WO2019049412A1 - Contact detection device - Google Patents

Contact detection device Download PDF

Info

Publication number
WO2019049412A1
WO2019049412A1 PCT/JP2018/015215 JP2018015215W WO2019049412A1 WO 2019049412 A1 WO2019049412 A1 WO 2019049412A1 JP 2018015215 W JP2018015215 W JP 2018015215W WO 2019049412 A1 WO2019049412 A1 WO 2019049412A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
volume space
output
foam
sen
Prior art date
Application number
PCT/JP2018/015215
Other languages
French (fr)
Japanese (ja)
Inventor
大介 森
Original Assignee
株式会社三重ロボット外装技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三重ロボット外装技術研究所 filed Critical 株式会社三重ロボット外装技術研究所
Publication of WO2019049412A1 publication Critical patent/WO2019049412A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/02Measuring force or stress, in general by hydraulic or pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/08Means for indicating or recording, e.g. for remote indication
    • G01L19/12Alarms or signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch

Definitions

  • the present invention comprises a base material formed into a specific shape and a foam cut out from the specific shape with a foamed synthetic resin, and a volume space is formed on one side or both sides between the base material and the foam.
  • the present invention relates to a contact detection device that detects a change in physical quantity of its volume space by a sensor, and in particular, molding or scraping a specific shape with a foamed synthetic resin, or leaks the inner surface of the volume space
  • the present invention relates to a two-dimensional and three-dimensional touch detection device that can detect any position when it is touched.
  • a conventional molding method of a foamed synthetic resin molded body and a foamed synthetic resin molded body there is a method of using a foamed polystyrene obtained by foaming and curing polystyrene with fine bubbles, and applying a paint on the surface thereof.
  • a foamed polystyrene obtained by foaming and curing polystyrene with fine bubbles for example, there is a method of applying a woodworking bond to expanded polystyrene and applying a spray when the woodworking bond hardens.
  • a method of mixing a pigment in an aqueous bond and directly applying it to expanded polystyrene.
  • the molding method of the foamed synthetic resin which cuts the foamed synthetic resin material into a specific shape directly and the molded body do not exist, but the technology of the interior part with the foamed layer is disclosed in Patent Document 1 doing. That is, in the interior part with the foam layer, the skin material is thermoplastic in Patent Document 1 in which the skin material with the foam layer is adsorbed to the substrate by vacuum suction from the air intake path formed dispersed in the substrate and adhered.
  • the skin material has a configuration in which the surface shape is shaped by vacuum suction using a vacuum suction type for skin material when the skin material is softened by heat treatment and adhered to the substrate in that state.
  • Patent Document 1 does not disclose how it can be applied to a thick foam layer. In principle, it would be difficult to cut the foamed synthetic resin material into a specific shape to form the foamed synthetic resin.
  • Patent Document 2 a tatami mat is laminated on one side of a core made of a foamed synthetic resin material, a functional agent-containing cushion sheet is laminated on the other side, and a non-slip layer is partially laminated on the cushion sheet.
  • a technology that is thin and light, excellent in construction, and difficult to slip.
  • JP 2005-125736 A JP, 2010-236220, A JP, 2014-156523, A JP 2014-188391 Japanese Patent Application No. 2016-180110
  • the thickness depends on the thickness of the remaining foamable synthetic resin, but efficient molding can not be performed without a skilled person.
  • the weight balance of the foamed synthetic resin molded product has a subtle difference, and depending on the use, the weight balance may need to be adjusted.
  • the prior art documents 3 and 4 solve the above-mentioned problems and use a foamed synthetic resin material as a base material, cut out a specific shape, and increase the thickness of the coated surface as a molded article rich in elasticity. Without it, a good-looking, inexpensive foamed synthetic resin molded body is obtained.
  • the patent document 3 and the patent document 4 use a contact sensor, there is a need to apply a metal electrode, a conductive paint, etc. on the surface, and the use was restricted to the thing whose conductor is a conductor.
  • the pressure-sensitive switch when a commercially available pressure-sensitive switch is used, the pressure-sensitive switch itself at the portion receiving pressure is activated, but the pressure can not be detected at a portion where no other pressure-sensitive switch is provided. Further, the pressure sensitive switch can not be formed three-dimensionally because the insulating substrate (sheet) can not be freely deformed.
  • mass-produced popular sensors such as contact sensors and pressure-sensitive switches are inexpensive, sensors that are not mass-produced are expensive. For example, pressure sensors or the like using capacitance changes or strain gauges are inexpensively supplied.
  • the present inventors invented the contact detection device disclosed in Patent Document 5. That is, a base material formed in a specific shape, a foam formed by forming a sheet of foamed synthetic resin material or foamed rubber material for covering the base material in a specific shape, the base material opposed to the base material, and A space maintaining member having a predetermined volume formed on one side of the foam, an open cell structure disposed in the volume, and compressed air of the space and the space maintaining member And a sensor for detecting the amount of physical change of the volume space and the space maintenance material formed by the reinforcing layer and the reinforcing layer forming the volume space that makes it difficult for the base material and / or the foam to leak to the outside air.
  • the present invention is directed to a sensor signal output circuit in which a sensor for detecting a physical change in a volume space detects a physical change and a sensor for detecting a next physical change. It is an object of the present invention to provide a contact detection device capable of determining normality / abnormality of itself by a sensor abnormality determination circuit.
  • the contact detection device comprises a foam having a shape for covering a substrate formed in a specific shape, the opposite substrate, a predetermined volume space formed in the foam, and the volume.
  • a sensor for detecting an external pressing force applied to the space as a physical change amount of the volume space formed by the volume space, and a sensor output detected by the sensor are externally applied to the volume space
  • a sensor signal output circuit that detects a pressing force of the sensor as a physical change amount of the volume space and compares the threshold value with a plurality of threshold values to obtain a binary signal of normality / abnormality as the signal detection output; Immediately after the change of the binary signal from the abnormal state of the sensor output to the steady state, it is processed by the sensor abnormality judging circuit which judges normality / abnormality of the sensor itself within a predetermined time period at a predetermined threshold or less. .
  • the base material formed into the above specific shape is, for example, one formed by forming one or more thermoplastic resin materials or a thermoplastic resin material obtained by laminating and bonding two or more sheets into a specific shape, or one or more sheets
  • the thermoplastic resin material of the present invention may be a solid type resin or a foam, as long as it has a hardness such that a volume change of the volume space appears.
  • the foamed synthetic resin material used as the foam may be either a closed cell in which the existing internal cells are not connected or an open cell in which the existing internal cells are connected. In any case, the air in the volume space may be formed so as not to leak to the outside air.
  • the foam is formed into a specific shape by covering the base material with one or more sheets of foam synthetic resin material laminated and bonded.
  • the foam is configured to cover the foam from the outside.
  • the base material is, for example, coated on a self-propelled automatic production apparatus such as a robot, and the foam is provided on the base material to make it fail safe.
  • the said volume space may form a reinforcement layer in the one side or both sides between the said base material and the said foam.
  • the reinforcing layer makes it difficult for air to leak from the base and / or the foam to the outside air. For that purpose, air is made difficult to pass through by the reinforcing layer.
  • a skin layer cooled by a mold formed by an injection mold or a film formed of another material for reducing air leakage is also one of the reinforcing layers. It is desirable to provide a reinforcing layer so that when the air in the volume space is compressed by external pressure (external pressure), part of the compressed air does not leak out of the volume space.
  • the reinforcing layer some of a filler, a filler, a primer, an overcoat, and a finish can be selected.
  • the skin layer formed by the mold for forming the foam is formed in a specific shape in which one sheet of foam synthetic resin material or foam rubber material for covering the substrate, or plural sheets are laminated and bonded. It can also be a foam.
  • the formation of the reinforcing layer described above may be two-dimensional surface or three-dimensional (three-dimensional) processing.
  • the three-dimensional reinforcing layer enables strength and densification of the volume, rather than the strength of the reinforcing layer alone.
  • the reinforcement may be a synthetic resin sheet.
  • the volume space in which the air does not easily leak does not mean that the air does not leak at all, but it means that even if the air leaks, it does not reach the extent to which the characteristics of the sensor are changed.
  • the reinforcing layer is not limited to the one having no air leak at all, but may have some leak. Also, a completely leak free one may be manufactured and a leak path of a specific diameter may be formed there. In the present invention, in particular, the characteristics of the external pressure applied to the volume and its recovery are necessary.
  • a physical variable such as a change in contact pressure, air pressure, pressure, etc. is used as a change in strain or capacitance. It measures the amount of physical change detected as air pressure, air flow, air flow velocity, change in air volume, and the like.
  • a commercially available micro flow sensor D6F-V03A1; made by OMRON
  • MEMS flow sensor MEMS air volume sensor
  • flow velocity sensor flow velocity sensor
  • any commercially available sensor called “MEMS flow sensor”, “MEMS air volume sensor”, “flow velocity sensor” or the like can be used, but the present invention
  • the authors used D6F-V03A1 (manufactured by OMRON) because miniaturization was necessary.
  • OMRON products products from Keyence Co., Ltd., Aichi Watch Electric Co., Ltd., Yamatake Co., Ltd. and ASK Co., Ltd. were also implemented as commercially available flow sensors, but in principle, any of them can be implemented. Was confirmed.
  • the sensor signal output circuit detects an external pressing force applied to the volume space as a physical change amount of the volume space as air pressure, air flow, air flow velocity, air volume change, etc. Specifically, an external pressing force applied to the volume space is detected as a physical change amount of the volume space, and compared with a plurality of threshold values as a signal detection output thereof. It is a circuit that obtains a normal / abnormal binary signal. Further, the sensor abnormality judging circuit judges the characteristics within a predetermined time period at a predetermined threshold value or less immediately after the change of the binary signal returning from the abnormal state to the steady state.
  • Judgment of the curve of the quadratic function in the recovery characteristic in which the transient phenomenon of the sensor is occurring in the characteristic within a predetermined time period immediately after the change of the binary signal returning from the abnormal state to the steady state may be used after entering a steady monitoring state in a time longer than a design time. That is, the sensor abnormality judging circuit detects a quadratic function curve within a time limit equal to or less than a predetermined threshold immediately after the change of the binary signal from the abnormal state of the sensor output of the sensor signal output circuit to the steady state.
  • a circuit is provided which determines whether the sensor itself is normal or abnormal based on an elapsed time with respect to a predetermined threshold value or the like.
  • the sensor output is input to an AD conversion circuit attached to the microprocessor for signal processing, and the output is digitally processed and output from the microprocessor. That is, the sensor for detecting a physical change in the volume space, the pressing force from the outside becomes the first threshold value TH1 or more, and the sensor output by the state continues X 1 hour, also becomes less than the first threshold value TH1 When the state continues for Y 1 hour, the sensor output is ended, and the pressure from the outside becomes equal to or greater than the second threshold TH2 (TH1 ⁇ TH2) larger than the first threshold TH1, and the state is X The sensor output is obtained by continuing for 2 hours, and the sensor output becomes smaller than the second threshold TH2, and the sensor output is detected when the state continues for Y 2 hours.
  • the sensor output is obtained by continuing for 2 hours, and the sensor output becomes smaller than the second threshold TH2, and the sensor output is detected when the state continues for Y 2 hours.
  • the first threshold TH1 1 [V]
  • the second threshold TH2 2.5 [V]
  • the monitoring time limit X 1 , time limit Y 1 , time limit Z 1 , monitoring time limit X 2 , time limit Y 2 , time limit Z 2 is also one or more “0” is set “0” or more Is used.
  • the sensor output detected by the sensor detects the external pressing force applied to the volume space as the amount of physical change of the volume space, compares it with a plurality of threshold values, and detects it normally as the signal detection output.
  • a sensor signal output circuit for obtaining an abnormal binary signal, and immediately after a change of the binary signal returning from the abnormal state of the sensor output of the sensor signal output circuit to the steady state, within a predetermined time limit, at a predetermined threshold or less.
  • a sensor abnormality discrimination circuit for discriminating whether the sensor itself is normal or abnormal is mounted.
  • the sensor abnormality determination circuit may return to a steady state the detection signal of the sensor as the ground potential.
  • the normality / abnormality of the sensor itself is determined based on the characteristic of the next function. As a result, if it is possible to enter the operation of the sensor signal output circuit through the quadratic function characteristic, it is judged as normal.
  • the contact detection device comprises a substrate formed in a specific shape facing each other, a specific volume space for covering a substrate formed in a specific shape, and an exterior added to the volume space.
  • a sensor for detecting the pressure from the body as a physical variation formed in the volume space, and the sensor signal output circuit is configured to physically apply the pressure from the outside applied to the volume space to the physical space of the volume space. The amount of change is detected by the sensor.
  • the sensor abnormality judging circuit is for judging the normality / abnormality of the sensor itself based on the sensor output within a predetermined time period from the detection time point of the ground potential of the sensor signal output circuit. In the present embodiment, the ground potential is used as the threshold, but another threshold may be used.
  • a sensor detects the amount of physical change, and the time limit of the sensor output is used as a detected output.
  • compressed air in the leak-proof volume volume gets a physical change in the sensor due to the pressure applied to the substrate and one or both sides of the foam.
  • the amount of physical change is detected as air pressure, air flow, air flow rate, change in air volume, or the like.
  • the pressure applied to a wide range is detected. Even if it is a two-dimensional planar configuration, it can be applied even if it is a three-dimensional three-dimensional configuration, it is possible to detect an external pressure above a predetermined level.
  • a sensor that detects a physical change in the volume space detects an external pressing force applied to the volume space of the sensor signal output circuit by the sensor as a physical change amount of the volume space. It is detected as a contact pressure or the like applied to the normal volume space.
  • the sensor abnormality discrimination circuit discriminates normality / abnormality of the sensor itself based on the sensor output within a predetermined time immediately after detection of the sensor output of the sensor signal output circuit, the operation of the sensor signal output circuit At the end of the test, the sensor malfunction discrimination circuit clearly guarantees that the sensor is not malfunctioning.
  • the sensor output for detecting the amount of physical change of the volume space is an external force which is gradually applied with the passage of time, that is, an external force which gently rises or falls and an external force which is rapidly applied in a short time. Can be distinguished and monitored, and contact can be determined in a short time. That is, the sensor for detecting the physical change of the volume space according to the present invention detects the physical change, and the sensor signal output circuit for detecting the physical change next time
  • the present invention can be provided as a contact detection device that can be determined by a circuit, and in particular, it can be determined whether an air flow sensor abnormality has not occurred at a timing immediately before contact which does not know when it occurs next time.
  • the sensor abnormality judging circuit is a sensor until the sensor signal output circuit returns to the steady state with the detection signal of the sensor as the ground potential when the sensor signal output circuit returns to the steady state for detecting an external pressure applied to the volume space.
  • the normality / abnormality of the sensor itself is determined based on the output characteristics of the sensor. Therefore, every time the sensor signal output circuit operates, the normality / abnormality of the sensor is confirmed, and in particular, if the sensor abnormality discrimination circuit does not operate before the next operation, it operates safely next time. means.
  • the sensor signal output circuit returns to a steady state for detecting an external pressing force applied to the volume space, based on a quadratic function characteristic until the sensor detection signal is returned to the steady state with the ground potential.
  • FIG. 1 is an exemplary perspective view of a substrate formed in a specific shape of a touch detection device according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view of a state in which foams of the contact detection device according to the embodiment of the present invention are laminated and bonded.
  • FIG. 3 is an explanatory view of a cross section of the contact detection device according to the embodiment of the present invention in a state where the base material and the foam are attached.
  • FIG. 4 is a cross-sectional explanatory view for explaining the structure of the touch detection device in the embodiment of the present invention.
  • FIG. 5 is an explanatory view of another example of the space maintenance material used in the touch detection device in the embodiment of the present invention.
  • FIG. 6 is an overall perspective view of a doll robot to which the touch detection device according to the embodiment of the present invention is attached.
  • FIG. 7 is an overall perspective view of the chest of the doll robot to which the touch detection device according to the embodiment of the present invention is attached.
  • FIG. 8 is a perspective view of an essential part in which the contact detection device in the embodiment of the present invention is disposed inside the chest of the doll robot.
  • FIG. 9 is a perspective view of an essential part of the touch detection device according to the embodiment of the present invention when the outside of the chest of the doll robot is pressed.
  • FIG. 10 is an entire circuit diagram of a sensor signal output circuit and a sensor malfunction discrimination circuit used in the contact detection device according to the embodiment of the present invention.
  • FIG. 10 is an entire circuit diagram of a sensor signal output circuit and a sensor malfunction discrimination circuit used in the contact detection device according to the embodiment of the present invention.
  • FIG. 11 is a timing chart in which sequential contact states used in the touch detection device according to the embodiment of the present invention increase.
  • FIG. 12 is a timing chart in the case where there is an external force application used in the contact detection device according to the embodiment of the present invention.
  • FIG. 13 is a timing chart of a general touch state used in the touch detection device according to the embodiment of the present invention.
  • FIG. 14 is a flowchart of control of the touch detection device according to the embodiment of the present invention.
  • a substrate 1 used in the contact detection device is a protector used for a doll (human) robot 50.
  • the substrate 1 is made of, for example, a solid type or foamable thermoplastic resin material. Before cutting this base material 1, it is formed in a bowl shape with the size of the flange part 2 secured for bonding. That is, when the outer surface 1A of the base material 1 is made of the opposing foam 10, the volume space 4 in which the cutting process is performed is formed only on one side. Of course, machining of the volume space 4 can be performed on only one of the substrate 1 or the foam 10 side, or both of the substrate 1 and the foam 10.
  • the flange portion 2 of the outer surface 1A of the base 1 and the inner surface 10B of the foam 10 are bonded with an adhesive or a double-sided tape. Or you may join according to joining of the opening of the base material 1, and the opening of the foam body 10.
  • the base material 1 is a synthetic resin material formed in a specific shape, but in the case of practicing the present invention, a solid type synthetic resin is used as an aluminum plate, stainless steel plate, iron plate, copper plate, etc. It can also be formed as a foamed synthetic resin material.
  • the outer surface 1A forms the volume space 4 in which the cutting process is performed on only one side, but in the case of practicing the present invention, the foam 10 side may be cut. Alternatively, both sides of the substrate 1 and the foam 10 may be cut. In any case, the volume space 4 may be formed on one side or both sides of the opposing base 1 and the foam 10.
  • the thickness of the volume space 4 is usually about 3 to 15 mm.
  • the volume space 4 formed between the substrate 1 and the foam 10 is a space in which the volume space 4 itself is closed. Therefore, when a pressure is applied to the foam 10 from the outside, a recess is generated in response to the applied pressure, a volume change of the volume space 4 occurs, and a pressure change occurs. Since the volume change of the volume space 4 becomes air pressure and enters the sensor SEN, the sensor SEN becomes a detection of the pressure applied to the foam 10.
  • a commercially available micro flow sensor (D6F-V03A1; manufactured by OMRON) is used as the sensor SEN, it is necessary to form a flow of wind in the sensor SEN. Therefore, a flow of air is generated from the auxiliary space 20 to the outside so that the volume change of the volume space 4 occurs.
  • the restoring force of the volume space 4 causes air to flow in the reverse direction to the sensor SEN.
  • the external force applied to the volume space 4 is not applied by the sensor SEN, it may be described only after the sensor SEN.
  • the foam 10 used in the contact detection device according to the present embodiment is formed of one or more thermoplastic resin materials, or foam synthetic resin materials 11 and 12 as thermoplastic resin materials obtained by laminating and bonding two or more sheets with the adhesive agent 15. , 13 are formed in a specific shape.
  • One or more foam synthetic resin materials 11, 12 and 13 have a hardness that causes a volume change of the volume space 4 to appear in the foam 10.
  • the existing internal bubbles are connected to each other. It may be either a closed cell or an open cell in which the existing internal cells are connected. However, in order to reduce air leakage, it is preferable to use an extremely soft and recoverable closed cell, and the expansion ratio of these foams 10 is about 10 to 50 times.
  • the sponge hardness is preferably in the range of 10 to 50 (JIS-k-6253), and usually, the sponge hardness is more preferably 15 to 45, and changes somewhat depending on the structure.
  • foamed synthetic resin materials 11, 12, which are made of standardized polyethylene of three specific vertical, horizontal and height (1200 ⁇ 900 ⁇ 60 mm), which are commercially available. I used 13.
  • the foamed synthetic resin materials 11, 12 and 13 made of polyethylene are each foam-formed as a single standardized size, and the surface is a skin layer having a high foam density.
  • the vent hole Z is a material of about ⁇ 2 to 10 mm.
  • the surface of the standardized foamed synthetic resin materials 11, 12 and 13 is a skin layer, so a rubber adhesive is applied to the adhesive surfaces of both surfaces thereof. It apply
  • the adhesive 15 is a rubber adhesive.
  • the rubber adhesive (15) may be thinly coated on both sides to which a rubber paste (containing non-toluene can (round powder oil business)) or a bond (GSEN 0 X 7 (Konishi stock)) which is a rubber paste is adhered and dried. Were compressed and bonded.
  • the rubber-based adhesive 15 is a bond (GSEN0X7 (Konishi stock)), and cyclohexane, n-heptane, and acetone are main components.
  • the thickness of the adhesive 15 should be as thin as possible so that its presence can not be visually recognized, and only the adhesive function can be maintained.
  • the adhesive agent 15 which consists of synthetic resins, such as the same polyethylene as the synthetic foam materials 11, 12 and 13 as a base material, can also be used for the rubber paste used here.
  • the substrate 1 is generally coated with a robot such as a doll robot or a housing of various devices formed of an aluminum plate, a stainless steel plate, an iron plate, a copper plate or the like.
  • a synthetic resin although a foamed synthetic resin is also used, it is mainly formed by injection molding or the like. Most of the base material 1 formed by injection molding is made of one block of thermoplastic resin material, but in the contact detection device of the present embodiment, the base material of one block formed by injection molding or the like This will be described in case 1.
  • the base material 1 in which one or more thermoplastic resin materials or foamed synthetic resin materials 11, 12 and 13 in which two or more sheets are laminated and bonded is formed in a specific shape is also one solid type synthetic resin material or plural
  • the basic configuration of the base material 1 formed by forming a sheet of solid type synthetic resin sheet into a specific shape is not different from that of the base structure formed by injection molding or the like.
  • polyurethane PUR
  • polystyrene PS
  • polyolefin mainly polyethylene (PE) and polypropylene (PP)
  • phenol resin PF
  • polychloride Foamed resin such as vinyl (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF)
  • open cells or internal cells in which internal cells are connected to each other It is possible to use a closed cell where there is no connection.
  • a closed cell in which internal cells are not connected.
  • the base material 1 is the same material as the foam 10 and the same treatment as the box-shaped inner frame 6 facing them.
  • the periphery of the substrate 1 is cut to form the outer surface 1A.
  • a box-shaped inner frame 6 described later is formed as a three-dimensional structure.
  • the box-shaped inner frame 6 mentioned later is three-dimensionally comprised also by the outer surface 1A of the base material 1, and the inner surface 1B.
  • a box-shaped inner frame 6 described later may be formed in a two-dimensional configuration also on the outer surface 1A and the inner surface 1B of the base material 1.
  • the box-shaped inner frame 6 is a box formed by injection molding and guides the air pressure to the inlet of the sensor SEN by the stable installation position, and the change in volume of the volumetric space 4 and the change in pressure are accurately transmitted to the sensor SEN It is like that.
  • the fact that the inner frame 6 is in the form of a box with a square frame prevents the inner frame 6 from moving in the horizontal and vertical directions, making it easier to obtain changes in external force.
  • a flat sealing plate (sponge) 8 composed of open cells of a foamed synthetic resin material is disposed on the opening side of the inner frame 6, disposed.
  • the space formed by the inner frame 6 and the flat sealing plate 8 is an auxiliary space 20.
  • the auxiliary space 20 may temporarily absorb a change in volume of the volume 4 or a change in pressure, or may be a completely independent space.
  • the pressure of the volume space 4 changes, but an air flow is formed so that the auxiliary space 20 may be at atmospheric pressure. Therefore, the auxiliary space 20 does not introduce dirty air into the volume space 4 and therefore does not pollute the sensor SEN.
  • the inner frame 6 which becomes a square box shape can carry out metal mold processing of a metal plate or a metal.
  • the auxiliary space 20 is formed by the flat plate sealing plate 8 made of open cells of a foamed synthetic resin material, the air pressed from the volume space 4 flows to the inflow port of the sensor SEN via the guide path 5 . At this time, the substantially air pressure of the auxiliary space 20 maintains the atmospheric pressure. However, at this time, since the auxiliary space 20 is subjected to distortion of the atmospheric pressure and the external pressure, in principle, the auxiliary space 20 is higher than the outside air, so the sensor SEN is transmitted through the flat sealing plate 8 made of an open cell. Can leak air from the inlet of the Further, when the pressing force of the volume space 4 is released, the volume space 4 introduces the insufficient air amount to the outside air via the guide path 5 and the sensor SEN.
  • assistant space 20 formed from the flat sealing plate 8 consists of an open-cell body of foaming synthetic resin material, and it is formed so that it may become equal to atmospheric pressure.
  • the sensor SEN is a pressure sensor
  • the method of use is the same whether it is a commercially available micro flow sensor (D6F-V03A1; manufactured by OMRON) that detects the flow of air. At this time, air must flow from the volume space 4 to the auxiliary space 20.
  • the sensor SEN used here detects the pressure of the volume space 4 formed so that air does not easily leak to the outside air by the reinforcing layer (not shown).
  • the sensor SEN may be any sensor that incorporates a commercially available strain cage, a sensor that detects via a diaphragm, a sensor that uses a piezo effect element, or a capacitive sensor.
  • the sensor SEN used in the present embodiment uses the SMC compact pneumatic pressure sensor PSE 540A.
  • the relationship between the pressure of the input and the output voltage V is approximately proportional and has a good sensitivity.
  • the output of the sensor SEN comprises a total of three lines of two power supply lines and one output signal line OUT. In the present embodiment, it is used as a signal for rapidly stopping the danger of the doll robot 50.
  • the foam 10 is a foamed thermoplastic resin
  • the main synthetic resin raw materials are polyurethane (PUR), polystyrene (PS), polyolefin (mainly polyethylene (PE) and polypropylene (PP)), and others
  • phenol resin (PF), polyvinyl chloride (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF) and the like can be used after foaming.
  • PUR polyurethane
  • PS polystyrene
  • PVC polyvinyl chloride
  • UF urea resin
  • SI silicone
  • PI polyimide
  • MF melamine resin
  • the foaming rate is not limited, there are some which maintain elasticity depending on the use, but are limited in the foaming rate in order to finish hard.
  • a box-shaped inner frame 6 is disposed on the inner surface 1B of the base 1 by bonding using an adhesive.
  • the inner frame 6 joins the sensor SEN having a characteristic in which the output is proportional to the external force, and applies the pressure of the volume space 4 to the inflow port of the guide passage 5 which leads the air from the volume space 4.
  • the auxiliary space 20 is preferably at atmospheric pressure.
  • the output of the sensor SEN is led to an operational amplifier OP or the like built in the microprocessor 30 via a lead wire L, if necessary, via a connector or the like, and the output of the operational amplifier OP is “H (on)”, “L Converted to (off).
  • the detection output of "H” and “L” of the signal detection output AC is judged according to the long and short conditions of the on time or the off time.
  • the output of the microprocessor 30 is described as “H” for normal and “L” for pulse generation to describe negative pulse generation, but in the case of practicing the present invention, the output of the NOT circuit and NAND circuit is Since the result is the same if the configuration is added, the case of signal conversion from “H” to “L” will be described.
  • the doll robot 50 attached with the contact detection device has general-purpose hardware and software installed inside. Moreover, the external appearance of the chest 51 and the shoulder part 52 of the doll robot 50 is shown with the principal part perspective view of FIG.
  • the corner (corner) 55 of FIG. 8 forms a space two-dimensionally or three-dimensionally, and the microprocessor 30 placed at a distance from the sensor SEN may be attached thereto. Also, a battery may be disposed there as needed.
  • a flexible film 56 is bonded on a flat sealing plate 8 (not shown), and constitutes a base material 1 (doll robot 50) and a foam 10 for covering it.
  • the doll robot 50 of the present embodiment inserts the foam synthetic resin material plates 4A, 4B, 4C of open cells not shown inside the chest 51 to secure a volume, and covers the base material 1 (doll robot 50).
  • a volume space 4 is formed between the two foams 10, and air that closes the volume space 4 is not allowed to pass, and pressure is applied only to the sensor SEN.
  • the substrate 1 (doll robot 50) is metal, the sensor SEN is fixed.
  • the lead wire stopper 57 is for wiring the lead wire L.
  • the volume 4 causes a volume change which can be detected by the sensor SEN.
  • the contact of the shoulder portion 52 is not detected, but as shown in FIG. 8, even if it is not provided entirely, it operates when stress (strain) is partially applied. It has been found.
  • a volume space 4 in which air from the base material 1 and the foam 10 is hardly leaked to the outside air is formed, and the output space of the sensor SEN
  • the pressure is applied to any of the base material 1 and the foam 10 by determining whether or not the external force is applied, and the presence of the factor that the volume of the volume space 4 has changed is grasped, and the base material 1 and the foam 10 are It is determined that the human body or the like has come into contact with one side or both sides of the space.
  • the base material 1 formed in a specific shape is made of one foamed synthetic resin material or foamed rubber material, or a foamed synthetic resin material or foamed rubber material obtained by laminating and bonding a plurality of sheets. Alternatively, it can be a part of the doll robot 50 as in the present embodiment. Therefore, since the base material 1 and the foam 10 can be made to the material of the same characteristic, the opposing base material 1 and the foam 10 become the same material, and weight reduction and processing become easy. Also, it is possible to use a non-stretchable sheet, that is, a non-stretch sheet, which can extend the application of the substrate 1.
  • an elastic body is formed by punching or alternately forming a lattice, quadrilateral, scaly pattern, circular polka dots, or checkered pattern with an air-permeable foam synthetic resin material plate on the inner surface thereof.
  • the volume space 4 is formed by punching or forming any of lattice-like, square-like, wrinkle-like, circular water-ball-like, and checkerboard-like shapes with an elastic and air-permeable foam synthetic resin material plate on the inner surface Therefore, it is possible to maintain the self-holding elastic force etc. instead of a space in which nothing enters the volume space 4, and it is sufficient to obtain the volume change of the volume space 4. Even in the original space, detection similar to that in the two-dimensional space is possible.
  • the sensor SEN is for introducing the pressure of air to the inlet. Therefore, air is passed through the inlet, the magnitude of the pressure is detected by the sensor SEN, the output is amplified, and the magnitude of the analog input causes “H” below the threshold when it is greater than the threshold value. Sometimes it will be "L" output.
  • the microprocessor 30 has an analog input such as an attached AD conversion circuit, and its output has a function to be a digitally processed output. That is, as shown in FIG. 11 and FIG. 12, the sensor SEN, which detects the amount of physical change of the volume space, increases the pressing force from the outside gently (for example, 5 mm / s). The sensor output ES gradually rises. At this time, when the detection output time of the sensor output ES reaches the continuation time limit X 1 to be detected, the signal of the signal detection output AC is output.
  • the sensor output ES detected as the physical change amount of the volume space 4 is from the outside to obtain an increase in the pressing force gentle pressure, when it exceeds the first threshold value TH1, which starts measurement only timed timed X 1 to be monitored since then, became timed timed X 1, signal detection
  • the output AC changes from "H" to "L".
  • the value of the sensor output ES decreases, and when it falls below the first threshold TH1 at the timing t3, the timing measures the timed timed Y 1 in t4, during which the sensor output ES is earth potential, that is, whether becomes ground potential threshold TH0.
  • the sensor output ES reaches the ground potential threshold TH0, after the sensor output ES is continued for the time limit Z1 or more, the sensor output ES settles from the ground potential threshold TH0 to "L" of the signal detection output AC.
  • the detection signal of the sensor output ES is used as the ground potential threshold TH0 to detect a change in accordance with a quadratic function characteristic before returning to the steady state.
  • the sensor output ES when returning to the steady state detects the external pressing force applied to the volume space 4 as the amount of physical change formed in the volume space 4, and then returns the detected force to the opposing substrate 1.
  • Outside air is introduced into a predetermined volume space 4 formed in the foam 10, and its characteristic is usually a change of a quadratic curve having a sharp rise. Therefore, by calculating the time for the sensor output ES to return to 0.5 V, it is possible to determine whether it is a change that draws a quadratic curve by comparison with the time required for it. Of course, if the time during which the sensor output ES returns to 0.5 V is long, the probability of being a change of a quadratic curve is high.
  • the time taken for the recovery time of the sensor output ES to return to 0.5 V is longer in the case of drawing a quadratic curve. Therefore, normality / abnormality may be determined from the recovery time of the sensor output ES by determining the time period in the experiment. Then, since the recovery time of the sensor output ES is substantially determined, it may be subject to set timed Z 1 to a criterion only time. Also, when the sensor output ES changing to 0 to 0.5 V is sampled 5 to 100 times, and the difference between the sampled voltages is large, the probability of being a change of a quadratic curve is high. In the case of this comparison, reliable results are obtained.
  • sampling may be performed a plurality of times, and the normality / abnormality of recovery of the sensor output ES may be determined from the sampled voltage. That is, the sensor SEN that detects the physical change amount of the volume space as the signal detection output AC not only detects the physical change amount, but also confirms its own performance, and enables fail-safe contact detection.
  • the sensor output ES decreases and becomes smaller than the second threshold TH2 at timing t3. Measurement of Y 2 is started, and it is determined whether the sensor output ES becomes the ground potential threshold TH 0 during that time, and when the sensor output ES becomes the ground potential threshold TH 0 at timing t 4, the sensor output ES is over the time limit Z 2 After being continued, the sensor output ES settles to the original voltage "L" from the ground potential threshold TH0 and the signal detection output AC.
  • the detection signal of the sensor output ES is changed to a ground potential threshold TH0 in accordance with a quadratic function characteristic before returning to the steady state.
  • the sensor SEN itself is within a time duration continued for a predetermined time period Z2 or more immediately after detection of the ground potential threshold TH0 of the sensor output ES.
  • the normal / abnormal state is detected by the sensor output ES of its own detection output to discriminate. For example, when the sensor output ES indicates that the physical change amount of the volume space 4 is a positive pressure, the sensor output ES is pressed by a negative pressure when the positive pressure is released.
  • the sensor output ES when returning to the steady state detects the external pressing force applied to the volume space 4 as a physical change amount of the volume space 4 and then returns the opposing substrate 1 and the foam.
  • the outside air is introduced in a predetermined volume space 4 formed in 10, which is usually a change of a quadratic curve. Therefore, by comparing the time required for the sensor output ES to return to 0.5 V and the time required for that, it is determined whether or not it is a change that draws a quadratic curve, and the sensor output ES is 0. If the time to return to 5 V is long, it is possible to judge normal / abnormal as the probability of being a change of the quadratic curve is high.
  • the time limit for signal conversion from “H” to “L” and “L” to “H” is determined, and in particular, when “L” to “H” is signal converted, the maximum time limit is at timing t3. Since the time period after reaching the second threshold TH2 is uniquely determined to be less than or equal to the predetermined value, it is possible to use only that time period.
  • the sensor signal output circuit 31 that detects the external pressing force applied to the volume space 4 by the sensor SEN as a physical change amount of the volume space 4 detects the first threshold TH1 of the sensor output ES and It comprises a time limit X 1 for measuring the continuation of the operation, a timer for measuring the time limit of the time limit Y 1 , and a time limit X 2 for the time limit Y 2 .
  • the sensor abnormality determination circuit 32 that determines normality / abnormality of the sensor SEN itself by detection of the sensor output ES within a predetermined time immediately after detection of the sensor output ES has become the ground potential threshold TH0 of the sensor output ES Is detected and the time limit of time limit Z1 or time limit Z2 is measured, and it is determined whether the sensor output ES is a characteristic of return after detection as a physical change amount of the volume 4 and normality of the sensor SEN itself An abnormality is determined by the detection signal of the sensor output ES. Therefore, the sensor SEN that detects the physical change amount of the volume space as the signal detection output AC not only detects the physical change amount, but also confirms its own performance, and enables fail-safe contact detection.
  • step S00 initialization is performed in step S00.
  • the first threshold TH1 1 [V]
  • the second threshold TH2 2.5 [V]
  • the signal detection output AC which is the detection output of the microprocessor 30, is initialized to "H".
  • the signal detection output AC changes from "H” to "L” in step S15 by the output of the sensor output ES in step S14.
  • step S10 When the recovery characteristic of the sensor SEN is not confirmed in step S10, the counter N is incremented by "1" in step S12 to count the number of times the abnormality is detected, and the LED of the monitor abnormality display output 17 is lit in step S13. Display the output to that effect.
  • This output may be a control signal of the doll robot or other display means.
  • the first threshold TH1 is 1 [V] or more for detecting a gradual change of the sensor output SE in step S01, or the second threshold TH2 for detecting a rapid change in the sensor output SE in step S02 Determine if there is.
  • the output of the sensor output SE determines whether to continue timed X 2 or more in step S14, timed X 2 or more, when the continued In step S15, the signal detection output AC is changed from "H" to "L”.
  • step S16 it is determined whether the sensor output SE is less than the second threshold TH2, and the process remains in steps S15 and S16 until the sensor output SE becomes less than the second threshold TH2.
  • step S10 Determining an elapsed timed Z 2 in course or step S20 timed Z 1 at step S09, after determining the elapsed, it is determined whether there is a recovery characteristics of the sensor SEN at step S10, the recovery characteristics of the sensor SEN When it is confirmed that there is no abnormality in the sensor detection operation in step S11, the operation is continued as it is. When the recovery characteristic of the sensor SEN is not confirmed in step S10, the counter N is incremented by "1" in step S12, and the number of times of detection of abnormality is added. Output to the photocoupler 17 in step S13, the LED output is outputted as the abnormality sensor abnormality determination circuit 32 via a resistor R 5 to the phototransistor of the sensor SEN itself.
  • the sensor signal output circuit 31 that detects the external pressing force applied to the volume space 4 as the physical change amount of the volume space 4 by the sensor SEN detects the first threshold TH1 of the sensor output ES and It comprises a timer for measuring time durations of X 1 and Y 1 for measuring the continuation of the operation.
  • the sensor abnormality determination circuit 32 that determines normality / abnormality of the sensor SEN itself by detecting the sensor output ES within a predetermined time immediately after the detection of the sensor output ES has become less than the second threshold TH2 of the sensor output ES After detecting the time limit of time limit Z 1 , it is determined whether the sensor output ES is a characteristic of return after detection as a physical change amount of the volume space 4, and normality of the sensor SEN itself An abnormality is determined by the detection signal of the sensor output ES.
  • the sensor SEN consisting of the pressure sensor shown in FIG. 10 is inputted to the microprocessor 30 via the resistor R 1.
  • the output of the microprocessor 30, outputs to the photocoupler 16 via a current limiting resistor R 2, the LED outputs are output as a signal detection output AC from the sensor signal output circuit 31 via the resistor R 3 to the phototransistor There is.
  • sensors SEN are input to the microprocessor 30 via the resistor R 1.
  • the output of the microprocessor 30, outputs to the photocoupler 17 via a current limiting resistor R 4, the LED outputs are outputted as the abnormality sensor abnormality determination circuit 32 via a resistor R 5 to the phototransistor of the sensor SEN itself There is.
  • the detection output of the sensor SEN is obtained in an isolated state from the doll robot 50, and the wiring between the sensor signal output circuit 31 including the sensor SEN and the sensor abnormality determination circuit 32 is not shorted under control.
  • the contact detection device includes a substrate 1 formed in a specific shape, and a foam 10 formed by forming a foamed synthetic resin material or a foamed rubber material for covering the substrate 1 in a specific shape,
  • the sensor SEN includes a predetermined volume space 4 formed in the base material 1 and the foam 10 facing each other, and a sensor pressing force applied to the volume space 4 from the outside as a physical change amount.
  • Sensor signal output circuit 31 that detects external pressure applied to volume 4 as a physical change of volume 4 by sensor SEN, and immediately after detection of signal detection output AC of sensor signal output circuit 31 Within a predetermined time period, the sensor abnormality discrimination circuit 32 is mounted which discriminates normality / abnormality of the sensor SEN itself by the detection signal of the sensor output ES.
  • the contact detection device of the present embodiment is added to a specific volume space 4 for covering a base material 1 formed in a specific shape facing each other, a base material 1 formed in a specific shape, and the volume space 4 And a sensor SEN that detects the external pressing force as a physical change of the volume 4 formed in the volume 4, the sensor SEN physically detects the external pressing applied to the volume 4.
  • the sensor signal output circuit 31 detected by the sensor SEN as a temporary change amount and the sensor abnormality determination circuit 32 detect normality / abnormality of the sensor SEN itself within a predetermined time immediately after detection of the sensor output ES of the sensor signal output circuit 31. Is determined by the sensor output.
  • a predetermined volume space 4 formed on one side of a foam 10 formed by laminating and bonding a foamed synthetic resin material or a foamed rubber material laminated and bonded to cover a substrate 1 formed into a specific shape is formed,
  • the air compressed in the volume space 4 is formed in the volume space 4 in which leakage of air from the substrate 1 and / or the foam 10 is less likely to occur, and the pressure from the outside of the substrate 1 and the foam 10 It is detected by the sensor SEN as the amount of physical change of the space 4 and is used as a detection output with a time limit of the sensor output ES.
  • compressed air in the leakproof volume 4 gets a physical change in the sensor SEN due to the pressure applied to one or both sides of the substrate 1 and the foam 10.
  • the amount of physical change is detected as air pressure, air flow, air flow rate, change in air volume, or the like.
  • the pressure applied to a wide range is detected. Even if it is a two-dimensional planar composition, it can construct even if it is a three-dimensional three-dimensional composition, and can detect the pressure from the outside more than predetermined.
  • the sensor SEN detected as a physical change of the volume space 4 detects a pressing force from the outside applied to the volume space 4 of the sensor signal output circuit 31 by the sensor SEN as a physical change amount of the volume 4 , As a contact pressure applied to the normal volume space 4 or the like.
  • the sensor abnormality discrimination circuit 32 discriminates normality / abnormality of the sensor itself based on the sensor output within a predetermined time immediately after detection of the sensor output ES of the sensor signal output circuit 31, At the end of the operation, the sensor abnormality determination circuit 32 can compensate for the absence of an abnormality in the sensor SEN.
  • the sensor output ES for detecting the physical change of the volume space 4 can distinguish and monitor the external force which is gradually applied as time passes and the external force which is rapidly applied, and the contact can be determined in a short time .
  • the sensor abnormality determination circuit 32 of the contact detection device of the present embodiment When the sensor abnormality determination circuit 32 of the contact detection device of the present embodiment returns to the steady state where the sensor signal output circuit 32 detects an external pressure applied to the volume space 4, the sensor abnormality determination circuit 32 The normality / abnormality of the sensor SEN itself is determined based on the characteristics before returning to the steady state as three threshold values (TH0). When the sensor abnormality determination circuit 32 of the contact detection device according to the present embodiment returns to a steady state in which the sensor signal output circuit 31 detects an external pressure applied to the volume space 4, the sensor abnormality determination circuit 32 The normality / abnormality of the sensor SEN itself is determined based on the output characteristics of the sensor SEN until returning to the steady state as three threshold values (TH0).
  • the sensor output ES detected by the sensor SEN detects an external pressing force applied to the volume space 4 as a physical change amount of the volume space 4, and the sensor output ES detected by the sensor SEN is the volume space 4 External pressing force is detected as a physical change of the volume 4 and compared with a plurality of thresholds such as the third threshold TH0 (TH3), the first threshold TH1, the second threshold TH2, etc.
  • the first threshold TH1 at less than a predetermined threshold value, such as the second threshold value TH2, the predetermined time period X 1, in X 2, the sensor abnormality determination circuit 32 to determine the normal or abnormal by the signal detection output 31
  • a predetermined threshold value such as the second threshold value TH2
  • the predetermined time period X 1 in X 2 the sensor abnormality determination circuit 32 to determine the normal or abnormal by the signal detection output 31
  • the sensor signal output circuit 31 every time the sensor signal output circuit 31 operates, normality / abnormality of the sensor SEN is confirmed, and in particular, if the sensor abnormality determination circuit 32 does not operate under the next operation, it operates safely. means.
  • the sensor signal output circuit 31 when the sensor signal output circuit 31 returns to a steady state for detecting an external pressing force applied to the volume space 4, a secondary signal until the sensor SEN detection signal is returned to the steady state as a third threshold (TH 0) Based on the function characteristics, the normality / abnormality of the sensor SEN itself is judged. As a result, it is normal if the operation of the sensor signal output circuit 31 can be entered through the quadratic function characteristic.
  • a fan of another configuration is disposed in the volume space 4, and the volume space 4 is physically determined by changing predetermined physical variables as air pressure, air flow, air flow rate, air volume change, etc. The amount of change can be measured.
  • installing a fan increases the number of parts and requires fan management.
  • the number of parts does not increase.
  • air pressure, air flow, air flow velocity, air volume change, etc. can also be set as the threshold of the physical variable of the volume space 4 by the fan.
  • the plurality of threshold values, the first threshold value, the second threshold value, and the third threshold value may be two or three or more, and may be at least two or three or more.
  • the third threshold (TH0) used for the detection signal of the sensor SEN may be the ground potential, but may be another negative voltage or a voltage lower than the positive first threshold.
  • the binary signal used in the present embodiment is not an analog value, and is from “H” to “L” or “L” to “H", “1" to "0” or “0” to “1”. It may be any digital signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Push-Button Switches (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

According to the present invention, a sensor for detecting the amount of physical variation in a volume space detects the amount of physical variation, and whether the sensor itself is normal or abnormal is determined in a sensor signal output circuit and a sensor abnormality determination circuit in order to perform a later detection of physical variation amount. The present invention is provided with: a foamed body 10 configured by forming, into a specific shape, a foamed synthetic resin material or foamed rubber material covering substrates 1 that have been formed into a specific shape; a predetermined volume space 4 which is formed in the foamed body 10 and the substrates 1 facing each other; and a sensor SEN which detects the added pressing-force, applied to the volume space 4 from the outside, as the amount of volume space 4 physical variation generated in the volume space 4. Also, the present invention has: a sensor operation output circuit 31 which in the sensor SEN, detects the added pressing-force, applied to the volume space 4 from the outside, as the amount of volume space 4 physical variation; and a sensor abnormality determination circuit 32 which, on the basis of the detected signal of the sensor SEN, determines the abnormality of the sensor SEN itself within a predetermined time immediately after detecting the operation of the sensor SEN in the sensor operation output circuit 31.

Description

接触検出装置Touch detection device
 本発明は、特定の形状に形成された基材と発泡合成樹脂で特定の形状を削りだした発泡体からなり、前記基材と前記発泡体との間の片側または両側に容積空間を形成し、その容積空間の物理量の変化をセンサによって検出する接触検出装置に関するもので、特に、発泡合成樹脂で特定の形状を成型したり、削り出したり、その容積空間の内側の面を漏れがないようにし、何れの位置に接触しても検出できる二次元、三次元の接触検出装置に関するものである。 The present invention comprises a base material formed into a specific shape and a foam cut out from the specific shape with a foamed synthetic resin, and a volume space is formed on one side or both sides between the base material and the foam. The present invention relates to a contact detection device that detects a change in physical quantity of its volume space by a sensor, and in particular, molding or scraping a specific shape with a foamed synthetic resin, or leaks the inner surface of the volume space The present invention relates to a two-dimensional and three-dimensional touch detection device that can detect any position when it is touched.
 従来の一般的な発泡合成樹脂成型体の成型方法及び発泡合成樹脂成型体としては、ポリスチレンを微細な泡で発泡させ硬化させた発泡ポリスチレンを使用し、その表面に塗料を塗布する方法がある。例えば、発泡ポリスチレンに木工ボンドを塗り、その木工ボンドが固まったとき、スプレーで塗装する方法がある。
 また、水性ボンドに顔料を混ぜて、直接、発泡ポリスチレンに塗布する方法もある。そして、和紙を細かく粉砕し、粉体化したものに木工ボンドや和糊を混練して発泡ポリスチレンに貼り付け、それを水性塗料のネオカラーやポスターカラーで塗装する方法もある。更に、発泡ポリスチレンを基材にしてそれにFRP造形を行う方法もある。
これらはいずれも発泡合成樹脂成型体に塗布した塗装の厚みが厚くなり、形式的な見栄えが良くても、実用的な使用に耐えるものではなかった。
As a conventional molding method of a foamed synthetic resin molded body and a foamed synthetic resin molded body, there is a method of using a foamed polystyrene obtained by foaming and curing polystyrene with fine bubbles, and applying a paint on the surface thereof. For example, there is a method of applying a woodworking bond to expanded polystyrene and applying a spray when the woodworking bond hardens.
There is also a method of mixing a pigment in an aqueous bond and directly applying it to expanded polystyrene. Then, there is also a method of finely pulverizing Japanese paper, kneading woodworking bonds and Japanese gauze to the powdery ones, sticking it on expanded polystyrene, and coating it with a water-based paint neo-color or a poster color. Furthermore, there is also a method of using FRP polystyrene as a base material and performing FRP modeling thereon.
In any of these cases, the thickness of the coating applied to the foamed synthetic resin molded body is thick, and even though the appearance looks good, it does not withstand practical use.
 酷似する技術を検索すると、直接、発泡合成樹脂材を特定の形状に削りだす発泡合成樹脂の成型方法及びその成型体は存在していないが、発泡層付き内装品の技術を特許文献1で開示している。
 即ち、特許文献1は発泡層付きの表皮材が、基材に分散形成された吸気路からの真空吸引により基材に吸着されて接着された発泡層付き内装品において、表皮材が熱可塑性であり、その表面形状が、表皮材を加温処理により軟化させ、その状態で基材に接着させる際に、表皮材用真空吸引型による真空吸引により賦形されている構成を有し、表皮材が表皮材用真空吸引型の型面に沿って賦形される技術である。これにより、表面品質が向上するだけでなく、意匠の制約が少なくなり、その自由度が拡大され、基材表面に対して非相似形状に形成することができる。
If a very similar technology is searched, the molding method of the foamed synthetic resin which cuts the foamed synthetic resin material into a specific shape directly and the molded body do not exist, but the technology of the interior part with the foamed layer is disclosed in Patent Document 1 doing.
That is, in the interior part with the foam layer, the skin material is thermoplastic in Patent Document 1 in which the skin material with the foam layer is adsorbed to the substrate by vacuum suction from the air intake path formed dispersed in the substrate and adhered. The skin material has a configuration in which the surface shape is shaped by vacuum suction using a vacuum suction type for skin material when the skin material is softened by heat treatment and adhered to the substrate in that state. Is a technology which is shaped along the mold surface of the vacuum suction mold for the surface material. As a result, not only the surface quality is improved, but also restrictions on the design are reduced, the degree of freedom is expanded, and the substrate can be formed into a non-similar shape to the substrate surface.
 発泡層付きの表皮材が、基材に分散形成された吸気路からの真空吸引により基材に吸着されて接着された発泡層付き内装品とすることにより、発泡層と表皮材との接着力を強くする技術が開示されている。しかし、特許文献1には、厚手の発泡層についてどのように適応できるかを開示するものはない。原理的には、発泡合成樹脂材を特定の形状に削り出して発泡合成樹脂を成形することは困難と思われる。 The adhesion between the foam layer and the surface material is obtained by forming the interior material with the foam layer in which the surface material with the foam layer is adsorbed to the substrate by vacuum suction from the intake path dispersedly formed in the substrate and adhered. Technology to strengthen the However, Patent Document 1 does not disclose how it can be applied to a thick foam layer. In principle, it would be difficult to cut the foamed synthetic resin material into a specific shape to form the foamed synthetic resin.
 また、特許文献2は、発泡合成樹脂材料よりなる芯材の一面に畳表が積層され、他面に機能化剤含有クッションシートが積層され、更に、前記クッションシートに滑り止め層が部分的に積層されることにより、薄くて軽量で、施工性に優れ、滑り難いという技術を開示している。 In Patent Document 2, a tatami mat is laminated on one side of a core made of a foamed synthetic resin material, a functional agent-containing cushion sheet is laminated on the other side, and a non-slip layer is partially laminated on the cushion sheet. Discloses a technology that is thin and light, excellent in construction, and difficult to slip.
特開2005-125736号公報JP 2005-125736 A 特開2010-236220号公報JP, 2010-236220, A 特開2014-156523号公報JP, 2014-156523, A 特開2014-188391号公報JP 2014-188391 特願2016-180110号Japanese Patent Application No. 2016-180110
 しかし、従来の一般的な発泡合成樹脂成型体は、例えば、量産しない製品のカバー、特殊な椅子の肘掛け、特殊車両或いは改造車のダッシュボード等に使用すると、機械的強度が足りないとか、塗料が塵のように剥がれ落ちて周辺を汚したりして、廉価には実用的なものはできなかった。勿論、発泡ポリスチレンを基材にしてそれにFRP造形を行う技術は、機械的強度は上げることができるものの、弾性に欠き、また、高価であるという問題があった。
 また、特許文献1及び特許文献2では、発泡合成樹脂成型体とクッションシートとの接着力を強くすることを開示している。ところが、形式的に試作品を形成する原材料として発泡性合成樹脂が使用されているものの、少量生産品にこの技術を使用するということは実現されていない。特に、例えば、発泡ポリスチレンのような発泡合成樹脂成型体は、脆く、表面を削って所定の形状に仕上げ、かつ、表面を見栄え良く平滑化することができなかった。
However, conventional general foamed synthetic resin molded articles have insufficient mechanical strength, for example, when used for covers of products that are not mass-produced, arm chairs of special chairs, dashboards of special vehicles or modified vehicles, etc. However, it was not possible to make something practical at low cost because Of course, the technique of forming foamed polystyrene as a base material and performing FRP shaping thereon can increase mechanical strength, but has a problem that it lacks elasticity and is expensive.
Moreover, in patent document 1 and patent document 2, making strong the adhesive force of a foamed synthetic resin molded object and a cushion sheet is disclosed. However, although a foamable synthetic resin is used as a raw material for forming a prototype formally, using this technology for a small-quantity product has not been realized. In particular, for example, a foamed synthetic resin molded product such as expanded polystyrene was brittle, and the surface was scraped to be finished into a predetermined shape, and it was not possible to make the surface look good and smooth.
 そして、発泡性合成樹脂にベントホールと呼ばれる穴が存在すると、当該ベントホールを穴埋めするには、残余の発泡性合成樹脂の厚みによって左右されるが熟練者でないと効率良く成型できない。また、ベントホールを穴埋めすると発泡合成樹脂成型体の重量バランスに微妙な違いが出て、使途によっては、その重量バランスの調整が必要な場合がでてくる。 Then, when a hole called a vent hole is present in the foamable synthetic resin, in order to fill the vent hole, the thickness depends on the thickness of the remaining foamable synthetic resin, but efficient molding can not be performed without a skilled person. In addition, when the vent holes are filled, the weight balance of the foamed synthetic resin molded product has a subtle difference, and depending on the use, the weight balance may need to be adjusted.
 更に、先行文献3及び先行文献4は、上記問題点を解消し、基材として発泡合成樹脂材料を用いて、特定の形状を削り出して弾性に富む成型体として、塗装面の厚みを厚くすることなく、見栄えの良い、廉価な発泡合成樹脂成型体を得ている。しかし、特許文献3及び特許文献4が接触センサを用いるとなると、表面に金属電極、導電性塗料等を塗布する必要性があり、相手が導電体のものに使用が限られていた。
 また、市販の感圧スイッチを用いると、押圧力を受けている部位の感圧スイッチ自身は作動するが、他の感圧スイッチが配設されていない箇所の圧力検出ができなかった。また、感圧スイッチはその絶縁基板(シート)の変形が自在にならないので立体的に形成することができなかった。
 しかし、一般に、センサは接触センサ、感圧スイッチ等の量産化されている普及型センサは廉価であるが、量産化されていないセンサは高価である。例えば、静電容量の変化または歪ゲージを使用した圧力センサ等は廉価に供給されている。
 一方、電気回路はデジタル回路とアナログ回路が混在するところでは、デジタル回路のパルスがパルス雑音となってアナログ回路に入る可能性が高いことから、アナログ回路に入り難い信号の使用が望ましく、かつ、IC化される等の小型化されているものが望ましい。
Furthermore, the prior art documents 3 and 4 solve the above-mentioned problems and use a foamed synthetic resin material as a base material, cut out a specific shape, and increase the thickness of the coated surface as a molded article rich in elasticity. Without it, a good-looking, inexpensive foamed synthetic resin molded body is obtained. However, when the patent document 3 and the patent document 4 use a contact sensor, there is a need to apply a metal electrode, a conductive paint, etc. on the surface, and the use was restricted to the thing whose conductor is a conductor.
In addition, when a commercially available pressure-sensitive switch is used, the pressure-sensitive switch itself at the portion receiving pressure is activated, but the pressure can not be detected at a portion where no other pressure-sensitive switch is provided. Further, the pressure sensitive switch can not be formed three-dimensionally because the insulating substrate (sheet) can not be freely deformed.
However, in general, although mass-produced popular sensors such as contact sensors and pressure-sensitive switches are inexpensive, sensors that are not mass-produced are expensive. For example, pressure sensors or the like using capacitance changes or strain gauges are inexpensively supplied.
On the other hand, where electrical circuits are a mixture of digital circuits and analog circuits, it is highly possible that the pulses of the digital circuits become pulse noise and enter the analog circuits, so it is desirable to use a signal that does not easily enter the analog circuits, It is desirable that the IC be miniaturized and the like.
 そこで、本発明者らは特許文献5に掲載の接触検出装置を発明した。即ち、特定の形状に形成された基材と、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体と、対向する前記基材と前記発泡体の片側に形成された所定の容積空間と、前記容積空間内に配設された連続気泡構造を有している空間維持材と、前記容積空間内及び前記空間維持材の圧縮された空気が、前記基材及び/または前記発泡体から外気に漏れ難くした前記容積空間を形成した補強層と、前記補強層で形成した前記容積空間及び前記空間維持材の物理的変化量として検出するセンサと、前記センサからのオン・オフ出力のオン時間またはオフ時間の長さをもって検出出力とし、前記特定の形状に形成された基材と、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる前記発泡体が形成するコーナに埋設してなる出力回路とを具備する装置を開発した。
 これによって、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、所定以上の外部からの圧力を検出できる接触検出装置となった。
 しかし、前記容積空間の物理的変化量として検出する接触検出装置においては、フェイルセーフとして設計されるのが一般的であるが、物理的変化量として検出するセンサについての信頼性を高める回路が存在していなかった。
Therefore, the present inventors invented the contact detection device disclosed in Patent Document 5. That is, a base material formed in a specific shape, a foam formed by forming a sheet of foamed synthetic resin material or foamed rubber material for covering the base material in a specific shape, the base material opposed to the base material, and A space maintaining member having a predetermined volume formed on one side of the foam, an open cell structure disposed in the volume, and compressed air of the space and the space maintaining member And a sensor for detecting the amount of physical change of the volume space and the space maintenance material formed by the reinforcing layer and the reinforcing layer forming the volume space that makes it difficult for the base material and / or the foam to leak to the outside air. And the length of the on time or the off time of the on / off output from the sensor as a detection output, and the base material formed in the specific shape, and a sheet of foamed synthetic resin material for covering the base material or Foam rubber material or We have developed a device having an output circuit in which the foam synthetic resin material or a foam rubber material obtained by forming into a particular shape is buried in a corner to be formed.
By this, it is possible to detect pressure applied to a wide range, and it is possible to apply either a two-dimensional planar configuration or a three-dimensional three-dimensional configuration from the outside of a predetermined size or more. It became a contact detection device that can detect pressure.
However, in the touch detection device which detects as the physical change amount of the volume space, although it is generally designed as fail safe, there is a circuit which enhances the reliability of the sensor which detects as the physical change amount. I did not.
 そこで、本発明は従来の問題点を解消すべく、容積空間の物理的変化量を検出するセンサが物理的変化量を検出するセンサ信号出力回路及び次回の物理的変化量の検出に向けてセンサ自体の正常・異常をセンサ異常判別回路で判別できる接触検出装置の提供を課題とするものである。 Therefore, in order to solve the conventional problems, the present invention is directed to a sensor signal output circuit in which a sensor for detecting a physical change in a volume space detects a physical change and a sensor for detecting a next physical change. It is an object of the present invention to provide a contact detection device capable of determining normality / abnormality of itself by a sensor abnormality determination circuit.
 請求項1の発明の接触検出装置は、特定の形状に形成された基材を被覆する形状の発泡体と、対向する前記基材と前記発泡体に形成された所定の容積空間と、前記容積空間に加えられた外部からの押圧力を、前記容積空間で形成した前記容積空間の物理的変化量として検出するセンサと、前記センサが検出したセンサ出力は、前記容積空間に加えられた外部からの押圧力を前記容積空間の物理的変化量として検出し、複数の閾値と比較して、その信号検出出力として正常・異常の2値信号を得るセンサ信号出力回路と、前記センサ信号出力回路の前記センサ出力の異常状態から定常状態に戻る2値信号の変化直後から、所定の閾値以下で、所定の時限内に、前記センサ自体の正常・異常を判別するセンサ異常判別回路で処理している。 The contact detection device according to the invention of claim 1 comprises a foam having a shape for covering a substrate formed in a specific shape, the opposite substrate, a predetermined volume space formed in the foam, and the volume. A sensor for detecting an external pressing force applied to the space as a physical change amount of the volume space formed by the volume space, and a sensor output detected by the sensor are externally applied to the volume space A sensor signal output circuit that detects a pressing force of the sensor as a physical change amount of the volume space and compares the threshold value with a plurality of threshold values to obtain a binary signal of normality / abnormality as the signal detection output; Immediately after the change of the binary signal from the abnormal state of the sensor output to the steady state, it is processed by the sensor abnormality judging circuit which judges normality / abnormality of the sensor itself within a predetermined time period at a predetermined threshold or less. .
 ここで、上記特定の形状に形成された基材は、例えば、1枚以上の熱可塑性樹脂材料、または2枚以上を積層接着した熱可塑性樹脂材料を特定の形状に形成したもの、1枚以上の熱可塑性樹脂材料は、ソリッドタイプの樹脂としても、発泡体としてもよく、容積空間の容積変化が出現する硬度を有するものであればよい。
 上記発泡体として使用する発泡合成樹脂材料は、存在する内部気泡同士が繋がっていない独立気泡体、存在する内部気泡同士が繋がっている連続気泡体の何れであってもよい。何れにせよ、前記容積空間の空気が外気に漏れ難く形成したものであればよい。
 また、上記発泡体は、前記基材を発泡合成樹脂材料の1枚または複数枚積層接着したもので被覆し、特定の形状に形成するものである。通常、前記発泡体は前記発泡体を外部から被う構成となる。基材は、例えば、ロボット等の自走する自動生産装置に被覆し、その基材に対して前記発泡体を設けフェイルセーフ対応とするものである。
Here, the base material formed into the above specific shape is, for example, one formed by forming one or more thermoplastic resin materials or a thermoplastic resin material obtained by laminating and bonding two or more sheets into a specific shape, or one or more sheets The thermoplastic resin material of the present invention may be a solid type resin or a foam, as long as it has a hardness such that a volume change of the volume space appears.
The foamed synthetic resin material used as the foam may be either a closed cell in which the existing internal cells are not connected or an open cell in which the existing internal cells are connected. In any case, the air in the volume space may be formed so as not to leak to the outside air.
Further, the foam is formed into a specific shape by covering the base material with one or more sheets of foam synthetic resin material laminated and bonded. Usually, the foam is configured to cover the foam from the outside. The base material is, for example, coated on a self-propelled automatic production apparatus such as a robot, and the foam is provided on the base material to make it fail safe.
 そして、上記容積空間は、前記基材及び前記発泡体との間の片側または両側に補強層を形成してもよい。この補強層は、前記基材及び/または前記発泡体から空気が外気に漏れ難くするものである。そのためには、補強層によって空気が通り抜け難くされている。射出成型金型で形成する金型によって冷やされるスキン層または別の材料で形成した空気の漏れを少なくするフィルムもこの補強層の1つである。
 前記容積空間内の空気が外部からの圧力(外圧)により圧縮されたとき、その圧縮空気の一部が、前記容積空間から漏れ出さないように補強層を設けるのが望ましい。この補強層としては、目止め剤、穴埋め剤、下塗り剤、上塗り剤、仕上げ剤のうちの幾つかを選択できる。また、前記発泡体を形成する金型で形成したスキン層を、前記基材を被覆する1枚の発泡合成樹脂材料または発泡ゴム材料、または複数枚を積層接着した特定の形状に形成してなる発泡体とすることもできる。
 また、前述した補強層の形成は、二次元的な表面的なものでも、三次元的(立体的)な処理でもよい。特に、三次元的な補強層は、前記補強層のみの強度というよりも、前記容積空間の強度及び緻密化が可能になる。前記補強は合成樹脂シートとすることもできる。
ここで、空気が漏れ難く形成した容積空間とは、空気が全く漏れない状態を意味するのではなく、空気が漏れても、それが前記センサの特性を変化する程度には至らないことを意味する。この補強層は、全く空気のリークがないものに限定されるものではなく、多少のリークが生じるものでよい。また、完全にリークのないものを製造し、そこに特定径のリーク路を形成してもよい。
 特に本発明においては、容積空間に加えられた外部からの押圧力及びその回復の特性が必要である。
And the said volume space may form a reinforcement layer in the one side or both sides between the said base material and the said foam. The reinforcing layer makes it difficult for air to leak from the base and / or the foam to the outside air. For that purpose, air is made difficult to pass through by the reinforcing layer. A skin layer cooled by a mold formed by an injection mold or a film formed of another material for reducing air leakage is also one of the reinforcing layers.
It is desirable to provide a reinforcing layer so that when the air in the volume space is compressed by external pressure (external pressure), part of the compressed air does not leak out of the volume space. As the reinforcing layer, some of a filler, a filler, a primer, an overcoat, and a finish can be selected. Further, the skin layer formed by the mold for forming the foam is formed in a specific shape in which one sheet of foam synthetic resin material or foam rubber material for covering the substrate, or plural sheets are laminated and bonded. It can also be a foam.
In addition, the formation of the reinforcing layer described above may be two-dimensional surface or three-dimensional (three-dimensional) processing. In particular, the three-dimensional reinforcing layer enables strength and densification of the volume, rather than the strength of the reinforcing layer alone. The reinforcement may be a synthetic resin sheet.
Here, the volume space in which the air does not easily leak does not mean that the air does not leak at all, but it means that even if the air leaks, it does not reach the extent to which the characteristics of the sensor are changed. Do. The reinforcing layer is not limited to the one having no air leak at all, but may have some leak. Also, a completely leak free one may be manufactured and a leak path of a specific diameter may be formed there.
In the present invention, in particular, the characteristics of the external pressure applied to the volume and its recovery are necessary.
 更に、上記空気が外気に漏れ難く形成した容積空間の物理的変化量として検出するセンサとしては、接触圧、気圧、圧力等の変化を歪量または静電容量の変化等として物理的の変量を空気圧、空気の流れ、空気の流速、空気量の変化等として検出する物理的変化量を計測するものである。また、このセンサには、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」と呼ばれている空気の流れを生じさせる市販のマイクロフローセンサ(D6F-V03A1;オムロン製)を使用することもできる。原理的には、本発明を実施する場合には、「MEMSフローセンサ」、「MEMS風量センサ」、「流速センサ」等と呼ばれている市販のセンサであれば使用可能であるが、本発明者らは、小型化が必要であったことから、D6F-V03A1(オムロン製)を使用した。また、市販のフローセンサとして、オムロン製品の他に(株)キーエンス、愛知時計電機(株)、(株)山武、ASK(株)の製品も実施したが、原理的には、何れでも実施できることが確認された。 Further, as a sensor for detecting the physical change of the volume space in which the air does not easily leak to the outside air, a physical variable such as a change in contact pressure, air pressure, pressure, etc. is used as a change in strain or capacitance. It measures the amount of physical change detected as air pressure, air flow, air flow velocity, change in air volume, and the like. In addition, as this sensor, a commercially available micro flow sensor (D6F-V03A1; made by OMRON), which generates an air flow called “MEMS flow sensor”, “MEMS air volume sensor”, or “flow velocity sensor”, is used It can also be done. In principle, in the case of practicing the present invention, any commercially available sensor called “MEMS flow sensor”, “MEMS air volume sensor”, “flow velocity sensor” or the like can be used, but the present invention The authors used D6F-V03A1 (manufactured by OMRON) because miniaturization was necessary. In addition to OMRON products, products from Keyence Co., Ltd., Aichi Watch Electric Co., Ltd., Yamatake Co., Ltd. and ASK Co., Ltd. were also implemented as commercially available flow sensors, but in principle, any of them can be implemented. Was confirmed.
 加えて、上記センサ信号出力回路は、前記容積空間に加えられた外部からの押圧力を、前記容積空間の物理的変化量として空気圧、空気の流れ、空気の流速、空気量の変化等として検出するセンサを含む回路で、具体的には、前記容積空間に加えられた外部からの押圧力を前記容積空間の物理的変化量として検出し、複数の閾値と比較して、その信号検出出力として正常・異常の2値信号を得る回路である。
 また、上記センサ異常判別回路は、異常状態から定常状態に戻る2値信号の変化直後から、所定の閾値以下で、所定の時限内の特性によって判断している。この異常状態から定常状態に戻る2値信号の変化直後から所定の閾値以下で、所定の時限内の特性には、前記センサの過度現象が生じている回復特性で、2次関数の曲線の判断、設計時間よりも長い時間で定常の監視状態に入り、例えば、サンプリングによって2次関数曲線であることを確認する方法でもよい。
 即ち、上記センサ異常判別回路は、前記センサ信号出力回路の前記センサ出力の異常状態から定常状態に戻る2値信号の変化直後から、所定の閾値以下の時限内で、2次関数曲線の検出で、または、所定の閾値に対する経過時間等で前記センサ自体の正常・異常を判別する回路が搭載されている。
In addition, the sensor signal output circuit detects an external pressing force applied to the volume space as a physical change amount of the volume space as air pressure, air flow, air flow velocity, air volume change, etc. Specifically, an external pressing force applied to the volume space is detected as a physical change amount of the volume space, and compared with a plurality of threshold values as a signal detection output thereof. It is a circuit that obtains a normal / abnormal binary signal.
Further, the sensor abnormality judging circuit judges the characteristics within a predetermined time period at a predetermined threshold value or less immediately after the change of the binary signal returning from the abnormal state to the steady state. Judgment of the curve of the quadratic function in the recovery characteristic in which the transient phenomenon of the sensor is occurring in the characteristic within a predetermined time period immediately after the change of the binary signal returning from the abnormal state to the steady state. For example, a method of confirming that it is a quadratic function curve by sampling may be used after entering a steady monitoring state in a time longer than a design time.
That is, the sensor abnormality judging circuit detects a quadratic function curve within a time limit equal to or less than a predetermined threshold immediately after the change of the binary signal from the abnormal state of the sensor output of the sensor signal output circuit to the steady state. Alternatively, a circuit is provided which determines whether the sensor itself is normal or abnormal based on an elapsed time with respect to a predetermined threshold value or the like.
 例えば、上記センサ出力はマイクロプロセッサに付設されたA-D変換回路に入力されて信号処理され、その出力はデジタル処理されて、マイクロプロセッサから出力される。
 即ち、容積空間の物理的変化として検出するセンサは、外部からの押圧力が第1閾値TH1以上となり、その状態がX時間継続することにより前記センサ出力とし、また、第1閾値TH1未満となり、その状態がY時間継続することにより前記センサ出力の終了とし、そして、外部からの押圧力が前記第1閾値TH1よりも大きい第2閾値TH2(TH1<TH2)以上となり、その状態がX時間継続することにより前記センサ出力とし、また、第2閾値TH2未満となり、その状態がY時間継続することにより前記センサ出力の検出とする。更に、前記センサ出力の検出の後、Z時間継続した後に前記センサ出力の特性をセンサ異常判別回路の入力として確認し、特性の後に前記センサが前記容積空間に加えられた外部からの押圧力の入力を検出するものである。
 ここで、実施物では、第1閾値TH1=1[V]、第2閾値TH2=2.5[V]、アース電位閾値TH0=0[V]は、任意の正電圧、負電圧に設定してもよい。また、監視する時限X、時限Y、時限Z、監視する時限X、時限Y、時限Zの時限も、1または複数が「0」が設定される「0」以上の値が使用される。即ち、センサが検出したセンサ出力は、前記容積空間に加えられた外部からの押圧力を前記容積空間の物理的変化量として検出し、複数の閾値と比較して、その信号検出出力として正常・異常の2値信号を得るセンサ信号出力回路と、前記センサ信号出力回路の前記センサ出力の異常状態から定常状態に戻る2値信号の変化直後から、所定の閾値以下で、所定の時限内に、前記センサ自体の正常・異常を判別するセンサ異常判別回路が搭載されている。
For example, the sensor output is input to an AD conversion circuit attached to the microprocessor for signal processing, and the output is digitally processed and output from the microprocessor.
That is, the sensor for detecting a physical change in the volume space, the pressing force from the outside becomes the first threshold value TH1 or more, and the sensor output by the state continues X 1 hour, also becomes less than the first threshold value TH1 When the state continues for Y 1 hour, the sensor output is ended, and the pressure from the outside becomes equal to or greater than the second threshold TH2 (TH1 <TH2) larger than the first threshold TH1, and the state is X The sensor output is obtained by continuing for 2 hours, and the sensor output becomes smaller than the second threshold TH2, and the sensor output is detected when the state continues for Y 2 hours. Further, after detection of the sensor output, check the characteristics of the sensor output after the continuous Z 1 hour as an input sensor abnormality determination circuit, the pressing force from outside the sensor after the characteristics is applied to the volumetric space To detect the input of
Here, in the embodiment, the first threshold TH1 = 1 [V], the second threshold TH2 = 2.5 [V], and the ground potential threshold TH0 = 0 [V] are set to any positive voltage and negative voltage. May be In addition, the monitoring time limit X 1 , time limit Y 1 , time limit Z 1 , monitoring time limit X 2 , time limit Y 2 , time limit Z 2 is also one or more “0” is set “0” or more Is used. That is, the sensor output detected by the sensor detects the external pressing force applied to the volume space as the amount of physical change of the volume space, compares it with a plurality of threshold values, and detects it normally as the signal detection output. A sensor signal output circuit for obtaining an abnormal binary signal, and immediately after a change of the binary signal returning from the abnormal state of the sensor output of the sensor signal output circuit to the steady state, within a predetermined time limit, at a predetermined threshold or less. A sensor abnormality discrimination circuit for discriminating whether the sensor itself is normal or abnormal is mounted.
 上記センサ異常判別回路は、前記センサ信号出力回路が前記容積空間に加えられた外部からの押圧力を検出する定常状態に戻るとき、前記センサの検出信号をアース電位として定常状態に戻るまでの二次関数特性を基に、前記センサ自体の正常・異常を判別するものである。結果的に、二次関数特性を経てセンサ信号出力回路の動作に入ることができれば正常とする判断である。 When the sensor signal output circuit returns to a steady state for detecting an external pressing force applied to the volume space, the sensor abnormality determination circuit may return to a steady state the detection signal of the sensor as the ground potential. The normality / abnormality of the sensor itself is determined based on the characteristic of the next function. As a result, if it is possible to enter the operation of the sensor signal output circuit through the quadratic function characteristic, it is judged as normal.
 請求項1の発明の接触検出装置は、対向する特定の形状に形成された基材と、特定の形状に形成された基材を被覆する特定の容積空間と、前記容積空間に加えられた外部からの押圧力を、前記容積空間で形成した物理的変化量として検出するセンサとを具備し、センサ信号出力回路は前記容積空間に加えられた外部からの押圧力を、前記容積空間の物理的変化量として前記センサで検出する。また、センサ異常判別回路は、前記センサ信号出力回路のアース電位の検出時点から所定の時限内に、前記センサ自体の正常・異常を前記センサ出力で判別するものである。なお、本実施の形態では、アース電位を閾値として使用しているが、他の閾値を使用してもよい。 The contact detection device according to the invention of claim 1 comprises a substrate formed in a specific shape facing each other, a specific volume space for covering a substrate formed in a specific shape, and an exterior added to the volume space. And a sensor for detecting the pressure from the body as a physical variation formed in the volume space, and the sensor signal output circuit is configured to physically apply the pressure from the outside applied to the volume space to the physical space of the volume space. The amount of change is detected by the sensor. Further, the sensor abnormality judging circuit is for judging the normality / abnormality of the sensor itself based on the sensor output within a predetermined time period from the detection time point of the ground potential of the sensor signal output circuit. In the present embodiment, the ground potential is used as the threshold, but another threshold may be used.
 したがって、特定の形状に形成された基材を被覆する積層接着した発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体の片側に形成された所定の容積空間と、前記容積空間内に圧縮された空気が、前記基材及び/または前記発泡体から外気に漏れ難くした前記容積空間に形成し、前記基材と前記発泡体の外部からの押圧力を、前記容積空間の物理的変化量としてセンサで検出し、前記センサ出力の時限をもって検出出力とするものである。 Therefore, a predetermined volume space formed on one side of a foam formed by laminating and bonding a foamed synthetic resin material or a foamed rubber material laminated and bonded to a substrate having a specific shape, and the volume Air compressed in the space is formed in the volume space which is less likely to leak from the base material and / or the foam to the outside air, and pressure from the outside of the base material and the foam is generated in the volume space. A sensor detects the amount of physical change, and the time limit of the sensor output is used as a detected output.
 漏れ難くした容積空間内の、例えば、圧縮された空気は、前記基材と前記発泡体の片側または両側に加えられた押圧力によってセンサで物理的変化を得る。物理的変化量として、空気圧、空気の流れ、空気の流速、空気量の変化等として検出する。
 このように、前記基材及び/または前記発泡体から物理的変化量として、漏れ難くした容積空間内の物理的変量を検出するものであるから、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、所定以上の外部からの圧力を検出できる。
 また、前記容積空間の物理的変化として検出するセンサは、前記センサ信号出力回路の前記容積空間に加えられた外部からの押圧力を、前記容積空間の物理的変化量として前記センサで検出し、通常の前記容積空間に加えられた接触圧等として検出する。しかし、センサ異常判別回路は、前記センサ信号出力回路の前記センサ出力の検出直後から所定の時限内に、前記センサ自体の正常・異常を前記センサ出力で判別するから、前記センサ信号出力回路の動作の終了時点でセンサ異常判別回路がセンサに異常がないことを明らかに保証する。
 特に、前記容積空間の物理的変化量を検出するセンサ出力は、時間の経過に伴って徐々に加わる外力、即ち、なだらかに立ち上がったり、立ち下がったりする外力と、短時間に急激に加わる外力とを区別して監視し、短時間に接触を判別することができる。
 即ち、本願発明の容積空間の物理的変化量を検出するセンサが物理的変化量を検出するセンサ信号出力回路及び次回の物理的変化量の検出に向けてセンサ自体の正常・異常をセンサ異常判別回路で判別できる接触検出装置として提供することができ、殊に、次回、初回の起動時に対して、何時発生するか分からない接触直前のタイミングに風量センサ異常が発生していないかを判別できる。
For example, compressed air in the leak-proof volume volume gets a physical change in the sensor due to the pressure applied to the substrate and one or both sides of the foam. The amount of physical change is detected as air pressure, air flow, air flow rate, change in air volume, or the like.
As described above, since the physical variable in the leak-proof volume is detected as the physical change amount from the base material and / or the foam, the pressure applied to a wide range is detected. Even if it is a two-dimensional planar configuration, it can be applied even if it is a three-dimensional three-dimensional configuration, it is possible to detect an external pressure above a predetermined level.
Further, a sensor that detects a physical change in the volume space detects an external pressing force applied to the volume space of the sensor signal output circuit by the sensor as a physical change amount of the volume space. It is detected as a contact pressure or the like applied to the normal volume space. However, since the sensor abnormality discrimination circuit discriminates normality / abnormality of the sensor itself based on the sensor output within a predetermined time immediately after detection of the sensor output of the sensor signal output circuit, the operation of the sensor signal output circuit At the end of the test, the sensor malfunction discrimination circuit clearly guarantees that the sensor is not malfunctioning.
In particular, the sensor output for detecting the amount of physical change of the volume space is an external force which is gradually applied with the passage of time, that is, an external force which gently rises or falls and an external force which is rapidly applied in a short time. Can be distinguished and monitored, and contact can be determined in a short time.
That is, the sensor for detecting the physical change of the volume space according to the present invention detects the physical change, and the sensor signal output circuit for detecting the physical change next time The present invention can be provided as a contact detection device that can be determined by a circuit, and in particular, it can be determined whether an air flow sensor abnormality has not occurred at a timing immediately before contact which does not know when it occurs next time.
 前記センサ異常判別回路は、前記センサ信号出力回路が前記容積空間に加えられた外部からの押圧力を検出する定常状態に戻るとき、前記センサの検出信号をアース電位として定常状態に戻るまでのセンサの出力特性を基に、前記センサ自体の正常・異常を判別するものである。
 したがって、前記センサ信号出力回路が動作する毎に、センサの正常・異常が確認され、特に、次の動作の前に、前記センサ異常判別回路が動作しなければ、次回、安全に動作することを意味する。
 特に、前記センサ信号出力回路が前記容積空間に加えられた外部からの押圧力を検出する定常状態に戻るとき、前記センサの検出信号をアース電位として定常状態に戻るまでの二次関数特性を基に、前記センサ自体の正常・異常を判別するものである。結果的に、二次関数特性を経てセンサ信号出力回路の動作に入ることができれば正常である。
The sensor abnormality judging circuit is a sensor until the sensor signal output circuit returns to the steady state with the detection signal of the sensor as the ground potential when the sensor signal output circuit returns to the steady state for detecting an external pressure applied to the volume space. The normality / abnormality of the sensor itself is determined based on the output characteristics of the sensor.
Therefore, every time the sensor signal output circuit operates, the normality / abnormality of the sensor is confirmed, and in particular, if the sensor abnormality discrimination circuit does not operate before the next operation, it operates safely next time. means.
In particular, when the sensor signal output circuit returns to a steady state for detecting an external pressing force applied to the volume space, based on a quadratic function characteristic until the sensor detection signal is returned to the steady state with the ground potential. In addition, it determines the normality / abnormality of the sensor itself. As a result, it is normal if it is possible to enter the operation of the sensor signal output circuit through the quadratic function characteristic.
図1は本発明の実施の形態における接触検出装置の特定の形状に形成した基材の例示の斜視図である。FIG. 1 is an exemplary perspective view of a substrate formed in a specific shape of a touch detection device according to an embodiment of the present invention. 図2は本発明の実施の形態における接触検出装置の発泡体を積層接着した状態の説明図である。FIG. 2 is an explanatory view of a state in which foams of the contact detection device according to the embodiment of the present invention are laminated and bonded. 図3は本発明の実施の形態における接触検出装置の基材と発泡体を装着した状態の断面の説明図である。FIG. 3 is an explanatory view of a cross section of the contact detection device according to the embodiment of the present invention in a state where the base material and the foam are attached. 図4は本発明の実施の形態における接触検出装置の構造を説明する断面説明図である。FIG. 4 is a cross-sectional explanatory view for explaining the structure of the touch detection device in the embodiment of the present invention. 図5は本発明の実施の形態における接触検出装置で使用する空間維持材の他の事例の説明図であるFIG. 5 is an explanatory view of another example of the space maintenance material used in the touch detection device in the embodiment of the present invention. 図6は本発明の実施の形態における接触検出装置を取付ける人形ロボットの全体斜視図である。FIG. 6 is an overall perspective view of a doll robot to which the touch detection device according to the embodiment of the present invention is attached. 図7は本発明の実施の形態における接触検出装置を取付ける人形ロボットの胸部の全体斜視図である。FIG. 7 is an overall perspective view of the chest of the doll robot to which the touch detection device according to the embodiment of the present invention is attached. 図8は本発明の実施の形態における接触検出装置を人形ロボットの胸部の内側に配設した要部斜視図である。FIG. 8 is a perspective view of an essential part in which the contact detection device in the embodiment of the present invention is disposed inside the chest of the doll robot. 図9は本発明の実施の形態における接触検出装置を人形ロボットの胸部の外側を押圧した場合の要部斜視図である。FIG. 9 is a perspective view of an essential part of the touch detection device according to the embodiment of the present invention when the outside of the chest of the doll robot is pressed. 図10は本発明の実施の形態における接触検出装置で使用するセンサ信号出力回路及びセンサ異常判別回路の全体回路図である。FIG. 10 is an entire circuit diagram of a sensor signal output circuit and a sensor malfunction discrimination circuit used in the contact detection device according to the embodiment of the present invention. 図11は本発明の実施の形態における接触検出装置で使用する順次接触状態が増加するタイミングチャートである。FIG. 11 is a timing chart in which sequential contact states used in the touch detection device according to the embodiment of the present invention increase. 図12は本発明の実施の形態における接触検出装置で使用する外力付加があった場合のタイミングチャートである。FIG. 12 is a timing chart in the case where there is an external force application used in the contact detection device according to the embodiment of the present invention. 図13は本発明の実施の形態における接触検出装置で使用する一般的な接触状態のタイミングチャートである。FIG. 13 is a timing chart of a general touch state used in the touch detection device according to the embodiment of the present invention. 図14は本発明の実施の形態における接触検出装置の制御のフローチャートである。FIG. 14 is a flowchart of control of the touch detection device according to the embodiment of the present invention.
 以下、本発明の実施の形態について、図面に基づいて説明する。なお、本実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described based on the drawings. Note that, in the present embodiment, the same symbols and symbols in the drawings are the same or corresponding functional parts, and therefore the description thereof will not be repeated here.
[実施の形態]
 図1乃至図9において、本発明の実施の形態の接触検出装置で使用する基材1は、人形(ひとがた)ロボット50に使用されているプロテクタである。この基材1は、例えば、ソリッドタイプまたは発泡性の熱可塑性樹脂材料から構成されている。この基材1の切削加工前は、接着のために確保しているフランジ部2のサイズで蒲鉾型に形成されている。即ち、基材1の外表面1Aは対向する発泡体10からすれば、片側のみに切削加工が行われた容積空間4を形成している。勿論、容積空間4の切削加工は、基材1または発泡体10側の一方のみ、或いは基材1及び発泡体10の両方とすることができる。
 なお、基材1の外表面1Aのフランジ部2と発泡体10の内表面10Bとの間は、接着剤または両面テープで接合している。または、基材1の開口及び発泡体10の開口の接合に従って接合してもよい。
Embodiment
In FIGS. 1 to 9, a substrate 1 used in the contact detection device according to the embodiment of the present invention is a protector used for a doll (human) robot 50. The substrate 1 is made of, for example, a solid type or foamable thermoplastic resin material. Before cutting this base material 1, it is formed in a bowl shape with the size of the flange part 2 secured for bonding. That is, when the outer surface 1A of the base material 1 is made of the opposing foam 10, the volume space 4 in which the cutting process is performed is formed only on one side. Of course, machining of the volume space 4 can be performed on only one of the substrate 1 or the foam 10 side, or both of the substrate 1 and the foam 10.
The flange portion 2 of the outer surface 1A of the base 1 and the inner surface 10B of the foam 10 are bonded with an adhesive or a double-sided tape. Or you may join according to joining of the opening of the base material 1, and the opening of the foam body 10. FIG.
 本実施の形態では、基材1を特定の形状に形成した合成樹脂材料としているが、本発明を実施する場合には、アルミニウム板、ステンレス板、鉄板、銅板等として、ソリッドタイプの合成樹脂、発泡合成樹脂材料として形成することもできる。外表面1Aは対向する発泡体10からみれば、片側のみに切削加工が行われた容積空間4を形成しているが、本発明を実施する場合は、発泡体10側を切削してもよいし、基材1と発泡体10の両側を切削してもよい。何れにせよ、容積空間4は対向する基材1と発泡体10の片側または両側に容積空間4が形成されればよい。容積空間4の厚みは、通常、3~15mm程度である。 In the present embodiment, the base material 1 is a synthetic resin material formed in a specific shape, but in the case of practicing the present invention, a solid type synthetic resin is used as an aluminum plate, stainless steel plate, iron plate, copper plate, etc. It can also be formed as a foamed synthetic resin material. When viewed from the opposing foam 10, the outer surface 1A forms the volume space 4 in which the cutting process is performed on only one side, but in the case of practicing the present invention, the foam 10 side may be cut. Alternatively, both sides of the substrate 1 and the foam 10 may be cut. In any case, the volume space 4 may be formed on one side or both sides of the opposing base 1 and the foam 10. The thickness of the volume space 4 is usually about 3 to 15 mm.
 基材1と発泡体10との間に形成された容積空間4は、容積空間4自体が閉じられた空間となっている。したがって、外部から発泡体10に圧力を加えると、その加えた圧力に応じて窪みが生じ、容積空間4の体積変化が生じ、圧力変化が生じる。容積空間4の体積変化は空気圧となってセンサSENに入るから、センサSENは発泡体10に加えた圧力の検出となる。
 なお、センサSENとして、市販のマイクロフローセンサ(D6F-V03A1;オムロン製)を使用する場合には、センサSENに風の流れを形成する必要がある。したがって、容積空間4の体積変化が生じるように、補助空間20から外部に空気の流れを発生させる。また、基材1と発泡体10との間に形成された容積空間4に付与する外力を解放すると、容積空間4の復元力で、センサSENには逆方向の空気の流れとなる。容積空間4に付与する外力はセンサSENで付与するものではないが、爾後、センサSENのみの説明とする場合もある。
The volume space 4 formed between the substrate 1 and the foam 10 is a space in which the volume space 4 itself is closed. Therefore, when a pressure is applied to the foam 10 from the outside, a recess is generated in response to the applied pressure, a volume change of the volume space 4 occurs, and a pressure change occurs. Since the volume change of the volume space 4 becomes air pressure and enters the sensor SEN, the sensor SEN becomes a detection of the pressure applied to the foam 10.
When a commercially available micro flow sensor (D6F-V03A1; manufactured by OMRON) is used as the sensor SEN, it is necessary to form a flow of wind in the sensor SEN. Therefore, a flow of air is generated from the auxiliary space 20 to the outside so that the volume change of the volume space 4 occurs. Further, when the external force applied to the volume space 4 formed between the substrate 1 and the foam 10 is released, the restoring force of the volume space 4 causes air to flow in the reverse direction to the sensor SEN. Although the external force applied to the volume space 4 is not applied by the sensor SEN, it may be described only after the sensor SEN.
 本実施の形態の接触検出装置で使用する発泡体10は、1枚以上の熱可塑性樹脂材料、または2枚以上を接着剤15で積層接着した熱可塑性樹脂材料としての発泡合成樹脂材料11,12,13を特定の形状に形成したものである。1枚以上の発泡合成樹脂材料11,12,13は、発泡体10で容積空間4の容積変化が出現する硬度を有するものであり、特に、発泡体10は、存在する内部気泡同士が繋がっていない独立気泡体、存在する内部気泡同士が繋がっている連続気泡体の何れであってもよい。しかし、空気の漏れを少なくするには、極めて柔らかく、復元性がある独立気泡体が好ましく、これら発泡体10の発泡倍率は10~50倍程度である。スポンジ硬度は10~50(JIS-k-6253)の範囲内が好ましく、通常、スポンジ硬度は15~45がより好適であり、構造によっては多少変化する。 The foam 10 used in the contact detection device according to the present embodiment is formed of one or more thermoplastic resin materials, or foam synthetic resin materials 11 and 12 as thermoplastic resin materials obtained by laminating and bonding two or more sheets with the adhesive agent 15. , 13 are formed in a specific shape. One or more foam synthetic resin materials 11, 12 and 13 have a hardness that causes a volume change of the volume space 4 to appear in the foam 10. In particular, in the foam 10, the existing internal bubbles are connected to each other. It may be either a closed cell or an open cell in which the existing internal cells are connected. However, in order to reduce air leakage, it is preferable to use an extremely soft and recoverable closed cell, and the expansion ratio of these foams 10 is about 10 to 50 times. The sponge hardness is preferably in the range of 10 to 50 (JIS-k-6253), and usually, the sponge hardness is more preferably 15 to 45, and changes somewhat depending on the structure.
 発明者らは、図2に示すように、市販されている3枚の特定の縦・横・高さ(1200×900×60mm)の規格化されたポリエチレンからなる発泡合成樹脂材料11,12,13を使用した。ポリエチレンからなる発泡合成樹脂材料11,12,13は、各規格化サイズが単体で発泡成形されており、表面の発泡密度が高いスキン層となっている。そのベントホールZはφ2~10mm程度の材料である。本実施例で50mmよりも厚い製品を得るには、規格化された発泡合成樹脂材料11,12,13の表面がスキン層となっているから、その両面の接着面にゴム系の接着剤を塗布して積層接着した。なお、接着剤15はゴム系の接着剤である。 The inventors of the present invention, as shown in FIG. 2, foamed synthetic resin materials 11, 12, which are made of standardized polyethylene of three specific vertical, horizontal and height (1200 × 900 × 60 mm), which are commercially available. I used 13. The foamed synthetic resin materials 11, 12 and 13 made of polyethylene are each foam-formed as a single standardized size, and the surface is a skin layer having a high foam density. The vent hole Z is a material of about φ2 to 10 mm. In order to obtain a product thicker than 50 mm in this embodiment, the surface of the standardized foamed synthetic resin materials 11, 12 and 13 is a skin layer, so a rubber adhesive is applied to the adhesive surfaces of both surfaces thereof. It apply | coated and laminated | stacked adhesion. The adhesive 15 is a rubber adhesive.
 ゴム系の接着剤15としては、ゴム糊(ノントルエン缶入り(丸末油業))またはゴム糊であるボンド(GSEN0X7(コニシ株))を接着する両面に薄く塗り、そして乾燥させ、接着面を対向させて圧縮し接着した。ゴム系の接着剤15はボンド(GSEN0X7(コニシ株))であり、シクロヘキサン、n-ヘプタン、アセトンが主成分である。
 ここで、接着剤15の厚みは、その存在が視認できない程度に可能な限り薄くし、接着機能のみが維持できればよい。ここで使用するゴム糊は、基材としての発泡合成樹脂材料11,12,13と同じポリエチレン等の合成樹脂からなる接着剤15も使用できる。
The rubber adhesive (15) may be thinly coated on both sides to which a rubber paste (containing non-toluene can (round powder oil business)) or a bond (GSEN 0 X 7 (Konishi stock)) which is a rubber paste is adhered and dried. Were compressed and bonded. The rubber-based adhesive 15 is a bond (GSEN0X7 (Konishi stock)), and cyclohexane, n-heptane, and acetone are main components.
Here, the thickness of the adhesive 15 should be as thin as possible so that its presence can not be visually recognized, and only the adhesive function can be maintained. The adhesive agent 15 which consists of synthetic resins, such as the same polyethylene as the synthetic foam materials 11, 12 and 13 as a base material, can also be used for the rubber paste used here.
 次に、本発明の実施の形態における発泡体10について詳述する。
 本発明を実施する場合の基材1は、人形ロボット等のロボットの被覆、各種機器のハウジングの被覆は、アルミニウム板、ステンレス板、鉄板、銅板等で形成されるのが一般的である。合成樹脂の場合には発泡合成樹脂も使用されているものの、主に、射出成型等で形成されている。この射出成型で形成した基材1の殆どは、1ブロックの熱可塑性樹脂材料から構成したものであるが、本実施の形態の接触検出装置では、射出成型等で形成された1ブロックの基材1の事例で説明する。
 勿論、1枚以上の熱可塑性樹脂材料または2枚以上を積層接着した発泡合成樹脂材料11,12,13を特定の形状に形成した基材1も、1個のソリッドタイプの合成樹脂材料または複数枚のソリッドタイプの合成樹脂板を特定の形状に形成してなる基材1も、基本的構成は射出成型等で形成されたものと相違するものではない。
Next, the foam 10 in the embodiment of the present invention will be described in detail.
In the case of practicing the present invention, the substrate 1 is generally coated with a robot such as a doll robot or a housing of various devices formed of an aluminum plate, a stainless steel plate, an iron plate, a copper plate or the like. In the case of a synthetic resin, although a foamed synthetic resin is also used, it is mainly formed by injection molding or the like. Most of the base material 1 formed by injection molding is made of one block of thermoplastic resin material, but in the contact detection device of the present embodiment, the base material of one block formed by injection molding or the like This will be described in case 1.
Of course, the base material 1 in which one or more thermoplastic resin materials or foamed synthetic resin materials 11, 12 and 13 in which two or more sheets are laminated and bonded is formed in a specific shape is also one solid type synthetic resin material or plural The basic configuration of the base material 1 formed by forming a sheet of solid type synthetic resin sheet into a specific shape is not different from that of the base structure formed by injection molding or the like.
 本実施の形態で使用する発泡合成樹脂材料としては、ポリウレタン(PUR)、ポリスチレン(PS)、ポリオレフィン(主に、ポリエチレン(PE)やポリプロピレン(PP))、また、フェノール樹脂(PF)、ポリ塩化ビニル(PVC)、ユリア樹脂(UF)、シリコーン(SI)、ポリイミド(PI)、メラミン樹脂(MF)等の発泡化した樹脂が使用でき、内部気泡同士が繋がっている連続気泡体または内部気泡同士が繋がっていない独立気泡体の利用が可能である。しかし、発泡体10及び基材1から空気が外気に漏れ難い容積空間4を形成するには、内部気泡同士が繋がっていない独立気泡体の使用が好ましい。 As a foamed synthetic resin material used in the present embodiment, polyurethane (PUR), polystyrene (PS), polyolefin (mainly polyethylene (PE) and polypropylene (PP)), phenol resin (PF), polychloride Foamed resin such as vinyl (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF) can be used, and open cells or internal cells in which internal cells are connected to each other It is possible to use a closed cell where there is no connection. However, in order to form the volume space 4 in which air does not easily leak from the foam 10 and the base material 1 to the outside air, it is preferable to use a closed cell in which internal cells are not connected.
 本実施の形態では、基材1は発泡体10と同一材料で、また、それらの対する箱型の内枠6として同一処理したものである。基材1の周囲は切削して、外表面1Aを形成している。発泡体10の外表面10Aと内表面10Bには、後述する箱型の内枠6が立体的構成として形成されている。また、基材1の外表面1Aと内表面1Bにも、後述する箱型の内枠6が立体的に構成されている。勿論、発泡体10の外表面10Aと内表面10Bには、基材1の外表面1Aと内表面1Bにも、後述する箱型の内枠6は二次元的構成として形成してもよい。 In the present embodiment, the base material 1 is the same material as the foam 10 and the same treatment as the box-shaped inner frame 6 facing them. The periphery of the substrate 1 is cut to form the outer surface 1A. On the outer surface 10A and the inner surface 10B of the foam 10, a box-shaped inner frame 6 described later is formed as a three-dimensional structure. Moreover, the box-shaped inner frame 6 mentioned later is three-dimensionally comprised also by the outer surface 1A of the base material 1, and the inner surface 1B. Of course, on the outer surface 10A and the inner surface 10B of the foam 10, a box-shaped inner frame 6 described later may be formed in a two-dimensional configuration also on the outer surface 1A and the inner surface 1B of the base material 1.
 箱型の内枠6は、射出成形で形成した箱であり、安定した据え付け位置によりセンサSENの流入口に空気圧を導くもので、容積空間4の容積変化、圧力変化がセンサSENに正確に伝わるようにしている。内枠6が四角枠の箱状になっているのは、水平方向及び垂直方向に内枠6が移動しないようにし、外力変化を得やすくしている。内枠6の開口側には発泡合成樹脂材料の連続気泡体からなる平板封止板(スポンジ)8が配設されている。内枠6と平板封止板8で形成された空間は補助空間20となっている。この補助空間20は、一時的に容積空間4の容積変化、圧力変化を吸収させてもよいし、全く独立の空間としてもよい。通常、容積空間4の圧力は変化するが補助空間20は大気圧となるように空気流が形成される。
 したがって、補助空間20は容積空間4に汚れた空気を導入しないので、センサSENを汚すことがない。なお、四角の箱状になっている内枠6は、金属板または金属を金型加工することができる。
The box-shaped inner frame 6 is a box formed by injection molding and guides the air pressure to the inlet of the sensor SEN by the stable installation position, and the change in volume of the volumetric space 4 and the change in pressure are accurately transmitted to the sensor SEN It is like that. The fact that the inner frame 6 is in the form of a box with a square frame prevents the inner frame 6 from moving in the horizontal and vertical directions, making it easier to obtain changes in external force. On the opening side of the inner frame 6, a flat sealing plate (sponge) 8 composed of open cells of a foamed synthetic resin material is disposed. The space formed by the inner frame 6 and the flat sealing plate 8 is an auxiliary space 20. The auxiliary space 20 may temporarily absorb a change in volume of the volume 4 or a change in pressure, or may be a completely independent space. Usually, the pressure of the volume space 4 changes, but an air flow is formed so that the auxiliary space 20 may be at atmospheric pressure.
Therefore, the auxiliary space 20 does not introduce dirty air into the volume space 4 and therefore does not pollute the sensor SEN. In addition, the inner frame 6 which becomes a square box shape can carry out metal mold processing of a metal plate or a metal.
 即ち、補助空間20は発泡合成樹脂材料の連続気泡体からなる平板封止板8で形成されているから、容積空間4から押圧された空気は案内路5を介してセンサSENの流入口に流れる。このとき、補助空間20の略空気圧は大気圧を維持する。しかし、このとき、補助空間20は大気圧と外部圧力の歪を受けているから、原理的には、外気よりも高くなっているので、連続気泡体からなる平板封止板8を通して、センサSENの流入口の空気を漏らすことができる。また、容積空間4の押圧力を解除すると容積空間4は不足空気量を案内路5及びセンサSENを介して外気を導入する。このとき、平板封止板8の全面がフィルタになるから、部分的に外部から塵埃を導入したり、目詰まりしたりすることが極端に少なくなる。
 なお、念のため記載するが、平板封止板8から形成された補助空間20は、発泡合成樹脂材料の連続気泡体からなり、大気圧に等しくなるように形成されている。ここでは、センサSENは圧力センサであっても、空気の流れを検出する市販のマイクロフローセンサ(D6F-V03A1;オムロン製)でも使用方法は同じである。このときには、容積空間4から補助空間20に空気が流れるように構成する必要がある。
That is, since the auxiliary space 20 is formed by the flat plate sealing plate 8 made of open cells of a foamed synthetic resin material, the air pressed from the volume space 4 flows to the inflow port of the sensor SEN via the guide path 5 . At this time, the substantially air pressure of the auxiliary space 20 maintains the atmospheric pressure. However, at this time, since the auxiliary space 20 is subjected to distortion of the atmospheric pressure and the external pressure, in principle, the auxiliary space 20 is higher than the outside air, so the sensor SEN is transmitted through the flat sealing plate 8 made of an open cell. Can leak air from the inlet of the Further, when the pressing force of the volume space 4 is released, the volume space 4 introduces the insufficient air amount to the outside air via the guide path 5 and the sensor SEN. At this time, since the entire surface of the flat sealing plate 8 is a filter, it is extremely less likely that dust is partially introduced from the outside or clogged.
In addition, although described just in case, the auxiliary | assistant space 20 formed from the flat sealing plate 8 consists of an open-cell body of foaming synthetic resin material, and it is formed so that it may become equal to atmospheric pressure. Here, even though the sensor SEN is a pressure sensor, the method of use is the same whether it is a commercially available micro flow sensor (D6F-V03A1; manufactured by OMRON) that detects the flow of air. At this time, air must flow from the volume space 4 to the auxiliary space 20.
 ここで使用したセンサSENは、図示しない補強層によって空気が外気に漏れ難く形成した容積空間4の圧力を検出している。このセンサSENは、市販の歪ケージを内蔵するセンサ、ダイヤフラムを介して検出するセンサ、ピエゾ効果素子を使用したセンサ、静電容量型のセンサであれば使用可能である。
 本実施の形態で使用したセンサSENは、SMC小形空気圧用圧力センサPSE540Aを使用した。入力の圧力と出力電圧Vとの関係は略比例関係で感度の良いものである。
センサSENの出力は電源線2本、出力信号線OUT1本の計3本からなり、本実施の形態では、人形ロボット50の危険信号として急停止させる信号として使用している。
The sensor SEN used here detects the pressure of the volume space 4 formed so that air does not easily leak to the outside air by the reinforcing layer (not shown). The sensor SEN may be any sensor that incorporates a commercially available strain cage, a sensor that detects via a diaphragm, a sensor that uses a piezo effect element, or a capacitive sensor.
The sensor SEN used in the present embodiment uses the SMC compact pneumatic pressure sensor PSE 540A. The relationship between the pressure of the input and the output voltage V is approximately proportional and has a good sensitivity.
The output of the sensor SEN comprises a total of three lines of two power supply lines and one output signal line OUT. In the present embodiment, it is used as a signal for rapidly stopping the danger of the doll robot 50.
 次に、発泡体10に配設が望ましい補強層について説明する。
 発泡体10は、発泡させた熱可塑性樹脂であり、主な合成樹脂原料は、ポリウレタン(PUR)、ポリスチレン(PS)、ポリオレフィン(主に、ポリエチレン(PE)やポリプロピレン(PP))であり、他にも、フェノール樹脂(PF)、ポリ塩化ビニル(PVC)、ユリア樹脂(UF)、シリコーン(SI)、ポリイミド(PI)、メラミン樹脂(MF)等も発泡化して用いることができる。しかし、発泡体10の切削面を加熱することにより硬化させることを前提とすると、80~200℃の範囲内の温度で変形する合成樹脂材料の使用が望ましい。また、本発明を実施する場合には、発泡率を問うものではないが、使途によっては弾性を維持するものの、硬く仕上げるために発泡率の制限を受けるものもある。
Next, a reinforcing layer which is preferably disposed on the foam 10 will be described.
The foam 10 is a foamed thermoplastic resin, and the main synthetic resin raw materials are polyurethane (PUR), polystyrene (PS), polyolefin (mainly polyethylene (PE) and polypropylene (PP)), and others Also, phenol resin (PF), polyvinyl chloride (PVC), urea resin (UF), silicone (SI), polyimide (PI), melamine resin (MF) and the like can be used after foaming. However, on the premise that the cutting surface of the foam 10 is cured by heating, it is desirable to use a synthetic resin material that deforms at a temperature in the range of 80 to 200 ° C. In the practice of the present invention, although the foaming rate is not limited, there are some which maintain elasticity depending on the use, but are limited in the foaming rate in order to finish hard.
 基材1の内表面1Bには、箱型の内枠6が接着剤で接合して配設されている。この内枠6は、出力が外力に比例する特性のセンサSENを接合するもので、容積空間4から空気を導く案内路5の流入口に容積空間4の圧力を加えている。このとき、容積空間4の圧力をセンサSENの案内路5の流入口に導くものであるから、補助空間20は大気圧であることが望ましい。
 センサSENの出力は、リード線Lを介して、必要に応じてコネクタ等を介してマイクロプロセッサ30の内蔵するオペアンプOP等に導かれ、そのオペアンプOPの出力は“H(オン)”、“L(オフ)”に変換される。また、オン時間またはオフ時間の長短の条件によって信号検出出力ACの“H”、“L”の検出出力の判断を行う。
 本実施の形態では、マイクロプロセッサ30の出力は通常を“H”、パルス発生を“L”として、マイナスのパルス発生を説明するが、本発明を実施する場合には、NOT回路、NAND回路の構成を加えれば、結果は同一となるので、“H”から“L”に信号変換する事例として説明する。
A box-shaped inner frame 6 is disposed on the inner surface 1B of the base 1 by bonding using an adhesive. The inner frame 6 joins the sensor SEN having a characteristic in which the output is proportional to the external force, and applies the pressure of the volume space 4 to the inflow port of the guide passage 5 which leads the air from the volume space 4. At this time, since the pressure of the volume space 4 is introduced to the inlet of the guide path 5 of the sensor SEN, the auxiliary space 20 is preferably at atmospheric pressure.
The output of the sensor SEN is led to an operational amplifier OP or the like built in the microprocessor 30 via a lead wire L, if necessary, via a connector or the like, and the output of the operational amplifier OP is “H (on)”, “L Converted to (off). Further, the detection output of "H" and "L" of the signal detection output AC is judged according to the long and short conditions of the on time or the off time.
In the present embodiment, the output of the microprocessor 30 is described as “H” for normal and “L” for pulse generation to describe negative pulse generation, but in the case of practicing the present invention, the output of the NOT circuit and NAND circuit is Since the result is the same if the configuration is added, the case of signal conversion from “H” to “L” will be described.
 図6乃至図9において、本発明の実施の形態における接触検出装置を取付けた人形ロボット50は、内部に汎用のハードウェア及びソフトウェアを搭載している。また、図7の要部斜視図で人形ロボット50の胸部51及び肩部52の外観を示している。図8のコーナ(角)55は、二次元的または三次元的に空間を形成し、そこに、センサSENから離れた位置に配置したマイクロプロセッサ30を取付けてもよい。また、必要に応じてそこに電池を配設してもよい。平板封止板8(図示しない)の上に可撓性のフィルム56を接合させたもので、基材1(人形ロボット50)とそれを被覆する発泡体10を構成している。 In FIG. 6 to FIG. 9, the doll robot 50 attached with the contact detection device according to the embodiment of the present invention has general-purpose hardware and software installed inside. Moreover, the external appearance of the chest 51 and the shoulder part 52 of the doll robot 50 is shown with the principal part perspective view of FIG. The corner (corner) 55 of FIG. 8 forms a space two-dimensionally or three-dimensionally, and the microprocessor 30 placed at a distance from the sensor SEN may be attached thereto. Also, a battery may be disposed there as needed. A flexible film 56 is bonded on a flat sealing plate 8 (not shown), and constitutes a base material 1 (doll robot 50) and a foam 10 for covering it.
 本実施の形態の人形ロボット50は、胸部51の内側に、図示しない連続気泡体の発泡合成樹脂材料板4A,4B,4Cを入れて体積を確保し、基材1(人形ロボット50)を被覆する発泡体10との間に容積空間4を形成し、更に、容積空間4を閉じる空気を通過させない、かつ、センサSENのみに圧力が加わるようにしている。結果的に、基材1(人形ロボット50)が金属であるから、センサSENが固定される。
 なお、リード線止め57は、リード線Lの配線用である。
The doll robot 50 of the present embodiment inserts the foam synthetic resin material plates 4A, 4B, 4C of open cells not shown inside the chest 51 to secure a volume, and covers the base material 1 (doll robot 50). A volume space 4 is formed between the two foams 10, and air that closes the volume space 4 is not allowed to pass, and pressure is applied only to the sensor SEN. As a result, since the substrate 1 (doll robot 50) is metal, the sensor SEN is fixed.
The lead wire stopper 57 is for wiring the lead wire L.
 ここで、図9のように、人形ロボット50の胸部51外側のコーナを押圧すると、コーナのみが指と接触しており、そこが窪むように見受けられるが、この窪みによる歪が、容積空間4を形成した機械的強度の弱い部分に集中し、容積空間4が体積変化を生じ、それをセンサSENで検出することができる。
 結果的には、人形ロボット50の胸部51に付与する外力が検出できる。本実施の形態の人形ロボット50には、肩部52の接触を検出していないが、図8に示すように、全体に設けなくても、一部にストレス(歪)が入ると、動作することが判明した。
 したがって、基材1及び発泡体10との間の片側または両側に、基材1及び発泡体10から空気が外気に漏れ難い容積空間4を形成し、センサSENの出力によって容積空間4にどれだけの外力が加わったかを判断することにより、基材1及び発泡体10の何れかに押圧力が加わり、容積空間4の体積が変化した要因の存在を把握し、基材1及び発泡体10との間の片側または両側に人体等が接触したことを判断するものである。
Here, as shown in FIG. 9, when pressing the corner on the outside of the chest 51 of the doll robot 50, only the corner is in contact with the finger, and it appears as if it is recessed. Focusing on the weak part of the formed mechanical strength, the volume 4 causes a volume change which can be detected by the sensor SEN.
As a result, the external force applied to the chest 51 of the doll robot 50 can be detected. In the doll robot 50 according to the present embodiment, the contact of the shoulder portion 52 is not detected, but as shown in FIG. 8, even if it is not provided entirely, it operates when stress (strain) is partially applied. It has been found.
Therefore, on one side or both sides between the base material 1 and the foam 10, a volume space 4 in which air from the base material 1 and the foam 10 is hardly leaked to the outside air is formed, and the output space of the sensor SEN The pressure is applied to any of the base material 1 and the foam 10 by determining whether or not the external force is applied, and the presence of the factor that the volume of the volume space 4 has changed is grasped, and the base material 1 and the foam 10 are It is determined that the human body or the like has come into contact with one side or both sides of the space.
 特定の形状に形成された基材1は、1枚の発泡合成樹脂材料または発泡ゴム材料、または複数枚を積層接着した発泡合成樹脂材料または発泡ゴム材料としたものである。または、本実施の形態のように、人形ロボット50の一部とすることができる。
 したがって、基材1と発泡体10が同じ特性の材料とすることができるので、対向する基材1と発泡体10が同一材料となり軽量化及び加工が容易となる。また、伸縮が自在でない、即ち、伸縮しないシートを使用することもでき、これによって、基材1の用途を広げることができる。
The base material 1 formed in a specific shape is made of one foamed synthetic resin material or foamed rubber material, or a foamed synthetic resin material or foamed rubber material obtained by laminating and bonding a plurality of sheets. Alternatively, it can be a part of the doll robot 50 as in the present embodiment.
Therefore, since the base material 1 and the foam 10 can be made to the material of the same characteristic, the opposing base material 1 and the foam 10 become the same material, and weight reduction and processing become easy. Also, it is possible to use a non-stretchable sheet, that is, a non-stretch sheet, which can extend the application of the substrate 1.
 また、容積空間4には、その内面に通気性のある発泡合成樹脂材料板で格子状、4角形状、鮫小紋、円形の水玉、市松を打ち抜き形成し、または交互に打ち抜いて形成した弾性体を収容したものである。
 したがって、容積空間4は、内面に弾性及び通気性のある発泡合成樹脂材料板で格子状、4角形状、鮫小紋、円形の水玉状、市松状の何れかを打ち抜き形成し、または交互に打ち抜いて形成したものであるから、容積空間4に何も入らない空間ではなく、自己保持する弾性力等を保持させることができ、容積空間4の容積変化を得ればよいことから、複雑な三次元空間であっても、二次元空間と同様の検出が可能となる。
Also, in the volume space 4, an elastic body is formed by punching or alternately forming a lattice, quadrilateral, scaly pattern, circular polka dots, or checkered pattern with an air-permeable foam synthetic resin material plate on the inner surface thereof. Are housed.
Therefore, the volume space 4 is formed by punching or forming any of lattice-like, square-like, wrinkle-like, circular water-ball-like, and checkerboard-like shapes with an elastic and air-permeable foam synthetic resin material plate on the inner surface Therefore, it is possible to maintain the self-holding elastic force etc. instead of a space in which nothing enters the volume space 4, and it is sufficient to obtain the volume change of the volume space 4. Even in the original space, detection similar to that in the two-dimensional space is possible.
 そして、センサSENは、流入口に空気の圧力を導入するものである。したがって、流入口に空気を通し、その圧力の大きさをセンサSENで検出し、その出力を増幅し、そのアナログ入力の大きさによって、閾値よりも大きいときに“H”、それ以下の入力のときに“L”出力とする。フォトトランジスタがオンするとき、アース電位閾値である第3閾値TH3=TH0=0[V]のアース電位となり、人形ロボット50の制御が停止する。したがって、センサSENの配線が予測しないロボット制御でショートし、またはアース電位閾値である第3閾値TH3=TH0=0[V]のアース電位に低下することがない。 The sensor SEN is for introducing the pressure of air to the inlet. Therefore, air is passed through the inlet, the magnitude of the pressure is detected by the sensor SEN, the output is amplified, and the magnitude of the analog input causes “H” below the threshold when it is greater than the threshold value. Sometimes it will be "L" output. When the phototransistor is turned on, the ground potential becomes the ground potential of the third threshold TH3 = TH0 = 0 [V], and the control of the doll robot 50 is stopped. Therefore, there is no possibility that the wiring of the sensor SEN causes a short circuit under robot control which is not predicted, or the ground potential of the sensor SEN falls to the ground potential of the third threshold TH3 = TH0 = 0 [V].
 例えば、マイクロプロセッサ30には、付設されたA-D変換回路等のアナログ入力を有していて、その出力はデジタル処理された出力となる機能を有している。即ち、容積空間の物理的変化量として検出するセンサSENは、外部からの押圧力が緩やか(例えば、5mm/s)に押圧力を増加する場合には、図11及び図12に示すように、センサ出力ESが徐々に上昇する。このとき、センサ出力ESの検出出力時間が検出すべき継続時限Xに到達したとき、信号検出出力ACの信号が出力される。
 また、外部からの押圧力が緩やかな押圧力の増加を得て、それがタイミングt1で第1閾値TH1を超えると、容積空間4の物理的変化量として検出したセンサ出力ESは、外部からの押圧力が緩やかな押圧力の増加を得て、それが第1閾値TH1を超えると、その時から監視する時限Xの時限だけ計測を開始し、時限Xの時限になったとき、信号検出出力ACが“H”から“L”になる。
For example, the microprocessor 30 has an analog input such as an attached AD conversion circuit, and its output has a function to be a digitally processed output. That is, as shown in FIG. 11 and FIG. 12, the sensor SEN, which detects the amount of physical change of the volume space, increases the pressing force from the outside gently (for example, 5 mm / s). The sensor output ES gradually rises. At this time, when the detection output time of the sensor output ES reaches the continuation time limit X 1 to be detected, the signal of the signal detection output AC is output.
In addition, when the pressing force from the outside obtains a gradual increase in pressing force and it exceeds the first threshold TH1 at the timing t1, the sensor output ES detected as the physical change amount of the volume space 4 is from the outside to obtain an increase in the pressing force gentle pressure, when it exceeds the first threshold value TH1, which starts measurement only timed timed X 1 to be monitored since then, became timed timed X 1, signal detection The output AC changes from "H" to "L".
 容積空間4の物理的変化量が移動限界になり、容積空間4の物理的変化量の検出がなくなると、センサ出力ESの値が低下し、タイミングt3で第1閾値TH1未満に低下すると、タイミングt4で時限Yの時限を計測し、その間にセンサ出力ESがアース電位、即ち、アース電位閾値TH0になるか否かを判断する。センサ出力ESがアース電位閾値TH0になったとき、センサ出力ESが時限Z1以上継続された後、センサ出力ESがアース電位閾値TH0から信号検出出力ACの“L”に落ち着く。
 前記センサ出力ESの検出信号をアース電位閾値TH0として定常状態に戻るまでの二次関数特性に従った変化の検出となる。この前記センサ出力ESの検出信号をアース電位閾値TH0として定常状態に戻るときには、センサ出力ESの検出直後から所定の時限Z以上継続された時限内に、センサ自体の正常・異常をセンサ出力ESが検出信号で判別する。
 例えば、センサ出力ESが容積空間4の物理的変化量が正圧であったとき、その正圧の解除でセンサ出力ESは負圧で押圧されたことになる。
When the physical change of the volume 4 becomes the movement limit and the physical change of the volume 4 is not detected, the value of the sensor output ES decreases, and when it falls below the first threshold TH1 at the timing t3, the timing measures the timed timed Y 1 in t4, during which the sensor output ES is earth potential, that is, whether becomes ground potential threshold TH0. When the sensor output ES reaches the ground potential threshold TH0, after the sensor output ES is continued for the time limit Z1 or more, the sensor output ES settles from the ground potential threshold TH0 to "L" of the signal detection output AC.
The detection signal of the sensor output ES is used as the ground potential threshold TH0 to detect a change in accordance with a quadratic function characteristic before returning to the steady state. When returning to the steady-state detection signal of the said sensor output ES as a ground potential threshold TH0 is immediately after the detection of the sensor output ES to a predetermined time period Z 1 or more continuously been timed in sensor output ES of normal or abnormal sensor itself Is determined by the detection signal.
For example, when the sensor output ES indicates that the physical change amount of the volume space 4 is a positive pressure, the sensor output ES is pressed by a negative pressure when the positive pressure is released.
 定常状態に戻るときのセンサ出力ESは、容積空間4に加えられた外部からの押圧力を、容積空間4で形成した物理的変化量として検出した後、その戻りは、対向する基材1と発泡体10に形成された所定の容積空間4で外気を導入するものであり、その特性は通常、立ち上がりが急峻な二次曲線の変化となる。したがって、センサ出力ESが0.5Vに戻る時間を計算しておけば、それに要する時間との比較により、二次曲線を描く変化であるか否かを判別できる。勿論、センサ出力ESが0.5Vに戻る時間が長いと二次曲線の変化である確率が高い。センサ出力ESの回復時間が0.5Vに戻るまでの時間は、二次曲線を描く場合の方が長くなる。したがって、実験でその時限を割り出すことにより、センサ出力ESの回復時間から正常・異常を判断してもよい。
 そして、センサ出力ESの回復時間が略決定されるから、時間のみを判断基準とする時限Zの設定を前提としてもよい。
 また、0~0.5Vと変化するセンサ出力ESを、5~100回サンプリングし、サンプリングした電圧の差が大きい場合には、二次曲線の変化である確率が高い。この比較の場合には信頼性の高い結果が得られる。勿論、複数回サンプリングして、そのサンプリングした電圧からセンサ出力ESの回復の正常・異常を判断してもよい。
 即ち、信号検出出力ACとして容積空間の物理的変化量を検出するセンサSENが、物理的変化量を検出するのみならず、自己の性能も確認し、フェイルセーフの接触検出を可能としている。
The sensor output ES when returning to the steady state detects the external pressing force applied to the volume space 4 as the amount of physical change formed in the volume space 4, and then returns the detected force to the opposing substrate 1. Outside air is introduced into a predetermined volume space 4 formed in the foam 10, and its characteristic is usually a change of a quadratic curve having a sharp rise. Therefore, by calculating the time for the sensor output ES to return to 0.5 V, it is possible to determine whether it is a change that draws a quadratic curve by comparison with the time required for it. Of course, if the time during which the sensor output ES returns to 0.5 V is long, the probability of being a change of a quadratic curve is high. The time taken for the recovery time of the sensor output ES to return to 0.5 V is longer in the case of drawing a quadratic curve. Therefore, normality / abnormality may be determined from the recovery time of the sensor output ES by determining the time period in the experiment.
Then, since the recovery time of the sensor output ES is substantially determined, it may be subject to set timed Z 1 to a criterion only time.
Also, when the sensor output ES changing to 0 to 0.5 V is sampled 5 to 100 times, and the difference between the sampled voltages is large, the probability of being a change of a quadratic curve is high. In the case of this comparison, reliable results are obtained. Of course, sampling may be performed a plurality of times, and the normality / abnormality of recovery of the sensor output ES may be determined from the sampled voltage.
That is, the sensor SEN that detects the physical change amount of the volume space as the signal detection output AC not only detects the physical change amount, but also confirms its own performance, and enables fail-safe contact detection.
 容積空間4の物理的変化量として検出するセンサSENは、外部からの押圧力が急激(例えば、250mm/s)に増加する場合には、図13に示すように、センサ出力ESが急激に上昇する。このとき、タイミングt1でセンサ出力ESが第2閾値TH2を超え、監視する時限Xに到達したタイミングt2のとき、信号検出出力ACが“H”から“L”に変化する。即ち、容積空間4の物理的変化量として検出したセンサ出力ESは、外部からの押圧力が急激に大きな押圧力となり、それが第2閾値TH2を超え(タイミングt1)と、その時から時限Xを計測開始し、タイミングt1で時限Xの時限になったとき、信号検出出力ACが“H”から“L”となる。 As shown in FIG. 13, when the external pressure increases rapidly (for example, 250 mm / s), the sensor output S E rises sharply as shown in FIG. Do. In this case, beyond the sensor output ES is the second threshold TH2 at a timing t1, when time t2 has been reached on the time X 2 for monitoring, the signal detection output AC is changed to "L" to "H". That is, the sensor output ES detected as the physical change amount of the volume space 4 becomes a pressing force where the pressing force from the outside suddenly becomes large and exceeds the second threshold TH2 (timing t1), and from that time, time limit X 2 the measurement was started, when it is timed timed X 2 at the timing t1, the signal detection output AC becomes "H" to "L".
 また、容積空間4の物理的変化量が移動できる限界になり、容積空間4の物理的変化量の検出がなくなると、センサ出力ESが低下し、タイミングt3で第2閾値TH2未満になると、時限Yを計測開始し、その間にセンサ出力ESがアース電位閾値TH0になるか否かを判断し、タイミングt4でセンサ出力ESがアース電位閾値TH0になったとき、センサ出力ESが時限Z以上継続された後、センサ出力ESがアース電位閾値TH0から、信号検出出力ACは本来の電圧の“L”に落ち着く。前記センサ出力ESの検出信号をアース電位閾値TH0として定常状態に戻るまでの二次関数特性に従った変化となる。
この前記センサ出力ESの検出信号をアース電位閾値TH0から定常状態の電圧に戻るときには、センサ出力ESのアース電位閾値TH0の検出直後から所定の時限Z2以上継続された時限内に、センサSEN自体の正常・異常を自己の検出出力のセンサ出力ESで検出して判別するものである。
 例えば、センサ出力ESが容積空間4の物理的変化量が正圧であったとき、その正圧の解除でセンサ出力ESは負圧で押圧されたことになる。
In addition, when the physical change amount of the volume space 4 becomes the movable limit and the detection of the physical change amount of the volume space 4 is not detected, the sensor output ES decreases and becomes smaller than the second threshold TH2 at timing t3. Measurement of Y 2 is started, and it is determined whether the sensor output ES becomes the ground potential threshold TH 0 during that time, and when the sensor output ES becomes the ground potential threshold TH 0 at timing t 4, the sensor output ES is over the time limit Z 2 After being continued, the sensor output ES settles to the original voltage "L" from the ground potential threshold TH0 and the signal detection output AC. The detection signal of the sensor output ES is changed to a ground potential threshold TH0 in accordance with a quadratic function characteristic before returning to the steady state.
When the detection signal of the sensor output ES is returned from the ground potential threshold TH0 to a steady state voltage, the sensor SEN itself is within a time duration continued for a predetermined time period Z2 or more immediately after detection of the ground potential threshold TH0 of the sensor output ES. The normal / abnormal state is detected by the sensor output ES of its own detection output to discriminate.
For example, when the sensor output ES indicates that the physical change amount of the volume space 4 is a positive pressure, the sensor output ES is pressed by a negative pressure when the positive pressure is released.
 定常状態に戻るときのセンサ出力ESは、容積空間4に加えられた外部からの押圧力を、容積空間4の物理的変化量として検出した後、その戻りは、対向する基材1と発泡体10に形成された所定の容積空間4で外気を導入するものであり、通常、二次曲線の変化となる。したがって、センサ出力ESが0.5Vに戻る時間を計算で出した値とそれに要する時間との比較により、または、二次曲線を描く変化であるか否かを判別し、センサ出力ESが0.5Vに戻る時間が長いと二次曲線の変化である確率が高いとして正常・異常の判別を行うこともできる。また、0~0.5Vと変化するセンサ出力ESを複数回サンプリングし、そのサンプリングしたピーク電圧によって判断した場合には、二次曲線の変化である確率は高くなる。更に、“H”から“L”、“L”から“H”に信号変換するときの時限が決定され、特に、“L”から“H”に信号変換されるとき、最大時限がタイミングt3で第2閾値TH2未満となってからの時限が、一義的に所定の値以下と決定されるから、その時限のみを使用することもできる。 The sensor output ES when returning to the steady state detects the external pressing force applied to the volume space 4 as a physical change amount of the volume space 4 and then returns the opposing substrate 1 and the foam. The outside air is introduced in a predetermined volume space 4 formed in 10, which is usually a change of a quadratic curve. Therefore, by comparing the time required for the sensor output ES to return to 0.5 V and the time required for that, it is determined whether or not it is a change that draws a quadratic curve, and the sensor output ES is 0. If the time to return to 5 V is long, it is possible to judge normal / abnormal as the probability of being a change of the quadratic curve is high. In addition, when the sensor output ES changing to 0 to 0.5 V is sampled a plurality of times, and it is judged by the sampled peak voltage, the probability of the change of the quadratic curve becomes high. Furthermore, the time limit for signal conversion from “H” to “L” and “L” to “H” is determined, and in particular, when “L” to “H” is signal converted, the maximum time limit is at timing t3. Since the time period after reaching the second threshold TH2 is uniquely determined to be less than or equal to the predetermined value, it is possible to use only that time period.
 ここで、容積空間4に加えられた外部からの押圧力を、容積空間4の物理的変化量としてセンサSENで検出するセンサ信号出力回路31は、センサ出力ESの第1閾値TH1の検出及びその動作の継続を測定する時限X、時限Yの時限を計測するタイマ及び時限X、時限Yの時限により構成されている。
 また、センサ出力ESの検出直後から所定の時限内に、センサSEN自体の正常・異常をセンサ出力ESの検出で判別するセンサ異常判別回路32は、センサ出力ESのアース電位閾値TH0になったことを検出し、時限Z1または時限Z2の時限を計測した後、センサ出力ESが容積空間4の物理的変化量として検出した後の戻りの特性であるか否かを判断し、センサSEN自体の正常・異常を前記センサ出力ESの検出信号で判別するものである。
 したがって、信号検出出力ACとして容積空間の物理的変化量を検出するセンサSENが、物理的変化量を検出するのみならず、自己の性能も確認し、フェイルセーフの接触検出を可能としている。
Here, the sensor signal output circuit 31 that detects the external pressing force applied to the volume space 4 by the sensor SEN as a physical change amount of the volume space 4 detects the first threshold TH1 of the sensor output ES and It comprises a time limit X 1 for measuring the continuation of the operation, a timer for measuring the time limit of the time limit Y 1 , and a time limit X 2 for the time limit Y 2 .
In addition, the sensor abnormality determination circuit 32 that determines normality / abnormality of the sensor SEN itself by detection of the sensor output ES within a predetermined time immediately after detection of the sensor output ES has become the ground potential threshold TH0 of the sensor output ES Is detected and the time limit of time limit Z1 or time limit Z2 is measured, and it is determined whether the sensor output ES is a characteristic of return after detection as a physical change amount of the volume 4 and normality of the sensor SEN itself An abnormality is determined by the detection signal of the sensor output ES.
Therefore, the sensor SEN that detects the physical change amount of the volume space as the signal detection output AC not only detects the physical change amount, but also confirms its own performance, and enables fail-safe contact detection.
 次に、マイクロプロセッサ30による制御について説明する。
このルーチンは、目的の人形ロボット50等の電源投入またはその投入以前に別電源を投入し、繰り返し動作させるものである。
 マイクロプロセッサ30の電源投入の後、ステップS00で初期設定を行う。本実施の形態の初期設定では、第1閾値TH1=1[V]、第2閾値TH2=2.5[V]、アース電位閾値である第3閾値TH3=TH0=0[V]、監視する時限X、時限Y、時限Z、監視する時限X、時限Y、時限Zの時限を書き込む。また、マイクロプロセッサ30の検出出力である信号検出出力ACを“H”と初期設定を行う。
 次いで、ステップS01でセンサ出力SEの徐々に変化するのを検出する第1閾値TH1=1[V]以上であるかを判断する。第1閾値TH1=1[V]以上が判断されると、ステップS02でセンサ出力SEの急激に変化するのを検出する第2閾値TH2=2.5[V]以上であるかを判断する。ステップS01でセンサ出力SEの徐々に変化するのを検出する第1閾値TH1=1[V]未満と判断しているときには、第1閾値TH1=1[V]以上が到来するまで、ステップS01でセンサ出力SEの出力の上昇を待機する。
Next, control by the microprocessor 30 will be described.
In this routine, another power is turned on before the target doll robot 50 or the like is turned on or the power is turned on to repeatedly operate.
After powering on the microprocessor 30, initialization is performed in step S00. In the initial setting of this embodiment, the first threshold TH1 = 1 [V], the second threshold TH2 = 2.5 [V], and the third threshold TH3 = TH0 = 0 [V] which is the ground potential threshold are monitored. Write a time limit of time limit X 1 , time limit Y 1 , time limit Z 1 , time limit X 2 to be monitored, time limit Y 2 , time limit Z 2 . Also, the signal detection output AC, which is the detection output of the microprocessor 30, is initialized to "H".
Next, in step S01, it is determined whether or not the first threshold value TH1 = 1 [V] for detecting a gradual change of the sensor output SE. If it is determined that the first threshold value TH1 = 1 [V] or more, it is determined in step S02 whether or not the second threshold value TH2 = 2.5 [V] or more for detecting a rapid change of the sensor output SE. If it is determined in step S01 that the first threshold TH1 is less than 1 [V] to detect a gradual change in the sensor output SE, the process proceeds to step S01 until the first threshold TH1 = 1 [V] or more is reached. Wait for the sensor output SE to rise.
 ステップS01でセンサ出力SEは第1閾値TH1=1[V]以上であり、ステップS02でセンサ出力SEの出力は第2閾値TH2=2.5[V]以上でないと判断された時、容積空間4の物理的変化量が徐々に増加し、センサ出力ESの前縁が徐々に増加していることを示している。
 即ち、ステップS02でセンサ出力SEの出力が第2閾値TH2=2.5[V]以上でないと判断されたとき、センサ出力SEの出力は第1閾値TH1=1[V]以上、第2閾値TH2=2.5[V]未満であることから、容積空間4の物理的変化量が徐々に増加しているとして、ステップS03の処理に入る。
 しかし、ステップS02でセンサ出力SEの出力が第2閾値TH2=2.5[V]以上と判断されると、容積空間4の物理的変化量が急激に増加していることを意味するから、ステップS14でセンサ出力ESの出力によりステップS15で信号検出出力ACが“H”から“L”と変化する。
When it is determined in step S01 that the sensor output SE is equal to or higher than the first threshold TH1 = 1 [V] and the output of the sensor output SE is not equal to or higher than the second threshold TH2 = 2.5 [V] in step S02, The physical change amount of 4 is gradually increased, which indicates that the leading edge of the sensor output ES is gradually increased.
That is, when it is determined in step S02 that the output of the sensor output SE is not the second threshold TH2 = 2.5 [V] or more, the output of the sensor output SE is the first threshold TH1 = 1 [V] or more, the second threshold Since TH2 is less than 2.5 [V], the processing of step S03 is entered, assuming that the physical change amount of the volume space 4 is gradually increasing.
However, if it is determined in step S02 that the output of the sensor output SE is equal to or higher than the second threshold TH2 = 2.5 [V], this means that the amount of physical change of the volume 4 has rapidly increased. The signal detection output AC changes from "H" to "L" in step S15 by the output of the sensor output ES in step S14.
 ステップS01でセンサ出力SEの出力は、第1閾値TH1=1[V]以上が判断され、ステップS02でセンサ出力SEの出力が第2閾値TH2=2.5[V]以上でないと判断されると、ステップS03でセンサ出力ESの監視する時限Xの長さ以上になったとき、ステップS04で信号検出出力ACを“H”から“L”に変化する。
 その後、センサ出力SEの出力は、容積空間4の物理的変化量が増加しつくした時、徐々に増加する物理的変化量の増加が停止し、物理的変化量が減少に転じ、センサ出力SEの出力は、ステップS05で第1閾値TH1=1[V]未満を判断し、ステップS06で時限Yになるまで信号検出出力ACは“L”から“H”に変化することはない。ステップS06で時限Yの経過を判断し、ステップS04からステップS06のルーチンにより時限Y1の経過を確認し、時限Y1の終了で、ステップS07で信号検出出力ACを“L”から“H”に変化させる。
The output of the sensor output SE is determined to be equal to or greater than the first threshold TH1 = 1 [V] in step S01, and it is determined that the output of the sensor output SE is not equal to or greater than the second threshold TH2 = 2.5 [V] in step S02. If, when it becomes more than the length of the time period X 1 for monitoring the sensor output ES in step S03, changes from "H" to "L" signal detection output AC at step S04.
After that, when the physical change amount of the volume space 4 is increased, the output of the sensor output SE stops increasing the physical change amount which gradually increases, and the physical change amount starts to decrease, and the sensor output SE output the first threshold value TH1 = 1 is judged less than [V] in step S05, the signal detection output AC until timed Y 1 at step S06 is not changed from "H" to "L". Determining an elapsed timed Y 1 at step S06, to check the course of timed Y1 by routine in step S06 from step S04, the end of the timed Y1, to "H" from the signal detection output AC "L" in the step S07 Change.
 ステップS08でセンサ出力ESがアース電位閾値である第3閾値TH3=TH0=0[V]になっているか判断し、ステップS08でそれが確認されたら、ステップS09で時限Zの経過を判断し、その経過を判断した後に、ステップS10でセンサSENの回復特性があるか否かを判断し、センサSENの回復特性が確認された時、ステップS11でセンサ検出動作に異常がないので、センサSENに異常はないと判断して、そのまま動作を継続する。
 ステップS10でセンサSENの回復特性が確認されないとき、ステップS12でカウンタNに「1」インクリメントし、異常の検出を行った回数を計数し、ステップS13でモニタ異常表示出力17のLEDを点灯させ、その旨の出力を表示する。この出力は、人形ロボットの制御信号でもよいし、他の表示手段でもよい。
Sensor output ES is determined whether the turned third threshold TH3 = TH0 = 0 [V] is a ground potential threshold in step S08, When it is confirmed in step S08, it is determined the course of timed Z 1 in step S09 After determining the progress, it is determined in step S10 whether or not there is a recovery characteristic of the sensor SEN, and when the recovery characteristic of the sensor SEN is confirmed, there is no abnormality in the sensor detection operation in step S11, the sensor SEN Judge that there is no abnormality in, and continue the operation as it is.
When the recovery characteristic of the sensor SEN is not confirmed in step S10, the counter N is incremented by "1" in step S12 to count the number of times the abnormality is detected, and the LED of the monitor abnormality display output 17 is lit in step S13. Display the output to that effect. This output may be a control signal of the doll robot or other display means.
 ここでは、外部からの押圧力が緩やか(5mm/s)に押圧力を増加する場合について説明したが、外部からの押圧力が急激(250mm/s)な場合には、図13に示すように、センサ出力ESが急激に変化する場合に好適となる。
 なお、本実施の形態では、外部からの押圧力が緩やかな場合と、急激な場合とに5mm/sの変化と、250mm/sの変化について分けているが、本発明を実施する場合には単一の設定でもよいし、3個以上の押圧値で設定してもよい。しかし、人間に対する安全性の問題であれば、応答性が高いものが好適であるが、緩やかな場合と急激な場合とに1mm/sの変化と、500mm/sの変化範囲の試験に合格するものであればよい。
 ステップS01でセンサ出力SEの徐々に変化するのを検出する第1閾値TH1=1[V]以上であるか、ステップS02でセンサ出力SEの急激に変化するのを検出する第2閾値TH2以上であるかを判断する。ステップS02でセンサ出力SEが第2閾値TH2以上に変化すると判定された場合には、ステップS14でセンサ出力SEの出力は時限X以上継続しているか判断し、時限X以上、継続したときには、ステップS15で信号検出出力ACを“H”から“L”とする。ステップS16でセンサ出力SEが第2閾値TH2未満になるかを判断し、センサ出力SEが第2閾値TH2未満になるまでステップS15及びステップS16に留まる。
 センサ出力SEが第2閾値TH2未満になると、ステップS17で時限Y2まで継続しているかを判断し、ステップS17で時限Yまで継続していると判断すると、ステップS15からステップS17で時限Yになるまで信号検出出力ACは“L”から“H”に変わることはない。ステップS18で時限Yまで継続していると判断すると信号検出出力ACは“L”から“H”に変わる。
 時限Yが経過するとステップS19でセンサ出力SEがアース電位閾値である第3閾値TH3=TH0=0[V]のアース電位か否かを判断し、ステップS19でセンサ出力SEがアース電位閾値である第3閾値TH3=TH0=0[V]になっているか判断し、ステップS19でそれが確認されたら、ステップS20で時限Zの経過を判断し、その経過を判断した後に、ステップS10でセンサSENの回復特性があるか否かを判断し、センサSENの回復特性が確認された時、ステップS11でセンサSENの検出動作に異常がないかを判断し、異常が検出されないとき、そのまま動作を継続する。
Here, the case where the pressing force from the outside gradually increases the pressing force (5 mm / s) has been described, but in the case where the pressing force from the outside is rapid (250 mm / s), as shown in FIG. This is suitable when the sensor output ES changes rapidly.
In the present embodiment, although the change of 5 mm / s and the change of 250 mm / s are divided into the case where the external pressure is moderate and the case where the external pressure is rapid, the present invention is implemented. A single setting may be used, or three or more pressing values may be set. However, if it is a safety issue for human beings, the one with high responsiveness is preferable, but it passes 1 mm / s change and 500 mm / s change range test in mild and rapid cases. What is necessary.
The first threshold TH1 is 1 [V] or more for detecting a gradual change of the sensor output SE in step S01, or the second threshold TH2 for detecting a rapid change in the sensor output SE in step S02 Determine if there is. When the sensor output SE is determined to change more than the second threshold TH2 in step S02, the output of the sensor output SE determines whether to continue timed X 2 or more in step S14, timed X 2 or more, when the continued In step S15, the signal detection output AC is changed from "H" to "L". In step S16, it is determined whether the sensor output SE is less than the second threshold TH2, and the process remains in steps S15 and S16 until the sensor output SE becomes less than the second threshold TH2.
When the sensor output SE becomes less than the second threshold value TH2, it is determined whether to continue until timed Y2 in step S17, it is determined to be continued until timed Y 2 at step S17, timed Y 2 from the step S15 in step S17 The signal detection output AC does not change from "L" to "H" until Is determined to be continued until timed Y 2 at step S18 if the signal detection output AC changes from "H" to "L".
Sensor output SE in step S19 the time period Y 2 has elapsed, it is determined whether the ground potential or not the third threshold value TH3 = TH0 = 0 [V] is a ground potential threshold, the sensor output SE is at ground potential threshold step S19 determining whether has a certain third threshold value TH3 = TH0 = 0 [V] , When it is confirmed in step S19, it is determined the course of timed Z 2 at step S20, after determining the elapsed, in step S10 It is determined whether or not there is a recovery characteristic of the sensor SEN, and when the recovery characteristic of the sensor SEN is confirmed, it is determined whether or not the detection operation of the sensor SEN is abnormal in step S11. To continue.
 ステップS09で時限Zの経過またはステップS20で時限Zの経過を判断し、その経過を判断した後、ステップS10でセンサSENの回復特性があるか否かを判断し、センサSENの回復特性が確認された時、ステップS11でセンサ検出動作に異常がないので、そのまま動作を継続する。
 ステップS10でセンサSENの回復特性が確認されないとき、ステップS12でカウンタNに「1」インクリメントし、異常の検出を行った回数を加算する。ステップS13でフォトカプラ17に出力し、そのLED出力はフォトトランジスタに抵抗Rを介したセンサ異常判別回路32からセンサSEN自体の異常として出力される。
 また、図11に示すように、センサ出力ESのように、外部からの容積空間4に付与される押圧力が緩やかに押圧力を増加している場合に、図12に示すように、外部からの押圧力が急激に加わった場合には、センサ出力ESに急激に外力付加P(外乱)が付与されるが、このときには、第2閾値TH2を超えるから、押圧力が急峻な場合と同様に動作する。
 そして、時限Xを「0」とすると、第1閾値TH1が1回でも超えると、信号検出出力ACがその超えた時点で“H”から“L”に変わる。特に、この場合には、外力付加Pの後の時限を残りの時限Xから算出し、時限Xを修正してもよい。
時限Xと時限Xはその時限を「0」と設定すると、応答速度を速くすることができる。
Determining an elapsed timed Z 2 in course or step S20 timed Z 1 at step S09, after determining the elapsed, it is determined whether there is a recovery characteristics of the sensor SEN at step S10, the recovery characteristics of the sensor SEN When it is confirmed that there is no abnormality in the sensor detection operation in step S11, the operation is continued as it is.
When the recovery characteristic of the sensor SEN is not confirmed in step S10, the counter N is incremented by "1" in step S12, and the number of times of detection of abnormality is added. Output to the photocoupler 17 in step S13, the LED output is outputted as the abnormality sensor abnormality determination circuit 32 via a resistor R 5 to the phototransistor of the sensor SEN itself.
Further, as shown in FIG. 11, when the pressing force applied to the volume space 4 from the outside gradually increases the pressing force as shown by the sensor output ES, as shown in FIG. The external force addition P (disturbance) is rapidly applied to the sensor output ES when the pressing force is rapidly applied, but since the second threshold TH2 is exceeded at this time, the same as in the case where the pressing force is steep. Operate.
When the timed X 1 is "0", the first threshold value TH1 is greater than at least once, the signal detection output AC is changed from "H" to "L" at the time thereof exceeded. In particular, in this case, to calculate the time period after the external force applying P from the remaining timed X 1, may be modified timed X 1.
If timed X 1 and timed X 2 sets the time limit "0", it is possible to increase the response speed.
 このように、容積空間4に加えられた外部からの押圧力を、容積空間4の物理的変化量としてセンサSENで検出するセンサ信号出力回路31は、センサ出力ESの第1閾値TH1の検出及びその動作の継続を測定する時限X、時限Yの時限を計測するタイマにより構成されている。
 また、センサ出力ESの検出直後から所定の時限内に、センサSEN自体の正常・異常をセンサ出力ESの検出で判別するセンサ異常判別回路32は、センサ出力ESの第2閾値TH2未満になったことを検出し、時限Zの時限を計測した後、センサ出力ESが容積空間4の物理的変化量として検出した後の戻りの特性であるか否かを判断し、センサSEN自体の正常・異常を前記センサ出力ESの検出信号で判別するものである
As described above, the sensor signal output circuit 31 that detects the external pressing force applied to the volume space 4 as the physical change amount of the volume space 4 by the sensor SEN detects the first threshold TH1 of the sensor output ES and It comprises a timer for measuring time durations of X 1 and Y 1 for measuring the continuation of the operation.
In addition, the sensor abnormality determination circuit 32 that determines normality / abnormality of the sensor SEN itself by detecting the sensor output ES within a predetermined time immediately after the detection of the sensor output ES has become less than the second threshold TH2 of the sensor output ES After detecting the time limit of time limit Z 1 , it is determined whether the sensor output ES is a characteristic of return after detection as a physical change amount of the volume space 4, and normality of the sensor SEN itself An abnormality is determined by the detection signal of the sensor output ES.
 なお、図10に示す圧力センサからなるセンサSENは、抵抗Rを介してマイクロプロセッサ30に入力している。マイクロプロセッサ30の出力は、限流抵抗Rを介してフォトカプラ16に出力し、そのLED出力はフォトトランジスタに抵抗Rを介したセンサ信号出力回路31からの信号検出出力ACとして出力されている。
 また、センサSEN自体の異常表示の場合は、センサSENは、抵抗Rを介してマイクロプロセッサ30に入力している。マイクロプロセッサ30の出力は、限流抵抗Rを介してフォトカプラ17に出力し、そのLED出力はフォトトランジスタに抵抗Rを介したセンサ異常判別回路32からセンサSEN自体の異常として出力されている。
 このように、人形ロボット50とは絶縁状態でセンサSENの検出出力が得られ、センサSENからなるセンサ信号出力回路31とセンサ異常判別回路32との配線が予測しない制御でショートすることがない。
The sensor SEN consisting of the pressure sensor shown in FIG. 10 is inputted to the microprocessor 30 via the resistor R 1. The output of the microprocessor 30, outputs to the photocoupler 16 via a current limiting resistor R 2, the LED outputs are output as a signal detection output AC from the sensor signal output circuit 31 via the resistor R 3 to the phototransistor There is.
In the case of an abnormal display of the sensor SEN itself, sensors SEN are input to the microprocessor 30 via the resistor R 1. The output of the microprocessor 30, outputs to the photocoupler 17 via a current limiting resistor R 4, the LED outputs are outputted as the abnormality sensor abnormality determination circuit 32 via a resistor R 5 to the phototransistor of the sensor SEN itself There is.
As described above, the detection output of the sensor SEN is obtained in an isolated state from the doll robot 50, and the wiring between the sensor signal output circuit 31 including the sensor SEN and the sensor abnormality determination circuit 32 is not shorted under control.
 本実施の形態の接触検出装置は、特定の形状に形成された基材1と、基材1を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体10と、対向する基材1と発泡体10に形成された所定の容積空間4と、容積空間4に加えられた外部からの押圧力を物理的変化量として検出するセンサSENとを具備し、センサSENは、容積空間4に加えられた外部からの押圧力を、容積空間4の物理的変化量としてセンサSENで検出するセンサ信号出力回路31と、センサ信号出力回路31の信号検出出力ACの検出直後から所定の時限内に、センサSEN自体の正常・異常をセンサ出力ESの検出信号で判別するセンサ異常判別回路32を搭載したものである。 The contact detection device according to the present embodiment includes a substrate 1 formed in a specific shape, and a foam 10 formed by forming a foamed synthetic resin material or a foamed rubber material for covering the substrate 1 in a specific shape, The sensor SEN includes a predetermined volume space 4 formed in the base material 1 and the foam 10 facing each other, and a sensor pressing force applied to the volume space 4 from the outside as a physical change amount. Sensor signal output circuit 31 that detects external pressure applied to volume 4 as a physical change of volume 4 by sensor SEN, and immediately after detection of signal detection output AC of sensor signal output circuit 31 Within a predetermined time period, the sensor abnormality discrimination circuit 32 is mounted which discriminates normality / abnormality of the sensor SEN itself by the detection signal of the sensor output ES.
 本実施の形態の接触検出装置は、対向する特定の形状に形成された基材1と、特定の形状に形成された基材1を被覆する特定の容積空間4と、容積空間4に加えられた外部からの押圧力を、容積空間4で形成した容積空間4の物理的変化量として検出するセンサSENとを具備し、センサSENは、容積空間4に加えられた外部からの押圧力を物理的変化量としてセンサSENで検出するセンサ信号出力回路31、及び、センサ異常判別回路32は、センサ信号出力回路31のセンサ出力ESの検出直後から所定の時限内に、センサSEN自体の正常・異常を前記センサ出力で判別するものである。 The contact detection device of the present embodiment is added to a specific volume space 4 for covering a base material 1 formed in a specific shape facing each other, a base material 1 formed in a specific shape, and the volume space 4 And a sensor SEN that detects the external pressing force as a physical change of the volume 4 formed in the volume 4, the sensor SEN physically detects the external pressing applied to the volume 4. The sensor signal output circuit 31 detected by the sensor SEN as a temporary change amount and the sensor abnormality determination circuit 32 detect normality / abnormality of the sensor SEN itself within a predetermined time immediately after detection of the sensor output ES of the sensor signal output circuit 31. Is determined by the sensor output.
 したがって、特定の形状に形成された基材1を被覆する積層接着した発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体10の片側に形成された所定の容積空間4と、容積空間4内に圧縮された空気が、基材1及び/または発泡体10から外気に漏れ難くした容積空間4に形成し、基材1と発泡体10の外部からの押圧力を、容積空間4の物理的変化量としてセンサSENで検出し、センサ出力ESの時限をもって検出出力とするものである。 Therefore, a predetermined volume space 4 formed on one side of a foam 10 formed by laminating and bonding a foamed synthetic resin material or a foamed rubber material laminated and bonded to cover a substrate 1 formed into a specific shape is formed, The air compressed in the volume space 4 is formed in the volume space 4 in which leakage of air from the substrate 1 and / or the foam 10 is less likely to occur, and the pressure from the outside of the substrate 1 and the foam 10 It is detected by the sensor SEN as the amount of physical change of the space 4 and is used as a detection output with a time limit of the sensor output ES.
 漏れ難くした容積空間4内の、例えば、圧縮された空気は、基材1と発泡体10の片側または両側に加えられた押圧力によってセンサSENで物理的変化を得る。物理的変化量として、空気圧、空気の流れ、空気の流速、空気量の変化等として検出する。
 このように、基材1及び/または発泡体10から物理的変化量として、漏れ難くした容積空間4内の物理的変量を検出するものであるから、広範な範囲に加えられた圧力を検出することができ、二次元的な平面的構成であっても、三次元的な立体的構成であっても施工でき、所定以上の外部からの圧力を検出できる。
 また、容積空間4の物理的変化として検出するセンサSENは、センサ信号出力回路31の容積空間4に加えられた外部からの押圧力を、容積空間4の物理的変化量としてセンサSENで検出し、通常の容積空間4に加えられた接触圧等として検出する。しかし、センサ異常判別回路32は、センサ信号出力回路31のセンサ出力ESの検出直後から所定の時限内に、前記センサ自体の正常・異常を前記センサ出力で判別するから、前記センサ信号出力回路の動作の終了時点で、センサ異常判別回路32がセンサSENに異常がないことを補償できる。
 特に、容積空間4の物理的変化を検出するセンサ出力ESが、時間の経過に伴って徐々に加わる外力と、急激に加わる外力とを区別して監視し、短時間に接触を判別することができる。
For example, compressed air in the leakproof volume 4 gets a physical change in the sensor SEN due to the pressure applied to one or both sides of the substrate 1 and the foam 10. The amount of physical change is detected as air pressure, air flow, air flow rate, change in air volume, or the like.
In this manner, since the physical variable in the leak-proof volume 4 is detected as the amount of physical change from the substrate 1 and / or the foam 10, the pressure applied to a wide range is detected. Even if it is a two-dimensional planar composition, it can construct even if it is a three-dimensional three-dimensional composition, and can detect the pressure from the outside more than predetermined.
Further, the sensor SEN detected as a physical change of the volume space 4 detects a pressing force from the outside applied to the volume space 4 of the sensor signal output circuit 31 by the sensor SEN as a physical change amount of the volume 4 , As a contact pressure applied to the normal volume space 4 or the like. However, since the sensor abnormality discrimination circuit 32 discriminates normality / abnormality of the sensor itself based on the sensor output within a predetermined time immediately after detection of the sensor output ES of the sensor signal output circuit 31, At the end of the operation, the sensor abnormality determination circuit 32 can compensate for the absence of an abnormality in the sensor SEN.
In particular, the sensor output ES for detecting the physical change of the volume space 4 can distinguish and monitor the external force which is gradually applied as time passes and the external force which is rapidly applied, and the contact can be determined in a short time .
 本実施の形態の接触検出装置のセンサ異常判別回路32は、センサ信号出力回路32が容積空間4に加えられた外部からの押圧力を検出する定常状態に戻るとき、センサSENの検出信号を第3閾値(TH0)として定常状態に戻るまでの特性を基に、センサSEN自体の正常・異常を判別する。
 本実施の形態の接触検出装置のセンサ異常判別回路32は、センサ信号出力回路31が容積空間4に加えられた外部からの押圧力を検出する定常状態に戻るとき、センサSENの検出信号を第3閾値(TH0)として定常状態に戻るまでのセンサSENの出力特性を基に、前記センサSEN自体の正常・異常を判別するものである。
When the sensor abnormality determination circuit 32 of the contact detection device of the present embodiment returns to the steady state where the sensor signal output circuit 32 detects an external pressure applied to the volume space 4, the sensor abnormality determination circuit 32 The normality / abnormality of the sensor SEN itself is determined based on the characteristics before returning to the steady state as three threshold values (TH0).
When the sensor abnormality determination circuit 32 of the contact detection device according to the present embodiment returns to a steady state in which the sensor signal output circuit 31 detects an external pressure applied to the volume space 4, the sensor abnormality determination circuit 32 The normality / abnormality of the sensor SEN itself is determined based on the output characteristics of the sensor SEN until returning to the steady state as three threshold values (TH0).
 したがって、センサSENが検出したセンサ出力ESは、容積空間4に加えられた外部からの押圧力を容積空間4の物理的変化量として検出し、センサSENが検出したセンサ出力ESは、容積空間4に加えられた外部からの押圧力を容積空間4の物理的変化量として検出し、第3閾値TH0(TH3),第1閾値TH1,第2閾値TH2等の複数の閾値と比較して、その信号検出出力として正常・異常の2値信号を得るセンサ信号出力回路31と、センサ信号出力回路31のセンサ出力ESの異常状態から定常状態に戻る2値信号の変化直後から、第3閾値TH0(TH3),第1閾値TH1,第2閾値TH2等の所定の閾値以下で、所定の時限X,X内に、正常・異常を前記信号検出出力31で判別するセンサ異常判別回路32を具備し、センサ信号出力回路31が動作する毎に、センサSENの正常・異常が確認され、特に、次の動作に掛けて、センサ異常判別回路32が動作しなければ、安全に動作することを意味する。
 特に、センサ信号出力回路31が容積空間4に加えられた外部からの押圧力を検出する定常状態に戻るとき、センサSENの検出信号を第3閾値(TH0)として定常状態に戻るまでの二次関数特性を基に、センサSEN自体の正常・異常を判断するものである。結果的に、二次関数特性を経てセンサ信号出力回路31の動作に入ることができれば正常である。
Therefore, the sensor output ES detected by the sensor SEN detects an external pressing force applied to the volume space 4 as a physical change amount of the volume space 4, and the sensor output ES detected by the sensor SEN is the volume space 4 External pressing force is detected as a physical change of the volume 4 and compared with a plurality of thresholds such as the third threshold TH0 (TH3), the first threshold TH1, the second threshold TH2, etc. A sensor signal output circuit 31 for obtaining a binary signal of normality / abnormality as a signal detection output, and a third threshold TH0 immediately after the change of the binary signal for returning from the abnormal state of the sensor output ES of the sensor signal output circuit 31 to the steady state. TH3), the first threshold TH1, at less than a predetermined threshold value, such as the second threshold value TH2, the predetermined time period X 1, in X 2, the sensor abnormality determination circuit 32 to determine the normal or abnormal by the signal detection output 31 In addition, every time the sensor signal output circuit 31 operates, normality / abnormality of the sensor SEN is confirmed, and in particular, if the sensor abnormality determination circuit 32 does not operate under the next operation, it operates safely. means.
In particular, when the sensor signal output circuit 31 returns to a steady state for detecting an external pressing force applied to the volume space 4, a secondary signal until the sensor SEN detection signal is returned to the steady state as a third threshold (TH 0) Based on the function characteristics, the normality / abnormality of the sensor SEN itself is judged. As a result, it is normal if the operation of the sensor signal output circuit 31 can be entered through the quadratic function characteristic.
 本発明を実施する場合には、容積空間4に別構成のファンを配設し、容積空間4を所定の物理的変量を空気圧、空気の流れ、空気の流速、空気量の変化等として物理的変化量を計測することができる。しかし、図示しないファンを取付けると部品点数が増加し、ファンの管理が必要になる。ところが、本実施の形態では、部品点数が増加しなくなる。しかし、ファンによる容積空間4の物理的変量を空気圧、空気の流れ、空気の流速、空気量の変化等を閾値として設定することもできる。
 なお、複数の閾値、第1閾値、第2閾値、第3閾値は、2個または3個またはそれ以上とすることもでき、少なくとも2個または3個以上であればよい。そして、センサSENの検出信号に使用する第3閾値(TH0)は、アース電位であるが、他の負の電圧または正の第1閾値よりも低い電圧とすることができる。
 そして、本実施の形態で使用する2値信号とは、アナログ値ではなく、“H”から“L”または“L”から“H”、“1”から“0”または“0”から“1”のデジタル信号であればよい。
In the case of practicing the present invention, a fan of another configuration is disposed in the volume space 4, and the volume space 4 is physically determined by changing predetermined physical variables as air pressure, air flow, air flow rate, air volume change, etc. The amount of change can be measured. However, installing a fan (not shown) increases the number of parts and requires fan management. However, in the present embodiment, the number of parts does not increase. However, air pressure, air flow, air flow velocity, air volume change, etc. can also be set as the threshold of the physical variable of the volume space 4 by the fan.
The plurality of threshold values, the first threshold value, the second threshold value, and the third threshold value may be two or three or more, and may be at least two or three or more. The third threshold (TH0) used for the detection signal of the sensor SEN may be the ground potential, but may be another negative voltage or a voltage lower than the positive first threshold.
The binary signal used in the present embodiment is not an analog value, and is from "H" to "L" or "L" to "H", "1" to "0" or "0" to "1". It may be any digital signal.
1  基材
4  容積空間
4A,4B,4C  空間維持材
10  発泡体
11,12,13  発泡合成樹脂材料
30  マイクロプロセッサ
31  センサ信号出力回路
32  センサ異常判別回路
50  人形ロボット
SEN  センサ
TH0=TH3  第3閾値(アース電位閾値)
TH1  第1閾値
TH2  第2閾値
,Y,Z  時限
X,Y,Z  時限
AC  信号検出出力
ES  センサ出力
DESCRIPTION OF SYMBOLS 1 base material 4 volume space 4A, 4B, 4C space maintenance material 10 foam 11, 12, 13, foam synthetic resin material 30 microprocessor 31 sensor signal output circuit 32 sensor abnormality discrimination circuit 50 doll robot SEN sensor TH0 = TH3 third threshold (Earth potential threshold)
TH1 first threshold TH2 second threshold X 1 , Y 1 , Z 1 time limit X, Y 2 , Z 2 time limit AC signal detection output ES sensor output

Claims (1)

  1.  特定の形状に形成された基材と、
     前記基材を被覆する発泡合成樹脂材料または発泡ゴム材料を特定の形状に形成してなる発泡体と、
     対向する前記基材と前記発泡体に形成された所定の容積空間と、
     前記容積空間に加えられた外部からの押圧力を、前記容積空間で形成した物理的変化量として検出するセンサとを具備する接触検出装置にあって、
     前記センサが検出したセンサ出力は、前記容積空間に加えられた外部からの押圧力を前記容積空間の物理的変化量として検出し、複数の閾値と比較して、その信号検出出力として正常・異常の2値信号を得るセンサ信号出力回路と、
     前記センサ信号出力回路の前記センサ出力の異常状態から定常状態に戻る2値信号の変化直後から、所定の閾値以下で、所定の時限内に、前記センサ自体の正常・異常を前記センサで判別するセンサ異常判別回路とを有し、
     前記センサ異常判別回路は、前記センサ信号出力回路が前記容積空間に加えられた外部からの押圧力を検出する定常状態に戻るとき、前記センサの検出信号をアース電位として定常状態に戻るまでの特性を基に、前記センサ自体の正常・異常を判別することを特徴とする接触検出装置。
    A substrate formed in a specific shape,
    A foam obtained by forming a foamed synthetic resin material or a foamed rubber material for covering the substrate into a specific shape;
    The opposed base material and a predetermined volume space formed in the foam;
    A contact detection device comprising: a sensor that detects an external pressing force applied to the volume space as a physical change amount formed in the volume space,
    The sensor output detected by the sensor detects an external pressing force applied to the volume space as a physical change amount of the volume space, and compares it with a plurality of threshold values, and detects normal / abnormal as its signal detection output A sensor signal output circuit for obtaining a binary signal of
    Immediately after the change of the binary signal from the abnormal state of the sensor output of the sensor signal output circuit returns to the steady state, the sensor determines normality / abnormality of the sensor itself with a predetermined threshold value and within a predetermined time period. And a sensor abnormality discrimination circuit,
    The sensor malfunction discrimination circuit is characterized by the sensor signal output circuit being returned to the steady state with the detection signal of the sensor as the ground potential when the sensor signal output circuit is returned to the steady state for detecting an external pressure applied to the volume space. A contact detection device characterized by judging normality / abnormality of said sensor itself based on.
PCT/JP2018/015215 2017-09-05 2018-04-11 Contact detection device WO2019049412A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170597A JP6325732B1 (en) 2017-09-05 2017-09-05 Contact detection device
JP2017-170597 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049412A1 true WO2019049412A1 (en) 2019-03-14

Family

ID=62143901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015215 WO2019049412A1 (en) 2017-09-05 2018-04-11 Contact detection device

Country Status (2)

Country Link
JP (1) JP6325732B1 (en)
WO (1) WO2019049412A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352573B1 (en) 2018-04-20 2018-07-04 株式会社三重ロボット外装技術研究所 Contact detection device
JP6913906B2 (en) * 2018-10-24 2021-08-04 株式会社三重ロボット外装技術研究所 Contact detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243876A (en) * 2005-03-01 2006-09-14 Toko Electric Corp Intrusion alert system
JP3153812U (en) * 2009-07-09 2009-09-17 株式会社ワコー Force detection device
JP6083723B1 (en) * 2016-09-15 2017-02-22 株式会社三重木型製作所 Contact detection device
GB2542937A (en) * 2015-09-11 2017-04-05 Ford Global Tech Llc Diagnosing a pressure sensor in a vehicle body structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159677A (en) * 1986-12-23 1988-07-02 Mitsubishi Heavy Ind Ltd Supervisory device for abnormality of windmill blade
JP3691460B2 (en) * 2002-06-18 2005-09-07 日本エレクトロニクス工業株式会社 Pressure detection device
JP2006144418A (en) * 2004-11-22 2006-06-08 Matsushita Electric Ind Co Ltd Contact detector and opening/closing device
JP6335104B2 (en) * 2014-11-17 2018-05-30 株式会社デンソー Pressure sensor failure detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243876A (en) * 2005-03-01 2006-09-14 Toko Electric Corp Intrusion alert system
JP3153812U (en) * 2009-07-09 2009-09-17 株式会社ワコー Force detection device
GB2542937A (en) * 2015-09-11 2017-04-05 Ford Global Tech Llc Diagnosing a pressure sensor in a vehicle body structure
JP6083723B1 (en) * 2016-09-15 2017-02-22 株式会社三重木型製作所 Contact detection device

Also Published As

Publication number Publication date
JP2019045392A (en) 2019-03-22
JP6325732B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2019049412A1 (en) Contact detection device
KR102296699B1 (en) Water-resistant member, and electronic apparatus provided with water-resistant member
TWI677670B (en) Foam pressure sensor
WO2019104961A1 (en) Artificial finger tip sliding touch sensor
JP5971638B1 (en) Contact detection device
WO2017176989A1 (en) Pressure equalizing construction for nonporous acoustic membrane
CN101624037A (en) Method for scraping compaction detection of automobile and device for realizing same
JP6083723B1 (en) Contact detection device
CN205647296U (en) Touch sensing ware and tactile sensing system of robot based on friction electric generator
JP6913906B2 (en) Contact detector
JP6867653B6 (en) Contact detector
CN108072468A (en) For detecting the ultrasonic wave touch sensor of chucking power
TWI693144B (en) Contact detecting device
JP6854488B2 (en) Contact detector
CN110108395B (en) Touch and slide sensor and preparation method thereof
JP6453036B2 (en) Pressure sensor and contact pressure measuring device
JP2021060236A (en) Contact detection checker
JP2014106230A (en) Curved surface type film pressure sensor and method of manufacturing the same
JPS5831427Y2 (en) Polymer piezoelectric transducer
CN201298459Y (en) Pressure sensor
CN203884757U (en) Liquid leakage warning gloves
Lee et al. Low-frequency active echo reduction using a tile projector
CN111907459B (en) Air medium detection sensing device and automobile seat
US20240050011A1 (en) Composite component comprising a piece of material composed of foam material or elastomer material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853645

Country of ref document: EP

Kind code of ref document: A1