WO2019049655A1 - Autonomous travel-type cleaner and method for updating cumulative floor area probability - Google Patents

Autonomous travel-type cleaner and method for updating cumulative floor area probability Download PDF

Info

Publication number
WO2019049655A1
WO2019049655A1 PCT/JP2018/030883 JP2018030883W WO2019049655A1 WO 2019049655 A1 WO2019049655 A1 WO 2019049655A1 JP 2018030883 W JP2018030883 W JP 2018030883W WO 2019049655 A1 WO2019049655 A1 WO 2019049655A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
cumulative
probability
floor
area
Prior art date
Application number
PCT/JP2018/030883
Other languages
French (fr)
Japanese (ja)
Inventor
浅井 幸治
前田 茂則
智典 中村
克重 天野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880052600.9A priority Critical patent/CN111031878B/en
Publication of WO2019049655A1 publication Critical patent/WO2019049655A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an autonomously traveling vacuum cleaner that generates a map, which allows the user to indicate an area cleaned autonomously and cleaned, or allows the user to specify an area to be cleaned, and an accumulated floor probability updating method.
  • the autonomous traveling vacuum cleaner disclosed in Patent Document 1 obtains information from various sensors provided in the vacuum cleaner, such as odometry information, a camera, and a distance measurement sensor. Next, the autonomous vacuum cleaner estimates its own relative position based on its own movement and its positional relationship with the surroundings, using the obtained information. In this way, the autonomous traveling vacuum cleaner is configured to grasp at which position in the room it is and to create a map for freely selecting the cleaning area to be cleaned next based on the information.
  • the autonomous traveling cleaner disclosed in Patent Document 2 records the cleaning history of the autonomous traveling cleaner, with the position of the charging stand as a starting point. Then, based on the recorded information, a map is generated to determine the position of the autonomous traveling cleaner.
  • the information from various sensors includes not a little measurement error. Therefore, when an error of a predetermined level or more occurs, it is conceivable that the autonomous traveling cleaner returns to the starting point, reconfirms the position, and corrects the measurement error. In this case, the time to return to the starting point is added to the cleaning time. Furthermore, the error can not be corrected unless the same place is reciprocated many times. In addition, even if the space between the starting point of the charging stand and the like is reciprocated and cleaned many times, it is not possible to cope with environmental changes in the cleaning area such as opening and closing of the door, the presence or absence of obstacles, and differences in floor materials.
  • the present invention provides an autonomously traveling vacuum cleaner and a cumulative floor surface probability updating method for updating the map corresponding to the environmental change of the cleaning area based on the travel area map generated each time.
  • the autonomous traveling vacuum cleaner which is an example of the present invention is provided with the map generation part which generates the new map which made the standard position the position of the standard member installed in the cleaning area as a standard position. Furthermore, in the autonomous traveling vacuum cleaner, when one element obtained by dividing the new map and the accumulated map in which the already created map is accumulated into a plurality of parts at the same position is taken as an element area, The cumulative floor probability which is information indicating whether or not the floor surface is included in the cumulative map using the floor probability which is information indicating whether or not the floor surface is included in the new map.
  • the floor probability updating unit updates the Then, the floor probability update unit adds 1 to the cumulative number indicating the number of maps used for updating so far in each element area, subtracts the cumulative floor probability from the floor probability, and adds the difference. The sum of the quotient divided by the cumulative number of sheets and the cumulative floor probability added to the quotient is updated as a new cumulative floor probability.
  • the map generation unit generates a new map based on the traveling results with the position of the reference member installed in the cleaning area as the reference position.
  • the floor surface probability updating unit divides an element area into one element obtained by dividing the new map and the accumulated map in which the previously created map is accumulated into a plurality at the same position, the element area has a new position.
  • a floor probability which is information indicating whether it is a floor included in the map or a cumulative floor probability which is information indicating whether it is a floor included in the cumulative map is used.
  • the floor probability update unit adds 1 to the cumulative number indicating the number of maps used for updating so far, subtracts the cumulative floor probability from the floor probability, and divides the difference by the cumulative number after addition. The sum of the quotient plus the cumulative floor probability is updated as a new cumulative floor probability.
  • FIG. 1 is a plan view showing the appearance of the autonomous traveling vacuum cleaner according to the first embodiment.
  • FIG. 2 is a bottom view showing the appearance of the autonomous traveling cleaner.
  • FIG. 3 is a perspective view showing the appearance of the autonomous traveling cleaner.
  • FIG. 4 is a block diagram showing functional units related to map creation of the control unit in the first embodiment.
  • FIG. 5 is a diagram showing an example of a newly generated new map in the first embodiment.
  • FIG. 6 is a diagram showing an example of the old map held in the first embodiment.
  • FIG. 7 is a diagram showing a state in which the newly generated new map and the held old map are superimposed in the first embodiment.
  • FIG. 8 is a diagram showing an example of a newly updated and held map in the first embodiment.
  • FIG. 9 is a block diagram showing functional units related to map creation of a control unit in the second embodiment.
  • FIG. 10 is a plan view showing the cleaning area in the second embodiment.
  • FIG. 11 is a diagram showing a cumulative map in the second embodiment.
  • FIG. 12 is a diagram showing a new map in the second embodiment.
  • FIG. 13 is a diagram showing a state in which the reference position in Embodiment 2 is matched, and the posture of the new map is aligned on the cumulative map and superimposed.
  • FIG. 14 is a diagram showing a state in which the new map and the old map are superimposed so as to minimize the difference in the second embodiment.
  • Embodiment 1 the configuration of the autonomous traveling vacuum cleaner according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • FIG. 1 is a plan view showing the appearance of the autonomous traveling vacuum cleaner according to the first embodiment.
  • FIG. 2 is a bottom view showing the appearance of the autonomous traveling cleaner.
  • FIG. 3 is a perspective view showing the appearance of the autonomous traveling cleaner.
  • the autonomous traveling cleaner 100 is a robot type cleaner that autonomously travels in a cleaning area, which is a target area for cleaning such as a floor surface in a home, and sucks dust present in the cleaning area.
  • the autonomous traveling cleaner 100 etc. whose plane shape is a triangle of a roulette are illustrated.
  • the autonomous traveling cleaner 100 includes a body 120, a drive unit 130, a cleaning unit 140, a suction unit 150, a control unit 170, and various sensors described later.
  • the body 120 carries the various components of the autonomous traveling cleaner 100.
  • the drive unit 130 moves the body 120 in the cleaning area.
  • the cleaning unit 140 collects waste present in the cleaning area.
  • the suction unit 150 sucks the waste collected by the cleaning unit 140 into the inside of the body 120.
  • the control unit 170 controls the drive unit 130, the cleaning unit 140, the suction unit 150, and the like.
  • the body 120 constitutes a housing that accommodates the drive unit 130, the control unit 170, and the like.
  • the body 120 includes a lower body and an upper body, and the upper body is configured to be removable from the lower body.
  • the body 120 is provided at the outer peripheral portion with a bumper provided displaceably with respect to the body 120. Further, as shown in FIG. 2, the body 120 has a suction port 121 for sucking the dust into the body 120.
  • the drive unit 130 causes the autonomous traveling cleaner 100 to travel in the cleaning area based on an instruction from the control unit 170.
  • one drive unit 130 is disposed on each of the left side and the right side with respect to the center in the width direction of the body 120 in a plan view.
  • the number of drive units 130 is not limited to two, and may be one or three or more.
  • the drive unit 130 includes a wheel traveling on the cleaning surface, a traveling motor for applying torque to the wheel, and a housing accommodating the traveling motor.
  • the wheel is accommodated in a recess formed on the lower surface of the body 120 and is rotatably attached to the body 120.
  • the autonomous traveling cleaner 100 is configured by an opposing two-wheel drive system including the caster 179 as an auxiliary wheel. By independently controlling the rotation of the two wheels, the autonomous traveling cleaner 100 can freely travel such as going straight, receding, rotating left, and rotating right.
  • the cleaning unit 140 constitutes a unit for sucking in the dust from the suction port 121.
  • the cleaning unit 140 includes a main brush disposed in the suction port 121, a brush drive motor for rotating the main brush, and the like.
  • the suction unit 150 is disposed inside the body 120.
  • the suction unit 150 includes a fan case, an electric fan disposed inside the fan case, and the like.
  • the electric fan sucks the air inside the trash can unit 151 and discharges the air to the outside of the body 120. As a result, the waste is sucked from the suction port 121 and accommodated in the trash can unit 151.
  • the autonomous traveling cleaner 100 exemplifies, for example, an obstacle sensor 173, a distance measurement sensor 174, a collision sensor (not shown), a camera 175, a floor surface sensor 176, and an acceleration sensor (shown below). It includes various sensors such as an angular velocity sensor (not shown) and the like (not shown).
  • the obstacle sensor 173 is a sensor that detects an obstacle present in front of the body 120.
  • an ultrasonic sensor is used as the obstacle sensor 173.
  • the obstacle sensor 173 includes a transmitting unit 171 and a receiving unit 172.
  • the transmitting unit 171 is disposed at the center of the front of the body 120 and transmits an ultrasonic wave toward the front.
  • the receiving unit 172 is disposed on both sides of the transmitting unit 171, and receives the ultrasonic waves transmitted from the transmitting unit 171. That is, the obstacle sensor 173 receives the reflected wave of the ultrasonic wave transmitted from the transmission unit 171 and reflected by the obstacle and returned by the reception unit 172. Thereby, the obstacle sensor 173 detects the distance and the position to the obstacle.
  • the distance measurement sensor 174 is a sensor that detects the distance between the body 120 and an object such as an obstacle present around the body 120.
  • the distance measurement sensor 174 is formed of, for example, an infrared sensor having a light emitting unit and a light receiving unit. That is, the distance measuring sensor 174 measures the distance to the obstacle based on the elapsed time from when the light emitted from the light emitting unit to the infrared light reflected by the obstacle returns and is received by the light receiving unit.
  • the distance measurement sensor 174 is disposed, for example, on the front top on the right side and in the front top on the left side.
  • the distance measuring sensor 174 on the right side outputs light (infrared ray) toward the front of the body 120 obliquely to the right, and the distance measuring sensor 174 on the left side outputs light toward the left front of the body 120.
  • the distance measurement sensor 174 detects the distance between the body 120 and an object in the vicinity closest to the contour of the body 120.
  • the collision sensor is, for example, a switch contact displacement sensor, and is provided on a bumper disposed around the body 120.
  • the switch contact displacement sensor is turned on by the obstacle coming into contact with the bumper and the bumper being pushed against the body 120. Thus, the collision sensor detects contact with an obstacle.
  • the camera 175 is a device for capturing an image of the entire circumference of the upper space of the body 120.
  • the image captured by the camera 175 is processed by the image recognition processing unit. By this processing, the current position of the autonomous traveling cleaner 100 can be grasped from the position of the feature point in the image.
  • the floor surface sensor 176 is disposed at a plurality of locations on the bottom surface of the body 120 and detects whether or not a floor area, which is a cleaning area, exists, for example.
  • the floor surface sensor 176 is configured of, for example, an infrared sensor having a light emitting unit and a light receiving unit. That is, when the light (infrared rays) emitted from the light emitting unit returns and is received by the light receiving unit, the floor sensor 176 detects “floor present”. On the other hand, when the receiving unit receives only light having a threshold value or less, the floor sensor 176 detects “floor no”.
  • the drive unit 130 further comprises an encoder.
  • the encoder detects each rotation angle of a pair of wheels rotated by the traveling motor. Based on the information from the encoder, the traveling amount, the turning angle, the speed, the acceleration, the angular velocity, etc. of the autonomous traveling cleaner 100 are calculated.
  • the acceleration sensor detects an acceleration when the autonomous traveling cleaner 100 travels.
  • the angular velocity sensor detects an angular velocity when the autonomous traveling cleaner 100 turns.
  • the information detected by the acceleration sensor and the angular velocity sensor is used, for example, as information for correcting an error caused by the idle rotation of the wheel.
  • the obstacle sensor 173, the distance measurement sensor 174, the collision sensor, the camera 175, the floor surface sensor 176, the encoder, and the like described above are examples of sensors. Therefore, the autonomous traveling cleaner 100 does not have to include all the sensors. Moreover, the autonomous running cleaner 100 may be equipped with a sensor of a form different from the above.
  • the autonomous traveling cleaner 100 As described above, the autonomous traveling cleaner 100 according to the first embodiment is configured.
  • FIG. 4 is a block diagram showing each functional unit of control unit 170 of autonomous traveling cleaner 100 in the first embodiment.
  • control unit 170 of the autonomous traveling cleaner 100 controls the drive unit 130 to cause the autonomous traveling cleaner 100 to autonomously travel and execute cleaning. Furthermore, the control unit 170 configures a unit that generates a map of a traveling area from traveling results based on the information obtained from the various sensors during autonomous traveling.
  • control unit 170 includes a map generation unit 181, a storage device 200, a map comparison unit 182, an extended area determination unit 183, a floor probability update unit 184, and the like.
  • the map generation unit 181 functions as a processing unit that generates a map of the travel area. That is, based on the information from the various sensors described above, the map generation unit 181 uses, for example, travel performance which is a set of self-locations of the autonomous traveling cleaner 100 at a plurality of locations under cleaning obtained by self-location estimation technology. , Generate a map.
  • the map generation unit 181 can also generate a map based on the travel results, with the position of the reference member 189 installed in the cleaning area 180 described later with reference to FIG. 10 as a reference position.
  • the cleaning area 180 is an area where the autonomous traveling cleaner 100 can travel. That is, generally, the cleaning area 180 is approximated by, for example, the shape of the floor of a room, as shown in FIG. At this time, the area of the cleaning area 180 may change significantly, for example, when a previously closed partition is opened, or when a sofa, a table, or the like installed on a floor surface is removed. Also, the area of the cleaning area 180 may change frequently, although the area is small, for example, the position of the chair or the position of the trash can has changed.
  • the reference member 189 is a member such as a device serving as a reference position when the autonomous traveling cleaner 100 travels autonomously, and is disposed in the cleaning area 180.
  • the reference member 189 is not particularly limited, a charging stand or the like for charging a battery provided in the autonomous traveling cleaner 100 with supplied power may be the reference member 189.
  • the traveling record refers to, for example, the autonomous traveling cleaning from when the autonomous traveling cleaner 100 starts traveling with the reference member 189 as a starting point based on the traveling program, for example, to the end of the cleaning assuming that the entire cleaning area 180 is cleaned. It is a trajectory of the machine 100. That is, the travel record does not necessarily have to be the track that cleaned the entire cleaning area 180.
  • reference member 189 a characteristic portion extracted from an image captured by a camera 175 or the like shown in FIG. 3 in addition to the charging stand may be used as the reference member 189.
  • the map generation part 181 is a reference position shown in FIG. 5 which is an outline of a region actually traveled and a position where the reference member 189 shown in FIG. 10 is arranged based on the traveling results of the autonomous traveling cleaner 100.
  • Information indicating 202 is generated as a map.
  • the map generation unit 181 stores the generated map in the storage device 200 of the control unit 170.
  • the map generation unit 181 includes information indicating the outline of the island region 180A and the position thereof. Generate a map.
  • the map generated by the map generation unit 181 is realized as, for example, two-dimensional array data. Specifically, the map generation unit 181 divides the traveling result of the autonomous traveling cleaner 100 into, for example, quadrilaterals having a predetermined size such as 10 cm by 10 cm. Then, the map generation unit 181 regards each square as an element area of the array that configures the map, and stores the array area as the array data in the storage device 200.
  • the specific data format to be stored is not particularly limited.
  • the value of each element area is stored as, for example, a floor probability 204, an accumulated floor probability 304, and the like.
  • the storage device 200 may store the amount of cleaned dust, the position at which the autonomous traveling cleaner 100 has stopped, and the like as additional information.
  • the map comparison unit 182 combines element areas in which the floor probability 204 of the new map 201 shown in FIG. 5 differs from the cumulative floor surface probability 304 of the accumulated map 301 shown in FIG. It is a processing unit that extracts as a difference area.
  • the specific extraction method of a difference area is not specifically limited.
  • element areas in which the cumulative floor surface probability 304 and the floor surface probability 204 are equal to or greater than the first threshold may be extracted as a difference area by combining consecutive element areas.
  • an element area having a probability equal to or higher than the second threshold is extracted.
  • element areas without corresponding element areas of the floor surface probability 204 and the accumulated floor surface probability 304 may be extracted as a difference area by combining consecutive element areas.
  • the extension area determination unit 183 is a processing unit that determines that the extracted difference area is the extension area when at least one of the following conditions is satisfied.
  • the first condition is that, of the difference areas extracted by the map comparison unit 182, the difference area in the direction crossing the boundary between the accumulation map 301 and the difference area is the case where the area of the difference area is larger than the third threshold. This is the case where the maximum depth D (see FIG. 7) which is the maximum length is larger than the fourth threshold.
  • the second condition is that the maximum width W, which is the maximum length of the difference area in the direction along the boundary, is larger than the fifth threshold. That is, when at least one of the first and second conditions is satisfied, the extension area determination unit 183 determines that the difference area that satisfies the condition is the extension area.
  • the third threshold is not particularly limited, but can be, for example, 1.44 square meters. This corresponds to the size of approximately 1 tatami and is a numerical value in accordance with the actual situation.
  • the fourth threshold and the fifth threshold are not particularly limited, but, for example, numerical values corresponding to the width of the autonomous traveling cleaner 100 may be used as the fourth threshold and the fifth threshold.
  • the floor probability update unit 184 is a processing unit that updates the cumulative floor probability 304, which is information indicating by probability whether the floor is included in the cumulative map 301, using the floor probability 204 described below. is there.
  • Floor surface probability 204 is a floor surface included in new map 201 in each of the element areas where the positions coincide, when one element obtained by dividing new map 201 and accumulated map 301 in the vertical and horizontal directions at the same position is used as an element area. It is information indicating whether or not there is a probability.
  • the floor probability updating unit 184 first adds 1 to the cumulative number indicating the number of new maps 201 used for updating in each element area. Next, the cumulative floor probability 304 is subtracted from the floor probability 204. Then, the floor probability updating unit 184 divides the difference by the cumulative number after addition, and updates the sum of the quotient and the cumulative floor probability 304 as a new cumulative floor probability 304.
  • the method of updating the extension area determined by the extension area determination unit 183 is different from the method of updating the cumulative floor probability 304 described above, this will be described later.
  • the display unit 186 is a processing unit that generates a display map.
  • the display map is generated based on the updated cumulative map 301 held by the storage device 200. This makes it possible to present the display map to the user in an easy-to-see or easy-to-use state.
  • the display unit 186 may have a function of outputting a display map generated by a user, for example, a terminal device or the like, for display.
  • Control unit 170 further includes storage device 200.
  • the storage device 200 holds a cumulative map 301 in which maps generated before the generation of the new map 201 by the map generation unit 181 is accumulated.
  • the cumulative map 301 stored in the storage device 200 is associated with a cumulative floor probability 304, which indicates whether each coordinate point of the travel area is a floor or not.
  • the storage device 200 is not particularly limited, and examples thereof include a hard disk and a flash memory.
  • control unit 170 As described above, the functional unit of the control unit 170 is configured and operates.
  • FIG. 5 is a diagram showing an example of the newly generated new map 201 and the floor surface probability 204 included in the new map 201 in the first embodiment.
  • FIG. 6 is a diagram showing an example of the cumulative map 301 and the cumulative floor probability 304 included in the cumulative map 301 according to the first embodiment.
  • FIG. 7 is a diagram showing an example of the state in which the new map 201 and the cumulative map 301 are superimposed in the first embodiment and the floor probability 204 and the cumulative floor probability 304 corresponding to this.
  • FIG. 8 is a diagram showing an example of the updated cumulative map 301 in the first embodiment.
  • the upper part of FIG. 5 shows the new map 201 newly generated by the map generation unit 181. Further, the lower part of FIG. 5 shows a graph of the floor surface probability 204 at the cross section 203 of the new map 201.
  • the floor surface probability 204 of the map may be illustrated by taking two values of 0 (not a floor surface) or 1 (a floor surface). Furthermore, the floor probability 204 may be illustrated taking values between 0 and 1 based on the likelihood of self-position estimation.
  • the new map 201 shown in the upper part of FIG. 5 illustrates a portion with a floor surface probability of 0.5 or more based on the certainty of self-position estimation.
  • the new map 201 includes not only the floor surface probability 204 but also the reference position 202 which is information indicating the starting point.
  • the reference position 202 may be the position of a charging stand that functions as the reference member 189 in the autonomous traveling cleaner 100 shown in FIG.
  • a corner or the like of a room existing in the traveling area in which the autonomous traveling cleaner 100 travels may be set as the reference position 202 based on information from each sensor.
  • the position corresponding to the charging stand will be described as the reference position 202.
  • the upper part of FIG. 6 shows a cumulative map 301 obtained by accumulating maps that have already been created and held in the storage device 200.
  • the lower part of FIG. 6 shows a graph of the cumulative floor probability 304 in the cross section 303 of the cumulative map 301.
  • the cumulative map 301 has a cumulative reference position 302.
  • the accumulated reference position 302 is obtained by accumulating the reference position 202 included in the generated new map 201 shown in FIG. Specifically, for example, after daily cleaning, a map is created, and the history of the created daily map is accumulated (superimposed).
  • the reference position 202 corresponds to, for example, the position of the charging stand.
  • the accumulated reference position 302 is the same position as the reference position 202 in the new map 201.
  • the accumulation reference position 302 is updated according to a predetermined
  • FIG. 7 shows a diagram in which the map comparison unit 182 superimposes the new map 201 and the cumulative map 301 on each other. Specifically, the map comparison unit 182 superimposes the new map 201 and the cumulative map 301 for comparison. At this time, the map comparison unit 182 matches the reference position 202 of the new map 201 with the cumulative reference position 302 of the cumulative map 301, assuming that there is no change in the position of the reference member 189 in the traveling area, Do. When there is a change in the position of the reference member 189, the overlapping process is performed by the reference change check unit 300 (see FIG. 9) described later. In this case, the map comparison unit 182 superimposes the new map 201 and the cumulative map 301 after the process of the reference change check unit 300 is performed.
  • the lower part of FIG. 7 shows a graph of the floor probability 204 and the cumulative floor probability 304 in the cross section 403 of the upper diagram superimposed on the new map 201 and the cumulative map 301.
  • a difference area indicated by, for example, a difference A, a difference B, and a difference C is generated between the superimposed floor probability 204 and the accumulated floor probability 304.
  • the difference in floor probability between the cumulative floor probability 304 of the cumulative map 301 of the corresponding portion and the floor probability 204 of the new map 201 in the same portion is, for example, a first threshold such as 0.5 or more.
  • a certain area may be used as a difference area.
  • both the floor probability 204 of the new map 201 and the cumulative floor probability 304 of the cumulative map 301 are converted into a map consisting of an area of a second threshold or more such as 0.5 or more, and then both of the converted maps Area differences may be used as difference areas.
  • the above difference is determined by the extension area determination unit 183 (see FIG. 4) that determines whether to extend the traveling area. Then, according to the determination result of the extension area determination unit 183, the cumulative floor probability of the cumulative map is updated by the floor probability update unit 184 shown in FIG.
  • the floor surface probability updating unit 184 offsets the displacement of the floor surface position due to the self position estimation error or the like by superimposing the new map 201 and the cumulative map 301. Thus, the floor surface probability updating unit 184 can increase the probability that the floor surface is correctly determined to be a floor surface.
  • the floor probability update unit 184 calculates the floor surface of a portion corresponding to the difference A of the newly generated new map 201.
  • the cumulative floor probability 304 of the cumulative map 301 is updated based on the probability 204.
  • the floor probability updating unit 184 When the updating is performed, the floor probability updating unit 184 first performs averaging according to the accumulated data amount, and corrects the error so as to cancel out the error. Then, the floor probability updating unit 184 generates the corrected floor probability as updated data. At this time, the floor probability updating unit 184 updates the cumulative floor probability, for example, according to (Expression 1).
  • N (x, y) in (Expression 1) is a cumulative number indicating the number of maps superimposed so far at the coordinates (x, y) of the cumulative map 301.
  • Mnew (x, y) in (Expression 1) is the floor surface probability 204 at the coordinates (x, y) of the new map 201.
  • P (x, y) in (Expression 1) is the cumulative floor probability 304 at the coordinates (x, y) of the cumulative map 301.
  • the floor surface probability is first updated by adding 1 to the cumulative number (N (x, y)) indicating the number of maps used for the update so far.
  • the cumulative floor surface probability (p (x, y)) is subtracted from the floor surface probability (Mnew (x, y)).
  • the difference (Mnew (x, y) ⁇ p (x, y)) is divided by the cumulative number (N (x, y)) after addition.
  • the cumulative floor probability (p (x, y)) is added to the quotient obtained by the division, and the sum is taken as a new cumulative floor probability (p (x, y)).
  • the floor probability updating unit 184 updates the cumulative floor probability.
  • the cumulative floor surface probability in the cumulative map 301 304 is zero or nearly zero.
  • the floor surface probability 204 of the portion corresponding to the above is 1 or almost 1. That is, the difference area is extracted between the new map 201 and the cumulative map 301 as described above.
  • the extension area determination unit 183 determines that the extracted difference area is the extension area when at least one of the following conditions is satisfied.
  • the first condition is a maximum that is the maximum length of the difference area in the direction intersecting (including orthogonally) the boundary line 301A between the accumulation map 301 and the difference area when the area of the difference area is larger than the third threshold.
  • the depth D (see the lower part of FIG. 7) is larger than the fourth threshold.
  • the second condition is that the maximum width W (see the upper part of FIG. 7), which is the maximum length of the difference area in the (including parallel) direction along the boundary 301A, is larger than the fifth threshold. That is, when at least one or both of the first and second conditions are satisfied, the extension area determination unit 183 determines that the difference area satisfying the condition is the extension area.
  • the floor probability updating unit 184 updates the cumulative floor probability 304 of the cumulative map 301 shown in FIG. 8 as a new cumulative floor probability 304.
  • a specific updating method is performed using, for example, (Expression 2) shown below. That is, as shown in (Expression 2), the cumulative number (N (x, y)) of the cumulative map 301 is set to 1 in the extension area. Further, the cumulative floor probability 304 (p (x, y)) of the cumulative map 301 is set to 1.0.
  • the cumulative map 301 has the cumulative floor probability 304 at a certain level or more, but in the new map 201, when the floor probability 204 is zero or almost zero, the floor probability is Do not update. That is, since it is determined that the position indicated by the difference C is a portion where the autonomous traveling cleaner 100 could not be cleaned or a portion where it could not travel due to an obstacle, the floor probability is not updated. In this case, the portion that could not be cleaned can be separately stored in the storage device 200 as accumulated information of the non-traveling area.
  • FIG. 8 is a diagram showing an example of the updated and held map.
  • FIG. 8 shows the cumulative map 301 after update.
  • the lower part of FIG. 8 shows a graph of the updated cumulative floor probability 304 corresponding to the cross section 303 shown in the cumulative map 301.
  • the position having the cumulative floor probability 304 set as the second threshold for example, 0.5 or more is set as the floor.
  • Can draw At this time, the display unit 186 may generate, for example, a display map by drawing a wall around the drawn floor surface. Then, the display unit 186 may transmit the generated display map to, for example, a portable terminal or the like owned by the user for display.
  • a user instruction receiving unit that receives an instruction may be provided, for example, in the control unit or the display map screen. The user instruction receiving unit receives an instruction from the user based on the displayed display map.
  • an instruction on a user designated area such as an instruction on an area to be cleaned next and an instruction on a traveling area for scheduling.
  • a user designated area determination unit may be further provided in, for example, a control unit or a display map screen.
  • the user designated area determination unit has a function of determining whether the received user designated area is an area corresponding to a cleanable area in association with the updated map.
  • each element area is in a state in which the plurality of maps generated by the map generation unit 181 are superimposed.
  • the cumulative floor probability 304 of is calculated. This improves the accuracy of the map.
  • the map generation unit 181 compares it with the cumulative map 301 to generate a difference area (difference area). Then, the extended area determination unit 183 determines whether or not the generated difference area is to be a new floor surface or whether there is an obstacle based on a predetermined threshold value. This enables more flexible operation of the cumulative map 301.
  • the cumulative floor probability 304 corresponding to the extension area can be appropriately updated. This allows the cumulative map 301 to be maintained with high map accuracy throughout.
  • FIG. 9 is a block diagram showing functional units related to map creation of the control unit 170 in the second embodiment.
  • the autonomous traveling cleaner 100 of the second embodiment differs from that of the first embodiment in that the control unit 170 further includes the reference change confirmation unit 300.
  • the reference change confirmation unit 300 matches the inclination of the new map 201 generated by the map generation unit 181 with the accumulation map 301 and updates the accumulated reference position 302 in order to correctly overlap the element areas to be compared by the map comparison unit 182.
  • the reference change confirmation unit 300 configures a processing unit that updates the accumulated reference position 302 of the accumulation map 301, and includes the longest straight line determination unit 382, the map arrangement unit 383, the difference calculation unit 384, the reference position update unit 385, and the like. Prepare.
  • the reference change confirmation unit 300 first matches the posture such as the inclination of the new map 201 generated by the map generation unit 181 with the cumulative map 301. Then, the reference change confirmation unit 300 confirms from the new map 201 whether the position of the reference member 189 has been changed. At this time, if it is determined that the position of the reference member 189 has been changed, the reference change check unit 300 functions to update the cumulative reference position 302 of the cumulative map 301.
  • the autonomous traveling cleaner 100 As described above, the autonomous traveling cleaner 100 according to the second embodiment is configured.
  • FIG. 10 is a plan view showing the cleaning area 180.
  • FIG. 11 is a diagram showing the cumulative map 301.
  • FIG. 12 is a diagram showing the new map 201. As shown in FIG.
  • the longest straight line determination unit 382 is a processing unit that determines the longest longest straight line component among the straight line components included in the map generated by the map generation unit 181.
  • the longest straight line component means the longest line segment included in the periphery of the map among all the line segments included in the map.
  • the slope of the component thereof is the line segment closest to the X axis or the Y axis as the longest straight line determination unit 382 May be determined as the longest linear component.
  • the cumulative map 301 and the new map 201 shown in FIG. 11 and FIG. 12 are generated based on the traveling results of the autonomous traveling cleaner 100 traveling.
  • FIG. 13 is a diagram showing a state in which the new map 201 and the cumulative map 301 are superimposed with the reference position 202 and the cumulative reference position 302 in agreement.
  • the map placement unit 383 is generated in the reference position 202 included in the new map 201 newly generated by the map generation unit 181 shown in FIG. 12 and before that shown in FIG.
  • the cumulative reference position 302 included in the cumulative map 301 is matched.
  • the map arrangement unit 383 superimposes the longest straight line component 193 included in the new map 201 shown in FIG. 12 and the longest straight line component 192 included in the cumulative map 301 shown in FIG. Arrange them together.
  • the process of overlapping the reference position 202 of the new map 201 with the cumulative map 301 and rotating the new map 201 about the reference position 202 is executed by, for example, affine transformation of a matrix.
  • the affine transformation of the matrix is an example of the process of rotating the map.
  • the cumulative map 301 illustrated in FIG. 11 is a map obtained by performing statistical processing or the like on a plurality of maps generated in the past.
  • the map generated at first among the cumulative map 301 is arranged such that the longest straight line component is along the predetermined axis (X axis or Y axis). Therefore, the cumulative map 301 and the new map 201 are all generated so that the longest straight line component is along the predetermined axis.
  • the new map 201 generated by the map generation unit 181 may be generated as an error in an inclined state to some extent. Therefore, as shown in FIG. 13, the map arranging unit 383 rotates the longest straight line component 192 of the cumulative map 301 so that the longest straight line component 193 of the new map 201 follows the Y axis which is a predetermined axis. Deploy. Then, the accumulated reference position 302 of the accumulated map 301 and the reference position 202 of the new map 201 are moved in parallel along the X axis so as to coincide with each other. Thereby, as described with reference to FIG. 14, the longest straight line component 192 of the cumulative map 301 and the longest straight line component 193 of the new map 201 overlap so as to be parallel, and the difference between the maps is minimized.
  • FIG. 14 is a diagram showing a state in which the cumulative map 301 and the new map 201 are superimposed so as to minimize the difference.
  • the difference calculation unit 384 first translates the new map 201 arranged by the map arrangement unit 383 relative to the cumulative map 301 one or more times and a plurality of times. Then, the difference calculating unit 384 calculates the difference between the maps for each parallel movement.
  • the difference between the maps is a portion that does not overlap when the cumulative map 301 and the new map 201 are superimposed. That is, the difference between the maps corresponds to the hatched portion shown in FIG.
  • the difference calculating unit 384 performs the new map 201 in the X axis direction and the Y axis direction one or more times in the form of a matrix with respect to the cumulative map 301 at predetermined intervals such as 10 cm. Translate in parallel. Then, the difference calculating unit 384 calculates the difference between the maps for each movement. At this time, the threshold may be determined, for example, by how many times the difference is calculated. Moreover, when the difference obtained continuously over multiple times always increases, the calculation of the difference may be ended at that stage.
  • the reference position update unit 385 determines, based on the positional relationship of the reference position 202 of the new map 201 with respect to the reference position 202 of the cumulative map 301 at which the smallest difference is obtained among the differences calculated by the difference calculation unit 384. , Update the reference position of the map to be created next time. As a result, even if the reference member 189 is moved in the cleaning area 180, it is possible to appropriately generate a new map.
  • FIG. 14 exemplifies the case where the reference position 202 is deviated only in the X-axis direction, the deviation of the reference position 202 is not limited to this. Usually, the deviation of the reference position 202 is deviated to at least one of the X axis and the Y axis. Therefore, the reference position update unit 385 updates the coordinates of the reference position based on the deviation of the X axis and the Y axis. Thereby, the deviation between the maps can be corrected with higher accuracy.
  • the autonomous traveling cleaner 100 of the second embodiment even when the new map 201 is generated to be inclined with respect to the cumulative map 301 due to measurement errors of various sensors, etc., the inclination is corrected. Thus, the new map 201 can be accurately superimposed on the cumulative map 301. This makes it possible to improve the accuracy of the cumulative floor probability 304 to be updated.
  • the autonomous traveling cleaner 100 of the second embodiment when the reference member 189 moves in the cleaning area 180, the autonomous traveling cleaner 100 itself recognizes the movement of the reference member 189. Then, based on the recognized movement of the reference member 189, the cumulative reference position 302 is correctly updated. Therefore, the accuracy of the cumulative floor probability 304 can be maintained high.
  • the present invention is not limited to the above embodiment.
  • another embodiment realized by arbitrarily combining the components described in the present specification and excluding some of the components may be used as an embodiment of the present invention.
  • modifications obtained by applying various modifications to those skilled in the art to the above embodiment without departing from the spirit of the present invention, that is, the meaning indicated by the language of the claims are also included in the present invention. included.
  • components other than the map generation unit 181 may be configured on a computer (computer) such as a server connected to the autonomous traveling cleaner 100 via a network.
  • a computer such as a server connected to the autonomous traveling cleaner 100 via a network.
  • it can be considered as a vacuum cleaner system provided with the autonomous traveling vacuum cleaner 100.
  • the new map 201 generated by the map generation unit 181 is transmitted to the computer through the network.
  • the cumulative map 301 stored by the computer is updated.
  • the configuration may be such that the user can confirm the cleaning result on a terminal such as a smartphone based on the cumulative map 301 received from the computer.
  • the user may be configured to specify an area to be cleaned by the autonomous traveling cleaner 100 via the mobile terminal.
  • the present invention is applicable to a so-called robot-type vacuum cleaner or the like that travels and cleans autonomously in a home, a factory, a large-scale facility, and the like.
  • Reference Signs List 100 autonomous traveling cleaner 120 body 121 suction port 130 drive unit 140 cleaning unit 150 suction unit 151 box unit 170 control unit 171 transmission unit 172 reception unit 173 obstacle sensor 174 distance measurement sensor 175 camera 176 floor sensor 179 caster 180 cleaning area 180A area 181 map generation unit 182 map comparison unit 183 extended area determination unit 184 floor surface probability update unit 186 display unit 189 reference member 192, 193 longest straight component 200 storage unit 201 new map 202 reference position 203, 303, 403 cross section 204 floor Surface probability 300 Reference change confirmation unit 301 Cumulative map 301A Boundary line 302 Cumulative reference position 304 Cumulative floor surface probability 382 Longest straight line determination unit 383 Map layout Part 384 difference calculation unit 385 a reference position update unit

Abstract

An autonomous travel-type cleaner provided with: a map generation unit (181) for generating a new map wherein the position of a reference member is used as a reference position; and a floor area probability update unit (184) for using the floor area probability of the new map to update, for each of element areas at positions that match, a cumulative floor area probability of a cumulative map. The floor area probability update unit (184) adds one to a cumulative map number which indicates the number of maps used so far for updates in each of the element areas, subtracts the cumulative floor area probability from the floor area probability, divides the difference therebetween by the cumulative map number obtained through the addition, adds to this quotient the cumulative floor area probability, and updates the resulting sum as the new cumulative floor area probability. On the above basis, provided is the autonomous travel-type cleaner wherein it is possible to update to a new map that accommodates changes in the environment of the cleaning area.

Description

自律走行掃除機、および、累積床面確率更新方法Autonomous traveling vacuum cleaner, and cumulative floor probability update method
 本発明は、自律走行して掃除したエリアをユーザに示す、あるいは、掃除するエリアをユーザが指定可能とする、マップを生成する自律走行掃除機、および、累積床面確率更新方法に関する。 The present invention relates to an autonomously traveling vacuum cleaner that generates a map, which allows the user to indicate an area cleaned autonomously and cleaned, or allows the user to specify an area to be cleaned, and an accumulated floor probability updating method.
 近年、掃除中の自己位置推定結果に基づいて、走行エリアのマップを作成し、そのマップを元に、次回掃除すべきエリアを指定可能な自律走行掃除機が開示されている(例えば、特許文献1参照)。 In recent years, based on the self-position estimation result under cleaning, a map of a running area is created, and based on the map, an autonomous running cleaner capable of specifying an area to be cleaned next time is disclosed (for example, patent documents 1).
 特許文献1に開示の自律走行掃除機は、まず、掃除をしながら、オドメトリ情報やカメラ、測距センサなどの掃除機が備える各種センサからの情報を入手する。つぎに、自律走行掃除機は、入手した情報を用いて、自己の動きや周囲との位置関係を元に、自己のいる相対位置を推定する。これにより、自律走行掃除機は、部屋の中のどの位置にいるかを把握し、その情報を元に、次に掃除すべき掃除領域を自在に選択させるマップを作成するように構成される。 First, while performing cleaning, the autonomous traveling vacuum cleaner disclosed in Patent Document 1 obtains information from various sensors provided in the vacuum cleaner, such as odometry information, a camera, and a distance measurement sensor. Next, the autonomous vacuum cleaner estimates its own relative position based on its own movement and its positional relationship with the surroundings, using the obtained information. In this way, the autonomous traveling vacuum cleaner is configured to grasp at which position in the room it is and to create a map for freely selecting the cleaning area to be cleaned next based on the information.
 また、従来、カメラなどの外部情報を取得するセンサを用いない自律走行掃除機の場合、掃除開始時点で、自律走行掃除機がマップ上のどの位置にいるかを判断することは不可能である。そのため、自律走行掃除機が、不使用時に、充電台で充電しながら待機していることを利用して、位置を判断する自律走行掃除機が提案されている(例えば、特許文献2参照)。 Also, conventionally, in the case of an autonomous traveling cleaner that does not use a sensor that acquires external information such as a camera, it is impossible to determine at which position on the map the autonomous traveling cleaner is at the start of cleaning. Therefore, there is proposed an autonomous traveling cleaner which determines the position by using the fact that the autonomous traveling cleaner stands by while charging on the charging stand when not in use (see, for example, Patent Document 2).
 特許文献2に開示の自律走行掃除機は、充電台の位置を起点として、自律走行掃除機の掃除履歴を記録する。そして、記録した情報に基づいて、マップを生成して自律走行掃除機の位置を判断している。 The autonomous traveling cleaner disclosed in Patent Document 2 records the cleaning history of the autonomous traveling cleaner, with the position of the charging stand as a starting point. Then, based on the recorded information, a map is generated to determine the position of the autonomous traveling cleaner.
 しかしながら、実際上、各種センサからの情報には、少なからず測定誤差が含まれる。そこで、一定以上の誤差が発生する場合、自律走行掃除機は、起点に戻って、位置を再確認し、測定誤差を補正することが考えられる。この場合、起点に戻る時間が掃除時間に追加される。さらに、何度も同じ場所を往復しないと、誤差を補正できない。また、充電台などの起点との間を何度も往復して掃除しても、ドアの開閉や障害物の有無、床面素材の違いなどの、掃除エリア内の環境の変化に対応できない。 However, in practice, the information from various sensors includes not a little measurement error. Therefore, when an error of a predetermined level or more occurs, it is conceivable that the autonomous traveling cleaner returns to the starting point, reconfirms the position, and corrects the measurement error. In this case, the time to return to the starting point is added to the cleaning time. Furthermore, the error can not be corrected unless the same place is reciprocated many times. In addition, even if the space between the starting point of the charging stand and the like is reciprocated and cleaned many times, it is not possible to cope with environmental changes in the cleaning area such as opening and closing of the door, the presence or absence of obstacles, and differences in floor materials.
特開2002-085305号公報JP, 2002-085305, A 特開2006-110322号公報JP, 2006-110322, A
 本発明は、毎回生成した走行エリアのマップに基づいて、掃除エリアの環境変化に対応したマップに更新する自律走行掃除機、および、累積床面確率更新方法を提供する。 The present invention provides an autonomously traveling vacuum cleaner and a cumulative floor surface probability updating method for updating the map corresponding to the environmental change of the cleaning area based on the travel area map generated each time.
 本発明の一例である自律走行掃除機は、掃除エリアに設置された基準部材の位置を基準位置とした新マップを走行実績に基づき生成するマップ生成部を備える。さらに、自律走行掃除機は、新マップと既に作成されたマップが累積された累積マップとを同じ位置で複数に分割した1要素を要素エリアとした場合に、位置が一致する要素エリアのそれぞれにおいて、新マップに含まれる床面であるかどうかを確率で示した情報である床面確率を用いて、累積マップに含まれる床面であるかどうかを確率で示した情報である累積床面確率を更新する床面確率更新部を備える。そして、床面確率更新部は、各要素エリアにおいて、今まで更新に使用したマップの数を示す累積枚数に1を加算し、床面確率から累積床面確率を減算し、その差を加算後の累積枚数で除算し、その商に累積床面確率を加算した和を、新しい累積床面確率として更新するように構成される。 The autonomous traveling vacuum cleaner which is an example of the present invention is provided with the map generation part which generates the new map which made the standard position the position of the standard member installed in the cleaning area as a standard position. Furthermore, in the autonomous traveling vacuum cleaner, when one element obtained by dividing the new map and the accumulated map in which the already created map is accumulated into a plurality of parts at the same position is taken as an element area, The cumulative floor probability which is information indicating whether or not the floor surface is included in the cumulative map using the floor probability which is information indicating whether or not the floor surface is included in the new map. The floor probability updating unit updates the Then, the floor probability update unit adds 1 to the cumulative number indicating the number of maps used for updating so far in each element area, subtracts the cumulative floor probability from the floor probability, and adds the difference. The sum of the quotient divided by the cumulative number of sheets and the cumulative floor probability added to the quotient is updated as a new cumulative floor probability.
 本発明の他の例である累積床面確率更新方法は、マップ生成部は、掃除エリアに設置された基準部材の位置を基準位置とした新マップを、走行実績に基づいて生成する。床面確率更新部は、新マップと既に作成されたマップが累積された累積マップとを同じ位置で複数に分割した1要素を要素エリアとした場合、位置が一致する要素エリアのそれぞれにおいて、新マップに含まれる床面であるかどうかを確率で示した情報である床面確率と、累積マップに含まれる床面であるかどうかを確率で示した情報である累積床面確率とを用いる。そして、床面確率更新部は、今まで更新に使用したマップの数を示す累積枚数に1を加算し、床面確率から累積床面確率を減算し、その差を加算後の累積枚数で除算し、その商に累積床面確率を加算した和を、新しい累積床面確率として更新する。 In the cumulative floor surface probability updating method which is another example of the present invention, the map generation unit generates a new map based on the traveling results with the position of the reference member installed in the cleaning area as the reference position. When the floor surface probability updating unit divides an element area into one element obtained by dividing the new map and the accumulated map in which the previously created map is accumulated into a plurality at the same position, the element area has a new position. A floor probability which is information indicating whether it is a floor included in the map or a cumulative floor probability which is information indicating whether it is a floor included in the cumulative map is used. Then, the floor probability update unit adds 1 to the cumulative number indicating the number of maps used for updating so far, subtracts the cumulative floor probability from the floor probability, and divides the difference by the cumulative number after addition. The sum of the quotient plus the cumulative floor probability is updated as a new cumulative floor probability.
 これにより、掃除エリア内の環境の変化や掃除エリア自体の変化に対応した、より高精度なマップの生成が可能になる。 This makes it possible to generate a map with higher accuracy corresponding to the change of the environment in the cleaning area and the change of the cleaning area itself.
図1は、実施の形態1における自律走行掃除機の外観を示す平面図である。FIG. 1 is a plan view showing the appearance of the autonomous traveling vacuum cleaner according to the first embodiment. 図2は、同自律走行掃除機の外観を示す底面図である。FIG. 2 is a bottom view showing the appearance of the autonomous traveling cleaner. 図3は、同自律走行掃除機の外観を示す斜視図である。FIG. 3 is a perspective view showing the appearance of the autonomous traveling cleaner. 図4は、実施の形態1における制御ユニットのマップ作成に関する機能部を示すブロック図である。FIG. 4 is a block diagram showing functional units related to map creation of the control unit in the first embodiment. 図5は、実施の形態1における新規生成された新マップの一例を示す図である。FIG. 5 is a diagram showing an example of a newly generated new map in the first embodiment. 図6は、実施の形態1における保持された旧マップの一例を示す図である。FIG. 6 is a diagram showing an example of the old map held in the first embodiment. 図7は、実施の形態1における新規生成された新マップと保持された旧マップとを重ね合わせた状態を示す図である。FIG. 7 is a diagram showing a state in which the newly generated new map and the held old map are superimposed in the first embodiment. 図8は、実施の形態1における新たに更新され、保持されたマップの一例を示す図である。FIG. 8 is a diagram showing an example of a newly updated and held map in the first embodiment. 図9は、実施の形態2における制御ユニットのマップ作成に関する機能部を示すブロック図である。FIG. 9 is a block diagram showing functional units related to map creation of a control unit in the second embodiment. 図10は、実施の形態2における掃除エリアを示す平面図である。FIG. 10 is a plan view showing the cleaning area in the second embodiment. 図11は、実施の形態2における累積マップを示す図である。FIG. 11 is a diagram showing a cumulative map in the second embodiment. 図12は、実施の形態2における新マップを示す図である。FIG. 12 is a diagram showing a new map in the second embodiment. 図13は、実施の形態2における基準位置を一致させて累積マップに新マップの姿勢を合わせて重ね合わせた状態を示す図である。FIG. 13 is a diagram showing a state in which the reference position in Embodiment 2 is matched, and the posture of the new map is aligned on the cumulative map and superimposed. 図14は、実施の形態2における差分が最小となるように新マップと旧マップとを重ね合わせた状態を示す図である。FIG. 14 is a diagram showing a state in which the new map and the old map are superimposed so as to minimize the difference in the second embodiment.
 以下に、本発明における自律走行掃除機の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、本発明における自律走行掃除機の一例を示したものに過ぎない。従って本発明は、以下の実施の形態を参考に請求の範囲の文言によって範囲が画定されるものであり、以下の実施の形態のみに限定されるものではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, an embodiment of an autonomous traveling vacuum cleaner according to the present invention will be described with reference to the drawings. In addition, the following embodiment is only what showed an example of the autonomous running cleaner in this invention. Accordingly, the scope of the present invention is defined by the wording of the claims with reference to the following embodiments, and is not limited to only the following embodiments. Therefore, among the components in the following embodiments, components that are not described in the independent claim showing the highest concept of the present invention are not necessarily required to achieve the object of the present invention, It is described as constituting a preferred embodiment.
 また、図面は、本発明を示すために、適宜、強調や省略、比率の調整を行った模式的な図であり、実際の形状や位置関係、比率とは異なる場合がある。 In addition, the drawings are schematic diagrams in which emphasis, omission, and adjustment of ratios are appropriately performed to illustrate the present invention, and may differ from actual shapes, positional relationships, and ratios.
 (実施の形態1)
 以下、実施の形態1に係る自律走行掃除機の構成について、図1から図3を用いて、説明する。
Embodiment 1
Hereinafter, the configuration of the autonomous traveling vacuum cleaner according to the first embodiment will be described with reference to FIGS. 1 to 3.
 図1は、実施の形態1における自律走行掃除機の外観を示す平面図である。図2は、同自律走行掃除機の外観を示す底面図である。図3は、同自律走行掃除機の外観を示す斜視図である。なお、自律走行掃除機100は、家庭内の床面などの清掃の対象領域である掃除エリアを自律的に走行し、掃除エリアに存在するごみを吸引するロボット型の掃除機である。例えば、平面形状がルーローの三角形である自律走行掃除機100などが例示される。 FIG. 1 is a plan view showing the appearance of the autonomous traveling vacuum cleaner according to the first embodiment. FIG. 2 is a bottom view showing the appearance of the autonomous traveling cleaner. FIG. 3 is a perspective view showing the appearance of the autonomous traveling cleaner. The autonomous traveling cleaner 100 is a robot type cleaner that autonomously travels in a cleaning area, which is a target area for cleaning such as a floor surface in a home, and sucks dust present in the cleaning area. For example, the autonomous traveling cleaner 100 etc. whose plane shape is a triangle of a roulette are illustrated.
 図1から図3に示すように、実施の形態1の自律走行掃除機100は、ボディ120、駆動ユニット130、清掃ユニット140、吸引ユニット150、制御ユニット170、および、後述する各種センサを含んで構成される。ボディ120は、自律走行掃除機100の各種構成要素を搭載する。駆動ユニット130は、ボディ120を清掃エリア内で移動させる。清掃ユニット140は、清掃エリアに存在するごみを集める。吸引ユニット150は、清掃ユニット140で集めたごみを、ボディ120の内部に吸引する。制御ユニット170は、駆動ユニット130と、清掃ユニット140と、吸引ユニット150などを制御する。 As shown in FIGS. 1 to 3, the autonomous traveling cleaner 100 according to the first embodiment includes a body 120, a drive unit 130, a cleaning unit 140, a suction unit 150, a control unit 170, and various sensors described later. Configured The body 120 carries the various components of the autonomous traveling cleaner 100. The drive unit 130 moves the body 120 in the cleaning area. The cleaning unit 140 collects waste present in the cleaning area. The suction unit 150 sucks the waste collected by the cleaning unit 140 into the inside of the body 120. The control unit 170 controls the drive unit 130, the cleaning unit 140, the suction unit 150, and the like.
 ボディ120は、駆動ユニット130、制御ユニット170などを収容する筐体を構成する。ボディ120は、下部ボディと上部ボディを含み、下部ボディに対し、上部ボディが取り外し可能に構成される。ボディ120は、外周部に、ボディ120に対して変位可能に設けられるバンパを備える。また、ボディ120は、図2に示すように、ごみをボディ120の内部に吸引するための吸込口121を有する。 The body 120 constitutes a housing that accommodates the drive unit 130, the control unit 170, and the like. The body 120 includes a lower body and an upper body, and the upper body is configured to be removable from the lower body. The body 120 is provided at the outer peripheral portion with a bumper provided displaceably with respect to the body 120. Further, as shown in FIG. 2, the body 120 has a suction port 121 for sucking the dust into the body 120.
 駆動ユニット130は、制御ユニット170からの指示に基づいて、自律走行掃除機100を清掃エリア内で走行させる。実施の形態1においては、駆動ユニット130は、ボディ120の平面視における幅方向の中心に対して、左側および右側にそれぞれ1つずつ配置される。なお、駆動ユニット130の数は、2つに限られず、1つでもよく、また3つ以上でもよい。 The drive unit 130 causes the autonomous traveling cleaner 100 to travel in the cleaning area based on an instruction from the control unit 170. In the first embodiment, one drive unit 130 is disposed on each of the left side and the right side with respect to the center in the width direction of the body 120 in a plan view. The number of drive units 130 is not limited to two, and may be one or three or more.
 駆動ユニット130は、清掃面上を走行するホイール、ホイールにトルクを与える走行用モータ、および、走行用モータを収容するハウジングを含む。ホイールは、ボディ120の下面に形成される凹部に収容され、ボディ120に対して回転可能に取り付けられる。 The drive unit 130 includes a wheel traveling on the cleaning surface, a traveling motor for applying torque to the wheel, and a housing accommodating the traveling motor. The wheel is accommodated in a recess formed on the lower surface of the body 120 and is rotatably attached to the body 120.
 また、自律走行掃除機100は、キャスター179を補助輪として備える対向二輪型の駆動方式で構成される。2つのホイールの回転を独立して制御することにより、自律走行掃除機100は、直進、後退、左回転、右回転など、自在な走行が可能となる。 In addition, the autonomous traveling cleaner 100 is configured by an opposing two-wheel drive system including the caster 179 as an auxiliary wheel. By independently controlling the rotation of the two wheels, the autonomous traveling cleaner 100 can freely travel such as going straight, receding, rotating left, and rotating right.
 清掃ユニット140は、吸込口121からごみを吸い込ませるためのユニットを構成する。清掃ユニット140は、吸込口121内に配置されるメインブラシ、メインブラシを回転させるブラシ駆動モータなどを含む。 The cleaning unit 140 constitutes a unit for sucking in the dust from the suction port 121. The cleaning unit 140 includes a main brush disposed in the suction port 121, a brush drive motor for rotating the main brush, and the like.
 吸引ユニット150は、ボディ120の内部に配置される。吸引ユニット150は、ファンケース、および、ファンケースの内部に配置される電動ファンなどを含む。電動ファンは、ごみ箱ユニット151の内部の空気を吸引し、ボディ120の外方に空気を吐出させる。これにより、ごみが、吸込口121から吸い込まれ、ごみ箱ユニット151内に収容される。 The suction unit 150 is disposed inside the body 120. The suction unit 150 includes a fan case, an electric fan disposed inside the fan case, and the like. The electric fan sucks the air inside the trash can unit 151 and discharges the air to the outside of the body 120. As a result, the waste is sucked from the suction port 121 and accommodated in the trash can unit 151.
 また、自律走行掃除機100は、上述したように、以下に例示する、例えば障害物センサ173、測距センサ174、衝突センサ(図示せず)、カメラ175、床面センサ176、加速度センサ(図示せず)、角速度センサ(図示せず)などの各種センサを備える。 In addition, as described above, the autonomous traveling cleaner 100 exemplifies, for example, an obstacle sensor 173, a distance measurement sensor 174, a collision sensor (not shown), a camera 175, a floor surface sensor 176, and an acceleration sensor (shown below). It includes various sensors such as an angular velocity sensor (not shown) and the like (not shown).
 障害物センサ173は、ボディ120の前方に存在する障害物を検出するセンサである。実施の形態1の場合、障害物センサ173として、例えば超音波センサが用いられる。障害物センサ173は、発信部171、受信部172を有する。発信部171は、ボディ120の前方の中央に配置され、前方に向けて、超音波を発信する。受信部172は、発信部171の両側に配置され、発信部171から発信された超音波を受信する。つまり、障害物センサ173は、発信部171から発信され、障害物により反射して戻ってくる超音波の反射波を受信部172で受信する。これにより、障害物センサ173は、障害物との距離や位置を検出する。 The obstacle sensor 173 is a sensor that detects an obstacle present in front of the body 120. In the case of the first embodiment, for example, an ultrasonic sensor is used as the obstacle sensor 173. The obstacle sensor 173 includes a transmitting unit 171 and a receiving unit 172. The transmitting unit 171 is disposed at the center of the front of the body 120 and transmits an ultrasonic wave toward the front. The receiving unit 172 is disposed on both sides of the transmitting unit 171, and receives the ultrasonic waves transmitted from the transmitting unit 171. That is, the obstacle sensor 173 receives the reflected wave of the ultrasonic wave transmitted from the transmission unit 171 and reflected by the obstacle and returned by the reception unit 172. Thereby, the obstacle sensor 173 detects the distance and the position to the obstacle.
 測距センサ174は、ボディ120の周囲に存在する障害物などの物体とボディ120との距離を検出するセンサである。実施の形態1の場合、測距センサ174は、例えば発光部および受光部を有する赤外線センサで構成される。つまり、測距センサ174は、発光部から放射され、障害物で反射した赤外線が戻って受光部で受光されるまでの経過時間に基づいて、障害物との距離を測定する。 The distance measurement sensor 174 is a sensor that detects the distance between the body 120 and an object such as an obstacle present around the body 120. In the case of the first embodiment, the distance measurement sensor 174 is formed of, for example, an infrared sensor having a light emitting unit and a light receiving unit. That is, the distance measuring sensor 174 measures the distance to the obstacle based on the elapsed time from when the light emitted from the light emitting unit to the infrared light reflected by the obstacle returns and is received by the light receiving unit.
 具体的には、測距センサ174は、例えば右側の前方頂部、および、左側の前方頂部に配置される。右側の測距センサ174は、ボディ120の右斜め前方に向けて光(赤外線)を出力し、左側の測距センサ174は、ボディ120の左斜め前方に向けて光を出力する。この構成により、自律走行掃除機100の旋回時において、測距センサ174は、ボディ120の輪郭と最も接近した周囲の物体と、ボディ120との距離を検出する。 Specifically, the distance measurement sensor 174 is disposed, for example, on the front top on the right side and in the front top on the left side. The distance measuring sensor 174 on the right side outputs light (infrared ray) toward the front of the body 120 obliquely to the right, and the distance measuring sensor 174 on the left side outputs light toward the left front of the body 120. With this configuration, when the autonomous traveling cleaner 100 turns, the distance measurement sensor 174 detects the distance between the body 120 and an object in the vicinity closest to the contour of the body 120.
 衝突センサは、例えばスイッチ接触変位センサで構成され、ボディ120の周囲に配設されるバンパに設けられる。スイッチ接触変位センサは、障害物がバンパと接触して、バンパがボディ120に対して押し込まれることにより、オンされる。これにより、衝突センサは、障害物との接触を検知する。 The collision sensor is, for example, a switch contact displacement sensor, and is provided on a bumper disposed around the body 120. The switch contact displacement sensor is turned on by the obstacle coming into contact with the bumper and the bumper being pushed against the body 120. Thus, the collision sensor detects contact with an obstacle.
 カメラ175は、ボディ120の上部空間の全周画像を撮像する装置である。カメラ175で撮像された画像は、画像認識処理部で処理される。この処理により、画像内の特徴点の位置から自律走行掃除機100の現在位置が把握できる。 The camera 175 is a device for capturing an image of the entire circumference of the upper space of the body 120. The image captured by the camera 175 is processed by the image recognition processing unit. By this processing, the current position of the autonomous traveling cleaner 100 can be grasped from the position of the feature point in the image.
 床面センサ176は、ボディ120の底面の複数箇所に配置され、掃除エリアである、例えば床面が、存在するか否かを検出する。実施の形態1の場合、床面センサ176は、例えば発光部および受光部を有する赤外線センサで構成される。つまり、床面センサ176は、発光部から放射した光(赤外線)が戻って受光部で受信された場合、「床面有り」として検出する。一方、床面センサ176は、受信部が閾値以下の光しか受信しない場合、「床面無し」として検出する。 The floor surface sensor 176 is disposed at a plurality of locations on the bottom surface of the body 120 and detects whether or not a floor area, which is a cleaning area, exists, for example. In the case of the first embodiment, the floor surface sensor 176 is configured of, for example, an infrared sensor having a light emitting unit and a light receiving unit. That is, when the light (infrared rays) emitted from the light emitting unit returns and is received by the light receiving unit, the floor sensor 176 detects “floor present”. On the other hand, when the receiving unit receives only light having a threshold value or less, the floor sensor 176 detects “floor no”.
 駆動ユニット130は、さらにエンコーダを備える。エンコーダは、走行用モータによって回転する一対のホイールのそれぞれの回転角を検出する。エンコーダからの情報により、自律走行掃除機100の走行量、旋回角度、速度、加速度、角速度などが算出される。 The drive unit 130 further comprises an encoder. The encoder detects each rotation angle of a pair of wheels rotated by the traveling motor. Based on the information from the encoder, the traveling amount, the turning angle, the speed, the acceleration, the angular velocity, etc. of the autonomous traveling cleaner 100 are calculated.
 加速度センサは、自律走行掃除機100が走行する際の加速度を検出する。角速度センサは、自律走行掃除機100が旋回する際の角速度を検出する。加速度センサ、角速度センサにより検出された情報は、例えばホイールの空回りによって発生する誤差を修正するための情報などに用いられる。 The acceleration sensor detects an acceleration when the autonomous traveling cleaner 100 travels. The angular velocity sensor detects an angular velocity when the autonomous traveling cleaner 100 turns. The information detected by the acceleration sensor and the angular velocity sensor is used, for example, as information for correcting an error caused by the idle rotation of the wheel.
 なお、以上で説明した障害物センサ173、測距センサ174、衝突センサ、カメラ175、床面センサ176、エンコーダなどは、センサの例示である。そのため、自律走行掃除機100は、全てのセンサを備える必要はない。また、自律走行掃除機100は、上記と異なる形態のセンサを備えてもよい。 The obstacle sensor 173, the distance measurement sensor 174, the collision sensor, the camera 175, the floor surface sensor 176, the encoder, and the like described above are examples of sensors. Therefore, the autonomous traveling cleaner 100 does not have to include all the sensors. Moreover, the autonomous running cleaner 100 may be equipped with a sensor of a form different from the above.
 以上のように、実施の形態1に係る自律走行掃除機100は構成される。 As described above, the autonomous traveling cleaner 100 according to the first embodiment is configured.
 以下、上記制御ユニット170の機能部の動作について、図4を用いて、説明する。 Hereinafter, the operation of the functional unit of the control unit 170 will be described with reference to FIG.
 図4は、実施の形態1における自律走行掃除機100の制御ユニット170の各機能部を示すブロック図である。 FIG. 4 is a block diagram showing each functional unit of control unit 170 of autonomous traveling cleaner 100 in the first embodiment.
 図4に示すように、自律走行掃除機100の制御ユニット170は、駆動ユニット130を制御し、自律走行掃除機100を自律走行させて掃除を実行する。さらに、制御ユニット170は、自律走行中に、上記各種センサから得られた情報に基づいて、走行実績から走行エリアのマップを生成するユニットを構成する。 As shown in FIG. 4, the control unit 170 of the autonomous traveling cleaner 100 controls the drive unit 130 to cause the autonomous traveling cleaner 100 to autonomously travel and execute cleaning. Furthermore, the control unit 170 configures a unit that generates a map of a traveling area from traveling results based on the information obtained from the various sensors during autonomous traveling.
 具体的には、制御ユニット170は、マップ生成部181と、記憶装置200と、マップ比較部182、拡張エリア判定部183と、床面確率更新部184などを備える。 Specifically, the control unit 170 includes a map generation unit 181, a storage device 200, a map comparison unit 182, an extended area determination unit 183, a floor probability update unit 184, and the like.
 マップ生成部181は、走行エリアのマップを生成する処理部として機能する。つまり、マップ生成部181は、上記各種センサからの情報を元に、例えば自己位置推定技術により得られる掃除中の複数箇所における、自律走行掃除機100の自己位置の集合である走行実績を用いて、マップを生成する。 The map generation unit 181 functions as a processing unit that generates a map of the travel area. That is, based on the information from the various sensors described above, the map generation unit 181 uses, for example, travel performance which is a set of self-locations of the autonomous traveling cleaner 100 at a plurality of locations under cleaning obtained by self-location estimation technology. , Generate a map.
 さらに、マップ生成部181は、図10を用いて後述する、掃除エリア180に設置された基準部材189の位置を基準位置とし、走行実績に基づいてマップを生成することもできる。 Furthermore, the map generation unit 181 can also generate a map based on the travel results, with the position of the reference member 189 installed in the cleaning area 180 described later with reference to FIG. 10 as a reference position.
 ここで、掃除エリア180とは、自律走行掃除機100が走行可能な領域である。つまり、一般的には、掃除エリア180は、図10に示すように、例えば部屋の床面の形状で近似される。このとき、例えば今まで閉ざされていたパーティションが開放された場合や、床面に設置されていたソファーやテーブルなどが撤去された場合など、掃除エリア180の領域が大幅に変化する場合がある。また、例えば椅子の位置や、ごみ箱の位置が変わったなど、掃除エリア180の領域が、小幅ではあるが、頻繁に変化する場合がある。 Here, the cleaning area 180 is an area where the autonomous traveling cleaner 100 can travel. That is, generally, the cleaning area 180 is approximated by, for example, the shape of the floor of a room, as shown in FIG. At this time, the area of the cleaning area 180 may change significantly, for example, when a previously closed partition is opened, or when a sofa, a table, or the like installed on a floor surface is removed. Also, the area of the cleaning area 180 may change frequently, although the area is small, for example, the position of the chair or the position of the trash can has changed.
 基準部材189とは、自律走行掃除機100が自律的に走行する際の基準位置となる装置などの部材で、掃除エリア180内に配置される。基準部材189は、特に限定されないが、供給される電力により自律走行掃除機100が備えるバッテリーを充電する充電台などが、基準部材189となる場合がある。 The reference member 189 is a member such as a device serving as a reference position when the autonomous traveling cleaner 100 travels autonomously, and is disposed in the cleaning area 180. Although the reference member 189 is not particularly limited, a charging stand or the like for charging a battery provided in the autonomous traveling cleaner 100 with supplied power may be the reference member 189.
 走行実績とは、例えば走行プログラムに基づいて、自律走行掃除機100が基準部材189を起点として走行を開始してから、例えば掃除エリア180全体を清掃したとして、清掃を終了するまでの自律走行掃除機100の軌跡である。つまり、走行実績は、必ずしも、掃除エリア180全体を清掃した軌跡でなくてもよい。 The traveling record refers to, for example, the autonomous traveling cleaning from when the autonomous traveling cleaner 100 starts traveling with the reference member 189 as a starting point based on the traveling program, for example, to the end of the cleaning assuming that the entire cleaning area 180 is cleaned. It is a trajectory of the machine 100. That is, the travel record does not necessarily have to be the track that cleaned the entire cleaning area 180.
 なお、基準部材189として、上記充電台の他、図3に示すカメラ175などにより撮像された画像から抽出された特徴的な部分を、基準部材189としてもよい。 Note that, as the reference member 189, a characteristic portion extracted from an image captured by a camera 175 or the like shown in FIG. 3 in addition to the charging stand may be used as the reference member 189.
 マップ生成部181は、自律走行掃除機100の走行実績に基づいて、実際に走行した領域の外形、および、図10に示す基準部材189が配置されていた位置である、図5に示す基準位置202を示す情報をマップとして生成する。そして、マップ生成部181は、生成したマップを、制御ユニット170の記憶装置200に保存する。このとき、マップ生成部181は、図10に示すように、掃除エリア180内に走行不可能な島状の領域180Aが存在する場合、島状の領域180Aの外形およびその位置を示す情報を含むマップを生成する。 The map generation part 181 is a reference position shown in FIG. 5 which is an outline of a region actually traveled and a position where the reference member 189 shown in FIG. 10 is arranged based on the traveling results of the autonomous traveling cleaner 100. Information indicating 202 is generated as a map. Then, the map generation unit 181 stores the generated map in the storage device 200 of the control unit 170. At this time, as shown in FIG. 10, when there is an island region 180A which can not run in the cleaning area 180, the map generation unit 181 includes information indicating the outline of the island region 180A and the position thereof. Generate a map.
 実施の形態1の場合、マップ生成部181が生成するマップは、例えば2次元の配列データとして実現される。具体的には、マップ生成部181は、自律走行掃除機100の走行結果を、例えば縦横10cmなどの所定の大きさの、例えば四角形に分割する。そして、マップ生成部181は、各四角形がマップを構成する配列の要素エリアであると見做し、配列データとして、記憶装置200に格納する。なお、記憶される、具体的なデータ形式は、特に限定されない。各要素エリアの値は、例えば床面確率204、累積床面確率304などとして記憶される。上記以外に、掃除したごみの量、自律走行掃除機100が停止した位置などを、追加情報として記憶装置200に記憶させてもよい。 In the case of the first embodiment, the map generated by the map generation unit 181 is realized as, for example, two-dimensional array data. Specifically, the map generation unit 181 divides the traveling result of the autonomous traveling cleaner 100 into, for example, quadrilaterals having a predetermined size such as 10 cm by 10 cm. Then, the map generation unit 181 regards each square as an element area of the array that configures the map, and stores the array area as the array data in the storage device 200. The specific data format to be stored is not particularly limited. The value of each element area is stored as, for example, a floor probability 204, an accumulated floor probability 304, and the like. In addition to the above, the storage device 200 may store the amount of cleaned dust, the position at which the autonomous traveling cleaner 100 has stopped, and the like as additional information.
 マップ比較部182は、図6に示す累積マップ301の累積床面確率304に対して、図5に示す新マップ201の床面確率204が異なる要素エリアで、かつ連続する要素エリアを合わせて、差異エリアとして抽出する処理部である。 The map comparison unit 182 combines element areas in which the floor probability 204 of the new map 201 shown in FIG. 5 differs from the cumulative floor surface probability 304 of the accumulated map 301 shown in FIG. It is a processing unit that extracts as a difference area.
 なお、差異エリアの具体的な抽出方法は、特に限定されない。例えば、累積床面確率304と床面確率204とが第1閾値以上の差である要素エリアで、かつ連続する要素エリアを合わせて、差異エリアとして、抽出してもよい。さらに、まず、新マップ201の床面確率204および累積マップ301の累積床面確率304から、第2閾値以上の確率を有する要素エリアを抽出する。そして、抽出した要素エリアにおいて、床面確率204および累積床面確率304の相互に対応する要素エリアがない要素エリアで、かつ連続する要素エリアを合わせて、差異エリアとして、抽出してもよい。 In addition, the specific extraction method of a difference area is not specifically limited. For example, element areas in which the cumulative floor surface probability 304 and the floor surface probability 204 are equal to or greater than the first threshold may be extracted as a difference area by combining consecutive element areas. Furthermore, first, from the floor probability 204 of the new map 201 and the cumulative floor probability 304 of the cumulative map 301, an element area having a probability equal to or higher than the second threshold is extracted. Then, in the extracted element areas, element areas without corresponding element areas of the floor surface probability 204 and the accumulated floor surface probability 304 may be extracted as a difference area by combining consecutive element areas.
 拡張エリア判定部183は、以下に示す、少なくとも一方の条件が満たされる場合、抽出された差異エリアが拡張エリアであると判定する処理部である。第1の条件は、マップ比較部182が抽出した差異エリアのうち、差異エリアの面積が第3閾値よりも大きい場合で、累積マップ301と差異エリアとの境界線と交差する方向の差異エリアの最大長さである最大深さD(図7参照)が第4閾値よりも大きい場合である。第2の条件は、境界線に沿う方向の差異エリアの最大長である最大幅Wが第5閾値よりも大きい場合である。つまり、上記第1および第2の条件の少なくとも一方が満たされる場合、拡張エリア判定部183は、条件を満たす差異エリアを、拡張エリアであると判定する。 The extension area determination unit 183 is a processing unit that determines that the extracted difference area is the extension area when at least one of the following conditions is satisfied. The first condition is that, of the difference areas extracted by the map comparison unit 182, the difference area in the direction crossing the boundary between the accumulation map 301 and the difference area is the case where the area of the difference area is larger than the third threshold. This is the case where the maximum depth D (see FIG. 7) which is the maximum length is larger than the fourth threshold. The second condition is that the maximum width W, which is the maximum length of the difference area in the direction along the boundary, is larger than the fifth threshold. That is, when at least one of the first and second conditions is satisfied, the extension area determination unit 183 determines that the difference area that satisfies the condition is the extension area.
 ここで、第3閾値は、特に限定されないが、例えば1.44平方mを例示できる。これは、おおよそ1畳の大きさに相当し、実情に合致した数値である。また、第4閾値および第5閾値も、特に限定されないが、例えば自律走行掃除機100の幅に相当する数値を、第4閾値および第5閾値として用いてもよい。 Here, the third threshold is not particularly limited, but can be, for example, 1.44 square meters. This corresponds to the size of approximately 1 tatami and is a numerical value in accordance with the actual situation. Also, the fourth threshold and the fifth threshold are not particularly limited, but, for example, numerical values corresponding to the width of the autonomous traveling cleaner 100 may be used as the fourth threshold and the fifth threshold.
 床面確率更新部184は、以下に示す床面確率204を用いて、累積マップ301に含まれる床面であるかどうかを確率で示した情報である累積床面確率304を更新する処理部である。床面確率204は、新マップ201と累積マップ301とを同じ位置で縦横に分割した1要素を要素エリアとした場合、位置が一致する要素エリアのそれぞれにおいて、新マップ201に含まれる床面であるかどうかを確率で示す情報である。 The floor probability update unit 184 is a processing unit that updates the cumulative floor probability 304, which is information indicating by probability whether the floor is included in the cumulative map 301, using the floor probability 204 described below. is there. Floor surface probability 204 is a floor surface included in new map 201 in each of the element areas where the positions coincide, when one element obtained by dividing new map 201 and accumulated map 301 in the vertical and horizontal directions at the same position is used as an element area. It is information indicating whether or not there is a probability.
 具体的には、床面確率更新部184は、まず、各要素エリアにおいて、今まで、更新に使用した新マップ201の数を示す累積枚数に1を加算する。つぎに、床面確率204から累積床面確率304を減算する。そして、床面確率更新部184は、その差を加算後の累積枚数で除算し、その商に累積床面確率304を加算した和を、新しい累積床面確率304として更新する。 Specifically, the floor probability updating unit 184 first adds 1 to the cumulative number indicating the number of new maps 201 used for updating in each element area. Next, the cumulative floor probability 304 is subtracted from the floor probability 204. Then, the floor probability updating unit 184 divides the difference by the cumulative number after addition, and updates the sum of the quotient and the cumulative floor probability 304 as a new cumulative floor probability 304.
 なお、拡張エリア判定部183で判定された拡張エリアの更新方法は、上述の累積床面確率304の更新方法と異なるが、これについては後述する。 Although the method of updating the extension area determined by the extension area determination unit 183 is different from the method of updating the cumulative floor probability 304 described above, this will be described later.
 表示部186は、表示用マップを生成する処理部である。表示用マップは、記憶装置200が保持する更新された累積マップ301に基づいて生成される。これにより、見やすく、または使いやすい状態で、表示用マップをユーザに提示できる。このとき、表示部186は、ユーザが有する、例えば端末装置などに生成した表示用マップを出力し、表示させる機能を備えてもよい。 The display unit 186 is a processing unit that generates a display map. The display map is generated based on the updated cumulative map 301 held by the storage device 200. This makes it possible to present the display map to the user in an easy-to-see or easy-to-use state. At this time, the display unit 186 may have a function of outputting a display map generated by a user, for example, a terminal device or the like, for display.
 制御ユニット170は、記憶装置200を、さらに備える。記憶装置200は、マップ生成部181で新マップ201を生成する以前に生成したマップが累積された累積マップ301を保持する。記憶装置200に保存される累積マップ301は、走行エリアの各座標点が床面であるかどうかを確率で示す累積床面確率304が、紐付けられる。なお、記憶装置200は、特に限定されないが、例えばハードディスク、フラッシュメモリなどが例示される。 Control unit 170 further includes storage device 200. The storage device 200 holds a cumulative map 301 in which maps generated before the generation of the new map 201 by the map generation unit 181 is accumulated. The cumulative map 301 stored in the storage device 200 is associated with a cumulative floor probability 304, which indicates whether each coordinate point of the travel area is a floor or not. The storage device 200 is not particularly limited, and examples thereof include a hard disk and a flash memory.
 以上のように、制御ユニット170の機能部が構成され、動作する。 As described above, the functional unit of the control unit 170 is configured and operates.
 以下に、制御ユニット170における累積マップ301の更新処理について、図5から図8を参照しながら、説明する。 Hereinafter, the process of updating the cumulative map 301 in the control unit 170 will be described with reference to FIGS. 5 to 8.
 図5は、実施の形態1における新規に生成された新マップ201および新マップ201に含まれる床面確率204の一例を示す図である。図6は、実施の形態1における累積マップ301および累積マップ301に含まれる累積床面確率304の一例を示す図である。図7は、実施の形態1における新マップ201と累積マップ301とを重ね合わせた状態およびこれに対応する床面確率204と累積床面確率304との比較の一例を示す図である。図8は、実施の形態1における更新された累積マップ301の一例を示す図である。 FIG. 5 is a diagram showing an example of the newly generated new map 201 and the floor surface probability 204 included in the new map 201 in the first embodiment. FIG. 6 is a diagram showing an example of the cumulative map 301 and the cumulative floor probability 304 included in the cumulative map 301 according to the first embodiment. FIG. 7 is a diagram showing an example of the state in which the new map 201 and the cumulative map 301 are superimposed in the first embodiment and the floor probability 204 and the cumulative floor probability 304 corresponding to this. FIG. 8 is a diagram showing an example of the updated cumulative map 301 in the first embodiment.
 図5の上段は、マップ生成部181で新しく生成された新マップ201を示す。また、図5の下段は、新マップ201の断面203における床面確率204のグラフを示す。なお、マップの床面確率204は、0(床面でない)または1(床面である)の2つの値を取って図示してもよい。さらに、床面確率204は、自己位置推定の確からしさに基づいて、0と1の間の値を取って図示してもよい。実施の形態1の場合、図5の上段に示す新マップ201は、自己位置推定の確からしさに基づいて、床面確率が0.5以上の部分を図示している。 The upper part of FIG. 5 shows the new map 201 newly generated by the map generation unit 181. Further, the lower part of FIG. 5 shows a graph of the floor surface probability 204 at the cross section 203 of the new map 201. In addition, the floor surface probability 204 of the map may be illustrated by taking two values of 0 (not a floor surface) or 1 (a floor surface). Furthermore, the floor probability 204 may be illustrated taking values between 0 and 1 based on the likelihood of self-position estimation. In the case of the first embodiment, the new map 201 shown in the upper part of FIG. 5 illustrates a portion with a floor surface probability of 0.5 or more based on the certainty of self-position estimation.
 新マップ201は、床面確率204を備えるほか、起点を示す情報である基準位置202を備える。基準位置202は、図10に示す自律走行掃除機100における基準部材189として機能する充電台の位置でもよい。さらに、自律走行掃除機100が走行する走行エリア内に存在する部屋の、例えば隅などを、各センサからの情報に基づいて、基準位置202としてもよい。 The new map 201 includes not only the floor surface probability 204 but also the reference position 202 which is information indicating the starting point. The reference position 202 may be the position of a charging stand that functions as the reference member 189 in the autonomous traveling cleaner 100 shown in FIG. Furthermore, for example, a corner or the like of a room existing in the traveling area in which the autonomous traveling cleaner 100 travels may be set as the reference position 202 based on information from each sensor.
 以下、実施の形態1においては、充電台に対応する位置を基準位置202として、説明する。 Hereinafter, in the first embodiment, the position corresponding to the charging stand will be described as the reference position 202.
 図6の上段は、既に作成されているマップを累積することにより得られ、記憶装置200で保持された累積マップ301を示す。また、図6の下段は、累積マップ301の断面303における累積床面確率304のグラフを示す。累積マップ301は、累積基準位置302を有する。累積基準位置302は、図5に示す生成された新マップ201に含まれる基準位置202を累積したものである。具体的には、例えば毎日掃除した後にマップを作成し、作成した毎日のマップの履歴を累積(重ね合わせ)したものである。基準位置202は、例えば充電台の位置に対応している。そのため、1回以上、複数回、新マップ201が生成される場合でも、充電台の位置が移動しない限り、累積基準位置302は、新マップ201における基準位置202と同じ位置になる。なお、充電台を移動した場合などは、所定の手順に従い、累積基準位置302が更新される。これにより、最新の充電台の位置が、累積マップ301の累積基準位置302となる。 The upper part of FIG. 6 shows a cumulative map 301 obtained by accumulating maps that have already been created and held in the storage device 200. The lower part of FIG. 6 shows a graph of the cumulative floor probability 304 in the cross section 303 of the cumulative map 301. The cumulative map 301 has a cumulative reference position 302. The accumulated reference position 302 is obtained by accumulating the reference position 202 included in the generated new map 201 shown in FIG. Specifically, for example, after daily cleaning, a map is created, and the history of the created daily map is accumulated (superimposed). The reference position 202 corresponds to, for example, the position of the charging stand. Therefore, even when the new map 201 is generated one or more times, as long as the position of the charging stand does not move, the accumulated reference position 302 is the same position as the reference position 202 in the new map 201. In addition, when moving a charge stand etc., the accumulation reference position 302 is updated according to a predetermined | prescribed procedure. Thereby, the position of the latest charging stand becomes the cumulative reference position 302 of the cumulative map 301.
 図7の上段は、マップ比較部182での、新マップ201と累積マップ301との重ね合わせ処理した図を示す。具体的には、マップ比較部182は、新マップ201と累積マップ301とを、比較するために重ね合わせる。このとき、マップ比較部182は、走行エリアにおける基準部材189の位置に変更がないものとして、新マップ201の基準位置202と累積マップ301の累積基準位置302とを一致させて、重ね合わせ処理を行う。なお、基準部材189の位置に変更があった場合、上記重ね合わせ処理は、後述する基準変更確認部300(図9参照)によって行われる。この場合、マップ比較部182は、基準変更確認部300での処理が実行された後に、新マップ201と累積マップ301とを重ね合わせる。 The upper part of FIG. 7 shows a diagram in which the map comparison unit 182 superimposes the new map 201 and the cumulative map 301 on each other. Specifically, the map comparison unit 182 superimposes the new map 201 and the cumulative map 301 for comparison. At this time, the map comparison unit 182 matches the reference position 202 of the new map 201 with the cumulative reference position 302 of the cumulative map 301, assuming that there is no change in the position of the reference member 189 in the traveling area, Do. When there is a change in the position of the reference member 189, the overlapping process is performed by the reference change check unit 300 (see FIG. 9) described later. In this case, the map comparison unit 182 superimposes the new map 201 and the cumulative map 301 after the process of the reference change check unit 300 is performed.
 図7の下段は、新マップ201と累積マップ301と重ね合わせた上段の図の断面403における床面確率204、および、累積床面確率304のグラフを示す。このとき、グラフ中に示すように、重ね合わせた床面確率204と累積床面確率304とに、例えば差異A、差異Bおよび差異Cで示す差異エリアが発生している。この場合、相当する部分の累積マップ301の累積床面確率304と、同じ部分の新マップ201の床面確率204との床面確率の差が、例えば0.5以上などの第1閾値以上であるエリアを、差異エリアとしてもよい。また、新マップ201の床面確率204と累積マップ301の累積床面確率304が、ともに、例えば0.5以上などの第2閾値以上のエリアからなるマップに変換した後、変換したマップの両エリアの差異を、差異エリアとしてもよい。 The lower part of FIG. 7 shows a graph of the floor probability 204 and the cumulative floor probability 304 in the cross section 403 of the upper diagram superimposed on the new map 201 and the cumulative map 301. At this time, as shown in the graph, a difference area indicated by, for example, a difference A, a difference B, and a difference C is generated between the superimposed floor probability 204 and the accumulated floor probability 304. In this case, the difference in floor probability between the cumulative floor probability 304 of the cumulative map 301 of the corresponding portion and the floor probability 204 of the new map 201 in the same portion is, for example, a first threshold such as 0.5 or more. A certain area may be used as a difference area. Also, both the floor probability 204 of the new map 201 and the cumulative floor probability 304 of the cumulative map 301 are converted into a map consisting of an area of a second threshold or more such as 0.5 or more, and then both of the converted maps Area differences may be used as difference areas.
 上記差異は、走行エリアを拡張するかどうかの判定を行う、拡張エリア判定部183(図4参照)で判定される。そして、拡張エリア判定部183の判定結果に応じて、累積マップの累積床面確率が、図9に示す床面確率更新部184により更新される。 The above difference is determined by the extension area determination unit 183 (see FIG. 4) that determines whether to extend the traveling area. Then, according to the determination result of the extension area determination unit 183, the cumulative floor probability of the cumulative map is updated by the floor probability update unit 184 shown in FIG.
 床面確率更新部184は、新マップ201と累積マップ301とを重ね合わせることにより、自己位置推定誤差などによる床面位置のずれを相殺する。これにより、床面確率更新部184は、正しく床面であると判断される確率を高めることができる。 The floor surface probability updating unit 184 offsets the displacement of the floor surface position due to the self position estimation error or the like by superimposing the new map 201 and the cumulative map 301. Thus, the floor surface probability updating unit 184 can increase the probability that the floor surface is correctly determined to be a floor surface.
 例えば、図7に示す差異Aのような累積床面確率304を有する累積マップ301に対して、床面確率更新部184は、新しく生成した新マップ201の、差異Aに相当する部分の床面確率204に基づいて、累積マップ301の累積床面確率304の更新を行う。 For example, with respect to the cumulative map 301 having the cumulative floor probability 304 such as the difference A shown in FIG. 7, the floor probability update unit 184 calculates the floor surface of a portion corresponding to the difference A of the newly generated new map 201. The cumulative floor probability 304 of the cumulative map 301 is updated based on the probability 204.
 更新を行う際、床面確率更新部184は、まず、累積されているデータ量に応じて平均化して、誤差を相殺するように補正する。そして、床面確率更新部184は、補正した床面確率を更新データとして生成する。このとき、床面確率更新部184は、例えば(式1)により、累積床面確率を更新する。 When the updating is performed, the floor probability updating unit 184 first performs averaging according to the accumulated data amount, and corrects the error so as to cancel out the error. Then, the floor probability updating unit 184 generates the corrected floor probability as updated data. At this time, the floor probability updating unit 184 updates the cumulative floor probability, for example, according to (Expression 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、(式1)のN(x,y)は、累積マップ301の座標(x,y)において、今まで重ね合せられたマップの枚数を示す、累積枚数である。(式1)のMnew(x,y)は、新マップ201の座標(x,y)における床面確率204である。(式1)のp(x,y)は、累積マップ301の座標(x,y)における累積床面確率304である。 Here, N (x, y) in (Expression 1) is a cumulative number indicating the number of maps superimposed so far at the coordinates (x, y) of the cumulative map 301. Mnew (x, y) in (Expression 1) is the floor surface probability 204 at the coordinates (x, y) of the new map 201. P (x, y) in (Expression 1) is the cumulative floor probability 304 at the coordinates (x, y) of the cumulative map 301.
 具体的には、床面確率の更新は、(式1)に示すように、まず、今まで更新に使用したマップの数を示す累積枚数(N(x,y))に1を加算する。つぎに、床面確率(Mnew(x,y))から累積床面確率(p(x,y))を減算する。つぎに、その差(Mnew(x,y)-p(x,y))を、加算後の累積枚数(N(x,y))で除算する。つぎに、除算により得られた商に、累積床面確率(p(x,y))を加算し、その和を、新しい累積床面確率(p(x,y))とする。これにより、床面確率更新部184により、累積床面確率が更新される。 Specifically, as shown in (Equation 1), the floor surface probability is first updated by adding 1 to the cumulative number (N (x, y)) indicating the number of maps used for the update so far. Next, the cumulative floor surface probability (p (x, y)) is subtracted from the floor surface probability (Mnew (x, y)). Next, the difference (Mnew (x, y) −p (x, y)) is divided by the cumulative number (N (x, y)) after addition. Next, the cumulative floor probability (p (x, y)) is added to the quotient obtained by the division, and the sum is taken as a new cumulative floor probability (p (x, y)). Thus, the floor probability updating unit 184 updates the cumulative floor probability.
 また、図7に示す差異Bのように、新規となる清掃エリアを掃除するために、自律走行掃除機100が、差異Bの清掃エリアを実際に走行した場合、累積マップ301における累積床面確率304は、ゼロまたは、ほぼゼロである。一方、新マップ201において、上記に相当する部分の床面確率204は、1または、ほぼ1である。つまり、上記により、新マップ201と累積マップ301との間に、差異エリアが抽出される。 Further, as shown in FIG. 7, when the autonomous traveling cleaner 100 actually travels the cleaning area of the difference B in order to clean the new cleaning area as in the difference B, the cumulative floor surface probability in the cumulative map 301 304 is zero or nearly zero. On the other hand, in the new map 201, the floor surface probability 204 of the portion corresponding to the above is 1 or almost 1. That is, the difference area is extracted between the new map 201 and the cumulative map 301 as described above.
 そこで、上述したように、拡張エリア判定部183は、以下に示す、少なくとも一方の条件が満たされる場合、抽出された差異エリアが拡張エリアであると判定する。 Therefore, as described above, the extension area determination unit 183 determines that the extracted difference area is the extension area when at least one of the following conditions is satisfied.
 第1の条件は、差異エリアの面積が第3閾値よりも大きい場合において、累積マップ301と差異エリアとの境界線301Aと交差(直交を含む)する方向の差異エリアの最大長さである最大深さD(図7の下段参照)が第4閾値よりも大きい場合である。第2の条件は、境界線301Aに沿う(平行を含む)方向の差異エリアの最大長である最大幅W(図7の上段参照)が第5閾値よりも大きい場合である。つまり、上記第1および第2の条件の、少なくとも一方または、両方が満たされる場合、拡張エリア判定部183は、条件を満たす差異エリアが、拡張エリアであると判定する。これにより、床面確率更新部184は、図8に示す、累積マップ301の累積床面確率304を新規の累積床面確率304として更新する。 The first condition is a maximum that is the maximum length of the difference area in the direction intersecting (including orthogonally) the boundary line 301A between the accumulation map 301 and the difference area when the area of the difference area is larger than the third threshold. The depth D (see the lower part of FIG. 7) is larger than the fourth threshold. The second condition is that the maximum width W (see the upper part of FIG. 7), which is the maximum length of the difference area in the (including parallel) direction along the boundary 301A, is larger than the fifth threshold. That is, when at least one or both of the first and second conditions are satisfied, the extension area determination unit 183 determines that the difference area satisfying the condition is the extension area. Thus, the floor probability updating unit 184 updates the cumulative floor probability 304 of the cumulative map 301 shown in FIG. 8 as a new cumulative floor probability 304.
 具体的な、更新方法は、以下に示す、例えば(式2)を用いて実行される。つまり、(式2)に示すように、拡張エリアにおいて、累積マップ301の累積枚数(N(x,y))を1に設定する。さらに、累積マップ301の累積床面確率304(p(x,y))を1.0に設定する。 A specific updating method is performed using, for example, (Expression 2) shown below. That is, as shown in (Expression 2), the cumulative number (N (x, y)) of the cumulative map 301 is set to 1 in the extension area. Further, the cumulative floor probability 304 (p (x, y)) of the cumulative map 301 is set to 1.0.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、図7に示す差異Cのように、累積マップ301では一定以上の累積床面確率304を有するが、新マップ201では床面確率204がゼロまたは、ほぼゼロに近い場合、床面確率の更新は行わない。つまり、差異Cで示す位置は、自律走行掃除機100が掃除できなかった部分あるいは、障害物があって走行できなかった部分と判断されるため、床面確率の更新は行わない。この場合、掃除できなかった部分は、未走行エリアの累積情報として、別途、記憶装置200に蓄積させることも可能である。 In addition, as shown in FIG. 7 as the difference C, the cumulative map 301 has the cumulative floor probability 304 at a certain level or more, but in the new map 201, when the floor probability 204 is zero or almost zero, the floor probability is Do not update. That is, since it is determined that the position indicated by the difference C is a portion where the autonomous traveling cleaner 100 could not be cleaned or a portion where it could not travel due to an obstacle, the floor probability is not updated. In this case, the portion that could not be cleaned can be separately stored in the storage device 200 as accumulated information of the non-traveling area.
 以上により、図8に示すように、制御ユニット170における累積マップの更新処理の結果が得られる。 By the above, as shown in FIG. 8, the result of the update process of the accumulation map in the control unit 170 is obtained.
 図8は、更新され、保持されたマップの一例を示す図である。 FIG. 8 is a diagram showing an example of the updated and held map.
 図8の上段は、更新後の累積マップ301を示す。図8の下段は、累積マップ301に示す断面303に対応する更新された累積床面確率304のグラフを示す。 The upper part of FIG. 8 shows the cumulative map 301 after update. The lower part of FIG. 8 shows a graph of the updated cumulative floor probability 304 corresponding to the cross section 303 shown in the cumulative map 301.
 これにより、図8に示す更新された累積マップ301の累積床面確率304に基づいて、第2閾値として設定された、例えば0.5以上の、累積床面確率304を有する位置を床面として、描画できる。このとき、表示部186は、描画した床面の周囲に、例えば壁を描画して、表示用マップを生成してもよい。そして、表示部186は、生成した表示用マップをユーザが所有する、例えば携帯端末などに送信して、表示させてもよい。このとき、指示を受け付けるユーザ指示受付部を、例えば制御ユニットあるいは表示用マップ画面などに設けてもよい。ユーザ指示受付部は、表示された表示用マップに基づいて、ユーザからの、何らかの指示を受け付ける。具体的には、例えば次に掃除するエリアの指示、スケジューリングするための走行エリアの指示などのユーザ指定領域に関する指示である。このとき、さらに、ユーザ指定領域判定部を、例えば制御ユニットあるいは表示用マップ画面などに設けてもよい。ユーザ指定領域判定部は、受け付けたユーザ指定領域を、更新されたマップと関連付けて、掃除可能な領域に相当するエリアか判定する機能を有する。 Thus, based on the cumulative floor probability 304 of the updated cumulative map 301 shown in FIG. 8, the position having the cumulative floor probability 304 set as the second threshold, for example, 0.5 or more is set as the floor. , Can draw. At this time, the display unit 186 may generate, for example, a display map by drawing a wall around the drawn floor surface. Then, the display unit 186 may transmit the generated display map to, for example, a portable terminal or the like owned by the user for display. At this time, a user instruction receiving unit that receives an instruction may be provided, for example, in the control unit or the display map screen. The user instruction receiving unit receives an instruction from the user based on the displayed display map. Specifically, for example, an instruction on a user designated area such as an instruction on an area to be cleaned next and an instruction on a traveling area for scheduling. At this time, a user designated area determination unit may be further provided in, for example, a control unit or a display map screen. The user designated area determination unit has a function of determining whether the received user designated area is an area corresponding to a cleanable area in association with the updated map.
 以上のように、実施の形態1にかかる自律走行掃除機100、および、累積床面確率更新方法によれば、マップ生成部181により生成された複数のマップを重ね合わせた状態で、各要素エリアの累積床面確率304を算出する。これにより、マップの精度が向上する。さらに、マップ生成部181は、新マップ201を生成した際、累積マップ301と比較し、差分領域(差異エリア)を生成する。そして、拡張エリア判定部183は、生成した差分領域が、所定の閾値によって、新たな床面とするか否か、または障害物が存在したか否かを判断する。これにより、累積マップ301の、より柔軟な運用が可能となる。 As described above, according to the autonomous traveling cleaner 100 and the accumulated floor probability updating method according to the first embodiment, each element area is in a state in which the plurality of maps generated by the map generation unit 181 are superimposed. The cumulative floor probability 304 of is calculated. This improves the accuracy of the map. Furthermore, when the new map 201 is generated, the map generation unit 181 compares it with the cumulative map 301 to generate a difference area (difference area). Then, the extended area determination unit 183 determines whether or not the generated difference area is to be a new floor surface or whether there is an obstacle based on a predetermined threshold value. This enables more flexible operation of the cumulative map 301.
 また、実施の形態1にかかる累積床面確率の更新方法によれば、拡張エリアに対応する累積床面確率304を適切に更新できる。これにより、累積マップ301を全体にわたって、高いマップ精度で維持できる。 Further, according to the method of updating the cumulative floor probability according to the first embodiment, the cumulative floor probability 304 corresponding to the extension area can be appropriately updated. This allows the cumulative map 301 to be maintained with high map accuracy throughout.
 (実施の形態2)
 以下、実施の形態2における自律走行掃除機、および、累積床面確率更新方法について、図9を参照しながら、説明する。なお、実施の形態2において、実施の形態1と同様の作用や機能、同様の形状や機構や構造を有するもの(部分)には、同じ符号を付して説明を省略する場合がある。また、以下では実施の形態1と異なる点を中心に説明し、同じ内容については説明を省略する場合がある。
Second Embodiment
The autonomous traveling vacuum cleaner and the cumulative floor surface probability updating method according to the second embodiment will be described below with reference to FIG. In the second embodiment, parts (parts) having the same operation and function as the first embodiment and the same shape, mechanism and structure as the first embodiment may be denoted by the same reference numerals and the description thereof may be omitted. In the following, differences from the first embodiment will be mainly described, and the description of the same contents may be omitted.
 図9は、実施の形態2における制御ユニット170のマップ作成に関する機能部を示すブロック図である。 FIG. 9 is a block diagram showing functional units related to map creation of the control unit 170 in the second embodiment.
 つまり、図9に示すように、実施の形態2の自律走行掃除機100は、制御ユニット170が、基準変更確認部300をさらに備える点で、実施の形態1とは異なる。基準変更確認部300は、マップ比較部182が比較する要素エリアを正しく重ね合わせるために、マップ生成部181で生成された新マップ201の傾きを累積マップ301に合致させ、累積基準位置302を更新する機能を有する。 That is, as shown in FIG. 9, the autonomous traveling cleaner 100 of the second embodiment differs from that of the first embodiment in that the control unit 170 further includes the reference change confirmation unit 300. The reference change confirmation unit 300 matches the inclination of the new map 201 generated by the map generation unit 181 with the accumulation map 301 and updates the accumulated reference position 302 in order to correctly overlap the element areas to be compared by the map comparison unit 182. Have a function to
 基準変更確認部300は、累積マップ301の累積基準位置302を更新する処理部を構成し、最長直線決定部382と、マップ配置部383と、差分算出部384と、基準位置更新部385などを備える。 The reference change confirmation unit 300 configures a processing unit that updates the accumulated reference position 302 of the accumulation map 301, and includes the longest straight line determination unit 382, the map arrangement unit 383, the difference calculation unit 384, the reference position update unit 385, and the like. Prepare.
 具体的には、基準変更確認部300は、まず、マップ生成部181が生成した新マップ201の傾きなどの姿勢を、累積マップ301に合致させる。そして、基準変更確認部300は、新マップ201から基準部材189の位置が、変更されたか否かを確認する。このとき、基準部材189の位置が変更されたと判断した場合、基準変更確認部300は、累積マップ301の累積基準位置302を更新するように機能する。 Specifically, the reference change confirmation unit 300 first matches the posture such as the inclination of the new map 201 generated by the map generation unit 181 with the cumulative map 301. Then, the reference change confirmation unit 300 confirms from the new map 201 whether the position of the reference member 189 has been changed. At this time, if it is determined that the position of the reference member 189 has been changed, the reference change check unit 300 functions to update the cumulative reference position 302 of the cumulative map 301.
 以上のように、実施の形態2における自律走行掃除機100は構成される。 As described above, the autonomous traveling cleaner 100 according to the second embodiment is configured.
 以下、上記制御ユニット170のマップ作成に関する機能部の動作について、図9を参照しながら、図10から図12を用いて、説明する。 Hereinafter, the operation of the functional unit related to map creation of the control unit 170 will be described with reference to FIG. 9 and using FIGS. 10 to 12.
 図10は、掃除エリア180を示す平面図である。図11は、累積マップ301を示す図である。図12は、新マップ201を示す図である。 FIG. 10 is a plan view showing the cleaning area 180. As shown in FIG. FIG. 11 is a diagram showing the cumulative map 301. As shown in FIG. FIG. 12 is a diagram showing the new map 201. As shown in FIG.
 最長直線決定部382は、マップ生成部181により生成されたマップに含まれる直線成分のうち、最も長い最長直線成分を決定する処理部である。ここで、最長直線成分とは、マップに含まれる全ての線分のうち、マップの周縁に含まれる最も長い線分を意味する。このとき、ある程度の誤差の範囲内で、最も長い線分の長さに近い線分が存在する場合、その成分の傾きが、X軸またはY軸に最も近い線分を、最長直線決定部382は、最長直線成分として決定してもよい。 The longest straight line determination unit 382 is a processing unit that determines the longest longest straight line component among the straight line components included in the map generated by the map generation unit 181. Here, the longest straight line component means the longest line segment included in the periphery of the map among all the line segments included in the map. At this time, if there is a line segment close to the length of the longest line segment within a certain error range, the slope of the component thereof is the line segment closest to the X axis or the Y axis as the longest straight line determination unit 382 May be determined as the longest linear component.
 なお、図11および図12に示す、累積マップ301および新マップ201は、実施の形態1と同様に、自律走行掃除機100が走行した走行実績に基づいて、生成される。 As in the first embodiment, the cumulative map 301 and the new map 201 shown in FIG. 11 and FIG. 12 are generated based on the traveling results of the autonomous traveling cleaner 100 traveling.
 以下に、上記により作成される累積マップ301と新マップ201とのマップ間のずれの補正について、図13を用いて、説明する。 Hereinafter, correction of deviation between maps of the cumulative map 301 and the new map 201 created as described above will be described with reference to FIG.
 図13は、基準位置202と累積基準位置302とを一致させて新マップ201と累積マップ301を重ね合わせた状態を示す図である。 FIG. 13 is a diagram showing a state in which the new map 201 and the cumulative map 301 are superimposed with the reference position 202 and the cumulative reference position 302 in agreement.
 まず、マップ配置部383は、図12に示す、マップ生成部181が新しく生成した新マップ201に含まれる基準位置202と、図11に示す、それ以前に生成され、記憶装置200に蓄積された累積マップ301に含まれる累積基準位置302とを一致させる。同時に、マップ配置部383は、図12に示す新マップ201に含まれる最長直線成分193と、図11に示す累積マップ301に含まれる最長直線成分192とが、平行または一直線上になるように重ね合わせて配置する。 First, the map placement unit 383 is generated in the reference position 202 included in the new map 201 newly generated by the map generation unit 181 shown in FIG. 12 and before that shown in FIG. The cumulative reference position 302 included in the cumulative map 301 is matched. At the same time, the map arrangement unit 383 superimposes the longest straight line component 193 included in the new map 201 shown in FIG. 12 and the longest straight line component 192 included in the cumulative map 301 shown in FIG. Arrange them together.
 なお、累積マップ301に対し、新マップ201の基準位置202を重ね合わせ、基準位置202を中心として新マップ201を回転させる処理は、例えば行列のアフィン変換で実行される。上記行列のアフィン変換は、マップを回転させる処理の例示である。 The process of overlapping the reference position 202 of the new map 201 with the cumulative map 301 and rotating the new map 201 about the reference position 202 is executed by, for example, affine transformation of a matrix. The affine transformation of the matrix is an example of the process of rotating the map.
 ここで、図11に示す累積マップ301は、過去に生成された複数のマップを統計的な処理などにより得られたマップである。なお、累積マップ301のうち、最初に生成されたマップは、所定の軸(X軸またはY軸)に最長直線成分が沿うように配置される。そのため、累積マップ301、および、新マップ201は、全て、所定の軸に最長直線成分が沿うように生成される。 Here, the cumulative map 301 illustrated in FIG. 11 is a map obtained by performing statistical processing or the like on a plurality of maps generated in the past. The map generated at first among the cumulative map 301 is arranged such that the longest straight line component is along the predetermined axis (X axis or Y axis). Therefore, the cumulative map 301 and the new map 201 are all generated so that the longest straight line component is along the predetermined axis.
 しかし、実施の形態2の場合、マップ生成部181により生成された新マップ201が、図12に示すように、誤差として、ある程度、傾いている状態で生成される場合がある。そこで、マップ配置部383は、図13に示すように、累積マップ301の最長直線成分192に、新マップ201の最長直線成分193が、所定の軸であるY軸に沿うように、回転させて配置する。そして、累積マップ301の累積基準位置302と新マップ201の基準位置202を一致させるように、X軸に沿って平行移動させる。これにより、図14を用いて説明するように、累積マップ301の最長直線成分192と、新マップ201の最長直線成分193とが平行になるように重なり、マップ間の差分が最小になる。 However, in the case of the second embodiment, as shown in FIG. 12, the new map 201 generated by the map generation unit 181 may be generated as an error in an inclined state to some extent. Therefore, as shown in FIG. 13, the map arranging unit 383 rotates the longest straight line component 192 of the cumulative map 301 so that the longest straight line component 193 of the new map 201 follows the Y axis which is a predetermined axis. Deploy. Then, the accumulated reference position 302 of the accumulated map 301 and the reference position 202 of the new map 201 are moved in parallel along the X axis so as to coincide with each other. Thereby, as described with reference to FIG. 14, the longest straight line component 192 of the cumulative map 301 and the longest straight line component 193 of the new map 201 overlap so as to be parallel, and the difference between the maps is minimized.
 図14は、差分が最小となるように累積マップ301と新マップ201を重ね合わせた状態を示す図である。 FIG. 14 is a diagram showing a state in which the cumulative map 301 and the new map 201 are superimposed so as to minimize the difference.
 具体的には、差分算出部384は、まず、マップ配置部383で配置された新マップ201を累積マップ301に対して、相対的に、1回以上、複数回、平行移動させる。そして、差分算出部384は、平行移動毎に、マップ間の差分を算出する。ここで、マップ間の差分とは、累積マップ301と新マップ201を重ね合わせた場合に、重複しない部分である。つまり、マップ間の差分は、図13に示すハッチング部分が相当する。 Specifically, the difference calculation unit 384 first translates the new map 201 arranged by the map arrangement unit 383 relative to the cumulative map 301 one or more times and a plurality of times. Then, the difference calculating unit 384 calculates the difference between the maps for each parallel movement. Here, the difference between the maps is a portion that does not overlap when the cumulative map 301 and the new map 201 are superimposed. That is, the difference between the maps corresponds to the hatched portion shown in FIG.
 実施の形態2の場合、差分算出部384は、例えば10cmなどの所定の間隔で、累積マップ301に対して新マップ201をX軸方向およびY軸方向に、マトリクス状に、1回以上、複数回、平行移動させる。そして、差分算出部384は、1回の移動毎に、マップ間の差分を算出する。このとき、差分を算出する回数は、例えば一律に何回までと、閾値を定めてもよい。また、複数回に亘って連続的に得られる差分が、常に増加する場合、その段階で差分の算出を終了してもよい。 In the case of the second embodiment, the difference calculating unit 384 performs the new map 201 in the X axis direction and the Y axis direction one or more times in the form of a matrix with respect to the cumulative map 301 at predetermined intervals such as 10 cm. Translate in parallel. Then, the difference calculating unit 384 calculates the difference between the maps for each movement. At this time, the threshold may be determined, for example, by how many times the difference is calculated. Moreover, when the difference obtained continuously over multiple times always increases, the calculation of the difference may be ended at that stage.
 つぎに、基準位置更新部385は、差分算出部384で算出された差分のうち、最小の差分が得られた累積マップ301の基準位置202に対する新マップ201の基準位置202の位置関係に基づいて、次回に作成するマップの基準位置を更新する。これにより、掃除エリア180において、基準部材189が動かされた場合でも、適切に、新たなマップを生成することが可能となる。なお、図14では、X軸方向にのみ基準位置202がずれている場合を例に示したが、基準位置202のずれは、これに限られない。通常、基準位置202のずれは、X軸、および、Y軸の少なくも一方にずれる。そのため、基準位置更新部385は、X軸、および、Y軸のずれに基づいて、基準位置の座標を更新する。これにより、各マップ間のずれを、より高い精度で補正できる。 Next, the reference position update unit 385 determines, based on the positional relationship of the reference position 202 of the new map 201 with respect to the reference position 202 of the cumulative map 301 at which the smallest difference is obtained among the differences calculated by the difference calculation unit 384. , Update the reference position of the map to be created next time. As a result, even if the reference member 189 is moved in the cleaning area 180, it is possible to appropriately generate a new map. Although FIG. 14 exemplifies the case where the reference position 202 is deviated only in the X-axis direction, the deviation of the reference position 202 is not limited to this. Usually, the deviation of the reference position 202 is deviated to at least one of the X axis and the Y axis. Therefore, the reference position update unit 385 updates the coordinates of the reference position based on the deviation of the X axis and the Y axis. Thereby, the deviation between the maps can be corrected with higher accuracy.
 以上で説明したように、実施の形態2の自律走行掃除機100によれば、各種センサの測定誤差などにより新マップ201が累積マップ301に対して傾いて生成された場合でも、傾きを修正して、累積マップ301に新マップ201を、正確に重ね合わせることができる。これにより、更新する累積床面確率304の精度の向上が可能となる。 As described above, according to the autonomous traveling cleaner 100 of the second embodiment, even when the new map 201 is generated to be inclined with respect to the cumulative map 301 due to measurement errors of various sensors, etc., the inclination is corrected. Thus, the new map 201 can be accurately superimposed on the cumulative map 301. This makes it possible to improve the accuracy of the cumulative floor probability 304 to be updated.
 また、実施の形態2の自律走行掃除機100によれば、掃除エリア180において、基準部材189が移動した場合、自律走行掃除機100自体が基準部材189の移動を認識する。そして、認識した基準部材189の移動に基づいて、累積基準位置302を正しく更新する。そのため、累積床面確率304の精度を高い状態で維持できる。 Further, according to the autonomous traveling cleaner 100 of the second embodiment, when the reference member 189 moves in the cleaning area 180, the autonomous traveling cleaner 100 itself recognizes the movement of the reference member 189. Then, based on the recognized movement of the reference member 189, the cumulative reference position 302 is correctly updated. Therefore, the accuracy of the cumulative floor probability 304 can be maintained high.
 なお、本発明は、上記実施の形態に限定されない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。さらに、上記実施の形態に対して、本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。 The present invention is not limited to the above embodiment. For example, another embodiment realized by arbitrarily combining the components described in the present specification and excluding some of the components may be used as an embodiment of the present invention. Furthermore, modifications obtained by applying various modifications to those skilled in the art to the above embodiment without departing from the spirit of the present invention, that is, the meaning indicated by the language of the claims are also included in the present invention. included.
 例えば、実施の形態1および2で説明した構成のうち、マップ生成部181以外は、自律走行掃除機100とネットワークを介して接続された、サーバなどの計算機(コンピュータ)上で構成してもよい。この場合、自律走行掃除機100を備えた掃除機システムと見做すことができる。このとき、マップ生成部181で生成された新マップ201は、ネットワークを通じて計算機に送信される。そして、送信された新マップ201に基づいて、計算機が保存している累積マップ301が更新される。 For example, among the configurations described in the first and second embodiments, components other than the map generation unit 181 may be configured on a computer (computer) such as a server connected to the autonomous traveling cleaner 100 via a network. . In this case, it can be considered as a vacuum cleaner system provided with the autonomous traveling vacuum cleaner 100. At this time, the new map 201 generated by the map generation unit 181 is transmitted to the computer through the network. Then, based on the transmitted new map 201, the cumulative map 301 stored by the computer is updated.
 また、ユーザがスマートフォンなどの端末上で、計算機から受信した累積マップ301に基づいて、掃除結果を確認できる構成としてもよい。 Also, the configuration may be such that the user can confirm the cleaning result on a terminal such as a smartphone based on the cumulative map 301 received from the computer.
 さらに、ユーザが、携帯端末を介して、自律走行掃除機100の掃除するエリアを指定できるように構成してもよい。 Furthermore, the user may be configured to specify an area to be cleaned by the autonomous traveling cleaner 100 via the mobile terminal.
 本発明は、家庭内、工場内、大規模施設内などにおいて、自律的に走行し掃除を行う、いわゆるロボット型の掃除機などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to a so-called robot-type vacuum cleaner or the like that travels and cleans autonomously in a home, a factory, a large-scale facility, and the like.
 100  自律走行掃除機
 120  ボディ
 121  吸込口
 130  駆動ユニット
 140  清掃ユニット
 150  吸引ユニット
 151  箱ユニット
 170  制御ユニット
 171  発信部
 172  受信部
 173  障害物センサ
 174  測距センサ
 175  カメラ
 176  床面センサ
 179  キャスター
 180  掃除エリア
 180A  領域
 181  マップ生成部
 182  マップ比較部
 183  拡張エリア判定部
 184  床面確率更新部
 186  表示部
 189  基準部材
 192,193  最長直線成分
 200  記憶装置
 201  新マップ
 202  基準位置
 203,303,403  断面
 204  床面確率
 300  基準変更確認部
 301  累積マップ
 301A  境界線
 302  累積基準位置
 304  累積床面確率
 382  最長直線決定部
 383  マップ配置部
 384  差分算出部
 385  基準位置更新部
Reference Signs List 100 autonomous traveling cleaner 120 body 121 suction port 130 drive unit 140 cleaning unit 150 suction unit 151 box unit 170 control unit 171 transmission unit 172 reception unit 173 obstacle sensor 174 distance measurement sensor 175 camera 176 floor sensor 179 caster 180 cleaning area 180A area 181 map generation unit 182 map comparison unit 183 extended area determination unit 184 floor surface probability update unit 186 display unit 189 reference member 192, 193 longest straight component 200 storage unit 201 new map 202 reference position 203, 303, 403 cross section 204 floor Surface probability 300 Reference change confirmation unit 301 Cumulative map 301A Boundary line 302 Cumulative reference position 304 Cumulative floor surface probability 382 Longest straight line determination unit 383 Map layout Part 384 difference calculation unit 385 a reference position update unit

Claims (7)

  1. 自律的に走行して掃除を行う自律走行掃除機であって、
    掃除エリアに設置された基準部材の位置を基準位置とした新マップを走行実績に基づいて生成するマップ生成部と、
    前記新マップと既に作成されたマップが累積された累積マップとを同じ位置で複数に分割した1要素を要素エリアとした場合、位置が一致する前記要素エリアのそれぞれにおいて、前記新マップに含まれる床面であるかどうかを確率で示した情報である床面確率を用いて、前記累積マップに含まれる床面であるかどうかを確率で示した情報である累積床面確率を更新する床面確率更新部と、を備え、
    前記床面確率更新部は、
    それぞれの前記要素エリアにおいて、今まで更新に使用した前記マップの数を示す累積枚数に1を加算し、前記床面確率から前記累積床面確率を減算し、その差を加算後の前記累積枚数で除算し、その商に前記累積床面確率を加算した和を、新しい前記累積床面確率として更新する、
    自律走行掃除機。
    It is an autonomous traveling vacuum cleaner that travels and cleans autonomously,
    A map generation unit that generates a new map based on the traveling results with the position of the reference member installed in the cleaning area as the reference position;
    When one element obtained by dividing the new map and the accumulated map in which the already created map is divided into a plurality at the same position is used as an element area, the element is included in the new map in each of the element areas whose positions coincide. A floor surface that updates cumulative floor probability which is information indicating whether it is a floor included in the cumulative map using the floor probability which is information indicating whether it is a floor by probability or not And a probability update unit,
    The floor surface probability updating unit
    In each of the element areas, 1 is added to the cumulative number indicating the number of maps used for updating so far, the cumulative floor probability is subtracted from the floor probability, and the cumulative number after adding the difference Dividing by 、 and adding the accumulated floor probability to the quotient, and updating the sum as the new accumulated floor probability,
    Autonomous vacuum cleaner.
  2. 前記累積マップの前記累積床面確率に対して、前記新マップの前記床面確率が異なる前記要素エリアで、かつ連続する前記要素エリアを合わせて差異エリアとして抽出するマップ比較部を、さらに備える、
    請求項1に記載の自律走行掃除機。
    It further comprises a map comparison unit which combines the element areas of the element area different from the floor area probability of the new map with respect to the accumulated floor surface probability of the accumulated map and continues as a difference area.
    The autonomous running cleaner according to claim 1.
  3. 前記マップ比較部は、
    前記累積床面確率と前記床面確率とが、第1閾値以上の差である前記要素エリアで、かつ連続する前記要素エリアを合わせて前記差異エリアとして抽出する、
    請求項2に記載の自律走行掃除機。
    The map comparison unit
    In the element area where the accumulated floor surface probability and the floor surface probability are differences equal to or greater than a first threshold, the element areas that are continuous and combined are extracted as the difference area.
    The autonomous running cleaner according to claim 2.
  4. 前記マップ比較部は、
    前記新マップの前記床面確率および前記累積マップの前記累積床面確率から、確率が、第2閾値以上の前記要素エリアを抽出し、相互に対応する前記要素エリアがない前記要素エリアで、かつ連続する前記要素エリアを合わせて前記差異エリアとして抽出する、
    請求項2に記載の自律走行掃除機。
    The map comparison unit
    The element area having a probability equal to or greater than a second threshold value is extracted from the floor surface probability of the new map and the accumulated floor surface probability of the cumulative map, and the element area with no corresponding element area mutually corresponding, The consecutive element areas are combined and extracted as the difference area.
    The autonomous running cleaner according to claim 2.
  5. 前記マップ比較部が抽出した前記差異エリアのうち、前記差異エリアの面積が、第3閾値よりも大きい場合であって、
    前記累積マップと前記差異エリアとの境界線と交差する方向の前記差異エリアの最大長さである最大深さが第4閾値よりも大きい、または、前記境界線に沿う方向の前記差異エリアの最大長である最大幅が第5閾値よりも大きい、の少なくとも一方を満たす前記差異エリアを、拡張エリアであると判定する拡張エリア判定部と、を備え、
    前記床面確率更新部は、
    前記拡張エリア判定部で判定された前記拡張エリアの前記累積枚数を1に設定し、前記累積床面確率を1にする、または、前記新マップの前記床面確率に一致させる、
    請求項2から請求項4のいずれか1項に記載の自律走行掃除機。
    Among the difference areas extracted by the map comparison unit, the area of the difference area is larger than a third threshold, and
    The maximum depth which is the maximum length of the difference area in the direction crossing the boundary between the accumulation map and the difference area is larger than a fourth threshold, or the maximum of the difference area in the direction along the boundary An extended area determination unit that determines that the difference area satisfying at least one of the maximum width which is the length is larger than the fifth threshold is an extended area;
    The floor surface probability updating unit
    The accumulated number of the expanded area determined by the expanded area determination unit is set to 1, and the accumulated floor probability is set to 1, or matched with the floor probability of the new map.
    The autonomous running cleaner according to any one of claims 2 to 4.
  6. 前記マップ生成部により生成された前記新マップに含まれる直線成分のうち、最長直線成分を決定する最長直線決定部と、
    前記新マップに含まれる前記基準位置と前記累積マップに含まれる累積基準位置とを一致させ、かつ、前記新マップに含まれる前記最長直線成分と前記累積マップに含まれる前記最長直線成分とを平行または一直線上に配置するマップ配置部と、
    前記マップ配置部で配置された前記新マップを前記累積マップに対して相対的に、1回以上、平行移動させて、移動毎に、前記新マップと前記累積マップとの差分を算出する差分算出部と、
    前記差分算出部で算出された前記差分のうち、最小の前記差分が得られた前記累積マップの前記累積基準位置に対する前記新マップの前記基準位置の位置関係に基づいて、前記累積基準位置を更新する基準位置更新部と、を備える、
    請求項1から請求項5のいずれか1項に記載の自律走行掃除機。
    A longest straight line determination unit that determines a longest straight line component among straight line components included in the new map generated by the map generation unit;
    The reference position included in the new map is made to coincide with the accumulated reference position included in the cumulative map, and the longest straight line component included in the new map and the longest straight line component included in the cumulative map are parallel Or a map arrangement unit arranged in a straight line,
    The new map placed by the map placement unit is moved in parallel relative to the cumulative map one or more times, and the difference is calculated to calculate the difference between the new map and the cumulative map for each movement. Department,
    The cumulative reference position is updated based on the positional relationship of the reference position of the new map with respect to the cumulative reference position of the cumulative map from which the smallest difference is obtained among the differences calculated by the difference calculation unit. A reference position updating unit
    The autonomous running cleaner according to any one of claims 1 to 5.
  7. 自律的に走行して掃除を行う自律走行掃除機における累積床面確率更新方法であって、
    マップ生成部は、掃除エリアに設置された基準部材の位置を基準位置とした新マップを、走行実績に基づいて生成し、
    床面確率更新部は、
    前記新マップと既に作成されたマップが累積された累積マップとを同じ位置で複数に分割した1要素を要素エリアとした場合、
    位置が一致する前記要素エリアのそれぞれにおいて、前記新マップに含まれる床面であるかどうかを確率で示した情報である床面確率と、前記累積マップに含まれる床面であるかどうかを確率で示した情報である累積床面確率とを用いて、
    今まで更新に使用した前記マップの数を示す累積枚数に1を加算し、前記床面確率から前記累積床面確率を減算し、その差を加算後の前記累積枚数で除算し、その商に前記累積床面確率を加算した和を、新しい前記累積床面確率として更新する、
    累積床面確率更新方法。
    An accumulated floor probability updating method for an autonomously traveling vacuum cleaner that travels and cleans autonomously, comprising:
    The map generation unit generates a new map based on the track record, with the position of the reference member installed in the cleaning area as the reference position,
    The floor probability update unit
    When one element obtained by dividing the new map and the accumulated map in which the already created map is accumulated into a plurality at the same position is used as an element area
    In each of the element areas whose positions coincide, a floor surface probability which is information indicating whether it is a floor surface included in the new map and a probability whether it is a floor surface included in the cumulative map Using the cumulative floor probability, which is the information shown in
    1 is added to the cumulative number indicating the number of maps used for updating so far, the cumulative floor probability is subtracted from the floor probability, the difference is divided by the cumulative number after addition, and Update the sum of the cumulative floor probabilities as the new cumulative floor probability,
    Cumulative floor probability update method.
PCT/JP2018/030883 2017-09-07 2018-08-22 Autonomous travel-type cleaner and method for updating cumulative floor area probability WO2019049655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880052600.9A CN111031878B (en) 2017-09-07 2018-08-22 Autonomous traveling vacuum cleaner and cumulative floor probability updating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-172458 2017-09-07
JP2017172458A JP2019047848A (en) 2017-09-07 2017-09-07 Autonomous travel vacuum cleaner, and cumulative floor surface probability update method

Publications (1)

Publication Number Publication Date
WO2019049655A1 true WO2019049655A1 (en) 2019-03-14

Family

ID=65633971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030883 WO2019049655A1 (en) 2017-09-07 2018-08-22 Autonomous travel-type cleaner and method for updating cumulative floor area probability

Country Status (3)

Country Link
JP (1) JP2019047848A (en)
CN (1) CN111031878B (en)
WO (1) WO2019049655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207006A1 (en) * 2019-04-12 2020-10-15 珠海市一微半导体有限公司 Map update control method and map update control system for visual robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085305A (en) * 2000-09-12 2002-03-26 Toshiba Tec Corp Robot cleaner and robot cleaner system
JP2004033340A (en) * 2002-07-01 2004-02-05 Hitachi Home & Life Solutions Inc Robot vacuum cleaner and robot vacuum cleaner control program
JP2005211367A (en) * 2004-01-30 2005-08-11 Funai Electric Co Ltd Autonomous traveling robot cleaner
JP2006110322A (en) * 2004-10-12 2006-04-27 Samsung Kwangju Electronics Co Ltd Coordinate correction method of robotic cleaner and robotic cleaner system using it
JP2015058131A (en) * 2013-09-18 2015-03-30 村田機械株式会社 Autonomous travelling type floor washer, data structure of cleaning schedule, storage medium, cleaning schedule creation method, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503404A (en) * 2009-08-31 2013-01-31 ニート ロボティックス,インコーポレイティド Method and apparatus for simultaneous localization and mapping of mobile robot environment
CN104950883A (en) * 2015-05-14 2015-09-30 西安电子科技大学 Mobile robot route planning method based on distance grid map
JP6686411B2 (en) * 2015-12-14 2020-04-22 トヨタ自動車株式会社 Map making method
CN105333879B (en) * 2015-12-14 2017-11-07 重庆邮电大学 Synchronous superposition method
CN106168805A (en) * 2016-09-26 2016-11-30 湖南晖龙股份有限公司 The method of robot autonomous walking based on cloud computing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085305A (en) * 2000-09-12 2002-03-26 Toshiba Tec Corp Robot cleaner and robot cleaner system
JP2004033340A (en) * 2002-07-01 2004-02-05 Hitachi Home & Life Solutions Inc Robot vacuum cleaner and robot vacuum cleaner control program
JP2005211367A (en) * 2004-01-30 2005-08-11 Funai Electric Co Ltd Autonomous traveling robot cleaner
JP2006110322A (en) * 2004-10-12 2006-04-27 Samsung Kwangju Electronics Co Ltd Coordinate correction method of robotic cleaner and robotic cleaner system using it
JP2015058131A (en) * 2013-09-18 2015-03-30 村田機械株式会社 Autonomous travelling type floor washer, data structure of cleaning schedule, storage medium, cleaning schedule creation method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207006A1 (en) * 2019-04-12 2020-10-15 珠海市一微半导体有限公司 Map update control method and map update control system for visual robot

Also Published As

Publication number Publication date
CN111031878B (en) 2021-05-14
CN111031878A (en) 2020-04-17
JP2019047848A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US20240118700A1 (en) Mobile robot and control method of mobile robot
EP3360456B1 (en) Robot cleaner and controlling method of the same
KR101813922B1 (en) Robot cleaner and controlling method of the same
WO2019097626A1 (en) Self-propelled vacuum cleaner
EP2413772B1 (en) Mobile robot with single camera and method for recognizing 3d surroundings of the same
US10213082B2 (en) Robot cleaner
KR101976462B1 (en) A robot cleaner a control method thereof
JP2018075191A (en) Vacuum cleaner
KR20190093800A (en) a Moving robot and Controlling method for the moving robot
KR102565250B1 (en) Robot cleaner
KR101303161B1 (en) Mobile robot and controlling method of the same
WO2020235295A1 (en) Cleaning map display device, and cleaning map display method
WO2019049655A1 (en) Autonomous travel-type cleaner and method for updating cumulative floor area probability
CN111095151B (en) Autonomous walking dust collector and map correction method
JP6945144B2 (en) Cleaning information providing device and vacuum cleaner system
CN111225592B (en) Autonomous traveling dust collector and extended area identification method
KR101895314B1 (en) Robot cleaner and controlling method of the same
WO2020059292A1 (en) Autonomous traveling cleaner
US20230324914A1 (en) Travel map generation device, autonomously traveling robot, travel control system for autonomously traveling robot, travel control method for autonomously traveling robot, and recording medium
WO2023089886A1 (en) Traveling map creating device, autonomous robot, method for creating traveling map, and program
JP7033719B2 (en) Cleaning information providing device
CN115670304A (en) Cleaning machine
JP2019144849A (en) Autonomous traveling cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854974

Country of ref document: EP

Kind code of ref document: A1