WO2019049427A1 - Cabin vibration damping system for work vehicle - Google Patents

Cabin vibration damping system for work vehicle Download PDF

Info

Publication number
WO2019049427A1
WO2019049427A1 PCT/JP2018/018603 JP2018018603W WO2019049427A1 WO 2019049427 A1 WO2019049427 A1 WO 2019049427A1 JP 2018018603 W JP2018018603 W JP 2018018603W WO 2019049427 A1 WO2019049427 A1 WO 2019049427A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
damping system
frame
damping force
damping
Prior art date
Application number
PCT/JP2018/018603
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 達夫
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2019049427A1 publication Critical patent/WO2019049427A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D24/00Connections between vehicle body and vehicle frame
    • B62D24/02Vehicle body, not intended to move relatively to the vehicle frame, and mounted on vibration absorbing mountings, e.g. rubber pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/04Connections between superstructure or understructure sub-units resilient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/504Inertia, i.e. acceleration,-sensitive means

Definitions

  • the present invention relates to a cabin damping system that suppresses vibration of a cabin of a work vehicle.
  • JP 2010-260460 A discloses a work vehicle in which a cabin is installed on a frame via a coil spring and an oil damper. In this work vehicle, vibration of the cabin is suppressed by the coil spring and the oil damper.
  • An object of the present invention is to accurately suppress vibration of a cabin of a work vehicle.
  • a cabin damping system for suppressing vibration of a cabin of a work vehicle is provided between a frame of the work vehicle and the cabin, and is capable of changing a damping force for damping the vibration.
  • the buffer unit is generated based on the buffer unit, an acceleration detection unit that detects an acceleration of the cabin in at least the direction of the vibration, and the acceleration of the cabin detected by the acceleration detection unit and a resonance frequency of the cabin.
  • a controller configured to control the magnitude of the damping force.
  • FIG. 1 is a side view of a tractor to which a cabin damping system according to a first embodiment of the present invention is applied.
  • FIG. 2 is a rear view of a tractor to which a cabin damping system according to a first embodiment of the present invention is applied, viewed from the rear.
  • FIG. 3 is a hydraulic circuit diagram of the cabin damping system according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged view showing a buffer portion of the cabin damping system according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart of processing executed by the control unit of the cabin damping system according to the first embodiment of the present invention.
  • FIG. 6 is a hydraulic circuit diagram of a cabin damping system according to a second embodiment of the present invention.
  • FIG. 7 is a hydraulic circuit diagram of a cabin damping system according to a third embodiment of the present invention.
  • FIG. 8 is an enlarged view showing a buffer portion of a cabin damping system according to a third embodiment of the
  • FIG. 1 shows a side view of the tractor 1
  • FIG. 2 shows a rear view of the tractor 1 viewed from the rear.
  • the tractor 1 shown in FIGS. 1 and 2 is a work vehicle that travels on uneven terrain such as a field.
  • the tractor 1 includes a frame 2 extending in the front-rear direction of the vehicle, front wheels 3 and rear wheels 4 supported by the frame 2, and a cabin 6 installed on the frame 2 via hydraulic cylinders 20 described later.
  • An engine (not shown) is mounted in front of the frame 2 and a bonnet 5 is attached to the frame 2 so as to cover the engine.
  • the tractor 1 travels by the power of the engine being transmitted to the front wheels 3 and the rear wheels 4 via a gear case (not shown).
  • the cabin 6 is connected to the frame 2 on the front side of the vehicle via a pair of cylindrical rubber bush mounts 7 provided at both ends in the width direction of the vehicle.
  • the rubber bush mount 7 is arranged such that its support shaft extends in the width direction of the vehicle. That is, as shown by arrow A in FIG. 1, the cabin 6 is supported swingably in the pitch direction of the vehicle centering on the rubber bush mount 7.
  • the cabin 6 and the frame 2 are connected via a hydraulic cylinder 20 provided in a pair in the width direction of the vehicle, and connected via a lateral rod 8 disposed so as to extend in the width direction of the vehicle. Therefore, although the cabin 6 is allowed to be displaced in the vertical direction of the vehicle with respect to the frame 2, the displacement in the width direction of the vehicle is limited.
  • the cabin damping system 100 includes a buffer unit 10 that can change the damping force that attenuates the vibration of the cabin 6, a cabin height adjustment unit 50 that supplies and discharges hydraulic fluid as a working fluid to the buffer unit 10, and the buffer. And a controller 60 as a controller that controls the magnitude of the damping force generated by the unit 10.
  • the buffer unit 10 has a hydraulic cylinder 20 as a pair of hydraulic cylinders provided between the cabin 6 and the frame 2 respectively on the right side and the left side of the vehicle. Since the pair of hydraulic cylinders 20 have the same configuration, only one configuration will be described below.
  • the hydraulic cylinder 20 has a cylinder tube 21 whose one end is connected to the frame 2 and in which the hydraulic oil is sealed, and a piston side chamber 24 slidably disposed in the cylinder tube 21 and having a cylinder tube 21 as a first fluid chamber. And a piston 22 defined in a rod side chamber 25 as a second fluid chamber, and a piston rod 23 having one end coupled to the piston 22 and the other end coupled to the cabin 6.
  • the hydraulic cylinder 20 is a so-called single-acting hydraulic cylinder which is extended by the supply of hydraulic fluid to the piston side chamber 24 and is contracted by the discharge of hydraulic fluid from the piston side chamber 24.
  • the hydraulic cylinder 20 is connected to the frame 2 at the base end of the cylinder tube 21 via the connecting portion 26 and is connected to the cabin 6 via the connecting portion 27 at the tip end of the piston rod 23.
  • an expansion damping valve 29a and a compression damping valve 29b are provided inside the piston 22 of the hydraulic cylinder 20 inside the piston 22 of the hydraulic cylinder 20, and an expansion damping valve 29a and a compression damping valve 29b are provided.
  • the expansion damping valve 29a is provided in the communication passage 22a that connects the piston side chamber 24 and the rod side chamber 25.
  • the expansion side damping valve 29a opens to open the communication passage 22a and passes through the communication passage 22a.
  • the pressure-side damping valve 29b is provided in the communication passage 22b that connects the piston side chamber 24 and the rod side chamber 25.
  • the hydraulic cylinder 20 contracts, it opens to open the communication passage 22b and passes through the communication passage 22b. This resists the flow of hydraulic fluid moving from the piston side chamber 24 to the rod side chamber 25.
  • the buffer unit 10 further includes a damping force switching valve 30 provided inside the piston rod 23, as shown in FIG.
  • the damping force switching valve 30 is an electromagnetic two-position switching valve provided on a communication passage 28 formed in a piston rod 23 that communicates the piston side chamber 24 and the rod side chamber 25.
  • the damping force switching valve 30 is opposed to the solenoid 33 driven by the current supplied from the control device 60, the valve body 31 to which the biasing force of the solenoid 33 is applied via the transmission member 34, and the biasing force of the solenoid 33 And a spring 32 for applying a biasing force to the valve body 31.
  • the valve body 31 has a large flow passage area, a first position 31 a which hardly gives resistance to hydraulic oil flowing in the communication passage 28, and a small flow passage area, which applies relatively large resistance to hydraulic oil flowing in the communication passage 28. And 2 positions 31b.
  • the position of the valve body 31 is switched by the biasing force of the spring 32 and the biasing force of the solenoid 33. Specifically, in a state in which no current is applied to the solenoid 33, the biasing force of the spring 32 holds the first position 31a, and the current is applied to the solenoid 33 and applied to the valve body 31 via the transmission member 34. When the biasing force of the solenoid 33 exceeds the biasing force of the spring 32, the second position 31b is switched.
  • the damping force switching valve 30 is configured such that the position of the valve body 31 is the second position 31b when no current is applied to the solenoid 33, and the first position 31a when the current is applied to the solenoid 33. It may be
  • the buffer unit 10 has a vibration damping function of damping vibration by generating damping force.
  • the buffer 10 further includes an accumulator 40 connected to the hydraulic cylinder 20 through the connection passage 42.
  • the accumulator 40 internally includes an oil chamber 41 a connected to the piston side chamber 24 through the connection passage 42 and a spring chamber 41 b that applies pressure to the oil chamber 41 a.
  • the spring chamber 41b is a gas chamber in which a pressurized gas such as nitrogen is sealed, and a gas pressure is applied to a liquid surface which is a boundary surface with the oil chamber 41a.
  • the free piston that divides the oil chamber 41a and the spring chamber 41b may be accommodated in the accumulator 40. Further, a free piston that divides the oil chamber 41a and the spring chamber 41b may be accommodated in the accumulator 40, and a metal spring may be accommodated in the spring chamber 41b. That is, instead of the pressurized gas, a pressure may be applied to the oil chamber 41a using a spring.
  • the characteristics of the accumulator 40 are set by adjusting the gas pressure in the spring chamber 41b, the volume of the accumulator 40, and the like.
  • the piston side chamber 24 connected to the oil chamber 41 a of the accumulator 40 is compressed as the load acting in the direction to contract the hydraulic cylinder 20 is larger.
  • the hydraulic oil discharged from the cylinder tube 21 moves to the oil chamber 41 a through the connection passage 42 and increases the pressure in the spring chamber 41 b.
  • the energy stored in the spring chamber 41 b in this manner is a restoring force that causes the piston side chamber 24 to expand. That is, as the accumulator 40 is connected, the piston side chamber 24 functions as a fluid spring that releases energy stored in compression as it is expanded.
  • the buffer unit 10 has a vibration damping function and also has a shock absorbing function of storing a shock as energy.
  • the cabin height adjustment unit 50 changes the relative distance between the frame 2 and the cabin 6 by supplying and discharging the working oil to the piston side chamber 24 of the hydraulic cylinder 20, and adjusts the height of the cabin 6 with respect to the traveling road surface It is a thing.
  • the cabin height adjustment unit 50 is provided with a hydraulic pump 51 for supplying hydraulic fluid, a direction switching valve 52 provided between the hydraulic pump 51 and the hydraulic cylinder 20 to switch the extension direction of the hydraulic cylinder 20, and the hydraulic cylinder 20. It has a tank T to which the hydraulic fluid to be discharged is introduced, and a supply / discharge passage 56 connecting the hydraulic cylinder 20 and the direction switching valve 52.
  • hydraulic fluid is used as the hydraulic fluid, but instead of hydraulic fluid, hydraulic fluid such as water-soluble alternative liquid may be used as the hydraulic fluid, or gas may be used. It may be used as a working fluid.
  • the hydraulic pump 51 is driven by an engine or an electric motor (not shown), and supplies hydraulic fluid stored in the tank T to the piston side chamber 24 of the hydraulic cylinder 20.
  • the direction switching valve 52 is an electromagnetic switching valve whose position is switched by the control device 60.
  • the direction switching valve 52 supplies the hydraulic fluid to the hydraulic cylinder 20 and extends the hydraulic cylinder 20.
  • the directional valve 52 discharges the hydraulic fluid from the hydraulic cylinder 20 There are three positions, a contraction position 52b for contracting the cylinder 20 and a stop position 52c for stopping the supply and discharge of hydraulic fluid to the hydraulic cylinder 20.
  • One end of the supply and discharge passage 56 is connected to the direction switching valve 52, and the other end is branched to be connected to a connection passage 42 that connects the piston side chamber 24 and the oil chamber 41a.
  • An operation check valve 53 is interposed on the direction switching valve 52 side of the branch point of the supply and discharge passage 56.
  • the directional control valve 52 is connected to the supply / discharge passage 56 and also includes a supply passage 55 for guiding the hydraulic fluid discharged from the hydraulic pump 51, a discharge passage 57 for returning the hydraulic fluid to the tank T, and the operation check valve 53.
  • An operating passage 59 communicating with the pilot pressure chamber is connected.
  • the supply passage 55 and the discharge passage 57 are connected by a relief passage 58, and the relief passage 58 is provided with a relief valve 54 that opens when the hydraulic pressure of the supply passage 55 exceeds a set pressure.
  • the discharge passage 57 and the operation passage 59 communicate with each other, and the supply and discharge passage 56 communicates with the supply passage 55.
  • the hydraulic oil discharged from the hydraulic pump 51 flows into the piston side chambers 24 of the pair of hydraulic cylinders 20 through the supply passage 55 and the supply and discharge passage 56.
  • the pair of hydraulic cylinders 20 are extended synchronously, the distance between the frame 2 and the cabin 6 is increased, and the height of the cabin 6 with respect to the traveling road surface is increased.
  • the height of the cabin 6 with respect to the frame 2, that is, the height of the cabin 6 with respect to the road surface can be adjusted by extending and retracting the hydraulic cylinder 20.
  • the cabin damping system 100 includes an acceleration sensor 62 as an acceleration detection unit for detecting an acceleration ⁇ of the cabin 6, a stroke sensor 64 as a distance detection unit for detecting a relative distance between the frame 2 and the cabin 6, and And a tilt sensor 66 as a tilt detection unit that detects a tilt degree.
  • the acceleration sensor 62 is attached to the cabin 6 and detects an acceleration ⁇ of the cabin 6 in the vibration direction of the cabin, that is, the vertical direction of the cabin 6 or the direction in which the hydraulic cylinder 20 extends and contracts.
  • the acceleration ⁇ detected by the acceleration sensor 62 is input to the control device 60. Since the cabin 6 swings in the pitch direction, the direction of the acceleration ⁇ detected by the acceleration sensor 62 may be the pitch direction.
  • the stroke sensor 64 is attached to the hydraulic cylinder 20 and detects the stroke amount of the piston rod 23 of the hydraulic cylinder 20.
  • the stroke amount detected by the stroke sensor 64 is input to the control device 60.
  • a distance detection part which detects the relative distance of the flame
  • the inclination sensor 66 is attached to the frame 2 and detects the inclination of the frame 2, that is, the inclination of the traveling road surface. The degree of inclination detected by the inclination sensor 66 is input to the control device 60.
  • the control device 60 controls the buffer unit 10 and the cabin height adjustment unit 50 based on the values detected by the various sensors 62, 64, 66 described above.
  • the control device 60 is configured by a microcomputer provided with a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and an I / O interface (input / output interface).
  • the RAM stores data in the processing of the CPU
  • the ROM stores in advance a control program of the CPU, etc.
  • the I / O interface is used to input and output information with the connected device.
  • Control device 60 may be incorporated in a control device that controls an engine or a vehicle. The control performed by the control device 60 will be specifically described below.
  • FIG. 5 is a flowchart showing a control procedure of damping force adjustment control performed by the control device 60.
  • the acceleration sensor 62 detects the acceleration ⁇ in the vibration direction of the cabin 6. The detected acceleration ⁇ is transmitted to the control device 60.
  • step S11 FFT processing is performed on the acceleration ⁇ received by the control device 60 to calculate the power spectral density at each frequency.
  • the power spectral density represents each frequency component of the waveform as the magnitude of power.
  • step S12 the power spectral density Px at the resonance frequency fm of the cabin 6 is calculated from the power spectral density calculated in step S11.
  • step S13 it is determined whether the power spectral density Px at the resonance frequency fm of the cabin 6 calculated in step S12 is equal to or higher than a threshold value Pc as a predetermined value. If the power spectral density Px is equal to or higher than the threshold Pc, the process proceeds to step S14. If the power spectral density Px is lower than the threshold Pc, the process proceeds to step S15.
  • step S14 the control device 60 applies a current to the solenoid 33 of the damping force switching valve 30.
  • the position of the damping force switching valve 30 is switched to the second position 31b where the flow passage area is small.
  • the resistance imparted to the hydraulic oil flowing through the communication passage 28 increases.
  • the damping force generated by the buffer 10 increases, and the vibration in the pitch direction of the cabin 6 is suppressed by the buffer 10.
  • step S ⁇ b> 15 the control device 60 applies no current to the solenoid 33 of the damping force switching valve 30. Since no current is applied to the solenoid 33, the position of the damping force switching valve 30 is held by the biasing force of the spring 32 at the first position 31a where the flow passage area is large. In this case, since the flow passage area of the communication passage 28 can not be reduced, almost no resistance is given to the hydraulic oil flowing through the communication passage 28. As a result, the damping force generated by the buffer 10 is reduced. However, since the cabin 6 does not generate vibration that needs to be suppressed, there is no effect even if the damping force generated by the buffer 10 is reduced. Rather, the traveling road surface is reduced by reducing the damping force generated by the buffer 10. It can suppress that the up-and-down motion and vibration which are transmitted to the frame 2 are transmitted to the cabin 6 as it is.
  • the damping force generated by the buffer unit 10 is large.
  • the damping force generated by the buffer unit 10 is reduced. The reason why the damping force is switched in this way will be described below with reference to a specific example.
  • the tractor 1 travels on a road surface where relatively moderate unevenness is repeated as in a field
  • the frame 2 is continuously displaced in the vertical direction due to the unevenness of the field.
  • the cabin 6 tries to maintain the height in the vertical direction by inertia.
  • the damping force generated by the buffer portion 10 is large and the hydraulic cylinder 20 does not easily expand and contract, the displacement of the frame 2 is easily transmitted to the cabin 6.
  • the cabin 6 may be displaced in the vertical direction according to the unevenness of the field as well as the frame 2.
  • the cabin damping system 100 when the tractor 1 travels on a relatively gentle uneven road surface, the hydraulic oil flowing through the communication passage 28 does not apply current to the solenoid 33 of the damping force switching valve 30. And the damping force generated by the buffer 10 is reduced. As a result, the hydraulic fluid can easily move relatively smoothly between the piston side chamber 24 and the rod side chamber 25 through the communication passage 28, and the hydraulic cylinder 20 can easily expand and contract, whereby the displacement of the frame 2 is transmitted to the cabin 6 It becomes difficult.
  • the cabin damping system 100 when it is determined that the cabin 6 does not vibrate at the resonance frequency fm, the resistance given to the hydraulic oil flowing through the communication passage 28 is reduced to reduce the shock absorber 10 The generated damping force is reduced, and the displacement of the frame 2 is transferred by the hydraulic cylinder 20 to suppress the transmission of the vibration of the frame 2 to the cabin 6.
  • the hydraulic cylinder 20 As the cabin 6 is displaced away from the frame 2, the hydraulic cylinder 20 also extends. As the hydraulic cylinder 20 extends, the pressure in the piston side chamber 24 gradually decreases, and eventually the cabin 6 begins to be displaced downward, that is, toward the frame 2 by gravity. As the piston rod 23 of the hydraulic cylinder 20 is pushed by the weight of the cabin 6, the piston side chamber 24 is compressed again.
  • the damping force generated by the buffer unit 10 is increased by increasing the resistance applied to the hydraulic oil flowing through the communication passage 28.
  • the vibration of the cabin 6 is suppressed by attenuating both the force of pushing the piston rod 23 by the cabin 6 and the restoring force generated in the piston side chamber 24.
  • the control device 60 calculates the relative distance between the frame 2 and the cabin 6 from the stroke amount of the piston rod 23 of the hydraulic cylinder 20 detected by the stroke sensor 64, and the calculated actual relative distance is a predetermined target relative.
  • the cabin height adjustment unit 50 is controlled to be the distance.
  • the controller 60 switches the position of the direction switching valve 52 of the cabin height adjustment unit 50 to the extended position 52a.
  • the direction switching valve 52 is switched to the extension position 52 a, the hydraulic fluid discharged from the hydraulic pump 51 flows into the piston side chambers 24 of the pair of hydraulic cylinders 20 through the supply passage 55 and the supply and discharge passage 56.
  • the pair of hydraulic cylinders 20 extend synchronously, and the actual relative distance approaches the target relative distance.
  • the controller 60 switches the position of the direction switching valve 52 of the cabin height adjustment unit 50 to the contracted position 52b.
  • the directional control valve 52 is switched to the contracted position 52b, the hydraulic oil in the piston side chamber 24 is returned to the tank T through the supply and discharge passage 56 and the discharge passage 57.
  • the pair of hydraulic cylinders 20 contract in synchronization, and the actual relative distance approaches the target relative distance.
  • the control device 60 switches the position of the direction switching valve 52 of the cabin height adjustment unit 50 to the stop position 52c.
  • the directional control valve 52 is switched to the stop position 52c, the supply of hydraulic fluid to the piston side chamber 24 is shut off and the discharge of hydraulic fluid from the piston side chamber 24 is stopped. Thereby, the extension and contraction operation of the pair of hydraulic cylinders 20 is stopped.
  • the control device 60 controls the cabin height adjusting unit 50 to adjust the amount of expansion and contraction of the pair of hydraulic cylinders 20 so that the actual relative distance and the target relative distance match.
  • the target relative distance is set such that when the relative distance between the frame 2 and the cabin 6 becomes the target relative distance, the position of the piston 22 is not in the vicinity of the upper end or the lower end of the cylinder tube 21 in the cylinder tube 21. Be done.
  • the target relative distance may be changeable by the operator operating the dial or the like. In this case, the workability of the tractor 1 can be improved by appropriately adjusting the height of the cabin 6 so as to ensure the visibility from the cabin 6.
  • control device 60 changes the target relative distance in accordance with the degree of inclination of the frame 2 detected by the inclination sensor 66, that is, the degree of inclination of the traveling road surface. Specifically, the controller 60 increases the target relative distance when climbing uphill, and reduces the target relative distance when descending downhill, thereby reducing the cabin
  • the cabin height adjustment unit 50 is controlled so that 6 is in a horizontal state.
  • the inclination sensor 66 may be provided in the cabin 6, and in this case, the control device 60 controls the cabin height adjustment unit 50 so that the detection value of the inclination sensor 66 indicates a horizontal state.
  • the operability of the tractor 1 can be improved by being able to maintain the cabin 6 in a horizontal state regardless of the degree of inclination of the traveling road surface.
  • the cabin height adjustment part 50 which adjusts the height of the cabin 6 is a function which can be added with respect to the cabin damping system 100 as needed, and does not necessarily need to be integrated.
  • the cabin height adjustment control may be performed such that the position of the cabin 6 with respect to the frame 2 is always in a neutral position in the vertical direction without using the stroke sensor 64 or the like.
  • a cabin height adjustment lever (not shown) is operated by the operator
  • a manual adjustment mode may be provided in which the height of the cabin 6 relative to the frame 2 is adjusted.
  • the vibration of the cabin 6 can be accurately suppressed.
  • the damping force generated by the buffer unit 10 is increased to suppress the vibration of the cabin 6, and the cabin 6 vibrates at the resonance frequency fm.
  • the damping force generated by the buffer unit 10 is reduced to suppress the transmission of vibration from the frame 2 to the cabin 6. As a result, it is possible to improve the riding comfort of a work vehicle such as a tractor 1 traveling on rough terrain.
  • the vibration of the frame 2 and the cabin 6 can be damped or absorbed by the hydraulic cylinder 20 only by arranging the hydraulic cylinder 20 between the frame 2 and the cabin 6. For this reason, it is possible to mount the cabin damping system 100 also to the tractor 1 which does not have much space between the frame 2 and the cabin 6.
  • whether or not the cabin 6 vibrates at the resonance frequency fm is determined based on the value of the power spectral density Px at the resonance frequency fm. Instead of this, it may be determined whether or not the cabin 6 vibrates at the resonance frequency fm based on the magnitude of the effective value Xr of the octave band.
  • the effective value Xr of the octave band will be specifically described below.
  • the octave band is a frequency range of 1/1 octave when the resonance frequency fm of the cabin 6 is a central frequency.
  • the upper limit frequency is fu1 and the lower limit frequency is fd1
  • the upper limit frequency fu1 and the lower limit frequency fd1 of 1/1 octave can be obtained by the following equations (1) and (2).
  • the frequency range of the octave band may be 1/3 octave.
  • the upper limit frequency fu2 and the lower limit frequency fd2 of the 1/3 octave can be obtained by the following equations (3) and (4).
  • the effective value Xr of the octave band is determined by integrating the power spectral density Px in the range of the upper limit frequency fu and the lower limit frequency fd.
  • the controller 60 determines that the cabin 6 is vibrating at the resonance frequency fm when the effective value Xr of the octave band obtained in this manner becomes equal to or greater than the predetermined threshold value Xc, and the damping force switching valve 30 To the second position 31 b to increase the resistance applied to the hydraulic fluid flowing through the communication passage 28.
  • the damping force switching valve 30 is a two-position switching valve, and the flow passage area of the communication passage 28 is switched in two steps.
  • the damping force switching valve 30 may change the flow passage area of the communication passage 28 in multiple stages or continuously.
  • the valve body 31 may be a spool valve capable of changing the communication opening degree by being displaced in the axial direction, or a rotary valve capable of changing the communication opening degree by being displaced in the circumferential direction It is also good.
  • the solenoid 33 a proportional solenoid may be used or a stepping motor may be used.
  • the value of the power spectral density Px and the value of the effective value Xr of the octave band may be used. Accordingly, it is possible to control the magnitude of the damping force generated by the buffer 10 more finely by proportionally changing the flow passage area of the communication passage 28. Further, as compared with the case where the flow passage area of the communication passage 28 is switched in two steps, it is possible to make the change of the expansion and contraction speed of the hydraulic cylinder 20 and the like which occur when the damping force is changed loose.
  • a cabin damping system 200 according to a second embodiment of the present invention will be described with reference to FIG.
  • differences from the first embodiment will be mainly described, and the same components as those of the cabin damping system 100 of the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the basic configuration of the cabin damping system 200 is the same as that of the cabin damping system 100 according to the first embodiment.
  • the magnitude of the damping force generated by the buffer unit 10 by changing the flow passage area of the communication passage 28 communicating the piston side chamber 24 and the rod side chamber 25 with the damping force switching valve 30.
  • the damping force switching valve 130 is used to change the flow path area of the connection passage 42 connecting the piston side chamber 124 and the oil chamber 41a of the accumulator 40. The difference is that the magnitude of the damping force generated by the portion 110 is changed.
  • the cabin damping system 200 has a buffer unit 110 capable of changing a damping force that damps the vibration of the cabin 6, and the buffer unit 110 as in the cabin damping system 100 of the first embodiment. And a control unit 60 for controlling the damping force generated by the buffer unit 110.
  • the buffer unit 110 has a pair of hydraulic cylinders 120 as in the case of the buffer unit 10 of the first embodiment.
  • the hydraulic cylinder 120 has a cylinder tube 121 having one end connected to the frame 2 and having hydraulic oil sealed therein, and a piston side chamber 124 slidably disposed in the cylinder tube 121 and having the inside of the cylinder tube 121 as a first fluid chamber. And a piston side wall 125 as a second fluid chamber, and a piston rod 123 having one end connected to the piston 122 and the other end connected to the cabin 6.
  • the piston 122 is formed with a flow passage 122 c that allows hydraulic fluid to pass between the piston side chamber 124 and the rod side chamber 125.
  • the hydraulic cylinder 120 has a base end portion of the cylinder tube 121 connected to the frame 2 via the connection portion 126, and a tip end portion of the piston rod 123 connected to the cabin 6 via the connection portion 127.
  • the buffer unit 110 further includes a damping force switching valve 130 provided in a connection passage 42 connecting the piston side chamber 124 and the oil chamber 41 a of the accumulator 40.
  • the damping force switching valve 130 is an electromagnetic two-position switching valve, and is actuated by the valve body 131 and a current supplied from the control device 60 to apply a biasing force to the valve body 131, and a biasing force of the solenoid 133 And a spring 132 for applying a biasing force to the valve body 131.
  • the valve body 131 has a large flow passage area, a first position 131a which hardly gives resistance to the hydraulic fluid flowing through the connection passage 42, and a relatively small resistance to the hydraulic fluid flowing through the connection passage 42. And 2 positions 131 b.
  • the position of the valve body 131 is switched by the biasing force of the spring 132 and the biasing force of the solenoid 133. Specifically, when no current is applied to the solenoid 133, the biasing force of the spring 132 holds the first position 131a, and the current is applied to the solenoid 133 and the biasing force of the solenoid 133 applied to the valve body 31 is When the biasing force of the spring 132 is exceeded, it is switched to the second position 131 b.
  • the damping force switching valve 130 is configured such that the position of the valve body 131 is the second position 131 b when no current is applied to the solenoid 133 and the first position 131 a when the current is applied to the solenoid 133 It may be
  • Supply of current to the solenoid 133 is performed by the control device 60, and the magnitude of the damping force generated by the buffer unit 110 is controlled by the control device 60 as in the first embodiment.
  • the configurations of the cabin height adjustment unit 50 and the control device 60 are the same as in the first embodiment, and thus the description thereof will be omitted.
  • the damping force adjustment control is performed by the control device 60 along the flow shown in FIG. 5, similarly to the cabin damping system 100 of the first embodiment.
  • damping force switching valve 130 that is controlled by the controller 60 in damping force adjustment control. For this reason, in the cabin damping system 200, when it is determined that the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the buffer portion 110 is increased by increasing the resistance applied to the hydraulic oil flowing through the connection passage 42. The vibration of the cabin 6 is suppressed by attenuating both the force of pushing the piston rod 123 by the cabin 6 and the restoring force generated in the piston side chamber 124.
  • the resistance applied to the hydraulic oil flowing through the connection passage 42 is reduced to reduce the damping force generated by the buffer 110 and the displacement of the frame 2 Is transferred by the hydraulic cylinder 120 to suppress the transmission of the vibration of the frame 2 to the cabin 6.
  • the vibration of the cabin 6 is changed by changing the damping force generated by the buffer unit 110 according to the vibration situation of the cabin 6. Is suppressed.
  • the vibration condition of the cabin 6 by switching the damping force which the buffer part 110 produces, the vibration of the cabin 6 can be suppressed appropriately.
  • the vibration of the frame 2 and the cabin 6 can be damped or absorbed by the hydraulic cylinder 120 only by arranging the hydraulic cylinder 120 between the frame 2 and the cabin 6. For this reason, it is possible to mount the cabin damping system 200 also to the tractor 1 which does not have much space between the frame 2 and the cabin 6.
  • a cabin damping system 300 according to a third embodiment of the present invention will be described with reference to FIGS. 7 and 8.
  • differences from the first embodiment will be mainly described, and the same components as those of the cabin damping system 100 of the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
  • the buffer unit 10 includes the hydraulic cylinder 20 and the accumulator 40, whereas in the cabin damping system 300, the buffer unit 210 includes the hydraulic damper 220 and a coil spring. It differs in that it has 240 and.
  • the cabin damping system 300 includes a buffer unit 210 capable of changing a damping force that damps the vibration of the cabin 6 and a control device 60 that controls the damping force generated by the buffer unit 210. .
  • the buffer unit 210 has a hydraulic damper 220 as a pair of hydraulic cylinders provided on the right side and the left side of the vehicle between the cabin 6 and the frame 2. Since the pair of hydraulic dampers 220 have the same configuration, only one configuration will be described below.
  • the hydraulic damper 220 has a cylinder tube 221, one end of which is connected to the frame 2 and in which the hydraulic oil is sealed, and a piston side chamber 224 slidably disposed in the cylinder tube 221 and having a cylinder tube 221 as a first fluid chamber.
  • the piston 222 is divided into a rod side chamber 225 as a second fluid chamber, and a piston rod 223 has one end coupled to the piston 222 and the other end coupled to the cabin 6.
  • the piston 222 has passages 222 a and 222 b that communicate the piston side chamber 224 and the rod side chamber 225.
  • the passage 222a is opened to open the passage 222a when the hydraulic damper 220 is extended, and is an extension side that resists the flow of hydraulic fluid moving from the rod side chamber 225 to the piston side chamber 224 through the passage 222a.
  • a damping valve 229a is provided.
  • the passage 222b is provided with a check valve 229b that opens to open the passage 222b when the hydraulic damper 220 contracts.
  • the hydraulic damper 220 is provided on the outer peripheral side of the cylinder tube 221, and includes a reservoir 271 for storing hydraulic oil, and a base valve 272 in which passages 273 and 274 for communicating the reservoir 271 and the piston side chamber 224 are formed. Furthermore, it has.
  • the passage 273 is provided with a check valve 275 that opens to open the passage 273 when the hydraulic damper 220 extends. In the passage 274, when the hydraulic damper 220 contracts, it opens to open the passage 274, and also serves as a pressure-side damping valve that resists the flow of hydraulic fluid moving from the piston side chamber 224 to the reservoir 271 through the passage 274 276 are provided.
  • the hydraulic damper 220 generates a damping force by the expansion side damping valve 229a provided to the piston 222 when extending, and attenuates by the pressure side damping valve 276 provided to the base valve 272 when contracting. It is a so-called double cylinder type damper that generates a force.
  • the hydraulic damper 220 has a base end portion of the cylinder tube 221 connected to the frame 2 via the connection portion 226, and a tip end portion of the piston rod 223 connected to the cabin 6 via the connection portion 227.
  • the buffer unit 210 further includes a damping force switching valve 30 provided inside the piston rod 23.
  • the damping force switching valve 30 is an electromagnetic two-position switching valve provided on a communication passage 228 formed in a piston rod 223 communicating the piston side chamber 224 and the rod side chamber 225.
  • the configuration of the damping force switching valve 30 is the same as that of the first embodiment, and thus the description thereof will be omitted.
  • the supply of current to the solenoid 33 is performed by the control device 60, and the magnitude of the damping force generated by the buffer unit 210 is controlled by the control device 60 as in the first embodiment.
  • the buffer unit 210 further includes a coil spring 240 as an elastic member interposed in a compressed state between the frame 2 and the cabin 6.
  • a coil spring 240 as an elastic member interposed in a compressed state between the frame 2 and the cabin 6.
  • the buffer unit 210 has a vibration damping function as well as a shock absorbing function as the buffer unit 10 in the first embodiment.
  • control device 60 The configuration of the control device 60 is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the damping force adjustment control is performed by the control device 60 along the flow shown in FIG. 5 as in the cabin damping system 100 of the first embodiment.
  • damping force switching valve 30 that is controlled by the controller 60 in damping force adjustment control. Therefore, in the cabin damping system 300, when it is determined that the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the hydraulic damper 220 is increased by increasing the resistance applied to the hydraulic fluid flowing through the communication passage 228 The vibration of the cabin 6 is suppressed by attenuating both the force with which the cabin 6 pushes the piston rod 223 and the restoring force generated by the coil spring 240.
  • the resistance applied to the hydraulic fluid flowing through the communication passage 228 is reduced to reduce the damping force generated by the hydraulic damper 220, thereby displacing the frame 2.
  • the damping force generated by the buffer unit 210 is changed according to the vibration situation of the cabin 6, thereby vibrating the cabin 6 Is suppressed.
  • the vibration condition of the cabin 6 by switching the damping force which the buffer part 210 produces, the vibration of the cabin 6 can be suppressed appropriately.
  • the vibrations of the frame 2 and the cabin 6 are damped or absorbed by the hydraulic damper 220 and the coil spring 240 provided between the frame 2 and the cabin 6.
  • the damper and spring conventionally used as a shock absorbing device are used for damping of the cabin 6, the manufacturing cost of the cabin damping system 300 can be reduced.
  • the cabin damping system 100, 200, 300 is provided between the frame 2 of the tractor 1 and the cabin 6, and has a buffer 10, 110, 210 capable of changing the damping force that damps the vibration of the cabin 6, and at least the cabin Based on the acceleration sensor 62 for detecting the acceleration ⁇ of the cabin 6 in the vibration direction 6 and the acceleration ⁇ of the cabin 6 detected by the acceleration sensor 62 and the resonance frequency fm of the cabin 6, the buffer units 10, 110 and 210 are generated. And a controller 60 for controlling the magnitude of the damping force.
  • the magnitude of the damping force generated by the buffer units 10, 110, 210 is controlled.
  • the vibration of the cabin 6 can be suppressed appropriately by controlling the magnitude of the damping force generated by the buffer sections 10, 110, 210.
  • control device 60 calculates power spectral density Px at resonance frequency fm of cabin 6 from acceleration ⁇ detected by acceleration sensor 62, and when power spectral density Px is equal to or higher than threshold value Pc, or power spectral density Px is As it becomes higher, the magnitude of the damping force generated by the shock absorbers 10, 110, 210 is increased.
  • control device 60 calculates the effective value Xr of the octave band centering on the resonance frequency fm of the cabin 6 based on the acceleration ⁇ detected by the acceleration sensor 62, and the effective value Xr of the octave band is equal to or more than the threshold Xc. At the same time, or as the effective value Xr of the octave band increases, the magnitude of the damping force generated by the buffers 10, 110, 210 is increased.
  • the buffer units 10, 110, 210 Vibration of the cabin 6 is suppressed by increasing the damping force generated by
  • the buffer portions 10, 110, 210 are generated Transmission of vibration from the frame 2 to the cabin 6 is suppressed by reducing the damping force.
  • the buffer sections 10 and 210 have cylinder tubes 21 and 221 each having one end connected to the frame 2 and sealed with the working oil, and slidably disposed in the cylinder tubes 21 and 221.
  • Pistons 22 and 222 that divide the piston into a piston side chamber 24 and 224 and a rod side chamber 25 and 225, a piston rod 23 and 223 having one end coupled to the piston 22 and 222 and the other end connected to the cabin 6, a piston side chamber 24
  • a hydraulic cylinder (hydraulic cylinder 20, hydraulic damper 220) having communication passages 28 and 228 communicating the rod side chamber 25 and 225 with the rod side chamber 25 and a damping force for giving resistance to the hydraulic oil flowing through the communication passages 28 and 228
  • the control device 60 controls the damping force switching valve 30 to change the resistance applied to the hydraulic fluid. Adjusting the magnitude of the damping force buffer portion 10, 210 is caused by.
  • the magnitude of the damping force generated by the shock absorbers 10 and 210 changes the resistance applied to the hydraulic fluid flowing in the communication passage 28 and 228 that connects the piston side chamber 24 and 224 and the rod side chamber 25 and 225. It is changed by.
  • the shock absorbing portion 10 is controlled by controlling the flow of hydraulic fluid that travels between the piston side chamber 24, 224 and the rod side chamber 25, 225 as the fluid pressure cylinder (the hydraulic cylinder 20, the hydraulic damper 220) expands and contracts. , 210 can easily be changed.
  • the buffer unit 10 further includes an accumulator 40 connected to the piston side chamber 24.
  • the piston side chamber 24 functions as a fluid spring together with the accumulator 40 by the accumulator 40 being connected to the piston side chamber 24. Therefore, the vibration of the frame 2 and the cabin 6 can be damped or absorbed by the hydraulic cylinder 20 simply by providing the hydraulic cylinder 20 between the frame 2 and the cabin 6. As a result, the cabin damping system 100 can be made compact.
  • the buffer unit 210 further includes a coil spring 240 interposed in a compressed state between the frame 2 and the cabin 6.
  • the vibration of the frame 2 and the cabin 6 is damped or absorbed by the hydraulic damper 220 and the coil spring 240 provided between the frame 2 and the cabin 6.
  • the damper and spring conventionally used as a shock absorbing device are used for damping of the cabin 6, the manufacturing cost of the cabin damping system 300 can be reduced.
  • the buffer portion 110 has a cylinder tube 121 having one end connected to the frame 2 and a hydraulic oil sealed therein, and a piston side chamber 124 and a rod side chamber 125 which are slidably disposed in the cylinder tube 121.
  • a hydraulic cylinder 120 having a piston 22 defining at one end and a piston rod 123 having one end coupled to the piston 22 and the other end coupled to the cabin 6, and an accumulator 40 connected to the hydraulic cylinder 120 through a connecting passage 42
  • the damping force switching valve 130 applies resistance to the hydraulic fluid flowing through the connection passage 42, and the controller 60 controls the damping force switching valve 130 to buffer by changing the resistance applied to the hydraulic fluid. The magnitude of the damping force generated by the part 110 is adjusted.
  • the magnitude of the damping force generated by the buffer portion 110 is changed by changing the resistance applied to the hydraulic fluid flowing through the connection passage 42 communicating the hydraulic cylinder 120 and the accumulator 40.
  • the magnitude of the damping force generated by the buffer portion 110 can be easily changed by controlling the flow of the hydraulic fluid flowing back and forth in the connection passage 42 as the hydraulic cylinder 120 expands and contracts.
  • cabin damping system 100, 200 is provided with a stroke sensor 64 for detecting the relative distance between frame 2 and cabin 6, and by supplying and discharging hydraulic oil to piston side chambers 24, 124, frame 2 and cabin 6 And the control device 60 controls the cabin height adjustment unit 50 such that the relative distance detected by the stroke sensor 64 becomes a predetermined size. And adjust the relative distance between the frame 2 and the cabin 6.
  • cabin damping system 100, 200 further includes a tilt sensor 66 that detects the tilt of frame 2, and control device 60 controls cabin height adjustment unit 50 according to the tilt detected by tilt sensor 66. , Adjust the relative distance between the frame 2 and the cabin 6.
  • the relative distance between the frame 2 and the cabin 6 is adjusted according to the inclination of the frame 2. For this reason, regardless of the inclination of the traveling road surface, the cabin 6 can be maintained in the horizontal state, and the workability of the tractor 1 can be improved.

Abstract

This cabin vibration damping system (100) comprises: a shock absorber (10) provided between the frame (2) and cabin (6) of a tractor (1) and able to freely change the damping force for damping the cabin (6) vibration; an acceleration sensor (62) for detecting at least the acceleration (α) of the cabin (6) in the vibration direction of the cabin (6); and a control device (60) for controlling the magnitude of the damping force to be generated by the shock absorber (10), on the basis of the acceleration (α) of the cabin (6) detected by the acceleration sensor (62) and resonance frequency (fm) of the cabin (6).

Description

作業車両のキャビン制振システムCabin damping system for work vehicle
 本発明は、作業車両のキャビンの振動を抑制するキャビン制振システムに関するものである。 The present invention relates to a cabin damping system that suppresses vibration of a cabin of a work vehicle.
 JP2010-260460Aには、コイルばね及びオイルダンパを介してキャビンがフレーム上に設置された作業車両が開示されている。この作業車両では、コイルばね及びオイルダンパによってキャビンの振動が抑制される。 JP 2010-260460 A discloses a work vehicle in which a cabin is installed on a frame via a coil spring and an oil damper. In this work vehicle, vibration of the cabin is suppressed by the coil spring and the oil damper.
 一般的に作業車両が走行する圃場等の不整地は、舗装路面と比較し起伏に富むため、作業者の乗り心地を向上させるには、ダンパの減衰力を小さくし、フレームからキャビンに振動が伝わらないようにすることが好ましい。一方で、段差等に乗り上げたり段差等から降りたりする際の衝撃によって、キャビンが共振周波数で振動し始めると、ダンパの減衰力が小さい場合、キャビンの振動を抑制することができず、結果として乗り心地を悪化させるおそれがある。 In general, rough terrain such as a field where a work vehicle travels is more uneven compared to a paved surface, so to improve the operator's riding comfort, reduce the damping force of the damper and cause vibration from the frame to the cabin It is preferable not to transmit. On the other hand, when the cabin starts to vibrate at the resonance frequency due to an impact when riding up or down from a level difference etc., the vibration of the cabin can not be suppressed if the damping force of the damper is small. There is a risk of worsening the ride.
 本発明は、作業車両のキャビンの振動を的確に抑制することを目的とする。 An object of the present invention is to accurately suppress vibration of a cabin of a work vehicle.
 本発明のある態様によれば、作業車両のキャビンの振動を抑制するキャビン制振システムは、前記作業車両のフレームと前記キャビンとの間に設けられ、前記振動を減衰する減衰力を変更自在な緩衝部と、少なくとも前記振動の方向における前記キャビンの加速度を検出する加速度検出部と、前記加速度検出部で検出された前記キャビンの前記加速度及び前記キャビンの共振周波数に基づいて、前記緩衝部が生じる前記減衰力の大きさを制御する制御部と、を備える。 According to an aspect of the present invention, a cabin damping system for suppressing vibration of a cabin of a work vehicle is provided between a frame of the work vehicle and the cabin, and is capable of changing a damping force for damping the vibration. The buffer unit is generated based on the buffer unit, an acceleration detection unit that detects an acceleration of the cabin in at least the direction of the vibration, and the acceleration of the cabin detected by the acceleration detection unit and a resonance frequency of the cabin. And a controller configured to control the magnitude of the damping force.
図1は、本発明の第1実施形態に係るキャビン制振システムが適用されるトラクタの側面図である。FIG. 1 is a side view of a tractor to which a cabin damping system according to a first embodiment of the present invention is applied. 図2は、本発明の第1実施形態に係るキャビン制振システムが適用されるトラクタを後方から見た背面図である。FIG. 2 is a rear view of a tractor to which a cabin damping system according to a first embodiment of the present invention is applied, viewed from the rear. 図3は、本発明の第1実施形態に係るキャビン制振システムの油圧回路図である。FIG. 3 is a hydraulic circuit diagram of the cabin damping system according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係るキャビン制振システムの緩衝部を拡大して示した拡大図である。FIG. 4 is an enlarged view showing a buffer portion of the cabin damping system according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係るキャビン制振システムの制御部が実行する処理のフローチャートである。FIG. 5 is a flowchart of processing executed by the control unit of the cabin damping system according to the first embodiment of the present invention. 図6は、本発明の第2実施形態に係るキャビン制振システムの油圧回路図である。FIG. 6 is a hydraulic circuit diagram of a cabin damping system according to a second embodiment of the present invention. 図7は、本発明の第3実施形態に係るキャビン制振システムの油圧回路図である。FIG. 7 is a hydraulic circuit diagram of a cabin damping system according to a third embodiment of the present invention. 図8は、本発明の第3実施形態に係るキャビン制振システムの緩衝部を拡大して示した拡大図である。FIG. 8 is an enlarged view showing a buffer portion of a cabin damping system according to a third embodiment of the present invention.
 以下、本発明の実施形態について添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 <第1実施形態>
 図1及び図2を参照して、本発明の第1実施形態に係るキャビン制振システム100が適用されるトラクタ1について説明する。図1には、トラクタ1の側面図が示されており、図2には、トラクタ1を後方から見た背面図が示される。
First Embodiment
A tractor 1 to which a cabin damping system 100 according to a first embodiment of the present invention is applied will be described with reference to FIGS. 1 and 2. FIG. 1 shows a side view of the tractor 1 and FIG. 2 shows a rear view of the tractor 1 viewed from the rear.
 図1及び図2に示されるトラクタ1は、圃場等の不整地を走行する作業車両である。トラクタ1は、車両の前後方向に延びるフレーム2と、フレーム2に支持される前輪3及び後輪4と、後述の油圧シリンダ20等を介してフレーム2に設置されるキャビン6と、を備える。フレーム2の前方には図示しないエンジンが搭載され、エンジンを覆うようにしてボンネット5がフレーム2に取り付けられる。トラクタ1は、図示しないギアケースを介してエンジンの動力が前輪3及び後輪4に伝達されることで走行する。 The tractor 1 shown in FIGS. 1 and 2 is a work vehicle that travels on uneven terrain such as a field. The tractor 1 includes a frame 2 extending in the front-rear direction of the vehicle, front wheels 3 and rear wheels 4 supported by the frame 2, and a cabin 6 installed on the frame 2 via hydraulic cylinders 20 described later. An engine (not shown) is mounted in front of the frame 2 and a bonnet 5 is attached to the frame 2 so as to cover the engine. The tractor 1 travels by the power of the engine being transmitted to the front wheels 3 and the rear wheels 4 via a gear case (not shown).
 キャビン6は、車両の前方側において、車両の幅方向両端部に設けられる一対の円筒状のゴムブッシュマウント7を介してフレーム2に連結される。ゴムブッシュマウント7は、その支持軸が車両の幅方向に延びるように配置される。つまり、キャビン6は、図1の矢印Aで示されるように、ゴムブッシュマウント7を中心として車両のピッチ方向に揺動可能に支持される。 The cabin 6 is connected to the frame 2 on the front side of the vehicle via a pair of cylindrical rubber bush mounts 7 provided at both ends in the width direction of the vehicle. The rubber bush mount 7 is arranged such that its support shaft extends in the width direction of the vehicle. That is, as shown by arrow A in FIG. 1, the cabin 6 is supported swingably in the pitch direction of the vehicle centering on the rubber bush mount 7.
 キャビン6とフレーム2とは、車両の幅方向に一対設けられた油圧シリンダ20を介して連結されるとともに、車両の幅方向に延びるように配置されたラテラルロッド8を介して連結される。このため、キャビン6はフレーム2に対して、車両の上下方向に変位することは許容されるが、車両の幅方向に変位することが制限される。 The cabin 6 and the frame 2 are connected via a hydraulic cylinder 20 provided in a pair in the width direction of the vehicle, and connected via a lateral rod 8 disposed so as to extend in the width direction of the vehicle. Therefore, although the cabin 6 is allowed to be displaced in the vertical direction of the vehicle with respect to the frame 2, the displacement in the width direction of the vehicle is limited.
 次に、図3及び図4を参照し、キャビン制振システム100について説明する。 Next, the cabin damping system 100 will be described with reference to FIGS. 3 and 4.
 キャビン制振システム100は、キャビン6の振動を減衰する減衰力を変更自在な緩衝部10と、緩衝部10に対して作動流体としての作動油を給排するキャビン高さ調整部50と、緩衝部10が生じる減衰力の大きさを制御する制御部としての制御装置60と、を備える。 The cabin damping system 100 includes a buffer unit 10 that can change the damping force that attenuates the vibration of the cabin 6, a cabin height adjustment unit 50 that supplies and discharges hydraulic fluid as a working fluid to the buffer unit 10, and the buffer. And a controller 60 as a controller that controls the magnitude of the damping force generated by the unit 10.
 緩衝部10は、キャビン6とフレーム2との間において、車両の右側と左側とにそれぞれ設けられる一対の流体圧シリンダとしての油圧シリンダ20を有する。一対の油圧シリンダ20は、同じ構成を有するため、以下では、一方の構成についてのみ説明する。 The buffer unit 10 has a hydraulic cylinder 20 as a pair of hydraulic cylinders provided between the cabin 6 and the frame 2 respectively on the right side and the left side of the vehicle. Since the pair of hydraulic cylinders 20 have the same configuration, only one configuration will be described below.
 油圧シリンダ20は、一端がフレーム2に連結され内部に作動油が封入されるシリンダチューブ21と、シリンダチューブ21内に摺動自在に配置されシリンダチューブ21内を第一流体室としてのピストン側室24及び第二流体室としてのロッド側室25に区画するピストン22と、ピストン22に一端が結合され他端がキャビン6に連結されるピストンロッド23と、を有する。 The hydraulic cylinder 20 has a cylinder tube 21 whose one end is connected to the frame 2 and in which the hydraulic oil is sealed, and a piston side chamber 24 slidably disposed in the cylinder tube 21 and having a cylinder tube 21 as a first fluid chamber. And a piston 22 defined in a rod side chamber 25 as a second fluid chamber, and a piston rod 23 having one end coupled to the piston 22 and the other end coupled to the cabin 6.
 油圧シリンダ20は、ピストン側室24に作動油が供給されることによって伸長し、ピストン側室24から作動油が排出されることによって収縮するいわゆる単動形流体圧シリンダである。油圧シリンダ20は、シリンダチューブ21の基端部が連結部26を介してフレーム2に連結され、ピストンロッド23の先端部が連結部27を介してキャビン6に連結される。 The hydraulic cylinder 20 is a so-called single-acting hydraulic cylinder which is extended by the supply of hydraulic fluid to the piston side chamber 24 and is contracted by the discharge of hydraulic fluid from the piston side chamber 24. The hydraulic cylinder 20 is connected to the frame 2 at the base end of the cylinder tube 21 via the connecting portion 26 and is connected to the cabin 6 via the connecting portion 27 at the tip end of the piston rod 23.
 また、油圧シリンダ20のピストン22の内部には、伸側減衰バルブ29a及び圧側減衰バルブ29bが設けられる。 Further, inside the piston 22 of the hydraulic cylinder 20, an expansion damping valve 29a and a compression damping valve 29b are provided.
 伸側減衰バルブ29aは、ピストン側室24とロッド側室25とを連通する連通路22aに設けられ、油圧シリンダ20が伸長する際に開弁して連通路22aを開放するとともに、連通路22aを通過してロッド側室25からピストン側室24へ移動する作動油の流れに抵抗を与えるものである。 The expansion damping valve 29a is provided in the communication passage 22a that connects the piston side chamber 24 and the rod side chamber 25. When the hydraulic cylinder 20 extends, the expansion side damping valve 29a opens to open the communication passage 22a and passes through the communication passage 22a. As a result, the flow of hydraulic fluid moving from the rod side chamber 25 to the piston side chamber 24 is resisted.
 圧側減衰バルブ29bは、ピストン側室24とロッド側室25とを連通する連通路22bに設けられ、油圧シリンダ20が収縮する際に開弁して連通路22bを開放するとともに、連通路22bを通過してピストン側室24からロッド側室25へ移動する作動油の流れに抵抗を与えるものである。 The pressure-side damping valve 29b is provided in the communication passage 22b that connects the piston side chamber 24 and the rod side chamber 25. When the hydraulic cylinder 20 contracts, it opens to open the communication passage 22b and passes through the communication passage 22b. This resists the flow of hydraulic fluid moving from the piston side chamber 24 to the rod side chamber 25.
 緩衝部10は、図4に示すように、ピストンロッド23の内部に設けられる減衰力切換弁30をさらに有する。 The buffer unit 10 further includes a damping force switching valve 30 provided inside the piston rod 23, as shown in FIG.
 減衰力切換弁30は、ピストン側室24とロッド側室25とを連通するピストンロッド23に形成された連通路28上に設けられる電磁式2位置切換弁である。減衰力切換弁30は、制御装置60から供給される電流により駆動するソレノイド33と、伝達部材34を介してソレノイド33の付勢力が付与される弁体31と、ソレノイド33の付勢力に対向する付勢力を弁体31に付与するばね32と、を有する。 The damping force switching valve 30 is an electromagnetic two-position switching valve provided on a communication passage 28 formed in a piston rod 23 that communicates the piston side chamber 24 and the rod side chamber 25. The damping force switching valve 30 is opposed to the solenoid 33 driven by the current supplied from the control device 60, the valve body 31 to which the biasing force of the solenoid 33 is applied via the transmission member 34, and the biasing force of the solenoid 33 And a spring 32 for applying a biasing force to the valve body 31.
 弁体31は、流路面積が大きく連通路28を流れる作動油にほとんど抵抗を付与しない第1位置31aと、流路面積が小さく連通路28を流れる作動油に比較的大きい抵抗を付与する第2位置31bと、を有する。 The valve body 31 has a large flow passage area, a first position 31 a which hardly gives resistance to hydraulic oil flowing in the communication passage 28, and a small flow passage area, which applies relatively large resistance to hydraulic oil flowing in the communication passage 28. And 2 positions 31b.
 弁体31の位置は、ばね32の付勢力とソレノイド33の付勢力とによって切り換えられる。具体的には、ソレノイド33に電流が印加されない状態では、ばね32の付勢力によって、第1位置31aに保持され、ソレノイド33に電流が印加され伝達部材34を介して弁体31に付与されるソレノイド33の付勢力がばね32の付勢力を上回ると第2位置31bに切り換えられる。なお、減衰力切換弁30は、弁体31の位置を、ソレノイド33に電流が印加されていないときに第2位置31bとし、ソレノイド33に電流が印加されたときに第1位置31aとする構成のものであってもよい。 The position of the valve body 31 is switched by the biasing force of the spring 32 and the biasing force of the solenoid 33. Specifically, in a state in which no current is applied to the solenoid 33, the biasing force of the spring 32 holds the first position 31a, and the current is applied to the solenoid 33 and applied to the valve body 31 via the transmission member 34. When the biasing force of the solenoid 33 exceeds the biasing force of the spring 32, the second position 31b is switched. The damping force switching valve 30 is configured such that the position of the valve body 31 is the second position 31b when no current is applied to the solenoid 33, and the first position 31a when the current is applied to the solenoid 33. It may be
 減衰力切換弁30の位置が第1位置31aにあると、油圧シリンダ20が伸縮する際、作動油はピストン側室24とロッド側室25との間を比較的抵抗なく行き来できるため、緩衝部10が生じる減衰力は最小となる。一方、減衰力切換弁30の位置が第2位置31bにあると、油圧シリンダ20が伸縮する際、ピストン側室24とロッド側室25との間の作動油の行き来が制限されるため、緩衝部10が生じる減衰力は最大となる。 When the position of the damping force switching valve 30 is at the first position 31a, when the hydraulic cylinder 20 expands and contracts, the hydraulic oil can move back and forth between the piston side chamber 24 and the rod side chamber 25 without a relative resistance. The resulting damping force is minimal. On the other hand, when the position of the damping force switching valve 30 is at the second position 31 b, when the hydraulic cylinder 20 expands and contracts, movement of hydraulic oil between the piston side chamber 24 and the rod side chamber 25 is restricted. The damping force that occurs is maximized.
 このように、緩衝部10は、減衰力を生じることによって振動を減衰させる振動減衰機能を有する。 Thus, the buffer unit 10 has a vibration damping function of damping vibration by generating damping force.
 緩衝部10は、接続通路42を通じて油圧シリンダ20に接続されるアキュムレータ40をさらに有する。 The buffer 10 further includes an accumulator 40 connected to the hydraulic cylinder 20 through the connection passage 42.
 アキュムレータ40は、図3に示すように、接続通路42を通じてピストン側室24に接続される油室41aと、油室41aに圧力を付与するバネ室41bと、を内部に有する。 As shown in FIG. 3, the accumulator 40 internally includes an oil chamber 41 a connected to the piston side chamber 24 through the connection passage 42 and a spring chamber 41 b that applies pressure to the oil chamber 41 a.
 バネ室41bは、加圧された窒素等のガスが封入されたガス室であり、油室41aとの境界面である液面にガス圧を付与している。なお、油室41aとバネ室41bとを区画するフリーピストンをアキュムレータ40内に収装するようにしてもよい。また、油室41aとバネ室41bとを区画するフリーピストンをアキュムレータ40内に収装すると共に、バネ室41b内に金属製のバネを収装するようにしてもよい。つまり、加圧されたガスに代わり、バネを用いて油室41aに圧力を付与するようにしてもよい。 The spring chamber 41b is a gas chamber in which a pressurized gas such as nitrogen is sealed, and a gas pressure is applied to a liquid surface which is a boundary surface with the oil chamber 41a. The free piston that divides the oil chamber 41a and the spring chamber 41b may be accommodated in the accumulator 40. Further, a free piston that divides the oil chamber 41a and the spring chamber 41b may be accommodated in the accumulator 40, and a metal spring may be accommodated in the spring chamber 41b. That is, instead of the pressurized gas, a pressure may be applied to the oil chamber 41a using a spring.
 アキュムレータ40の特性は、バネ室41b内のガス圧、アキュムレータ40の容積等を調整することによって設定される。 The characteristics of the accumulator 40 are set by adjusting the gas pressure in the spring chamber 41b, the volume of the accumulator 40, and the like.
 油室41aとピストン側室24とは、接続通路42を通じて常時連通しているため、ピストン側室24は、油室41aの圧力によって常時加圧された状態となっている。 Since the oil chamber 41a and the piston side chamber 24 are always in communication through the connection passage 42, the piston side chamber 24 is constantly pressurized by the pressure of the oil chamber 41a.
 ここで、アキュムレータ40の油室41aに接続されるピストン側室24は、油圧シリンダ20を収縮させる方向に作用する荷重が大きいほど圧縮される。ピストン側室24が圧縮されることでシリンダチューブ21から排出される作動油は、接続通路42を通じて油室41aへ移動し、バネ室41b内の圧力を高める。このようにバネ室41b内に蓄えられたエネルギーは、ピストン側室24を拡張させる復元力となる。つまり、アキュムレータ40が接続されることによって、ピストン側室24は、圧縮される際に蓄えられたエネルギーを拡張する際に解放する流体ばねとして機能することになる。 Here, the piston side chamber 24 connected to the oil chamber 41 a of the accumulator 40 is compressed as the load acting in the direction to contract the hydraulic cylinder 20 is larger. As the piston side chamber 24 is compressed, the hydraulic oil discharged from the cylinder tube 21 moves to the oil chamber 41 a through the connection passage 42 and increases the pressure in the spring chamber 41 b. The energy stored in the spring chamber 41 b in this manner is a restoring force that causes the piston side chamber 24 to expand. That is, as the accumulator 40 is connected, the piston side chamber 24 functions as a fluid spring that releases energy stored in compression as it is expanded.
 このように、緩衝部10は、振動減衰機能を有するとともに、衝撃をエネルギーとして蓄積する衝撃吸収機能も有している。 Thus, the buffer unit 10 has a vibration damping function and also has a shock absorbing function of storing a shock as energy.
 キャビン高さ調整部50は、油圧シリンダ20のピストン側室24に対して作動油を給排することによりフレーム2とキャビン6との相対距離を変化させ、走行路面に対するキャビン6の高さを調整するものである。 The cabin height adjustment unit 50 changes the relative distance between the frame 2 and the cabin 6 by supplying and discharging the working oil to the piston side chamber 24 of the hydraulic cylinder 20, and adjusts the height of the cabin 6 with respect to the traveling road surface It is a thing.
 キャビン高さ調整部50は、作動油を供給する油圧ポンプ51と、油圧ポンプ51と油圧シリンダ20との間に設けられ、油圧シリンダ20の伸縮方向を切り換える方向切換弁52と、油圧シリンダ20から排出される作動油が導かれるタンクTと、油圧シリンダ20と方向切換弁52とを接続する給排通路56と、を有する。なお、キャビン高さ調整部50では、作動流体として作動油が用いられているが、作動油に代えて、例えば水溶性代替液等の作動液が作動流体として用いられてもよいし、ガスが作動流体として用いられてもよい。 The cabin height adjustment unit 50 is provided with a hydraulic pump 51 for supplying hydraulic fluid, a direction switching valve 52 provided between the hydraulic pump 51 and the hydraulic cylinder 20 to switch the extension direction of the hydraulic cylinder 20, and the hydraulic cylinder 20. It has a tank T to which the hydraulic fluid to be discharged is introduced, and a supply / discharge passage 56 connecting the hydraulic cylinder 20 and the direction switching valve 52. In the cabin height adjustment unit 50, hydraulic fluid is used as the hydraulic fluid, but instead of hydraulic fluid, hydraulic fluid such as water-soluble alternative liquid may be used as the hydraulic fluid, or gas may be used. It may be used as a working fluid.
 油圧ポンプ51は、エンジンもしくは図示しない電動モータによって駆動され、タンクT内に貯留された作動油を油圧シリンダ20のピストン側室24へと供給する。 The hydraulic pump 51 is driven by an engine or an electric motor (not shown), and supplies hydraulic fluid stored in the tank T to the piston side chamber 24 of the hydraulic cylinder 20.
 方向切換弁52は、制御装置60によって位置が切り換えられる電磁切換弁であり、油圧シリンダ20に作動油を供給し油圧シリンダ20を伸長させる伸長位置52aと、油圧シリンダ20から作動油を排出させ油圧シリンダ20を収縮させる収縮位置52bと、油圧シリンダ20に対する作動油の給排を停止させる停止位置52cと、の3つの位置を有する。 The direction switching valve 52 is an electromagnetic switching valve whose position is switched by the control device 60. The direction switching valve 52 supplies the hydraulic fluid to the hydraulic cylinder 20 and extends the hydraulic cylinder 20. The directional valve 52 discharges the hydraulic fluid from the hydraulic cylinder 20 There are three positions, a contraction position 52b for contracting the cylinder 20 and a stop position 52c for stopping the supply and discharge of hydraulic fluid to the hydraulic cylinder 20.
 給排通路56は、一端が方向切換弁52に接続され、他端側は分岐されて、ピストン側室24と油室41aとを接続する接続通路42にそれぞれ接続される。給排通路56の分岐点よりも方向切換弁52側には、オペレートチェック弁53が介装される。 One end of the supply and discharge passage 56 is connected to the direction switching valve 52, and the other end is branched to be connected to a connection passage 42 that connects the piston side chamber 24 and the oil chamber 41a. An operation check valve 53 is interposed on the direction switching valve 52 side of the branch point of the supply and discharge passage 56.
 方向切換弁52には、給排通路56が接続されるとともに、油圧ポンプ51から吐出される作動油を導く供給通路55と、タンクTに作動油を戻す排出通路57と、オペレートチェック弁53のパイロット圧室に連通するオペレート通路59と、が接続される。供給通路55と排出通路57とは、リリーフ通路58により接続されており、リリーフ通路58には、供給通路55の油圧が設定圧を超えた場合に開弁するリリーフ弁54が設けられる。 The directional control valve 52 is connected to the supply / discharge passage 56 and also includes a supply passage 55 for guiding the hydraulic fluid discharged from the hydraulic pump 51, a discharge passage 57 for returning the hydraulic fluid to the tank T, and the operation check valve 53. An operating passage 59 communicating with the pilot pressure chamber is connected. The supply passage 55 and the discharge passage 57 are connected by a relief passage 58, and the relief passage 58 is provided with a relief valve 54 that opens when the hydraulic pressure of the supply passage 55 exceeds a set pressure.
 方向切換弁52が伸長位置52aに切り換えられると、排出通路57とオペレート通路59とが連通するとともに、給排通路56と供給通路55とが連通する。油圧ポンプ51から吐出される作動油は、供給通路55と給排通路56とを通じて一対の油圧シリンダ20のピストン側室24に流入する。これにより、一対の油圧シリンダ20が同期して伸長し、フレーム2とキャビン6との間の距離が大きくなり、走行路面に対するキャビン6の高さが高くなる。 When the direction switching valve 52 is switched to the extended position 52a, the discharge passage 57 and the operation passage 59 communicate with each other, and the supply and discharge passage 56 communicates with the supply passage 55. The hydraulic oil discharged from the hydraulic pump 51 flows into the piston side chambers 24 of the pair of hydraulic cylinders 20 through the supply passage 55 and the supply and discharge passage 56. As a result, the pair of hydraulic cylinders 20 are extended synchronously, the distance between the frame 2 and the cabin 6 is increased, and the height of the cabin 6 with respect to the traveling road surface is increased.
 方向切換弁52が収縮位置52bに切り換えられると、供給通路55とオペレート通路59とが連通するとともに、給排通路56と排出通路57とが連通する。油圧ポンプ51から吐出される作動油は、オペレート通路59を介してオペレートチェック弁53にパイロット圧として導かれるので、オペレートチェック弁53が開弁し、ピストン側室24の作動油が給排通路56、排出通路57を通じてタンクTに戻される。これにより、一対の油圧シリンダ20が同期して収縮し、フレーム2とキャビン6との間の距離が小さくなり、走行路面に対するキャビン6の高さが低くなる。 When the direction switching valve 52 is switched to the contracted position 52b, the supply passage 55 and the operation passage 59 communicate with each other, and the supply and discharge passage 56 communicates with the discharge passage 57. Since the hydraulic oil discharged from the hydraulic pump 51 is led as a pilot pressure to the operating check valve 53 via the operating passage 59, the operating check valve 53 is opened, and the hydraulic oil in the piston side chamber 24 is supplied and discharged 56, It is returned to the tank T through the discharge passage 57. As a result, the pair of hydraulic cylinders 20 contract in synchronization, and the distance between the frame 2 and the cabin 6 decreases, and the height of the cabin 6 with respect to the traveling road surface decreases.
 方向切換弁52が停止位置52cに切り換えられると、供給通路55、排出通路57、オペレート通路59、及び給排通路56のすべてが連通する。これにより、油圧ポンプ51から供給通路55を通じて供給される作動油は、全てタンクTに戻される。このとき、オペレート通路59の圧力は、タンクTと等しくなるため、オペレートチェック弁53は、ばねの付勢力によって閉弁する。これにより、一対の油圧シリンダ20の伸縮作動が停止し、フレーム2に対するキャビン6の高さが保持される。 When the directional control valve 52 is switched to the stop position 52c, the supply passage 55, the discharge passage 57, the operating passage 59, and the supply and discharge passage 56 all communicate. As a result, all the hydraulic oil supplied from the hydraulic pump 51 through the supply passage 55 is returned to the tank T. At this time, since the pressure in the operating passage 59 becomes equal to that in the tank T, the operating check valve 53 is closed by the biasing force of the spring. Thereby, the extension operation of the pair of hydraulic cylinders 20 is stopped, and the height of the cabin 6 with respect to the frame 2 is maintained.
 このように、フレーム2に対するキャビン6の高さ、すなわち、走行路面に対するキャビン6の高さは、油圧シリンダ20を伸縮させることによって調節することができる。 In this manner, the height of the cabin 6 with respect to the frame 2, that is, the height of the cabin 6 with respect to the road surface can be adjusted by extending and retracting the hydraulic cylinder 20.
 キャビン制振システム100は、キャビン6の加速度αを検出する加速度検出部としての加速度センサ62と、フレーム2とキャビン6との相対距離を検出する距離検出部としてのストロークセンサ64と、フレーム2の傾斜度を検出する傾斜検出部としての傾斜センサ66と、をさらに備える。 The cabin damping system 100 includes an acceleration sensor 62 as an acceleration detection unit for detecting an acceleration α of the cabin 6, a stroke sensor 64 as a distance detection unit for detecting a relative distance between the frame 2 and the cabin 6, and And a tilt sensor 66 as a tilt detection unit that detects a tilt degree.
 加速度センサ62は、キャビン6に取り付けられ、キャビンの振動方向、すなわち、キャビン6の上下方向または油圧シリンダ20が伸縮する方向におけるキャビン6の加速度αを検出する。加速度センサ62で検出された加速度αは、制御装置60に入力される。なお、キャビン6は、ピッチ方向に揺動することから、加速度センサ62により検出される加速度αの方向は、ピッチ方向であってもよい。 The acceleration sensor 62 is attached to the cabin 6 and detects an acceleration α of the cabin 6 in the vibration direction of the cabin, that is, the vertical direction of the cabin 6 or the direction in which the hydraulic cylinder 20 extends and contracts. The acceleration α detected by the acceleration sensor 62 is input to the control device 60. Since the cabin 6 swings in the pitch direction, the direction of the acceleration α detected by the acceleration sensor 62 may be the pitch direction.
 ストロークセンサ64は、油圧シリンダ20に取り付けられ、油圧シリンダ20のピストンロッド23のストローク量を検出する。ストロークセンサ64で検出されたストローク量は、制御装置60に入力される。なお、フレーム2とキャビン6との相対距離を検出する距離検出部としては、ストロークセンサ64に限定されず、フレーム2とキャビン6との相対的な距離を検出することができればどのような形式の距離検出センサであってもよく、例えば、光や磁界、音波などを用いた変位センサや近接センサであってもよい。また、フレーム2に対するキャビン6の位置が、中立的な位置から上下方向にどの程度変位しているかを検出するものであってもよい。 The stroke sensor 64 is attached to the hydraulic cylinder 20 and detects the stroke amount of the piston rod 23 of the hydraulic cylinder 20. The stroke amount detected by the stroke sensor 64 is input to the control device 60. In addition, as a distance detection part which detects the relative distance of the flame | frame 2 and the cabin 6, it is not limited to the stroke sensor 64, If the relative distance of the flame | frame 2 and the cabin 6 can be detected, what kind of form It may be a distance detection sensor, and may be, for example, a displacement sensor or a proximity sensor using light, a magnetic field, a sound wave or the like. In addition, it may be detected how much the position of the cabin 6 with respect to the frame 2 is displaced in the vertical direction from the neutral position.
 傾斜センサ66は、フレーム2に取り付けられ、フレーム2の傾斜度、すなわち、走行路面の傾斜度を検出する。傾斜センサ66で検出された傾斜度は、制御装置60に入力される。 The inclination sensor 66 is attached to the frame 2 and detects the inclination of the frame 2, that is, the inclination of the traveling road surface. The degree of inclination detected by the inclination sensor 66 is input to the control device 60.
 制御装置60は、上述の各種センサ62,64,66で検出された値に基づいて、緩衝部10及びキャビン高さ調整部50を制御する。制御装置60は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)を備えたマイクロコンピュータで構成される。RAMはCPUの処理におけるデータを記憶し、ROMはCPUの制御プログラム等を予め記憶し、I/Oインターフェースは接続された機器との情報の入出力に使用される。なお、制御装置60は、エンジンや車両を制御する制御装置内に組み込まれていてもよい。以降に制御装置60により行われる制御について具体的に説明する。 The control device 60 controls the buffer unit 10 and the cabin height adjustment unit 50 based on the values detected by the various sensors 62, 64, 66 described above. The control device 60 is configured by a microcomputer provided with a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and an I / O interface (input / output interface). The RAM stores data in the processing of the CPU, the ROM stores in advance a control program of the CPU, etc., and the I / O interface is used to input and output information with the connected device. Control device 60 may be incorporated in a control device that controls an engine or a vehicle. The control performed by the control device 60 will be specifically described below.
 まず、図5を参照し、制御装置60により行われる減衰力調整制御について説明する。図5は、制御装置60により行われる減衰力調整制御の制御手順を示すフローチャートである。 First, damping force adjustment control performed by the control device 60 will be described with reference to FIG. FIG. 5 is a flowchart showing a control procedure of damping force adjustment control performed by the control device 60.
 最初のステップS10では、加速度センサ62によってキャビン6の振動方向における加速度αを検出する。検出された加速度αは制御装置60に送信される。 In the first step S10, the acceleration sensor 62 detects the acceleration α in the vibration direction of the cabin 6. The detected acceleration α is transmitted to the control device 60.
 次に、ステップS11では、制御装置60が受信した加速度αにFFT処理を施し、各周波数におけるパワースペクトル密度を算出する。パワースペクトル密度とは、波形の各周波数成分をパワーの大きさとして表したものである。 Next, in step S11, FFT processing is performed on the acceleration α received by the control device 60 to calculate the power spectral density at each frequency. The power spectral density represents each frequency component of the waveform as the magnitude of power.
 ステップS12では、ステップS11で算出されたパワースペクトル密度の中から、キャビン6の共振周波数fmにおけるパワースペクトル密度Pxを算出する。 In step S12, the power spectral density Px at the resonance frequency fm of the cabin 6 is calculated from the power spectral density calculated in step S11.
 続いて、ステップS13では、ステップS12で算出されたキャビン6の共振周波数fmにおけるパワースペクトル密度Pxが、所定値としての閾値Pc以上であるか否かを判定する。パワースペクトル密度Pxが閾値Pc以上である場合には、ステップS14に進み、パワースペクトル密度Pxが閾値Pc未満である場合には、ステップS15に進む。 Subsequently, in step S13, it is determined whether the power spectral density Px at the resonance frequency fm of the cabin 6 calculated in step S12 is equal to or higher than a threshold value Pc as a predetermined value. If the power spectral density Px is equal to or higher than the threshold Pc, the process proceeds to step S14. If the power spectral density Px is lower than the threshold Pc, the process proceeds to step S15.
 ステップS14では、制御装置60は減衰力切換弁30のソレノイド33に電流を印加する。ソレノイド33に電流を印加されると、減衰力切換弁30の位置は、流路面積が小さい第2位置31bに切り換えられる。このように連通路28の流路面積が絞られることにより、連通路28を流れる作動油に付与される抵抗が大きくなる。この結果、緩衝部10が生じる減衰力が大きくなり、キャビン6のピッチ方向の振動は緩衝部10により抑制される。 In step S14, the control device 60 applies a current to the solenoid 33 of the damping force switching valve 30. When current is applied to the solenoid 33, the position of the damping force switching valve 30 is switched to the second position 31b where the flow passage area is small. By reducing the flow passage area of the communication passage 28 in this manner, the resistance imparted to the hydraulic oil flowing through the communication passage 28 increases. As a result, the damping force generated by the buffer 10 increases, and the vibration in the pitch direction of the cabin 6 is suppressed by the buffer 10.
 一方、ステップS15では、制御装置60は減衰力切換弁30のソレノイド33に電流を印加しない。ソレノイド33に電流が印加されないため、減衰力切換弁30の位置は、ばね32の付勢力によって流路面積が大きい第1位置31aに保持される。この場合、連通路28の流路面積は絞られないため、連通路28を流れる作動油にはほとんど抵抗が付与されない。この結果、緩衝部10が生じる減衰力は小さくなる。しかし、キャビン6では抑制が必要なほどの振動が生じていないため、緩衝部10が生じる減衰力を小さくしても影響はなく、むしろ緩衝部10が生じる減衰力を小さくすることで、走行路面からフレーム2に伝わる上下動や振動がそのままキャビン6に伝達されることを抑制することができる。 On the other hand, in step S <b> 15, the control device 60 applies no current to the solenoid 33 of the damping force switching valve 30. Since no current is applied to the solenoid 33, the position of the damping force switching valve 30 is held by the biasing force of the spring 32 at the first position 31a where the flow passage area is large. In this case, since the flow passage area of the communication passage 28 can not be reduced, almost no resistance is given to the hydraulic oil flowing through the communication passage 28. As a result, the damping force generated by the buffer 10 is reduced. However, since the cabin 6 does not generate vibration that needs to be suppressed, there is no effect even if the damping force generated by the buffer 10 is reduced. Rather, the traveling road surface is reduced by reducing the damping force generated by the buffer 10. It can suppress that the up-and-down motion and vibration which are transmitted to the frame 2 are transmitted to the cabin 6 as it is.
 このように、キャビン制振システム100では、キャビン6の共振周波数fmにおけるパワースペクトル密度Pxが大きいとき、つまり、キャビン6が共振周波数fmで振動しているときには、緩衝部10が生じる減衰力を大きくし、キャビン6の共振周波数fmにおけるパワースペクトル密度Pxが小さいとき、つまり、キャビン6が共振周波数fmで振動していないときには、緩衝部10が生じる減衰力を小さくする。以下に、このように減衰力を切り換える理由について具体的な例を挙げて説明する。 Thus, in the cabin damping system 100, when the power spectral density Px at the resonance frequency fm of the cabin 6 is large, that is, when the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the buffer unit 10 is large. When the power spectral density Px at the resonance frequency fm of the cabin 6 is small, that is, when the cabin 6 is not vibrating at the resonance frequency fm, the damping force generated by the buffer unit 10 is reduced. The reason why the damping force is switched in this way will be described below with reference to a specific example.
 まず、トラクタ1が圃場のように比較的緩やかな凹凸が繰り返される路面を走行する場合を例に説明する。トラクタ1が圃場を走行すると、圃場の凹凸によってフレーム2は上下方向に連続的に変位する。一方で、キャビン6は慣性により上下方向における高さを維持しようとする。このとき、緩衝部10が生じる減衰力が大きく油圧シリンダ20が伸縮しにくいと、フレーム2の変位がキャビン6に伝わりやすくなる。このため、キャビン6もフレーム2と同様に圃場の凹凸に合せて上下方向に変位してしまうおそれがある。 First, the case where the tractor 1 travels on a road surface where relatively moderate unevenness is repeated as in a field will be described as an example. When the tractor 1 travels in the field, the frame 2 is continuously displaced in the vertical direction due to the unevenness of the field. On the other hand, the cabin 6 tries to maintain the height in the vertical direction by inertia. At this time, if the damping force generated by the buffer portion 10 is large and the hydraulic cylinder 20 does not easily expand and contract, the displacement of the frame 2 is easily transmitted to the cabin 6. For this reason, there is a possibility that the cabin 6 may be displaced in the vertical direction according to the unevenness of the field as well as the frame 2.
 このため、キャビン制振システム100では、トラクタ1が比較的緩やかな凹凸路面を走行するような場合には、減衰力切換弁30のソレノイド33に電流を印加せず、連通路28を流れる作動油に付与される抵抗を小さくして、緩衝部10が生じる減衰力を小さくしている。これにより、連通路28を通じてピストン側室24とロッド側室25との間を作動油が比較的スムーズに行き来し易くなり、油圧シリンダ20が伸縮し易くなることでフレーム2の変位がキャビン6へと伝わりにくくなる。 For this reason, in the cabin damping system 100, when the tractor 1 travels on a relatively gentle uneven road surface, the hydraulic oil flowing through the communication passage 28 does not apply current to the solenoid 33 of the damping force switching valve 30. And the damping force generated by the buffer 10 is reduced. As a result, the hydraulic fluid can easily move relatively smoothly between the piston side chamber 24 and the rod side chamber 25 through the communication passage 28, and the hydraulic cylinder 20 can easily expand and contract, whereby the displacement of the frame 2 is transmitted to the cabin 6 It becomes difficult.
 このように、キャビン制振システム100では、キャビン6が共振周波数fmで振動していないと判定される場合には、連通路28を流れる作動油に付与される抵抗を小さくして緩衝部10が生じる減衰力を小さくし、フレーム2の変位を油圧シリンダ20によって往なすことにより、フレーム2の振動がキャビン6に伝わることを抑制している。 As described above, in the cabin damping system 100, when it is determined that the cabin 6 does not vibrate at the resonance frequency fm, the resistance given to the hydraulic oil flowing through the communication passage 28 is reduced to reduce the shock absorber 10 The generated damping force is reduced, and the displacement of the frame 2 is transferred by the hydraulic cylinder 20 to suppress the transmission of the vibration of the frame 2 to the cabin 6.
 次に、トラクタ1が比較的大きな段差に乗り上げる場合を例に説明する。トラクタ1が段差に乗り上げると、フレーム2は急激に上方へと移動する。一方で、キャビン6は慣性によりその位置にとどまろうとする。このため、キャビン6の慣性力によって油圧シリンダ20のピストンロッド23が急速に押し込まれ、油圧シリンダ20は収縮する。このように油圧シリンダ20が急速に収縮すると、圧縮されたピストン側室24の圧力が急激に高まり、高まったピストン側室24の圧力は、ピストンロッド23をキャビン6に向けて押し返す力、いわゆる復元力となる。このとき、連通路28を流れる作動油に付与される抵抗が小さいと、連通路28を通じてロッド側室25からピストン側室24へと作動油が流入しやすい状態となるため、ピストン側室24の復元力はほとんど減衰されることなくピストンロッド23を介してキャビン6に伝達される。このため、キャビン6は、ピストン側室24の圧力によって、上方、すなわちフレーム2から離れる方向へと押し上げられることになる。 Next, a case where the tractor 1 rides on a relatively large step will be described as an example. When the tractor 1 rides on the step, the frame 2 moves rapidly upward. On the other hand, the cabin 6 tries to stay at that position by inertia. For this reason, the piston rod 23 of the hydraulic cylinder 20 is rapidly pushed in by the inertia force of the cabin 6, and the hydraulic cylinder 20 contracts. Thus, when the hydraulic cylinder 20 contracts rapidly, the pressure in the compressed piston side chamber 24 rapidly increases, and the pressure in the increased piston side chamber 24 pushes the piston rod 23 back toward the cabin 6, a so-called restoring force. Become. At this time, if the resistance applied to the hydraulic oil flowing through the communication passage 28 is small, the hydraulic oil easily flows from the rod side chamber 25 to the piston side chamber 24 through the communication passage 28, so the restoring force of the piston side chamber 24 is It is transmitted to the cabin 6 through the piston rod 23 with little attenuation. For this reason, the cabin 6 is pushed upward in the direction away from the frame 2 by the pressure of the piston side chamber 24.
 キャビン6がフレーム2から離れる方向へと変位するにつれて油圧シリンダ20も伸長する。油圧シリンダ20が伸長するとピストン側室24の圧力が徐々に低下するため、やがてキャビン6は重力によって、下方、すなわちフレーム2に近づく方向へと変位し始める。油圧シリンダ20のピストンロッド23がキャビン6の重量によって押し込まれることで、ピストン側室24は再び圧縮される。 As the cabin 6 is displaced away from the frame 2, the hydraulic cylinder 20 also extends. As the hydraulic cylinder 20 extends, the pressure in the piston side chamber 24 gradually decreases, and eventually the cabin 6 begins to be displaced downward, that is, toward the frame 2 by gravity. As the piston rod 23 of the hydraulic cylinder 20 is pushed by the weight of the cabin 6, the piston side chamber 24 is compressed again.
 圧縮されたピストン側室24の圧力が再び上昇することで、ピストン側室24ではキャビン6を押し上げる復元力が再び生じる。この繰り返しによって、キャビン6は上下方向に所定の周期で振動することになる。このようにして生じる振動は、ピストン側室24及びアキュムレータ40を流体ばねとみなした場合のばね定数とキャビン6の質量とから決まる共振周波数fmで振動する持続的な振動となるため、抑制することが困難である。 As the pressure in the compressed piston side chamber 24 rises again, a restoring force that pushes up the cabin 6 is generated again in the piston side chamber 24. By this repetition, the cabin 6 vibrates in the vertical direction at a predetermined cycle. The vibration that occurs in this way must be suppressed because it is a continuous vibration that vibrates at the resonance frequency fm determined from the spring constant and the mass of the cabin 6 when the piston side chamber 24 and the accumulator 40 are regarded as fluid springs. Have difficulty.
 このため、キャビン制振システム100では、キャビン6が共振周波数fmで振動していると判定されると、連通路28を流れる作動油に付与される抵抗を大きくして緩衝部10が生じる減衰力を大きくし、キャビン6がピストンロッド23を押し込む力とピストン側室24において生じる復元力との両方の力を減衰させることでキャビン6の振動を抑制している。 Therefore, in the cabin damping system 100, when it is determined that the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the buffer unit 10 is increased by increasing the resistance applied to the hydraulic oil flowing through the communication passage 28. The vibration of the cabin 6 is suppressed by attenuating both the force of pushing the piston rod 23 by the cabin 6 and the restoring force generated in the piston side chamber 24.
 次に、図3を参照し、制御装置60により行われるキャビン高さ調整制御について説明する。 Next, with reference to FIG. 3, the cabin height adjustment control performed by the control device 60 will be described.
 制御装置60は、ストロークセンサ64で検出された油圧シリンダ20のピストンロッド23のストローク量からフレーム2とキャビン6との相対距離を算出し、算出された実際の相対距離が予め定められた目標相対距離となるように、キャビン高さ調整部50を制御する。 The control device 60 calculates the relative distance between the frame 2 and the cabin 6 from the stroke amount of the piston rod 23 of the hydraulic cylinder 20 detected by the stroke sensor 64, and the calculated actual relative distance is a predetermined target relative. The cabin height adjustment unit 50 is controlled to be the distance.
 実際の相対距離が目標相対距離よりも小さい場合、制御装置60は、キャビン高さ調整部50の方向切換弁52の位置を伸長位置52aに切り換える。方向切換弁52が伸長位置52aに切り換えられると、油圧ポンプ51から吐出される作動油は、供給通路55と給排通路56とを通じて一対の油圧シリンダ20のピストン側室24に流入する。これにより、一対の油圧シリンダ20が同期して伸長し、実際の相対距離は目標相対距離に近づく。 If the actual relative distance is smaller than the target relative distance, the controller 60 switches the position of the direction switching valve 52 of the cabin height adjustment unit 50 to the extended position 52a. When the direction switching valve 52 is switched to the extension position 52 a, the hydraulic fluid discharged from the hydraulic pump 51 flows into the piston side chambers 24 of the pair of hydraulic cylinders 20 through the supply passage 55 and the supply and discharge passage 56. As a result, the pair of hydraulic cylinders 20 extend synchronously, and the actual relative distance approaches the target relative distance.
 実際の相対距離が目標相対距離よりも大きい場合、制御装置60は、キャビン高さ調整部50の方向切換弁52の位置を収縮位置52bに切り換える。方向切換弁52が収縮位置52bに切り換えられると、ピストン側室24の作動油が給排通路56、排出通路57を通じてタンクTに戻される。これにより、一対の油圧シリンダ20が同期して収縮し、実際の相対距離は目標相対距離に近づく。 If the actual relative distance is larger than the target relative distance, the controller 60 switches the position of the direction switching valve 52 of the cabin height adjustment unit 50 to the contracted position 52b. When the directional control valve 52 is switched to the contracted position 52b, the hydraulic oil in the piston side chamber 24 is returned to the tank T through the supply and discharge passage 56 and the discharge passage 57. As a result, the pair of hydraulic cylinders 20 contract in synchronization, and the actual relative distance approaches the target relative distance.
 そして、実際の相対距離と目標相対距離とが一致した場合、制御装置60は、キャビン高さ調整部50の方向切換弁52の位置を停止位置52cに切り換える。方向切換弁52が停止位置52cに切り換えられると、ピストン側室24への作動油の供給が遮断されるとともにピストン側室24からの作動油の排出が停止される。これにより、一対の油圧シリンダ20の伸縮作動が停止される。 Then, when the actual relative distance and the target relative distance match, the control device 60 switches the position of the direction switching valve 52 of the cabin height adjustment unit 50 to the stop position 52c. When the directional control valve 52 is switched to the stop position 52c, the supply of hydraulic fluid to the piston side chamber 24 is shut off and the discharge of hydraulic fluid from the piston side chamber 24 is stopped. Thereby, the extension and contraction operation of the pair of hydraulic cylinders 20 is stopped.
 このように制御装置60は、キャビン高さ調整部50を制御し、実際の相対距離と目標相対距離との値が一致するように一対の油圧シリンダ20の伸縮量を調整する。なお、目標相対距離は、フレーム2とキャビン6との相対距離が目標相対距離となったときに、シリンダチューブ21内においてピストン22の位置がシリンダチューブ21の上端または下端の近傍とならないように設定される。このように目標相対距離を設定することで、振動によってフレーム2とキャビン6との相対距離が変化した場合であってもピストン22がシリンダチューブ21の上端または下端に当たりにくくなるため、油圧シリンダ20により振動を減衰または振動の伝達を抑制することができる。また、目標相対距離は、作業者がダイヤル等を操作することにより変更可能なものであってもよい。この場合、キャビン6からの視界が確保されるようにキャビン6の高さを適宜調整することでトラクタ1の作業性を向上させることができる。 As described above, the control device 60 controls the cabin height adjusting unit 50 to adjust the amount of expansion and contraction of the pair of hydraulic cylinders 20 so that the actual relative distance and the target relative distance match. The target relative distance is set such that when the relative distance between the frame 2 and the cabin 6 becomes the target relative distance, the position of the piston 22 is not in the vicinity of the upper end or the lower end of the cylinder tube 21 in the cylinder tube 21. Be done. By setting the target relative distance in this manner, the piston 22 is less likely to hit the upper end or the lower end of the cylinder tube 21 even when the relative distance between the frame 2 and the cabin 6 changes due to vibration. Vibration can be damped or transmission of vibration can be suppressed. The target relative distance may be changeable by the operator operating the dial or the like. In this case, the workability of the tractor 1 can be improved by appropriately adjusting the height of the cabin 6 so as to ensure the visibility from the cabin 6.
 また、制御装置60は、傾斜センサ66により検出されるフレーム2の傾斜度、すなわち、走行路面の傾斜度に応じて目標相対距離を変更する。具体的には、制御装置60は、上り坂を登坂中である場合には、目標相対距離を大きくし、下り坂を降坂中である場合には、目標相対距離を小さくすることによって、キャビン6が水平な状態となるようにキャビン高さ調整部50を制御する。なお、傾斜センサ66は、キャビン6に設けられていてもよく、この場合は、傾斜センサ66の検出値が水平状態を示すように、制御装置60は、キャビン高さ調整部50を制御する。 Further, the control device 60 changes the target relative distance in accordance with the degree of inclination of the frame 2 detected by the inclination sensor 66, that is, the degree of inclination of the traveling road surface. Specifically, the controller 60 increases the target relative distance when climbing uphill, and reduces the target relative distance when descending downhill, thereby reducing the cabin The cabin height adjustment unit 50 is controlled so that 6 is in a horizontal state. In addition, the inclination sensor 66 may be provided in the cabin 6, and in this case, the control device 60 controls the cabin height adjustment unit 50 so that the detection value of the inclination sensor 66 indicates a horizontal state.
 このように、走行路面の傾斜度に関わらず、キャビン6を水平な状態に維持することが可能となることでトラクタ1の作業性を向上させることができる。なお、キャビン6の高さを調整するキャビン高さ調整部50は、キャビン制振システム100に対して必要に応じて付加可能な機能であり、必ずしも組み込まれる必要はない。また、キャビン高さ調整制御は、ストロークセンサ64等を用いることなく、フレーム2に対するキャビン6の位置が、上下方向において常に中立的な位置となるように制御するものであってもよい。また、キャビン高さ調整制御は、ストロークセンサ64の検出値に応じてフレーム2に対するキャビン6の高さを調整する自動調整モードの他に、図示しないキャビン高さ調整レバーが作業者により操作されることによってフレーム2に対するキャビン6の高さが調整される手動調整モードを備えていてもよい。 Thus, the operability of the tractor 1 can be improved by being able to maintain the cabin 6 in a horizontal state regardless of the degree of inclination of the traveling road surface. In addition, the cabin height adjustment part 50 which adjusts the height of the cabin 6 is a function which can be added with respect to the cabin damping system 100 as needed, and does not necessarily need to be integrated. In addition, the cabin height adjustment control may be performed such that the position of the cabin 6 with respect to the frame 2 is always in a neutral position in the vertical direction without using the stroke sensor 64 or the like. In addition to the automatic adjustment mode in which the cabin height adjustment control adjusts the height of the cabin 6 with respect to the frame 2 according to the detection value of the stroke sensor 64, a cabin height adjustment lever (not shown) is operated by the operator A manual adjustment mode may be provided in which the height of the cabin 6 relative to the frame 2 is adjusted.
 以上の第1実施形態によれば、以下に示す効果を奏する。 According to the first embodiment described above, the following effects can be obtained.
 キャビン制振システム100では、加速度センサ62で検出されたキャビン6の振動方向の加速度α及びキャビン6の共振周波数fmに基づいて、減衰力切換弁30が連通路28を流れる作動油に付与する抵抗を制御する。このように、キャビン6の振動状況に応じて、緩衝部10が生じる減衰力を切り換えることで、キャビン6の振動を的確に抑制することができる。 In the cabin damping system 100, the resistance that the damping force switching valve 30 applies to the hydraulic fluid flowing through the communication passage 28 based on the acceleration α in the vibration direction of the cabin 6 detected by the acceleration sensor 62 and the resonant frequency fm of the cabin 6 Control. Thus, according to the vibration condition of the cabin 6, by switching the damping force generated by the buffer unit 10, the vibration of the cabin 6 can be accurately suppressed.
 また、キャビン制振システム100では、キャビン6が共振周波数fmで振動しているときには、緩衝部10が生じる減衰力を大きくしてキャビン6の振動を抑制し、キャビン6が共振周波数fmで振動していないときには、緩衝部10が生じる減衰力を小さくしてフレーム2からキャビン6に振動が伝達されることを抑制している。この結果、不整地を走行するトラクタ1のような作業車両の乗り心地を向上させることができる。 Moreover, in the cabin damping system 100, when the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the buffer unit 10 is increased to suppress the vibration of the cabin 6, and the cabin 6 vibrates at the resonance frequency fm. When not, the damping force generated by the buffer unit 10 is reduced to suppress the transmission of vibration from the frame 2 to the cabin 6. As a result, it is possible to improve the riding comfort of a work vehicle such as a tractor 1 traveling on rough terrain.
 また、キャビン制振システム100では、油圧シリンダ20をフレーム2とキャビン6との間に配置するだけで、フレーム2及びキャビン6の振動を油圧シリンダ20により減衰ないし吸収させることが可能である。このため、フレーム2とキャビン6との間にあまりスペースがないトラクタ1へもキャビン制振システム100を搭載することが可能である。 Further, in the cabin damping system 100, the vibration of the frame 2 and the cabin 6 can be damped or absorbed by the hydraulic cylinder 20 only by arranging the hydraulic cylinder 20 between the frame 2 and the cabin 6. For this reason, it is possible to mount the cabin damping system 100 also to the tractor 1 which does not have much space between the frame 2 and the cabin 6.
 次に上記第1実施形態の変形例について説明する。なお、後述の変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、後述の異なる実施形態で説明した構成同士を組み合わせたり、以下の異なる変形例で説明される構成同士を組み合わせることも可能である。 Next, a modification of the first embodiment will be described. The modifications described later are also within the scope of the present invention, and the configurations shown in the modifications and the configurations described in the above embodiments may be combined, the configurations described in different embodiments described below may be combined, or the following differences It is also possible to combine the configurations described in the modification.
 上記第1実施形態では、キャビン6が共振周波数fmで振動しているか否かを共振周波数fmにおけるパワースペクトル密度Pxの値の大きさで判定している。これに代えて、オクターブバンドの実効値Xrの大きさでキャビン6が共振周波数fmで振動しているか否かを判定してもよい。以下にオクターブバンドの実効値Xrについて具体的に説明する。 In the first embodiment, whether or not the cabin 6 vibrates at the resonance frequency fm is determined based on the value of the power spectral density Px at the resonance frequency fm. Instead of this, it may be determined whether or not the cabin 6 vibrates at the resonance frequency fm based on the magnitude of the effective value Xr of the octave band. The effective value Xr of the octave band will be specifically described below.
 オクターブバンドは、キャビン6の共振周波数fmを中心周波数としたとき、1/1オクターブの周波数領域である。具体的には、上限周波数をfu1、下限周波数をfd1とすると、1/1オクターブの上限周波数fu1及び下限周波数fd1は、以下の式(1),(2)により求まる。 The octave band is a frequency range of 1/1 octave when the resonance frequency fm of the cabin 6 is a central frequency. Specifically, when the upper limit frequency is fu1 and the lower limit frequency is fd1, the upper limit frequency fu1 and the lower limit frequency fd1 of 1/1 octave can be obtained by the following equations (1) and (2).
 fu1 = √2 ×fm ≒ 1.4142 × fm ・・・式(1)
 fd1 = fm/√2  ≒fm÷ 1.4142  ・・・式(2)
fu1 = 2 2 × fm 1.4 1.4142 × fm formula (1)
fd1 = fm / √2 ÷ fm 1.4142 ··· Formula (2)
 なお、オクターブバンドの周波数領域を1/3オクターブとしてもよい。1/3オクターブの上限周波数fu2及び下限周波数fd2は、以下の式(3),(4)により求まる。 The frequency range of the octave band may be 1/3 octave. The upper limit frequency fu2 and the lower limit frequency fd2 of the 1/3 octave can be obtained by the following equations (3) and (4).
 fu2 =  6√2  × fm ≒ 1.1225 × fm ・・・式(3)
 fd2 = fm/6√2  ≒ fm ÷ 1.1225  ・・・式(4)
fu2 = 6√2 × fm 1.1 1.1225 × fm formula (3)
fd2 = fm / 6 2 2 fm ÷ 1.1225 formula (4)
 オクターブバンドの実効値Xrは、パワースペクトル密度Pxを上限周波数fu及び下限周波数fdの範囲で積分することにより求められる。制御装置60は、このようにして求められたオクターブバンドの実効値Xrが所定の閾値Xc以上となったときに、キャビン6が共振周波数fmで振動していると判定し、減衰力切換弁30を第2位置31bに切り換えて連通路28を流れる作動油に付与される抵抗を大きくする。これにより、上記第1実施形態による効果と同様の効果を奏する。 The effective value Xr of the octave band is determined by integrating the power spectral density Px in the range of the upper limit frequency fu and the lower limit frequency fd. The controller 60 determines that the cabin 6 is vibrating at the resonance frequency fm when the effective value Xr of the octave band obtained in this manner becomes equal to or greater than the predetermined threshold value Xc, and the damping force switching valve 30 To the second position 31 b to increase the resistance applied to the hydraulic fluid flowing through the communication passage 28. Thereby, the same effects as the effects of the first embodiment can be obtained.
 また、上記第1実施形態では、減衰力切換弁30は、2位置切換弁であり、連通路28の流路面積を2段階で切り換えている。これに代えて、減衰力切換弁30は、連通路28の流路面積を多段階または連続的に変化させるものであってもよい。この場合、弁体31は、軸方向に変位することで連通開度を変更可能なスプール弁であってもよいし、周方向に変位することで連通開度を変更可能なロータリ弁であってもよい。また、ソレノイド33としては比例ソレノイドが用いられてもよいしステッピングモータが用いられてもよい。 Further, in the first embodiment, the damping force switching valve 30 is a two-position switching valve, and the flow passage area of the communication passage 28 is switched in two steps. Instead of this, the damping force switching valve 30 may change the flow passage area of the communication passage 28 in multiple stages or continuously. In this case, the valve body 31 may be a spool valve capable of changing the communication opening degree by being displaced in the axial direction, or a rotary valve capable of changing the communication opening degree by being displaced in the circumferential direction It is also good. Further, as the solenoid 33, a proportional solenoid may be used or a stepping motor may be used.
 また、このように、連通路28の流路面積を多段階または連続的に変化させることが可能である場合には、パワースペクトル密度Pxの値の大きさやオクターブバンドの実効値Xrの大きさに応じて、連通路28の流路面積を比例的に変化させることで、より細かく緩衝部10が生じる減衰力の大きさを制御することが可能となる。また、連通路28の流路面積を二段階で切り換える場合と比較し、減衰力を変化させた際に生じる油圧シリンダ20の伸縮速度の変化等を緩やかにすることもできる。 Also, in this way, when it is possible to change the flow passage area of the communication passage 28 in multiple stages or continuously, the value of the power spectral density Px and the value of the effective value Xr of the octave band may be used. Accordingly, it is possible to control the magnitude of the damping force generated by the buffer 10 more finely by proportionally changing the flow passage area of the communication passage 28. Further, as compared with the case where the flow passage area of the communication passage 28 is switched in two steps, it is possible to make the change of the expansion and contraction speed of the hydraulic cylinder 20 and the like which occur when the damping force is changed loose.
 <第2実施形態>
 次に、図6を参照して、本発明の第2実施形態に係るキャビン制振システム200について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、第1実施形態のキャビン制振システム100と同一の構成には、同一の符号を付して説明を省略する。
Second Embodiment
Next, a cabin damping system 200 according to a second embodiment of the present invention will be described with reference to FIG. Hereinafter, differences from the first embodiment will be mainly described, and the same components as those of the cabin damping system 100 of the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
 キャビン制振システム200の基本的な構成は、第1実施形態に係るキャビン制振システム100と同様である。第1実施形態に係るキャビン制振システム100では、ピストン側室24とロッド側室25とを連通する連通路28の流路面積を減衰力切換弁30で変えることにより緩衝部10が生じる減衰力の大きさを変更しているのに対して、キャビン制振システム200では、ピストン側室124とアキュムレータ40の油室41aとを接続する接続通路42の流路面積を減衰力切換弁130で変えることにより緩衝部110が生じる減衰力の大きさを変更している点で相違する。 The basic configuration of the cabin damping system 200 is the same as that of the cabin damping system 100 according to the first embodiment. In the cabin damping system 100 according to the first embodiment, the magnitude of the damping force generated by the buffer unit 10 by changing the flow passage area of the communication passage 28 communicating the piston side chamber 24 and the rod side chamber 25 with the damping force switching valve 30. However, in the cabin damping system 200, the damping force switching valve 130 is used to change the flow path area of the connection passage 42 connecting the piston side chamber 124 and the oil chamber 41a of the accumulator 40. The difference is that the magnitude of the damping force generated by the portion 110 is changed.
 図6に示されるように、キャビン制振システム200は、第1実施形態のキャビン制振システム100と同様に、キャビン6の振動を減衰する減衰力を変更自在な緩衝部110と、緩衝部110に対して作動油を給排するキャビン高さ調整部50と、緩衝部110が生じる減衰力を制御する制御装置60と、を備える。 As shown in FIG. 6, the cabin damping system 200 has a buffer unit 110 capable of changing a damping force that damps the vibration of the cabin 6, and the buffer unit 110 as in the cabin damping system 100 of the first embodiment. And a control unit 60 for controlling the damping force generated by the buffer unit 110.
 緩衝部110は、第1実施形態の緩衝部10と同様に、一対の油圧シリンダ120を有する。 The buffer unit 110 has a pair of hydraulic cylinders 120 as in the case of the buffer unit 10 of the first embodiment.
 油圧シリンダ120は、一端がフレーム2に連結され内部に作動油が封入されるシリンダチューブ121と、シリンダチューブ121内に摺動自在に配置されシリンダチューブ121内を第一流体室としてのピストン側室124及び第二流体室としてのロッド側室125に区画するピストン122と、ピストン122に一端が結合され他端がキャビン6に連結されるピストンロッド123と、を有する。ピストン122には、ピストン側室124とロッド側室125との間で作動油の行き来を許容する流路122cが形成される。油圧シリンダ120は、シリンダチューブ121の基端部が連結部126を介してフレーム2に連結され、ピストンロッド123の先端部が連結部127を介してキャビン6に連結される。 The hydraulic cylinder 120 has a cylinder tube 121 having one end connected to the frame 2 and having hydraulic oil sealed therein, and a piston side chamber 124 slidably disposed in the cylinder tube 121 and having the inside of the cylinder tube 121 as a first fluid chamber. And a piston side wall 125 as a second fluid chamber, and a piston rod 123 having one end connected to the piston 122 and the other end connected to the cabin 6. The piston 122 is formed with a flow passage 122 c that allows hydraulic fluid to pass between the piston side chamber 124 and the rod side chamber 125. The hydraulic cylinder 120 has a base end portion of the cylinder tube 121 connected to the frame 2 via the connection portion 126, and a tip end portion of the piston rod 123 connected to the cabin 6 via the connection portion 127.
 また、緩衝部110は、ピストン側室124とアキュムレータ40の油室41aとを接続する接続通路42に設けられる減衰力切換弁130をさらに有する。 The buffer unit 110 further includes a damping force switching valve 130 provided in a connection passage 42 connecting the piston side chamber 124 and the oil chamber 41 a of the accumulator 40.
 減衰力切換弁130は、電磁式2位置切換弁であり、弁体131と、制御装置60から供給される電流により駆動し弁体131に付勢力を付与するソレノイド133と、ソレノイド133の付勢力に対向する付勢力を弁体131に付与するばね132と、を有する。 The damping force switching valve 130 is an electromagnetic two-position switching valve, and is actuated by the valve body 131 and a current supplied from the control device 60 to apply a biasing force to the valve body 131, and a biasing force of the solenoid 133 And a spring 132 for applying a biasing force to the valve body 131.
 弁体131は、流路面積が大きく接続通路42を流れる作動油にほとんど抵抗を付与しない第1位置131aと、流路面積が小さく接続通路42を流れる作動油に比較的大きい抵抗を付与する第2位置131bと、を有する。 The valve body 131 has a large flow passage area, a first position 131a which hardly gives resistance to the hydraulic fluid flowing through the connection passage 42, and a relatively small resistance to the hydraulic fluid flowing through the connection passage 42. And 2 positions 131 b.
 弁体131の位置は、ばね132の付勢力とソレノイド133の付勢力とによって切り換えられる。具体的には、ソレノイド133に電流が印加されない状態では、ばね132の付勢力によって、第1位置131aに保持され、ソレノイド133に電流が印加され弁体31に付与されるソレノイド133の付勢力がばね132の付勢力を上回ると第2位置131bに切り換えられる。なお、減衰力切換弁130は、弁体131の位置を、ソレノイド133に電流が印加されていないときに第2位置131bとし、ソレノイド133に電流が印加されたときに第1位置131aとする構成のものであってもよい。 The position of the valve body 131 is switched by the biasing force of the spring 132 and the biasing force of the solenoid 133. Specifically, when no current is applied to the solenoid 133, the biasing force of the spring 132 holds the first position 131a, and the current is applied to the solenoid 133 and the biasing force of the solenoid 133 applied to the valve body 31 is When the biasing force of the spring 132 is exceeded, it is switched to the second position 131 b. The damping force switching valve 130 is configured such that the position of the valve body 131 is the second position 131 b when no current is applied to the solenoid 133 and the first position 131 a when the current is applied to the solenoid 133 It may be
 減衰力切換弁130の位置が第1位置131aにあると、油圧シリンダ120が伸縮する際、作動油はピストン側室124と油室41aとの間を比較的抵抗なく行き来できるため、緩衝部110が生じる減衰力は最小となる。一方、減衰力切換弁130の位置が第2位置131bにあると、油圧シリンダ120が伸縮する際、ピストン側室124と油室41aとの間の作動油の行き来が制限されるため、緩衝部110が生じる減衰力は最大となる。 When the position of the damping force switching valve 130 is at the first position 131a, when the hydraulic cylinder 120 expands and contracts, the hydraulic fluid can move back and forth between the piston side chamber 124 and the oil chamber 41a without a relative resistance. The resulting damping force is minimal. On the other hand, when the position of the damping force switching valve 130 is at the second position 131 b, when the hydraulic cylinder 120 expands and contracts, movement of hydraulic fluid between the piston side chamber 124 and the oil chamber 41 a is restricted. The damping force that occurs is maximized.
 ソレノイド133への電流の供給は、制御装置60によって行われ、緩衝部110が生じる減衰力の大きさは、上記第1実施形態と同様に、制御装置60によって制御される。 Supply of current to the solenoid 133 is performed by the control device 60, and the magnitude of the damping force generated by the buffer unit 110 is controlled by the control device 60 as in the first embodiment.
 キャビン高さ調整部50及び制御装置60の構成は、上記第1実施形態と同じであるため、その説明を省略する。 The configurations of the cabin height adjustment unit 50 and the control device 60 are the same as in the first embodiment, and thus the description thereof will be omitted.
 上記構成のキャビン制振システム200では、上記第1実施形態のキャビン制振システム100と同様に、図5に示されるフローに沿って、制御装置60によって減衰力調整制御が行われる。 In the cabin damping system 200 configured as described above, the damping force adjustment control is performed by the control device 60 along the flow shown in FIG. 5, similarly to the cabin damping system 100 of the first embodiment.
 減衰力調整制御において制御装置60により制御されるのは、上述の減衰力切換弁130である。このため、キャビン制振システム200では、キャビン6が共振周波数fmで振動していると判定されると、接続通路42を流れる作動油に付与される抵抗を大きくして緩衝部110が生じる減衰力を大きくし、キャビン6がピストンロッド123を押し込む力とピストン側室124において生じる復元力との両方の力を減衰させることでキャビン6の振動を抑制している。 It is the above-mentioned damping force switching valve 130 that is controlled by the controller 60 in damping force adjustment control. For this reason, in the cabin damping system 200, when it is determined that the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the buffer portion 110 is increased by increasing the resistance applied to the hydraulic oil flowing through the connection passage 42. The vibration of the cabin 6 is suppressed by attenuating both the force of pushing the piston rod 123 by the cabin 6 and the restoring force generated in the piston side chamber 124.
 一方、キャビン6が共振周波数fmで振動していないと判定されると、接続通路42を流れる作動油に付与される抵抗を小さくして緩衝部110が生じる減衰力を小さくし、フレーム2の変位を油圧シリンダ120によって往なすことにより、フレーム2の振動がキャビン6に伝わることを抑制している。 On the other hand, when it is determined that the cabin 6 does not vibrate at the resonance frequency fm, the resistance applied to the hydraulic oil flowing through the connection passage 42 is reduced to reduce the damping force generated by the buffer 110 and the displacement of the frame 2 Is transferred by the hydraulic cylinder 120 to suppress the transmission of the vibration of the frame 2 to the cabin 6.
 このように、キャビン制振システム200では、上記第1実施形態のキャビン制振システム100と同様に、キャビン6の振動状況に応じて緩衝部110が生じる減衰力を変更することでキャビン6の振動が抑制される。 Thus, in the cabin damping system 200, as in the case of the cabin damping system 100 of the first embodiment, the vibration of the cabin 6 is changed by changing the damping force generated by the buffer unit 110 according to the vibration situation of the cabin 6. Is suppressed.
 キャビン制振システム200の制御装置60により行われるキャビン高さ調整制御については、上記第1実施形態と同じであるため、その説明を省略する。 About cabin height adjustment control performed by control device 60 of cabin damping system 200, since it is the same as that of the above-mentioned 1st embodiment, the explanation is omitted.
 以上の第2実施形態によれば、以下に示す効果を奏する。 According to the above second embodiment, the following effects can be obtained.
 キャビン制振システム200では、加速度センサ62で検出されたキャビン6の振動方向の加速度α及びキャビン6の共振周波数fmに基づいて、減衰力切換弁130が接続通路42を流れる作動油に付与する抵抗を制御する。このように、キャビン6の振動状況に応じて、緩衝部110が生じる減衰力を切り換えることで、キャビン6の振動を的確に抑制することができる。 In the cabin damping system 200, the resistance that the damping force switching valve 130 applies to the hydraulic oil flowing through the connection passage 42 based on the acceleration α in the vibration direction of the cabin 6 detected by the acceleration sensor 62 and the resonance frequency fm of the cabin 6. Control. Thus, according to the vibration condition of the cabin 6, by switching the damping force which the buffer part 110 produces, the vibration of the cabin 6 can be suppressed appropriately.
 また、キャビン制振システム200では、油圧シリンダ120をフレーム2とキャビン6との間に配置するだけで、フレーム2及びキャビン6の振動を油圧シリンダ120により減衰ないし吸収させることが可能である。このため、フレーム2とキャビン6との間にあまりスペースがないトラクタ1へもキャビン制振システム200を搭載することが可能である。 Further, in the cabin damping system 200, the vibration of the frame 2 and the cabin 6 can be damped or absorbed by the hydraulic cylinder 120 only by arranging the hydraulic cylinder 120 between the frame 2 and the cabin 6. For this reason, it is possible to mount the cabin damping system 200 also to the tractor 1 which does not have much space between the frame 2 and the cabin 6.
 <第3実施形態>
 次に、図7及び図8を参照して、本発明の第3実施形態に係るキャビン制振システム300について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、第1実施形態のキャビン制振システム100と同一の構成には、同一の符号を付して説明を省略する。
Third Embodiment
Next, a cabin damping system 300 according to a third embodiment of the present invention will be described with reference to FIGS. 7 and 8. Hereinafter, differences from the first embodiment will be mainly described, and the same components as those of the cabin damping system 100 of the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.
 第1実施形態に係るキャビン制振システム100では、緩衝部10が油圧シリンダ20とアキュムレータ40と有しているのに対して、キャビン制振システム300では、緩衝部210が油圧ダンパ220とコイルスプリング240とを有している点で相違する。 In the cabin damping system 100 according to the first embodiment, the buffer unit 10 includes the hydraulic cylinder 20 and the accumulator 40, whereas in the cabin damping system 300, the buffer unit 210 includes the hydraulic damper 220 and a coil spring. It differs in that it has 240 and.
 図7に示されるように、キャビン制振システム300は、キャビン6の振動を減衰する減衰力を変更自在な緩衝部210と、緩衝部210が生じる減衰力を制御する制御装置60と、を備える。 As shown in FIG. 7, the cabin damping system 300 includes a buffer unit 210 capable of changing a damping force that damps the vibration of the cabin 6 and a control device 60 that controls the damping force generated by the buffer unit 210. .
 緩衝部210は、キャビン6とフレーム2との間において、車両の右側と左側とにそれぞれ設けられる一対の流体圧シリンダとしての油圧ダンパ220を有する。一対の油圧ダンパ220は、同じ構成を有するため、以下では、一方の構成についてのみ説明する。 The buffer unit 210 has a hydraulic damper 220 as a pair of hydraulic cylinders provided on the right side and the left side of the vehicle between the cabin 6 and the frame 2. Since the pair of hydraulic dampers 220 have the same configuration, only one configuration will be described below.
 油圧ダンパ220は、一端がフレーム2に連結され内部に作動油が封入されるシリンダチューブ221と、シリンダチューブ221内に摺動自在に配置されシリンダチューブ221内を第一流体室としてのピストン側室224及び第二流体室としてのロッド側室225に区画するピストン222と、ピストン222に一端が結合され他端がキャビン6に連結されるピストンロッド223と、を有する。 The hydraulic damper 220 has a cylinder tube 221, one end of which is connected to the frame 2 and in which the hydraulic oil is sealed, and a piston side chamber 224 slidably disposed in the cylinder tube 221 and having a cylinder tube 221 as a first fluid chamber. The piston 222 is divided into a rod side chamber 225 as a second fluid chamber, and a piston rod 223 has one end coupled to the piston 222 and the other end coupled to the cabin 6.
 また、図8に示すように、ピストン222は、ピストン側室224とロッド側室225とを連通する通路222a,222bを有する。通路222aには、油圧ダンパ220が伸長する際に開弁して通路222aを開放するとともに、通路222aを通過してロッド側室225からピストン側室224に移動する作動油の流れに抵抗を与える伸側減衰弁229aが設けられる。通路222bには、油圧ダンパ220が収縮する際に開弁して通路222bを開放するチェック弁229bが設けられる。 Further, as shown in FIG. 8, the piston 222 has passages 222 a and 222 b that communicate the piston side chamber 224 and the rod side chamber 225. The passage 222a is opened to open the passage 222a when the hydraulic damper 220 is extended, and is an extension side that resists the flow of hydraulic fluid moving from the rod side chamber 225 to the piston side chamber 224 through the passage 222a. A damping valve 229a is provided. The passage 222b is provided with a check valve 229b that opens to open the passage 222b when the hydraulic damper 220 contracts.
 また、油圧ダンパ220は、シリンダチューブ221の外周側に設けられ、作動油を貯留するリザーバ271と、リザーバ271とピストン側室224とを連通する通路273,274が形成されるベースバルブ272と、をさらに有する。通路273には、油圧ダンパ220が伸長する際に開弁して通路273を開放するチェック弁275が設けられる。通路274には、油圧ダンパ220が収縮する際に開弁して通路274を開放するとともに、通路274を通過してピストン側室224からリザーバ271に移動する作動油の流れに抵抗を与える圧側減衰弁276が設けられる。 The hydraulic damper 220 is provided on the outer peripheral side of the cylinder tube 221, and includes a reservoir 271 for storing hydraulic oil, and a base valve 272 in which passages 273 and 274 for communicating the reservoir 271 and the piston side chamber 224 are formed. Furthermore, it has. The passage 273 is provided with a check valve 275 that opens to open the passage 273 when the hydraulic damper 220 extends. In the passage 274, when the hydraulic damper 220 contracts, it opens to open the passage 274, and also serves as a pressure-side damping valve that resists the flow of hydraulic fluid moving from the piston side chamber 224 to the reservoir 271 through the passage 274 276 are provided.
 このように、油圧ダンパ220は、伸長する際にはピストン222に設けられた伸側減衰弁229aにより減衰力を発生させ、収縮する際にはベースバルブ272に設けられた圧側減衰弁276により減衰力を発生させる、いわゆる複筒式ダンパである。油圧ダンパ220は、シリンダチューブ221の基端部が連結部226を介してフレーム2に連結され、ピストンロッド223の先端部が連結部227を介してキャビン6に連結される。 Thus, the hydraulic damper 220 generates a damping force by the expansion side damping valve 229a provided to the piston 222 when extending, and attenuates by the pressure side damping valve 276 provided to the base valve 272 when contracting. It is a so-called double cylinder type damper that generates a force. The hydraulic damper 220 has a base end portion of the cylinder tube 221 connected to the frame 2 via the connection portion 226, and a tip end portion of the piston rod 223 connected to the cabin 6 via the connection portion 227.
 また、緩衝部210は、図8に示すように、ピストンロッド23の内部に設けられる減衰力切換弁30をさらに有する。減衰力切換弁30は、ピストン側室224とロッド側室225とを連通するピストンロッド223に形成された連通路228上に設けられる電磁式2位置切換弁である。減衰力切換弁30の構成は、上記第1実施形態と同じであるため、その説明を省略する。なお、ソレノイド33への電流の供給は、制御装置60によって行われ、緩衝部210が生じる減衰力の大きさは、上記第1実施形態と同様に、制御装置60によって制御される。 Further, as shown in FIG. 8, the buffer unit 210 further includes a damping force switching valve 30 provided inside the piston rod 23. The damping force switching valve 30 is an electromagnetic two-position switching valve provided on a communication passage 228 formed in a piston rod 223 communicating the piston side chamber 224 and the rod side chamber 225. The configuration of the damping force switching valve 30 is the same as that of the first embodiment, and thus the description thereof will be omitted. The supply of current to the solenoid 33 is performed by the control device 60, and the magnitude of the damping force generated by the buffer unit 210 is controlled by the control device 60 as in the first embodiment.
 緩衝部210は、フレーム2とキャビン6との間に圧縮された状態で介装される弾性部材としてのコイルスプリング240をさらに有する。減衰力切換弁30によって連通路228を流れる作動油に抵抗が付与されず、緩衝部210が生じる減衰力が小さい場合、フレーム2に対してキャビン6は、コイルスプリング240によって弾性支持され、緩衝部210が受ける衝撃は弾性エネルギーとしてコイルスプリング240に蓄積される。 The buffer unit 210 further includes a coil spring 240 as an elastic member interposed in a compressed state between the frame 2 and the cabin 6. When the damping force switching valve 30 does not apply resistance to the hydraulic fluid flowing through the communication passage 228 and the damping force generated by the buffer unit 210 is small, the cabin 6 is elastically supported by the coil spring 240 with respect to the frame 2 The impact received by 210 is stored in the coil spring 240 as elastic energy.
 このように緩衝部210は、上記第1実施形態における緩衝部10と同様に、振動減衰機能を有するとともに、衝撃吸収機能も有している。 As described above, the buffer unit 210 has a vibration damping function as well as a shock absorbing function as the buffer unit 10 in the first embodiment.
 制御装置60の構成は、上記第1実施形態と同じであるため、その説明を省略する。 The configuration of the control device 60 is the same as that of the first embodiment, and thus the description thereof is omitted.
 上記構成のキャビン制振システム300では、上記第1実施形態のキャビン制振システム100と同様に、図5に示されるフローに沿って、制御装置60によって減衰力調整制御が行われる。 In the cabin damping system 300 configured as described above, the damping force adjustment control is performed by the control device 60 along the flow shown in FIG. 5 as in the cabin damping system 100 of the first embodiment.
 減衰力調整制御において制御装置60により制御されるのは、上述の減衰力切換弁30である。このため、キャビン制振システム300では、キャビン6が共振周波数fmで振動していると判定されると、連通路228を流れる作動油に付与される抵抗を大きくして油圧ダンパ220が生じる減衰力を大きくし、キャビン6がピストンロッド223を押し込む力とコイルスプリング240が生じる復元力との両方の力を減衰させることでキャビン6の振動を抑制している。 It is the above-mentioned damping force switching valve 30 that is controlled by the controller 60 in damping force adjustment control. Therefore, in the cabin damping system 300, when it is determined that the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the hydraulic damper 220 is increased by increasing the resistance applied to the hydraulic fluid flowing through the communication passage 228 The vibration of the cabin 6 is suppressed by attenuating both the force with which the cabin 6 pushes the piston rod 223 and the restoring force generated by the coil spring 240.
 一方、キャビン6が共振周波数fmで振動していないと判定されると、連通路228を流れる作動油に付与される抵抗を小さくして油圧ダンパ220が生じる減衰力を小さくし、フレーム2の変位をコイルスプリング240によって往なすことにより、フレーム2の振動がキャビン6に伝わることを抑制している。 On the other hand, when it is determined that the cabin 6 does not vibrate at the resonance frequency fm, the resistance applied to the hydraulic fluid flowing through the communication passage 228 is reduced to reduce the damping force generated by the hydraulic damper 220, thereby displacing the frame 2. Are transmitted by the coil spring 240 to suppress the transmission of the vibration of the frame 2 to the cabin 6.
 このように、キャビン制振システム300では、上記第1実施形態のキャビン制振システム100と同様に、キャビン6の振動状況に応じて緩衝部210が生じる減衰力を変更することでキャビン6の振動が抑制される。 As described above, in the cabin damping system 300, as in the case of the cabin damping system 100 of the first embodiment, the damping force generated by the buffer unit 210 is changed according to the vibration situation of the cabin 6, thereby vibrating the cabin 6 Is suppressed.
 以上の第3実施形態によれば、以下に示す効果を奏する。 According to the above third embodiment, the following effects can be obtained.
 キャビン制振システム300では、加速度センサ62で検出されたキャビン6の振動方向の加速度α及びキャビン6の共振周波数fmに基づいて、減衰力切換弁30が連通路228を流れる作動油に付与する抵抗を制御する。このように、キャビン6の振動状況に応じて、緩衝部210が生じる減衰力を切り換えることで、キャビン6の振動を的確に抑制することができる。 In the cabin damping system 300, the resistance that the damping force switching valve 30 applies to the hydraulic oil flowing through the communication passage 228 based on the acceleration α in the vibration direction of the cabin 6 detected by the acceleration sensor 62 and the resonance frequency fm of the cabin 6. Control. Thus, according to the vibration condition of the cabin 6, by switching the damping force which the buffer part 210 produces, the vibration of the cabin 6 can be suppressed appropriately.
 また、キャビン制振システム300では、フレーム2とキャビン6との間に設けられる油圧ダンパ220とコイルスプリング240とによってフレーム2及びキャビン6の振動が減衰ないし吸収される。このように、キャビン制振システム300では、従来から緩衝装置として用いられているダンパやスプリングがキャビン6の制振に用いられているため、キャビン制振システム300の製造コストを低減させることができる。 Further, in the cabin damping system 300, the vibrations of the frame 2 and the cabin 6 are damped or absorbed by the hydraulic damper 220 and the coil spring 240 provided between the frame 2 and the cabin 6. Thus, in the cabin damping system 300, since the damper and spring conventionally used as a shock absorbing device are used for damping of the cabin 6, the manufacturing cost of the cabin damping system 300 can be reduced. .
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effects of the embodiment of the present invention will be collectively described.
 キャビン制振システム100,200,300は、トラクタ1のフレーム2とキャビン6との間に設けられ、キャビン6の振動を減衰する減衰力を変更自在な緩衝部10,110,210と、少なくともキャビン6の振動方向におけるキャビン6の加速度αを検出する加速度センサ62と、加速度センサ62で検出されたキャビン6の加速度α及びキャビン6の共振周波数fmに基づいて、緩衝部10,110,210が生じる減衰力の大きさを制御する制御装置60と、を備える。 The cabin damping system 100, 200, 300 is provided between the frame 2 of the tractor 1 and the cabin 6, and has a buffer 10, 110, 210 capable of changing the damping force that damps the vibration of the cabin 6, and at least the cabin Based on the acceleration sensor 62 for detecting the acceleration α of the cabin 6 in the vibration direction 6 and the acceleration α of the cabin 6 detected by the acceleration sensor 62 and the resonance frequency fm of the cabin 6, the buffer units 10, 110 and 210 are generated. And a controller 60 for controlling the magnitude of the damping force.
 この構成では、加速度センサ62で検出されたキャビン6の振動方向の加速度α及びキャビン6の共振周波数fmに基づいて、緩衝部10,110,210が生じる減衰力の大きさが制御される。このように、キャビン6の振動状況に応じて、緩衝部10,110,210が生じる減衰力の大きさを制御することで、キャビン6の振動を的確に抑制することができる。 In this configuration, based on the acceleration α in the vibration direction of the cabin 6 detected by the acceleration sensor 62 and the resonance frequency fm of the cabin 6, the magnitude of the damping force generated by the buffer units 10, 110, 210 is controlled. Thus, according to the vibration condition of the cabin 6, the vibration of the cabin 6 can be suppressed appropriately by controlling the magnitude of the damping force generated by the buffer sections 10, 110, 210.
 また、制御装置60は、加速度センサ62によって検出された加速度αからキャビン6の共振周波数fmにおけるパワースペクトル密度Pxを算出し、パワースペクトル密度Pxが閾値Pc以上のとき、または、パワースペクトル密度Pxが高くなるにつれて、緩衝部10,110,210が生じる減衰力の大きさを大きくする。 Further, control device 60 calculates power spectral density Px at resonance frequency fm of cabin 6 from acceleration α detected by acceleration sensor 62, and when power spectral density Px is equal to or higher than threshold value Pc, or power spectral density Px is As it becomes higher, the magnitude of the damping force generated by the shock absorbers 10, 110, 210 is increased.
 この構成では、キャビン6の共振周波数fmにおけるパワースペクトル密度Pxが大きく、キャビン6が共振周波数fmで振動していると判定される場合には、緩衝部10,110,210が生じる減衰力を大きくすることでキャビン6の振動が抑制される。一方、キャビン6の共振周波数fmにおけるパワースペクトル密度Pxが小さく、キャビン6が共振周波数fmで振動していないと判定される場合には、緩衝部10,110,210が生じる減衰力を小さくすることでフレーム2からキャビン6に振動が伝達されることが抑制される。この結果、キャビン6の振動が的確に抑制され、不整地を走行するトラクタ1の乗り心地を向上させることができる。 In this configuration, when the power spectral density Px at the resonance frequency fm of the cabin 6 is large and it is determined that the cabin 6 vibrates at the resonance frequency fm, the damping force generated by the buffer units 10, 110, 210 is large. Vibration of the cabin 6 is suppressed by doing. On the other hand, when the power spectral density Px at the resonance frequency fm of the cabin 6 is small and it is determined that the cabin 6 does not vibrate at the resonance frequency fm, the damping force generated by the buffer units 10, 110, 210 should be reduced. Transmission of vibration from the frame 2 to the cabin 6 is suppressed. As a result, the vibration of the cabin 6 is accurately suppressed, and the riding comfort of the tractor 1 traveling on rough terrain can be improved.
 また、制御装置60は、加速度センサ62によって検出された加速度αに基づいてキャビン6の共振周波数fmを中心周波数としたオクターブバンドの実効値Xrを算出し、オクターブバンドの実効値Xrが閾値Xc以上のときに、または、オクターブバンドの実効値Xrが大きくなるにつれて、緩衝部10,110,210が生じる減衰力の大きさを大きくする。 Further, the control device 60 calculates the effective value Xr of the octave band centering on the resonance frequency fm of the cabin 6 based on the acceleration α detected by the acceleration sensor 62, and the effective value Xr of the octave band is equal to or more than the threshold Xc. At the same time, or as the effective value Xr of the octave band increases, the magnitude of the damping force generated by the buffers 10, 110, 210 is increased.
 この構成では、キャビン6の共振周波数fmを中心周波数としたオクターブバンドの実効値Xrが大きく、キャビン6が共振周波数fmで振動していると判定される場合には、緩衝部10,110,210が生じる減衰力を大きくすることでキャビン6の振動が抑制される。一方、キャビン6の共振周波数fmを中心周波数としたオクターブバンドの実効値Xrが小さく、キャビン6が共振周波数fmで振動していないと判定される場合には、緩衝部10,110,210が生じる減衰力を小さくすることでフレーム2からキャビン6に振動が伝達されることが抑制される。この結果、キャビン6の振動が的確に抑制され、不整地を走行するトラクタ1の乗り心地を向上させることができる。 In this configuration, when it is determined that the effective value Xr of the octave band whose center frequency is the resonance frequency fm of the cabin 6 is large and it is determined that the cabin 6 vibrates at the resonance frequency fm, the buffer units 10, 110, 210 Vibration of the cabin 6 is suppressed by increasing the damping force generated by On the other hand, when the effective value Xr of the octave band centering on the resonance frequency fm of the cabin 6 is small and it is determined that the cabin 6 is not vibrating at the resonance frequency fm, the buffer portions 10, 110, 210 are generated Transmission of vibration from the frame 2 to the cabin 6 is suppressed by reducing the damping force. As a result, the vibration of the cabin 6 is accurately suppressed, and the riding comfort of the tractor 1 traveling on rough terrain can be improved.
 また、緩衝部10,210は、一端がフレーム2に連結され内部に作動油が封入されるシリンダチューブ21,221と、シリンダチューブ21,221内に摺動自在に配置されシリンダチューブ21,221内をピストン側室24,224及びロッド側室25,225に区画するピストン22,222と、ピストン22,222に一端が結合され他端がキャビン6に連結されるピストンロッド23,223と、ピストン側室24,224とロッド側室25,225とを連通する連通路28,228と、を有する流体圧シリンダ(油圧シリンダ20,油圧ダンパ220)と、連通路28,228を流れる作動油に抵抗を付与する減衰力切換弁30と、を有し、制御装置60は、減衰力切換弁30を制御し作動油に付与される抵抗を変化させることにより緩衝部10,210が生じる減衰力の大きさを調整する。 The buffer sections 10 and 210 have cylinder tubes 21 and 221 each having one end connected to the frame 2 and sealed with the working oil, and slidably disposed in the cylinder tubes 21 and 221. Pistons 22 and 222 that divide the piston into a piston side chamber 24 and 224 and a rod side chamber 25 and 225, a piston rod 23 and 223 having one end coupled to the piston 22 and 222 and the other end connected to the cabin 6, a piston side chamber 24 A hydraulic cylinder (hydraulic cylinder 20, hydraulic damper 220) having communication passages 28 and 228 communicating the rod side chamber 25 and 225 with the rod side chamber 25 and a damping force for giving resistance to the hydraulic oil flowing through the communication passages 28 and 228 The control device 60 controls the damping force switching valve 30 to change the resistance applied to the hydraulic fluid. Adjusting the magnitude of the damping force buffer portion 10, 210 is caused by.
 この構成では、緩衝部10,210が生じる減衰力の大きさは、ピストン側室24,224とロッド側室25,225とを連通する連通路28,228を流れる作動油に付与される抵抗を変化させることで変更される。このように、流体圧シリンダ(油圧シリンダ20,油圧ダンパ220)の伸縮に伴ってピストン側室24,224とロッド側室25,225との間を行き来する作動油の流れを制御することで緩衝部10,210が生じる減衰力の大きさを容易に変更することができる。 In this configuration, the magnitude of the damping force generated by the shock absorbers 10 and 210 changes the resistance applied to the hydraulic fluid flowing in the communication passage 28 and 228 that connects the piston side chamber 24 and 224 and the rod side chamber 25 and 225. It is changed by. As described above, the shock absorbing portion 10 is controlled by controlling the flow of hydraulic fluid that travels between the piston side chamber 24, 224 and the rod side chamber 25, 225 as the fluid pressure cylinder (the hydraulic cylinder 20, the hydraulic damper 220) expands and contracts. , 210 can easily be changed.
 また、緩衝部10は、ピストン側室24に接続されるアキュムレータ40をさらに有する。 The buffer unit 10 further includes an accumulator 40 connected to the piston side chamber 24.
 この構成では、ピストン側室24にアキュムレータ40が接続されることで、ピストン側室24は、アキュムレータ40とともに流体ばねとして機能する。このため、油圧シリンダ20をフレーム2とキャビン6との間に設けるだけで、フレーム2及びキャビン6の振動を油圧シリンダ20により減衰ないし吸収することが可能となる。この結果、キャビン制振システム100をコンパクト化することができる。 In this configuration, the piston side chamber 24 functions as a fluid spring together with the accumulator 40 by the accumulator 40 being connected to the piston side chamber 24. Therefore, the vibration of the frame 2 and the cabin 6 can be damped or absorbed by the hydraulic cylinder 20 simply by providing the hydraulic cylinder 20 between the frame 2 and the cabin 6. As a result, the cabin damping system 100 can be made compact.
 また、緩衝部210は、フレーム2とキャビン6との間に圧縮された状態で介装されるコイルスプリング240をさらに有する。 The buffer unit 210 further includes a coil spring 240 interposed in a compressed state between the frame 2 and the cabin 6.
 この構成では、フレーム2とキャビン6との間に設けられる油圧ダンパ220とコイルスプリング240とによってフレーム2及びキャビン6の振動が減衰ないし吸収される。このように、キャビン制振システム300では、従来から緩衝装置として用いられているダンパやスプリングがキャビン6の制振に用いられているため、キャビン制振システム300の製造コストを低減させることができる。 In this configuration, the vibration of the frame 2 and the cabin 6 is damped or absorbed by the hydraulic damper 220 and the coil spring 240 provided between the frame 2 and the cabin 6. Thus, in the cabin damping system 300, since the damper and spring conventionally used as a shock absorbing device are used for damping of the cabin 6, the manufacturing cost of the cabin damping system 300 can be reduced. .
 また、緩衝部110は、一端がフレーム2に連結され内部に作動油が封入されるシリンダチューブ121と、シリンダチューブ121内に摺動自在に配置されシリンダチューブ121内をピストン側室124及びロッド側室125とに区画するピストン22と、ピストン22に一端が結合され他端がキャビン6に連結されるピストンロッド123と、を有する油圧シリンダ120と、油圧シリンダ120に接続通路42を通じて接続されるアキュムレータ40と、接続通路42を流れる作動油に抵抗を付与する減衰力切換弁130と、を有し、制御装置60は、減衰力切換弁130を制御し作動油に付与される抵抗を変化させることにより緩衝部110が生じる減衰力の大きさを調整する。 The buffer portion 110 has a cylinder tube 121 having one end connected to the frame 2 and a hydraulic oil sealed therein, and a piston side chamber 124 and a rod side chamber 125 which are slidably disposed in the cylinder tube 121. A hydraulic cylinder 120 having a piston 22 defining at one end and a piston rod 123 having one end coupled to the piston 22 and the other end coupled to the cabin 6, and an accumulator 40 connected to the hydraulic cylinder 120 through a connecting passage 42 The damping force switching valve 130 applies resistance to the hydraulic fluid flowing through the connection passage 42, and the controller 60 controls the damping force switching valve 130 to buffer by changing the resistance applied to the hydraulic fluid. The magnitude of the damping force generated by the part 110 is adjusted.
 この構成では、緩衝部110が生じる減衰力の大きさは、油圧シリンダ120とアキュムレータ40とを連通する接続通路42を流れる作動油に付与される抵抗を変化させることで変更される。このように、油圧シリンダ120の伸縮に伴って接続通路42を行き来する作動油の流れを制御することで緩衝部110が生じる減衰力の大きさを容易に変更させることができる。 In this configuration, the magnitude of the damping force generated by the buffer portion 110 is changed by changing the resistance applied to the hydraulic fluid flowing through the connection passage 42 communicating the hydraulic cylinder 120 and the accumulator 40. Thus, the magnitude of the damping force generated by the buffer portion 110 can be easily changed by controlling the flow of the hydraulic fluid flowing back and forth in the connection passage 42 as the hydraulic cylinder 120 expands and contracts.
 また、キャビン制振システム100,200は、フレーム2とキャビン6との相対距離を検出するストロークセンサ64と、ピストン側室24,124に対して作動油を給排することによりフレーム2とキャビン6との相対距離を調整可能なキャビン高さ調整部50と、をさらに備え、制御装置60は、ストロークセンサ64により検出された相対距離が所定の大きさとなるように、キャビン高さ調整部50を制御し、フレーム2とキャビン6との相対距離を調整する。 In addition, cabin damping system 100, 200 is provided with a stroke sensor 64 for detecting the relative distance between frame 2 and cabin 6, and by supplying and discharging hydraulic oil to piston side chambers 24, 124, frame 2 and cabin 6 And the control device 60 controls the cabin height adjustment unit 50 such that the relative distance detected by the stroke sensor 64 becomes a predetermined size. And adjust the relative distance between the frame 2 and the cabin 6.
 この構成では、ピストン側室24,124に対して作動油を給排することによりフレーム2とキャビン6との相対距離を調整し、キャビン6の高さを所望の高さとすることが可能である。このため、キャビン6における視界の確保が容易になりトラクタ1の作業性を向上させることができる。 In this configuration, it is possible to adjust the relative distance between the frame 2 and the cabin 6 by supplying and discharging the working oil to the piston side chambers 24 and 124, and to set the height of the cabin 6 to a desired height. For this reason, ensuring of the field of vision in cabin 6 becomes easy, and the workability of tractor 1 can be improved.
 また、キャビン制振システム100,200は、フレーム2の傾斜を検出する傾斜センサ66をさらに備え、制御装置60は、傾斜センサ66により検出された傾斜に応じてキャビン高さ調整部50を制御し、フレーム2とキャビン6との相対距離を調整する。 In addition, cabin damping system 100, 200 further includes a tilt sensor 66 that detects the tilt of frame 2, and control device 60 controls cabin height adjustment unit 50 according to the tilt detected by tilt sensor 66. , Adjust the relative distance between the frame 2 and the cabin 6.
 この構成では、フレーム2の傾斜に応じてフレーム2とキャビン6との相対距離が調整される。このため、走行路面の傾斜に関わらず、キャビン6を水平な状態に維持することが可能となりトラクタ1の作業性を向上させることができる。 In this configuration, the relative distance between the frame 2 and the cabin 6 is adjusted according to the inclination of the frame 2. For this reason, regardless of the inclination of the traveling road surface, the cabin 6 can be maintained in the horizontal state, and the workability of the tractor 1 can be improved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.
 本願は2017年9月8日に日本国特許庁に出願された特願2017-173509に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2017-173509 filed on September 8, 2017, to the Japan Patent Office, and the entire contents of this application are incorporated herein by reference.

Claims (9)

  1.  作業車両のキャビンの振動を抑制するキャビン制振システムであって、
     前記作業車両のフレームと前記キャビンとの間に設けられ、前記振動を減衰する減衰力を変更自在な緩衝部と、
     少なくとも前記振動の方向における前記キャビンの加速度を検出する加速度検出部と、
     前記加速度検出部で検出された前記キャビンの前記加速度及び前記キャビンの共振周波数に基づいて、前記緩衝部が生じる前記減衰力の大きさを制御する制御部と、を備える作業車両のキャビン制振システム。
    A cabin damping system for suppressing vibration of a cabin of a work vehicle,
    A buffer provided between the frame of the work vehicle and the cabin, wherein the damping force capable of damping the vibration can be changed;
    An acceleration detection unit for detecting an acceleration of the cabin at least in the direction of the vibration;
    A control unit configured to control a magnitude of the damping force generated by the buffer unit based on the acceleration of the cabin detected by the acceleration detection unit and a resonant frequency of the cabin; .
  2.  請求項1に記載の作業車両のキャビン制振システムであって、
     前記制御部は、前記加速度検出部によって検出された前記加速度から前記キャビンの共振周波数におけるパワースペクトル密度を算出し、
     前記パワースペクトル密度が所定値以上のとき、または、前記パワースペクトル密度が高くなるにつれて、前記緩衝部が生じる前記減衰力の大きさを大きくする作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 1,
    The control unit calculates a power spectral density at a resonance frequency of the cabin from the acceleration detected by the acceleration detection unit,
    A cabin damping system for a working vehicle, wherein the magnitude of the damping force generated by the buffer unit is increased when the power spectral density is equal to or higher than a predetermined value, or as the power spectral density increases.
  3.  請求項1に記載の作業車両のキャビン制振システムであって、
     前記制御部は、前記加速度検出部によって検出された前記加速度に基づいて前記キャビンの共振周波数を中心周波数としたオクターブバンドの実効値を算出し、
     前記オクターブバンドの前記実効値が所定値以上のときに、または、前記オクターブバンドの前記実効値が大きくなるにつれて、前記緩衝部が生じる前記減衰力の大きさを大きくする作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 1,
    The control unit calculates an effective value of an octave band centering on a resonance frequency of the cabin based on the acceleration detected by the acceleration detection unit,
    A cabin damping system for a working vehicle, in which the magnitude of the damping force generated by the buffer unit is increased when the effective value of the octave band is equal to or greater than a predetermined value, or as the effective value of the octave band increases. .
  4.  請求項1に記載の作業車両のキャビン制振システムであって、
     前記緩衝部は、
     一端が前記フレームに連結され内部に作動流体が封入されるシリンダチューブと、前記シリンダチューブ内に摺動自在に配置され前記シリンダチューブ内を第一流体室及び第二流体室に区画するピストンと、前記ピストンに一端が結合され他端が前記キャビンに連結されるピストンロッドと、前記第一流体室と前記第二流体室とを連通する連通路と、を有する流体圧シリンダと、
     前記連通路を流れる作動流体に抵抗を付与する減衰力切換弁と、を有し、
     前記制御部は、前記減衰力切換弁を制御し作動流体に付与される前記抵抗を変化させることにより前記緩衝部が生じる前記減衰力の大きさを調整する作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 1,
    The buffer unit is
    A cylinder tube, one end of which is connected to the frame and in which the working fluid is enclosed, a piston slidably disposed in the cylinder tube and partitioning the inside of the cylinder tube into a first fluid chamber and a second fluid chamber; A fluid pressure cylinder having a piston rod having one end coupled to the piston and the other end coupled to the cabin, and a communication passage communicating the first fluid chamber and the second fluid chamber;
    And a damping force switching valve that applies resistance to the working fluid flowing through the communication passage,
    The cabin damping system for a working vehicle, wherein the control unit adjusts the magnitude of the damping force generated by the buffer unit by controlling the damping force switching valve and changing the resistance applied to the working fluid.
  5.  請求項4に記載の作業車両のキャビン制振システムであって、
     前記緩衝部は、前記第一流体室に接続されるアキュムレータをさらに有する作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 4,
    The cabin damping system for a working vehicle, wherein the buffer unit further includes an accumulator connected to the first fluid chamber.
  6.  請求項4に記載の作業車両のキャビン制振システムであって、
     前記緩衝部は、前記フレームと前記キャビンとの間に圧縮された状態で介装される弾性部材をさらに有する作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 4,
    The cabin damping system of a working vehicle, wherein the buffer unit further includes an elastic member interposed in a compressed state between the frame and the cabin.
  7.  請求項1に記載の作業車両のキャビン制振システムであって、
     前記緩衝部は、
     一端が前記フレームに連結され内部に作動流体が封入されるシリンダチューブと、前記シリンダチューブ内に摺動自在に配置され前記シリンダチューブ内を第一流体室と第二流体室とに区画するピストンと、前記ピストンに一端が結合され他端が前記キャビンに連結されるピストンロッドと、を有する流体圧シリンダと、
     前記流体圧シリンダに接続通路を通じて接続されるアキュムレータと、
     前記接続通路を流れる作動流体に抵抗を付与する減衰力切換弁と、を有し、
     前記制御部は、前記減衰力切換弁を制御し作動流体に付与される前記抵抗を変化させることにより前記緩衝部が生じる前記減衰力の大きさを調整する作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 1,
    The buffer unit is
    A cylinder tube having one end connected to the frame and a working fluid sealed therein; and a piston slidably disposed in the cylinder tube for partitioning the inside of the cylinder tube into a first fluid chamber and a second fluid chamber; A fluid pressure cylinder having a piston rod having one end coupled to the piston and the other end coupled to the cabin;
    An accumulator connected to the fluid pressure cylinder through a connection passage;
    And a damping force switching valve that applies resistance to the working fluid flowing through the connection passage,
    The cabin damping system for a working vehicle, wherein the control unit adjusts the magnitude of the damping force generated by the buffer unit by controlling the damping force switching valve and changing the resistance applied to the working fluid.
  8.  請求項4に記載の作業車両のキャビン制振システムであって、
     前記フレームと前記キャビンとの相対距離を検出する距離検出部と、
     前記第一流体室に対して作動流体を給排することにより前記フレームと前記キャビンとの相対距離を調整可能なキャビン高さ調整部と、をさらに備え、
     前記制御部は、前記距離検出部により検出された前記相対距離が所定の大きさとなるように、前記キャビン高さ調整部を制御し、前記フレームと前記キャビンとの相対距離を調整する作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 4,
    A distance detection unit that detects a relative distance between the frame and the cabin;
    And a cabin height adjusting unit capable of adjusting a relative distance between the frame and the cabin by supplying and discharging a working fluid to and from the first fluid chamber,
    The control unit controls the cabin height adjustment unit such that the relative distance detected by the distance detection unit becomes a predetermined size, and adjusts the relative distance between the frame and the cabin. Cabin damping system.
  9.  請求項8に記載の作業車両のキャビン制振システムであって、
     前記フレームの傾斜を検出する傾斜検出部をさらに備え、
     前記制御部は、前記傾斜検出部により検出された前記傾斜に応じて前記キャビン高さ調整部を制御し、前記フレームと前記キャビンとの相対距離を調整する作業車両のキャビン制振システム。
    It is a cabin damping system of the work vehicle according to claim 8,
    The apparatus further comprises an inclination detection unit that detects the inclination of the frame,
    A cabin damping system for a working vehicle, wherein the control unit controls the cabin height adjustment unit according to the inclination detected by the inclination detection unit, and adjusts a relative distance between the frame and the cabin.
PCT/JP2018/018603 2017-09-08 2018-05-14 Cabin vibration damping system for work vehicle WO2019049427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-173509 2017-09-08
JP2017173509A JP2019048546A (en) 2017-09-08 2017-09-08 Cabin vibration control system for work vehicle

Publications (1)

Publication Number Publication Date
WO2019049427A1 true WO2019049427A1 (en) 2019-03-14

Family

ID=65634871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018603 WO2019049427A1 (en) 2017-09-08 2018-05-14 Cabin vibration damping system for work vehicle

Country Status (2)

Country Link
JP (1) JP2019048546A (en)
WO (1) WO2019049427A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109534A1 (en) * 2019-04-11 2020-10-15 Man Truck & Bus Se Device for mounting a driver's cab of a motor vehicle
CN115143225A (en) * 2022-06-29 2022-10-04 中国矿业大学 Pneumatic vibration damper for eliminating static friction of mobile platform
WO2023098725A1 (en) * 2021-11-30 2023-06-08 江苏徐工国重实验室科技有限公司 Suspension system, engineering vehicle, and suspension system control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068718A (en) * 1992-06-29 1994-01-18 Nissan Motor Co Ltd Suspension controller
JPH11180337A (en) * 1997-12-18 1999-07-06 Isuzu Motors Ltd Attitude control device for cab of tractor head
JP2004069480A (en) * 2002-08-06 2004-03-04 Mitsubishi Electric Corp Oscillation characteristic method and its apparatus
JP2007276497A (en) * 2004-08-12 2007-10-25 Komatsu Ltd Cab-mount control device, cab-mount control method, and construction machine
JP2008087590A (en) * 2006-09-29 2008-04-17 Yokohama Rubber Co Ltd:The Vehicle body supporting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068718A (en) * 1992-06-29 1994-01-18 Nissan Motor Co Ltd Suspension controller
JPH11180337A (en) * 1997-12-18 1999-07-06 Isuzu Motors Ltd Attitude control device for cab of tractor head
JP2004069480A (en) * 2002-08-06 2004-03-04 Mitsubishi Electric Corp Oscillation characteristic method and its apparatus
JP2007276497A (en) * 2004-08-12 2007-10-25 Komatsu Ltd Cab-mount control device, cab-mount control method, and construction machine
JP2008087590A (en) * 2006-09-29 2008-04-17 Yokohama Rubber Co Ltd:The Vehicle body supporting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019109534A1 (en) * 2019-04-11 2020-10-15 Man Truck & Bus Se Device for mounting a driver's cab of a motor vehicle
WO2023098725A1 (en) * 2021-11-30 2023-06-08 江苏徐工国重实验室科技有限公司 Suspension system, engineering vehicle, and suspension system control method
CN115143225A (en) * 2022-06-29 2022-10-04 中国矿业大学 Pneumatic vibration damper for eliminating static friction of mobile platform

Also Published As

Publication number Publication date
JP2019048546A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US9580115B2 (en) Vehicle seat or vehicle cab with a suspension system, and utility vehicle
US9937832B2 (en) Vehicle seat or vehicle cabin having a suspension apparatus and utility vehicle
US9625000B2 (en) Spring-damper system for use in bearings or as a damper
WO2019049427A1 (en) Cabin vibration damping system for work vehicle
US7766343B2 (en) Hydraulic spring support system
US20020121416A1 (en) Hydraulic cylinder apparatus
JP5847696B2 (en) Height adjustment device for motorcycles
JP2007523298A (en) Electronically controlled frequency dependent damper
CN105235552B (en) The method of vehicle suspension system and suspension installation vehicle part
KR20120032783A (en) Body amplitude sensitive air spring
KR102090848B1 (en) Vehicle provided with shock absorber
JPH06305473A (en) Shock absorbing device
JP6361414B2 (en) Vehicle suspension system
JP2002127727A (en) Suspension device
JP2015102101A (en) Buffering device
JP6305102B2 (en) Fluid pressure buffer
KR20140134423A (en) Damping force variable shock absorber having additional valve installed inside rod guide
JP4403851B2 (en) Vehicle suspension system
JP4356544B2 (en) shock absorber
CN113490800B (en) Shock absorber with frequency dependent load by means of hydraulic inertia
KR20180054803A (en) Vibration damper, method of operating vibration damper, control device, and vehicle
KR102512551B1 (en) Multimode extreme travel suspension - car with suspension hydraulic design
KR100242933B1 (en) Establishing structure of shock absorber using electric field in automobile
JP2000097277A (en) Variable damping force damper
KR102486887B1 (en) Hydraulic actuator and active suspension apparatus for vehicle having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853101

Country of ref document: EP

Kind code of ref document: A1