WO2019049514A1 - Elevator rope - Google Patents

Elevator rope Download PDF

Info

Publication number
WO2019049514A1
WO2019049514A1 PCT/JP2018/026671 JP2018026671W WO2019049514A1 WO 2019049514 A1 WO2019049514 A1 WO 2019049514A1 JP 2018026671 W JP2018026671 W JP 2018026671W WO 2019049514 A1 WO2019049514 A1 WO 2019049514A1
Authority
WO
WIPO (PCT)
Prior art keywords
rope
strand
elevator rope
elevator
steel wire
Prior art date
Application number
PCT/JP2018/026671
Other languages
French (fr)
Japanese (ja)
Inventor
前田 亮
真人 中山
安部 貴
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP18853024.0A priority Critical patent/EP3683179A4/en
Priority to CN201880057739.2A priority patent/CN111065594B/en
Publication of WO2019049514A1 publication Critical patent/WO2019049514A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/1014Rope or cable structures characterised by their internal structure characterised by being laid or braided from several sub-ropes or sub-cables, e.g. hawsers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1044Rope or cable structures twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2005Elongation or elasticity
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Definitions

  • the present invention relates to an elevator rope.
  • elevator cars are suspended by wire ropes (hereinafter referred to as “ropes” or “elevator ropes”), which are wound around a drive sheave of a hoist, and rope grooves and ropes on the sheave surface.
  • the car is raised and lowered by driving with friction.
  • Patent Document 1 discloses an IWRC having a core strand, a plurality of side strands disposed around the core strand, and a coating resin for covering the core strand and the plurality of side strands as a structure for strengthening the rope.
  • the main rope for elevators disclosed is characterized in that the ratio of the total of the gaps between two side strands adjacent in the circumferential direction of the virtual layer core circle is 8.5% or more. .
  • the rope disclosed in Patent Document 1 is wire-drawn into strands forming the rope to be thin, and has a breaking strength of 2300 MPa (the wire breaking strength of elevator ropes generally widely used is about 1620) It uses a wire which has been increased to the ⁇ 1910 MPa) grade. The strength of the rope is improved in proportion to the wire strength, and the number of ropes can be reduced.
  • the number of ropes used for the elevator is determined from the ratio of the load received per rope and the breaking strength, and the number of ropes used per elevator is reduced by improving the breaking strength per rope. can do.
  • One way to improve the breaking strength of the wire rope is to improve the breaking strength per wire constituting the wire rope, but the elastic modulus per wire is not proportional to the breaking strength.
  • the rigidity of the entire rope is reduced by the reduced number of ropes. Therefore, for example, when the load applied to the rope suddenly changes due to getting on and off the elevator, the amount of expansion and contraction of the rope becomes large, and the riding comfort is reduced.
  • an object of the present invention is an elevator rope capable of reducing the amount of change in rope elongation caused by fluctuation in rope tension due to getting on and off the elevator even if the breaking strength of the rope is improved to reduce the number of ropes.
  • the present invention is an elevator rope formed by twisting a plurality of strands of a plurality of steel wires, wherein the diameter of the elevator rope is d (mm) and the winding distance of the strands is a rope pitch
  • the ratio a of P 1 to d, the ratio a of P 1 to d, the ratio b of P 2 to d, and the breaking strength T (N) of the elevator rope satisfy the following equation A, where P 1 and the winding distance of the steel wire are strand pitch P 2
  • P 1 and the winding distance of the steel wire are strand pitch P 2
  • E longitudinal modulus of elasticity (MPa) of material used for elevator rope
  • G lateral modulus of elasticity (MPa) of material used for elevator rope
  • N number of strands.
  • the steel wires are formed by twisting a plurality of strands.
  • the diameter of the elevator rope is d (mm)
  • the winding distance of the strands is rope pitch P 1
  • the winding distance of the steel wire is strand pitch P 2
  • the ratio of P 1 to d is to a
  • d Provided is an elevator rope characterized in that the ratio b of P 2 and the breaking strength T (N) of the elevator rope satisfy the above-mentioned formula A.
  • a wire rope for elevator capable of reducing the amount of change in rope elongation caused by fluctuation in rope tension due to getting on and off the elevator even if the breaking strength of the rope is improved to reduce the number of ropes. be able to.
  • FIG. 1 is a side view schematically showing a first example of the elevator rope of the present invention.
  • the elevator rope 1 is formed by twisting a plurality of strands 2 in which a plurality of steel wires 3 are twisted. Only one strand 2 and one steel wire 3 are shown in FIG. 1 in consideration of the viewability of the drawing.
  • a core fiber core, steel wire core, etc.
  • the strand 2 is twisted on the core.
  • the plurality of strands 2 are arranged on the same circumference at substantially equal intervals.
  • the strands 2 and the steel wire 3 may be arranged in two layers in which two layers are arranged on the circumference in addition to one layer circumferentially arranged in the radial direction, and three in which the three layers are arranged on the circumference There are also some which are constituted by a plurality of layers, such as layer arrangement.
  • spacing the strands 2 of one constituting the elevator rope is around the (winding gap) and rope pitch P 1, spacing steel wire 3 constituting the strands 2 makes one rotation (winding gap) the strand pitch P 2 I assume.
  • the rope pitch P 1 is the length of up to strand 2 is round around a core
  • length to strand pitch P 2 is steel wire 3 is slightly around the central axis of the strand It is.
  • FIG. 2 is a side view schematically showing a second example of the elevator rope of the present invention.
  • the steel wire 3 has shown what was formed by stranding two or more strands 3a.
  • the present invention can also be applied to an elevator rope of such a configuration. Spacing wires 3a constituting the steel wire 3 makes one rotation (the winding interval) and steel wire pitch P 3.
  • FIG. 3 is a view showing the relationship between tension T and elongation ⁇ L ⁇ and ⁇ L ⁇ in the elevator rope.
  • tension T acts on the twisted strand in the axial direction of the twist center axis 30 is considered.
  • the elongation of the strand 2 is caused by the tensile force acting in the axial direction of the elongation ⁇ L ⁇ generated by the shear force acting on the cross section of the strand 2 and the twist elongation and the axis 31 extending in the perpendicular direction of the cross section of the strand 2 It is given by the sum of an elongation ⁇ L ⁇ due to the occurrence of a slight strain in the strand 2 itself (the central axis 30 of the twist and the axis 31 in the direction perpendicular to the strand cross section have an angle of ⁇ °).
  • the elevator rope length L 1, elongation [delta] L 1 when the tension T 1 is acted in the direction of the central axis of twisting of the strands can be expressed as the following equation (1).
  • the elongation ⁇ L 2 when tension T 2 acts in the central axis direction of the twist of the steel wire 3 of length L 2 can be expressed as the following equation (2), and the strand 3a of length L 3
  • the elongation ⁇ L 3 when tension T 3 acts in the central axis direction of the twist of can be expressed as the following equation (3).
  • L 1 ⁇ L 1 ⁇ + ⁇ L 1 ⁇ equation (1)
  • ⁇ L 2 ⁇ L 2 ⁇ + ⁇ L 2 ⁇ equation (2)
  • ⁇ L 3 ⁇ L 3 ⁇ + ⁇ L 3 ⁇ equation (3)
  • L 1 is the length in the central axis direction of strand twist (mm)
  • L 2 is the length in the central axis direction of steel wire twist (mm)
  • L 3 is the length in the central axis direction of strand of strand (Mm).
  • the tensile force acting in the perpendicular direction of the strand cross section is the same because the vertical direction of the strand cross section and the central axis direction of the twist of the steel wire are the same direction, It becomes a force acting in the central axis direction of the twist of the steel wire. Therefore, it is considered that the elongation ⁇ L 1 ⁇ by the tensile force of the strand is equal to the elongation ⁇ L 2 of the entire steel wire.
  • This relationship is the same as in a steel wire formed by twisting a plurality of strands, and the above-mentioned relationship can be summarized as a secondary twist rope (a rope on which the strands of FIG.
  • G is the transverse elastic modulus (MPa) of the strand
  • S 1 is the cross-sectional area per one strand (mm 2 )
  • n 1 is the number of strand twists (pieces) per length
  • L 1 and d 0 is the rope diameter (Mm)
  • the elongation ⁇ L 2 ⁇ when tension T 2 acts in the central axis direction of the twist of the steel wire of length L 2 is obtained by the following equation (8), where K 2 ⁇ is the spring constant of the steel wire is, the K 2 tau can be expressed by the following (9) formula.
  • the elongation ⁇ L 3 ⁇ when tension T 3 acts in the central axis direction of the strand of length L 3 in strand is determined by the following equation (10), where K 3 ⁇ is the spring constant of the strand. , K 3 ⁇ can be expressed as (11) below.
  • K 3 ⁇ 0.03 ⁇ ⁇ 2 ⁇ G ⁇ S 3 / n 3 / d 0 equation (11)
  • S 3 is a cross-sectional area per one wire (mm 2)
  • n 3 is the number of twists of the strand per length L 3 (pieces)
  • the number of twists strand steel wire-strand is a value determined by the rope pitch P 1-strand pitch P 2 ⁇ steel wire pitch P 3, the ratio of rope pitch against the rope diameter d 0 a (P 1 / Assuming that d 0 ), the strand pitch ratio is b (P 2 / d 0 ), and the steel wire pitch ratio is c (P 3 / d 0 ), equations (12) to (14) can be expressed.
  • FIG. 4 is a schematic cross-sectional view of an elevator rope in which the outermost layer of the elevator rope is composed of ten strands
  • FIG. 5 is a diagram in which the outermost layer of the elevator rope is composed of six strands.
  • FIG. 6 is a cross-sectional schematic view of an elevator rope in which the outermost layer of the strands is composed of six steel wires
  • FIG. 7 is the outermost layer of the strands composed of 12 steel wires.
  • the number of strands of the outermost layer of the elevator rope is eight.
  • FIG. 8 is a schematic cross-sectional view of an elevator rope (third twist) having a steel wire in which strands are twisted.
  • steel wire diameter: d 2 wire diameter: d 3
  • steel wire twist diameter: D 2 and strand wire diameter D 3 are geometrically
  • equations (15) to (17) are established.
  • N 1 d 0 ⁇ sin ( ⁇ / N 1 ) / (1 + sin ( ⁇ / N 1 ))
  • D 1 d 0 -d 1 equation (15)
  • N 1 is the number of outermost layer strands (piece).
  • N 2 is the outermost layer steel wire number (present).
  • N 3 the outermost layer strands number (present).
  • the tension T 0 determines the tension applied to one per outermost strand outermost steel wire, the outermost layer strands. These are determined by the ratio of the cross-sectional area of strands, steel wires and strands, and can be determined geometrically. Assuming that the tension applied to the outermost layer strand is T 1 , the tension applied to the outermost layer steel wire is T 2 , and the tension applied to the outermost layer wire is T 3 , the following expressions (18) to (20) can be expressed is there.
  • T 1 T 0 / N 1 equation (18)
  • T 2 T 1 ⁇ (S 2 / S 1 ) Formula (19)
  • T 3 T 2 ⁇ (S 3 / S 2 ) Formula (20)
  • ⁇ 1 tan ⁇ 1 (D 1 ⁇ ⁇ / (d 0 ⁇ a)) Equation (21)
  • ⁇ 2 tan ⁇ 1 (D 2 ⁇ ⁇ / (d 0 ⁇ b)) Equation (22)
  • ⁇ 3 tan ⁇ 1 (D 3 ⁇ ⁇ / (d 0 ⁇ c)) Equation (23)
  • ⁇ 1 is a strand twist angle (rad)
  • ⁇ 2 is a steel wire twist angle (rad)
  • theta 3 shows the twist angle (rad) of the wire.
  • the length of a strand, a steel wire, and a strand can be calculated
  • the helical length of the stranded strands (length when the strands are extended) and the length in the central axis direction of the twist of the steel wires are equal .
  • the helical length of the stranded steel (length when the steel is stretched) and the central axis direction of the strand of the strands The lengths of are equal.
  • the strand number: N 1 , the steel wire number: N 2 , the wire number: N 3 , and the ratio of rope pitch to rope diameter: a, strand pitch ratio: b, steel wire ratio of pitch: twisted at c rope diameter: d 0, length: L 1 rope tension: elongation amount when T 0 is applied: [delta] L 1 can be expressed by equation (31) below.
  • the influence on the rope elongation decreases as the twist order increases, and the ratio of the rope pitch in the ratio of steel wire pitch: c It affects only 1/100 of: a, which is a very small value. Therefore, in consideration of rope elongation, it is considered that the twist pitch of the steel wire can be ignored. Therefore, in the present invention, since the rope pitch ratio a and the strand pitch ratio b may be defined, it is not necessary to consider the steel wire pitch ratio c constituting the inside of the strand.
  • the elongation caused by applying a load to the twisted steel wire means the elongation caused by the shear force acting on the rope cross section and the twist elongation and the tensile force acting in the direction perpendicular to the cross section It is the sum of the elongation due to the occurrence of a slight strain in itself. Therefore, if the pitch of each twist is lengthened, the elongation which arises by twist extension can be reduced and the extension of the whole rope can be controlled.
  • the configuration of the elevator rope (the number of strands, steel wires and strands) is arbitrary. Further, in the present invention, it is not necessary to consider the twist pitch of the steel wire 3 (in the present invention) other than the two outer sides (in the present invention, the rope 1 and the strand 2) constituting the elevator rope.
  • the twist pitch of the steel wire 3 in the present invention
  • the rope pitch the strand pitch and the steel wire pitch are lengthened, the number of times of twisting decreases and the twisting is likely to be unraveled, which may make it impossible to form a rope.
  • the rope shape can be maintained by covering the rope with plastic or resin.
  • the travel of a typical high-rise apartment or office building 80 m as a standard, and the load fluctuation in the car, the rope safety factor: 12, the rope safety factor: 10 (safety specified by the Building Standard Law It is assumed that the allowable rope distortion amount at the time of setting the minimum value) is 0.092%. At this time, the allowable strain amount when the safety factor is 10 from the no-load state is 0.55%. Therefore, in order to make the safety factor 10 or more, it is necessary to make the rope distortion amount 0.55% or less.
  • FIG. 9 is a graph showing the relationship between the strand pitch multiple and the rope pitch multiple when the rope distortion amount is 0.55%. The case where the breaking strength of the material of the steel wire is examined under four conditions of 1770 MPa, 1910 MPa or less, 2300 MPa or less and 3200 MPa is shown. In the graph of FIG. 9, the rope distortion amount is less than 0.55% in the area outside the lines (area where the strand pitch multiple and the rope pitch multiple are large).
  • the elevator rope with a breaking strength of 1770 MPa is an elevator rope of “Class B” (JIS G 3525) defined by JIS Standard (Japanese Industrial Standards), and the elevator rope with a breaking strength of 1910 MPa is defined by “T It is an elevator rope of "species” (JIS G 3525). These two elevator ropes are generally widely spread.
  • the breaking strengths of 2300 MPa and 3200 MPa are higher than those of the above-mentioned generally popular elevator ropes.
  • the strand pitch and the rope pitch need to be increased in order to set the rope strain amount: 0.55% or less as the breaking strength of the elevator rope increases.
  • the rope strain can be 0.55% or less.
  • the amount of change in rope elongation caused by the fluctuation in rope tension can be sufficiently reduced.
  • FIG. 10 is a side view schematically showing a rope produced for the test.
  • the elevator rope 101 for the test includes the diameter d 0 of the elevator rope 1: 8.0 (mm), the number N 1 of strands 102: 4 (pieces), and the number of steel wires 103 of the outermost layer of the strands 102: 7 (pieces ), Number of outermost strands 103a of the steel wire 103: 7 (pieces), Rope base length (length in the central axis direction of strand twist) L 1 : 21000 (mm), applied load (tension T 0 )
  • the longitudinal elastic modulus E of the steel wire is 205,000 MPa
  • the lateral elastic modulus G of the steel wire is 170800 MPa
  • the surface is coated with the resin 104 so that the rope is not deformed.
  • Figure 11 is a graph showing the relationship between the elongation amount [delta] L 1 and rope pitch P 1 and strand pitch P 2 of the rope.
  • calculated values and experimental values are compared.
  • the rope pitch P 1 (mm)
  • the strand pitch P 2 (mm)
  • the steel wire pitch P 3 (mm)
  • the “ratio a of the rope pitch P 1 to the rope diameter d” and the strand pitch P 2 to the rope diameter d can be suppressed to a predetermined rope distortion amount (0.55%) or less required for the elevator wire rope. It can be seen that the ratio b ′ ′ may be in a range that satisfies the following equation (32).
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Ropes Or Cables (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

Provided is an elevator rope configured so that, even if the number of ropes is reduced by increasing the breaking strength of the ropes, the amount of variation in rope elongation caused by a variation in rope tension due to the vertical movement of an elevator can be reduced. This elevator rope is formed by twisting a plurality of strands together, the strands each being formed by twisting a plurality of steel wires together. The elevator rope is characterized in that, if the diameter of the elevator rope is designated as d (mm), the distance between strand windings, as a rope pitch P1, and the distance between steel wire windings, as a strand pitch P2, then the radio a of P1 to d, the ratio b of P2 to d, and the breaking strength T (N) of the elevator rope satisfy the following expression A. In the expression A above, E is the modulus of longitudinal elasticity (MPa) of a material used in the elevator rope, G is the modulus of transverse elasticity (MPa) of the material used in the elevator rope, and N is the number of strands.

Description

エレベーターロープElevator rope
 本発明は、エレベーターロープに関する。 The present invention relates to an elevator rope.
 一般に、エレベーターの乗りかごはワイヤロープ(以下、「ロープ」又は「エレベーターロープ」と称する。)によって懸架されており、このロープを巻上機の駆動シーブに巻き掛け、シーブ表面のロープ溝とロープとの摩擦によって駆動することで乗りかごを昇降させている。 In general, elevator cars are suspended by wire ropes (hereinafter referred to as "ropes" or "elevator ropes"), which are wound around a drive sheave of a hoist, and rope grooves and ropes on the sheave surface. The car is raised and lowered by driving with friction.
 ところで、例えば巻上機を昇降路内に設置した機械室レスエレベーターでは、昇降路の断面積を縮小するために、巻上機の小型化が求められている。この実現手段として、駆動シーブの薄型化がある。駆動シーブを薄型化することによって、巻上機の軸長寸法の短縮が可能となり、巻上機を小型化することができる。このため、エレベーターロープとして、1本あたりの破断強度が高く、乗りかごを懸架するのに必要なロープ本数を低減できる高強度なロープが求められている。 For example, in a machine room-less elevator in which a hoisting machine is installed in a hoistway, downsizing of the hoisting machine is required in order to reduce the cross-sectional area of the hoistway. As a means for realizing this, there is thinning of the drive sheave. By thinning the drive sheave, the axial length dimension of the hoist can be shortened, and the hoist can be miniaturized. For this reason, a high strength rope is required as an elevator rope, which is high in breaking strength per one and can reduce the number of ropes required to suspend a car.
 ロープを高強度化する構成として、例えば特許文献1には、心ストランドと、心ストランドの周囲に配置される複数の側ストランドと、心ストランド及び複数の側ストランドを被覆する被覆樹脂とを有するIWRC(Independent Wire Rope Core)と、IWRCの周囲に配置される複数の主ストランドと、
を備えるエレベーター用主ロープにおいて、複数の側ストランドは、複数の側ストランドの各中心が位置する仮想層心円の周上に略等間隔で配置され、仮想層心円の周長に対して、前記複数の側ストランドの内、仮想層心円の周方向において隣り合う二つの側ストランドの間隙の総計の割合が8.5%以上であることを特徴とするエレベーター用主ロープが開示されている。
For example, Patent Document 1 discloses an IWRC having a core strand, a plurality of side strands disposed around the core strand, and a coating resin for covering the core strand and the plurality of side strands as a structure for strengthening the rope. (Independent Wire Rope Core) and multiple main strands placed around the IWRC,
In the elevator main rope comprising the plurality of side strands, the plurality of side strands are arranged at substantially equal intervals on the circumference of the virtual layer core circle where the centers of the plurality of side strands are located, with respect to the circumferential length of the virtual layer core circle Among the plurality of side strands, the main rope for elevators disclosed is characterized in that the ratio of the total of the gaps between two side strands adjacent in the circumferential direction of the virtual layer core circle is 8.5% or more. .
 特許文献1に開示されているロープは、ロープを構成する素線を伸線加工して細線化し、破断強度を2300MPa(一般的に広く普及しているエレベーター用ロープの素線破断強度は約1620~1910MPa)級まで高めた素線を用いている。素線強度に比例してロープの強度が向上し、ロープ本数の低減が可能となる。 The rope disclosed in Patent Document 1 is wire-drawn into strands forming the rope to be thin, and has a breaking strength of 2300 MPa (the wire breaking strength of elevator ropes generally widely used is about 1620) It uses a wire which has been increased to the ~ 1910 MPa) grade. The strength of the rope is improved in proportion to the wire strength, and the number of ropes can be reduced.
国際公開第2016/199204号International Publication No. 2016/199204
 エレベーターに使用するロープの本数は、ロープ1本あたりが引き受ける荷重と破断強度との比から決められており、1本あたりの破断強度を向上することでエレベーター1台あたりに使用するロープ本数を低減することができる。ワイヤロープの破断強度を向上させる方法の1つとして、ワイヤロープを構成する素線1本あたりの破断強度を向上する方法があるが、素線1本あたりの弾性係数は破断強度に比例しないため、ロープ本数を低減した分だけロープ全体の剛性が低下する。そのため、例えばエレベーターの乗降によってロープにかかる荷重が急変した際、ロープの伸縮量が大きくなり、乗り心地が低下してしまう。 The number of ropes used for the elevator is determined from the ratio of the load received per rope and the breaking strength, and the number of ropes used per elevator is reduced by improving the breaking strength per rope. can do. One way to improve the breaking strength of the wire rope is to improve the breaking strength per wire constituting the wire rope, but the elastic modulus per wire is not proportional to the breaking strength. The rigidity of the entire rope is reduced by the reduced number of ropes. Therefore, for example, when the load applied to the rope suddenly changes due to getting on and off the elevator, the amount of expansion and contraction of the rope becomes large, and the riding comfort is reduced.
 これを防止するため、エレベーターロープにおいては張力を付加しても伸びにくい特性が求められる。しかしながら、特許文献1では、主として高強度化した素線同士の接触抑制によるロープ寿命の向上に着目しており、ロープ伸びについては配慮されていない。 In order to prevent this, elevator ropes are required to have the property of being difficult to stretch even if tension is applied. However, in Patent Document 1, attention is focused mainly on the improvement of the rope life due to the contact suppression between the high-strengthened strands, and no consideration is given to the rope elongation.
 本発明の目的は、上記事情に鑑み、ロープの破断強度を向上してロープ本数を減らしたとしても、エレベーターの乗降によりロープ張力が変動することによって発生するロープ伸びの変化量を低減できるエレベーターロープを提供することにある。 In view of the above circumstances, an object of the present invention is an elevator rope capable of reducing the amount of change in rope elongation caused by fluctuation in rope tension due to getting on and off the elevator even if the breaking strength of the rope is improved to reduce the number of ropes. To provide.
 本発明は、上記目的を達成するため、複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、エレベーターロープの径をd(mm)、ストランドの巻間隔をロープピッチP、鋼線の巻間隔をストランドピッチPとした時に、dに対するPの比率a、dに対するPの比率b及びエレベーターロープの破断強度T(N)が以下の式Aを満足することを特徴とするエレベーターロープを提供する。 In order to achieve the above object, the present invention is an elevator rope formed by twisting a plurality of strands of a plurality of steel wires, wherein the diameter of the elevator rope is d (mm) and the winding distance of the strands is a rope pitch The ratio a of P 1 to d, the ratio a of P 1 to d, the ratio b of P 2 to d, and the breaking strength T (N) of the elevator rope satisfy the following equation A, where P 1 and the winding distance of the steel wire are strand pitch P 2 To provide an elevator rope characterized by
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、上記式において、E:エレベーターロープに使用している材料の縦弾性係数(MPa)、G:エレベーターロープに使用している材料の横弾性係数(MPa)、N:ストランドの本数とする。 However, in the above equation, E: longitudinal modulus of elasticity (MPa) of material used for elevator rope, G: lateral modulus of elasticity (MPa) of material used for elevator rope, N: number of strands.
 また、本発明は、上記目的を達成するために、複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、上記鋼線は、複数の素線が撚り合わせて形成されたものであり、エレベーターロープの径をd(mm)、ストランドの巻き間隔をロープピッチP、鋼線の巻間隔をストランドピッチPとした時に、dに対するPの比率a、dに対するPの比率b及びエレベーターロープの破断強度T(N)が、上記式Aを満足することを特徴とするエレベーターロープを提供する。 Further, in order to achieve the above object, according to the present invention, in an elevator rope formed by twisting a plurality of strands of a plurality of steel wires, the steel wires are formed by twisting a plurality of strands. When the diameter of the elevator rope is d (mm), the winding distance of the strands is rope pitch P 1 , and the winding distance of the steel wire is strand pitch P 2 , the ratio of P 1 to d is to a, d Provided is an elevator rope characterized in that the ratio b of P 2 and the breaking strength T (N) of the elevator rope satisfy the above-mentioned formula A.
 本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the present invention are described in the claims.
 本発明によれば、ロープの破断強度を向上してロープ本数を減らしたとしても、エレベーターの乗降によりロープ張力が変動することによって発生するロープ伸びの変化量を低減できるエレベーター用ワイヤロープを提供することができる。 According to the present invention, it is possible to provide a wire rope for elevator capable of reducing the amount of change in rope elongation caused by fluctuation in rope tension due to getting on and off the elevator even if the breaking strength of the rope is improved to reduce the number of ropes. be able to.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
本発明のエレベーターロープの第1の例を模式的に示す側面図。The side view which shows typically the 1st example of the elevator rope of this invention. 本発明のエレベーターロープの第2の例を模式的に示す側面図。The side view which shows typically the 2nd example of the elevator rope of this invention. エレベーターロープにおける張力T、伸びδLτ,δLρの関係を示す図である。It is a figure which shows the relationship between tension T and elongation (delta) L (tau), (delta) L (rho) in an elevator rope. エレベーターロープの最外層が10本のストランドで構成されているエレベーターロープの断面模式図。The cross-sectional schematic diagram of the elevator rope in which the outermost layer of an elevator rope is comprised by ten strands. エレベーターロープの最外層が6本のストランドで構成されているエレベーターロープの断面模式図。The cross-sectional schematic diagram of the elevator rope in which the outermost layer of an elevator rope is comprised by six strands. ストランドの最外層が6本の鋼線で構成されているエレベーターロープの断面模式図である。It is a cross-sectional schematic diagram of the elevator rope in which the outermost layer of a strand is comprised by six steel wires. ストランドの最外層が12本の鋼線で構成されているエレベーターロープの断面模式図である。It is a cross-sectional schematic diagram of the elevator rope in which the outermost layer of a strand is comprised by 12 steel wires. 素線が撚られた鋼線を有するエレベーターロープ(三次撚り)の断面模式図である。It is a cross-sectional schematic diagram of the elevator rope (third twist) which has a steel wire to which the wire was twisted. ロープひずみ量:0.55%の時のストランドピッチ倍数及びロープピッチ倍数の関係を示すグラフである。Rope distortion amount: It is a graph which shows the relationship of the strand pitch multiple at the time of 0.55%, and a rope pitch multiple. 試験のために作製したエレベーターロープを模式的に示す側面図である。It is a side view which shows typically the elevator rope produced for the test. ロープの伸び量δLとロープピッチP及びストランドピッチPとの関係を示すグラフである。It is a graph showing the relationship between the elongation amount [delta] L 1 and rope pitch P 1 and strand pitch P 2 of the rope.
 以下、本発明によるエレベーター用ワイヤロープの実施の形態を図1及び図2を参照しながら説明する。 Hereinafter, an embodiment of a wire rope for elevators according to the present invention will be described with reference to FIGS. 1 and 2.
 図1は本発明のエレベーターロープの第1の例を模式的に示す側面図である。図1に示すように、エレベーターロープ1は、複数の鋼線3が撚り合わされたストランド2が複数撚り合わされて形成されている。図1では、図面の見やすさを考慮して、ストランド2及び鋼線3はそれぞれ1本ずつしか図示していない。 FIG. 1 is a side view schematically showing a first example of the elevator rope of the present invention. As shown in FIG. 1, the elevator rope 1 is formed by twisting a plurality of strands 2 in which a plurality of steel wires 3 are twisted. Only one strand 2 and one steel wire 3 are shown in FIG. 1 in consideration of the viewability of the drawing.
 エレベーターロープ1の中心には、図1には示していないが、芯(繊維芯及び鋼線芯等)が配置されており、ストランド2はその芯の上に撚られている。複数のストランド2は、同一円周上に、ほぼ均等な隙間を置いて配置されている。鋼線3も同様である。なお、ストランド2と鋼線3は、それぞれ径方向において1層を円周状に配置する他にも、2層を円周上に配置する2層配置、3層を円周上に配置する3層配置等、複数の層から構成されるものもある。 Although not shown in FIG. 1, a core (fiber core, steel wire core, etc.) is disposed at the center of the elevator rope 1, and the strand 2 is twisted on the core. The plurality of strands 2 are arranged on the same circumference at substantially equal intervals. The same applies to the steel wire 3. The strands 2 and the steel wire 3 may be arranged in two layers in which two layers are arranged on the circumference in addition to one layer circumferentially arranged in the radial direction, and three in which the three layers are arranged on the circumference There are also some which are constituted by a plurality of layers, such as layer arrangement.
 本発明において、エレベーターロープを構成する1本のストランド2が一周する間隔(巻間隔)をロープピッチPとし、ストランド2を構成する鋼線3が一周する間隔(巻間隔)をストランドピッチPとする。言い換えると、ロープピッチPは、ストランド2が芯の周りを一回りするまでの長さであり、ストランドピッチPは、鋼線3がストランドの中心軸の周りを一回りするまでの長さである。 In the present invention, spacing the strands 2 of one constituting the elevator rope is around the (winding gap) and rope pitch P 1, spacing steel wire 3 constituting the strands 2 makes one rotation (winding gap) the strand pitch P 2 I assume. In other words, the rope pitch P 1 is the length of up to strand 2 is round around a core, length to strand pitch P 2 is steel wire 3 is slightly around the central axis of the strand It is.
 図2は本発明のエレベーターロープの第2の例を模式的に示す側面図である。図2では、鋼線3が、素線3aが複数撚り合わされて形成されたものを示している。このような構成のエレベーターロープに対しても本発明を適用することができる。鋼線3を構成する素線3aが一周する間隔(巻間隔)を鋼線ピッチPとする。 FIG. 2 is a side view schematically showing a second example of the elevator rope of the present invention. In FIG. 2, the steel wire 3 has shown what was formed by stranding two or more strands 3a. The present invention can also be applied to an elevator rope of such a configuration. Spacing wires 3a constituting the steel wire 3 makes one rotation (the winding interval) and steel wire pitch P 3.
 次に、エレベーターロープの伸びの発生メカニズムについて、図3を用いて説明する。図3はエレベーターロープにおける張力T、伸びδLτ,δLρの関係を示す図である。撚られたストランドに対して、撚りの中心軸30の軸方向に張力Tが作用した場合を考える。このときのストランド2の伸びは、ストランド2の断面にせん断力が作用し撚りが伸びることによって生じる伸びδLτと、ストランド2の断面の垂直方向に伸びる軸31の軸方向に引張り力が作用し、ストランド2自身に微小なひずみが生じることによる伸びδLρとの和で与えられる(撚りの中心軸30と、ストランド断面と垂直方向の軸31とはθ°の角度がついている)。 Next, the generation mechanism of the elongation of the elevator rope will be described with reference to FIG. FIG. 3 is a view showing the relationship between tension T and elongation δLτ and δLρ in the elevator rope. The case where tension T acts on the twisted strand in the axial direction of the twist center axis 30 is considered. At this time, the elongation of the strand 2 is caused by the tensile force acting in the axial direction of the elongation ΔLτ generated by the shear force acting on the cross section of the strand 2 and the twist elongation and the axis 31 extending in the perpendicular direction of the cross section of the strand 2 It is given by the sum of an elongation δLρ due to the occurrence of a slight strain in the strand 2 itself (the central axis 30 of the twist and the axis 31 in the direction perpendicular to the strand cross section have an angle of θ °).
 したがって、長さLのエレベーターロープにおいて、ストランドの撚りの中心軸方向に張力Tが作用したときの伸びδLは、以下の式(1)のように表現できる。同様に、長さLの鋼線3の撚りの中心軸方向に張力Tが作用したときの伸びδLは以下の式(2)のように表現でき、長さLの素線3aの撚りの中心軸方向に張力Tが作用したときの伸びδLは以下の式(3)のように表現できる。 Thus, the elevator rope length L 1, elongation [delta] L 1 when the tension T 1 is acted in the direction of the central axis of twisting of the strands, can be expressed as the following equation (1). Similarly, the elongation δL 2 when tension T 2 acts in the central axis direction of the twist of the steel wire 3 of length L 2 can be expressed as the following equation (2), and the strand 3a of length L 3 The elongation δL 3 when tension T 3 acts in the central axis direction of the twist of can be expressed as the following equation (3).
 δL=δLτ+δLρ   式(1)
 δL=δLτ+δLρ   式(2)
 δL=δLτ+δLρ   式(3)
 ただし、Lはストランドの撚りの中心軸方向の長さ(mm)、Lは鋼線の撚りの中心軸方向の長さ(mm)、Lは素線の撚りの中心軸方向の長さ(mm)とする。
δL 1 = δL 1 τ + δL 1式 equation (1)
δL 2 = δL 2 τ + δL 2式 equation (2)
δL 3 = δL 3 τ + δL 3式 equation (3)
However, L 1 is the length in the central axis direction of strand twist (mm), L 2 is the length in the central axis direction of steel wire twist (mm), and L 3 is the length in the central axis direction of strand of strand (Mm).
 複数本の鋼線が撚り合わされて構成されているストランドにおいては、ストランド断面の垂直方向と鋼線の撚りの中心軸方向は同方向であるため、ストランド断面の垂直方向に作用する引張り力は、鋼線の撚りの中心軸方向に作用する力となる。よって、ストランドの引張り力による伸びδLρは、鋼線全体の伸びδLに等しいと考えられる。この関係性は複数本の素線を撚り合わせて構成されている鋼線でも同様であり、上述した関係をまとめると、二次撚りロープ(図2のストランド及び鋼線が撚られているロープ)の伸びは式(4)のように、三次撚りロープ(図3のストランド、鋼線及び素線が撚られているロープ)の伸びは式(5)のように表現できる。 In a strand formed by twisting a plurality of steel wires, the tensile force acting in the perpendicular direction of the strand cross section is the same because the vertical direction of the strand cross section and the central axis direction of the twist of the steel wire are the same direction, It becomes a force acting in the central axis direction of the twist of the steel wire. Therefore, it is considered that the elongation δL 1 ρ by the tensile force of the strand is equal to the elongation δL 2 of the entire steel wire. This relationship is the same as in a steel wire formed by twisting a plurality of strands, and the above-mentioned relationship can be summarized as a secondary twist rope (a rope on which the strands of FIG. 2 and the steel wire are twisted) The elongation of can be expressed as in equation (4), and the elongation of the tertiary twist rope (the strand in FIG. 3 with which the strands, steel wires and strands are twisted) can be expressed as in equation (5).
 δL=δLτ+δLτ+δLρ   式(4)
 δL=δLτ+δLτ+δLτ+δLρ     式(5)
 式(4)、(5)について、長さLのストランドの撚りの中心軸方向に張力Tが作用したときの伸びδLτは、Kτをストランドのバネ定数とすると以下の式(6)で求められ、Kτは以下の式(7)のように表現できる。これは、例えばコイルバネのバネ定数を求める際にも同様の式が見られる。
δL 1 = δL 1 τ + δL 2 τ + δL 2 ρ Equation (4)
δL 1 = δL 1 τ + δL 2 τ + δL 3 τ + δL 3 ρ equation (5)
In the equations (4) and (5), the elongation δL 1 τ when tension T 1 acts in the central axis direction of twist of the strand of length L 1 is expressed by the following equation, where K 1 τ is the spring constant of the strand obtained in (6), K 1 τ can be expressed as the following equation (7). The same equation can be found when, for example, the spring constant of a coil spring is determined.
 δLτ=T/Kτ   式(6)
 Kτ=0.03×G×S/n/d   式(7)
 ここで、Gはストランドの横弾性係数(MPa)、Sはストランド1本あたりの断面積(mm)、nは長さLあたりのストランド撚り数(個)、dはロープ径(mm)とする。
δL 1 τ = T 1 / K 1 τ Equation (6)
K 1 τ = 0.03 × G × S 1 / n 1 / d 0 equation (7)
Here, G is the transverse elastic modulus (MPa) of the strand, S 1 is the cross-sectional area per one strand (mm 2 ), n 1 is the number of strand twists (pieces) per length L 1 and d 0 is the rope diameter (Mm)
 同様に、長さLの鋼線の撚りの中心軸方向に張力Tが作用したときの伸びδLτは、Kτを鋼線のバネ定数とすると以下の式(8)で求められ、Kτは式以下の(9)のように表現できる。さらに、長さLの素線の撚りの中心軸方向に張力Tが作用したときの伸びδLτは、Kτを素線のバネ定数とすると以下の式(10)で求められ、Kτは式以下の(11)のように表現できる。ただし、ストランドの場合は幾何学的な拘束が1軸方向(上下方向)にしか無いが、鋼線の場合はさらに撚られるため、3軸方向(上下・前後・左右全方向)の幾何学的拘束を受ける。したがって、撚りの次数が増加するにつれて鋼線のバネ定数も増加するため、拘束係数を乗じた。 Similarly, the elongation δL 2 τ when tension T 2 acts in the central axis direction of the twist of the steel wire of length L 2 is obtained by the following equation (8), where K 2 τ is the spring constant of the steel wire is, the K 2 tau can be expressed by the following (9) formula. Furthermore, the elongation δL 3 τ when tension T 3 acts in the central axis direction of the strand of length L 3 in strand is determined by the following equation (10), where K 3 τ is the spring constant of the strand. , K 3 τ can be expressed as (11) below. However, in the case of a strand, there is only a geometrical constraint in one axial direction (vertical direction), but in the case of a steel wire, since it is further twisted, geometrical shape in three axial directions (upper, lower, front, back, left and right). Restraint. Therefore, as the order of twist increases, the spring constant of the steel wire also increases, so it was multiplied by the constraint coefficient.
 δLτ=T/Kτ   式(8)
 Kτ=0.03×α×G×S/n/d   式(9)
 ここで、Sは鋼線1本あたりの断面積(mm)、nは長さLあたりの鋼線の撚り数(個)、αは拘束係数(α=10)とする。
δL 2 τ = T 2 / K 2 τ Equation (8)
K 2 τ = 0.03 × α × G × S 2 / n 2 / d 0 equation (9)
Here, S 2 is the cross-sectional area per one steel wire (mm 2), n 2 is the number of twisted steel wires per length L 2 (pieces), alpha is the constraint factor (α = 10).
 δLτ=T/Kτ   式(10)
 Kτ=0.03×α×G×S/n/d     式(11)
 ここで、Sは素線1本あたりの断面積(mm)、nは長さLあたりの素線の撚り数(個)、αは拘束係数(α=10)とする。
δL 3 τ = T 3 / K 3 τ Equation (10)
K 3 τ = 0.03 × α 2 × G × S 3 / n 3 / d 0 equation (11)
Here, S 3 is a cross-sectional area per one wire (mm 2), n 3 is the number of twists of the strand per length L 3 (pieces), alpha is the constraint factor (α = 10).
 なお、ストランド・鋼線・素線の撚り数は、ロープピッチP・ストランドピッチP・鋼線ピッチPによって定まる値であり、ロープ径dに対するロープピッチの比率をa(P/d)、ストランドピッチの比率をb(P/d)、鋼線ピッチの比率をc(P/d)とおくと、式(12)~(14)のように表現できる。 The number of twists strand steel wire-strand is a value determined by the rope pitch P 1-strand pitch P 2 · steel wire pitch P 3, the ratio of rope pitch against the rope diameter d 0 a (P 1 / Assuming that d 0 ), the strand pitch ratio is b (P 2 / d 0 ), and the steel wire pitch ratio is c (P 3 / d 0 ), equations (12) to (14) can be expressed.
 n=L/(d×a)   式(12)
 n=L/(d×b)   式(13)
 n=L/(d×c)   式(14)
 次に、図4~図8を用いてロープ断面構造とストランド径・鋼線径・素線径と、ストランドの撚り径・鋼線の撚り径・素線の撚り径との関係性を説明する。図4はエレベーターロープの最外層が10本のストランドで構成されており、図5はエレベーターロープの最外層が6本のストランドで構成されているエレベーターロープの断面模式図である。図4及び図5において、ストランドの最外層の鋼線の数は9本である。また、図6はストランドの最外層が6本の鋼線で構成されており、図7はストランドの最外層が12本の鋼線で構成されているエレベーターロープの断面模式図である。図6及び図7において、エレベーターロープの最外層のストランドの数は8本である。さらに、図8は素線が撚られた鋼線を有するエレベーターロープ(三次撚り)の断面模式図である。
n 1 = L 1 / (d 0 × a) Equation (12)
n 2 = L 2 / (d 0 × b) Equation (13)
n 3 = L 3 / (d 0 × c) Equation (14)
Next, the relationship between the rope cross-section structure, the strand diameter, the steel wire diameter, the strand diameter, the strand diameter of the strand, the strand diameter of the steel wire, and the strand diameter of the strand will be described using FIGS. . FIG. 4 is a schematic cross-sectional view of an elevator rope in which the outermost layer of the elevator rope is composed of ten strands, and FIG. 5 is a diagram in which the outermost layer of the elevator rope is composed of six strands. In FIGS. 4 and 5, the number of steel wires in the outermost layer of the strand is nine. Moreover, FIG. 6 is a cross-sectional schematic view of an elevator rope in which the outermost layer of the strands is composed of six steel wires, and FIG. 7 is the outermost layer of the strands composed of 12 steel wires. In FIGS. 6 and 7, the number of strands of the outermost layer of the elevator rope is eight. Further, FIG. 8 is a schematic cross-sectional view of an elevator rope (third twist) having a steel wire in which strands are twisted.
 図4~図8に示すように、ストランド・鋼線・素線は円周上にほぼ均等に配置されている。したがって、ストランド径:d、鋼線径:d、素線径:d及びストランドの撚り径:D、鋼線の撚り径:D及び素線の撚り径Dは幾何学的に求まり、以下の式(15)~(17)の関係が成立する。 As shown in FIGS. 4 to 8, the strands, steel wires, and strands are arranged substantially equally on the circumference. Therefore, strand diameter: d 1 , steel wire diameter: d 2 , wire diameter: d 3 and strand twist diameter: D 1 , steel wire twist diameter: D 2 and strand wire diameter D 3 are geometrically The following equations (15) to (17) are established.
 d=d×sin(π/N)/(1+sin(π/N))
 D=d-d   式(15)
 ここで、Nは最外層ストランド数(本)とする。
d 1 = d 0 × sin (π / N 1 ) / (1 + sin (π / N 1 ))
D 1 = d 0 -d 1 equation (15)
Here, N 1 is the number of outermost layer strands (piece).
 d=d×sin(π/N)/(1+sin(π/N))
 D=d-d   式(16)
 ここで、Nは最外層鋼線数(本)とする。
d 2 = d 1 × sin (π / N 2 ) / (1 + sin (π / N 2 ))
D 2 = d 1 -d 2 equation (16)
Here, N 2 is the outermost layer steel wire number (present).
 d=d×sin(π/N)/(1+sin(π/N))
 D=d-d   式(17)
 ここでNは最外層素線数(本)とする。
d 3 = d 2 × sin (π / N 3 ) / (1 + sin (π / N 3 ))
D 3 = d 2 -d 3 equation (17)
Where N 3 is the outermost layer strands number (present).
 次に、ロープに張力Tが作用したときの、最外層ストランド・最外層鋼線・最外層素線1本あたりに作用する張力を求める。これらはストランド・鋼線・素線の断面積の比率で決まり、幾何学的に求めることができる。最外層ストランドにかかる張力をT、最外層鋼線にかかる張力をT、最外層素線にかかる張力をTとすると、式以下の(18)~(20)のように表現可能である。 Then, when the tension T 0 is applied to the rope, it determines the tension applied to one per outermost strand outermost steel wire, the outermost layer strands. These are determined by the ratio of the cross-sectional area of strands, steel wires and strands, and can be determined geometrically. Assuming that the tension applied to the outermost layer strand is T 1 , the tension applied to the outermost layer steel wire is T 2 , and the tension applied to the outermost layer wire is T 3 , the following expressions (18) to (20) can be expressed is there.
 T=T/N   式(18)
 T=T×(S/S)   式(19)
 T=T×(S/S)   式(20)
 次に、ストランド・鋼線・素線の撚り角度の関係について説明する。撚り角度は、ロープピッチP・ストランドピッチP・鋼線ピッチPとストランドの撚り径、鋼線の撚り径、素線の撚り径により定まり、以下の式(21)~(23)のように表現できる。
T 1 = T 0 / N 1 equation (18)
T 2 = T 1 × (S 2 / S 1 ) Formula (19)
T 3 = T 2 × (S 3 / S 2 ) Formula (20)
Next, the relationship of the twist angle of a strand, a steel wire, and a strand is demonstrated. Twist angle, rope pitch P 1 · strand pitch P 2 · steel wire pitch P 3 and the twist diameter of the strand, the steel wire twisted diameter, Sadamari by twisting diameter of the wire, the following equation (21) - (23) It can be expressed as
 θ=tan-1(D×π/(d×a))   式(21)
 θ=tan-1(D×π/(d×b))   式(22)
 θ=tan-1(D×π/(d×c))   式(23)
 ここで、θはストランドの撚り角度(rad)、θは鋼線の撚り角度(rad)、
θは素線の撚り角度(rad)を示す。
θ 1 = tan −1 (D 1 × π / (d 0 × a)) Equation (21)
θ 2 = tan −1 (D 2 × π / (d 0 × b)) Equation (22)
θ 3 = tan −1 (D 3 × π / (d 0 × c)) Equation (23)
Here, θ 1 is a strand twist angle (rad), θ 2 is a steel wire twist angle (rad),
theta 3 shows the twist angle (rad) of the wire.
 また、ストランド・鋼線・素線の長さは、それぞれの撚り角度を用いて求めることができる。複数本の鋼線を撚り合わせて構成されているストランドにおいて、撚られたストランドの螺旋の長さ(ストランドを伸ばしたときの長さ)と鋼線の撚りの中心軸方向の長さは等しくなる。同様に、複数本の素線を撚り合わせて構成されている鋼線において、撚られた鋼線の螺旋の長さ(鋼線を伸ばしたときの長さ)と素線の撚りの中心軸方向の長さは等しくなる。したがって、ストランドの中心軸方向の長さ:L、鋼線の中心軸方向の長さ:L、および素線の中心軸方向の長さ:Lの関係性は、以下の式(24)、(25)のように表現できる。 Moreover, the length of a strand, a steel wire, and a strand can be calculated | required using each twist angle. In a strand constructed by twisting a plurality of steel wires, the helical length of the stranded strands (length when the strands are extended) and the length in the central axis direction of the twist of the steel wires are equal . Similarly, in a steel wire formed by twisting a plurality of strands, the helical length of the stranded steel (length when the steel is stretched) and the central axis direction of the strand of the strands The lengths of are equal. Therefore, the relationship between the length in the central axis direction of the strand: L 1 , the length in the central axis direction of the steel wire: L 2 , and the length in the central axis direction of the strand: L 3 is expressed by the following equation (24 And (25) can be expressed.
 L=L/cosθ   式(24)
 L=L/cosθ   式(25)
 次に、長さLの鋼線の撚りの中心軸方向に張力Tが作用したときの伸びδLρは、鋼線の撚りの中心軸と鋼線断面の垂直方向軸との間には鋼線の撚りによる角度がついていることを考慮し、Kρを鋼線のバネ定数とすると以下の式(26)で求められ、Kρは以下の式(27)のように表現できる。
L 2 = L 1 / cos θ 1 equation (24)
L 3 = L 2 / cos θ 2 equation (25)
Next, the elongation δL 2と き when tension T 2 acts in the central axis direction of the twist of the steel wire of length L 2 is between the central axis of the steel wire twist and the vertical axis of the steel wire cross section considering that is angled by twisting the steel wire, the K 2 [rho given by: and the spring constant of the steel wire (26), expressed as K 2 [rho following formula (27) it can.
 δL2ρ=T×cosθ/K2ρ   式(26)
 K2ρ=E×S/(L/cosθ)   式(27)
 ここで、Eは鋼線の縦弾性係数(MPa)とする。
δL 2ρ = T 2 × cosθ 2 / K 2ρ formula (26)
K 2 == E × S 2 / (L 2 / cosθ 2 ) Formula (27)
Here, E is taken as the modulus of longitudinal elasticity (MPa) of the steel wire.
 同様に、長さLの素線の撚りの中心軸方向に張力Tが作用したときの伸びδL3ρは、素線の撚りの中心軸と素線断面の垂直方向軸との間には素線の撚りによる角度がついていることを考慮し、K3ρを鋼線のバネ定数とすると以下の式(28)で求められ、K3ρは式(29)のように表現できる。 Similarly, the elongation δL 3 と き when tension T 3 acts in the central axis direction of strand twist of length L 3 is between the central axis of strand twist and the vertical axis of the strand cross section Assuming that K 3 に よ る is a spring constant of a steel wire in consideration of the angle attached by stranding of the wire, it can be obtained by the following equation (28), and K 3 can be expressed as equation (29).
 δL3ρ=T×cosθ/K3ρ   式(28)
 K3ρ=E×S/(L/cosθ)   式(29)
 したがって、上述した式(1)~式(29)の計算式をまとめると、二次撚りロープにおいて、ストランド数:N、鋼線数:Nで構成され、ロープ径に対するロープピッチの比率:a、ストランドピッチの比率:bで撚られたロープ径:d、長さ:Lのロープに張力:Tが作用したときの伸び量:δLは、以下の式(30)で表現できる。
δL 3 = = T 3 × cos θ 3 / K 3 equation (28)
K 3 == E × S 3 / (L 3 / cosθ 3 ) Formula (29)
Therefore, when the calculation formulas of the formulas (1) to (29) described above are put together, in the secondary twist rope, the number of strands: N 1 , the number of steel wires: N 2 , and the ratio of rope pitch to rope diameter: a, the ratio of strand pitch: b in twisted rope diameter: d 0, length: L 1 rope tension: T 0 is the elongation amount when the effect: [delta] L 1, the following expressions in equation (30) it can.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 同様に、三次撚りロープにおいて、ストランド数:N、鋼線数:N、素線数:Nで構成され、ロープ径に対するロープピッチの比率:a、ストランドピッチの比率:b、鋼線ピッチの比率:cで撚られたロープ径:d、長さ:Lのロープに張力:Tが作用したときの伸び量:δLは、以下の式(31)で表現できる。 Similarly, in the third twist rope, the strand number: N 1 , the steel wire number: N 2 , the wire number: N 3 , and the ratio of rope pitch to rope diameter: a, strand pitch ratio: b, steel wire ratio of pitch: twisted at c rope diameter: d 0, length: L 1 rope tension: elongation amount when T 0 is applied: [delta] L 1 can be expressed by equation (31) below.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上述した式(30)、(31)より、二次撚りロープでも三次撚りロープでも、ストランド数:Nが増加するにつれロープのひずみ量が低下する一方、鋼線数:N、素線数:Nはロープのひずみ量に影響しないことが分かる。これは、ストランド数が増加するにつれロープの断面積が増加する一方、鋼線数または素線数が増減してもロープの断面積はほとんど変化しないためである。したがって、ロープ伸びの検討においては、鋼線数:Nおよび素線数:Nを考慮する必要がない。 From the above equations (30) and (31), the amount of strain of the rope decreases as the number of strands: N 1 increases in both the secondary and third-order twisted ropes, while the number of steel wires: N 2 , the number of strands : N 3 has no effect on the amount of strain of the rope. This is because the cross-sectional area of the rope increases as the number of strands increases, but the cross-sectional area of the rope hardly changes even if the number of steel wires or the number of strands increases or decreases. Therefore, in the study of rope elongation, it is not necessary to consider the number of steel wires: N 2 and the number of wires: N 3 .
 また、撚りピッチについては上述した式(9)、(10)に示したように、撚りの次数が増加するにつれてロープ伸びへの影響は小さくなり、鋼線ピッチの比率:cにおいてロープピッチの比率:aの1/100しか影響せず、非常に小さい値となる。したがって、ロープ伸びの検討においては、鋼線の撚りピッチは無視できると考えられる。よって、本発明においては、ロープピッチ比率a及びストランドピッチ比率bを規定すればよいため、ストランドの内側を構成する鋼線ピッチ比率cは考慮しなくて良い。 As for the twist pitch, as shown in the equations (9) and (10) described above, the influence on the rope elongation decreases as the twist order increases, and the ratio of the rope pitch in the ratio of steel wire pitch: c It affects only 1/100 of: a, which is a very small value. Therefore, in consideration of rope elongation, it is considered that the twist pitch of the steel wire can be ignored. Therefore, in the present invention, since the rope pitch ratio a and the strand pitch ratio b may be defined, it is not necessary to consider the steel wire pitch ratio c constituting the inside of the strand.
 以上の指針により、ロープ破断強度を向上すると、ロープ1本あたりの負担荷重が大きくなり、ロープ伸び(ロープのひずみ量)が増加してしまう課題については、上述した式(30)及び式(31)より、ロープピッチP及びストランドピッチPを増加することでロープのひずみ量を低減できることが分かる。 By the above guidelines, when the rope breaking strength is improved, the load per rope increases, and the problem that the rope elongation (the amount of strain of the rope) increases is the equation (30) and the equation (31). ) than, it is found that can reduce the amount of strain the rope by increasing the rope pitch P 1 and strand pitch P 2.
 すなわち、上述した通り、撚られた鋼線に荷重をかけることによって生じる伸びとは、ロープ断面にせん断力が作用し撚りが伸びることによって生じる伸びと、断面と垂直方向に引張り力が作用しストランド自身に微小なひずみが生じることによる伸びとの和である。よって、各撚りのピッチを長くすれば、撚りが伸びることによって生じる伸びを低減し、ロープ全体の伸びを抑制することができる。 That is, as described above, the elongation caused by applying a load to the twisted steel wire means the elongation caused by the shear force acting on the rope cross section and the twist elongation and the tensile force acting in the direction perpendicular to the cross section It is the sum of the elongation due to the occurrence of a slight strain in itself. Therefore, if the pitch of each twist is lengthened, the elongation which arises by twist extension can be reduced and the extension of the whole rope can be controlled.
 本発明において、エレベーターロープの構成(ストランド、鋼線及び素線の本数)については任意である。また、本発明では、エレベーターロープを構成する外側2本(本発明では、ロープ1及びストランド2)以外(本発明では、鋼線3)の撚りピッチについては考慮する必要が無い。例えば、図1及び図2に示した構成以外に、複数のストランドを撚り合わせてなるシェンケルが複数撚り合わされて形成されたエレベーターロープの構成もあるが、この場合、エレベーターロープ及びシェンケルの撚りを長くすればよい。 In the present invention, the configuration of the elevator rope (the number of strands, steel wires and strands) is arbitrary. Further, in the present invention, it is not necessary to consider the twist pitch of the steel wire 3 (in the present invention) other than the two outer sides (in the present invention, the rope 1 and the strand 2) constituting the elevator rope. For example, in addition to the configuration shown in FIG. 1 and FIG. 2, there is also a configuration of an elevator rope formed by twisting a plurality of schenkels by twisting a plurality of strands. do it.
 一方、ロープピッチ、ストランドピッチ及び鋼線ピッチを長くするにつれて撚りの回数が少なくなり、撚りがほどけやすくなるため、ロープとして成立しなくなる場合がある。その場合は、ロープの周りをプラスチックや樹脂で被覆することでロープ形状を保つことが可能となる。 On the other hand, as the rope pitch, the strand pitch and the steel wire pitch are lengthened, the number of times of twisting decreases and the twisting is likely to be unraveled, which may make it impossible to form a rope. In that case, the rope shape can be maintained by covering the rope with plastic or resin.
 次に、上記式(30)及び(31)を用いたエレベーターロープの設計について説明する。エレベーターにおいて、ロープのひずみ量が大きくなると、乗り心地だけでなく、かご乗込み時の段差につまずくなどの危険が生じやすくなるため、最床合わせ補正装置を設けている。しかし、床合わせ動作が大きくなりすぎるとつま先等を挟む恐れがあるため、かご床の変動が75mm以内(平成12年建設省告示第1429号「エレベーターの制御器の構造方法を定める件」にて定義されている値)になるようにしなければならない。 Next, the design of the elevator rope using the above equations (30) and (31) will be described. In the elevator, when the strain amount of the rope becomes large, not only the riding comfort but also the danger of stumbling or the like at the time of getting into the car tends to occur, so the outermost floor correction device is provided. However, if the floor alignment movement becomes too large, there is a risk that the toe etc. may be pinched, so the car floor fluctuation is within 75 mm (see Ministry of Construction Notification No. 1429 "Declaration of Structure of Elevator Controller"). It must be made to be a defined value).
 ここで、一般的な高層マンション・オフィスビルの行程:80mを基準とし、また、かご内の荷重変動量を、ロープ安全率:12をロープ安全率:10(建築基準法で定められている安全値の最小値)とした際の許容ロープひずみ量が0.092%であると想定する。この時、無負荷の状態から安全率:10とした場合の許容ひずみ量は、0.55%となる。よって、安全率を10以上にするためには、ロープひずみ量:0.55%以下にする必要がある。 Here, the travel of a typical high-rise apartment or office building: 80 m as a standard, and the load fluctuation in the car, the rope safety factor: 12, the rope safety factor: 10 (safety specified by the Building Standard Law It is assumed that the allowable rope distortion amount at the time of setting the minimum value) is 0.092%. At this time, the allowable strain amount when the safety factor is 10 from the no-load state is 0.55%. Therefore, in order to make the safety factor 10 or more, it is necessary to make the rope distortion amount 0.55% or less.
 図9は、ロープひずみ量:0.55%の時のストランドピッチ倍数及びロープピッチ倍数の関係を示すグラフである。鋼線の材料の破断強度を1770MPa、1910MPa以下、2300MPa以下及び3200MPaの4条件で検討した場合を示す。図9のグラフでは、各ラインよりも外側の領域(ストランドピッチ倍数及びロープピッチ倍数が大きい領域)であれば、ロープひずみ量が0.55%未満となる。 FIG. 9 is a graph showing the relationship between the strand pitch multiple and the rope pitch multiple when the rope distortion amount is 0.55%. The case where the breaking strength of the material of the steel wire is examined under four conditions of 1770 MPa, 1910 MPa or less, 2300 MPa or less and 3200 MPa is shown. In the graph of FIG. 9, the rope distortion amount is less than 0.55% in the area outside the lines (area where the strand pitch multiple and the rope pitch multiple are large).
 ここで、破断強度1770MPaのエレベーターロープは、JIS規格(Japanese Industrial Standards)で定められる「B種」(JIS G 3525)のエレベーターロープであり、破断強度1910MPaのエレベーターロープは、JISで定められる「T種」(JIS G 3525)のエレベーターロープである。この2つのエレベーターロープは、一般に広く普及しているものである。破断強度2300MPa及び3200MPaは、上述した一般に普及しているエレベーターロープよりもさらに高い強度を有するものである。 Here, the elevator rope with a breaking strength of 1770 MPa is an elevator rope of “Class B” (JIS G 3525) defined by JIS Standard (Japanese Industrial Standards), and the elevator rope with a breaking strength of 1910 MPa is defined by “T It is an elevator rope of "species" (JIS G 3525). These two elevator ropes are generally widely spread. The breaking strengths of 2300 MPa and 3200 MPa are higher than those of the above-mentioned generally popular elevator ropes.
 図9に示すように、エレベーターロープの破断強度が大きくなるほど、ロープひずみ量:0.55%以下とするためには、ストランドピッチ及びロープピッチを大きくする必要があることがわかる。本発明では、破断強度3200MPaの高強度エレベーターロープにおいて、P=2.5、P=17.2とすれば、ロープひずみが0.55%以下を達成することができることがわかる。言い換えると、エレベーターロープを高強度化(破断強度3200MPa)して本数を減らしたとしても、P=2.5、P=17.2を満たしていればロープひずみが0.55%以下となり、ロープ張力が変動することによって発生するロープ伸びの変化量を十分に低減することができる。 As shown in FIG. 9, it can be seen that the strand pitch and the rope pitch need to be increased in order to set the rope strain amount: 0.55% or less as the breaking strength of the elevator rope increases. In the present invention, it can be seen that, in a high strength elevator rope having a breaking strength of 3200 MPa, if P 2 = 2.5 and P 1 = 17.2, the rope strain can be 0.55% or less. In other words, even if the elevator rope is strengthened (breaking strength 3200 MPa) and the number is reduced, the rope strain will be 0.55% or less if P 2 = 2.5 and P 1 = 17.2 are satisfied. The amount of change in rope elongation caused by the fluctuation in rope tension can be sufficiently reduced.
 上記以外の破断強度を持つストランド及び鋼線を使用した場合でも、式(32)にロープ破断強度の1/10(安全率:10)の値を代入することで、ロープひずみ量:0.55%以下とするために必要なロープピッチP及びストランドピッチPを算出可能である。 Even when using strands and steel wires having breaking strengths other than the above, by substituting the value of 1/10 (safety factor: 10) of rope breaking strength into equation (32), rope strain amount: 0.55 The rope pitch P 1 and the strand pitch P 2 required to achieve% or less can be calculated.
 次に、上記指針に基づいた計算の妥当性を確認するための試験を実施した。図10は試験のために作製したロープを模式的に示す側面図である。試験用のエレベーターロープ101は、エレベーターロープ1の径d:8.0(mm)、ストランド102の数N:4(本)、ストランド102の最外層の鋼線103の数:7(本)、鋼線103の最外層の素線103aの数:7(本)、ロープ基長(ストランドの撚りの中心軸方向の長さ)L:21000(mm)、付加荷重(張力T):6000(N)、鋼線の縦弾性係数E:205000MPa、鋼線の横弾性係数G:170800MPaであり、ロープが型崩れしないように表面を樹脂104で被覆している。 Next, a test was conducted to confirm the validity of the calculation based on the above guidelines. FIG. 10 is a side view schematically showing a rope produced for the test. The elevator rope 101 for the test includes the diameter d 0 of the elevator rope 1: 8.0 (mm), the number N 1 of strands 102: 4 (pieces), and the number of steel wires 103 of the outermost layer of the strands 102: 7 (pieces ), Number of outermost strands 103a of the steel wire 103: 7 (pieces), Rope base length (length in the central axis direction of strand twist) L 1 : 21000 (mm), applied load (tension T 0 ) The longitudinal elastic modulus E of the steel wire is 205,000 MPa, and the lateral elastic modulus G of the steel wire is 170800 MPa, and the surface is coated with the resin 104 so that the rope is not deformed.
 図11はロープの伸び量δLとロープピッチP及びストランドピッチPの関係を示すグラフである。図11では計算値と実験値を比較している。図10のエレベーターロープ101において、ロープピッチ:P(mm)、ストランドピッチ:P(mm)、鋼線ピッチ:P(mm)とし、以下の条件1~3で実験及び計算を行った。 Figure 11 is a graph showing the relationship between the elongation amount [delta] L 1 and rope pitch P 1 and strand pitch P 2 of the rope. In FIG. 11, calculated values and experimental values are compared. In the elevator rope 101 of FIG. 10, the rope pitch: P 1 (mm), the strand pitch: P 2 (mm), and the steel wire pitch: P 3 (mm), experiments and calculations were performed under the following conditions 1 to 3 .
 条件1:P=90(mm)、P=16(mm)、P=12(mm)
 条件2:P=180(mm)、P=32(mm)、P=18(mm)
 条件3:P=360(mm)、P=60(mm)、P=24(mm)
 図11はL=21000(mm)、T=6000(N)における各ロープの伸び量計算値及び実験値(実測値)を示している。3水準ともに計算値と実験値との誤差は±10%未満であり、十分な計算精度が担保されていることが確認できる。
Condition 1: P 1 = 90 (mm), P 2 = 16 (mm), P 3 = 12 (mm)
Condition 2: P 1 = 180 (mm), P 2 = 32 (mm), P 3 = 18 (mm)
Condition 3: P 1 = 360 (mm), P 2 = 60 (mm), P 3 = 24 (mm)
FIG. 11 shows the calculated elongation amount and the experimental value (measured value) of each rope at L 1 = 21000 (mm) and T 0 = 6000 (N). The error between the calculated value and the experimental value for all three levels is less than ± 10%, which confirms that sufficient calculation accuracy is secured.
 以上より、エレベーター用ワイヤロープとして必要とされる所定のロープひずみ量(0.55%)以下に抑えられる「ロープ径dに対するロープピッチPの比率a」と「ロープ径dに対するストランドピッチPの比率b」は、以下の式(32)を満たす範囲とすれば良いことが分かる。 From the above, the “ratio a of the rope pitch P 1 to the rope diameter d” and the strand pitch P 2 to the rope diameter d can be suppressed to a predetermined rope distortion amount (0.55%) or less required for the elevator wire rope. It can be seen that the ratio b ′ ′ may be in a range that satisfies the following equation (32).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記式(32)を、左辺をbとして整理すると、上述した式Aとなる。 When the above equation (32) is arranged with the left side as b, the above equation A is obtained.
 以上説明した通り、本発明によれば、ロープの破断強度を向上してロープ本数を減らしたとしても、エレベーターの乗降によりロープ張力が変動することによって発生するロープ伸びの変化量を低減できるエレベーター用ワイヤロープを提供できることが示された。 As described above, according to the present invention, even if the breaking strength of the rope is improved to reduce the number of ropes, it is possible to reduce the amount of change in the rope elongation caused by the fluctuation of the rope tension due to getting on and off the elevator. It has been shown that a wire rope can be provided.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 1,101…エレベーターロープ、2,102…ストランド、3,103…鋼線、3a,103a…素線、104…樹脂、30…撚りの中心軸、31…ストランド断面と垂直方向の軸。 1, 101: elevator rope, 2, 102: strand, 3, 103: steel wire, 3a, 103a: strand, 104: resin, 30: central axis of twist, 31: axis in a direction perpendicular to the strand cross section.

Claims (12)

  1.  複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、
     前記エレベーターロープの径をd(mm)、前記ストランドの巻き間隔をロープピッチP、前記鋼線の巻間隔をストランドピッチPとした時に、前記dに対する前記Pの比率a、前記dに対する前記Pの比率b及び前記エレベーターロープの破断強度T(N)が以下の式Aを満足することを特徴とするエレベーターロープ。
    Figure JPOXMLDOC01-appb-M000001
     ただし、上記式Aにおいて、E:前記エレベーターロープに使用している材料の縦弾性係数(MPa)、G:前記エレベーターロープに使用している材料の横弾性係数(MPa)、N:前記ストランドの本数とする。
    In an elevator rope formed by twisting a plurality of strands of a plurality of steel wires,
    Assuming that the diameter of the elevator rope is d (mm), the winding distance of the strands is rope pitch P 1 , and the winding distance of the steel wire is strand pitch P 2 , the ratio a to d of the P 1 to the d An elevator rope characterized in that the ratio b of P 2 and the breaking strength T (N) of the elevator rope satisfy the following formula A.
    Figure JPOXMLDOC01-appb-M000001
    However, in the above-mentioned formula A, E: longitudinal modulus of elasticity (MPa) of the material used for the elevator rope, G: lateral modulus of elasticity (MPa) of the material used for the elevator rope, N: for the strand It is assumed to be the number.
  2.  前記Pが17.2であり、前記Pが2.5であることを特徴とする請求項1に記載のエレベーターロープ。 The elevator rope according to claim 1, wherein the P 1 is 17.2 and the P 2 is 2.5.
  3.  前記鋼線の破断強度が3200MPaであることを特徴とする請求項1又は2に記載のエレベーターロープ。 The elevator rope according to claim 1 or 2, wherein the breaking strength of the steel wire is 3200 MPa.
  4.  前記鋼線の破断強度が2300MPaであることを特徴とする請求項1に記載のエレベーターロープ。 The elevator rope according to claim 1, wherein the breaking strength of the steel wire is 2300 MPa.
  5.  前記鋼線の破断強度が1910MPaであることを特徴とする請求項1に記載のエレベーターロープ。 The elevator rope according to claim 1, wherein a breaking strength of the steel wire is 1910 MPa.
  6.  前記鋼線の破断強度が1770MPaであることを特徴とする請求項1に記載のエレベーターロープ。 The elevator rope according to claim 1, wherein a breaking strength of the steel wire is 1770 MPa.
  7.  複数の鋼線を撚り合わせてなるストランドが複数撚り合わされて形成されたエレベーターロープにおいて、
     前記鋼線は、複数の素線が撚り合わせて形成されたものであり、
     前記エレベーターロープの径をd(mm)、前記ストランドの巻き間隔をロープピッチP、前記鋼線の巻間隔をストランドピッチPとした時に、前記dに対する前記Pの比率a、前記dに対する前記Pの比率b及び前記エレベーターロープの破断強度T(N)が以下の式を満足することを特徴とするエレベーターロープ。
    Figure JPOXMLDOC01-appb-M000002
     ただし、上記式Aにおいて、E:前記エレベーターロープに使用している材料の縦弾性係数(MPa)、G:前記エレベーターロープに使用している材料の横弾性係数(MPa)、N:前記ストランドの本数とする。
    In an elevator rope formed by twisting a plurality of strands of a plurality of steel wires,
    The steel wire is formed by twisting a plurality of strands,
    Assuming that the diameter of the elevator rope is d (mm), the winding distance of the strands is rope pitch P 1 , and the winding distance of the steel wire is strand pitch P 2 , the ratio a to d of the P 1 to the d the elevator ropes, characterized in that P 2 ratio b and breaking strength of the elevator rope T (N) satisfies the following equation.
    Figure JPOXMLDOC01-appb-M000002
    However, in the above-mentioned formula A, E: longitudinal modulus of elasticity (MPa) of the material used for the elevator rope, G: lateral modulus of elasticity (MPa) of the material used for the elevator rope, N: for the strand It is assumed to be the number.
  8.  前記Pが17.2であり、前記Pが2.5であることを特徴とする請求項7に記載のエレベーターロープ。 Wherein P 1 is 17.2, elevator rope according to claim 7, wherein said P 2 is 2.5.
  9.  前記鋼線の破断強度が3200MPaであることを特徴とする請求項7又は8に記載のエレベーターロープ。 The elevator rope according to claim 7 or 8, wherein the breaking strength of the steel wire is 3200 MPa.
  10.  前記鋼線の破断強度が2300MPaであることを特徴とする請求項7に記載のエレベーターロープ。 The elevator rope according to claim 7, wherein the breaking strength of the steel wire is 2300 MPa.
  11.  前記鋼線の破断強度が1910MPaであることを特徴とする請求項7に記載のエレベーターロープ。 The elevator rope according to claim 7, wherein the breaking strength of the steel wire is 1910 MPa.
  12.  前記鋼線の破断強度が1770MPaであることを特徴とする請求項7に記載のエレベーターロープ。 The elevator rope according to claim 7, wherein the breaking strength of the steel wire is 1770 MPa.
PCT/JP2018/026671 2017-09-11 2018-07-17 Elevator rope WO2019049514A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18853024.0A EP3683179A4 (en) 2017-09-11 2018-07-17 Elevator rope
CN201880057739.2A CN111065594B (en) 2017-09-11 2018-07-17 Elevator rope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017173775A JP6767327B2 (en) 2017-09-11 2017-09-11 Elevator rope
JP2017-173775 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049514A1 true WO2019049514A1 (en) 2019-03-14

Family

ID=65633849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026671 WO2019049514A1 (en) 2017-09-11 2018-07-17 Elevator rope

Country Status (4)

Country Link
EP (1) EP3683179A4 (en)
JP (1) JP6767327B2 (en)
CN (1) CN111065594B (en)
WO (1) WO2019049514A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767327B2 (en) 2017-09-11 2020-10-14 株式会社日立製作所 Elevator rope
CN109457520A (en) * 2018-12-30 2019-03-12 辽宁通达建材实业有限公司 A method of control steel strand wires elasticity modulus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169786A (en) * 1988-12-16 1990-06-29 Sumitomo Electric Ind Ltd Steel cord for rubber reinforcement
JPH05125676A (en) * 1991-11-01 1993-05-21 Tokyo Seiko Co Ltd Fatigue-resistant wire rope
WO2004076327A1 (en) 2003-02-27 2004-09-10 N.V. Bekaert S.A. An elevator rope
JP2006052483A (en) * 2004-08-10 2006-02-23 Hitachi Building Systems Co Ltd Wire rope
JP2012020793A (en) * 2010-07-12 2012-02-02 Hitachi Ltd Elevator wire rope
JP2016011481A (en) * 2014-06-30 2016-01-21 神鋼鋼線工業株式会社 Rotation-resistant wire rope
JP2016094677A (en) * 2014-11-13 2016-05-26 東京製綱株式会社 Crane wire rope
WO2016199204A1 (en) 2015-06-08 2016-12-15 株式会社日立製作所 Elevator main rope and elevator device using same
EP3683179A1 (en) 2017-09-11 2020-07-22 Hitachi, Ltd. Elevator rope

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910377B2 (en) * 2001-04-25 2007-04-25 東京製綱株式会社 Wire rope
CN1625618A (en) * 2002-01-30 2005-06-08 泰盛电梯资金股份有限公司 Synthetic fiber rope for an elevator
CN201773624U (en) * 2010-08-23 2011-03-23 江苏河阳线缆有限公司 Fast response high-speed elevator cable
JP5758203B2 (en) * 2011-06-03 2015-08-05 小松精練株式会社 String-like reinforcing fiber composite, concrete reinforcing bar and brace material
JP5806644B2 (en) * 2012-05-31 2015-11-10 東京製綱株式会社 Hybrid heart rope
KR20180048784A (en) * 2015-10-16 2018-05-10 미쓰비시덴키 가부시키가이샤 Elevator rope and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169786A (en) * 1988-12-16 1990-06-29 Sumitomo Electric Ind Ltd Steel cord for rubber reinforcement
JPH05125676A (en) * 1991-11-01 1993-05-21 Tokyo Seiko Co Ltd Fatigue-resistant wire rope
WO2004076327A1 (en) 2003-02-27 2004-09-10 N.V. Bekaert S.A. An elevator rope
JP2006052483A (en) * 2004-08-10 2006-02-23 Hitachi Building Systems Co Ltd Wire rope
JP2012020793A (en) * 2010-07-12 2012-02-02 Hitachi Ltd Elevator wire rope
JP2016011481A (en) * 2014-06-30 2016-01-21 神鋼鋼線工業株式会社 Rotation-resistant wire rope
JP2016094677A (en) * 2014-11-13 2016-05-26 東京製綱株式会社 Crane wire rope
WO2016199204A1 (en) 2015-06-08 2016-12-15 株式会社日立製作所 Elevator main rope and elevator device using same
EP3683179A1 (en) 2017-09-11 2020-07-22 Hitachi, Ltd. Elevator rope

Also Published As

Publication number Publication date
JP6767327B2 (en) 2020-10-14
CN111065594B (en) 2021-07-27
EP3683179A1 (en) 2020-07-22
EP3683179A4 (en) 2021-05-19
CN111065594A (en) 2020-04-24
JP2019048698A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP5269838B2 (en) Elevator wire rope
KR101665837B1 (en) Elevator rope
EP3159296B1 (en) Rope for elevator and manufacturing method therefor
JP6452839B2 (en) Elevator rope and manufacturing method thereof
WO2012056529A1 (en) Rope for elevator
JP5859138B2 (en) Elevator system belt
WO2019049514A1 (en) Elevator rope
WO2006061888A1 (en) Rope for elevator and elevator
JP4296152B2 (en) Elevator rope and elevator equipment
KR101635468B1 (en) Elevator system belt
US10221043B2 (en) Elevator suspension and/or driving arrangement
KR100830777B1 (en) Rope for elevat0r and elevator
WO2011070648A1 (en) Rope for elevator
JP2015140243A (en) Elevator main rope
JP2006052483A (en) Wire rope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853024

Country of ref document: EP

Effective date: 20200414