formula (8-1), (8-2), (8-3), (8-4), or (8) is prepared. Incorporate the structure represented by -5). Then, the above-mentioned substance is placed at or around the reaction center of the peptidyl transfer reaction in the ribosome.
 o工程においては配置する物質としては、溶媒である水分子や反応系に存在する各種イオンなどが挙げられる。
 水分子を配置する場合には、ペプチジル基転移反応の反応中心やその周辺に2~8分子、より好ましくは4~7分子、さらに好ましくは5~7分子、さらに好ましくは6分子の水分子を配置する。この場合、水分子による水素結合のネットワークが反応中心又はその周辺に形成されるように配置することが好ましい。
As the substance to be disposed in the step o, water molecules as a solvent, various ions present in the reaction system and the like can be mentioned.
In the case of arranging water molecules, 2 to 8 molecules, more preferably 4 to 7 molecules, still more preferably 5 to 7 molecules, still more preferably 6 molecules of water are formed around the reaction center of the peptidyl group transfer reaction and its periphery. Deploy. In this case, it is preferable to arrange so that a network of hydrogen bonds by water molecules is formed at or around the reaction center.
 そして、上述した物質をリボソーム内のペプチジル基転移反応の反応中心若しくはその周辺に配置した構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として設定する。 Then, a structure in which the above-mentioned substance is disposed at or around the reaction center of the peptidyl group transfer reaction in the ribosome, or a structure far from the reaction center of the structure is set as an initial structure .
  (p工程)
 p工程では、o工程で設定した初期構造について、分子軌道法による構造最適化計算を行う。
(Step p)
In the p process, structure optimization calculation by the molecular orbital method is performed on the initial structure set in the o process.
 分子軌道法についての詳細は、上記a、d、j工程の説明で述べた事項を適用することができる。 For the details of the molecular orbital method, the matters described in the description of the steps a, d and j can be applied.
  (q工程)
 q工程は、前記p工程でのTS最適化計算の結果得られた構造を評価する工程である。すなわち、得られた構造が遷移状態構造であることが確認され、かつ、前記遷移状態構造をとることにより進行するペプチジル基転移反応が前記物質による立体障害で阻害されない場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する。
 遷移状態構造であるか否かの確認はb工程の説明で述べた事項を適用できる。
(Step q)
The q step is a step of evaluating the structure obtained as a result of the TS optimization calculation in the p step. That is, it is confirmed that the obtained structure is a transition state structure, and the ribosomal protein synthesis system is used when the peptidyl group transfer reaction which proceeds by taking the transition state structure is not inhibited by the steric hindrance caused by the substance. It is determined that the aptitude for introducing the unnatural amino acid into a protein is high.
The confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
 前記物質にペプチジル基転移反応が前記物質による立体障害で阻害されるか否かの判断は、一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される分子と前記物質との間の距離などを指標とすることができる。 The judgment as to whether the peptidyl transfer reaction is inhibited by the substance due to the steric hindrance by the substance or not can be made by the general formulas (8-1), (8-2), (8-3), (8-4), Alternatively, the distance between the molecule represented by (8-5) and the substance can be used as an index.
 q工程においては、前記物質による立体障害でペプチジル基転移反応が阻害されるか否かを評価したが、前記物質がペプチジル基転移反応を促進し得るか否かを判断するr工程を備えていてもよい。r工程は以下に説明するとおりである。 In step q, it was evaluated whether steric hindrance caused by the substance would inhibit the peptidyl group transfer reaction, but it is equipped with an r step to determine whether the substance can promote the peptidyl group transfer reaction. It is also good. The r process is as described below.
  (r工程)
 r工程は、前記p工程でのTS最適化計算の結果得られた構造を評価する工程である。
 すなわち、前記p工程の結果得られた構造が遷移状態構造であることが確認され、かつ、一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される遷移状態最適化構造の分子と、前記物質との間で水素結合を形成可能な場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する。
 遷移状態構造であるか否かの確認はb工程の説明で述べた事項を適用できる。
(R process)
The r step is a step of evaluating the structure obtained as a result of the TS optimization calculation in the p step.
That is, it is confirmed that the structure obtained as a result of the p step is a transition state structure, and the general formulas (8-1), (8-2), (8-3), (8-4), Or introduction of the unnatural amino acid into a protein in a protein synthesis system by ribosomes, when hydrogen bonding can be formed between the substance and the molecule of the transition state optimization structure represented by (8-5) or I judge that the aptitude is high.
The confirmation of whether or not it is a transition state structure can apply the matter described in the explanation of step b.
 また、水素結合が可能か否かの判断は、n工程の説明で述べた内容を適用することができる。 Moreover, the contents described in the description of the n step can be applied to the determination of whether or not hydrogen bonding is possible.
 また、本発明は人工タンパク質の製造方法にも関する。本発明の製造方法は推測工程とタンパク質を製造する工程を有する。 The invention also relates to a method of producing an artificial protein. The production method of the present invention comprises an estimation step and a step of producing a protein.
 推測工程は、リボソームによるタンパク質合成系によって、人工タンパク質への導入を検討している非天然アミノ酸の導入適性を評価する工程である。非天然アミノ酸のタンパク質への導入適性を推測は、上述した本発明の方法により行うことができる。 The inference step is a step of evaluating the introduction suitability of a non-natural amino acid which is being studied for introduction into an artificial protein by a ribosomal protein synthesis system. The estimation of the suitability for introducing unnatural amino acids into proteins can be performed by the method of the present invention described above.
 次に、タンパク質を製造する工程では、推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質を製造する。 Next, in the step of producing a protein, a protein is produced by a protein synthesis system using ribosomes, using as a raw material a non-natural amino acid which is judged to be high in the introduction suitability in the estimation step.
 また本発明は、タンパク質又はペプチドの性能の改良方法、生産性又は製造効率の向上方法にも関する。
 これらの方法は、上述した実施態様の推測工程とタンパク質又はペプチドの製造工程を備える。
 そして、製造工程で製造されたタンパク質又はペプチドの性能または、製造工程におけるタンパク質若しくはペプチドの生産性若しくは製造効率を評価する評価工程を有する。
The present invention also relates to a method of improving the performance of a protein or peptide, and a method of improving productivity or production efficiency.
These methods comprise the steps of guessing and protein or peptide production of the embodiments described above.
And it has the evaluation process of evaluating the performance of the protein or peptide manufactured at the manufacturing process, or the productivity or manufacturing efficiency of the protein or peptide at the manufacturing process.
 また、本発明は、非天然アミノ酸が導入された人工タンパク質製剤のドラッグデザイン方法に応用することができる。 In addition, the present invention can be applied to a drug design method of an artificial protein preparation into which non-natural amino acids are introduced.
 現在使用されているほとんどの医薬品はリード化合物を最適化することによって開発されている。リード化合物には、ホルモンや伝達物質を含め、植物、微生物、高等生物由来の天然タンパク質やペプチドも含まれる。 Most pharmaceuticals currently in use are developed by optimizing lead compounds. Lead compounds also include natural proteins and peptides from plants, microorganisms and higher organisms, including hormones and transmitters.
 近年ではこれらのリード化合物創薬の分子設計に際し、コンピュータ上で予測する仮想スクリーニング技術が一連の創薬スクリーニング研究において重要な項目を占めている。
 その背景にはコンピュータの飛躍的な性能向上に加え、ハイスループットスクリーニングやコンビトナトリアル合成技術によって蓄積される構造活性相関の情報量が飛躍的に増大していることや、ゲノム研究の進展によって標的タンパク質の構造情報が飛躍的に増大していることなどが挙げられる。
In recent years, in the molecular design of these lead compound drug discovery, computer-predicted virtual screening technology has become an important item in a series of drug discovery screening research.
In the background, in addition to the drastic improvement of computer performance, the amount of information on structure-activity relationship accumulated by high-throughput screening and combinatorial synthesis technology has dramatically increased, and is targeted by the progress of genome research The structural information of proteins has been dramatically increased.
 仮想スクリーニングを実現する分子設計技術を大別すると、既知の構造活性相関情報に基づくLigand Based Drug Design(LBDD)と、標的タンパク質の立体構造情報を利用するStructure-Base Drug Design(SBDD)の二つが挙げられる。 Broadly speaking, molecular design techniques that realize virtual screening can be divided into two: Ligand Based Drug Design (LBDD) based on known structure-activity relationship information, and Structure-Base Drug Design (SBDD) using conformational information of target proteins. It can be mentioned.
 特にSBDD技術は、複数の薬物が標的タンパク質の活性部位近傍に結合する場合、いずれの薬物もタンパク質と相補的な関係にあるとともに、それぞれの結合過程における自由エネルギー変化量が薬理活性の強弱を表すという知見に基づいている。これは、標的タンパク質とリガンドとの結合状態とその薬理活性値をコンピュータ上で推定するものであり、構造活性相関の先見情報を必要としないにもかかわらず、精度の高い活性値予測を期待することができるという利点を有している。 In particular, when multiple drugs are bound in the vicinity of the active site of a target protein, the SBDD technology has a complementary relationship with each drug, and the amount of free energy change in each binding process represents the strength of pharmacological activity. It is based on the knowledge that This is a computer to estimate the binding state of the target protein and ligand and its pharmacological activity value, and expect highly accurate activity value prediction even though it does not require foresight information of structure activity relationship It has the advantage of being able to
 一方、共通の部位に結合している薬物間にはその物理化学的パラメータに相同性が見られることに着目した創薬技術であるLBDD(重ね合わせ解析や定量的構造活性相関(QSAR)等)では、近似解ではあるが種々の対象系に対して高い正答率を有しており、またSBDDとは異なって受容体構造(結合モデル)を必要としない利点を有している。 On the other hand, the drug discovery technology LBDD (superposition analysis, quantitative structure activity relationship (QSAR), etc.) is a drug discovery technology focusing on the fact that homology is seen in its physicochemical parameters among drugs bound to a common site. In, although it is an approximate solution, it has a high rate of correct answers to various target systems, and has an advantage that it does not require a receptor structure (binding model) unlike SBDD.
 本発明のドラッグデザイン方法は、このような薬剤の薬効又は副作用の推定技術と組み合わせることを特徴とする。
 第一段階において、LBDD及び/又はSBDDによって、リード化合物であるタンパク質又はペプチドに導入することにより、薬効を向上又は副作用を低減せしめる非天然アミノ酸を選択する。
The drug design method of the present invention is characterized by combining it with a drug efficacy or side effect estimation technique of such a drug.
In the first step, by introducing LBPD and / or SBDD into a protein or peptide which is a lead compound, non-naturally occurring amino acids are selected which improve drug efficacy or reduce side effects.
 具体的にはリード化合物となるタンパク質又はペプチドのファーマコフォア部分へ非天然アミノ酸を導入したときの薬効又は副作用を推定する形態としてもよい。 Specifically, the efficacy or side effect may be estimated when an unnatural amino acid is introduced into the pharmacophore portion of a protein or peptide to be a lead compound.
 第二段階において、上述した本発明の推定方法による推定を行う。すなわち、上述の本発明の推定方法により、リボソームによるタンパク質合成系における、該非天然アミノ酸の前記タンパク質又はペプチドへの導入適性を推測する推測工程を実行する。 In the second step, estimation is performed by the estimation method of the present invention described above. That is, according to the above-described estimation method of the present invention, an estimation step of estimating the adaptability of the unnatural amino acid to the protein or peptide in a ribosomal protein synthesis system is performed.
 このように、リード化合物創薬の分子設計技術と、本発明の推定方法とを組み合わせることによって、薬効又は副作用の観点とリボソーム合成系による合成可能性の観点から総合的に評価、スクリーニング可能なハイスループットなドラッグデザイン手法を提供することができる。 Thus, by combining the molecular design technology of lead compound drug discovery and the estimation method of the present invention, it is possible to comprehensively evaluate and screen from the viewpoint of drug efficacy or side effects and the possibility of synthesis by ribosome synthesis system. It is possible to provide a throughput drug design method.
 以下、本発明が利用する自然法則を見出すに至った過程について詳述する。 Hereafter, the process which came to find the natural law which this invention utilizes is explained in full detail.
(1)試験の目的
 文献(非特許文献6、7)(PDB 4V5C)には、リボソームにアミノアシルtRNAに対応したRNA及び、ペプチジルtRNAに対応したRNAが夫々AサイトとPサイトに結合し、更にmRNAが結合した状態のX線解析構造が記載されている(図1、図2)。
(1) Purpose of the test In the literature (non-patent documents 6, 7) (PDB 4V5C), RNA corresponding to aminoacyl-tRNA in ribosome and RNA corresponding to peptidyl-tRNA bind to A site and P site respectively, The structure of X-ray analysis with bound mRNA is described (FIG. 1, FIG. 2).
 しかしながら当該文献に記載された構造からは、ペプチジル基転移反応の反応機構についての具体的な議論を可能とするような、反応中心の詳細な情報は得られていない。
 文献(非特許文献6、7)には図3、図4に示す2通りのX線解析構造が記載されている。
 図3に示す構造はPサイト側の末端ペプチジル基が欠けている。図4に示す構造はPサイト側の末端にフェニルアラニン類似構造のぺプチジル末端類似構造があるが、図中に示されている様に、AサイトtRNA末端のアミノ基に対してアミド化反応により結合すべきカルボニル基の炭素原子が3.32Åと離れており、反応遷移状態を形成できる位置にはない。従ってリボソーム上でのアミド化反応の実際の様相を知る情報は得られていない。
However, from the structure described in the document, detailed information on the reaction center is not obtained, which enables specific discussion on the reaction mechanism of the peptidyl group transfer reaction.
Two types of X-ray analysis structures shown in FIG. 3 and FIG. 4 are described in the documents (Non-Patent Documents 6 and 7).
The structure shown in FIG. 3 lacks the terminal peptidyl group on the P site side. The structure shown in FIG. 4 has a peptidyl terminal similar structure to a phenylalanine similar structure at the terminal end on the P site side, but as shown in the drawing, it binds to the amino group at the A terminal tRNA end by an amidation reaction The carbon atom of the carbonyl group to be removed is separated by 3.32 Å and is not at a position where a reactive transition state can be formed. Therefore, no information is available to know the actual aspect of the amidation reaction on the ribosome.
 この欠けている構造の補足と、反応基質間の距離の矛盾の解消を合理的に行い、X線解析構造と矛盾しないアミド化反応機構の検討を行った。 We complemented this missing structure and resolved the contradiction of the distance between reaction substrates rationally, and examined the amidation reaction mechanism consistent with the X-ray analysis structure.
(2)ペプチジル基転移反応機構検討の問題点
 X線解析構造と矛盾しないアミド化反応機構の検討を行うには解決を要する幾つかの問題点がある。
(2) Problems in the examination of the peptidyl transfer reaction mechanism There are several problems that need to be solved in order to study the amidification reaction mechanism not inconsistent with the X-ray analysis structure.
(2-a)アミド化反応の基本となる反応機構の確認
 ペプチジル基転移反応は、有機化学反応としてはアミノ基とエステル基によるアミド化反応である。リボソーム上でペプチジル基転移反応が進行する際も、基本的なアミド化反応と同様に反応は進行し、リボソームはこの時の遷移状態構造の形成を促進する構造を取る筈であり、この構造はX線解析構造と矛盾しない構造でなければならない。
(2-a) Confirmation of Reaction Mechanism Underlying Amidation Reaction Peptidyl transfer reaction is, as an organic chemical reaction, an amidation reaction with an amino group and an ester group. When a peptidyl transfer reaction proceeds on a ribosome, the reaction proceeds in the same manner as in the basic amidation reaction, and the ribosome has a structure that promotes the formation of a transition state structure at this time, and this structure is The structure must be consistent with the X-ray analysis structure.
 基本的なアミド化反応機構の知見としては、Oieらにより報告されたアンモニア-ギ酸の段階的及び協奏的アミド化反応の分子軌道計算結果がある(非特許文献8、式1及び2参照)。
しかしながらこの結果は、MNDO法、STO-3G法、3-21G法により得られたものであり、これらの計算法では、巨大なリボソーム上でのアミド化反応機構の検討は不可能である。
 この結果を踏襲するも巨大なリボソーム上でのアミド化反応機構の検討には別の手段が必要である。
Findings of the basic amidation reaction mechanism include molecular orbital calculation results of stepwise and concerted amidation reactions of ammonia and formic acid reported by Oie et al. (See Non-Patent Document 8, Formulas 1 and 2).
However, these results are obtained by the MNDO method, STO-3G method, and 3-21G method, and it is impossible to study the amidation reaction mechanism on a large ribosome by these calculation methods.
Following this result, another means is needed to study the amidation reaction mechanism on a large ribosome.
Figure JPOXMLDOC01-appb-C000133
[式1]
ギ酸とアンモニアのアミド化反応機構(非特許文献8(Oieら))
Figure JPOXMLDOC01-appb-C000134
[式2]
アミド化反応の遷移状態(非特許文献8(Oieら))
Figure JPOXMLDOC01-appb-C000133
[Equation 1]
Amidation reaction mechanism of formic acid and ammonia (Non-patent document 8 (Oie et al.))
Figure JPOXMLDOC01-appb-C000134
[Formula 2]
Transition State of Amidation Reaction (Non-patent Document 8 (Oie et al.))
(2-b)アンモニア-ギ酸のアミド化反応遷移状態構造とペプチジル基転移反応との整合
 前記Oieらにより報告されたアミド化反応遷移状態構造は、T1、T2、T3の3種存在し、更にその各々には光学異性等の異性体も存在する。現実に進行しているペプチジル基転移反応と矛盾するものを除外してリボソーム上でのアミド化反応機構の検討をしなければならない。
(2-b) Matching of Amidation Reaction Transition State Structure of Ammonia-Formic Acid with Peptidyl Transfer Reaction The amidization transition state structure reported by Oie et al. Has three kinds of T1, T2 and T3, and further Each of them also has isomers such as optical isomer. It is necessary to study the amidation reaction mechanism on the ribosome excluding the contradiction with the actually proceeding peptidyl transfer reaction.
(2-c)ペプチジル基転移反応への拡張
 (2-a)、(2-b)に於けるアミド化反応は単純な分子であるアンモニア-ギ酸のアミド化反応である。これとアミノ酸同士の反応、更にはリボソーム上での実際のペプチジル基転移反応との間に矛盾が無いか検討しなければならない。このためにはアミド化反応をアラニルアラニン等のペプチジル基転移反応へ拡張し、更にリボソーム上での実際のペプチジル基転移反応とできるだけ近い状態でのアミド化反応機構の検討をしなければならない。
(2-c) Extension to peptidyl transfer reaction The amidation reaction in (2-a) and (2-b) is an amidation reaction of ammonia-formic acid which is a simple molecule. It should be examined whether there is any contradiction between this and the reaction between amino acids and also the actual transfer of peptidyl group on the ribosome. For this purpose, the amidation reaction should be extended to a peptidyl transfer reaction such as alanylalanine, and the amidification reaction mechanism should be examined as close as possible to the actual peptidyl transfer reaction on the ribosome.
(3)アミド化反応機構の検討と検討結果
(3-a) 計算手法の選択
本研究では分子軌道計算にはMOAC-PM3 semi- empirical MO method:(以下MOAC-PM3と略す)を使用した。MOAC-PM3は炭素以外の原子を含む分子の再現性に劣る欠点を有するが以下の特徴を有する。
・多原子数の計算を行うことができる迅速性。
・計算対象構造の拡張への迅速・柔軟な対応力。
・反応中心から離れた広い範囲の構造に対応できる計算能力。
(3) Investigation of amidification reaction mechanism and examination results (3-a) Selection of calculation method In this study, MOAC-PM3 semi-empirical MO method: (hereinafter abbreviated as MOAC-PM3) was used for molecular orbital calculation. MOAC-PM3 has the disadvantage of being inferior in reproducibility of molecules containing atoms other than carbon, but has the following features.
・ Quickness that can calculate the number of atoms.
・ Quick and flexible response to expansion of calculation target structure.
• Computational power that can handle a wide range of structures away from the reaction center.
 本研究ではこの特徴を活かしつつ、X線解析により得られている構造と矛盾しない条件を選択することで上記欠点を克服した。その結果可能になった以下 3-b)~3-f) のアミド化反応機構の検討を行った(計算手法a、c、d、e、f)。 In this study, while taking advantage of this feature, the above-mentioned drawbacks were overcome by selecting conditions consistent with the structure obtained by X-ray analysis. As a result, the following amidification reaction mechanism of 3-b) to 3-f) became possible was studied (calculation methods a, c, d, e, f).
(3-b)文献記載遷移状態構造のMOPAC-PM3による再現
 OieらはMNDO,STO-3G,3-21G を用いてアンモニアと蟻酸からホルムアミドが生成する反応(式1)を解析し、遷移状態構造を得ている(非特許文献8、式1、式2参照)。この遷移状態構造をMOAC-PM3 により再現できるか検証した。
(3-b) Reproduction of transition state structure by MOPAC-PM3 described in the literature Oie et al. Analyze the reaction (formula 1) in which formamide is formed from ammonia and formic acid using MNDO, STO-3G, 3-21G, and the transition state The structure is obtained (see Non-Patent Document 8, Formula 1 and Formula 2). It was verified whether this transition state structure can be reproduced by MOAC-PM3.
 まず、OieらのMNDOの結果を初期構造として、computational package of Winmostar(GE)V4.024 ;X-Abilityを用いてTS最適化計算を行い、遷移状態構造;T1, T2, T3 の構造を若干の差異はあるものの基本的には再現できる事を確認した(Method a,c,d,e,f)。 First, with the result of MNie of Oie et al. As an initial structure, computational package of Winmostar (GE) V4.024; TS optimization calculation using X-Ability, transition state structure; T1, T2, T3 Although there is a difference between the two, it was basically confirmed that they can be reproduced (Method a, c, d, e, f).
(3-c)文献記載構造の検証
(3-c-1)X線解析構造のアミド化反応部位としての検証
 Ramakrishnanらの非特許文献6に示されたX線解析構造の、特にアミド化反応部位であるtRNAの3´末端構造(図3、図4)と、上記(3-b)の検討で得られた反応遷移状態構造との間に矛盾が無いか検証した。矛盾の有るものは除外し、矛盾の無いもののみを後述の解析に用いた。
(3-c) Verification of the structure described in the literature (3-c-1) Verification of the X-ray analysis structure as an amidification reaction site In particular, the amidation reaction of the X-ray analysis structure shown in Ramakrishnan et al. It was verified that there is no contradiction between the 3 'terminal structure of the site tRNA (FIG. 3, FIG. 4) and the reaction transition state structure obtained in the above (3-b). Those with contradictions were excluded, and only those without contradictions were used in the analysis described later.
 図3の方はAサイトに結合したtRNAの3´末端にフェニルアラニン類似構造体がエステル結合の代わりにアミド結合している。Pサイトに結合したtRNAの3´末端にはこのようなフェニルアラニン類似構造体は結合していない。 In the case of FIG. 3, a phenylalanine analog structure is amide-bonded to the 3 'end of tRNA bound to the A site instead of an ester bond. Such a phenylalanine analog structure is not bound to the 3 'end of the tRNA bound to the P site.
 一方、図4の方はA、P両サイトにフェニルアラニン類似構造体が結合している。両サイトにフェニルアラニン類似構造体が結合しているのであるから、こちらの構造の方がより実際のアミド化反応遷移状態構造に近いと思われる。しかしながら、図4に示されているように、アミド結合を生成することになるC=OはNと距離が3.32Åと離れ、また反応遷移状態を形成し易い向きを取っていない。反応遷移状態を形成するには、Pサイト側のフェニルアラニン類似構造体の立体配座が大きく変わらなければならず、X線解析構造と反応遷移状態の立体配座は大きく異なると考えられる。 On the other hand, in the case of FIG. 4, a phenylalanine analog structure is bound to both the A and P sites. Since a phenylalanine analog structure is bound to both sites, the structure here seems to be closer to the actual amidation transition state structure. However, as shown in FIG. 4, C = O, which is to form an amide bond, is separated from N by a distance of 3.32 Å and does not take a direction to easily form a reactive transition state. In order to form a reaction transition state, the conformation of the phenylalanine analog structure on the P site side must be largely changed, and it is considered that the X-ray analysis structure and the conformation of the reaction transition state are greatly different.
 一方、図3、図4共にAサイトのフェニルアラニン類似構造体についてはそのベンゼン環が、50s RNA の 2451Adenine-2452Cytidineが形成するポケットに収まっている(図2)。またアミド結合を形成するNがPサイト側に向いていることから、反応遷移状態においてもこの立体配座と大きく変わることはないと考えられる。 On the other hand, the benzene ring of the phenylalanine analog structure at the A site is contained in the pocket formed by 2451 Adenine-2452 Cytidine of 50s RNA in both FIG. 3 and FIG. 4 (FIG. 2). In addition, since N forming an amide bond is directed to the P site side, it is considered that there is no significant change with this conformation even in the reaction transition state.
 以上の結果に基づき、後述のX線解析構造にアラニルアラニンの反応遷移状態構造を接続する検討を行う際には、図3のPサイト側のtRNAの3´末端の3´Oに遷移状態構造のエステル基をそのねじれ角についてX線解析構造に依拠せずに接続し、Aサイト側との接続を検証することとする。 Based on the above results, when conducting a study to connect the reaction transition state structure of alanylalanine to the X-ray analysis structure described later, the transition state to 3 'of the 3' terminal 3 'of tRNA at the P site side of FIG. The ester group of the structure is connected with respect to its twist angle without relying on the X-ray analysis structure, and the connection with the A site is verified.
(3-c-2) 文献記載反応遷移状態構造の検証。
 上記(3-b)で得られた、可能性が複数ある反応機構それぞれに対応した反応遷移状態構造の妥当性を検証した。X線解析構造との矛盾が有った場合は、その遷移状態構造及びその反応機構を検討対象から除外した。
(3-c-2) Verification of reaction transition state structure described in Article.
The validity of the reaction transition state structure corresponding to each of the plurality of possible reaction mechanisms obtained in (3-b) above was verified. When there was a contradiction with the X-ray analysis structure, its transition state structure and its reaction mechanism were excluded from consideration.
 リボソーム上のペプチジル基転移反応に於けるアミド化反応は、上記(2-a)で述べた反応機構の基本部分で共通していると考えられる。アミド化反応の実際の反応機構が段階的アミド化反応機構(Stepwise reaction mechanism)であるならば、リボソームのX線解析構造は最初の反応工程であるT1(式2)の構造と密接に関連していると考えられる。協奏的反応機構(concerted reaction mechanism)であるならばT3(式2)の構造とより密接に関連していると考えられる。 The amidation reaction in the peptidyl transfer reaction on the ribosome is considered to be common to the basic part of the reaction mechanism described in (2-a) above. If the actual reaction mechanism of the amidation reaction is Stepwise reaction mechanism, the X-ray analysis structure of ribosome is closely related to the structure of T1 (Formula 2) which is the first reaction step. It is thought that The concerted reaction mechanism is considered to be more closely related to the structure of T3 (Formula 2).
 式2で示されたT1,T2及びT3の構造と、実際のペプチジル基転移反応と対応させるならば、遷移状態構造中のN原子に結合したH1ではない2つのH原子のどちらかが、AサイトのアミノアシルtRNAの末端アミノ酸のCα原子(式3のA)に対応するはずである(式2、式3)。 If the structures of T1, T2 and T3 shown in the formula 2 correspond to the actual peptidyl group transfer reaction, either one of the two H atoms other than H bonded to the N atom in the transition state structure is A It should correspond to the Cα atom (A * of Formula 3) of the terminal amino acid of the aminoacyl tRNA of the site (Formula 2, Formula 3).
[式3]T1構造の他の候補
Figure JPOXMLDOC01-appb-C000135
;Aminoacyl-tRNA part
;Peptidyl part
;tRNA part of peptidyl-tRNA
[Equation 3] Other candidates for T1 structure
Figure JPOXMLDOC01-appb-C000135
A * ; Aminoacyl-tRNA part
P * ; Peptidyl part
R * ; tRNA part of peptidyl-tRNA
 また、遷移状態構造(式3)中のC原子に結合したH原子は、PサイトのペプチジルtRNAのペプチド末端のtRNAに結合したアミノ酸のCα原子(式3中のP)に対応し、O2原子に結合したH原子はtRNAの末端糖の3´炭素原子(式3中のR)に対応するはずである。この式3中のC原子に結合したH原子とO2原子が反転した異性体;T1´(式3)も遷移状態構造の可能性として存在する。 Also, the H atom bonded to the C atom in the transition state structure (formula 3) corresponds to the Cα atom (P * in formula 3) of the amino acid bonded to the tRNA at the peptide end of the peptidyl tRNA of the P site; The H atom attached to the atom should correspond to the 3 'carbon atom (R * in Formula 3) of the terminal sugar of the tRNA. An isomer in which the H atom and the O2 atom bonded to the C atom in the formula 3 are inverted; T1 '(formula 3) is also present as a possibility of the transition state structure.
 式1、式2に於いて、O2原子に結合したtRNAの末端糖の3´炭素原子に対応するH原子はOieらによる構造(非特許文献8)ではT1とT2で向きが反転している。
 この構造を実際のペプチジル基転移反応と対応させるならば、A、P両サイトの2つのtRNAの相対的な向きがT1とT2で大きく変わることになる。従って連続的にT1→四面体構造;THI→T2と推移した後にO2から先の部分が脱離する現実のペプチジル基転移反応と対応させることが出来ない。代わりにT1の構造が、式3のT1-2又はT1´-2の構造を取れば、この問題は解決される。
In the formulas 1 and 2, the H atom corresponding to the 3 'carbon atom of the terminal sugar of the tRNA bound to the O2 atom is inverted in direction by T1 and T2 in the structure by Oie et al. (Non-patent document 8) .
If this structure corresponds to the actual peptidyl transfer reaction, the relative orientations of the two tRNAs at the A and P sites will largely change between T1 and T2. Therefore, it can not be made to correspond to the actual peptidyl group transfer reaction in which the portion ahead of O2 is eliminated after transitioning continuously as T1 → tetrahedral structure; THI → T2. If the structure of T1 takes the structure of T1-2 or T1'-2 of Formula 3 instead, this problem is solved.
 Oieらの論文(非特許文献8)に記載されている遷移状態の構造;T1及びT3を初期構造としてX-Abilityを用いてMOAC-PM3でTS構造を確認し、次いでこのT1に於ける結果を初期構造としてT1のCについての光学異性体であるT1´、更にはT1及びT1´のねじれ角;N-C-O2-Hを180°反転させた構造を初期構造とし同様にTS最適化計算を行った。 Transition state structure described in Oie et al. (Non-patent document 8); TS structure is confirmed by MOAC-PM3 using X-Ability with T1 and T3 as initial structures, and then the results in this T1 And T1 ', which is an optical isomer of T1 at C as initial structure, and further twist angles of T1 and T1'; N-C-O2-H inverted by 180 ° as initial structure and TS optimization as well I did the calculation.
 その結果、T1´については確認されたが、T1-2、T1´-2については構造最適化の結果として、夫々T1及びT1´の構造に戻ってしまい、T1-2とT1´-2を確認することができなかった。しかしながらT1を初期構造として、アンモニアとギ酸のアミド化反応をアンモニアとギ酸メチルエステルのアミド化反応に拡張したところ、T1-2及びT1´-2の遷移状態構造が得られ、ペプチジル基転移反応により近い状態での遷移状態の確認をすることができた(式4)。 As a result, although T1 'was confirmed, T1-2 and T1'-2 return to the structures of T1 and T1' respectively as a result of structural optimization, and T1-2 and T1'-2 are I could not confirm. However, when T1 is the initial structure and the amidation reaction of ammonia and formic acid is extended to the amidation reaction of ammonia and formate methyl ester, the transition state structures of T1-2 and T1'-2 are obtained, and the peptidyl group transfer reaction It was possible to confirm the transition state in the near state (Equation 4).
Figure JPOXMLDOC01-appb-C000136
[式4]MOPAC-PM3により確認したT1最適化構造
Figure JPOXMLDOC01-appb-C000136
[Formula 4] T1 optimized structure confirmed by MOPAC-PM3
 前記の確認された遷移状態T3の構造(式2)、更に、T1の構造から作成された前記T1-2とT1´-2の構造を前記X線解析構造の図3の構造のPサイトのtRNA の末端糖の3´C原子に接続させた。3´C原子と3´O原子の夫々に、対応するT1-2、T1´-2のメチルの炭素原子、O2原子を重ね合わせて、ねじれ角;N-C-O2-3´C、及びC-O2-3´C-2´Cを種々の角度に回転させて検討した。その結果、T1構造のN原子とこれに結合すべき原子である、AサイトのtRNAの末端に結合しているフェニルアラニン類似構造のCαに対応した炭素原子との距離は、T1´-2の場合のみ1.73Åまで接近した構造を取り得ることが判明した(図5)。 The structure of the confirmed transition state T3 (formula 2), and further, the structure of T1-2 and T1'-2 created from the structure of T1 at the P site of the structure of FIG. 3 of the X-ray analysis structure It was connected to the 3 'C atom of the terminal sugar of tRNA. The corresponding carbon atoms of T1-2 and T1'-2 methyl and O2 atoms are superposed on each of the 3 'C atom and the 3' O atom, and the twist angle is N-C-O2-3 'C, and The C-O2-3'C-2'C was examined by rotating it at various angles. As a result, the distance between the N atom of the T1 structure and the carbon atom corresponding to the Cα of the phenylalanine-like structure bonded to the terminal of the tRNA at the A site, which is the atom to be bonded thereto, is T1′-2. It was found that the structure could be as close as 1.73 Å (Figure 5).
 この構造であれば、tRNAの末端の構造の微調整で、X線解析構造と矛盾しない構造が存在しうる可能性が示された。
 T1-2についての同様な検討に於いては、T1-2構造中のC原子と結合したH原子とPサイトtRNAの末端糖の2´O原子との立体障害により、X線解析構造と矛盾しないAサイトのアミノアシルtRNAとのT1遷移状態構造を取り得ないことが判明した。
With this structure, it was shown that fine adjustment of the structure of the end of the tRNA may exist a structure consistent with the X-ray analysis structure.
In a similar study for T1-2, steric hindrance between the H atom bonded to the C atom in the T1-2 structure and the 2'O atom of the terminal sugar of the P site tRNA leads to an inconsistency with the X-ray analysis structure It turned out that T1 transition state structure with aminoacyl-tRNA of not A site can not be taken.
 同様に、T3及びその光学異性体について、O1原子をPサトのtRNAの末端糖の3´C原子に上記T1-2、T1´-2と同様に接続してねじれ角N-C-O1-3´C及び、C-O1-3´C-2´Cを種々の角度に回転させて検証した。その結果、T3構造のN原子とこれに結合すべき原子であるCαに対応した炭素原子との距離は、2.17Åよりも近い距離を取り得ないことが判明した(図6)。またこの時H1原子とAサイトtRNAの末端糖の2´O原子間の距離は1.54Åしか無くこの立体障害を避けると、更に上記原子間距離が2.17Åよりも大きくなることから、X線解析構造と矛盾しないT3構造は取り得ないことが判明した。 Similarly, for T3 and its optical isomer, the O 1 atom is connected to the 3 'C atom of the terminal sugar of P sato tRNA in the same manner as in T 1-2 and T 1' -2 above, and the twist angle N-C-O1- The 3'C and C-O1-3'C-2'C were rotated at various angles for verification. As a result, it was found that the distance between the N atom of the T3 structure and the carbon atom corresponding to Cα, which is the atom to be bonded to this, can not be a distance closer than 2.17 Å (FIG. 6). At this time, the distance between the H1 atom and the 2′O atom of the terminal sugar of the A-site tRNA is only 1.54 Å, and if this steric hindrance is avoided, the above interatomic distance further becomes larger than 2.17 Å. It turned out that the T3 structure consistent with the line analysis structure can not be taken.
 T3のC原子の立体配置が反転した光学異性体についても全く同じ議論による結論が得られる。
 このことから、T3を遷移状態構造とするconcerted reaction mechanismを、リボソーム上でのアミド化反応の検証からは除外することとする。
 以上から、以降のMOAC-PM3による、リボソーム上でのペプチジル基転移反応機構の検討を、段階的反応機構に於ける遷移状態構造 T1´-2 に的を絞って行った(式5)。
The same controversial conclusion is obtained for optical isomers in which the configuration of the C atom of T3 is reversed.
From this, the concerted reaction mechanism in which T3 is a transition state structure is excluded from the verification of the amidation reaction on the ribosome.
From the above, the investigation of the peptidyl group transfer reaction mechanism on the ribosome by MOAC-PM3 was focused on the transition state structure T1'-2 in the stepwise reaction mechanism (equation 5).
[式5]
Figure JPOXMLDOC01-appb-C000137
[Equation 5]
Figure JPOXMLDOC01-appb-C000137
 (3-d)遷移状態T1´-2の AlanylAlanine生成反応への拡張
 (3-c-2)の検討で絞られた遷移状態構造としてT1´-2構造(Fig.3-2)が得られた。この構造を元にMOAC- PM3 による計算でアミド化反応をアンモニア-ギ酸 からアミノ酸同士の反応へと拡張する際に矛盾が生じないか検討した。立体障害等の矛盾が生じた構造や立体配座については、検討対象から除外した。
(3-d) Extension of the transition state T1'-2 to the formation reaction of AlanylAlanine by the examination of (3-c-2) The T1'-2 structure (Fig. 3-2) is obtained as the narrowed transition state structure. The Based on this structure, we examined whether there would be any contradiction when extending the amidation reaction from ammonia-formic acid to the reaction between amino acids by calculation with MOAC-PM3. Structures and conformations in which contradiction such as steric hindrance occurred were excluded from the examination.
 遷移状態T1´-2構造に於けるアンモニアをアラニンメチルエステルのアミノ基、ギ酸メチルエステルをアセチルアラニンメチルエステルとしたアミド化反応によるAlanyl-alanine 生成反応を検討した。検討にあたっては、リボソーム上での実際の反応場をできるだけ考慮して、以下(3-d-1)~(3-d-3)の前提を置いて、TS最適化計算の初期構造を構築した(式6、式7、計算手法a,c参照)。 The formation of Alanyl-alanine by amidification reaction in which ammonia in the transition state T1'-2 structure is an amino group of alanine methyl ester and formate methyl ester is acetylalanine methyl ester was examined. In the examination, the initial structure of TS optimization calculation was constructed with the following assumptions (3-d-1) to (3-d-3) taking account of the actual reaction field on the ribosome as much as possible. (See Equation 6, Equation 7, Calculation Methods a and c).
Figure JPOXMLDOC01-appb-C000138
[式6]T1´-2 構造からアラニルアラニンへの拡張
 (T1´-2構造は式7を参照)
Figure JPOXMLDOC01-appb-C000138
[Formula 6] Extension of T1'-2 structure to alanylalanine (See Formula 7 for T1'-2 structure)
(3-d-1)アミンの置換基の置換位置には式7に示す2通り;As1、As2の可能性が考えられる。
Figure JPOXMLDOC01-appb-C000139
[式7]A(tRNAのアミノアシル部)の可能な置換位置
The substitution positions of the (3-d-1) amine are as shown in Formula 7 in two ways; the possibilities of As1 and As2 are considered.
Figure JPOXMLDOC01-appb-C000139
[Formula 7] Possible substitution position of A (aminoacyl portion of tRNA)
(3-d-2)Pサイトのペプチジル基に対応したアラニンメチルエステルはX線解析構造のデータが無いので、そのCαのコンフォメーションを出来るだけ網羅的に検討するために、式8のT1´-2の構造におけるねじれ角;NC*CαCβを0°―108°、108°―235°、235°―360°のカテゴリーに分け、その各カテゴリーの代表として、54°;Ps1、171°;Ps2、297°;Ps3をCαのコンフォメーションの初期構造とした(式8)。
(ねじれ角 N-C-Cα-Cβ=108°の時 ねじれ角O1-C-Cα-Cβ=0°,ねじれ角N-C-Cα-C-β=235°の時 ねじれ角O2-C-Cα-Cβ=0°に夫々対応している。)
Figure JPOXMLDOC01-appb-C000140
[式8]可能なP(ペプチジル部)のCαにおけるコンフォメーション
Since the alanine methyl ester corresponding to the peptidyl group at the (3-d-2) P site has no data of X-ray analysis structure, T1 'of the formula 8 is used to examine the conformation of Cα as comprehensively as possible. Twist angle in the structure of -2; NC * CαCβ is divided into categories of 0 ° -108 °, 108 ° -235 °, 235 ° -360 °, and 54 °; Ps1, 171 °; Ps2 as a representative of each category 297 °; Ps3 was the initial structure of the conformation of Cα (Equation 8).
(When twist angle NC * -Cα-Cβ = 108 ° Twist angle O1-C * -Cα-Cβ = 0 °, twist angle NC * -Cα-C-β = 235 ° Twist angle O2 Each corresponds to -C * -Cα-Cβ = 0 °.)
Figure JPOXMLDOC01-appb-C000140
[Equation 8] Conformation of possible P (peptidyl moiety) at Cα
(3-d-3)AサイトのアミノアシルtRNAのアミノ酸に対応したアラニンメチルエステルのCαのコンフォメーションは、tRNAの末端に結合しているフェニルアラニン類似構造のX線解析構造のデータが有るので、これを参考にする(式9)。
Figure JPOXMLDOC01-appb-C000141
[式9]AのCαコンフォメーション
The conformation of Cα of alanine methyl ester corresponding to an aminoacyl-tRNA amino acid at (3-d-3) A site is the X-ray analysis structure of phenylalanine-like structure bound to the end of tRNA. Is referred to (equation 9).
Figure JPOXMLDOC01-appb-C000141
[Expression 9] C α conformation of A
 前記(3-d-1)~(3-d-3)の前提で得られた6通り;As1Ps1、As1Ps2、As1Ps3、As2Ps1、As2Ps2、As2Ps3の初期構造を得た。そのうちのAs1Ps1を図7に示す。
 6通りの初期構造を基にTS 構造の最適化計算を行い夫々に対応する遷移状態造;図8~13を得た(計算手法a、c、e、f参照)。
The initial structures of As1Ps1, As1Ps2, As1Ps3, As2Ps1, As2Ps2 and As2Ps3 were obtained as the six cases obtained on the premise of (3-d-1) to (3-d-3) above. Among them, As1Ps1 is shown in FIG.
Based on the six initial structures, optimization calculation of the TS structure was performed to obtain the corresponding transition state structures; FIGS. 8 to 13 were obtained (see calculation methods a, c, e, f).
(4)リボソーム上での遷移状態T1の検討
(4-a)前記(3-d)の検討によりアミド化反応によるアラニルアラニン生成反応の遷移状態構造が得られた。この結果を用い、リボソーム上での実際のペプチジル基転移反応に於けるアミド化反応機構の検討を行った。
(4) Examination of Transition State T1 on Ribosome (4-a) The examination of (3-d) gave the transition state structure of the alanylalanine formation reaction by the amidation reaction. Using this result, we examined the amidation reaction mechanism in the actual peptidyl transfer reaction on the ribosome.
 アラニルアラニンの反応遷移状態構造を、X線解析構造のA、P両サイトの3´末端に組み込んだ。この構造の反応中心部を除いた部分の、構造最適化計算を行い、反応中心部周辺近傍の構造の歪を除いた。得られた最適化構造を初期構造として、遷移状態構造を求めた(計算手法a,b,c,d,e,f)。 The reactive transition state structure of alanylalanine was incorporated at the 3 'end of both the A and P sites of the X-ray analysis structure. The structural optimization calculation was performed on the part excluding the reaction center of this structure, and distortion of the structure around the reaction center was removed. The transition state structure was determined with the obtained optimized structure as an initial structure (calculation methods a, b, c, d, e, f).
 (4-a-1)リボソーム分子は巨大であり、このリボソーム上でのアミド化反応の遷移筐体構造をそのまま計算で求めるのは不可能である。反応の真の様相をできるだけ損なわずに再現するには、反応遷移状態構造の周辺の出来るだけ広く且つ計算が可能な範囲を取り出し、最適化計算の際に周辺構造が発散してしまわないような適度な拘束を掛ける等の工夫が必要である。 (4-a-1) The ribosomal molecule is huge, and it is impossible to calculate the transition housing structure of the amidation reaction on this ribosome as it is. In order to reproduce the true aspect of the reaction as much as possible without losing as much as possible, the as wide and computable range as possible around the reaction transition state structure is taken out, and the surrounding structure does not diverge during optimization calculation. It is necessary to devise appropriate restraints.
 本研究では、上記(3-d)の検討により得られたアラニルアラニン生成反応の遷移状態構造をリボソームに組み込むための土台として、以下の構造を作成した。
 X線解析構造中のA、P両サイトに結合したtRNAのアミド化反応中心に最も近いリン酸エステルから反応中心の反対側の構造部分を削除し、残った2つのリン酸エステル部分の間に10個のメチレン基を挿入して架橋する(計算手法c)。
In this study, the following structures were created as a basis for incorporating into the ribosome the transition state structure of the alanylalanine-producing reaction obtained by the examination of (3-d) above.
In the X-ray analysis structure, the phosphate ester closest to the amidization reaction center of tRNA bound to both A and P sites is deleted from the structural part on the opposite side of the reaction center from the remaining two phosphate ester moieties. 10 methylene groups are inserted and crosslinked (calculation method c).
 さらにこの架橋構造に対して構造最適化計算(計算手法d)を架橋構造部分以外を固定した状態で行う。最適化計算後の結果を図14に示す。
 なお、上記メチレン基を挿入せずに(4-a-3)の構造最適化計算を行うと、構造が発散してしまい、最適化構造は得られない。
Furthermore, structural optimization calculation (calculation method d) is performed on this crosslinked structure in a state in which portions other than the crosslinked structure portion are fixed. The result after optimization calculation is shown in FIG.
If the structure optimization calculation of (4-a-3) is performed without inserting the above-mentioned methylene group, the structure diverges and an optimized structure can not be obtained.
(4-a-2)前記(3-d)の検討で得られたアミド化反応の6個のTS最適化構造;図8~13の夫々の構造部分;-O-C(=O)C(CH)H-NH--C(=O1)O2-を上記(4-a-1)の構造(図14)の対応部分に組み込み、フェニルアラニン類似構造部分を削除する(Fig. 4-2-(a))。 (4-a-2) Six TS-optimized structures of the amidation reaction obtained in the above (3-d) examination; each structural part of FIGS. 8 to 13; -O * -C (= O) C (CH 3 ) H-NH--C (= O 1) O 2− is incorporated into the corresponding part of the structure of (4-a-1) above (FIG. 14) and the phenylalanine-like structural part is deleted (FIG. 4-) 2- (a).
 組み込みは、O2原子とPサイト側 C3´原子と接続し、C3´-O2及び、O2-C結合のねじれ角度を調整し、O原子とAサイト側C3´原子との距離が最短になった構造で、O-C3´間にボンドを形成させ(図15(b)中の黄色破線で示した部分)て行う。この構造を計算機負荷を考慮してTS部分以外を最適化するための初期構造に用いる(図15(b))。 The incorporation connects the O2 atom and the P site side C3 'atom, adjusts the twist angle of the C3'-O2 and O2-C bond, and the distance between the O * atom and the A site side C3' atom becomes shortest. In this structure, a bond is formed between O * -C3 '(the portion shown by the yellow broken line in FIG. 15 (b)). This structure is used as an initial structure for optimizing other than the TS part in consideration of the computer load (FIG. 15 (b)).
(4-a-3)アミド化反応中心、リン酸エステル部分、架橋部分の構造を固定して(図15(b)中の桃色で示した部分)、それ以外の部分をフリーにして構造最適化計算を行う(計算手法d、図15(b)→(c))。 (4-a-3) Fix the structures of the amidation reaction center, the phosphate ester part, and the cross-linking part (the part shown in pink in Fig. 15 (b)), and make the other parts free to optimize the structure Calculation (calculation method d, FIG. 15 (b) → (c)).
(4-a-4)上記(4-a-3)で得られた構造からメチレン架橋部分を削除し、後のTS最適化計算の際の計算機の負荷を軽減するために、tRNAの塩基部分、Aサイトのリン酸エステル部分を削除し、この構造をTS最適化計算の初期構造とする(図15(c))。 (4-a-4) The base portion of tRNA to remove the methylene bridge portion from the structure obtained in the above (4-a-3) and reduce the load of the computer in the later TS optimization calculation. , And the phosphate ester portion at the A site are deleted, and this structure is taken as the initial structure of TS optimization calculation (FIG. 15 (c)).
 以上の操作により、上記(3-d)の操作で得られた6通りの遷移状態構造;図8~13から夫々に対応するリボソームでのTS最適化計算に用いる初期構造が得られた。そのうちの構造As2Ps1において得られた初期構造を図16に示す。 By the above operation, six transition state structures obtained by the above operation (3-d); initial structures used for TS optimization calculation in ribosomes corresponding to each of FIGS. 8 to 13 were obtained. The initial structure obtained in the structure As2Ps1 is shown in FIG.
(4-b)リボソーム上でのTS最適化計算結果の検証と考察
 前記(4-a)で得られた初期構造を用いTS最適化計算を行い(計算手法a、c、e、f参照)、X線解析構造とほぼ矛盾しないリボソーム上のアミド化反応;アラニルアラニンの生成反応の遷移状態構造;図17~22 を得た。
(4-b) Verification and consideration of TS optimization calculation results on ribosome TS optimization calculation is performed using the initial structure obtained in the above (4-a) (refer to calculation methods a, c, e, f) , An amidation reaction on the ribosome substantially consistent with the X-ray analysis structure; a transition state structure of a formation reaction of alanylalanine; FIGS. 17 to 22 were obtained.
 これらの遷移状態構造の夫々を反応部位近傍のX線解析構造とを重ね合わせて見ると(図23~28)、Aサイトでの2種類のCα-N結合(As1、As2)のうち、As1構造(As1Ps1、As1Ps2、As1Ps3)は、Aサイト側のアミノアシル末端の立体配置がX線解析構造のアミノアシル末端のフェニルアラニン類似構造のCα,Cβ対応位置と大きく異なっている(図23)。一方、As2構造(As2Ps1,As2Ps2,As2Ps3)では良く一致している(図26)。 When each of these transition state structures is superimposed on the X-ray analysis structure in the vicinity of the reaction site (FIGS. 23 to 28), As1 of two types of Cα-N bonds (As1, As2) at the A site In the structures (As1Ps1, As1Ps2, As1Ps3), the configuration of the aminoacyl terminus on the A site side is largely different from the Cα, Cβ corresponding position of the phenylalanine analog structure of the aminoacyl terminus of the X-ray analysis structure (FIG. 23). On the other hand, in the As2 structure (As2Ps1, As2Ps2, As2Ps3), they agree well (FIG. 26).
 また、Pサイト側の立体構造;Ps1,Ps2,Ps3のうちPs2ではペプチジル基転移反応におけるペプチド鎖の伸長方向が逆方向に向いており、A、P両サイトに結合したtRNAの間に入り込んでしまうため、Ps2構造を取る可能性は低いと考えられる(図24、27)。 In Ps2 among Ps1, Ps2 and Ps3, the extension direction of the peptide chain in the peptidyl group transfer reaction is in the opposite direction, and it is inserted between the tRNA bound to both A and P sites. Therefore, the possibility of adopting the Ps2 structure is considered to be low (FIGS. 24 and 27).
 これらの結果から、実際のペプチジル基転移反応の遷移状態は、As2Ps1又はAs2Ps3の構造である可能性が高いことが示唆される(図26、28)。 These results suggest that the actual transition state of the peptidyl transfer reaction is likely to be the structure of As2Ps1 or As2Ps3 (FIGS. 26, 28).
 さらに、遷移状態構造のアミデーション反応部位は、X線解析構造におけるリボソーム分子の中で最も近い距離にある2451Adenine(50SリボソームA鎖2451のアデニン)と水素結合可能な距離を取り得ないことが判明したので(図23~28)、2451Adenineのアミデーション反応への直接的な関与(反応部位原子への水素結合)は無いと思われる。 Furthermore, it turned out that the amidation reaction site of the transition state structure can not have a hydrogen bondable distance with 2451 Adenine (the adenine of 50S ribosomal A chain 2451) located at the closest distance among ribosomal molecules in the X-ray analysis structure. (FIGS. 23-28), there appears to be no direct involvement (hydrogen bonding to reactive site atoms) of the 2451 Adenine amidation reaction.
 その代わりに、X線解析構造のアミノアシル末端のフェニルアラニン類似構造における側鎖のベンゼン環周辺の構造とを考え合わせると、2451Adenineは2452Cytidine(50SリボソームA鎖2452のシチジン)と共に、Aサイトに結合したアミノアシルtRNAの末端アミノ酸の側鎖が「鍵と鍵穴」のような厳密ではなく緩やかに収まるポケットを構成している。 Instead, considering the structure around the benzene ring of the side chain in the phenylalanine-like structure of the aminoacyl terminus of the X-ray analysis structure, 2451 Adenine, together with 2452 Cytidine (cytidine of 50S ribosomal A chain 2452), is an aminoacyl linked to the A site The side chain of the terminal amino acid of tRNA constitutes a pocket that fits loosely rather than strictly like "key and keyhole".
 一方、Pサイトに結合したアミノアシルtRNAの末端アミノ酸の側鎖が収まるポケットに相当する構造はX線解析構造中には見られない。このことがリボソームという一つの酵素が20種のアミノ酸(天然アミノ酸の場合)の反応に対応できるという特異な選択性を有するメカニズムと関わりが有る可能性が考えられる。 On the other hand, a structure corresponding to a pocket in which the side chain of the terminal amino acid of aminoacyl-tRNA bound to the P site is not found in the X-ray analysis structure. It is considered that this may be related to a mechanism having a unique selectivity that one enzyme, ribosome, can respond to the reaction of 20 amino acids (in the case of natural amino acids).
(4-c)溶媒水分子の影響の検証
 アミド化反応中心周辺は広い空間が存在するが、この空間の中で、溶媒の水が反応に深く関わっている可能性がある。
 このことを確認するために、可能性が高いと示唆された立体配座As2Ps1の初期構造;図20に、非特許文献9を参考にして、反応中心及びその周辺の親水性原子の周辺に水を6分子配置した(図29)。これを初期構造としてTS最適化計算を行い、水分子の存在下でのTS構造を得た(図30)。
(4-c) Verification of influence of solvent water molecule Although a large space exists around the amidification reaction center, water of the solvent may be deeply involved in the reaction in this space.
In order to confirm this, the initial structure of the conformation As2Ps1 suggested to be highly likely; referring to FIG. 20, referring to Non-Patent Document 9, the water around the reaction center and the hydrophilic atom in the periphery thereof Were arranged in six molecules (FIG. 29). Using this as an initial structure, TS optimization calculation was performed to obtain a TS structure in the presence of water molecules (FIG. 30).
 図30の構造をX線解析構造と重ね合わせて見ると(図31)、水分子を加えなかった図26よりもX線解析構造との差異が殆ど僅かしか無い程の良い一致が見られた。 When the structure of FIG. 30 is superimposed on the X-ray analysis structure (FIG. 31), a good agreement is obtained such that the difference with the X-ray analysis structure is almost slight compared to FIG. .
 さらに、図31に示されているように、反応部位の窒素原子に結合している水素原子に水素結合している水分子が前記2451AdenineのN3原子と水素結合が可能な位置に存在しており、2451Adenineが水分子との水素結合を介してアミド化反応に関与している可能性が示された。 Furthermore, as shown in FIG. 31, a water molecule hydrogen-bonded to a hydrogen atom bonded to a nitrogen atom at the reaction site is present at a position capable of hydrogen bonding with the N3 atom of the 2451 Adenine. It has been shown that 2451 Adenine may be involved in the amidation reaction via a hydrogen bond with a water molecule.
 図29のTS最適化計算の初期構造に於ける水分子の水素結合ネットワーク配置は他の可能性も多数存在するが、反応中心及びその周辺の親水性原子への水素結合の制約から、得られる計算結果のTS構造間には大きな差異は見られない。このことから溶媒水分子の存在下でのアミド化反応の遷移状態の真の様相は図30と大きく異なることは無いと思われる。 The hydrogen bond network arrangement of water molecules in the initial structure of the TS optimization calculation of FIG. 29 has many other possibilities, but can be obtained from the restriction of hydrogen bond to the reaction center and its surrounding hydrophilic atoms There is no significant difference between the calculated TS structures. From this, it is considered that the true aspect of the transition state of the amidation reaction in the presence of the solvent water molecule is not significantly different from FIG.
(5)まとめ
 本研究により、リボソーム上におけるペプチジル基転移反応(アミド化反応)においてアミノアシルtRNAとペプチジルtRNAがとる遷移状態構造の様相が明らかとなった。
 すなわち、アミノアシルtRNAとペプチジルtRNAは遷移状態において、As2Ps1構造(図26、水分子の存在下においては図30)をとっている可能性が非常に高い。
(5) Summary The present study revealed the transition state structure of aminoacyl-tRNA and peptidyl-tRNA in the peptidyl transfer reaction (amidation reaction) on the ribosome.
That is, in the transition state, the aminoacyl-tRNA and the peptidyl-tRNA are very likely to have the As2Ps1 structure (FIG. 26, FIG. 30 in the presence of a water molecule).
 つまり、天然アミノ酸により構成されるタンパク質は、リボソーム上でAs2Ps1構造の遷移状態をとるペプチジル基転移反応により合成されているといえる。これを言い換えれば、非天然アミノ酸のアミノアシルtRNAとペプチジルtRNAがリボソーム上でAs2Ps1構造の遷移状態をとり得るのであれば、リボソーム合成系によって非天然アミノ酸をタンパク質に導入することも可能であるということができる。 That is, it can be said that a protein composed of natural amino acids is synthesized by peptidyl group transfer reaction in which a transition state of As2Ps1 structure is taken on a ribosome. In other words, if the non-natural amino acids aminoacyl tRNA and peptidyl tRNA can adopt the transition state of the As2Ps1 structure on the ribosome, it is also possible to introduce the non-natural amino acid into the protein by the ribosome synthesis system. it can.
 したがって、タンパク質への導入を検討している非天然アミノ酸のアミノアシルtRNAと、ペプチジルtRNAとのペプチジル基転移反応についてTS最適化計算を行い、これがAs2Ps1構造の遷移状態をとるか否かを判断することによって、リボソーム合成系による同非天然アミノ酸のタンパク質への導入適性を推測することができる。 Therefore, perform TS optimization calculations for the peptidyl transfer reaction between the aminoacyl tRNA of the unnatural amino acid that is being studied for introduction into proteins and the peptidyl tRNA, and determine whether this takes the transition state of the As2Ps1 structure. The ability to introduce the non-natural amino acid into protein by the ribosomal synthesis system can be estimated by
(6)計算方法
(a) すべての計算はTOSHIBA dynabook R731 / 37C
コンピュータで行った。
(6) Calculation method (a) All calculations are done in TOSHIBA dynabook R731 / 37C.
I went on the computer.
(b) MOAC-PM3による計算に必要な座標データは全てPDBから入手した。計算結果の視覚化にはグラフィックインタフェース;RASMOLを使用した。 (B) All coordinate data required for calculation by MOAC-PM3 were obtained from PDB. A graphic interface, RASMOL, was used to visualize the calculation results.
(c) MOAPC-PM3半経験的MO法は、Winmostar(GE)V4.024(X-Ability)の計算パッケージで遂行した。計算に必要な初期構造は、PDBのデータを基にWinmostarの視覚化とマニュアル機能で作成した。その過程で、構造中に立体障害が発生した場合は、Winmostarのアプリケーションに含まれるMM2法により最適化した。 (C) MOAPC-PM3 A semi-empirical MO method was performed with the Winmostar (GE) V4.024 (X-Ability) calculation package. The initial structure required for calculation was created with Winmostar's visualization and manual functions based on PDB data. In the process, if steric hindrance occurred in the structure, it was optimized by MM2 method included in Winmostar application.
(d) デフォルトの分子構造の最適化には、Eigenvector Following routineを使用した。
MOPACキーワード;PM3 EF PRECISE VECTORS MMOK
(D) Eigenvector Following routine was used to optimize the default molecular structure.
MOPAC keyword; PM3 EF PRECISE VECTORS MMOK
(e) 遷移状態のエネルギーの最適化は、gradient norm が0.05kcal/mol/A 未満に達成されるまで行った。
MOPACキーワード;PM3 TS PRECISE MMOK
 溶媒の影響を考慮しなかったが、別途水分子水素結合ネットワークを加えた最適化計算を行った。
(E) Optimization of transition state energy was performed until the gradient norm was achieved below 0.05 kcal / mol / A.
MOPAC keyword; PM3 TS PRECISE MMOK
We did not consider the influence of the solvent, but performed optimization calculation that added the water molecular hydrogen bond network separately.
(f) TS最適化計算の後、遷移状態の確認は、振動計算で1つの負の振動数しか無いことにより確認した。 (F) After TS optimization calculation, confirmation of the transition state was confirmed by the fact that there is only one negative frequency in vibration calculation.
 本発明は非天然アミノ酸のアミノ酸残基を含む人工タンパク質の設計に用いることができる。

 
The present invention can be used to design artificial proteins containing amino acid residues of unnatural amino acids.

Claims (24)

  1. リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のa及びb工程を備えることを特徴とする方法。
      (a工程)
     一般式(1)で表される前記非天然アミノ酸のアミノアシルtRNAと、
    一般式(2-1)又は(2-2)で表される任意のアミノ酸配列を有するペプチジルtRNAと、
    のペプチジル基転移反応における想定される反応遷移状態(一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5))又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
      (b工程)
     前記a工程の結果得られる構造が遷移状態構造であることが確認できる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    Figure JPOXMLDOC01-appb-C000001
    (Aa1は前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
     Ba1は任意の基、又は前記Aa1と一体となりBa1-Aa1-Nt1の環状構造を形成する基を表す。
     tRNAa1は、3´末端においてOa12と共有結合したtRNAを表す。)
    Figure JPOXMLDOC01-appb-C000002
    (tRNAP1は、3´末端においてOP1と共有結合したtRNAを表す。
     PP1はペプチジル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (tRNAP12-OP12-HP12の構造部分は、一般式(2-1)におけるtRNAP1と同構造を表す。すなわち、OP12はtRNAP1の3´末端糖の2´炭素に結合した酸素原子、HP12はOP12に結合した水素原子、tRNAP12はtRNAP1からOP12とHP12を除いた部分を表す。
    その他一般式(2-2)中の記号の意は一般式(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000004
    (構造Nt1(Ht1)-Ct1(Ot1)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.53Å~1.77Å、
    t1とHt1の距離は1.10Å~1.35Å、
    t1とOt1の距離は1.35Å~1.45Åである。
    その他一般式(3-1)中の記号の意は一般式(1)及び(2-1)に同じ。)
     
    Figure JPOXMLDOC01-appb-C000005
    (Ht12は、段階的アミド化反応の第1段階において、カルボニル酸素であったOt1をプロトン化せしめた水素原子である。
    構造Ct1-Op1-Ht12-Ot1部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
    t1とOp1の距離は1.45Å~1.70Å、
    p1とHt12の距離は1.05Å~1.30Å、
    t12とOt1の距離は1.10Å~1.40Å、
    t1とCt1の距離は1.22Å~1.42Åである。
    その他一般式(3-2)中の記号の意は一般式(1)、(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000006
    (構造Nt1(Ht1)-Ct1(Op1)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.40Å~1.65Å、
    t1とHt1の距離は1.00Å~1.24Å、
    t1とOp1の距離は1.35Å~2.40Å、
    p1とHt1の距離は1.00Å~1.84Åである。
    その他一般式(3-3)中の記号の意は一般式(1)、(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000007
    (構造Nt1-Ct1-Op1-Hp12-Op12-Ht1部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.40Å~2.10Å、
    t1とHt1の距離は1.00Å~1.20Å、
    t1とOp1の距離は1.35Å~2.30Å、
    p1とHp12の距離は1.00Å~1.56Å、
    p12とOp12の距離は1.00Å~1.67Å、
    p12とHt1の距離は1.20Å~1.96Åである。
    その他一般式(3-4)中の記号の意は一般式(1)及び(2-2)に同じ。)
    Figure JPOXMLDOC01-appb-C000008
    (Hs12-Os1-Hs11は溶媒水分子の一つであり、構造Nt1-Ct1-Op1-Hs11-Os1-Hp12-Op12-Ht1部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.40Å~1.79Å、
    t1とHt1の距離は1.00Å~1.26Å、
    t1とOp1の距離は1.40Å~2.21Å、
    p1とHs12の距離は1.13Å~1.43Å、
    s12とOs1の距離は1.00Å~1.37Å、
    s1とHp12の距離は1.30Å~1.69Å、
    p12とOp12との距離は0.98Å~1.24Å、
    p12とHt1との距離は1.17Å~1.76Åである。
    その他一般式(3-5)中の記号の意は一般式(1)、(2-2)に同じ。)
    A method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, comprising the following steps a and b:
    (Step a)
    An aminoacyl-tRNA of the unnatural amino acid represented by the general formula (1);
    A peptidyl tRNA having any amino acid sequence represented by the general formula (2-1) or (2-2),
    Reaction transition state (general formula (3-1), (3-2), (3-3), (3-4) or (3-5)) or its structure reaction in the peptidyl group transfer reaction of A step of performing transition state structure optimization calculation (TS optimization calculation) by the molecular orbital method with a structure omitted as appropriate in order to reduce calculation load from a part far from the center as an initial structure.
    (Step b)
    A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when it can be confirmed that the structure obtained as a result of the step a is a transition state structure.
    Figure JPOXMLDOC01-appb-C000001
    (A a1 represents a structural moiety other than an amino group and a carboxyl group involved in the peptide bond in the non-natural amino acid.
    B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
    The tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end. )
    Figure JPOXMLDOC01-appb-C000002
    (TRNA P1 represents a tRNA covalently bound to O P1 in the 3 'end.
    P P1 represents the peptidyl group. )
    Figure JPOXMLDOC01-appb-C000003
    (Structural portion of the tRNA P12 -O P12 -H P12 has the general formula and tRNA P1 in (2-1) represents the same structure. Namely, the oxygen O P12 is bound to 2 'carbon of the 3'-terminal sugar of tRNA P1 The atom, HP12 is a hydrogen atom bonded to OP12 , and tRNA P12 is a portion of tRNA P1 from which OP 12 and HP 12 have been removed.
    The meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1). )
    Figure JPOXMLDOC01-appb-C000004
    (Structure N t1 (H t1 ) -C t1 (O t1 ) moiety is a reaction center in the reaction transition state structure of the first step of stepwise amidification reaction,
    The distance between N t1 and C t1 is 1.53 Å to 1.77 Å,
    The distance between N t1 and H t1 is 1.10 Å to 1.35 Å.
    The distance between H t1 and O t1 is 1.35 Å to 1.45 Å.
    The meaning of the symbols in the general formula (3-1) is the same as in the general formulas (1) and (2-1). )

    Figure JPOXMLDOC01-appb-C000005
    (H t12 is a hydrogen atom which protonated O t1 , which was carbonyl oxygen in the first step of the stepwise amidation reaction.
    The moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
    The distance between C t1 and O p1 is 1.45 Å to 1.70 Å.
    Distance of O p1 and H t12 is 1.05Å ~ 1.30Å,
    The distance between H t12 and O t1 is 1.10 Å to 1.40 Å,
    The distance between O t1 and C t1 is 1.22 Å to 1.42 Å.
    The meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1). )
    Figure JPOXMLDOC01-appb-C000006
    (Structure N t1 (H t1 ) -C t1 (O p1 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
    The distance between N t1 and C t1 is 1.40 Å to 1.65 Å,
    The distance between N t1 and H t1 is 1.00 Å to 1.24 Å,
    The distance between C t1 and O p1 is 1.35 Å to 2.40 Å.
    Distance O p1 and H t1 is 1.00Å ~ 1.84Å.
    The meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1). )
    Figure JPOXMLDOC01-appb-C000007
    (Structure N t1 -C t1 -O p1 -H p12 -O p12 -H t1 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
    The distance between N t1 and C t1 is 1.40 Å to 2.10 Å.
    The distance between N t1 and H t1 is 1.00 Å to 1.20 Å,
    The distance between C t1 and O p1 is 1.35 Å to 2.30 Å.
    Distance of O p1 and H p12 is 1.00Å ~ 1.56Å,
    The distance between H p12 and O p12 is 1.00 Å to 1.67 Å,
    The distance between Op 12 and H t1 is 1.20 Å to 1.96 Å.
    The meaning of the symbols in the general formula (3-4) is the same as in the general formulas (1) and (2-2). )
    Figure JPOXMLDOC01-appb-C000008
    (H s12 -O s1 -H s11 is one of the solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
    The distance between N t1 and C t1 is 1.40 Å to 1.79 Å.
    The distance between N t1 and H t1 is 1.00 Å to 1.26 Å,
    The distance between C t1 and O p1 is 1.40 Å to 2.21 Å,
    Distance of O p1 and H s12 is 1.13Å ~ 1.43Å,
    The distance between H s12 and O s1 is 1.00 Å to 1.37 Å,
    The distance between O s1 and H p12 is 1.30 Å to 1.69 Å,
    The distance between H p12 and O p12 is 0.98 Å to 1.24 Å,
    The distance between Op 12 and H t1 is 1.17 Å to 1.76 Å.
    The meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2). )
  2. 前記一般式(3-1)が、下記一般式(3-1-1)であることを特徴とする、請求項1に記載の方法。
    Figure JPOXMLDOC01-appb-C000009
    (一般式(3-1-1)中の記号の意は一般式(3-1)に同じ。)
    The method according to claim 1, wherein the general formula (3-1) is the following general formula (3-1-1).
    Figure JPOXMLDOC01-appb-C000009
    (The meaning of the symbol in the general formula (3-1-1) is the same as in the general formula (3-1).)
  3. 前記一般式(1)で表される構造が下記一般式(4)で表される構造であり、
    前記一般式(3-1)、(3-2)、(3-3)、(3-4)、(3-5)で表される構造が、それぞれ下記一般式(5-1)、(5-2)、(5-3)、(5-4)、(5-5)で表される構造であることを特徴とする、請求項1に記載の方法。
    Figure JPOXMLDOC01-appb-C000010
    (Cα1は前記非天然アミノ酸のα炭素であり、Ra1及びRa2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、Ra2は水素原子でもよい)。
     その他の記号は一般式(1)に同じ。)
    Figure JPOXMLDOC01-appb-C000011
    (Nt1とCt1、Nt1とHt1、Ht1とOt1の距離は一般式(3-1)に同じ。
    その他一般式(5-1)中の記号の意は一般式(1)、(2-1)及び(4)に同じ。)
    Figure JPOXMLDOC01-appb-C000012
    (記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-2)中の記号の意、及び原子間距離は一般式(3-2)と同じ。)
    Figure JPOXMLDOC01-appb-C000013
    (記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-3)中の記号の意、及び原子間距離は一般式(3-3)と同じ。)
    Figure JPOXMLDOC01-appb-C000014
    (記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-4)中の記号の意、及び原子間距離は一般式(3-4)と同じ。)
    Figure JPOXMLDOC01-appb-C000015
    (記号Ra1、Cα1及びRa2の意は一般式(4)と同じ。その他一般式(5-5)中の記号の意、及び原子間距離は一般式(3-5)と同じ。)
    The structure represented by the general formula (1) is a structure represented by the following general formula (4),
    The structures represented by the general formulas (3-1), (3-2), (3-3), (3-4), and (3-5) have the following general formulas (5-1) and (5-3), respectively. The method according to claim 1, which is a structure represented by 5-2), (5-3), (5-4), (5-5).
    Figure JPOXMLDOC01-appb-C000010
    (C α1 is an α carbon of the non-natural amino acid, and R a1 and R a2 each independently represent a side chain structure of the non-natural amino acid (however, R a2 may be a hydrogen atom).
    Other symbols are the same as in the general formula (1). )
    Figure JPOXMLDOC01-appb-C000011
    (The distances between N t1 and C t1 , N t1 and H t1 , and H t1 and O t1 are the same as in the general formula (3-1).
    The meaning of the symbols in the general formula (5-1) is the same as in the general formulas (1), (2-1) and (4). )
    Figure JPOXMLDOC01-appb-C000012
    (The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meanings of the symbols in the general formula (5-2) and the interatomic distance are the same as in the general formula (3-2). )
    Figure JPOXMLDOC01-appb-C000013
    (The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-3) and the interatomic distance are the same as in the general formula (3-3). )
    Figure JPOXMLDOC01-appb-C000014
    (The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meanings of the symbols in the general formula (5-4) and the interatomic distance are the same as in the general formula (3-4). )
    Figure JPOXMLDOC01-appb-C000015
    (The meanings of the symbols R a1 , C α1 and R a2 are the same as in the general formula (4). The meaning of the symbols in the general formula (5-5) and the interatomic distance are the same as in the general formula (3-5). )
  4. リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のc~e工程を備えることを特徴とする方法。
      (c工程)
     A及びPサイトにtRNA又はその誘導体が結合したリボソームのX線構造解析により得られる三次元構造データを用意し、
    該三次元構造データに、以下の条件のとおり、
    一般式(1)で表される前記非天然アミノ酸のアミノアシルtRNAと、
    一般式(2-1)又は(2-2)で表される任意のアミノ酸配列を有するペプチジルtRNAと、
    のペプチジル基転移反応における想定される反応遷移状態(一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5))を組み込む工程。
       (条件1)前記三次元構造データにおけるAサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAa1の3´末端炭素の原子座標が位置するように、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む。
       (条件2)前記三次元構造データにおけるPサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAP1の3´末端炭素の原子座標が位置するように、一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む。
      (d工程)
     前記c工程により得られた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
      (e工程)
     前記d工程の結果得られた構造が遷移状態構造であることが確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    Figure JPOXMLDOC01-appb-C000016
    (Aa1は前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
     Ba1は任意の基、又は前記Aa1と一体となりBa1-Aa1-Nt1の環状構造を形成する基を表す。
     tRNAa1は、3´末端においてOa12と共有結合したtRNAを表す。)
    Figure JPOXMLDOC01-appb-C000017
    (tRNAP1は、3´末端においてOP1と共有結合したtRNAを表す。
     PP1はペプチジル基を表す。)
     
    Figure JPOXMLDOC01-appb-C000018
    (tRNAP12-OP12-HP12の構造部分は、一般式(2-1)におけるtRNAP1と同構造を表す。すなわち、OP12はtRNAP1の3´末端糖の2´炭素に結合した酸素原子、HP12はOP12に結合した水素原子、tRNAP12はtRNAP1からOP12とHP12を除いた部分を表す。
    その他一般式(2-2)中の記号の意は一般式(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000019
    (構造Nt1(Ht1)-Ct1(Ot1)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.53Å~1.77Å、
    t1とHt1の距離は1.10Å~1.35Å、
    t1とOt1の距離は1.35Å~1.45Åである。
    その他一般式(3-1)中の記号の意は一般式(1)及び(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000020
    (Ht12は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt1をプロトン化せしめた水素原子である。
    構造Ct1-Op1-Ht12-Ot1部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
    t1とOp1の距離は1.45Å~1.70Å、
    p1とHt12の距離は1.05Å~1.30Å、
    t12とOt1の距離は1.10Å~1.40Å、
    t1とCt1の距離は1.22Å~1.42Åである。
    その他一般式(3-2)中の記号の意は一般式(1)、(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000021
    (構造Nt1(Ht1)-Ct1(Op1)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.40Å~1.65Å、
    t1とHt1の距離は1.00Å~1.24Å、
    t1とOp1の距離は1.35Å~2.40Å、
    p1とHt1の距離は1.00Å~1.84Åである。
    その他一般式(3-3)中の記号の意は一般式(1)、(2-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000022
    (構造Nt1-Ct1-Op1-Hp12-Op12-Ht1部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.40Å~2.10Å、
    t1とHt1の距離は1.00Å~1.20Å、
    t1とOp1の距離は1.35Å~2.30Å、
    p1とHp12の距離は1.00Å~1.56Å、
    p12とOp12の距離は1.00Å~1.67Å、
    p12とHt1の距離は1.20Å~1.96Åである。
    その他一般式(3-4)中の記号の意は一般式(1)及び(2-2)に同じ。)
    Figure JPOXMLDOC01-appb-C000023
    (Hs12-Os1-Hs11は溶媒水分子の一つであり、構造Nt1-Ct1-Op1-Hs11-Os1-Hp12-Op12-Ht1部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t1とCt1の距離は1.40Å~1.79Å、
    t1とHt1の距離は1.00Å~1.26Å、
    t1とOp1の距離は1.40Å~2.21Å、
    p1とHs12の距離は1.13Å~1.43Å、
    s12とOs1の距離は1.00Å~1.37Å、
    s1とHp12の距離は1.30Å~1.69Å、
    p12とOp12との距離は0.98Å~1.24Å、
    p12とHt1との距離は1.17Å~1.76Åである。
    その他一般式(3-5)中の記号の意は一般式(1)、(2-2)に同じ。)
    A method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, comprising the following steps of c to e.
    (Step c)
    Prepare three-dimensional structural data obtained by X-ray structural analysis of ribosome in which tRNA or its derivative is bound to A and P sites,
    In the three-dimensional structure data, according to the following conditions:
    An aminoacyl-tRNA of the unnatural amino acid represented by the general formula (1);
    A peptidyl tRNA having any amino acid sequence represented by the general formula (2-1) or (2-2),
    A step of incorporating the assumed reaction transition state (general formula (3-1), (3-2), (3-3), (3-4) or (3-5)) in the peptidyl group transfer reaction of
    (Condition 1) The general formula (3) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a1 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. 1) Incorporate the assumed structure represented by (3-2), (3-3), (3-4) or (3-5).
    (Condition 2) The atomic formula of the 3 'terminal carbon of tRNA P1 is located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data, 1) Incorporate the assumed structure represented by (3-2), (3-3), (3-4) or (3-5).
    (Step d)
    Transition state structure optimization calculation (TS optimization calculation) by molecular orbital method with a structure obtained by appropriately removing the structure far from the reaction center of the structure obtained by the step c or the structure, in order to reduce the calculation load as an initial structure Process of
    (Step e)
    A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when the structure obtained as a result of the step d is confirmed to be a transition state structure.
    Figure JPOXMLDOC01-appb-C000016
    (A a1 represents a structural moiety other than an amino group and a carboxyl group involved in the peptide bond in the non-natural amino acid.
    B a1 represents an arbitrary group or a group which forms a cyclic structure of B a1 -A a1 -N t1 together with the above-mentioned A a1 .
    The tRNA a1 represents a tRNA covalently linked to O a12 at the 3 'end. )
    Figure JPOXMLDOC01-appb-C000017
    (TRNA P1 represents a tRNA covalently bound to O P1 in the 3 'end.
    P P1 represents the peptidyl group. )

    Figure JPOXMLDOC01-appb-C000018
    (Structural portion of the tRNA P12 -O P12 -HP 12 has the general formula and tRNA P1 in (2-1) represents the same structure. Namely, the oxygen O P12 is bound to 2 'carbon of the 3'-terminal sugar of tRNA P1 The atom, HP12 is a hydrogen atom bonded to OP12 , and tRNA P12 is a portion of tRNA P1 from which OP 12 and HP 12 have been removed.
    The meaning of the symbols in the general formula (2-2) is the same as in the general formula (2-1). )
    Figure JPOXMLDOC01-appb-C000019
    (Structure N t1 (H t1 ) -C t1 (O t1 ) moiety is a reaction center in the reaction transition state structure of the first step of stepwise amidification reaction,
    The distance between N t1 and C t1 is 1.53 Å to 1.77 Å,
    The distance between N t1 and H t1 is 1.10 Å to 1.35 Å.
    The distance between H t1 and O t1 is 1.35 Å to 1.45 Å.
    The meaning of the symbols in the general formula (3-1) is the same as in the general formulas (1) and (2-1). )
    Figure JPOXMLDOC01-appb-C000020
    (H t12 is a hydrogen atom that protonated O t1 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
    The moiety C t1 -O p1 -H t12 -O t1 is the reaction center in the reaction transition state structure of the second step of the stepwise amidification reaction,
    The distance between C t1 and O p1 is 1.45 Å to 1.70 Å.
    Distance of O p1 and H t12 is 1.05Å ~ 1.30Å,
    The distance between H t12 and O t1 is 1.10 Å to 1.40 Å,
    The distance between O t1 and C t1 is 1.22 Å to 1.42 Å.
    The meaning of the symbols in the general formula (3-2) is the same as in the general formulas (1) and (2-1). )
    Figure JPOXMLDOC01-appb-C000021
    (Structure N t1 (H t1 ) -C t1 (O p1 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
    The distance between N t1 and C t1 is 1.40 Å to 1.65 Å,
    The distance between N t1 and H t1 is 1.00 Å to 1.24 Å,
    The distance between C t1 and O p1 is 1.35 Å to 2.40 Å.
    Distance O p1 and H t1 is 1.00Å ~ 1.84Å.
    The meaning of the symbols in the general formula (3-3) is the same as in the general formulas (1) and (2-1). )
    Figure JPOXMLDOC01-appb-C000022
    (Structure N t1 -C t1 -O p1 -H p12 -O p12 -H t1 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
    The distance between N t1 and C t1 is 1.40 Å to 2.10 Å.
    The distance between N t1 and H t1 is 1.00 Å to 1.20 Å,
    The distance between C t1 and O p1 is 1.35 Å to 2.30 Å.
    Distance of O p1 and H p12 is 1.00Å ~ 1.56Å,
    The distance between H p12 and O p12 is 1.00 Å to 1.67 Å,
    The distance between Op 12 and H t1 is 1.20 Å to 1.96 Å.
    The meaning of the symbols in the general formula (3-4) is the same as in the general formulas (1) and (2-2). )
    Figure JPOXMLDOC01-appb-C000023
    (H s12 -O s1 -H s11 is one of the solvent water molecules, and the structure N t1 -C t1 -O p1 -H s11 -O s1 -H p12 -O p12 -H t1 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
    The distance between N t1 and C t1 is 1.40 Å to 1.79 Å.
    The distance between N t1 and H t1 is 1.00 Å to 1.26 Å,
    The distance between C t1 and O p1 is 1.40 Å to 2.21 Å,
    Distance of O p1 and H s12 is 1.13Å ~ 1.43Å,
    The distance between H s12 and O s1 is 1.00 Å to 1.37 Å,
    The distance between O s1 and H p12 is 1.30 Å to 1.69 Å,
    The distance between H p12 and O p12 is 0.98 Å to 1.24 Å,
    The distance between Op 12 and H t1 is 1.17 Å to 1.76 Å.
    The meaning of the symbols in the general formula (3-5) is the same as in the general formulas (1) and (2-2). )
  5. 前記e工程の後に、以下のe´工程を含むことを特徴とする、請求項4に記載の方法。
      (e´工程)
     前記e工程で遷移状態構造であることが確認された構造が、
     その反応中心部を含む環状構造部(一般式(3-4)又は一般式(3-5)で表される構造を組み込む形態にあっては、該一般式のtRNAP12を含む環状構造を含む)以外の部分の結合軸のねじれ角を、立体障害が発生しない範囲内で調整することにより、tRNAa1の3´末端炭素対応原子とtRNAP1の3´末端炭素対応原子が、それぞれ前記三次元構造データにおけるAサイト上のtRNAの末端3´炭素とPサイト上のtRNAの末端3´炭素とのずれが0.3Å以内で前記三次元構造データにフィッティング可能な場合に、
     前記非天然アミノ酸のタンパク質への導入適性がより高いと判断する。
    The method according to claim 4, further comprising the following e ′ step after the e step:
    (E 'process)
    The structure confirmed to be a transition state structure in the step e) is
    The cyclic structure containing the reaction center (in a form incorporating the structure represented by the general formula (3-4) or the general formula (3-5), the cyclic structure containing tRNA P12 of the general formula is included ) By adjusting the twist angle of the bond axis of the other part within the range that steric hindrance does not occur, the three-dimensional carbon corresponding atom of tRNA a1 and the three-terminal carbon corresponding atom of tRNA P1 are respectively three-dimensional In the case where the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 Å in structural data, and fitting to the three-dimensional structural data is possible:
    It is judged that the adaptability of the unnatural amino acid to the protein is higher.
  6. 前記c工程で一般式(3-1)、(3-2)、(3-3)、(3-4)又は(3-5)で表される想定構造を組み込む際に、
     遷移状態最適化構造が得られている類似構造化合物の構造の一部、又は
     請求項1又は2に記載の方法により、前記非天然アミノ酸のタンパク質への導入適性が高いと判断される場合であって、前記b工程で遷移状態構造であることが確認された、前記a工程の結果得られる構造の一部
     を取り込むことを特徴とする、請求項4又は5に記載の方法。
    When incorporating the assumed structure represented by the general formula (3-1), (3-2), (3-3), (3-4) or (3-5) in the step c,
    A part of the structure of a similar structural compound from which a transition state optimization structure is obtained, or a case where it is judged by the method according to claim 1 or 2 that the aptitude for introducing the unnatural amino acid into a protein is high. 6. The method according to claim 4, wherein a part of the structure obtained as a result of the step a), which has been confirmed to be a transition state structure in the step b, is incorporated.
  7. さらに以下のf工程を備えることを特徴とする、請求項4~6の何れか一項に記載の方法。
      (f工程)
     前記d工程の結果得られた構造が、遷移状態構造であることが確認され、かつ、
      前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、リボソーム中の2451A、2452C、2506U及び2585Uにより形成される空間に立体障害無く収まる場合、
      または、前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)以外のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、サーマス・サーモフィルス(Thermus thermophilus)のリボソーム中の2451A、2452C、2506U及び2585Uに対応する塩基により形成される空間に立体障害無く収まる場合、
    に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    The method according to any one of claims 4 to 6, further comprising the following step f.
    (Step f)
    It is confirmed that the structure obtained as a result of the step d is a transition state structure, and
    When the three-dimensional structural data is an X-ray analysis structure of a Thermus thermophilus ribosome, the side chain of the unnatural amino acid is formed by 2451A, 2452C, 2506U and 2585U in the ribosome When it fits in space without steric hindrance,
    Alternatively, when the three-dimensional structural data is an X-ray analysis structure of a ribosome other than Thermus thermophilus, the side chain of the unnatural amino acid is in the ribosome of Thermus thermophilus. In the space formed by the bases corresponding to 2451A, 2452C, 2506U and 2585U of
    And a step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
  8. リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のg及びh工程を備えることを特徴とする方法。
      (g工程)
     一般式(6)で表される任意のアミノ酸のアミノアシルtRNAと、
    一般式(7-1)又は(7-2)で表される前記非天然アミノ酸のアミノ酸残基を構成として有するペプチジルtRNAと、
    のペプチジル基転移反応における想定される反応遷移状態(一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
      (h工程)
     前記g工程の結果得られる構造が遷移状態構造であることが確認できる場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    Figure JPOXMLDOC01-appb-C000024
    (Aa2は前記任意のアミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
     Ba2は任意の基、又は前記Aa2と一体となりBa2-Aa2-Nt2の環状構造を形成する基を表す。
     tRNAa2は、3´末端においてOa22と共有結合したtRNAを表す。)
    Figure JPOXMLDOC01-appb-C000025
    (Aは前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
     Bは任意の基、又は前記Aと一体となりB-A-Nの環状構造を形成する基を表す。
    tRNAP2は、3´末端においてOP2と共有結合したtRNAを表す。
     PP2はペプチジル基を表す。)
    Figure JPOXMLDOC01-appb-C000026
    (tRNAP22-OP22-HP22の構造部分は、一般式(7-1)におけるtRNAP2と同構造を表す。すなわち、OP22はtRNAP2の3´末端糖の2´炭素に結合した酸素原子、HP22はOP22に結合した水素原子、tRNAP22はtRNAP2からOP22とHP22を除いた部分を表す。
    その他一般式(7-2)中の記号の意は一般式(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000027
    (構造Nt2(Ht2)-Ct2(Ot2)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.53Å~1.77Å、
    t2とHt2の距離は1.10Å~1.35Å、
    t2とOt2の距離は1.35Å~1.45Åである。
    その他一般式(8-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000028
    (Ht22は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt2をプロトン化せしめた水素原子である。
    構造Ct2―Op2―Ht22―Ot2部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
    t2とOp2の距離は1.45Å~1.70Å、
    p2とHt22の距離は1.05Å~1.30Å、
    t22とOt2の距離は1.10Å~1.40Å、
    t2とCt2の距離は1.22Å~1.42Åである。
    その他一般式(8-2)中の記号の意は一般式(6)、(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000029
    (構造Nt2(Ht2)-Ct2(Op2)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.40Å~1.65Å、
    t2とHt2の距離は1.00Å~1.24Å、
    t2とOp2の距離は1.35Å~2.40Å、
    p2とHt2の距離は1.00Å~1.84Åである。
    その他一般式(8-3)中の記号の意は一般式(6)、(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000030
    (構造Nt2-Ct2-Op2-Hp22-Op22-Ht2部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.40Å~2.10Å、
    t2とHt2の距離は1.00Å~1.20Å、
    t2と Op2の距離は1.35Å~2.30Å、
    p2とHp22の距離は1.00Å~1.56Å、
    p22とOp22の距離は1.00Å~1.67Å、
    p22とHt2の距離は1.20Å~1.96Åである。
    その他一般式(8-4)中の記号の意は一般式(6)及び(7-2)に同じ。)
    Figure JPOXMLDOC01-appb-C000031
    (Hs21―Os2-Hs22は溶媒水分子の一つであり、構造Nt2-Ct2-Op2-Hs21-Os2-Hp22-Op22-Ht2部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.40Å~1.79Å、
    t2とHt2の距離は1.00Å~1.26Å、
    t2とOp2の距離は1.40Å~2.21Å、
    p2とHs21の距離は1.13Å~1.43Å、
    s21とOs2の距離は1.00Å~1.37Å、
    s2とHp22の距離は1.30Å~1.69Å、
    p22とOp22との距離は0.98Å~1.24Å、
    p22とHt2との距離は1.17Å~1.76Åである。
    その他一般式(8-5)中の記号の意は一般式(6)、(7-2)に同じ。)
    A method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, comprising the following g and h steps.
    (Step g)
    An aminoacyl-tRNA of any amino acid represented by the general formula (6):
    A peptidyl tRNA having as a constituent an amino acid residue of the non-natural amino acid represented by the general formula (7-1) or (7-2);
    Reaction transition state (general formula (8-1), (8-2), (8-3), (8-4) or (8-5)) or reaction of its structure in the peptidyl group transfer reaction of A step of performing transition state structure optimization calculation (TS optimization calculation) by the molecular orbital method with a structure omitted as appropriate in order to reduce calculation load from a part far from the center as an initial structure.
    (Step h)
    A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when it can be confirmed that the structure obtained as a result of the step g is a transition state structure.
    Figure JPOXMLDOC01-appb-C000024
    (A a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any of the amino acids.
    B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
    tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end. )
    Figure JPOXMLDOC01-appb-C000025
    (A P represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
    B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
    tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
    P P2 represents the peptidyl group. )
    Figure JPOXMLDOC01-appb-C000026
    (The structural portion of tRNA P22 -OP 22 -HP 22 has the same structure as tRNA P2 in the general formula (7-1). That is, OP22 is an oxygen bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2 The atom, HP22 is a hydrogen atom bonded to OP22 , and tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
    The meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1). )
    Figure JPOXMLDOC01-appb-C000027
    (Structure N t2 (H t2 ) -C t2 (O t2 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
    The distance between N t2 and C t2 is 1.53 Å to 1.77 Å,
    The distance between N t2 and H t2 is 1.10 Å to 1.35 Å.
    The distance between H t2 and O t2 is 1.35 Å to 1.45 Å.
    The meaning of the symbols in the general formula (8-1) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000028
    (H t22 is a hydrogen atom which protonated O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
    The moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
    The distance between C t2 and O p2 is 1.45 Å to 1.70 Å.
    Distance of O p2 and H t22 is 1.05Å ~ 1.30Å,
    The distance between H t22 and O t2 is 1.10 Å to 1.40 Å,
    The distance between O t2 and C t2 is 1.22 Å to 1.42 Å.
    The meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000029
    (Structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
    The distance between N t2 and C t2 is 1.40 Å to 1.65 Å,
    The distance between N t2 and H t2 is 1.00 Å to 1.24 Å,
    The distance between C t2 and O p2 is 1.35 Å to 2.40 Å,
    Distance O p2 and H t2 is 1.00Å ~ 1.84Å.
    The meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000030
    (Structure N t2 -C t2 -O p2 -H p22 -O p22 -H t2 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
    The distance between N t2 and C t2 is 1.40 Å to 2.10 Å,
    The distance between N t2 and H t2 is 1.00 Å to 1.20 Å,
    The distance between C t2 and O p2 is 1.35 Å to 2.30 Å.
    Distance of O p2 and H p22 is 1.00Å ~ 1.56Å,
    The distance between H p22 and O p22 is 1.00 Å to 1.67 Å,
    The distance between Op 22 and H t2 is 1.20 Å to 1.96 Å.
    The meaning of the symbol in the general formula (8-4) is the same as in the general formulas (6) and (7-2). )
    Figure JPOXMLDOC01-appb-C000031
    (H s21 -O s2 -H s22 is one of the solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
    The distance between N t2 and C t2 is 1.40 Å to 1.79 Å.
    The distance between N t2 and H t2 is 1.00 Å to 1.26 Å,
    The distance between C t2 and O p2 is 1.40 Å to 2.21 Å,
    Distance of O p2 and H s21 is 1.13Å ~ 1.43Å,
    The distance between H s21 and O s2 is 1.00 Å to 1.37 Å,
    The distance between O s2 and H p22 is 1.30 Å to 1.69 Å,
    The distance between H p22 and O p22 is 0.98 Å to 1.24 Å,
    The distance between Op 22 and H t2 is 1.17 Å to 1.76 Å.
    The meaning of the symbol in the general formula (8-5) is the same as in the general formulas (6) and (7-2). )
  9. 前記一般式(8-1)が、下記一般式(8-1-1)であることを特徴とする、請求項8に記載の方法。
    Figure JPOXMLDOC01-appb-C000032
    (一般式(8-1-1)中の記号の意は一般式(8-1)に同じ。)
    The method according to claim 8, wherein the general formula (8-1) is the following general formula (8-1-1).
    Figure JPOXMLDOC01-appb-C000032
    (The meaning of the symbol in the general formula (8-1-1) is the same as in the general formula (8-1).)
  10. 前記一般式(7-1)又は(7-2)で表される構造が下記一般式(9-1)又は(9-2)で表される構造であり、
    前記一般式(8-1)、(8-2)、(8-3)、(8-4)、(8-5)で表される構造がそれぞれ下記一般式(10-1)、(10-2)、(10-3)、(10-4)、(10-5)で表される構造であることを特徴とする、請求項8に記載の方法。
    Figure JPOXMLDOC01-appb-C000033
    (Cα2は前記非天然アミノ酸のα炭素であり、RP1及びRP2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、RP2は水素原子でもよい)。
    その他の記号の意は一般式(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000034
    (tRNAp22、OP22、及びHP22は一般式(7-2)と同じ意。それ以外の記号の意は一般式(9-1)と同じ。)
    Figure JPOXMLDOC01-appb-C000035
    ((構造Nt2(Ht2)-Ct2(Ot2)部分、Nt2とCt2、Nt2とHt2、 Ht2とOt2の距離は一般式(8-1)に同じ。
    その他一般式(10-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000036
    (記号RP1、Cα2及びRP2の意は一般式(9-1)と同じ。その他一般式(10-2)中の記号の意、及び原子間距離は一般式(8-2)と同じ。)
    Figure JPOXMLDOC01-appb-C000037
    (記号RP1、Cα2及びRP2の意は一般式(9-1)と同じ。その他一般式(10-3)中の記号の意、及び原子間距離は一般式(8-3)と同じ。)
    Figure JPOXMLDOC01-appb-C000038
    (記号RP1、Cα2及びRP2の意は一般式(9-2)と同じ。その他一般式(10-4)中の記号の意、及び原子間距離は一般式(8-4)と同じ。)
    Figure JPOXMLDOC01-appb-C000039
    (記号RP1、Cα2及びRP2の意は一般式(9-2)と同じ。その他一般式(10-5)中の記号の意、及び原子間距離は一般式(8-5)と同じ。)
    The structure represented by the general formula (7-1) or (7-2) is a structure represented by the following general formula (9-1) or (9-2),
    The structures represented by the general formulas (8-1), (8-2), (8-3), (8-4), and (8-5) have the following general formulas (10-1) and (10), respectively. The method according to claim 8, characterized in that it has a structure represented by -2), (10-3), (10-4) or (10-5).
    Figure JPOXMLDOC01-appb-C000033
    (C α2 is the α carbon of the non-natural amino acid, and R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 may be a hydrogen atom).
    The meaning of the other symbols is the same as in the general formula (7-1). )
    Figure JPOXMLDOC01-appb-C000034
    (TRNA p22 , OP 22 , and HP 22 have the same meaning as in general formula (7-2). The meanings of other symbols are the same as in general formula (9-1).)
    Figure JPOXMLDOC01-appb-C000035
    ((Structure N t2 (H t2 ) -C t2 (O t2 ) part, the distances between N t2 and C t2 , N t2 and H t2 , and H t2 and O t2 are the same as in the general formula (8-1).
    The meaning of the symbols in the general formula (10-1) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000036
    (The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-1). The meaning of the symbols in the general formula (10-2) and the interatomic distance are the same as in the general formula (8-2) the same.)
    Figure JPOXMLDOC01-appb-C000037
    (The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-1). The meaning of the symbols in the general formula (10-3) and the interatomic distance are the same as in the general formula (8-3) the same.)
    Figure JPOXMLDOC01-appb-C000038
    (The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-2). The meaning of the symbols in the general formula (10-4) and the interatomic distance are the same as in the general formula (8-4) the same.)
    Figure JPOXMLDOC01-appb-C000039
    (The meanings of the symbols R P1 , C α2 and R P2 are the same as in the general formula (9-2). The meanings of the symbols in the general formula (10-5) and the interatomic distance are the same as in the general formula (8-5) the same.)
  11. リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する方法であって、以下のi~k工程を備えることを特徴とする方法。
      (i工程)
     A及びPサイトにtRNA又はその誘導体が結合したリボソームのX線構造解析により得られる三次元構造データを用意し、
    該三次元構造データに、以下の条件のとおり、
     一般式(6)で表される任意のアミノ酸のアミノアシルtRNAと、
    一般式(7-1)又は(7-2)で表される前記非天然アミノ酸のアミノ酸残基を構成として有するペプチジルtRNAと、
    のペプチジル基転移反応における想定される反応遷移状態(一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))を組み込む工程。
       (条件3)前記三次元構造データにおけるAサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAa2の3´末端炭素の原子座標が位置するように、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))で表される想定構造を組み込む。
       (条件4)前記三次元構造データにおけるPサイト上のtRNAの位置に、少なくとも該tRNAの3´末端炭素の近傍にtRNAP2の3´末端炭素の原子座標が位置するように、一般式(8-1)、(8-2)、(8-3)、(8-4)又は(8-5))で表される想定構造を組み込む。
      (j工程)
     前記i工程により得られた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として、分子軌道法による遷移状態構造最適化計算(TS最適化計算)を行う工程。
      (k工程)
     前記j工程の結果得られた構造が遷移状態構造であることが確認される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    Figure JPOXMLDOC01-appb-C000040
    (Aa2は前記任意のアミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
     Ba2は任意の基、又は前記Aa2と一体となりBa2-Aa2-Nt2の環状構造を形成する基を表す。
     tRNAa2は、3´末端においてOa22と共有結合したtRNAを表す。)
    Figure JPOXMLDOC01-appb-C000041
    (Aは前記非天然アミノ酸における、ペプチド結合に関与するアミノ基及びカルボキシル基以外の構造部分を表す。
     Bは任意の基、又は前記Aと一体となりB-A-Nの環状構造を形成する基を表す。
    tRNAP2は、3´末端においてOP2と共有結合したtRNAを表す。
     PP2はペプチジル基を表す。)
    Figure JPOXMLDOC01-appb-C000042
    (tRNAP22-OP22-HP22の構造部分は、一般式(7-1)におけるtRNAP2と同構造を表す。すなわち、OP22はtRNAP2の3´末端糖の2´炭素に結合した酸素原子、HP22はOP22に結合した水素原子、tRNAP22はtRNAP2からOP22とHP22を除いた部分を表す。
    その他一般式(7-2)中の記号の意は一般式(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000043
    (構造Nt2(Ht2)-Ct2(Ot2)部分は、段階的アミド化反応の第一段階の反応遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.53Å~1.77Å、
    t2とHt2の距離は1.10Å~1.35Å、
    t2とOt2の距離は1.35Å~1.45Åである。
    その他一般式(8-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000044
    (Ht22は、段階的アミド化反応の第二段階において、カルボニル酸素であったOt2をプロトン化せしめた水素原子である。
    構造Ct2―Op2―Ht22―Ot2部分は、段階的アミド化反応の第二段階の反応遷移状態構造における反応中心部であり、
    t2とOp2の距離は1.45Å~1.70Å、
    p2とHt22の距離は1.05Å~1.30Å、
    t22とOt2の距離は1.10Å~1.40Å、
    t2とCt2の距離は1.22Å~1.42Åである。
    その他一般式(8-2)中の記号の意は一般式(6)、(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000045
    (構造Nt2(Ht2)-Ct2(Op2)部分は4員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.40Å~1.65Å、
    t2とHt2の距離は1.00Å~1.24Å、
    t2とOp2の距離は1.35Å~2.40Å、
    p2とHt2の距離は1.00Å~1.84Åである。
    その他一般式(8-3)中の記号の意は一般式(6)、(7-1)に同じ。)
    Figure JPOXMLDOC01-appb-C000046
    (構造Nt2-Ct2-Op2-Hp22-Op22-Ht2部分は6員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.40Å~2.10Å、
    t2とHt2の距離は1.00Å~1.20Å、
    t2と Op2の距離は1.35Å~2.30Å、
    p2とHp22の距離は1.00Å~1.56Å、
    p22とOp22の距離は1.00Å~1.67Å、
    p22とHt2の距離は1.20Å~1.96Åである。
    その他一般式(8-4)中の記号の意は一般式(6)及び(7-2)に同じ。)
    Figure JPOXMLDOC01-appb-C000047
    (Hs21―Os2-Hs22は溶媒水分子の一つであり、構造Nt2-Ct2-Op2-Hs21-Os2-Hp22-Op22-Ht2部分は8員環構造を有する協奏的アミド化反応の遷移状態構造における反応中心部であり、
    t2とCt2の距離は1.40Å~1.79Å、
    t2とHt2の距離は1.00Å~1.26Å、
    t2とOp2の距離は1.40Å~2.21Å、
    p2とHs21の距離は1.13Å~1.43Å、
    s21とOs2の距離は1.00Å~1.37Å、
    s2とHp22の距離は1.30Å~1.69Å、
    p22とOp22との距離は0.98Å~1.24Å、
    p22とHt2との距離は1.17Å~1.76Åである。
    その他一般式(8-5)中の記号の意は一般式(6)、(7-2)に同じ。)
    A method for estimating the adaptability of an unnatural amino acid to a protein in a ribosomal protein synthesis system, comprising the following ik steps:
    (Step i)
    Prepare three-dimensional structural data obtained by X-ray structural analysis of ribosome in which tRNA or its derivative is bound to A and P sites,
    In the three-dimensional structure data, according to the following conditions:
    An aminoacyl-tRNA of any amino acid represented by the general formula (6):
    A peptidyl tRNA having as a constituent an amino acid residue of the non-natural amino acid represented by the general formula (7-1) or (7-2);
    A step of incorporating an assumed reaction transition state (general formula (8-1), (8-2), (8-3), (8-4) or (8-5)) in the peptidyl group transfer reaction of
    (Condition 3) The general formula (8) is such that the atomic coordinates of the 3 'terminal carbon of tRNA a2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the A site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
    (Condition 4) The general formula (8) is such that atomic coordinates of the 3 'terminal carbon of tRNA P2 are located at least near the 3' terminal carbon of the tRNA at the position of the tRNA on the P site in the three-dimensional structure data. Incorporate the assumed structure represented by -1), (8-2), (8-3), (8-4) or (8-5)).
    (Step j)
    Transition state structure optimization calculation (TS optimization calculation) by molecular orbital method with the structure obtained by appropriately removing the structure far from the reaction center of the structure obtained by the step i or the structure omitted to reduce the calculation load as an initial structure Process of
    (Step k)
    A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high when the structure obtained as a result of the step j is confirmed to be a transition state structure.
    Figure JPOXMLDOC01-appb-C000040
    (A a2 represents a structural moiety other than an amino group and a carboxyl group involved in peptide bond in any of the amino acids.
    B a2 represents an arbitrary group or a group which forms a cyclic structure of B a2 -A a2 -N t2 together with the above-mentioned A a2 .
    tRNA a2 represents a tRNA covalently linked to O a22 at the 3 'end. )
    Figure JPOXMLDOC01-appb-C000041
    (A P represents a structural moiety other than an amino group and a carboxyl group involved in a peptide bond in the non-natural amino acid.
    B P represents any group, or the A P and integral with it B P -A P -N group to form a cyclic structure of P.
    tRNA P2 represents a tRNA covalently bound to O P2 in the 3 'end.
    P P2 represents the peptidyl group. )
    Figure JPOXMLDOC01-appb-C000042
    (The structural portion of tRNA P22 -OP 22 -HP 22 has the same structure as tRNA P2 in the general formula (7-1). That is, OP22 is an oxygen bonded to the 2 'carbon of the 3' terminal sugar of tRNA P2 The atom, HP22 is a hydrogen atom bonded to OP22 , and tRNA P22 is a portion of tRNA P2 excluding OP 22 and HP 22 .
    The meaning of the symbols in the other general formula (7-2) is the same as in the general formula (7-1). )
    Figure JPOXMLDOC01-appb-C000043
    (Structure N t2 (H t2 ) -C t2 (O t2 ) moiety is a reaction center in the reaction transition state structure of the first step of the stepwise amidation reaction,
    The distance between N t2 and C t2 is 1.53 Å to 1.77 Å,
    The distance between N t2 and H t2 is 1.10 Å to 1.35 Å.
    The distance between H t2 and O t2 is 1.35 Å to 1.45 Å.
    The meaning of the symbols in the general formula (8-1) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000044
    (H t22 is a hydrogen atom which protonated O t2 , which was carbonyl oxygen in the second step of the stepwise amidation reaction.
    The moiety C t2 -O p2 -H t22 -O t2 moiety is the reaction center in the reaction transition state structure of the second stage of the stepwise amidation reaction,
    The distance between C t2 and O p2 is 1.45 Å to 1.70 Å.
    Distance of O p2 and H t22 is 1.05Å ~ 1.30Å,
    The distance between H t22 and O t2 is 1.10 Å to 1.40 Å,
    The distance between O t2 and C t2 is 1.22 Å to 1.42 Å.
    The meaning of the symbols in the general formula (8-2) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000045
    (Structure N t2 (H t2 ) -C t2 (O p2 ) moiety is a reaction center in the transition state structure of a concerted amidation reaction having a four-membered ring structure,
    The distance between N t2 and C t2 is 1.40 Å to 1.65 Å,
    The distance between N t2 and H t2 is 1.00 Å to 1.24 Å,
    The distance between C t2 and O p2 is 1.35 Å to 2.40 Å,
    Distance O p2 and H t2 is 1.00Å ~ 1.84Å.
    The meaning of the symbols in the general formula (8-3) is the same as in the general formulas (6) and (7-1). )
    Figure JPOXMLDOC01-appb-C000046
    (Structure N t2 -C t2 -O p2 -H p22 -O p22 -H t2 moiety is the reaction center in the transition state structure of the concerted amidation reaction having a six-membered ring structure,
    The distance between N t2 and C t2 is 1.40 Å to 2.10 Å,
    The distance between N t2 and H t2 is 1.00 Å to 1.20 Å,
    The distance between C t2 and O p2 is 1.35 Å to 2.30 Å.
    Distance of O p2 and H p22 is 1.00Å ~ 1.56Å,
    The distance between H p22 and O p22 is 1.00 Å to 1.67 Å,
    The distance between Op 22 and H t2 is 1.20 Å to 1.96 Å.
    The meaning of the symbol in the general formula (8-4) is the same as in the general formulas (6) and (7-2). )
    Figure JPOXMLDOC01-appb-C000047
    (H s21 -O s2 -H s22 is one of the solvent water molecules, and the structure N t2 -C t2 -O p2 -H s21 -O s2 -H p22 -O p22 -H t2 moiety has an eight-membered ring structure A reaction center in the transition state structure of the concerted amidification reaction,
    The distance between N t2 and C t2 is 1.40 Å to 1.79 Å.
    The distance between N t2 and H t2 is 1.00 Å to 1.26 Å,
    The distance between C t2 and O p2 is 1.40 Å to 2.21 Å,
    Distance of O p2 and H s21 is 1.13Å ~ 1.43Å,
    The distance between H s21 and O s2 is 1.00 Å to 1.37 Å,
    The distance between O s2 and H p22 is 1.30 Å to 1.69 Å,
    The distance between H p22 and O p22 is 0.98 Å to 1.24 Å,
    The distance between Op 22 and H t2 is 1.17 Å to 1.76 Å.
    The meaning of the symbol in the general formula (8-5) is the same as in the general formulas (6) and (7-2). )
  12. 前記k工程の後に、以下のk´工程を含むことを特徴とする、請求項11に記載の方法。
      (k´工程)
     前記k工程で遷移状態構造であることが確認された構造が、
     その反応中心部を含む環状構造部(一般式(8-4)又は一般式(8-5)で表される構造を組み込む形態にあっては、該一般式のtRNAP22を含む環状構造を含む)以外の部分の結合軸のねじれ角を、立体障害が発生しない範囲内で調整することにより、tRNAa2の3´末端炭素対応原子とtRNAP2の3´末端炭素対応原子が、それぞれ前記三次元構造データにおけるAサイト上のtRNAの末端3´炭素とPサイト上のtRNAの末端3´炭素とのずれが0.3Å以内で前記三次元構造データにフィッティング可能な場合に、
     前記非天然アミノ酸のタンパク質への導入適性がより高いと判断する。
    The method according to claim 11, wherein after the k step, the following k 'step is included.
    (K 'process)
    The structure confirmed to be a transition state structure in the k step is
    The cyclic structure including the reaction center (in a form incorporating the structure represented by the general formula (8-4) or the general formula (8-5), includes a cyclic structure containing the tRNA P22 of the general formula ) By adjusting the twist angle of the bond axis of the other part within the range where steric hindrance does not occur, the three-dimensional carbon corresponding atom of tRNA a2 and the three-terminal carbon corresponding atom of tRNA P2 are respectively three-dimensional In the case where the displacement between the terminal 3 'carbon of tRNA on the A site and the terminal 3' carbon of tRNA on the P site is within 0.3 Å in structural data, and fitting to the three-dimensional structural data is possible:
    It is judged that the adaptability of the unnatural amino acid to the protein is higher.
  13. 前記i工程で一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される想定構造を組み込む際に、
     遷移状態最適化構造が得られている類似構造化合物の構造の一部、又は
     請求項8又は9に記載の方法により、前記非天然アミノ酸のタンパク質への導入適性が高いと判断される場合であって、前記h工程で遷移状態構造であることが確認された、前記g工程の結果得られる構造の一部
     を取り込むことを特徴とする、請求項11又は12に記載の方法。
    When incorporating the assumed structure represented by the general formula (8-1), (8-2), (8-3), (8-4), or (8-5) in the step i,
    A part of the structure of a similar structural compound for which a transition state optimization structure is obtained, or a case where it is judged by the method according to claim 8 or 9 that the aptitude for introducing the unnatural amino acid into a protein is high. The method according to claim 11 or 12, characterized in that a part of the structure obtained as a result of the g step is incorporated, which has been confirmed to be a transition state structure in the h step.
  14. さらに以下のl工程を備えることを特徴とする、請求項11~13の何れか一項に記載の方法。
      (l工程)
     前記j工程の結果得られた構造が、遷移状態構造であることが想定され、かつ、
      前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、リボソーム中の2451A、2452C、2506U及び2585Uにより形成される空間に立体障害無く収まる場合、
      または、前記三次元構造データが、サーマス・サーモフィルス(Thermus thermophilus)以外のリボソームのX線解析構造である場合に、前記非天然アミノ酸の側鎖が、サーマス・サーモフィルス(Thermus thermophilus)のリボソーム中の2451A、2452C、2506U及び2585Uに対応する塩基により形成される空間に立体障害無く収まる場合、
    に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    The method according to any one of claims 11 to 13, further comprising the following 1 step:
    (L process)
    It is assumed that the structure obtained as a result of the j step is a transition state structure, and
    When the three-dimensional structural data is an X-ray analysis structure of a Thermus thermophilus ribosome, the side chain of the unnatural amino acid is formed by 2451A, 2452C, 2506U and 2585U in the ribosome When it fits in space without steric hindrance,
    Alternatively, when the three-dimensional structural data is an X-ray analysis structure of a ribosome other than Thermus thermophilus, the side chain of the unnatural amino acid is in the ribosome of Thermus thermophilus. In the space formed by the bases corresponding to 2451A, 2452C, 2506U and 2585U of
    And a step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
  15. 前記一般式(7-1)で表される構造が、以下の一般式(9-1)で表される構造であり、
    前記一般式(8-1)で表される構造が、以下の一般式(10-1)で表される構造であり、
    以下のm工程を備えることを特徴とする、請求項11~14の何れか一項に記載の方法。
      (m工程)
     前記i工程において一般式(10-1)で表される構造を組み込み、前記j工程の結果得られた構造におけるねじれ角∠Nt2-Ct2-Cα2-RP1が、0°~108°である場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    Figure JPOXMLDOC01-appb-C000048
    (Cα2は前記非天然アミノ酸のα炭素であり、RP1及びRP2はそれぞれ独立して非天然アミノ酸の側鎖構造を表す(但し、RP2は水素原子でもよい)。)
    Figure JPOXMLDOC01-appb-C000049
    (構造Nt2(Ht2)-Ct2(Ot2)部分、Nt2とCt2、Nt2とHt2、 Ht2とOt2の距離は一般式(8-1)に同じ。
    その他一般式(10-1)中の記号の意は一般式(6)及び(7-1)に同じ。)
    The structure represented by the general formula (7-1) is a structure represented by the following general formula (9-1),
    The structure represented by the general formula (8-1) is a structure represented by the following general formula (10-1),
    The method according to any one of claims 11 to 14, characterized in that it comprises the following m steps:
    (M process)
    In the i step, the structure represented by the general formula (10-1) is incorporated, and in the structure obtained as a result of the j step, the twist angle ∠N t2 -C t2 -C α2 -R P1 is 0 ° to 108 ° Determining that the adaptability of the unnatural amino acid to the protein in the protein synthesis system by ribosome is high.
    Figure JPOXMLDOC01-appb-C000048
    (C α2 is the α carbon of the non-natural amino acid, and R P1 and R P2 each independently represent the side chain structure of the non-natural amino acid (however, R P2 may be a hydrogen atom)).
    Figure JPOXMLDOC01-appb-C000049
    (Structure N t2 (H t2 ) -C t2 (O t2 ) portion, the distances of N t2 and C t2 , N t2 and H t2 , and H t2 and O t2 are the same as in the general formula (8-1).
    The meaning of the symbols in the general formula (10-1) is the same as in the general formulas (6) and (7-1). )
  16. 一般式(7-1)又は(7-2)中のAに親水性原子が存在する場合に、以下のn工程を備えることを特徴とする、請求項11~13の何れか一項に記載の方法。
      (n工程)
     前記j工程の結果得られた構造において、前記親水性原子が一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)中のHt2及び/又はOt2と水素結合を形成可能であると推定される場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    When the A P of the general formula (7-1) or (7-2) in the presence hydrophilic atoms, characterized in that it comprises the following n steps, to any one of claims 11 to 13 Method described.
    (N steps)
    In the structure obtained as a result of the j step, the hydrophilic atom is a group represented by the general formula (8-1), (8-2), (8-3), (8-4) or (8-5). A step of judging that the adaptability of the unnatural amino acid to a protein is high in a ribosomal protein synthesis system, when it is presumed that a hydrogen bond can be formed with Ht2 and / or Ot2 .
  17. 以下のo~q工程を備えることを特徴とする、請求項11~16の何れか一項に記載の方法。
      (o工程)
     前記i工程により得られた構造に、
     さらに、リボソームによる生物学的合成方法の反応系に存在する、リボソームによるペプチジル基転移反応を促進する又は同反応を阻害しないことが確認又は予測される物質を、リボソーム内のペプチジル基転移反応の反応中心若しくはその周辺に配置してこれを加えた構造又はその構造の反応中心から遠い部分を計算負荷を軽減させるために適宜省略した構造を初期構造として設定する工程
      (p工程)
     前記o工程により得られた初期構造について分子軌道法によるTS最適化計算を行う工程。
      (q工程)
     前記p工程の結果得られた構造が遷移状態構造であることが確認され、かつ、前記遷移状態構造をとることにより進行するペプチジル基転移反応が前記物質による立体障害で阻害されない場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    The method according to any one of claims 11 to 16, comprising the following steps o to q:
    (Step o)
    In the structure obtained by the i step,
    Furthermore, the reaction of the peptidyl group transfer reaction in the ribosome is a substance which is present in the reaction system of the biological synthesis method by the ribosome and which is confirmed or predicted to promote or not inhibit the peptidyl group transfer reaction by the ribosome A process of setting as a initial structure a structure disposed at the center or its periphery and having a structure to which this is added or a portion far from the reaction center of the structure is omitted in order to reduce the calculation load
    A step of performing TS optimization calculation by a molecular orbital method on the initial structure obtained by the step o.
    (Step q)
    It is confirmed that the structure obtained as a result of the p step is a transition state structure, and ribosomal transfer reaction which proceeds by taking the transition state structure is not inhibited by the steric hindrance by the substance, the ribosome by the ribosome A step of judging that the adaptability of the unnatural amino acid to the protein in the protein synthesis system is high.
  18. さらに以下のr工程を備えることを特徴とする、請求項17記載の方法。
      (r工程)
     前記p工程の結果得られた構造が遷移状態構造であることが確認され、かつ、一般式(8-1)、(8-2)、(8-3)、(8-4)、又は(8-5)で表される遷移状態最適化構造の分子と、前記物質との間で水素結合を形成可能な場合に、リボソームによるタンパク質合成系における、前記非天然アミノ酸のタンパク質への導入適性が高いと判断する工程。
    The method according to claim 17, further comprising the following r step.
    (R process)
    It is confirmed that the structure obtained as a result of the p step is a transition state structure, and the general formula (8-1), (8-2), (8-3), (8-4), or 8-4), when it is possible to form a hydrogen bond between the molecule of the transition state optimization structure and the substance, the ribosome synthesis system of ribosomes has the adaptability to introduce the unnatural amino acid into a protein A step of determining high.
  19. 前記三次元構造データが、Protein Data Bank(PDB)に、Accession number 4V5C又は4V5Dとして登録されている原子座標であることを特徴とする、請求項4~6及び11~17の何れか一項に記載の方法。 The atomic coordinates registered in the Protein Data Bank (PDB) as Accession number 4V5C or 4V5D, the three-dimensional structure data is characterized in that any one of claims 4 to 6 and 11 to 17 Method described.
  20. 前記分子軌道法が、半経験的分子軌道法であることを特徴とする、請求項1~17の何れか一項に記載の方法。 A method according to any one of the preceding claims, characterized in that the molecular orbital method is a semi-empirical molecular orbital method.
  21. 請求項1~20の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する推測工程と、
    推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質を製造する工程とを有する、人工タンパク質の製造方法。
    21. An estimation step of estimating adaptability of a non-natural amino acid to a protein in a ribosomal protein synthesis system by the method according to any one of claims 1 to 20;
    A process for producing an artificial protein, comprising the step of producing a protein by a ribosomal protein synthesis system using as a raw material a non-natural amino acid determined to have high introduction suitability in the estimation step.
  22. タンパク質又はペプチドの性能の改良方法であって、
    請求項1~20の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する推測工程と、
    推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質又はペプチドを製造する製造工程と、
    前記製造工程で製造されたタンパク質又はペプチドの性能を評価する評価工程と、を有することを特徴とする方法。
    A method of improving the performance of a protein or peptide, comprising
    21. An estimation step of estimating adaptability of a non-natural amino acid to a protein in a ribosomal protein synthesis system by the method according to any one of claims 1 to 20;
    A production process for producing a protein or a peptide by a protein synthesis system by ribosome using as a raw material a non-natural amino acid determined to have high introduction suitability in the estimation step;
    Assessing the performance of the protein or peptide produced in the production step.
  23. リボソームによるタンパク質合成系によるタンパク質又はペプチドの生産性又は製造効率の向上方法であって、
    請求項1~20の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、非天然アミノ酸のタンパク質への導入適性を推測する推測工程と、
    推測工程において前記導入適性が高いと判断された非天然アミノ酸を原料として、リボソームによるタンパク質合成系によりタンパク質又はペプチドを製造する製造工程と、
    前記製造工程におけるタンパク質又はペプチドの生産性又は製造効率を評価する評価工程と、を有することを特徴とする方法。
    A method of improving the productivity or production efficiency of a protein or peptide by a ribosomal protein synthesis system, comprising:
    21. An estimation step of estimating adaptability of a non-natural amino acid to a protein in a ribosomal protein synthesis system by the method according to any one of claims 1 to 20;
    A production process for producing a protein or a peptide by a protein synthesis system by ribosome using as a raw material a non-natural amino acid determined to have high introduction suitability in the estimation step;
    And e) evaluating the productivity or production efficiency of the protein or peptide in the production step.
  24. 非天然アミノ酸が導入された人工タンパク質又は人工ペプチドからなる薬剤のドラッグデザイン方法であって、
    Ligand Based Drug Design(LBDD)及び/又はStructure-Base Drug Design(SBDD)によって、リード化合物であるタンパク質又はペプチドに導入することにより、薬効を向上又は副作用を低減せしめる非天然アミノ酸を選択する工程と、
    請求項1~18の何れか一項に記載の方法により、リボソームによるタンパク質合成系における、該非天然アミノ酸の前記タンパク質又はペプチドへの導入適性を推測する推測工程と、
    を含むことを特徴とする、ドラッグデザイン方法。

     
    A drug design method for a drug comprising an artificial protein or artificial peptide into which a non-natural amino acid is introduced,
    Selecting a non-naturally occurring amino acid that improves efficacy or reduces side effects by introducing it into a lead compound protein or peptide according to Ligand Based Drug Design (LBDD) and / or Structure-Base Drug Design (SBDD);
    An estimation step of estimating adaptability of the unnatural amino acid to the protein or peptide in a ribosomal protein synthesis system by the method according to any one of claims 1 to 18;
    A drug design method characterized in that

PCT/JP2018/030934 2017-09-08 2018-08-22 Method for assessing suitability of artificial protein including amino acid residue derived from non-naturally-occurring amino acid, for synthesis by ribosomes WO2019049663A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-173353 2017-09-08
JP2017173353 2017-09-08
JP2018101458A JP2019048797A (en) 2017-09-08 2018-05-28 Method for estimating suitability for synthesis by ribosome of artificial protein containing amino acid residue derived from unnatural amino acid
JP2018-101458 2018-05-28

Publications (1)

Publication Number Publication Date
WO2019049663A1 true WO2019049663A1 (en) 2019-03-14

Family

ID=65633960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030934 WO2019049663A1 (en) 2017-09-08 2018-08-22 Method for assessing suitability of artificial protein including amino acid residue derived from non-naturally-occurring amino acid, for synthesis by ribosomes

Country Status (1)

Country Link
WO (1) WO2019049663A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600076A (en) * 2019-08-14 2019-12-20 浙江工业大学 Protein ATP docking method based on distance and angle information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078289A (en) * 1993-06-29 1995-01-13 Osaka Gas Co Ltd Method for synthesizing peptide and protein using ribosome
JP2004261160A (en) * 2003-03-04 2004-09-24 Gifu Univ Non-natural protein, method for producing the same, method for immobilizing the same and kit of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078289A (en) * 1993-06-29 1995-01-13 Osaka Gas Co Ltd Method for synthesizing peptide and protein using ribosome
JP2004261160A (en) * 2003-03-04 2004-09-24 Gifu Univ Non-natural protein, method for producing the same, method for immobilizing the same and kit of the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ACOSTA-SILVA C. ET AL.: "Quantum-mechanical study on the mechanism of peptide bond formation in the ribosome", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 13, 4 April 2012 (2012-04-04), pages 5817 - 5831, XP055581341, ISSN: 0002-7863, DOI: 10.1021/ja209558d *
OIE T. ET AL.: "Quantum chemical studies of a model for peptide bond formation: formation of formamide and water from ammonia and formic acid", J. AM. CHEM. SOC., vol. 104, no. 23, 1982, pages 6169 - 6174, ISSN: 0002-7863 *
SELMER M. ET AL.: "Structure of the 70S ribosome complexed with mRNA and tRNA", SCIENCE, vol. 313, no. 5795, 2006, pages 1935 - 1942, XP055131420, ISSN: 0036-8075, DOI: doi:10.1126/science.1131127 *
SWIDEREK K. ET AL.: "Peptide bond formation mechanism catalyzed by ribosome", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 137, no. 37, 10 September 2015 (2015-09-10), pages 12024 - 12034, XP055581343, ISSN: 0002-7863 *
VOORHEES R.M. ET AL.: "Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome", NAT. STRUCT. MOL. BIOL., vol. 16, no. 5, 12 April 2009 (2009-04-12), pages 528 - 533, XP055581337, DOI: 10.1038/nsmb.1577 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600076A (en) * 2019-08-14 2019-12-20 浙江工业大学 Protein ATP docking method based on distance and angle information
CN110600076B (en) * 2019-08-14 2021-11-23 浙江工业大学 Protein ATP docking method based on distance and angle information

Similar Documents

Publication Publication Date Title
Satz et al. DNA-encoded chemical libraries
Douangamath et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease
Wang et al. Rational design of peptide-based inhibitors disrupting protein-protein interactions
Keranen et al. Acylguanidine beta secretase 1 inhibitors: A combined experimental and free energy perturbation study
Joseph-McCarthy Computational approaches to structure-based ligand design
Kitchen et al. Docking and scoring in virtual screening for drug discovery: methods and applications
Carlson Protein flexibility and drug design: how to hit a moving target
Ahmed et al. A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins
WO2010115141A2 (en) System and uses for generating databases of protein secondary structures involved in inter-chain protein interactions
Sauter et al. The free yeast aspartyl-tRNA synthetase differs from the tRNAAsp-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain
JP2002538517A (en) Methods for identifying putative peptides
Wolff et al. Structure-based design of short peptide ligands binding onto the E. coli processivity ring
Oppewal et al. A strategy to select macrocyclic peptides featuring asymmetric molecular scaffolds as cyclization units by phage display
Zhao et al. Evaluations of the absolute and relative free energies for antidepressant binding to the amino acid membrane transporter LeuT with free energy simulations
Ward et al. Defects in the assembly of ribosomes selected for β-amino acid incorporation
Immekus et al. Launching spiking ligands into a protein–protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme
Habeshian et al. Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale
Floris et al. Mimicking peptides… in silico
Elhabashy et al. Exploring protein-protein interactions at the proteome level
Sperti et al. Biomimetic, smart, and multivalent ligands for G-quadruplex isolation and bioorthogonal imaging
Barreca et al. Accounting for target flexibility and water molecules by docking to ensembles of target structures: the HCV NS5B palm site I inhibitors case study
Paulsen et al. Evaluation of free energy calculations for the prioritization of macrocycle synthesis
Ahmed et al. Protein flexibility and mobility in structure-based drug design
Rhys et al. How coiled-coil assemblies accommodate multiple aromatic residues
Spiga et al. New strategies for integrative dynamic modeling of macromolecular assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852879

Country of ref document: EP

Kind code of ref document: A1