WO2019049362A1 - Engine operation method and engine system - Google Patents

Engine operation method and engine system Download PDF

Info

Publication number
WO2019049362A1
WO2019049362A1 PCT/JP2017/032662 JP2017032662W WO2019049362A1 WO 2019049362 A1 WO2019049362 A1 WO 2019049362A1 JP 2017032662 W JP2017032662 W JP 2017032662W WO 2019049362 A1 WO2019049362 A1 WO 2019049362A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
engine
gas
mode
control
Prior art date
Application number
PCT/JP2017/032662
Other languages
French (fr)
Japanese (ja)
Inventor
隆典 黒岩
橋本 徹
Original Assignee
新潟原動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟原動機株式会社 filed Critical 新潟原動機株式会社
Priority to PCT/JP2017/032662 priority Critical patent/WO2019049362A1/en
Priority to SG11202002151WA priority patent/SG11202002151WA/en
Priority to CN201780094729.1A priority patent/CN111094726B/en
Priority to JP2019540281A priority patent/JP6843250B2/en
Publication of WO2019049362A1 publication Critical patent/WO2019049362A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to, for example, a method of operating a 4-stroke dual fuel engine for propulsion of a ship and an engine system.
  • the dual fuel engine is an engine that can use both gaseous fuel and liquid fuel as fuel.
  • the diesel engine described in Patent Document 2 discloses a longitudinally swept two-stroke large-sized diesel engine. As a method of operating this large-sized diesel engine, while operating in the gas mode, it is operated in the transient mode when detecting a state of strong change in load. In the transient mode, there is a step of determining an upper threshold of the amount of fuel gas and determining an additional amount of liquid fuel introduced into the combustion space in addition to the gas for each work cycle of the large diesel engine. doing.
  • the engine control device described in Patent Document 3 is a method for controlling an engine that can be driven using both liquid fuel and gas fuel. In this method, it is described that the size of the total output to be output from the engine is divided into a liquid fuel share and a gas fuel share according to a predetermined ratio.
  • a dual fuel engine that is capable of both gaseous fuel operation and liquid fuel operation is usually operated with gaseous fuel (gas mode), and in emergency or unsteady operation with liquid fuel (diesel mode) or It is known to operate with both gaseous and liquid fuels.
  • variable intake valve timing (VIVT) mechanism
  • the exhaust valve swing arm 103 and the intake valve swing arm 105 connected to the rocker arm 127 via the push rod 128 are tappets of the crank link shaft 104. It is connected to the shaft 106 (the fulcrum position of the swing arm).
  • the fulcrum positions of the intake valve swing arm 105 and the exhaust valve swing arm 103 change, and as a result, the contact position to the camshaft 108 changes.
  • the timing at which the eccentric cam 108a of the camshaft 108 presses the exhaust valve swing arm 103 or the intake valve swing arm 105 by the camshaft 108 is made variable in timing.
  • the speed control of the amount of fuel supplied by the governor is performed.
  • the amount of fuel to be supplied is not predetermined, and the amount of fuel supplied is controlled as needed so as to maintain a constant target rotational speed.
  • switching from the gas mode to the diesel mode can be performed in a short time.
  • the operable air-fuel ratio range in which the appropriate fuel can be obtained is limited to a narrow range, and therefore the altitude is high to appropriately control the supply amount of the gaseous fuel while maintaining the appropriate air-fuel ratio.
  • Technology was necessary and difficult.
  • the switch from the diesel mode to the rapid gas mode causes knocking and misfires.
  • the present invention has been made in view of the above-mentioned problems, and in the case of performing speed control of the fuel supply amount by the governor, the mutual transition between the operation by the gaseous fuel and the operation using the liquid fuel is further enhanced.
  • An object of the present invention is to provide a dual fuel engine operation method and an engine system that can be performed quickly and smoothly.
  • the present invention relates to a method of operating a dual fuel engine, and during the first operation in which the gas fuel is the major part of the heat source, the control of the supply amount of the gas fuel is terminated to stop the supply amount of the gas fuel.
  • the step of transitioning to the second operation using both gaseous fuel and liquid fuel as fuel by lowering the pressure to a predetermined value and starting the regulation control of the liquid fuel supply amount.
  • the first operation by terminating the regulation control of the liquid fuel supply amount and reducing the liquid fuel supply amount and starting the gas fuel supply amount regulation control. I assume.
  • the control of the supply amount of gaseous fuel is ended and the control of the supply amount of liquid fuel is started, and the supply of gaseous fuel is started. Reduce the amount to a predetermined value.
  • the operation to reduce the supply amount of the gaseous fuel to a predetermined value is performed in a very short time, for example, within about 1 second.
  • the control control of the liquid fuel increases the supply amount of the liquid fuel so as to maintain the target rotational speed of the engine. Therefore, the transition from the first operation to the second operation is performed without significantly affecting the rotational speed of the engine.
  • the control of the supply amount of liquid fuel is terminated and the control of the supply amount of gaseous fuel is started, and the supply amount of liquid fuel is Continuously lower.
  • the liquid fuel supply amount is continuously reduced, the gas fuel supply amount is increased to maintain the target rotational speed of the engine by the action of the gaseous fuel control. Therefore, the return from the second operation to the first operation is performed without significantly affecting the rotational speed of the engine.
  • the step of returning to the first operation is performed in the process of reducing the output of the engine.
  • the step of returning to the first operation in the process of decreasing the output of the engine, it is easy to return to the first operation in a short time.
  • the occurrence of knocking and misfires is an issue, but in the process where the engine output decreases, it is easy to maintain an appropriate air-fuel ratio because a sufficient amount of air is maintained.
  • speed control the fuel supply is limited, so rapid increase in gaseous fuel can be suppressed, and knocking and misfires are less likely to occur. Therefore, by performing the return to the first operation according to this timing, it is possible to return in a short time while maintaining appropriate combustion.
  • the step of reducing the liquid fuel supply amount includes a first step of reducing the liquid fuel supply amount at a relatively high speed and a second step of reducing the liquid fuel supply amount at a relatively low speed. It is preferable to have When the mechanical fuel injection pump is used to supply the liquid fuel, the second stage corresponds to the non-injection region of the mechanical fuel injection pump, and the liquid fuel is not substantially injected.
  • the step of returning to the first operation is performed when the engine output enters the lower region of the assist off-line set in the range of ⁇ 10% with respect to the marine cubic characteristic line, and the second operation is performed.
  • the step of transitioning to may be performed when the output of the engine enters the upper region of Assist On-line set above Assist Off-line.
  • the assist off-line is set to an output range of ⁇ 10% with respect to the marine cubic characteristic line
  • the first operation is performed when the output of the engine enters the lower area (assist off area) of the assist off-line.
  • the assist on-line is set on the upper side of the assist off-line, and when the output of the engine enters the upper area (assist on-on area) of the assist on-line, the operation shifts to the second operation.
  • the supply amount of gaseous fuel is set to a larger value as the output of the engine is larger. Even in the region where the output of the engine is large, the second operation can be quickly returned to the first operation.
  • the present invention is an operating method of an engine, comprising the steps of: performing a second operation using both gaseous fuel and liquid fuel subjected to temperature control as fuel; and terminating liquid fuel speed control in this step And d) continuously reducing the supply amount of the liquid fuel and performing the first operation of controlling the gas fuel as a major part of the heat source and performing the speed control.
  • the operating method of the engine of the present invention can quickly shift from the second operation to the first operation.
  • the present invention is an operating method of an engine, wherein a gas fuel is used as a major part of a heat source to control gas fuel, and a gas fuel and a liquid fuel are used as fuel to control a liquid fuel.
  • the engine is operated by selectively switching one of the assist mode and the diesel mode in which the speed control is performed using only liquid fuel as fuel, and the output of the engine during the operation in the assist mode is a marine cubic characteristic line.
  • Transition to the gas mode when entering the assist-off region set along the path, and transition to the assist mode when the engine output enters the assist-on region where the output is higher than the assist-off region during operation in the gas mode It is characterized by According to the present invention, since the return from the assist mode to the gas mode can be quickly performed, the transition of the operation mode between the gas mode and the assist mode can be steadily performed at any time and rapidly under the condition corresponding to the output of the engine. And return. As a result, occurrence of knocking and misfire in the gas mode can be avoided in advance, and the operation in the assist mode is limited to the torque rich region operated at the time of emergency when the output is greatly increased. Are also suitable. Further, in the operation in the assist mode, it is preferable that an operation parameter to be controlled in the operation of the engine be set in common with the gas mode.
  • the present invention relates to an engine system, and an operation control unit for controlling the operation of the engine, a gas governor for controlling the supply amount of gaseous fuel, and a diesel governor for controlling the supply amount of liquid fuel.
  • the control control of the gaseous fuel by the gas governor is ended to reduce the supply amount of the gaseous fuel
  • the diesel governor Start control of the liquid fuel by the control unit to shift to the second operation using both gaseous fuel and liquid fuel as fuel, and finish the control control of liquid fuel by the diesel governor during the second operation.
  • the present invention is characterized in that the control operation of the gaseous fuel by the gas governor is started to return to the first operation.
  • the control of the supply amount of the gaseous fuel by the gas governor is ended and the supply amount of the gaseous fuel is reduced to a predetermined value.
  • the operation of reducing the supply amount of gaseous fuel to a predetermined value is performed in a very short time, for example, within about 1 second.
  • the control control of the liquid fuel increases the supply amount of the liquid fuel so as to maintain the target rotational speed of the engine.
  • the first operation and the second operation can be switched mutually, and moreover, when transitioning from the first operation to the second operation, the second operation When returning from the operation to the first operation, each transition can be smoothly performed in a very short time, and the rotational speed of the engine is not significantly affected.
  • the second operation since the occurrence of knocking and misfire can be avoided beforehand in the first operation, and the second operation is limited to the torque rich region operated at the time of non-steady state, it is suitable also from the environmental countermeasure side by exhaust gas regulation.
  • FIG. 6 is a diagram showing a process of performing PID control so that an actual rotation speed becomes a target rotation speed in a diesel governor.
  • FIG. 1 is a flow chart of a normal cycle of a combustion cycle of an engine. It is process drawing of the mirror cycle of the combustion cycle of an engine. It is a figure which shows the conventional variable intake valve timing mechanism.
  • variable intake valve timing (VIVT) mechanism will be described as a dual fuel engine according to the present invention. That is, the present inventors change the opening (supply start) timing of the fuel gas supply valve at each VIVT angle, determine the optimum value from the THC concentration and the combustion state, and the fuel gas supply valve according to the VIVT angle. By setting the valve opening timing, it is possible to suppress the knocking that occurs when raising the output of the gas fuel engine and shorten the load raising time, and further, the fuel gas supply valve in the torque rich region and torque poor region. It has been found that combustion fluctuation and rotational speed hunting that were attributable to the valve opening timing of the valve can be improved.
  • FIG. 16A shows the process of a normal four-stroke cycle
  • FIG. 16B shows the process of a mirror cycle.
  • the intake valve typically closes to the bottom dead center of the piston (see FIG. 16A).
  • the timing of closing as shown in FIG. 16B faster than the bottom dead center because the expansion of the mixture continue after closing of the intake valves, cylinder temperature Ts falls below the case of FIG. 16A (Ts * ⁇ Ts) . Since the maximum compression temperature at the top dead center is also reduced by that amount (Tc * ⁇ Tc), self-ignition can be prevented and knocking can be suppressed.
  • the compression temperature drops and the ignitability in the low load area deteriorates, so at the time of start-up or low load, the normal intake valve opening timing shown in FIG. It is necessary to make the valve opening timing earlier.
  • the marine dual fuel engine 1 (hereinafter sometimes referred to simply as the engine 1) shown in FIGS. 1 and 2 can be switched to one of the diesel mode D, the gas mode G, and the assist mode As during operation.
  • the dual fuel engine 1 shown in FIG. 1 includes a mechanism of a crankshaft 2 as an output shaft connected to a propeller or the like, and the crankshaft 2 is connected to a piston 4 installed in a cylinder block 3.
  • a combustion chamber 6 is formed by the piston 4 and the engine head 5 provided in the cylinder block 3.
  • the combustion chamber 6 is sealed by an intake valve 8 and an exhaust valve 9 mounted on the engine head 5 and a fuel injection valve 10 used in the diesel mode D.
  • the engine head 5 is provided with a micro pilot oil injection valve 11 used in the gas mode.
  • a fuel injection pump 12 is connected to the fuel injection valve 10.
  • An intake pipe 13 is connected to an intake port where the intake valve 8 of the engine head 5 is installed, and an exhaust pipe 14 is installed at an exhaust port where the exhaust valve 9 is installed.
  • the intake pipe 13 is provided with a fuel gas supply valve 15 consisting of a solenoid valve for controlling gas injection, and on the upstream side thereof, an air cooler 16 and a turbocharger 17 communicating with the exhaust pipe 14 are provided.
  • the dual fuel engine 1 can be switched between the diesel mode D, the gas mode G, and the assist mode As.
  • fuel oil A is supplied as a fuel oil from a fuel tank (not shown) to the fuel injection pump, and mechanically injected from the fuel injection valve 10 into compressed air in the combustion chamber 6 for ignition. It can be burned.
  • fuel gas such as natural gas is supplied to the intake pipe 13 by the fuel gas supply valve 15 to be premixed with the air flow, and the mixture is supplied into the combustion chamber 6, Ignition is performed by the igniter in a compressed state, and in this example, pilot fuel is injected from the micro pilot oil injection valve 11 to be ignited and burned.
  • the micro pilot oil injection valve 11 is electronically controlled, for example, and injects a small amount of pilot fuel as a powerful ignition source.
  • the fuel gas supply valve 15 is a solenoid valve that can form a large opening with a slight stroke and allow a large amount of gas to flow in a short time.
  • assist mode As shown in FIG. 2C, fuel oil is injected from the fuel injection valve 10 into the combustion chamber 6 by speed control, and fuel gas is supplied from the fuel gas supply valve 15 into the intake pipe 13.
  • the gas mode G is an operation mode in which ignition is performed by a spark plug using only gas fuel (gas fuel) as fuel, and injection of a small amount of liquid fuel (pilot oil) for ignition of gas fuel which occupies most of the heat source. It includes both modes of operation used.
  • the proportion of liquid fuel in the total fuel in the latter mode of operation is usually about 1% to 10% of the total heat in comparison with the heat of rated output. From the viewpoint of achieving environmental regulations on exhaust gas, it is desirable to be 3% or less.
  • the assist mode As is an operation mode in which both the gas fuel and the liquid fuel are used as fuel, and furthermore, the regulation control of the supply amount of the liquid fuel is performed.
  • the assist mode As using liquid fuel, it is preferable to minimize the operation time from the viewpoint of environmental protection, and to immediately return to the gas mode when the assist mode is not necessary.
  • fuel oil is injected from the fuel injection valve 10 into the combustion chamber 6 for combustion
  • pilot fuel is also injected from the micro pilot oil injection valve 11 into the combustion chamber 6 for combustion.
  • the diesel mode D is mainly used at the start and stop of the engine, and is an operation mode in which operation is performed using only liquid fuel as fuel.
  • the engine 1 is started in a diesel mode D in which liquid fuel is injected into the combustion chamber 6 from the fuel injection valve 10. After it is confirmed that the gas pressure above the reference value is supplied to the engine 1, the gas fuel is supplied to the intake pipe 13 by the fuel gas supply valve 15, mixed with air, and then flowed into the combustion chamber 6. , And operate in gas mode G for burning gas fuel. At the time of a stop, it changes to diesel mode D again, and stops. The diesel mode D and the gas mode G can be changed except at the time of start and stop.
  • the engine 1 In the steady operation, the engine 1 is operated in the gas mode theoretically along the ship cubic characteristic line due to the relationship between the rotational speed and the output.
  • the marine cubic characteristic refers to the characteristic of the main marine engine (engine 1) whose output is proportional to the cube of the rotational speed in a ship using a fixed pitch propeller. If the ship maneuvers during stormy weather or other maneuvers such as a rapid course change other than steady-state operation are performed, the output over the normal operation range is required far beyond the marine cubic characteristic, and in gas mode G
  • the liquid fuel may be temporarily supplied into the combustion chamber 6 and the operation may be performed in the assist mode As together with the gaseous fuel because the operation may be difficult due to insufficient output. Operation in the assist mode As is processed within the necessary minimum time in consideration of environmental impact in order to use the liquid fuel in the speed control, and if the assist mode As is not necessary, the gas is swiftly It is desirable to return to mode G.
  • the dual fuel engine 1 includes a gas engine system that performs output control when the load increases in the gas mode G.
  • a rotational speed sensor 20 and a torque sensor 21 are attached to the crankshaft 2.
  • the rotational speed sensor 20 measures the rotational speed (rotational speed) of the crankshaft 2. measure.
  • the torque sensor 21 for example, a sensor that detects torque applied to the shaft by strain can be used. Measurement data measured by the rotational speed sensor 20 and the torque sensor 21 are respectively output to the control unit 22 that controls the engine 1.
  • the control unit 22 stores a first map 24 for determining a first electric signal of intake valve opening / closing timing created in advance, and a second map 25 for determining a second electric signal from the first electric signal and opening / closing timing. There is.
  • the control unit 22 based on the rotational speed data n and the torque data T corresponding to the output A of the engine 1 measured by the rotational speed sensor 20 and the torque sensor 21, the engine 1 is obtained by the equations (1) and (2). Calculate output A.
  • the first electric signal corresponding to the opening / closing timing of the intake valve 8 is selected in the first map 24 based on the rotational speed n and the output A.
  • the second map 25 determines the open / close timing of the intake valve 8 corresponding to the first electric signal.
  • the method of creating the first map 24 and the second map 25 will be described later.
  • the second electrical signal of the open / close timing set by the control unit 22 is transmitted to the electro-pneumatic converter 27, and the electro-pneumatic converter 27 converts the signal of the open / close timing into air pressure.
  • This air pressure is sent to the actuator 28 to control the drive of the variable intake valve timing mechanism 30.
  • the actuator 28 is supplied with air pressure P1, P2 for driving and control from the first pressure reducing regulator 34 and the electropneumatic converter 27.
  • the air pressure supplied to the actuator 28 is compressed by the air compressor 32 and stored in the air tank 33.
  • the air pressure in the air tank 33 is reduced by the first pressure reduction regulator 34 to a necessary pressure.
  • the pressure at this time is adjusted by changing the valve opening of the first pressure reducing regulator 34, and is supplied to the actuator 28 as the air pressure P1 for driving. If the pressure P1 measured by the pressure gauge 36 is less than the specified value, the engine 1 can not be started.
  • the air pressure for driving the electro-pneumatic converter 27 is further reduced from the first pressure reduction regulator 34 by the second pressure reduction regulator 37 and supplied.
  • the electro-pneumatic converter 27 supplies the air pressure corresponding to the inputted second electric signal of the open / close timing to the actuator 28 as the air pressure P2 for adjusting the operation of the actuator 28. Based on these air pressures P1 and P2, the rod 28a of the actuator 28 is operated to operate the variable intake valve timing mechanism 30.
  • the actuator 28 is, for example, a known P cylinder (a cylinder with a positioner), and controls the advancing and retracting of the rod 28 a based on the pressures P1 and P2 input from the first pressure reducing regulator 34 and the electropneumatic converter 27.
  • the drive of the variable intake valve timing mechanism 30 is controlled to advance (advance) or delay the timing of closing the intake valve 8 from the suction bottom dead center (late Control to reduce the compression ratio. Since the time between the valve opening timing and the valve closing timing of the intake valve 8 does not change, when the valve opening timing advances from the suction bottom dead center, the valve closing timing also advances from the suction top dead center by the same time.
  • the timing of valve opening and valve closing is changed according to the output of the engine 1 to suppress knocking and shorten the load increase time.
  • the opening / closing timing of the intake valve 8 is set by the first map 24 and the second map 25 in the control unit 22 based on the output A of the engine 1 and the rotational speed n, and the actuator 28 and the variable intake valve timing mechanism 30 The timing of opening and closing of the valve is adjusted to suppress knocking.
  • variable intake valve timing mechanism 30 The configuration of the variable intake valve timing mechanism 30 is conventionally known, and has the same configuration as that shown in FIG. That is, in the variable intake valve timing mechanism 30, for example, a link shaft whose rotation angle range is set by the movement length of the rod 28a of the actuator 28 and a cam shaft provided with an eccentric cam are disposed in parallel. An exhaust swing arm is connected to the link shaft, and an intake swing arm is connected to a tappet shaft provided at an eccentric position of the link shaft. An intake valve 8 is connected to the intake swing arm, and an exhaust valve 9 is connected to the exhaust swing arm.
  • the distance between the cam shaft and the intake swing arm changes according to the rotation angle of the tappet shaft according to the rotation of the link shaft, and the timing at which the eccentric cam of the cam shaft starts to change changes.
  • the valve closing timing can be changed to an advance angle (or a delay angle).
  • the rotation angle of the tappet shaft is changed by the moving length of the rod 28 a of the actuator 28.
  • the moving length of the rod 28a is arbitrarily changed by the pressure P1, P2 of the control air supplied to the actuator 28.
  • the magnitude of the advance angle which is the closing / opening timing of the intake valve 8 is determined by the timing at which the eccentric cam of the camshaft starts to hit the intake swing arm connected to the tappet shaft of the link shaft.
  • the apparatus for rotating the tappet shaft in the variable intake valve timing mechanism 30 may use a servomotor (not shown) instead of the actuator 28.
  • the signal of the opening / closing timing transmitted from the second map 25 of the control unit 22 is input to the servomotor.
  • the servomotor rotates the link shaft by an amount corresponding to the received signal to turn the tappet shaft, thereby making it close to and separated from the cam shaft, and the opening / closing timing of the intake valve 8 can be changed.
  • the configuration of the actuator 28 and the air compressor 32 to the pressure gauge 38 is unnecessary.
  • the controller drives a servomotor.
  • gas fuel is supplied to the gas vaporizer 41 from an LNG gas tank 40 in which gas fuel such as natural gas is stored, and the gas pressure is further reduced by the gas regulator 42 to a necessary gas pressure.
  • the gas pressure is displayed on the fuel gas pressure gauge 43, adjusted by changing the valve opening of the gas regulator 42, and supplied from the fuel gas supply valve 15 into the intake pipe 13 as gaseous fuel for combustion.
  • the gas fuel and the supercharged air cooled by the air cooler 16 are mixed and supplied to the combustion chamber 6.
  • the amount of gas fuel supplied is increased by the operation of the fuel gas supply valve 15.
  • the second electrical signal of the open / close timing set by the control unit 22 is transmitted to the fuel gas supply valve 15 via the gas governor 44 separately from the electropneumatic converter 27.
  • the gas governor 44 controls the speed of the supply of gas fuel in the gas mode (governor control).
  • the gas governor 44 controls the opening timing of the fuel gas supply valve 15 to open the fuel gas supply valve 15 to supply the gas fuel into the intake pipe 13 in accordance with the advance angle of the closing timing of the intake valve 8.
  • the gas regulator 42 for adjusting the gas pressure and the gas governor 44 for advancing the opening timing of the fuel gas supply valve 15 and performing the speed control are included in the fuel gas supply valve timing mechanism 45.
  • the gas governor 44 may be installed outside the control unit 22. If the fuel gas supply valve timing mechanism 45 can receive the second electric signal from the second map 25 and advance the opening timing of the fuel gas supply valve 15 according to the advancing angle of the closing timing of the intake valve 8 Good.
  • control unit 22 is provided with a diesel governor 48 that performs control of liquid fuel control in the assist mode As.
  • the diesel governor 48 receives the second electrical signal of the open / close timing and supplies it to the fuel injection pump 12 to control the amount of fuel oil injected from the fuel injection valve 10 into the combustion chamber 6.
  • the diesel governor 48 may be installed outside the control unit 22.
  • the diesel governor 48 controls the liquid fuel in the assist mode As and controls the supply amount of the liquid fuel so as to match the target rotational speed of the engine 1.
  • the control unit 22 has a configuration including the first map 24 and the second map 25 as an operation control unit 49, and has a gas governor 44 and a diesel governor 48 separately from the operation control unit 49.
  • FIG. 3 shows the crank angle when the intake valve 8 is closed, which is the VIVT command value (intake valve closed crank angle, Intake Valve Closed timing, IVC) by the rotational speed of the crankshaft 2 and the output (load factor) of the engine 1 It is a three-dimensional map which shows the detail of the 1st map 24 to determine.
  • VIVT command value intake valve closed crank angle, Intake Valve Closed timing, IVC
  • the region B in which the operation is carried out regularly (practical) is indicated by a broken line.
  • the change (advance angle) of the VIVT command value with respect to the change of the output when the rotational speed performed in the power generation is constant is shown by the arrow line C, and the rotational speed and the output (load factor)
  • the change (advance angle) of the VIVT command value in the case of simultaneously changing is indicated by an arrow line D.
  • An arrow line D indicates a marine cube characteristic.
  • the marine cubic characteristic represents a typical characteristic of a marine main engine whose output is proportional to the cube of the rotational speed, and is a characteristic curve of the rotational speed and the output determined by the rated rotational speed of the engine and the rated output.
  • the region where the output (load factor) is higher than the marine cubic characteristic line D in the region of the ordinary operation region B indicates a torque rich region, and the region where the output (load factor) is low indicates a torque poor region.
  • the first map 24 was created based on the steps of the following experimental procedures (1) to (18). In the experiment, the same type of dual fuel engine 1 actually used was used. (1) Start the engine 1 and set the rotational speed (rotational speed) n to 400 min -1 , the output (load) A to 10%, and the intake valve 8 closing timing to 545 deg (the latest closing timing). Set (2) The abnormal combustion called knocking generated when driving the engine 1 and the exhaust temperature at that time are measured. The knocking is detected by a knock sensor (not shown) attached to each engine head 5. When the knocking phenomenon occurs, the normal combustion waveform is a waveform in which high-frequency pressure fluctuations overlap.
  • the exhaust temperature at the time of knocking measurement is measured by a temperature sensor attached to the exhaust pipe 14.
  • the valve closing timing of the intake valve 8 is decreased by 5 deg, and the measurement of (2) is performed again. Measurement is performed by changing the valve closing timing up to 500 deg (structurally, the earliest valve closing timing).
  • the output A is gradually increased by 10% to 110% and the measurements of (2) and (3) are repeated again.
  • FIG. 4 The graph which represented the measurement result of said (7) by three axes
  • the range enclosed by the straight line is a range in which knocking is suppressed and the engine 1 can be operated safely.
  • Nitrogen oxides hereinafter referred to as NOx
  • NOx Nitrogen oxides
  • the engine rotational speed n is set to 400 min -1
  • the output A is set to 10%
  • the closing timing of the intake valve 8 is set to 545 deg.
  • the rotational speed n and the output A are increased in an arbitrary load raising pattern to detect knocking.
  • the load raising pattern is a change state of output A (load factor) and rotational speed n per time, and changes according to propeller specifications (shape, rotation number) of the marine propulsion device.
  • the valve closing timing of the measurement point at which the knocking intensity detected in (15) is equal to or greater than the reference value is decreased by 3 deg.
  • the steps (15) and (16) are repeated until the knocking strength falls below the reference value to determine the valve closing timing at which knocking is suppressed. If the valve closing timing is reduced, the thermal efficiency will deteriorate.
  • the setting values of the valve closing timing at which NOx and knocking strength are lower than the reference value and the result of the highest thermal efficiency is obtained are set as rotational speed n and output A.
  • the valve closing timing at which knocking was suppressed from (17) above was measured at each rotational speed n and output A, and a final first map 24 shown in FIG. 3 was created from the results.
  • a VIVT command value corresponding to the rotational speed and the output is shown by a graph of a three-dimensional plane, and the upper side in the drawing is the direction in which the valve closing timing is advanced.
  • a region indicated by a broken line is a practical operation region used in the actual operation of the ship propulsion device, and one example of a good load raising pattern is indicated by a marine cubic characteristic line D.
  • control is performed to increase the advance angle of the valve closing timing as the engine output increases.
  • the advance angle is minimized at the lower right position in the drawing where the rotational speed and output are small, and the advance angle is increased as the rotational speed and output increase. Do. Although the ratio of increasing the advance angle is not constant, the advance angle is increased as the output as a whole increases. Since the output (load factor) is determined by the product of the torque and the rotational speed, it can be expressed that the advance angle is increased as the torque of the output shaft increases.
  • a second map 25 was created in the following experiment.
  • the variable intake valve timing mechanism 30 is rotationally controlled by the actuator 28, the second map 25 is created in the following procedure.
  • (1) The valve closing timing is changed by the actuator 28, and the pressure when changing to each valve closing timing is measured.
  • (2) From the specifications of the electro-pneumatic converter 27, the second electric signal necessary to supply the pressure of the above (1) is investigated.
  • (3) From the results of the above (1) and (2), the second map 25 showing the first electric signal selected in the first map 24 on the horizontal axis and the valve closing timing (second electric signal) on the vertical axis create.
  • the above description is for the case where the actuator 28 is used, and in the case where the variable intake valve timing mechanism 30 is controlled to rotate by a servomotor instead of the actuator 28, the following description will be made.
  • the valve closing timing is changed based on the servomotor, and the second electric signal at the time of changing each valve closing timing is measured.
  • a second map 25 indicating the first electric signal on the horizontal axis and the valve closing timing (second electric signal) on the vertical axis is created based on the result of the above (1).
  • the second map 25 is a map that represents the relationship between the valve closing timing (second electrical signal) and the first electrical signal.
  • the optimum VIVT command value differs depending on the output between the power generation characteristic line indicated by the solid line C and the marine cubic characteristic line D. That is, as shown in FIG. 5 as an example, even when the output is the same, when the rotational speed is different, the intake valve closing crank angle of the optimum VIVT command value is different.
  • the opening timing of the fuel gas supply valve 15 for supplying the fuel gas to the intake pipe 13 is set so that the blow through of the valve is reduced.
  • a VIVT command value corresponding to the rotational speed and the output is set. Strictly speaking, it is preferable to set the air-fuel ratio and ignition timing to optimum values using thermal efficiency and NOx as a standard, but here, these conditions are not set as the engine 1 can be operated stably. .
  • valve opening timing of the fuel gas supply valve 15 As an example of setting the valve opening timing of the fuel gas supply valve 15, how to determine the valve opening timing of the fuel gas supply valve 15 by the gas governor 44 under the engine operating condition according to the optimum VIVT command value in the marine cubic characteristic line D is described below.
  • the fuel gas is supplied from the fuel gas supply valve 15 using the timing at which the intake valve 8 opens as a standard. Since the fuel gas is supplied into the intake pipe 13, the fuel gas does not reach the intake valve 8 instantaneously. Therefore, the crank angle position of the valve opening timing of the fuel gas supply valve 15 in consideration of the distance from the fuel gas supply valve 15 to the intake valve 8 is assumed.
  • the crank angle position at the valve opening timing of the fuel gas supply valve 15 is changed in 5 deg intervals before and after, and the total hydrocarbon concentration (unburned gas in the exhaust gas at the gas turbine outlet of the turbocharger 17 at that time) Measure THC concentration). Measurement of THC concentration is repeated and performed under each operating condition.
  • the THC concentration is preferably measured by hydrogen flame ionization method (JIS B 7956).
  • each VIVT command value (intake valve closing crank angle) is set to, for example, 40%, 65%, 85%, 100%, and each VIVT FIG. 6 shows the relationship between the fuel gas valve opening timing and the measured THC concentration at the command value.
  • the opening timing of the fuel gas supply valve 15 is based on the crank angle at which the unburned fuel gas blows little at the time of valve overlap and the THC concentration becomes the lowest.
  • ⁇ 5 deg.
  • the relationship between the crank angle at the valve opening timing of the fuel gas supply valve 15 and the output (load factor) at the optimum VIVT command value at the constant rotational speed output performed on the power generation characteristic line C of FIG. Is indicated by a broken line of “constant rotation speed” in FIG.
  • the optimal valve opening timing of the fuel gas supply valve 15 is different between the condition in which the rotational speed changes and the condition in which the rotational speed is constant even if the output is the same.
  • crank angle of the opening timing of the optimum fuel gas supply valve 15 at the optimum VIVT command value of the marine cubic characteristic line D and the optimum fuel gas at the optimum VIVT command value of the power generation characteristic line C (constant rotational speed)
  • the crank angle of the valve opening timing of the supply valve 15 exhibits one coincident linear characteristic when arranging the VIVT command value on the horizontal axis instead of the output. That is, it is understood that the valve opening timing of the optimum fuel gas supply valve 15 does not depend on the output but depends on the specified VIVT value (intake valve closing crank angle).
  • the advancing of the supply start timing of the fuel gas supply valve 15 advances as the advancing timing of the closing timing of the intake valve 8 advances.
  • the degree of corners is greater. Therefore, by setting the crank angle of the optimal valve opening timing of the fuel gas supply valve 15 determined under each condition by the gas governor 44 based on the VIVT command value, the fuel gas supply valve 15 is opened according to the VIVT command value. Timing can be optimized. In FIG. 8, the unmeasured VIVT command value, the fuel gas supply start timing, etc. may be determined by an approximate line connecting data before and after the measurement point.
  • FIG. 9 shows the main configuration of the engine 1 shown in FIG.
  • a target rotational speed command unit 50 is installed outside the control unit 22, and a preset target rotational speed is input to the control unit 22.
  • the gas supply time calculation unit 51 of the control unit 22 directly performs PID control of the opening period of the fuel gas supply valve 15 based on the deviation between the actual rotational speed calculated from the measurement value of the rotational speed sensor 20 and the target rotational speed. Do.
  • the gas supply valve control unit 52 connected to the gas supply time calculation unit 51 calculates the time to open based on the valve opening timing of the fuel gas supply valve 15 and outputs it to the fuel gas supply valve 15 to open it.
  • the feedback control is performed so as to open the fuel gas supply valve 15 only for the time required.
  • rack target value setting means 57 for setting a target position of a control rack (not shown) based on the target rotation speed set by the target rotation speed command unit 50 is disposed.
  • the rack position of the fuel injection valve 10 is feedback-controlled based on the rack position target value set by the rack target value setting means 57.
  • the valve closing timing control of the fuel gas supply valve 15 is performed as follows. That is, as shown in FIG. 10, in the control unit 22, based on the deviation between the target rotational speed and the actual rotational speed set by the target rotational speed command unit 50, the valve opening period of the fuel gas supply valve 15 is directly PID Control. Specifically, based on the deviation between the target rotational speed and the actual rotational speed, the time during which each fuel gas supply valve 15 is open so that the actual rotational speed follows the target rotational speed by feedback control by the gas governor 44 Control. The gas supply valve control unit 52 controls the valve closing timing of each fuel gas supply valve 15 based on the valve opening period calculated with the valve opening timing of the fuel gas supply valve 15 as a starting point. The control unit 22 directly performs PID control of the open period of the fuel gas supply valve 15 so that the actual rotation speed matches the target rotation speed without calculating the amount of fuel gas supplied in advance.
  • the supply pressure control of the fuel gas is a value obtained by adding the air supply pressure detected by the air supply pressure gauge 54 provided in the intake pipe 13 to the pressure ⁇ P value set using the output of the engine 1 and the data of the rotational speed as parameters.
  • the feedback control of the fuel gas pressure regulator 55 is performed so that the deviation from the value of the fuel gas pressure gauge 43 is eliminated.
  • Control of the liquid fuel injection pump 12 and the fuel injection valve 10 is performed as follows. That is, as shown in FIG. 11, the control unit 22 directly PID-controls the rack position of the fuel injection pump 12 based on the deviation between the target rotational speed and the actual rotational speed set by the target rotational speed command unit 50. .
  • the diesel governor 48 changes the rack position of the fuel injection pump 12 so that the actual rotational speed follows the target rotational speed by feedback control.
  • the injection amount of the liquid fuel injected from the fuel injection valve 10 increases and decreases, whereby the rotational speed of the engine 1 increases and decreases.
  • FIG. 12 shows the relationship between the advance angle of the variable intake valve timing mechanism 30 and the timing of the start and end of supply of the fuel gas supply valve 15 by the gas governor 44 in which the above result is displayed.
  • FIG. 12 shows the relationship between the crank angle of the engine 1 and the valve lifts of the intake valve 8 and the exhaust valve 9.
  • the curve showing the opening and closing operation of the intake valve 8 is shown by a solid line when the VIVT (variable intake valve timing) command value is 0%, and by an alternate long and short dash line is when advancing (100% of the VIVT command value). Shows an opening and closing operation image in the case of. Then, the open period of the fuel gas supply valve 15 at the advance angle (the VIVT command value is 100%) becomes longer than the open period of the fuel gas supply valve 15 when the VIVT command value is 0%.
  • the supply pressure of the fuel gas into the intake pipe 13 is set to a value obtained by adding the pressure ⁇ P value to the supply pressure detected by the supply pressure gauge 54 provided in the intake pipe 13.
  • the pressure ⁇ P is set as data of the outputs and rotational speeds of the plurality of engines 1 measured in advance as parameters.
  • the marine cubic characteristic line is a characteristic of the marine main engine whose output is proportional to the cube of the rotational speed in a ship using a fixed pitch propeller, and is a basic control output level of the engine 1.
  • the relationship between the output and the rotational speed may not be exactly proportional to the third power, but may have a certain degree of deviation.
  • the range of plus or minus 10% with respect to the marine cubic characteristic line is indicated by a broken line.
  • the assist off-line is set in the range of this plus or minus 10%.
  • the assist off-line is set along the marine cubic characteristic line, and in the present embodiment, as indicated by a long broken line in the figure, as a line along the marine cubic characteristic line slightly above the marine cubic characteristic line. It is set.
  • the area under the assist off-line is regarded as the assist-off area.
  • Assist Online is set above Assist Online.
  • the assist on-line is set in accordance with the characteristics of the engine 1 at a level not normally operated above the marine cubic curve.
  • the idle rotational speed to the intermediate rotational speed exceeds the marine cubic characteristic line at a constant rate, and the intermediate rotational speed reaches the rated rotational speed to the marine cubic characteristic line.
  • the upper region of this assist online is the assist on region.
  • these assist on-line, assist, off-line, etc. show the way of thinking in control, do not mean physical lines, and are preferably implemented as functions in a computer program.
  • the operation in the gas mode G is steadily performed in the vicinity of the marine cubic characteristic line, but as indicated by the arrow (A), the output may rise temporarily with respect to the rotational speed.
  • the operation shifts to the operation in the assist mode As.
  • the output decreases to near the marine cubic characteristic line as shown by the arrow (B).
  • the operation returns to the gas mode G. Since the operation in the assist mode As is limited to the torque rich region where the output is increased, it is also preferable from the viewpoint of environmental measures. Further, in the assist mode As, as indicated by a broken line in the command image of the gas governor in the drawing, control of the gas governor for supplying gaseous fuel of a predetermined value according to the rotational speed is performed.
  • FIG. 14 is a timing chart showing an operation at the time of transition from the gas mode G to the assist mode As.
  • the output (load) with respect to the rotational speed is increased when ship maneuvering during rapid weather or maneuvering such as rapid course change is performed.
  • the output (load) exceeds the preset assist on-line, transition to the assist mode As is made.
  • the gas governor 44 ends the speed control of the supply amount of gas fuel. Almost simultaneously with this, the control of the supply amount of the liquid fuel is started by the diesel governor 48, and the supply amount of the gas fuel by the gas governor 44 is rapidly reduced to the predetermined value corresponding to the rotational speed described in FIG. Stabilize at low power.
  • the low output gas governor command value changes according to the rotational speed.
  • the operation of reducing the gas fuel supply amount to a predetermined value is performed in a very short time (for example, within one second).
  • the supply control amount of the liquid fuel increases the supply amount of the liquid fuel so as to maintain the target rotational speed of the engine 1.
  • the transition from the gas mode G to the assist mode As is performed without significantly affecting the rotational speed of the engine 1.
  • the transition from the gas mode G to the assist mode As can be performed in a very short time (for example, within one second) by the gas governor 44 and the diesel governor 48.
  • FIG. 15 a timing chart showing an operation at the time of returning from the assist mode As to the gas mode G will be described.
  • the gas mode G is restored.
  • the control of the supply amount of liquid fuel is finished by the diesel governor 48, and at the same time, the control of the supply amount of gas fuel is started by the gas governor 44.
  • the diesel governor 48 continuously reduces the supply amount of the liquid fuel, for example, to two stages to finally make the amount zero or a very small amount.
  • the pattern for continuously reducing the amount of liquid fuel supplied by the diesel governor 48 may be linear, curvilinear, or multistage steps having substantially the same function as those described above. It was divided into two steps and lowered linearly. As shown in FIG. 15, in the first stage f1 of the mechanical fuel injection pump 12, the supply amount of liquid fuel is reduced relatively rapidly to reduce the output, and in the area of the second stage f2, the output decreases. To do. It is desirable that the second stage f2 be a non-injection area where substantially no liquid fuel is injected, and that the transition period of the output reduction be reduced slowly. At the boundary between the first stage f1 and the second stage f2, the command of the diesel governor 48 is taken as a governor command at about idle operation.
  • the operation of continuously reducing the supply amount of liquid fuel by the diesel governor 48 be performed for a long time as compared with the operation of reducing the supply amount of gas fuel described above.
  • the time until the end of the liquid fuel supply by the diesel governor 48 varies depending on the output, but is substantially on the order of several seconds.
  • the supply control amount of the gas fuel by the gas governor 44 increases the supply amount of the gas fuel so as to maintain the target rotational speed of the engine 1.
  • the return from the assist mode As to the gas mode G is performed without significantly affecting the rotational speed of the engine 1.
  • the speed control of the supply amount of gas fuel is immediately performed. Can be started. Generally, when the gas fuel supply is started from zero, the rise is unstable and it takes time to perform stable control. However, in the assist mode As, since the gas fuel is already continuously supplied at the supply amount of the predetermined value, it is possible to promptly start the speed control of the gas fuel, and follow the speed control after the start. Sex also becomes high. Therefore, although it differs depending on the output, it is possible to substantially stop the supply of the liquid fuel in a few seconds in the transition from the assist mode As to the gas mode G.
  • the diesel mode D is started to shift to the gas mode G.
  • the gas mode G steady operation is performed on a marine cubic characteristic line.
  • the gas governor 44 controls the supply amount of the gas fuel, and in FIG. 13, even if the output is deviated to some extent with respect to the marine cubic characteristic line, the assist on-line is not reached.
  • control of rotational speed and output is performed and steady operation is performed.
  • gas mode G a mode of operation in which ignition is performed by a spark plug using only gas fuel as fuel, or a mode of operation using injection of a small amount of liquid fuel (pilot oil) for ignition of gas fuel that occupies most of the heat source. It is driven by either.
  • the proportion of liquid fuel is usually about 1% to 10% of the total amount of heat relative to the amount of heat of rated output, but 3% from the viewpoint of achieving environmental regulations for exhaust gas It is desirable that
  • the output (load) of the engine is detected by the rotational speed sensor 20 and the torque sensor 21 provided on the crankshaft 2.
  • the rotational speed sensor 20 measures the rotational speed (rotational speed) of the crankshaft 2
  • the torque sensor 21 measures the engine torque. Measurement data measured by the rotational speed sensor 20 and the torque sensor 21 are respectively output to the control unit 22 of the engine 1.
  • the control unit 22 detects the output of the operating state of the engine 1 based on the signals from the rotational speed sensor 20 and the torque sensor 21 and the like.
  • the speed control of the gas fuel by the gas governor 44 is finished, the governor command value falls rapidly, and the supply amount of gas fuel drops to a predetermined value.
  • regulation control of the liquid fuel supply amount is started.
  • the reduction of the gas fuel supply amount is performed in a very short time, for example, within one second.
  • the speed control by the diesel governor D increases the amount of liquid fuel supplied so as to maintain the target engine rotational speed.
  • the gas mode G is shifted to the assist mode As in a short time without largely affecting the rotational speed of the engine. Thereby, knocking and misfiring in the gas mode G can be avoided in advance. Since operation in assist mode As uses a certain percentage of liquid fuel, operation is performed only for the minimum necessary time from the viewpoint of environmental measures, and when assist mode As is no longer needed, the gas mode is quickly restored.
  • the assist mode As is ended to shift to the gas mode G (see FIG. 15).
  • the control of the supply amount of liquid fuel is finished by the diesel governor 48, and at the same time, the control of the supply amount of gas fuel is started by the gas governor 44.
  • the diesel governor 48 continuously reduces the supply amount of liquid fuel, for example, in two stages, and finally makes the amount zero or a very small amount.
  • the command value of the diesel governor 48 rapidly reduces the supply amount at the first stage f1, and at the second stage f2, the governor command is performed relatively gently with no liquid fuel being injected. Lower the value.
  • the operation of continuously reducing the supply amount of liquid fuel is performed over a long time, for example, several seconds, as compared with the operation of reducing the supply amount of gas fuel at the transition to the assist mode described above.
  • the gas fuel control control by the gas governor 44 rapidly increases the gas fuel supply amount so as to maintain the target rotational speed of the engine 1.
  • the return from the assist mode As to the gas mode G is performed without significantly affecting the rotational speed of the engine 1.
  • the predetermined amount of gas fuel is continuously supplied at the stage of the assist mode As, at the time of returning to the gas mode G, it is possible to immediately start the speed control of the gas fuel. Therefore, the speed control of the supply amount of gas fuel can be started promptly, and the followability and stability of the speed control after the start becomes high. Therefore, at the time of transition from the assist mode As to the gas mode G, substantial gas fuel speed control and liquid fuel supply stop or regulation can be performed in a few seconds.
  • the return to the gas mode in a short time becomes easy.
  • knocking or misfire may occur.
  • the regulation control is in the direction of restricting the supply of fuel, so it is possible to suppress the rapid increase of the gas fuel, and knocking and misfiring hardly occur. Therefore, by performing the return to the gas mode G in accordance with the timing of the engine output decrease, it is possible to return to the gas mode G in a short time while maintaining proper combustion.
  • the amount of gas fuel supplied in the assist mode As increases as the output of the engine 1 increases. As a result, even in the region where the output of the engine 1 is large, the return from the assist mode As to the gas mode G can be quickly performed.
  • the operation of the engine 1 can be continued by shifting from the gas mode G to the assist mode As even in a situation where occurrence of knocking or misfire is expected due to an increase in load.
  • the assist mode As since a certain proportion of liquid fuel is used in the assist mode As, the operation in the assist mode As is minimized as necessary in terms of environmental protection. Then, when the assist mode As is not required, the operation in the gas mode G is immediately restored.
  • the control of the transition to the assist mode As and the return to the gas mode G Switching based on the relationship and continuity will be performed quickly, and appropriate transition and return will be performed even in the actual maneuvering state where output and rotational speed change in a complex manner.
  • the assist mode As is performed in a torque rich region where the output is higher than that of the marine cubic characteristic line, it is also preferable from the viewpoint of environmental protection.
  • variable intake valve timing mechanism in the case of changing the operation parameter for which control is performed in the operation of the engine 1, for example, the set value related to the air supply pressure and the valve closing timing
  • the set values of the 30 controls (VIVT command value) and the set values related to the ignition conditions are set as the set values optimized for the respective operation modes.
  • these operating parameters that is, the set value for the air supply pressure, the set value of the control (VIVT command value) of the variable intake valve timing mechanism 30 when changing the valve closing timing of the intake valve, micro pilot injection
  • the setting value common to the gas mode G is used for at least one of the setting values of the ignition device such as the valve 11 and the spark plug.
  • the transition from the gas mode G to the assist mode As is, for example, 1 second, and the return from the assist mode As to the gas mode G is several seconds. Transition control can be done quickly in time. Therefore, occurrence of knocking and misfire in the gas mode G can be avoided in advance.
  • the operation in the assist mode As is limited to a torque rich area where the output (load) is greatly increased, and when the need for the assist mode As using liquid fuel is eliminated, the gas mode G is promptly returned. Excellent effects can be obtained from the aspect of
  • the engine according to the present invention is not limited to the dual fuel engine 1 according to the above-described embodiment and its operating method, and appropriate changes, replacements, and the like can be made without departing from the scope of the present invention.
  • modification etc. of this invention are demonstrated, about the same or similar thing as the components, members, etc. which were demonstrated by embodiment mentioned above, description is abbreviate
  • the first operation in which the gaseous fuel is the major part of the heat source and the second operation in which both the gaseous fuel and the liquid fuel are fueled when the output (load) increases during the operation Abstract An engine operation method and an engine system are provided which can shift between two driving states in accordance with a change in output (load) and rapidly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

A four-stroke dual-fuel engine (1) that is for propelling a ship and that operates by switching between a gas mode, in which a gas fuel speed-regulating control is carried out using a gas fuel as a primary heat source, an assist mode, in which a liquid fuel speed-regulating control is carried out using both the gas fuel and a liquid fuel as the fuel, and a diesel mode, in which a speed-regulating control is carried out using only the liquid fuel as the fuel. A control unit (22) of the engine (1) has an operation control unit (49) for carrying out operational control of the engine, a gas governor (44) for carrying out a speed-regulating control related to the amount of gas fuel supplied, and a diesel governor (48) for carrying out a speed-regulating control related to the amount of liquid fuel supplied. During operation in the assist mode, when the output of the engine 1 enters an assist-off region, which is a region on either side of and including a cube root characteristic line for the ship, the engine operation moves to the gas mode. During operation in the gas mode, when the output of the engine (1) enters an assist-on region in which the output is higher than in the assist-off region the engine operation moves to the assist mode.

Description

エンジンの運転方法及びエンジンシステムEngine operating method and engine system
 本発明は、例えば船舶推進用の4ストロークデュアルフューエルのエンジンの運転方法およびエンジンシステムに関する。 The present invention relates to, for example, a method of operating a 4-stroke dual fuel engine for propulsion of a ship and an engine system.
近年、船舶推進用のエンジンによる大気汚染物質の排出に対する規制が強化されている。そのため、ガス等の気体燃料を燃料として使用可能で大気汚染物質の排出量が少なく排出ガス規制を満足することができる、デュアルフューエルエンジンの導入が要望されている。デュアルフューエルエンジンは気体燃料と液体燃料の双方を燃料として使用できるエンジンである。 In recent years, regulations on the emission of air pollutants from engines for ship propulsion have been tightened. Therefore, there is a demand for the introduction of a dual fuel engine that can use gaseous fuel such as gas as a fuel, can emit less air pollutants, and can meet emission control regulations. The dual fuel engine is an engine that can use both gaseous fuel and liquid fuel as fuel.
例えば、特許文献1に記載のエンジン装置は、運転状態をガスモードとディーゼルモードとの間で遷移させる際の燃料制御が記載されている。ガスモードからディーゼルモードに運転モードを切り替える場合、燃料ガス供給量について調速制御を行いつつ燃料油を単調増加させ、燃料油供給量が切換閾値以上になると、燃料油供給量について調速制御を行いつつ燃料ガスの供給量を単調減少させている。ディーゼルモードからガスモードに運転モードを切り替える場合には、この逆の手順によって制御されている。また、ガスモードからディーゼルモードへの切り換えに限り、瞬時切り換えを行うことができるとしている。 For example, in the engine device described in Patent Document 1, fuel control in transitioning the operating state between the gas mode and the diesel mode is described. When switching the operation mode from the gas mode to the diesel mode, the fuel oil is monotonously increased while performing the speed control for the fuel gas supply amount, and when the fuel oil supply amount becomes equal to or more than the switching threshold, the speed control is performed for the fuel oil supply amount. While doing this, the amount of fuel gas supplied is monotonically decreased. When switching the operation mode from the diesel mode to the gas mode, control is performed according to the reverse procedure. In addition, it is stated that instantaneous switching can be performed only when switching from the gas mode to the diesel mode.
特許文献2に記載のディーゼル機関は、縦方向に掃気される2ストローク大型ディーゼル機関が開示されている。この大型ディーゼル機関の運転方法として、ガスモードで運転している間、負荷の強力な変化の状態を検出すると過渡モードで運転される。過渡モードでは、大型ディーゼル機関のワーク・サイクル毎に、燃料のガスの量の上側の閾値を決定するステップと、ガスに加えて燃焼空間に導入される液体燃料の追加量を決定するステップを有している。 The diesel engine described in Patent Document 2 discloses a longitudinally swept two-stroke large-sized diesel engine. As a method of operating this large-sized diesel engine, while operating in the gas mode, it is operated in the transient mode when detecting a state of strong change in load. In the transient mode, there is a step of determining an upper threshold of the amount of fuel gas and determining an additional amount of liquid fuel introduced into the combustion space in addition to the gas for each work cycle of the large diesel engine. doing.
特許文献3に記載のエンジンの制御装置は、液体燃料およびガス燃料の両方を用いて駆動可能なエンジンを制御するための方法である。この方法では、エンジンから出力すべき全出力の大きさを、あらかじめ決められた比率に応じて液体燃料の負担分とガス燃料の負担分に分けるものが記載されている。 The engine control device described in Patent Document 3 is a method for controlling an engine that can be driven using both liquid fuel and gas fuel. In this method, it is described that the size of the total output to be output from the engine is divided into a liquid fuel share and a gas fuel share according to a predetermined ratio.
気体燃料による運転と液体燃料による運転の双方が可能なデュアルフューエルエンジンにおいて、通常は気体燃料による運転(ガスモード)を行い、緊急時、非定常時には、液体燃料による運転(ディーゼルモード)、あるいは、気体燃料と液体燃料の両方による運転を行うことは公知である。 A dual fuel engine that is capable of both gaseous fuel operation and liquid fuel operation is usually operated with gaseous fuel (gas mode), and in emergency or unsteady operation with liquid fuel (diesel mode) or It is known to operate with both gaseous and liquid fuels.
また、液体燃料を用いるディーゼルエンジンにおいて、可変吸気弁タイミング(Variable Intake Valve timing;VIVT)機構を備えたものが知られている。
例えば、図17に示す可変バルブタイミング機構の駆動機構の例では、ロッカアーム127にプッシュロッド128を介して連結された排気バルブスイングアーム103や吸気バルブスイングアーム105が、クランク状のリンクシャフト104のタペット軸106(スイングアームの支点位置)に接続されている。アクチュエータによってクランク状のリンクシャフト104の位相を変更(回動)することによって、吸気バルブスイングアーム105や排気バルブスイングアーム103の支点位置が変わり、その結果、カム軸108への接点位置が変わる。
これにより、カム軸108の偏心カム108aがカム軸108で排気バルブスイングアーム103または吸気バルブスイングアーム105を押圧して進退させるタイミングが可変となるようにしている。
In addition, among diesel engines using liquid fuel, one having a variable intake valve timing (VIVT) mechanism is known.
For example, in the example of the drive mechanism of the variable valve timing mechanism shown in FIG. 17, the exhaust valve swing arm 103 and the intake valve swing arm 105 connected to the rocker arm 127 via the push rod 128 are tappets of the crank link shaft 104. It is connected to the shaft 106 (the fulcrum position of the swing arm). By changing (rotating) the phase of the crank-like link shaft 104 by the actuator, the fulcrum positions of the intake valve swing arm 105 and the exhaust valve swing arm 103 change, and as a result, the contact position to the camshaft 108 changes.
As a result, the timing at which the eccentric cam 108a of the camshaft 108 presses the exhaust valve swing arm 103 or the intake valve swing arm 105 by the camshaft 108 is made variable in timing.
特開2017-57774号公報JP, 2017-57774, A 特開2016-217348号公報JP, 2016-217348, A 特許4975702号公報Patent 4975702 gazette
ところで、船舶推進用の4ストロークエンジンでは、様々な運転状況に対応するために、ガバナ(調速装置)による燃料供給量の調速制御が行われる。この調速制御では、供給すべき燃料の量は予め定められておらず、一定の目標回転速度を保つように燃料の供給量が随時制御される。調速制御を行うデュアルフューエルエンジンにおいて、例えば、特許文献1に記載のように、ガスモードからディーゼルモードへの切り換えは短時間に行うことが可能である。しかし、ディーゼルモードからガスモードへの切り換えを短時間に行うことは困難が伴う。 By the way, in the four-stroke engine for ship propulsion, in order to cope with various driving situations, the speed control of the amount of fuel supplied by the governor (speed control apparatus) is performed. In this speed control, the amount of fuel to be supplied is not predetermined, and the amount of fuel supplied is controlled as needed so as to maintain a constant target rotational speed. In the dual fuel engine that performs speed control, for example, as described in Patent Document 1, switching from the gas mode to the diesel mode can be performed in a short time. However, it is difficult to switch from the diesel mode to the gas mode in a short time.
即ち、ガスモードでは、適正な燃料が得られる運転可能な空燃比範囲が狭い範囲に制限されるため、適正な空燃比を維持したまま気体燃料の供給量を適切に調速制御するには高度な技術が必要であり、困難であった。しかも、ディーゼルモードから急速なガスモードへの切り換えはノッキングや失火を誘う原因となる。特許文献1に記載のようなデュアルフューエルエンジンの場合、実際の運転では、ディーゼルモードからガスモードへの切り換えに数十秒以上の時間を要するという問題があった。
従来の技術では、液体燃料の調速制御による運転モードから、ガス燃料の調速制御による運転モードへの切り換えに時間を要していたため、液体燃料を使用する運転モードへの移行は非常時の手段という位置づけであり、出力変動の激しい条件ではガス燃料の調速制御による運転モードへの復帰は困難であった。
That is, in the gas mode, the operable air-fuel ratio range in which the appropriate fuel can be obtained is limited to a narrow range, and therefore the altitude is high to appropriately control the supply amount of the gaseous fuel while maintaining the appropriate air-fuel ratio. Technology was necessary and difficult. Moreover, the switch from the diesel mode to the rapid gas mode causes knocking and misfires. In the case of a dual fuel engine as described in Patent Document 1, there is a problem that it takes several tens of seconds to switch from the diesel mode to the gas mode in actual operation.
In the prior art, since it takes time to switch from the operation mode by liquid fuel control to the operation mode by gas fuel control, the transition to the liquid fuel operation mode is an emergency It is positioned as a means, and it was difficult to return to the operation mode by the gas fuel regulation control under conditions where the output fluctuation is severe.
本発明は、上述した課題に鑑みてなされたものであり、ガバナによる燃料供給量の調速制御を行う場合において、気体燃料による運転と液体燃料を使用する運転との間の相互の移行をより短時間でスムーズに行えるようにしたデュアルフューエルエンジンの運転方法とエンジンシステムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and in the case of performing speed control of the fuel supply amount by the governor, the mutual transition between the operation by the gaseous fuel and the operation using the liquid fuel is further enhanced. An object of the present invention is to provide a dual fuel engine operation method and an engine system that can be performed quickly and smoothly.
本発明は、デュアルフューエルのエンジンの運転方法であって、気体燃料を熱源の大部分とする第一の運転中に、気体燃料の供給量の調速制御を終了して気体燃料の供給量を所定値に下げると共に液体燃料の供給量の調速制御を開始することで、気体燃料と液体燃料の双方を燃料とする第二の運転に移行するステップと、第二の運転の運転中に、液体燃料の供給量の調速制御を終了して液体燃料の供給量を下げると共に気体燃料の供給量の調速制御を開始することで第一の運転に復帰するステップと、を有することを特徴とする。
本発明では、第一の運転から第二の運転に移行する際、気体燃料の供給量の調速制御を終了すると共に液体燃料の供給量の調速制御を開始し、かつ、気体燃料の供給量を所定値に下げる。この気体燃料の供給量を所定値に下げる操作は例えば1秒以内程度のごく短時間で行われる。気体燃料の供給量が下がると、液体燃料の調速制御の作用により、エンジンの目標となる回転速度を維持するように液体燃料の供給量が増加する。そのため、エンジンの回転速度に大きな影響を与えずに、第一の運転から第二の運転への移行が実施される。
第二の運転から第一の運転に復帰する際には、液体燃料の供給量の調速制御を終了すると共に気体燃料の供給量の調速制御を開始し、かつ、液体燃料の供給量を連続的に下げる。液体燃料の供給量が連続的に下げられると、気体燃料の調速制御の作用により、エンジンの目標となる回転速度を維持するように気体燃料の供給量が増加する。そのため、エンジンの回転速度に大きな影響を与えずに、第二の運転から第一の運転への復帰が実施される。
The present invention relates to a method of operating a dual fuel engine, and during the first operation in which the gas fuel is the major part of the heat source, the control of the supply amount of the gas fuel is terminated to stop the supply amount of the gas fuel. During the operation of the second operation, the step of transitioning to the second operation using both gaseous fuel and liquid fuel as fuel by lowering the pressure to a predetermined value and starting the regulation control of the liquid fuel supply amount. Returning the first operation by terminating the regulation control of the liquid fuel supply amount and reducing the liquid fuel supply amount and starting the gas fuel supply amount regulation control. I assume.
In the present invention, at the time of transition from the first operation to the second operation, the control of the supply amount of gaseous fuel is ended and the control of the supply amount of liquid fuel is started, and the supply of gaseous fuel is started. Reduce the amount to a predetermined value. The operation to reduce the supply amount of the gaseous fuel to a predetermined value is performed in a very short time, for example, within about 1 second. When the supply amount of the gaseous fuel decreases, the control control of the liquid fuel increases the supply amount of the liquid fuel so as to maintain the target rotational speed of the engine. Therefore, the transition from the first operation to the second operation is performed without significantly affecting the rotational speed of the engine.
When returning from the second operation to the first operation, the control of the supply amount of liquid fuel is terminated and the control of the supply amount of gaseous fuel is started, and the supply amount of liquid fuel is Continuously lower. When the liquid fuel supply amount is continuously reduced, the gas fuel supply amount is increased to maintain the target rotational speed of the engine by the action of the gaseous fuel control. Therefore, the return from the second operation to the first operation is performed without significantly affecting the rotational speed of the engine.
また、第一の運転に復帰するステップは、エンジンの出力が下がる過程において実施されることが好ましい。
第一の運転へ復帰するステップをエンジンの出力が下がる過程において実施することで、短時間での第一の運転への復帰が容易となる。第一の運転への復帰時にはノッキングや失火の発生が課題となるが、エンジンの出力が下がる過程においては、十分な空気量が確保された状態であるため適正な空燃比を維持しやすく、調速制御上は燃料の供給を制限する方向であるため、急激な気体燃料の増加を抑制できてノッキングや失火が生じにくい。そこで、このタイミングにあわせて第一の運転への復帰を行うことで、適正な燃焼を維持しつつ短時間での復帰を可能とする。
Preferably, the step of returning to the first operation is performed in the process of reducing the output of the engine.
By performing the step of returning to the first operation in the process of decreasing the output of the engine, it is easy to return to the first operation in a short time. At the time of return to the first operation, the occurrence of knocking and misfires is an issue, but in the process where the engine output decreases, it is easy to maintain an appropriate air-fuel ratio because a sufficient amount of air is maintained. In terms of speed control, the fuel supply is limited, so rapid increase in gaseous fuel can be suppressed, and knocking and misfires are less likely to occur. Therefore, by performing the return to the first operation according to this timing, it is possible to return in a short time while maintaining appropriate combustion.
また、第一の運転に復帰するステップにおいて、液体燃料の供給量を下げる工程は、比較的高速で液体燃料の供給量を下げる第一段と、比較的低速で液体燃料の供給量を下げる第二段とを有していることが好ましい。
液体燃料の供給に機械式燃料噴射ポンプを用いた場合、第二段は機械式燃料噴射ポンプの無噴射領域に相当し、実質的に液体燃料の噴射がされない状態となる。
Further, in the step of returning to the first operation, the step of reducing the liquid fuel supply amount includes a first step of reducing the liquid fuel supply amount at a relatively high speed and a second step of reducing the liquid fuel supply amount at a relatively low speed. It is preferable to have
When the mechanical fuel injection pump is used to supply the liquid fuel, the second stage corresponds to the non-injection region of the mechanical fuel injection pump, and the liquid fuel is not substantially injected.
また、第一の運転に復帰するステップは、エンジンの出力が舶用三乗特性線に対して±10%の範囲に設定されたアシスト・オフラインの下側領域に入ると実施され、第二の運転に移行するステップは、エンジンの出力がアシスト・オフラインの上側に設定されたアシスト・オンラインの上側の領域に入ると実施されるようにしてもよい。
ここでは、舶用三乗特性線に対して±10%の出力範囲にアシスト・オフラインを設定し、エンジンの出力がアシスト・オフラインの下側の領域(アシスト・オフ領域)に入ると第一の運転への復帰を行う。また、アシスト・オフラインの上側にアシスト・オンラインを設定し、エンジンの出力がアシスト・オンラインの上側の領域(アシスト・オン領域)に入ると第二の運転に移行する。
Also, the step of returning to the first operation is performed when the engine output enters the lower region of the assist off-line set in the range of ± 10% with respect to the marine cubic characteristic line, and the second operation is performed. The step of transitioning to may be performed when the output of the engine enters the upper region of Assist On-line set above Assist Off-line.
Here, the assist off-line is set to an output range of ± 10% with respect to the marine cubic characteristic line, and the first operation is performed when the output of the engine enters the lower area (assist off area) of the assist off-line. Return to Further, the assist on-line is set on the upper side of the assist off-line, and when the output of the engine enters the upper area (assist on-on area) of the assist on-line, the operation shifts to the second operation.
また、第二の運転に移行するステップにおける、気体燃料の供給量はエンジンの出力が大きいほど大きい値とされている。
エンジンの出力が大きい領域においても、第二の運転から第一の運転への復帰を迅速に行うことができる。
In the step of shifting to the second operation, the supply amount of gaseous fuel is set to a larger value as the output of the engine is larger.
Even in the region where the output of the engine is large, the second operation can be quickly returned to the first operation.
本発明は、エンジンの運転方法であって、気体燃料と調速制御される液体燃料との双方を燃料として第二の運転を行うステップと、このステップにおける液体燃料の調速制御を終了させて液体燃料の供給量を連続的に低下させると共に、気体燃料を熱源の大部分とし且つ調速制御を行う第一の運転を行うステップと、を有することを特徴とする。
本発明のエンジンの運転方法は、第二の運転から第一の運転への移行を迅速に行える。
The present invention is an operating method of an engine, comprising the steps of: performing a second operation using both gaseous fuel and liquid fuel subjected to temperature control as fuel; and terminating liquid fuel speed control in this step And d) continuously reducing the supply amount of the liquid fuel and performing the first operation of controlling the gas fuel as a major part of the heat source and performing the speed control.
The operating method of the engine of the present invention can quickly shift from the second operation to the first operation.
本発明は、エンジンの運転方法であって、気体燃料を熱源の大部分として気体燃料の調速制御を行うガスモードと、気体燃料及び液体燃料の双方を燃料として液体燃料の調速制御を行うアシストモードと、液体燃料のみを燃料として調速制御を行うディーゼルモードと、のいずれかを択一的に切り換えてエンジンを運転し、アシストモードによる運転中にエンジンの出力が舶用三乗特性線に沿って設定されるアシスト・オフ領域に入るとガスモードに移行し、ガスモードによる運転中にエンジンの出力がアシスト・オフ領域より出力の高いアシスト・オン領域に入るとアシストモードに移行する、ことを特徴とする。
 
本発明によれば、アシストモードからガスモードへの復帰が素早く行えることから、エンジンの出力に応じた条件で、ガスモードとアシストモードとの間で定常的に随時、しかも迅速に運転モードの移行と復帰を行う。これにより、ガスモードにおける、ノッキングや失火の発生を未然に回避できるとともに、アシストモードでの運転は出力が大幅に増加した非常時に運用されるトルクリッチ領域に限られ、排ガス規制による環境対策の側面からも好適である。 
また、アシストモードによる運転では、エンジンの運転において制御が行われる運転パラメータはガスモードと共通の設定が用いられることが好ましい。
The present invention is an operating method of an engine, wherein a gas fuel is used as a major part of a heat source to control gas fuel, and a gas fuel and a liquid fuel are used as fuel to control a liquid fuel. The engine is operated by selectively switching one of the assist mode and the diesel mode in which the speed control is performed using only liquid fuel as fuel, and the output of the engine during the operation in the assist mode is a marine cubic characteristic line. Transition to the gas mode when entering the assist-off region set along the path, and transition to the assist mode when the engine output enters the assist-on region where the output is higher than the assist-off region during operation in the gas mode It is characterized by

According to the present invention, since the return from the assist mode to the gas mode can be quickly performed, the transition of the operation mode between the gas mode and the assist mode can be steadily performed at any time and rapidly under the condition corresponding to the output of the engine. And return. As a result, occurrence of knocking and misfire in the gas mode can be avoided in advance, and the operation in the assist mode is limited to the torque rich region operated at the time of emergency when the output is greatly increased. Are also suitable.
Further, in the operation in the assist mode, it is preferable that an operation parameter to be controlled in the operation of the engine be set in common with the gas mode.
本発明は、エンジンシステムであって、エンジンの運転制御を行う運転制御部と、気体燃料の供給量の調速制御を行うガスガバナと、液体燃料の供給量の調速制御を行うディーゼルガバナと、を有する制御部を備え、運転制御部による気体燃料を熱源の大部分とする第一の運転中に、ガスガバナによる気体燃料の調速制御を終了して気体燃料の供給量を下げると共に、ディーゼルガバナによる液体燃料の調速制御を開始することで、気体燃料及び液体燃料の双方を燃料とする第二の運転に移行させ、第二の運転中に、ディーゼルガバナによる液体燃料の調速制御を終了して液体燃料の供給量を下げると共に、ガスガバナによる気体燃料の調速制御を開始することで第一の運転に復帰させることを特徴とする。
本発明では、運転制御部による第一の運転から第二の運転に移行する際、ガスガバナによる気体燃料の供給量の調速制御を終了すると共に気体燃料の供給量を所定値に下げ、ディーゼルガバナによる液体燃料の供給量の調速制御を開始する。気体燃料の供給量を所定値に下げる操作は例えば1秒以内程度のごく短時間で行われる。気体燃料の供給量が下がると、液体燃料の調速制御の作用により、エンジンの目標となる回転速度を維持するように液体燃料の供給量が増加する。
第二の運転から第一の運転に復帰する際には、ディーゼルガバナによる液体燃料の供給量の調速制御を終了すると共に液体燃料の供給量を連続的に下げ、ガスガバナによる気体燃料の供給量の調速制御を開始する。液体燃料の供給量が下げられると、気体燃料の調速制御の作用により、エンジンの目標となる回転速度を維持するように気体燃料の供給量が増加する。そのため、エンジンの回転速度に大きな影響を与えずに、第一の運転と第二の運転との間の移行と復帰を実施できる。
The present invention relates to an engine system, and an operation control unit for controlling the operation of the engine, a gas governor for controlling the supply amount of gaseous fuel, and a diesel governor for controlling the supply amount of liquid fuel. During the first operation where the operation control unit uses the gaseous fuel as the major part of the heat source, the control control of the gaseous fuel by the gas governor is ended to reduce the supply amount of the gaseous fuel, and the diesel governor Start control of the liquid fuel by the control unit to shift to the second operation using both gaseous fuel and liquid fuel as fuel, and finish the control control of liquid fuel by the diesel governor during the second operation Then, while reducing the supply amount of the liquid fuel, the present invention is characterized in that the control operation of the gaseous fuel by the gas governor is started to return to the first operation.
In the present invention, when transitioning from the first operation to the second operation by the operation control unit, the control of the supply amount of the gaseous fuel by the gas governor is ended and the supply amount of the gaseous fuel is reduced to a predetermined value. Start the control control of the liquid fuel supply amount by. The operation of reducing the supply amount of gaseous fuel to a predetermined value is performed in a very short time, for example, within about 1 second. When the supply amount of the gaseous fuel decreases, the control control of the liquid fuel increases the supply amount of the liquid fuel so as to maintain the target rotational speed of the engine.
When returning from the second operation to the first operation, the control of the amount of liquid fuel supplied by the diesel governor is terminated and the amount of liquid fuel supplied is continuously reduced, and the amount of gaseous fuel supplied by the gas governor Start the speed control of When the liquid fuel supply amount is reduced, the gas fuel supply amount is increased to maintain the target rotational speed of the engine by the action of the gaseous fuel control. Therefore, the transition and return between the first operation and the second operation can be implemented without significantly affecting the rotational speed of the engine.
本発明によるエンジンの運転方法とエンジンシステムによれば、第一の運転と第二の運転とを相互に切り換えることができ、しかも第一の運転から第二の運転に移行する際と第二の運転から第一の運転に復帰する際に、それぞれの移行をごく短時間でスムーズに行うことができ、エンジンの回転速度に大きな影響を与えることがない。
また、第一の運転ではノッキングや失火の発生を未然に回避できるとともに、第二の運転は非定常時に運用されるトルクリッチ領域に限られるので排ガス規制による環境対策側面からも好適である。
According to the engine operation method and the engine system according to the present invention, the first operation and the second operation can be switched mutually, and moreover, when transitioning from the first operation to the second operation, the second operation When returning from the operation to the first operation, each transition can be smoothly performed in a very short time, and the rotational speed of the engine is not significantly affected.
In addition, since the occurrence of knocking and misfire can be avoided beforehand in the first operation, and the second operation is limited to the torque rich region operated at the time of non-steady state, it is suitable also from the environmental countermeasure side by exhaust gas regulation.
本発明の実施形態による舶用デュアルフューエルエンジンの要部構成を示すブロック図である。It is a block diagram showing the important section composition of the marine dual fuel engine by the embodiment of the present invention. デュアルフューエルエンジンにおけるディーゼルモードを示す図である。It is a figure which shows the diesel mode in a dual fuel engine. デュアルフューエルエンジンにおけるガスモードを示す図である。It is a figure which shows the gas mode in a dual fuel engine. デュアルフューエルエンジンにおけるアシストモードを示す図である。It is a figure which shows the assist mode in a dual fuel engine. 出力と回転速度とVIVT指令値との関係を示す3次元マップである。It is a three-dimensional map which shows the relationship between an output, a rotational speed, and a VIVT command value. 出力と回転速度と吸気弁の閉弁タイミングとの関係を示す3次元マップである。It is a three-dimensional map which shows the relationship between an output, a rotational speed, and the valve closing timing of an inlet valve. 出力軸の回転速度が一定の場合と変化する場合において、出力と最適なVIVT指令値との関係を示すグラフである。It is a graph which shows the relationship between an output and the optimal VIVT command value in the case where the rotational speed of an output shaft is constant, and when changing. VIVT指令値が種々異なる場合における燃料ガス供給弁の開弁タイミングとTHC濃度との関係を示すグラフである。It is a graph which shows the relationship between the valve opening timing of a fuel gas supply valve, and THC concentration in, when the VIVT command value changes variously. 出力軸の回転速度が一定の場合と変化する場合において、出力と燃料ガス供給弁の開弁タイミングとの関係を示すグラフである。It is a graph which shows the relationship between an output and the valve-opening timing of a fuel gas supply valve in, when the rotational speed of an output shaft is constant and changes. VIVT指令値に対応する燃料ガス供給開始時期を示すグラフである。It is a graph which shows the fuel gas supply start time corresponding to VIVT command value. 舶用デュアルフューエルエンジンのPID制御を行う制御装置の構成を示す図である。It is a figure showing composition of a control device which performs PID control of a marine dual fuel engine. ガスガバナにおいて、実回転速度を目標回転速度になるようPID制御する工程を示す図である。It is a figure which shows the process of performing PID control so that real rotation speed may turn into target rotation speed in a gas governor. ディーゼルガバナにおいて、実回転速度を目標回転速度になるようPID制御する工程を示す図である。FIG. 6 is a diagram showing a process of performing PID control so that an actual rotation speed becomes a target rotation speed in a diesel governor. 通常時と進角時における吸気弁と燃料ガス供給弁の開閉動作のタイミングチャートである。It is a timing chart of the opening-and-closing operation of the suction valve and the fuel gas supply valve in the time of a normal time and an advance angle. 舶用三乗特性線とアシスト・オン領域とアシスト・オフ領域の関係を示すグラフである。It is a graph which shows the relationship between a marine cube characteristic line, an assist on area | region, and an assist off area | region. ガスモードからアシストモードへの移行時の出力とガバナ指令値を示すグラフである。It is a graph which shows the output and governor command value at the time of transfer from gas mode to assist mode. アシストモードからガスモードへの復帰時の出力とガバナ指令値を示すグラフである。It is a graph which shows the output at the time of return from assist mode to gas mode, and a governor command value. エンジンの燃焼サイクルの通常のサイクルの工程図である。FIG. 1 is a flow chart of a normal cycle of a combustion cycle of an engine. エンジンの燃焼サイクルのミラーサイクルの工程図である。It is process drawing of the mirror cycle of the combustion cycle of an engine. 従来の可変吸気弁タイミング機構を示す図である。It is a figure which shows the conventional variable intake valve timing mechanism.
本発明のデュアルフューエルエンジンとして、まず最初に可変吸気弁タイミング(Variable Intake Valve Timing;VIVT)機構について説明する。
すなわち、本発明者らは、各VIVT角度で燃料ガス供給弁の開弁(供給開始)タイミングを変更して、THC濃度、燃焼状態から最適値を決定し、VIVT角度に応じて燃料ガス供給弁の開弁タイミングを設定することにより、ガス燃料エンジンの出力を上昇させる際に発生するノッキングを抑制して負荷上げ時間を短縮することができ、更にはトルクリッチ領域、トルクプア領域において燃料ガス供給弁の開弁タイミングに起因していた燃焼変動、回転速度ハンチングを改善できることを見いだした。
First, a variable intake valve timing (VIVT) mechanism will be described as a dual fuel engine according to the present invention.
That is, the present inventors change the opening (supply start) timing of the fuel gas supply valve at each VIVT angle, determine the optimum value from the THC concentration and the combustion state, and the fuel gas supply valve according to the VIVT angle. By setting the valve opening timing, it is possible to suppress the knocking that occurs when raising the output of the gas fuel engine and shorten the load raising time, and further, the fuel gas supply valve in the torque rich region and torque poor region. It has been found that combustion fluctuation and rotational speed hunting that were attributable to the valve opening timing of the valve can be improved.
エンジンのノッキング抑制技術として、可変吸気弁タイミング(VIVT)機構を用いて有効圧縮比を下げることができる。この点についてノッキング抑制技術を図16A、16Bにより説明する。図16Aは通常の4ストロークサイクルの工程を示し、図16Bはミラーサイクルの工程を示している。 As an engine knocking suppression technique, a variable intake valve timing (VIVT) mechanism can be used to lower the effective compression ratio. A knocking suppression technique will be described with reference to FIGS. 16A and 16B in this regard. FIG. 16A shows the process of a normal four-stroke cycle, and FIG. 16B shows the process of a mirror cycle.
例えばガス燃料エンジンにおいて、通常、吸気弁はピストンの下死点に閉まる(図16A参照)。一方、図16Bに示すように閉まるタイミングを下死点より早くすると、吸気弁の閉弁後にも混合気の膨張が続くため、筒内温度Tsが図16Aの場合より下がる(Ts<Ts)。その分だけ上死点時の最高圧縮温度も低下することより(Tc<Tc)、自着火を防ぐことができてノッキングが抑制される。
ミラーサイクルの欠点として、圧縮温度が下がって低負荷域の着火性が悪化するため、起動時や低負荷時には図16Aに示す通常の吸気弁の開弁タイミングに戻し、高負荷時のみ吸気弁の開弁タイミングを早くする必要がある。
For example, in a gas fueled engine, the intake valve typically closes to the bottom dead center of the piston (see FIG. 16A). On the other hand, when the timing of closing as shown in FIG. 16B faster than the bottom dead center, because the expansion of the mixture continue after closing of the intake valves, cylinder temperature Ts falls below the case of FIG. 16A (Ts * <Ts) . Since the maximum compression temperature at the top dead center is also reduced by that amount (Tc * <Tc), self-ignition can be prevented and knocking can be suppressed.
As a drawback of the Miller cycle, the compression temperature drops and the ignitability in the low load area deteriorates, so at the time of start-up or low load, the normal intake valve opening timing shown in FIG. It is necessary to make the valve opening timing earlier.
以下、本発明の実施形態によるエンジンとして、舶用エンジンに用いる例えば4ストロークのデュアルフューエルエンジン1について添付図面に基づいて説明する。
図1及び図2に示す舶用のデュアルフューエルエンジン1(以下、単にエンジン1ということがある)は、運転中にディーゼルモードDとガスモードGとアシストモードAsのいずれかに切り換え可能である。図1に示すデュアルフューエルエンジン1は、プロペラ等に連結された出力軸としてクランク軸2の機構を備えており、クランク軸2はシリンダーブロック3内に設置されたピストン4に連結されている。シリンダーブロック3内に設けたピストン4とエンジンヘッド5によって燃焼室6が形成されている。
Hereinafter, as an engine according to an embodiment of the present invention, for example, a 4-stroke dual fuel engine 1 used for a marine engine will be described based on the attached drawings.
The marine dual fuel engine 1 (hereinafter sometimes referred to simply as the engine 1) shown in FIGS. 1 and 2 can be switched to one of the diesel mode D, the gas mode G, and the assist mode As during operation. The dual fuel engine 1 shown in FIG. 1 includes a mechanism of a crankshaft 2 as an output shaft connected to a propeller or the like, and the crankshaft 2 is connected to a piston 4 installed in a cylinder block 3. A combustion chamber 6 is formed by the piston 4 and the engine head 5 provided in the cylinder block 3.
燃焼室6はエンジンヘッド5に装着されている吸気弁8及び排気弁9と、ディーゼルモードDで使用する燃料噴射弁10とによって密閉されている。エンジンヘッド5にはガスモードで使用するマイクロパイロット油噴射弁11が設置されている。燃料噴射弁10には燃料噴射ポンプ12が接続されている。エンジンヘッド5の吸気弁8を設置した吸気口には吸気管13が接続され、排気弁9を設置した排気口には排気管14が設置されている。吸気管13にはガス噴射を制御する電磁弁からなる燃料ガス供給弁15が設置され、その上流側にはエアクーラ16、排気管14に連通する過給機17が設置されている。 The combustion chamber 6 is sealed by an intake valve 8 and an exhaust valve 9 mounted on the engine head 5 and a fuel injection valve 10 used in the diesel mode D. The engine head 5 is provided with a micro pilot oil injection valve 11 used in the gas mode. A fuel injection pump 12 is connected to the fuel injection valve 10. An intake pipe 13 is connected to an intake port where the intake valve 8 of the engine head 5 is installed, and an exhaust pipe 14 is installed at an exhaust port where the exhaust valve 9 is installed. The intake pipe 13 is provided with a fuel gas supply valve 15 consisting of a solenoid valve for controlling gas injection, and on the upstream side thereof, an air cooler 16 and a turbocharger 17 communicating with the exhaust pipe 14 are provided.
ここで、本実施形態によるデュアルフューエルエンジン1は、図2A、2B,2Cに示すように、ディーゼルモードDとガスモードGとアシストモードAsのいずれかに切り換えて運転できる。図2Aに示すディーゼルモードDでは、例えばA重油等を燃料油として図示しない燃料タンクから燃料噴射ポンプに供給し、燃料噴射弁10から燃焼室6内の圧縮空気に機械的に噴射して着火し燃焼させることができる。 Here, as shown in FIGS. 2A, 2B, and 2C, the dual fuel engine 1 according to the present embodiment can be switched between the diesel mode D, the gas mode G, and the assist mode As. In the diesel mode D shown in FIG. 2A, for example, fuel oil A is supplied as a fuel oil from a fuel tank (not shown) to the fuel injection pump, and mechanically injected from the fuel injection valve 10 into compressed air in the combustion chamber 6 for ignition. It can be burned.
図2Bに示すガスモードGでは、天然ガス等の燃料ガスを燃料ガス供給弁15で吸気管13に供給して空気流と予混合して混合気を燃焼室6内に供給し、混合気の圧縮状態で点火装置により点火を行い、この例ではマイクロパイロット油噴射弁11からパイロット燃料を噴射して着火し燃焼させる。マイクロパイロット油噴射弁11は例えば電子制御されていて強力な点火源としてパイロット燃料を少量噴射する。燃料ガス供給弁15は、わずかなストロークで大きな開口を形成して短時間で大量のガスを流すことができる電磁弁である。
図2Cに示すアシストモードAsでは、燃料噴射弁10から燃料油を調速制御によって燃焼室6内に噴射すると共に、燃料ガス供給弁15から燃料ガスを吸気管13内に供給する。
In the gas mode G shown in FIG. 2B, fuel gas such as natural gas is supplied to the intake pipe 13 by the fuel gas supply valve 15 to be premixed with the air flow, and the mixture is supplied into the combustion chamber 6, Ignition is performed by the igniter in a compressed state, and in this example, pilot fuel is injected from the micro pilot oil injection valve 11 to be ignited and burned. The micro pilot oil injection valve 11 is electronically controlled, for example, and injects a small amount of pilot fuel as a powerful ignition source. The fuel gas supply valve 15 is a solenoid valve that can form a large opening with a slight stroke and allow a large amount of gas to flow in a short time.
In the assist mode As shown in FIG. 2C, fuel oil is injected from the fuel injection valve 10 into the combustion chamber 6 by speed control, and fuel gas is supplied from the fuel gas supply valve 15 into the intake pipe 13.
ガスモードGは、ガス燃料(気体燃料)のみを燃料として用いて点火プラグで点火を行う運転様式、及び、熱源の大部分を占めるガス燃料の点火に少量の液体燃料(パイロット油)の噴射を用いる運転様式、の双方を含むものである。後者の運転様式における全燃料中の液体燃料の割合は、通常の場合、定格出力の熱量対比で全熱量の1%~10%程度である。排出ガスに対する環境規制を達成する観点からは3%以下であることが望ましい。
アシストモードAsは、ガス燃料と液体燃料の双方を燃料とし、しかも液体燃料の供給量の調速制御を行う運転様式である。液体燃料を用いるアシストモードAsは、環境対策の側面から運転時間を必要最小限とし、アシストモードが必要でなくなった場合にはすぐにガスモードに復帰させることが好ましい。アシストモードAsでは、燃料噴射弁10から燃焼室6内に燃料油を噴射して燃焼させると共に、マイクロパイロット油噴射弁11からも燃焼室6内にパイロット燃料を噴射して燃焼させる。
ディーゼルモードDは、主にエンジンの始動時及び停止時に用いられ、液体燃料のみを燃料として運転を行う運転様式である。
The gas mode G is an operation mode in which ignition is performed by a spark plug using only gas fuel (gas fuel) as fuel, and injection of a small amount of liquid fuel (pilot oil) for ignition of gas fuel which occupies most of the heat source. It includes both modes of operation used. The proportion of liquid fuel in the total fuel in the latter mode of operation is usually about 1% to 10% of the total heat in comparison with the heat of rated output. From the viewpoint of achieving environmental regulations on exhaust gas, it is desirable to be 3% or less.
The assist mode As is an operation mode in which both the gas fuel and the liquid fuel are used as fuel, and furthermore, the regulation control of the supply amount of the liquid fuel is performed. In the assist mode As using liquid fuel, it is preferable to minimize the operation time from the viewpoint of environmental protection, and to immediately return to the gas mode when the assist mode is not necessary. In the assist mode As, fuel oil is injected from the fuel injection valve 10 into the combustion chamber 6 for combustion, and pilot fuel is also injected from the micro pilot oil injection valve 11 into the combustion chamber 6 for combustion.
The diesel mode D is mainly used at the start and stop of the engine, and is an operation mode in which operation is performed using only liquid fuel as fuel.
エンジン1は、燃料噴射弁10より液体燃料を燃焼室6内に噴射するディーゼルモードDで始動を行う。エンジン1に基準値以上のガス圧力が供給されていることが確認された後、燃料ガス供給弁15でガス燃料を吸気管13に供給して空気と混合してから燃焼室6内に流入させ、ガス燃料を燃焼させるガスモードGで運転を行う。
停止の際には再びディーゼルモードDに変更してから停止を行う。始動時と停止時以外はディーゼルモードDとガスモードGを変更可能である。
The engine 1 is started in a diesel mode D in which liquid fuel is injected into the combustion chamber 6 from the fuel injection valve 10. After it is confirmed that the gas pressure above the reference value is supplied to the engine 1, the gas fuel is supplied to the intake pipe 13 by the fuel gas supply valve 15, mixed with air, and then flowed into the combustion chamber 6. , And operate in gas mode G for burning gas fuel.
At the time of a stop, it changes to diesel mode D again, and stops. The diesel mode D and the gas mode G can be changed except at the time of start and stop.
定常的な運転の際には、回転速度と出力との関係で理論的には舶用三乗特性線に沿ってガスモードでエンジン1の運転が行われる。舶用三乗特性とは、固定ピッチプロペラを用いた船舶において出力が回転速度の3乗に比例する舶用主機関(エンジン1)の特性をいう。定常運転以外で、荒天時の船舶の運航や急速な進路変更などの操船がなされた場合には、舶用三乗特性を大きく超えて常用的な運転領域以上の出力が要求され、ガスモードGでの運転は出力が不足して運転が困難な場合があるため、一時的に液体燃料を燃焼室6内に供給して気体燃料と共にアシストモードAsで運転を行う。アシストモードAsでの運転は、調速制御で液体燃料を使用するため環境への影響を考慮して必要最小限の時間内で処理し、アシストモードAsが必要でなくなった場合には迅速にガスモードGに復帰することが望ましい。 In the steady operation, the engine 1 is operated in the gas mode theoretically along the ship cubic characteristic line due to the relationship between the rotational speed and the output. The marine cubic characteristic refers to the characteristic of the main marine engine (engine 1) whose output is proportional to the cube of the rotational speed in a ship using a fixed pitch propeller. If the ship maneuvers during stormy weather or other maneuvers such as a rapid course change other than steady-state operation are performed, the output over the normal operation range is required far beyond the marine cubic characteristic, and in gas mode G In the operation of the above, the liquid fuel may be temporarily supplied into the combustion chamber 6 and the operation may be performed in the assist mode As together with the gaseous fuel because the operation may be difficult due to insufficient output. Operation in the assist mode As is processed within the necessary minimum time in consideration of environmental impact in order to use the liquid fuel in the speed control, and if the assist mode As is not necessary, the gas is swiftly It is desirable to return to mode G.
本実施形態によるデュアルフューエルエンジン1は、ガスモードGにおいて負荷上昇時の出力制御を行うガスエンジンシステムを備えている。このガスエンジンシステムの構造について説明する。
図1において、クランク軸2には回転速度センサ20とトルクセンサ21とが取付けられており、回転速度センサ20ではクランク軸2の回転速度(回転数)を計測し、トルクセンサ21ではエンジントルクを計測する。トルクセンサ21として、例えば軸にかかるトルクを歪によって検出するセンサが使用可能である。回転速度センサ20とトルクセンサ21で計測した測定データはエンジン1を制御する制御部22にそれぞれ信号出力する。
The dual fuel engine 1 according to the present embodiment includes a gas engine system that performs output control when the load increases in the gas mode G. The structure of this gas engine system will be described.
In FIG. 1, a rotational speed sensor 20 and a torque sensor 21 are attached to the crankshaft 2. The rotational speed sensor 20 measures the rotational speed (rotational speed) of the crankshaft 2. measure. As the torque sensor 21, for example, a sensor that detects torque applied to the shaft by strain can be used. Measurement data measured by the rotational speed sensor 20 and the torque sensor 21 are respectively output to the control unit 22 that controls the engine 1.
制御部22では、回転速度センサ20とトルクセンサ21などからの信号に基づいてエンジン1の運転状態を検出する。即ち、回転速度センサ20で計測したクランク軸2の回転速度(回転数)をnとし、トルクセンサ21で計測したトルクをTとして、下記の式(1)と式(2)でエンジン1の出力(負荷)Aを演算する。但し、Ltはエンジン1の定格出力とする。
出力Lo=2πTn/60  (1)
出力(負荷)A=Lo/Lt×100 (2)
The control unit 22 detects the operating state of the engine 1 based on signals from the rotational speed sensor 20 and the torque sensor 21 or the like. That is, assuming that the rotational speed (rotational speed) of the crankshaft 2 measured by the rotational speed sensor 20 is n, and the torque measured by the torque sensor 21 is T, the output of the engine 1 by the following equations (1) and (2) (Load) Calculate A. However, Lt is the rated output of the engine 1.
Output Lo = 2πTn / 60 (1)
Output (load) A = Lo / Lt × 100 (2)
なお、エンジン1の出力(負荷)を求める方法として、燃料の供給量その他のエンジン1の運転状態に関する情報から推測する方法と、エンジン1の出力軸の動力伝達系統にトルクセンサ21を備えて、実際にトルクの測定を行って出力を求める方法がある。ガス燃料エンジンでは、燃料となるガスは弾性体であるため液体燃料に比べて正確な燃料の供給量を得ることが相対的に難しい。そこで、トルクセンサ21によって実際にトルクの測定を行うことで出力を演算することが好ましい。
回転速度nを一定にした場合には、出力Aとトルク測定値Tは正比例の関係になる。回転速度nが一定の条件においては、出力Aが大きいほど、すなわちトルクデータTが大きいほど、より大きい割合で吸気弁8の閉じるタイミングの進角を設定することが望ましい。
As a method of obtaining the output (load) of the engine 1, a method of inferring from the information regarding the amount of fuel supply and other operating conditions of the engine 1, and providing a torque sensor 21 in the power transmission system of the output shaft of the engine 1, There is a method of actually measuring the torque and determining the output. In a gas fueled engine, since the gas to be a fuel is an elastic body, it is relatively difficult to obtain an accurate supply amount of fuel as compared to a liquid fuel. Therefore, it is preferable to calculate the output by actually measuring the torque with the torque sensor 21.
When the rotational speed n is fixed, the output A and the torque measurement value T are in direct proportion. Under the condition that the rotational speed n is constant, it is desirable to set the advancing timing of the closing timing of the intake valve 8 at a larger rate as the output A is larger, that is, as the torque data T is larger.
制御部22では、予め作成された吸気弁開閉タイミングの第一電気信号を決定する第一マップ24と第一電気信号及び開閉タイミングから第二電気信号を決定する第二マップ25とが記憶されている。制御部22では、回転速度センサ20とトルクセンサ21によって測定されたエンジン1の出力Aに対応する回転速度データnとトルクデータTに基づいて、上記(1)及び(2)式によりエンジン1の出力Aを演算する。回転速度nと出力Aにより第一マップ24で吸気弁8の開閉タイミングに対応する第一電気信号を選択する。この第一電気信号に基づいて第二マップ25で第一電気信号に対応する吸気弁8の開閉タイミングが決定される。なお、第一マップ24と第二マップ25の作成方法は後述する。
制御部22で設定された開閉タイミングの第二電気信号は電空変換器27に送信され、電空変換器27で開閉タイミングの信号が空気圧力に変換される。この空気圧力はアクチュエータ28に送られて可変吸気弁タイミング機構30の駆動を制御する。アクチュエータ28には第一減圧レギュレータ34と電空変換器27から駆動用と制御用の空気圧力P1,P2が供給される。
The control unit 22 stores a first map 24 for determining a first electric signal of intake valve opening / closing timing created in advance, and a second map 25 for determining a second electric signal from the first electric signal and opening / closing timing. There is. In the control unit 22, based on the rotational speed data n and the torque data T corresponding to the output A of the engine 1 measured by the rotational speed sensor 20 and the torque sensor 21, the engine 1 is obtained by the equations (1) and (2). Calculate output A. The first electric signal corresponding to the opening / closing timing of the intake valve 8 is selected in the first map 24 based on the rotational speed n and the output A. Based on the first electric signal, the second map 25 determines the open / close timing of the intake valve 8 corresponding to the first electric signal. The method of creating the first map 24 and the second map 25 will be described later.
The second electrical signal of the open / close timing set by the control unit 22 is transmitted to the electro-pneumatic converter 27, and the electro-pneumatic converter 27 converts the signal of the open / close timing into air pressure. This air pressure is sent to the actuator 28 to control the drive of the variable intake valve timing mechanism 30. The actuator 28 is supplied with air pressure P1, P2 for driving and control from the first pressure reducing regulator 34 and the electropneumatic converter 27.
なお、アクチュエータ28に供給する空気圧力は空気圧縮機32で圧縮されてエアタンク33に貯められる。エアタンク33内の空気圧力は第一減圧レギュレータ34により必要な圧力に減圧される。この際の圧力は第一減圧レギュレータ34のバルブ開度を変更することより調整し、駆動用の空気圧力P1としてアクチュエータ28に供給される。圧力計36で計測された圧力P1が規定値以下の場合には、エンジン1は始動できない。
電空変換器27を駆動するための空気圧力は、第一減圧レギュレータ34から第二減圧レギュレータ37でさらに減圧されて供給される。電空変換器27は入力される開閉タイミングの第二電気信号に対応する空気圧力を、アクチュエータ28の動作を調整するための空気圧力P2としてアクチュエータ28に供給する。これらの空気圧力P1,P2に基づいてアクチュエータ28のロッド28aを動作して可変吸気弁タイミング機構30を作動させる。
The air pressure supplied to the actuator 28 is compressed by the air compressor 32 and stored in the air tank 33. The air pressure in the air tank 33 is reduced by the first pressure reduction regulator 34 to a necessary pressure. The pressure at this time is adjusted by changing the valve opening of the first pressure reducing regulator 34, and is supplied to the actuator 28 as the air pressure P1 for driving. If the pressure P1 measured by the pressure gauge 36 is less than the specified value, the engine 1 can not be started.
The air pressure for driving the electro-pneumatic converter 27 is further reduced from the first pressure reduction regulator 34 by the second pressure reduction regulator 37 and supplied. The electro-pneumatic converter 27 supplies the air pressure corresponding to the inputted second electric signal of the open / close timing to the actuator 28 as the air pressure P2 for adjusting the operation of the actuator 28. Based on these air pressures P1 and P2, the rod 28a of the actuator 28 is operated to operate the variable intake valve timing mechanism 30.
アクチュエータ28は例えば公知のPシリンダ(ポジショナリ付きシリンダ)であり、第一減圧レギュレータ34と電空変換器27から入力される圧力P1、P2に基づいてロッド28aの進退を制御する。アクチュエータ28のロッド28aの移動長さを変化させることで、可変吸気弁タイミング機構30の駆動を制御して吸気弁8の閉じるタイミングを吸入下死点から進める(進角)か、または遅らせる(遅角)ことで、圧縮比を下げて制御を行う。
吸気弁8の開弁タイミングと閉弁タイミングの間の時間は変わらないので開弁のタイミングが吸入下死点から進むと閉弁のタイミングも吸入上死点から同一時間進む。しかも、本実施形態ではエンジン1の出力に応じて開弁と閉弁のタイミングを変更することでノッキングを抑制して負荷上げ時間を短縮させるようにした。エンジン1の出力Aと回転速度nに基づいて制御部22内の第一マップ24と第二マップ25により吸気弁8の開閉タイミングを設定し、アクチュエータ28と可変吸気弁タイミング機構30によって吸気弁8の開弁と閉弁のタイミングを、ノッキングを抑制できるように調整している。
The actuator 28 is, for example, a known P cylinder (a cylinder with a positioner), and controls the advancing and retracting of the rod 28 a based on the pressures P1 and P2 input from the first pressure reducing regulator 34 and the electropneumatic converter 27. By changing the moving length of the rod 28a of the actuator 28, the drive of the variable intake valve timing mechanism 30 is controlled to advance (advance) or delay the timing of closing the intake valve 8 from the suction bottom dead center (late Control to reduce the compression ratio.
Since the time between the valve opening timing and the valve closing timing of the intake valve 8 does not change, when the valve opening timing advances from the suction bottom dead center, the valve closing timing also advances from the suction top dead center by the same time. Moreover, in the present embodiment, the timing of valve opening and valve closing is changed according to the output of the engine 1 to suppress knocking and shorten the load increase time. The opening / closing timing of the intake valve 8 is set by the first map 24 and the second map 25 in the control unit 22 based on the output A of the engine 1 and the rotational speed n, and the actuator 28 and the variable intake valve timing mechanism 30 The timing of opening and closing of the valve is adjusted to suppress knocking.
可変吸気弁タイミング機構30の構成は従来公知のものであり、図17に示すものと同様な構造を備えている。即ち、可変吸気弁タイミング機構30は例えばアクチュエータ28のロッド28aの移動長さによって回転角度範囲が設定されるリンクシャフトと偏心カムを備えたカム軸とが平行に配設されている。リンクシャフトには排気用スイングアームが接続され、リンクシャフトの偏心した位置に設けたタペット軸に吸気用スイングアームが接続されている。吸気用スイングアームには吸気弁8が接続され、排気用スイングアームには排気弁9が接続されている。 The configuration of the variable intake valve timing mechanism 30 is conventionally known, and has the same configuration as that shown in FIG. That is, in the variable intake valve timing mechanism 30, for example, a link shaft whose rotation angle range is set by the movement length of the rod 28a of the actuator 28 and a cam shaft provided with an eccentric cam are disposed in parallel. An exhaust swing arm is connected to the link shaft, and an intake swing arm is connected to a tappet shaft provided at an eccentric position of the link shaft. An intake valve 8 is connected to the intake swing arm, and an exhaust valve 9 is connected to the exhaust swing arm.
リンクシャフトの回転に応じたタペット軸の回転角度によってカム軸と吸気用スイングアームとの距離が変化し、カム軸の偏心カムが当たり始めるタイミングが変化する。これによって閉弁タイミングを進角(または遅角)に変更できる。タペット軸からカム軸中心までの距離が離れるほど吸気弁8の閉弁タイミングが早くなる。タペット軸の回転角度は、アクチュエータ28のロッド28aの移動長さによって変更される。ロッド28aの移動長さは、アクチュエータ28に供給される制御用空気の圧力P1,P2によって任意に変更される。
吸気弁8の閉開タイミングである進角の大きさは、リンクシャフトのタペット軸に連結された吸気用スイングアームにカム軸の偏心カムが当たり始めるタイミングで決まる。
The distance between the cam shaft and the intake swing arm changes according to the rotation angle of the tappet shaft according to the rotation of the link shaft, and the timing at which the eccentric cam of the cam shaft starts to change changes. As a result, the valve closing timing can be changed to an advance angle (or a delay angle). As the distance from the tappet shaft to the cam shaft center increases, the closing timing of the intake valve 8 becomes earlier. The rotation angle of the tappet shaft is changed by the moving length of the rod 28 a of the actuator 28. The moving length of the rod 28a is arbitrarily changed by the pressure P1, P2 of the control air supplied to the actuator 28.
The magnitude of the advance angle which is the closing / opening timing of the intake valve 8 is determined by the timing at which the eccentric cam of the camshaft starts to hit the intake swing arm connected to the tappet shaft of the link shaft.
可変吸気弁タイミング機構30におけるタペット軸の回転装置は、アクチュエータ28に代えて、図示しないサーボモータを使用してもよい。この場合、制御部22の第二マップ25から発信された開閉タイミングの信号をサーボモータに入力させる。サーボモータは受けた信号に対応する量だけリンクシャフトを回転させてタペット軸を旋回させることでカム軸に対して接近離間させ、吸気弁8の開閉タイミングを変更することができる。なお、サーボモータを用いた場合、アクチュエータ28と空気圧縮機32~圧力計38までの構成は不要である。また、電空変換器27に代えてコントローラでサーボモータを駆動させる。 The apparatus for rotating the tappet shaft in the variable intake valve timing mechanism 30 may use a servomotor (not shown) instead of the actuator 28. In this case, the signal of the opening / closing timing transmitted from the second map 25 of the control unit 22 is input to the servomotor. The servomotor rotates the link shaft by an amount corresponding to the received signal to turn the tappet shaft, thereby making it close to and separated from the cam shaft, and the opening / closing timing of the intake valve 8 can be changed. When a servomotor is used, the configuration of the actuator 28 and the air compressor 32 to the pressure gauge 38 is unnecessary. Also, instead of the electro-pneumatic converter 27, the controller drives a servomotor.
また、吸気管13にガス噴射を制御する燃料ガス供給弁15へのガス燃料の供給機構について説明する。図1において、天然ガス等のガス燃料が貯蔵されたLNGガスタンク40からガス燃料がガス気化器41に供給され、更にガス圧力はガスレギュレータ42により必要なガス圧に減圧される。
このガス圧は燃料ガス圧力計43に表示され、ガスレギュレータ42のバルブ開度を変更することによって調整し、燃焼用のガス燃料として燃料ガス供給弁15から吸気管13内に供給される。吸気管13内ではガス燃料とエアクーラ16で冷却された過給の空気とが混合されて燃焼室6に供給される。負荷上げの際は、燃料ガス供給弁15の動作によりガス燃料の供給量を増加させる。
Further, a mechanism for supplying gas fuel to the fuel gas supply valve 15 that controls gas injection to the intake pipe 13 will be described. In FIG. 1, gas fuel is supplied to the gas vaporizer 41 from an LNG gas tank 40 in which gas fuel such as natural gas is stored, and the gas pressure is further reduced by the gas regulator 42 to a necessary gas pressure.
The gas pressure is displayed on the fuel gas pressure gauge 43, adjusted by changing the valve opening of the gas regulator 42, and supplied from the fuel gas supply valve 15 into the intake pipe 13 as gaseous fuel for combustion. In the intake pipe 13, the gas fuel and the supercharged air cooled by the air cooler 16 are mixed and supplied to the combustion chamber 6. When the load is increased, the amount of gas fuel supplied is increased by the operation of the fuel gas supply valve 15.
制御部22で設定された開閉タイミングの第二電気信号は電空変換器27とは別にガスガバナ44を介して燃料ガス供給弁15に送信される。ガスガバナ44は、ガスモードにおけるガス燃料の供給量の調速制御(ガバナ制御)を行う。しかも、ガスガバナ44は、燃料ガス供給弁15を開弁してガス燃料を吸気管13内に供給する開弁タイミングを吸気弁8の閉じるタイミングの進角に応じて進角させるように制御する。ガス圧を調整するガスレギュレータ42と燃料ガス供給弁15の開弁タイミングを進角させ且つ調速制御を行うガスガバナ44とは、燃料ガス供給弁タイミング機構45に含まれる。
なお、ガスガバナ44は制御部22の外部に設置されていてもよい。燃料ガス供給弁タイミング機構45は第二マップ25からの第二電気信号を受信して吸気弁8の閉じるタイミングの進角に応じて燃料ガス供給弁15の開弁タイミングを進角させることができればよい。
The second electrical signal of the open / close timing set by the control unit 22 is transmitted to the fuel gas supply valve 15 via the gas governor 44 separately from the electropneumatic converter 27. The gas governor 44 controls the speed of the supply of gas fuel in the gas mode (governor control). In addition, the gas governor 44 controls the opening timing of the fuel gas supply valve 15 to open the fuel gas supply valve 15 to supply the gas fuel into the intake pipe 13 in accordance with the advance angle of the closing timing of the intake valve 8. The gas regulator 42 for adjusting the gas pressure and the gas governor 44 for advancing the opening timing of the fuel gas supply valve 15 and performing the speed control are included in the fuel gas supply valve timing mechanism 45.
The gas governor 44 may be installed outside the control unit 22. If the fuel gas supply valve timing mechanism 45 can receive the second electric signal from the second map 25 and advance the opening timing of the fuel gas supply valve 15 according to the advancing angle of the closing timing of the intake valve 8 Good.
更に、制御部22には、アシストモードAsの際に液体燃料の調速制御を行うディーゼルガバナ48が設置されている。ディーゼルガバナ48は、開閉タイミングの第二電気信号を受信して燃料噴射ポンプ12に供給し、燃料噴射弁10から燃焼室6内に噴射する燃料油の供給量を制御する。ディーゼルガバナ48は制御部22の外部に設置されていてもよい。
ディーゼルガバナ48は、アシストモードAsにおいて液体燃料の調速制御を行い、目標となるエンジン1の回転速度に合致するように液体燃料の供給量を調速制御する。アシストモードAsからガスモードGに戻る際には液体燃料の調速制御を終了する。
なお、制御部22において、第一マップ24と第二マップ25を含む構成を運転制御部49として、運転制御部49とは別個にガスガバナ44とディーゼルガバナ48とを有している。
Furthermore, the control unit 22 is provided with a diesel governor 48 that performs control of liquid fuel control in the assist mode As. The diesel governor 48 receives the second electrical signal of the open / close timing and supplies it to the fuel injection pump 12 to control the amount of fuel oil injected from the fuel injection valve 10 into the combustion chamber 6. The diesel governor 48 may be installed outside the control unit 22.
The diesel governor 48 controls the liquid fuel in the assist mode As and controls the supply amount of the liquid fuel so as to match the target rotational speed of the engine 1. When returning from the assist mode As to the gas mode G, the control control of the liquid fuel is ended.
The control unit 22 has a configuration including the first map 24 and the second map 25 as an operation control unit 49, and has a gas governor 44 and a diesel governor 48 separately from the operation control unit 49.
次に制御部22内に記憶する第一マップ24と第二マップ25の作成方法について説明する。図3はクランク軸2の回転速度とエンジン1の出力(負荷率)により、VIVT指令値(吸気弁閉じクランク角度,Intake Valve Closed timing,IVC)である吸気弁8の閉弁時のクランク角度を決定する第一マップ24の詳細を示す3次元マップである。 Next, a method of creating the first map 24 and the second map 25 stored in the control unit 22 will be described. FIG. 3 shows the crank angle when the intake valve 8 is closed, which is the VIVT command value (intake valve closed crank angle, Intake Valve Closed timing, IVC) by the rotational speed of the crankshaft 2 and the output (load factor) of the engine 1 It is a three-dimensional map which shows the detail of the 1st map 24 to determine.
図3において、常用的(実用的)に運転される領域Bを破線で示している。これに対して、発電で行われる回転速度を一定にした場合の出力の変化に対するVIVT指令値の変化(進角)を矢印線Cで示し、舶用で行われる回転速度と出力(負荷率)が同時に変化する場合のVIVT指令値の変化(進角)を矢印線Dで示す。矢印線Dは舶用三乗特性を示している。舶用三乗特性は出力が回転速度の3乗に比例する舶用主機関の代表的な特性を示すものであり、機関の定格回転速度、定格出力によって決定する回転速度と出力の特性曲線である。常用的な運転領域Bの領域内で舶用三乗特性線Dよりも出力(負荷率)が高い領域はトルクリッチ領域を示し、出力(負荷率)が低い領域はトルクプア領域を示す。 In FIG. 3, the region B in which the operation is carried out regularly (practical) is indicated by a broken line. On the other hand, the change (advance angle) of the VIVT command value with respect to the change of the output when the rotational speed performed in the power generation is constant is shown by the arrow line C, and the rotational speed and the output (load factor) The change (advance angle) of the VIVT command value in the case of simultaneously changing is indicated by an arrow line D. An arrow line D indicates a marine cube characteristic. The marine cubic characteristic represents a typical characteristic of a marine main engine whose output is proportional to the cube of the rotational speed, and is a characteristic curve of the rotational speed and the output determined by the rated rotational speed of the engine and the rated output. The region where the output (load factor) is higher than the marine cubic characteristic line D in the region of the ordinary operation region B indicates a torque rich region, and the region where the output (load factor) is low indicates a torque poor region.
第一マップ24は次の実験手順(1)~(18)の行程に基づいて作成した。
実験には、実際に使用する同一機種のデュアルフューエルエンジン1を用いた。
(1)エンジン1を始動し、回転速度(回転数)nを400min-1、出力(負荷)Aを10%、吸気弁8の閉弁タイミングを545deg(構造上、最も遅い閉弁タイミング)に設定する。
(2)エンジン1の駆動時に発生したノッキングと呼ばれる異常燃焼とそのときの排気温度を計測する。ノッキングは、各エンジンヘッド5に取付けた不図示のノックセンサにより発生を検出する。ノッキング現象発生時は,通常の燃焼波形に高周波の圧力変動が重なった波形となる。
The first map 24 was created based on the steps of the following experimental procedures (1) to (18).
In the experiment, the same type of dual fuel engine 1 actually used was used.
(1) Start the engine 1 and set the rotational speed (rotational speed) n to 400 min -1 , the output (load) A to 10%, and the intake valve 8 closing timing to 545 deg (the latest closing timing). Set
(2) The abnormal combustion called knocking generated when driving the engine 1 and the exhaust temperature at that time are measured. The knocking is detected by a knock sensor (not shown) attached to each engine head 5. When the knocking phenomenon occurs, the normal combustion waveform is a waveform in which high-frequency pressure fluctuations overlap.
また、排気管14に取付けた温度センサによりノッキング測定時の排気温度を測定する。
(3)上記のノッキング測定時の排気温度の測定終了後、吸気弁8の閉弁タイミングを5deg減少させ、再度(2)の計測を行う。閉弁タイミングを500deg(構造上、最も早い閉弁タイミング)まで変更して計測を行う。
(4)上記(3)の計測が終了したら、出力Aを10%ずつ110%になるまで段階的に増加させて、再度(2)と(3)の計測を繰り返して行う。
Further, the exhaust temperature at the time of knocking measurement is measured by a temperature sensor attached to the exhaust pipe 14.
(3) After the measurement of the exhaust gas temperature at the time of knocking measurement is completed, the valve closing timing of the intake valve 8 is decreased by 5 deg, and the measurement of (2) is performed again. Measurement is performed by changing the valve closing timing up to 500 deg (structurally, the earliest valve closing timing).
(4) When the measurement of the above (3) is finished, the output A is gradually increased by 10% to 110% and the measurements of (2) and (3) are repeated again.
(5)上記(1)~(4)の計測により、ノッキング強さが基準値以下であり、排気温度が500℃以下である場合を、ノッキングが抑制されてエンジン1が安全に運転可能であると判断する。
(6)上記(5)の計測結果から、X軸が出力A、Y軸が回転速度n、Z軸が開閉タイミングに設定された図4の3次元グラフにおいて、安全に運転可能な計測点に●(黒丸)、安全ではない計測点に×をプロットする。これによって、出力Aと回転数nと閉弁タイミングとの関係におけるノッキング抑制範囲を選定できる。
(7)上記(1)~(6)の計測工程を、回転速度nを100min-1ずつ900min-1まで上昇して行い、回転速度n毎の安全に運転できる範囲を計測する。
(5) According to the measurements (1) to (4), when the knocking strength is equal to or less than the reference value and the exhaust temperature is 500 ° C. or less, knocking is suppressed and the engine 1 can be operated safely. I will judge.
(6) From the measurement result of (5), in the three-dimensional graph of FIG. 4 in which the X axis is output A, the Y axis is rotation speed n, and the Z axis is open / close timing, ● (black circle), plot x at unsafe measurement points. By this, it is possible to select the knocking suppression range in the relationship among the output A, the rotational speed n and the valve closing timing.
(7) a measuring step of the above (1) to (6), the rotational speed n rises to 900 min -1 by 100 min -1, measured safely driving can range for each rotation speed n.
(8)上記(7)の計測結果を回転速度n、出力A、閉弁タイミングの3軸で表したグラフが図4である。図4で、直線で囲われた範囲はノッキングが抑制されてエンジン1が安全に運転可能な範囲である。
(9)上記(1)~(8)の実験により計測した図4に示す安全にエンジンを運転できる直線で囲った3次元領域の範囲内で、窒素酸化物(以下、NOxという)が基準値以下であり、熱効率が一番高い設定を探すことを目的に更に実験を行う。
エンジン回転速度nを400min-1、出力Aを10%、吸気弁8の閉弁タイミングを545degに設定する。
(8) The graph which represented the measurement result of said (7) by three axes | shafts of rotational speed n, output A, and valve closing timing is FIG. In FIG. 4, the range enclosed by the straight line is a range in which knocking is suppressed and the engine 1 can be operated safely.
(9) Nitrogen oxides (hereinafter referred to as NOx) have a reference value within the range of a three-dimensional area surrounded by a straight line where the engine can be operated safely as shown in FIG. 4 measured by the experiments of (1) to (8) above. Further experiments will be conducted to find the setting with the highest thermal efficiency.
The engine rotational speed n is set to 400 min -1 , the output A is set to 10%, and the closing timing of the intake valve 8 is set to 545 deg.
(10)次にNOxと熱効率を計測する。NOxは排気管14に取付けた排ガス分析器で計測を行う。熱効率は、燃料配管に取付けた燃料流量計から計測される燃料流量Lとトルクセンサ21の計測結果より計算される出力Aにより下記の(3)式で計算する。
熱効率η=360Lo/H/L     (3)
但し、H:燃料ガスの低位発熱量(J/Nm
Lo:現時点の出力
L:燃料流量
(10) Next, measure NOx and thermal efficiency. NOx is measured by an exhaust gas analyzer attached to the exhaust pipe 14. The thermal efficiency is calculated by the following equation (3) from the fuel flow rate L measured from the fuel flow meter attached to the fuel pipe and the output A calculated from the measurement result of the torque sensor 21.
Thermal efficiency η = 360Lo / H / L (3)
However, H: Lower calorific value of fuel gas (J / Nm 3 )
Lo: Current output L: Fuel flow rate
(11)上記(10)の測定終了後、吸気弁8の閉弁タイミングを5degずつ減少させ、再度(10)の計測を行う。閉弁タイミングは505degまで変更して計測を行う(図9参照)。
(12)上記(10)と(11)の計測が終了したら出力を10%ずつ110%まで段階的に増加させ、再び(10)及び(11)の計測を繰り返して行う。閉弁タイミングは図4で示す安全に運転できる範囲内で変更する。
(11) After completion of the measurement of (10), the valve closing timing of the intake valve 8 is decreased by 5 deg each, and the measurement of (10) is performed again. The valve closing timing changes to 505 deg and performs measurement (see FIG. 9).
(12) When the measurements of (10) and (11) are finished, the output is increased stepwise to 110% by 10%, and the measurements of (10) and (11) are repeated again. The valve closing timing is changed within the safe operation range shown in FIG.
(13)上記(9)~(12)の計測を、回転速度nを100min-1ずつ段階的に900min-1まで上昇して行い、各回転速度毎の最も性能の良い計測点を決定する。
(14)NOxが所定値以下であり、熱効率が一番高い、吸気弁8の閉弁タイミングを各回転速度nと出力A毎に設定する。この結果により、図3に示す第一マップの原案が作成される。
(13) the measurement of the (9) to (12), the rotational speed n rises stepwise to 900 min -1 by 100 min -1, to determine a good measurement point most performance for each rotational speed.
(14) The valve closing timing of the intake valve 8 is set for each rotational speed n and output A, where NOx is equal to or less than the predetermined value and the thermal efficiency is the highest. As a result of this, a draft of the first map shown in FIG. 3 is created.
(15)任意の負荷上げパターンで回転速度nと出力Aを上昇させてノッキングを検出する。負荷上げパターンとは出力A(負荷率)と回転速度nの時間あたりの変化状態であり、舶用推進装置のプロペラ仕様(形状、回転数)によって変化する。
(16)上記(15)で検出されたノッキング強さが基準値以上であった計測点の閉弁タイミングを3deg減少させる。
(17)ノッキング強さが基準値以下になるまで、(15)、(16)の工程を繰り返し、ノッキングが抑制された閉弁タイミングを決定する。閉弁タイミングを減少させると熱効率は悪化する。NOx、ノッキング強さが基準値以下で熱効率が一番高い結果が得られた閉弁タイミングの設定を回転速度n、出力Aの設定値とする。
(18)上記(17)よりノッキングが抑制された閉弁タイミングを各回転速度n、出力Aでそれぞれ計測し、その結果により図3に示す最終的な第一マップ24を作成した。
(15) The rotational speed n and the output A are increased in an arbitrary load raising pattern to detect knocking. The load raising pattern is a change state of output A (load factor) and rotational speed n per time, and changes according to propeller specifications (shape, rotation number) of the marine propulsion device.
(16) The valve closing timing of the measurement point at which the knocking intensity detected in (15) is equal to or greater than the reference value is decreased by 3 deg.
(17) The steps (15) and (16) are repeated until the knocking strength falls below the reference value to determine the valve closing timing at which knocking is suppressed. If the valve closing timing is reduced, the thermal efficiency will deteriorate. The setting values of the valve closing timing at which NOx and knocking strength are lower than the reference value and the result of the highest thermal efficiency is obtained are set as rotational speed n and output A.
(18) The valve closing timing at which knocking was suppressed from (17) above was measured at each rotational speed n and output A, and a final first map 24 shown in FIG. 3 was created from the results.
図3には、回転速度と出力に応じたVIVT指令値が、3次元平面のグラフで示されており、図中上側がより閉弁タイミングが進角する方向である。3次元平面上で、破線で示された領域が実際の船舶推進装置の運転で使用される実用的な運転領域であり、良好な負荷上げパターンの1例を舶用三乗特性線Dで示す。実用的な運転領域における負荷上げでは、機関の出力が大きくなるほど閉弁タイミングの進角を大きくする制御を行う。
舶用三乗特性線Dで示した良好な負荷上げパターンの1例では、回転速度と出力の小さい図中右下の位置では進角は最少とされ、回転速度と出力が増すに従って進角を大きくする。進角を大きくする比率は一定ではないが、全体として出力が増すほど進角は大きくされる。なお、出力(負荷率)はトルクと回転速度の積で求められるため、出力軸のトルクが増すほど進角を大きくすると表現することもできる。
In FIG. 3, a VIVT command value corresponding to the rotational speed and the output is shown by a graph of a three-dimensional plane, and the upper side in the drawing is the direction in which the valve closing timing is advanced. On the three-dimensional plane, a region indicated by a broken line is a practical operation region used in the actual operation of the ship propulsion device, and one example of a good load raising pattern is indicated by a marine cubic characteristic line D. In load increase in a practical operation area, control is performed to increase the advance angle of the valve closing timing as the engine output increases.
In one example of a good load raising pattern shown by the marine cubic characteristic line D, the advance angle is minimized at the lower right position in the drawing where the rotational speed and output are small, and the advance angle is increased as the rotational speed and output increase. Do. Although the ratio of increasing the advance angle is not constant, the advance angle is increased as the output as a whole increases. Since the output (load factor) is determined by the product of the torque and the rotational speed, it can be expressed that the advance angle is increased as the torque of the output shaft increases.
 次に、第二マップ25を下記の実験で作成した。
可変吸気弁タイミング機構30がアクチュエータ28によって回転制御されるとき、次の手順で第二マップ25を作成する。
(1)アクチュエータ28により閉弁タイミングを変更し、各閉弁タイミングに変更する際の圧力を計測する。
(2)電空変換器27の仕様より上記(1)の圧力を供給する為に必要な第二電気信号を調査する。
(3)上記(1)及び(2)の結果から、横軸に上記第一マップ24で選択した第一電気信号、縦軸に閉弁タイミング(第二電気信号)を示す第二マップ25を作成する。
Next, a second map 25 was created in the following experiment.
When the variable intake valve timing mechanism 30 is rotationally controlled by the actuator 28, the second map 25 is created in the following procedure.
(1) The valve closing timing is changed by the actuator 28, and the pressure when changing to each valve closing timing is measured.
(2) From the specifications of the electro-pneumatic converter 27, the second electric signal necessary to supply the pressure of the above (1) is investigated.
(3) From the results of the above (1) and (2), the second map 25 showing the first electric signal selected in the first map 24 on the horizontal axis and the valve closing timing (second electric signal) on the vertical axis create.
なお、上記の説明はアクチュエータ28を用いた場合であり、アクチュエータ28に代えてサーボモータによって可変吸気弁タイミング機構30を回転制御する場合には次のように行う。
(1)サーボモータに基づいて閉弁タイミングを変更し、各閉弁タイミングに変更する際の第二電気信号を計測する。
(2)上記(1)の結果により横軸に第一電気信号、縦軸に閉弁タイミング(第二電気信号)を示す第二マップ25を作成する。
第二マップ25は閉弁タイミング(第二電気信号)と第一電気信号との関係を表すマップである。
The above description is for the case where the actuator 28 is used, and in the case where the variable intake valve timing mechanism 30 is controlled to rotate by a servomotor instead of the actuator 28, the following description will be made.
(1) The valve closing timing is changed based on the servomotor, and the second electric signal at the time of changing each valve closing timing is measured.
(2) A second map 25 indicating the first electric signal on the horizontal axis and the valve closing timing (second electric signal) on the vertical axis is created based on the result of the above (1).
The second map 25 is a map that represents the relationship between the valve closing timing (second electrical signal) and the first electrical signal.
 図3に示す三次元マップにおいて、実線Cで示す発電用の特性線と舶用三乗特性線Dとで、出力によって最適なVIVT指令値が異なる。即ち、図5に一例として示すように、出力が同一の場合でも回転速度が異なる場合には最適なVIVT指令値の吸気弁閉じクランク角度が異なる。
 本実施形態において、VIVT指令値の変化に対応して、即ち、各種の吸気弁閉じクランク角度に対して、吸気弁8と排気弁9のバルブオーバーラップ時による未燃焼燃料ガスの排気管14への吹き抜けが少なくなるように燃料ガスを吸気管13に供給する燃料ガス供給弁15の開弁タイミングを設定する。そのために、先ず回転速度と出力に応じたVIVT指令値を設定する。厳密に言えば、空燃比や点火時期も熱効率やNOxを目安として最適な値に設定しておいた方が好ましいが、ここではエンジン1が安定して運転できているとしてこれらの条件は設定しない。
In the three-dimensional map shown in FIG. 3, the optimum VIVT command value differs depending on the output between the power generation characteristic line indicated by the solid line C and the marine cubic characteristic line D. That is, as shown in FIG. 5 as an example, even when the output is the same, when the rotational speed is different, the intake valve closing crank angle of the optimum VIVT command value is different.
In this embodiment, to the exhaust pipe 14 of unburned fuel gas at the time of valve overlap of the intake valve 8 and the exhaust valve 9 corresponding to the change of the VIVT command value, that is, for various intake valve closing crank angles. The opening timing of the fuel gas supply valve 15 for supplying the fuel gas to the intake pipe 13 is set so that the blow through of the valve is reduced. For this purpose, first, a VIVT command value corresponding to the rotational speed and the output is set. Strictly speaking, it is preferable to set the air-fuel ratio and ignition timing to optimum values using thermal efficiency and NOx as a standard, but here, these conditions are not set as the engine 1 can be operated stably. .
燃料ガス供給弁15の開弁タイミングを設定する一例として、舶用三乗特性線Dにおける最適VIVT指令値に合わせたエンジン運転条件でのガスガバナ44による燃料ガス供給弁15の開弁タイミングの決め方を以下に説明する。
まず、エンジンの出力(負荷率)を25%、50%、75%、100%とした各運転条件において、吸気弁8の開くタイミングを目安として燃料ガス供給弁15から燃料ガスを供給するが、吸気管13内に燃料ガスを供給することから、燃料ガスは瞬時に吸気弁8に到達しない。そのため、燃料ガス供給弁15から吸気弁8までの距離を考慮した燃料ガス供給弁15の開弁タイミングのクランク角度位置を想定する。そして、燃料ガス供給弁15の開弁タイミングにおけるクランク角度位置をその前後で5deg刻みに変更して、その時の過給機17のガスタービン出口の排ガス中の未燃焼ガスであるトータルハイドロカーボン濃度(THC濃度)を測定する。それぞれの運転条件においてTHC濃度の計測を繰り返して実施する。THC濃度は水素炎イオン化法(JIS B 7956)で測定するのが好ましい。
As an example of setting the valve opening timing of the fuel gas supply valve 15, how to determine the valve opening timing of the fuel gas supply valve 15 by the gas governor 44 under the engine operating condition according to the optimum VIVT command value in the marine cubic characteristic line D is described below. Explain to.
First, under each operating condition where the engine output (load factor) is 25%, 50%, 75% and 100%, the fuel gas is supplied from the fuel gas supply valve 15 using the timing at which the intake valve 8 opens as a standard. Since the fuel gas is supplied into the intake pipe 13, the fuel gas does not reach the intake valve 8 instantaneously. Therefore, the crank angle position of the valve opening timing of the fuel gas supply valve 15 in consideration of the distance from the fuel gas supply valve 15 to the intake valve 8 is assumed. Then, the crank angle position at the valve opening timing of the fuel gas supply valve 15 is changed in 5 deg intervals before and after, and the total hydrocarbon concentration (unburned gas in the exhaust gas at the gas turbine outlet of the turbocharger 17 at that time) Measure THC concentration). Measurement of THC concentration is repeated and performed under each operating condition. The THC concentration is preferably measured by hydrogen flame ionization method (JIS B 7956).
それぞれの条件に応じて燃料ガス供給弁15の開弁タイミングを変更し、各VIVT指令値(吸気弁閉じクランク角度)を例えば40%、65%、85%、100%に設定して、各VIVT指令値における燃料ガス開弁タイミングと測定したTHC濃度との関係を示すと図6のようなる。
図6に示すように、燃料ガス供給弁15の開弁タイミングは、バルブオーバーラップ時に未燃焼燃料ガスの吹き抜けが少なく、THC濃度が最低になるクランク角度を基準とする。一方、出力変化によって急激に燃料ガス供給弁15の開弁タイミングが変化すると前述した燃焼変動や回転速度変動に繋がる。このため、出力に応じた燃料ガス供給弁15の開弁タイミングの変化量が極力小さい傾きになるように、選定した基準から±5deg.C.Aの範囲内で最適な燃料ガス供給弁15の燃料ガス開弁タイミングとなるクランク角度を選定し、それぞれの条件で最適な燃料ガス供給弁15の開弁タイミングに対応するクランク角度を決定する。
The opening timing of the fuel gas supply valve 15 is changed according to each condition, and each VIVT command value (intake valve closing crank angle) is set to, for example, 40%, 65%, 85%, 100%, and each VIVT FIG. 6 shows the relationship between the fuel gas valve opening timing and the measured THC concentration at the command value.
As shown in FIG. 6, the opening timing of the fuel gas supply valve 15 is based on the crank angle at which the unburned fuel gas blows little at the time of valve overlap and the THC concentration becomes the lowest. On the other hand, when the valve opening timing of the fuel gas supply valve 15 changes rapidly due to the output change, it leads to the above-mentioned combustion fluctuation and rotation speed fluctuation. For this reason, ± 5 deg. From the selected reference so that the change amount of the valve opening timing of the fuel gas supply valve 15 according to the output has a small inclination as much as possible. C. The crank angle which becomes the fuel gas valve opening timing of the fuel gas supply valve 15 in the range of A is selected, and the crank angle corresponding to the valve opening timing of the fuel gas supply valve 15 which is optimum in each condition is determined.
このようにして決定した、舶用三乗特性線Dの最適VIVT指令値における最適な燃料ガス供給弁15の開弁タイミングのクランク角度と、出力(負荷率)の関係を、図7の「回転速度変化」の折れ線で示す。
 同様に、図3の発電用特性線Cで行われる回転速度一定とした出力における最適VIVT指令値における最適な燃料ガス供給弁15の開弁タイミングのクランク角度と、出力(負荷率)との関係を、図7の「回転速度一定」の折れ線で示す。
 図7に示すように、最適な燃料ガス供給弁15の開弁タイミングは、出力が同一であっても回転速度が変化する条件と回転速度一定の条件とでは異なった結果となる。
The relationship between the crank angle at the valve opening timing of the fuel gas supply valve 15 and the output (load factor) at the optimum VIVT command value of the marine cubic characteristic line D determined in this manner is shown in FIG. Change "is shown by a broken line.
Similarly, the relationship between the crank angle at the valve opening timing of the fuel gas supply valve 15 and the output (load factor) at the optimum VIVT command value at the constant rotational speed output performed on the power generation characteristic line C of FIG. Is indicated by a broken line of “constant rotation speed” in FIG.
As shown in FIG. 7, the optimal valve opening timing of the fuel gas supply valve 15 is different between the condition in which the rotational speed changes and the condition in which the rotational speed is constant even if the output is the same.
しかしながら、舶用三乗特性線Dの最適VIVT指令値における最適な燃料ガス供給弁15の開弁タイミングのクランク角度と、発電用特性線C(回転速度一定)の最適VIVT指令値における最適な燃料ガス供給弁15の開弁タイミングのクランク角度とは、図8に示すように、出力に代えて、VIVT指令値を横軸にとって整理すると、一致した一つの線図特性を呈する。すなわち、最適燃料ガス供給弁15の開弁タイミングは出力に依存するものではなく、VIVT指定値(吸気弁閉じクランク角度)に依存することが判る。 However, the crank angle of the opening timing of the optimum fuel gas supply valve 15 at the optimum VIVT command value of the marine cubic characteristic line D and the optimum fuel gas at the optimum VIVT command value of the power generation characteristic line C (constant rotational speed) As shown in FIG. 8, the crank angle of the valve opening timing of the supply valve 15 exhibits one coincident linear characteristic when arranging the VIVT command value on the horizontal axis instead of the output. That is, it is understood that the valve opening timing of the optimum fuel gas supply valve 15 does not depend on the output but depends on the specified VIVT value (intake valve closing crank angle).
図8から明らかなように、可変吸気弁タイミング機構30によって吸気弁8の閉弁時期を変更すると、吸気弁8の閉じるタイミングの進角が進むほど、燃料ガス供給弁15の供給開始タイミングの進角の度合いがより大きくなる。
そのため、ガスガバナ44により、各条件において決定した最適な燃料ガス供給弁15の開弁タイミングのクランク角度を、VIVT指令値を基準として設定することで、VIVT指令値による燃料ガス供給弁15の開弁タイミングの最適化を図ることができる。なお、図8において、計測していないVIVT指令値や燃料ガス供給開始時期等については、測定点前後のデータを結ぶ近似線により決定すればよい。
As apparent from FIG. 8, when the closing timing of the intake valve 8 is changed by the variable intake valve timing mechanism 30, the advancing of the supply start timing of the fuel gas supply valve 15 advances as the advancing timing of the closing timing of the intake valve 8 advances. The degree of corners is greater.
Therefore, by setting the crank angle of the optimal valve opening timing of the fuel gas supply valve 15 determined under each condition by the gas governor 44 based on the VIVT command value, the fuel gas supply valve 15 is opened according to the VIVT command value. Timing can be optimized. In FIG. 8, the unmeasured VIVT command value, the fuel gas supply start timing, etc. may be determined by an approximate line connecting data before and after the measurement point.
 次に、燃料ガス供給弁15による燃料ガス供給終了のタイミング制御について図9から図11により説明する。
 図9は図1に示すエンジン1の要部構成を示すものである。図9において、制御部22には外部に目標回転速度指令部50が設置され、予め設定された目標回転速度が制御部22に入力される。制御部22のガス供給時間算出部51では回転速度センサ20の測定値により演算された実回転速度と目標回転速度との偏差に基づいて燃料ガス供給弁15の開弁期間を直接的にPID制御する。
ガス供給時間算出部51に接続されたガス供給弁制御部52では、燃料ガス供給弁15の開弁タイミングを起点として開弁すべき時間を演算して燃料ガス供給弁15に出力し、開弁すべき時間だけ燃料ガス供給弁15を開弁させるようにフィードバック制御する。
制御部22内には、目標回転速度指令部50で設定された目標回転速度により図示しないコントロールラックの目標位置を設定するラック目標値設定手段57が配設されている。ラック目標値設定手段57により設定されたラック位置の目標値により、燃料噴射弁10のラック位置をフィードバック制御する。
Next, timing control of the fuel gas supply end by the fuel gas supply valve 15 will be described with reference to FIGS.
FIG. 9 shows the main configuration of the engine 1 shown in FIG. In FIG. 9, a target rotational speed command unit 50 is installed outside the control unit 22, and a preset target rotational speed is input to the control unit 22. The gas supply time calculation unit 51 of the control unit 22 directly performs PID control of the opening period of the fuel gas supply valve 15 based on the deviation between the actual rotational speed calculated from the measurement value of the rotational speed sensor 20 and the target rotational speed. Do.
The gas supply valve control unit 52 connected to the gas supply time calculation unit 51 calculates the time to open based on the valve opening timing of the fuel gas supply valve 15 and outputs it to the fuel gas supply valve 15 to open it. The feedback control is performed so as to open the fuel gas supply valve 15 only for the time required.
In the control unit 22, rack target value setting means 57 for setting a target position of a control rack (not shown) based on the target rotation speed set by the target rotation speed command unit 50 is disposed. The rack position of the fuel injection valve 10 is feedback-controlled based on the rack position target value set by the rack target value setting means 57.
燃料ガス供給弁15の閉弁タイミング制御は次のように行われる。即ち、図10に示すように、制御部22では目標回転速度指令部50で設定された目標回転速度と実回転速度の偏差に基づいて、燃料ガス供給弁15の開弁期間を直接的にPID制御する。具体的には、目標回転速度と実回転速度の偏差に基づき、ガスガバナ44によって、フィードバック制御により実回転速度が目標回転速度に追従するように各燃料ガス供給弁15が開弁している時間を制御する。
ガス供給弁制御部52では、燃料ガス供給弁15の開弁タイミングを起点として算出された開弁期間に基づいて各燃料ガス供給弁15の閉弁タイミングの制御を行う。制御部22は、供給する燃料ガス量をあらかじめ演算せずに実回転速度が目標回転速度に一致するように、燃料ガス供給弁15の開弁期間を直接的にPID制御している。
The valve closing timing control of the fuel gas supply valve 15 is performed as follows. That is, as shown in FIG. 10, in the control unit 22, based on the deviation between the target rotational speed and the actual rotational speed set by the target rotational speed command unit 50, the valve opening period of the fuel gas supply valve 15 is directly PID Control. Specifically, based on the deviation between the target rotational speed and the actual rotational speed, the time during which each fuel gas supply valve 15 is open so that the actual rotational speed follows the target rotational speed by feedback control by the gas governor 44 Control.
The gas supply valve control unit 52 controls the valve closing timing of each fuel gas supply valve 15 based on the valve opening period calculated with the valve opening timing of the fuel gas supply valve 15 as a starting point. The control unit 22 directly performs PID control of the open period of the fuel gas supply valve 15 so that the actual rotation speed matches the target rotation speed without calculating the amount of fuel gas supplied in advance.
燃料ガスの供給圧力制御は、エンジン1の出力と回転速度のデータをパラメータとして設定した圧力ΔP値に、吸気管13内に設けた給気圧力計54により検出した給気圧力を加えた値と、燃料ガス圧力計43の値との偏差がなくなるように燃料ガスの圧力調整器55をフィードバック制御する。
液体燃料の燃料噴射ポンプ12及び燃料噴射弁10の制御は次のように行われる。即ち、図11に示すように、制御部22では目標回転速度指令部50で設定された目標回転速度と実回転速度の偏差に基づいて、燃料噴射ポンプ12のラック位置を直接的にPID制御する。具体的には、目標回転速度と実回転速度の偏差に基づき、ディーゼルガバナ48によって、フィードバック制御により実回転速度が目標回転速度に追従するように燃料噴射ポンプ12のラック位置が変更されることにより、燃料噴射弁10から噴射される液体燃料の噴射量が増加、減少し、これによってエンジン1の回転速度が増加、減少する。
The supply pressure control of the fuel gas is a value obtained by adding the air supply pressure detected by the air supply pressure gauge 54 provided in the intake pipe 13 to the pressure ΔP value set using the output of the engine 1 and the data of the rotational speed as parameters. The feedback control of the fuel gas pressure regulator 55 is performed so that the deviation from the value of the fuel gas pressure gauge 43 is eliminated.
Control of the liquid fuel injection pump 12 and the fuel injection valve 10 is performed as follows. That is, as shown in FIG. 11, the control unit 22 directly PID-controls the rack position of the fuel injection pump 12 based on the deviation between the target rotational speed and the actual rotational speed set by the target rotational speed command unit 50. . Specifically, based on the deviation between the target rotational speed and the actual rotational speed, the diesel governor 48 changes the rack position of the fuel injection pump 12 so that the actual rotational speed follows the target rotational speed by feedback control. The injection amount of the liquid fuel injected from the fuel injection valve 10 increases and decreases, whereby the rotational speed of the engine 1 increases and decreases.
上述した結果を表示した可変吸気弁タイミング機構30の進角とガスガバナ44による燃料ガス供給弁15の供給開始及び終了のタイミングの関係を示すと図12のようになる。
図12において、エンジン1のクランク角度と吸気弁8及び排気弁9のバルブリフトとの関係を示している。吸気弁8の開閉作動を示す曲線において、実線で示すのはVIVT(可変吸気バルブタイミング)指令値が0%の場合であり、一点鎖線で示すのは進角時(VIVT指令値が100%)の場合の開閉作動イメージを示している。そして、VIVT指令値が0%の場合の燃料ガス供給弁15の開弁期間に対して、進角時(VIVT指令値が100%)の燃料ガス供給弁15の開弁期間がより長くなる。
FIG. 12 shows the relationship between the advance angle of the variable intake valve timing mechanism 30 and the timing of the start and end of supply of the fuel gas supply valve 15 by the gas governor 44 in which the above result is displayed.
FIG. 12 shows the relationship between the crank angle of the engine 1 and the valve lifts of the intake valve 8 and the exhaust valve 9. The curve showing the opening and closing operation of the intake valve 8 is shown by a solid line when the VIVT (variable intake valve timing) command value is 0%, and by an alternate long and short dash line is when advancing (100% of the VIVT command value). Shows an opening and closing operation image in the case of. Then, the open period of the fuel gas supply valve 15 at the advance angle (the VIVT command value is 100%) becomes longer than the open period of the fuel gas supply valve 15 when the VIVT command value is 0%.
また、吸気弁8の閉弁タイミングが進角するに従って燃料ガスの供給圧力を高くして燃料供給量を増大することが好ましい。そのため、図9において、吸気管13内への燃料ガスの供給圧力は、吸気管13内に設けた給気圧力計54により検出した給気圧力に圧力ΔP値を加えた大きさに設定する。圧力ΔPは予め測定した複数のエンジン1の出力と回転速度のデータをパラメータとして設定する。その結果、燃料ガス供給弁15から供給する燃料ガスの供給圧力は、吸気弁8が閉じるタイミングの進角に伴って高くすることになる。 Further, it is preferable to increase the fuel supply amount by increasing the supply pressure of the fuel gas as the closing timing of the intake valve 8 advances. Therefore, in FIG. 9, the supply pressure of the fuel gas into the intake pipe 13 is set to a value obtained by adding the pressure ΔP value to the supply pressure detected by the supply pressure gauge 54 provided in the intake pipe 13. The pressure ΔP is set as data of the outputs and rotational speeds of the plurality of engines 1 measured in advance as parameters. As a result, the supply pressure of the fuel gas supplied from the fuel gas supply valve 15 increases with the advance of the timing at which the intake valve 8 closes.
次に制御部22で制御されるエンジン1の運転における舶用三乗特性線とアシスト・オン(ON)領域とアシスト・オフ(OFF)領域との関係について説明する。図13のグラフにおいて、横軸がエンジン1の回転速度を示すものであり、縦軸は出力(kw)である。
舶用三乗特性線は、固定ピッチプロペラを用いた船舶において、出力が回転速度の3乗に比例する舶用主機関の特性であり、エンジン1の基本的制御出力レベルである。しかし、出力と回転速度との関係が正確に3乗に比例するとは限らず、ある程度のずれを有する場合もある。図において、舶用三乗特性線に対してプラスマイナス10%の範囲を破線で示す。このプラスマイナス10%の範囲で、アシスト・オフラインが設定される。好ましくはアシスト・オフラインは舶用三乗特性線に沿って設定され、本実施形態では図中、長破線で示すように、舶用三乗特性線のやや上方に舶用三乗特性線に沿った線として設定される。このアシスト・オフラインの下側の領域がアシスト・オフ領域とされる。また、アシスト・オフラインの上側にアシスト・オンラインが設定される。好ましくは、アシスト・オンラインは舶用三乗特性線のある程度上方の常用的には運転されない出力においてエンジン1の特性に応じて設定される。本実施形態では、図中一点鎖線で示すように、アイドル回転速度から中間回転速度までは舶用三乗特性線を一定割合で上回り、中間回転速度から定格回転速度に達するにつれて舶用三乗特性線に近づく線として設定される。このアシスト・オンラインの上側の領域がアシスト・オン領域とされる。なお、これらアシスト・オンライン、アシスト・オフライン等は、制御における考え方を示すもので物理的な線を意味せず、好ましくはコンピュータのプログラムにおける機能として実装される。
Next, the relationship between the marine cubic characteristic line, the assist on (ON) region, and the assist off (OFF) region in the operation of the engine 1 controlled by the control unit 22 will be described. In the graph of FIG. 13, the horizontal axis indicates the rotational speed of the engine 1, and the vertical axis is the output (kw).
The marine cubic characteristic line is a characteristic of the marine main engine whose output is proportional to the cube of the rotational speed in a ship using a fixed pitch propeller, and is a basic control output level of the engine 1. However, the relationship between the output and the rotational speed may not be exactly proportional to the third power, but may have a certain degree of deviation. In the figure, the range of plus or minus 10% with respect to the marine cubic characteristic line is indicated by a broken line. The assist off-line is set in the range of this plus or minus 10%. Preferably, the assist off-line is set along the marine cubic characteristic line, and in the present embodiment, as indicated by a long broken line in the figure, as a line along the marine cubic characteristic line slightly above the marine cubic characteristic line. It is set. The area under the assist off-line is regarded as the assist-off area. Also, Assist Online is set above Assist Online. Preferably, the assist on-line is set in accordance with the characteristics of the engine 1 at a level not normally operated above the marine cubic curve. In this embodiment, as shown by the one-dot chain line in the figure, the idle rotational speed to the intermediate rotational speed exceeds the marine cubic characteristic line at a constant rate, and the intermediate rotational speed reaches the rated rotational speed to the marine cubic characteristic line. Set as an approaching line. The upper region of this assist online is the assist on region. In addition, these assist on-line, assist, off-line, etc. show the way of thinking in control, do not mean physical lines, and are preferably implemented as functions in a computer program.
ガスモードGでの運転は定常的には舶用三乗特性線の付近でなされるが、矢印(A)で示すように、一時的に回転速度に対して出力が上がる場合がある。ガスモードGによる運転中に出力が上がりアシスト・オン領域に入るとアシストモードAsによる運転に移行する。その後、回転速度に対して出力が上がった状態が解消すると、矢印(B)で示すように出力が舶用三乗特性線付近まで下がる。出力が下がり、アシスト・オフ領域に入るとガスモードGでの運転に復帰する。
アシストモードAsでの運転は出力が増大したトルクリッチ領域に限られるため、環境対策の側面からも好適となる。また、アシストモードAsにおいては、図中、ガスガバナの指令イメージの破線で示されるように、回転速度に応じた所定値の気体燃料の供給を行うガスガバナの制御がなされる。
The operation in the gas mode G is steadily performed in the vicinity of the marine cubic characteristic line, but as indicated by the arrow (A), the output may rise temporarily with respect to the rotational speed. When the output rises during the operation in the gas mode G and the assist on region is entered, the operation shifts to the operation in the assist mode As. Thereafter, when the state in which the output rises with respect to the rotational speed disappears, the output decreases to near the marine cubic characteristic line as shown by the arrow (B). When the output falls and enters the assist-off region, the operation returns to the gas mode G.
Since the operation in the assist mode As is limited to the torque rich region where the output is increased, it is also preferable from the viewpoint of environmental measures. Further, in the assist mode As, as indicated by a broken line in the command image of the gas governor in the drawing, control of the gas governor for supplying gaseous fuel of a predetermined value according to the rotational speed is performed.
次にガスモードGとアシストモードAsとの間の移行時の動作について図14及び図15に示すタイミングチャートで説明する。
図14は、ガスモードGからアシストモードAsに移行する際の動作を示すタイミングチャートである。荒天時の船舶の運航や急速な進路変更などの操船がなされた場合に、回転速度に対する出力(負荷)が上昇する。出力(負荷)が予め設定されたアシスト・オンラインを超えるとアシストモードAsに移行する。この場合、ガスガバナ44はガス燃料の供給量の調速制御を終了する。これとほぼ同時に、ディーゼルガバナ48で液体燃料の供給量の調速制御を開始し、且つガスガバナ44によるガス燃料の供給量を図13で説明した回転速度に応じた所定値に急速に下げて、低い出力で安定させる。この低い出力のガスガバナ指令値は回転速度に応じて変化する。
Next, the operation at the time of transition between the gas mode G and the assist mode As will be described with reference to timing charts shown in FIGS.
FIG. 14 is a timing chart showing an operation at the time of transition from the gas mode G to the assist mode As. The output (load) with respect to the rotational speed is increased when ship maneuvering during rapid weather or maneuvering such as rapid course change is performed. When the output (load) exceeds the preset assist on-line, transition to the assist mode As is made. In this case, the gas governor 44 ends the speed control of the supply amount of gas fuel. Almost simultaneously with this, the control of the supply amount of the liquid fuel is started by the diesel governor 48, and the supply amount of the gas fuel by the gas governor 44 is rapidly reduced to the predetermined value corresponding to the rotational speed described in FIG. Stabilize at low power. The low output gas governor command value changes according to the rotational speed.
ガス燃料の供給量を所定値に下げる操作はごく短時間(例えば1秒以内)で行われる。ガス燃料の供給量が所定値に下がると、液体燃料の調速制御の作用により、目標となるエンジン1の回転速度を維持するように液体燃料の供給量が増加する。その結果として、エンジン1の回転速度に大きな影響を与えずに、ガスモードGからアシストモードAsへの移行が実施される。ガスモードGからアシストモードAsへの移行は、ガスガバナ44とディーゼルガバナ48により、ディーゼルモードDへの移行と同様にごく短時間(例えば1秒以内)で行うことが可能である。 The operation of reducing the gas fuel supply amount to a predetermined value is performed in a very short time (for example, within one second). When the supply amount of gas fuel falls to a predetermined value, the supply control amount of the liquid fuel increases the supply amount of the liquid fuel so as to maintain the target rotational speed of the engine 1. As a result, the transition from the gas mode G to the assist mode As is performed without significantly affecting the rotational speed of the engine 1. Similar to the transition to the diesel mode D, the transition from the gas mode G to the assist mode As can be performed in a very short time (for example, within one second) by the gas governor 44 and the diesel governor 48.
次に、図15により、アシストモードAsからガスモードGへ復帰する際の動作を示すタイミングチャートについて説明する。
アシストモードAsで運転中、回転速度に対する出力(負荷)が低下し、出力(負荷)が予め設定されたアシスト・オフラインより低下するとガスモードGに復帰する。アシストモードAsからガスモードGに復帰する際、ディーゼルガバナ48で液体燃料の供給量の調速制御を終了すると共に、これとほぼ同時にガスガバナ44でガス燃料の供給量の調速制御を開始する。しかも、ディーゼルガバナ48は、液体燃料の供給量を連続的に例えば2段階に下げて、最終的にゼロまたは極めて小さい量とする。
Next, referring to FIG. 15, a timing chart showing an operation at the time of returning from the assist mode As to the gas mode G will be described.
During the operation in the assist mode As, when the output (load) with respect to the rotational speed decreases and the output (load) decreases from the preset assist off-line, the gas mode G is restored. When returning from the assist mode As to the gas mode G, the control of the supply amount of liquid fuel is finished by the diesel governor 48, and at the same time, the control of the supply amount of gas fuel is started by the gas governor 44. Moreover, the diesel governor 48 continuously reduces the supply amount of the liquid fuel, for example, to two stages to finally make the amount zero or a very small amount.
ディーゼルガバナ48による液体燃料の供給量を連続的に下げるパターンは、直線的、曲線的、あるいは、これらと実質的に同様の作用をもつ多段の階段状とすることができるが、本実施形態では2段階に分けて直線的に下げるようにした。図15に示すように、機械式の燃料噴射ポンプ12の第一段f1では液体燃料の供給量を相対的に急速に低下させて出力を下げ、第二段f2の領域では出力の低下を低速で行う。第二段f2は実質的に液体燃料を噴射しない無噴射領域とされ、しかもその出力低下の移行期間はゆっくり下げるのが望ましい。第一段f1と第二段f2の境目では、ディーゼルガバナ48の指令はアイドル運転程度のガバナ指令とされている。 The pattern for continuously reducing the amount of liquid fuel supplied by the diesel governor 48 may be linear, curvilinear, or multistage steps having substantially the same function as those described above. It was divided into two steps and lowered linearly. As shown in FIG. 15, in the first stage f1 of the mechanical fuel injection pump 12, the supply amount of liquid fuel is reduced relatively rapidly to reduce the output, and in the area of the second stage f2, the output decreases. To do. It is desirable that the second stage f2 be a non-injection area where substantially no liquid fuel is injected, and that the transition period of the output reduction be reduced slowly. At the boundary between the first stage f1 and the second stage f2, the command of the diesel governor 48 is taken as a governor command at about idle operation.
ディーゼルガバナ48によって液体燃料の供給量を連続的に下げる操作は、前述のガス燃料の供給量を下げる操作と比較して、長い時間で行うことが望ましい。ディーゼルガバナ48による液体燃料の供給終了までの時間は出力に応じて異なるが、実質的には数秒程度とされる。液体燃料の供給量が連続的に下げられると、ガスガバナ44によるガス燃料の調速制御の作用により、エンジン1の目標となる回転速度を維持するようにガス燃料の供給量が増加する。結果的に、エンジン1の回転速度に大きな影響を与えずに、アシストモードAsからガスモードGへの復帰が実施される。 It is desirable that the operation of continuously reducing the supply amount of liquid fuel by the diesel governor 48 be performed for a long time as compared with the operation of reducing the supply amount of gas fuel described above. The time until the end of the liquid fuel supply by the diesel governor 48 varies depending on the output, but is substantially on the order of several seconds. When the supply amount of the liquid fuel is continuously reduced, the supply control amount of the gas fuel by the gas governor 44 increases the supply amount of the gas fuel so as to maintain the target rotational speed of the engine 1. As a result, the return from the assist mode As to the gas mode G is performed without significantly affecting the rotational speed of the engine 1.
ここで、ガスモードGへ復帰する前のアシストモードAsでは、ガス燃料が所定量供給されているため、ガスモードGへ復帰するステップを開始する時点で即座にガス燃料の供給量の調速制御を開始することができる。一般に、ガス燃料の供給をゼロから開始する場合には立ち上りが不安定で安定した制御を行うのに時間を要する。しかし、このアシストモードAsでは、すでに所定値の供給量でガス燃料が継続して供給されているため、速やかにガス燃料の調速制御を開始することができ、開始後の調速制御の追従性も高くなる。
よって、出力に応じて異なるものの、アシストモードAsからガスモードGへの移行において、実質的な液体燃料の供給停止を数秒で行うことが可能である。
Here, since a predetermined amount of gas fuel is supplied in the assist mode As before returning to the gas mode G, at the time of starting the step of returning to the gas mode G, the speed control of the supply amount of gas fuel is immediately performed. Can be started. Generally, when the gas fuel supply is started from zero, the rise is unstable and it takes time to perform stable control. However, in the assist mode As, since the gas fuel is already continuously supplied at the supply amount of the predetermined value, it is possible to promptly start the speed control of the gas fuel, and follow the speed control after the start. Sex also becomes high.
Therefore, although it differs depending on the output, it is possible to substantially stop the supply of the liquid fuel in a few seconds in the transition from the assist mode As to the gas mode G.
次に本実施形態による船舶推進用の4ストロークデュアルフューエルのエンジン1の運転方法を説明する。
エンジン1の始動時に、ディーゼルモードDで起動してガスモードGに移行させる。ガスモードGでは、定常的には舶用三乗特性線上で運転される。制御部22において、ガスガバナ44でガス燃料の供給量の調速制御を行い、図13において、舶用三乗特性線に対してある程度出力のずれがあっても、アシスト・オンラインに到達しない場合には、ガスモードGにおいて回転速度と出力の制御が行われて定常運転される。ガスモードGでは、ガス燃料のみを燃料として用いて点火プラグで点火を行う運転様式、または、熱源の大部分を占めるガス燃料の点火に少量の液体燃料(パイロット油)の噴射を用いる運転様式のいずれかで運転される。少量の液体燃料を含む運転様式の場合、液体燃料の割合は、通常、定格出力の熱量対比で全熱量の1%~10%程度であるが、排出ガスに対する環境規制を達成する観点から3%以下であることが望ましい。
Next, a method of operating the four-stroke dual fuel engine 1 for boat propulsion according to the present embodiment will be described.
When the engine 1 is started, the diesel mode D is started to shift to the gas mode G. In the gas mode G, steady operation is performed on a marine cubic characteristic line. In the control unit 22, the gas governor 44 controls the supply amount of the gas fuel, and in FIG. 13, even if the output is deviated to some extent with respect to the marine cubic characteristic line, the assist on-line is not reached. In the gas mode G, control of rotational speed and output is performed and steady operation is performed. In gas mode G, a mode of operation in which ignition is performed by a spark plug using only gas fuel as fuel, or a mode of operation using injection of a small amount of liquid fuel (pilot oil) for ignition of gas fuel that occupies most of the heat source. It is driven by either. In the case of a mode of operation that contains a small amount of liquid fuel, the proportion of liquid fuel is usually about 1% to 10% of the total amount of heat relative to the amount of heat of rated output, but 3% from the viewpoint of achieving environmental regulations for exhaust gas It is desirable that
ガスモードGの運転において、エンジンの出力(負荷)をクランク軸2に設けた回転速度センサ20とトルクセンサ21によって検知する。回転速度センサ20ではクランク軸2の回転速度(回転数)を計測し、トルクセンサ21ではエンジントルクを計測する。回転速度センサ20とトルクセンサ21で計測した測定データはエンジン1の制御部22にそれぞれ信号出力する。
制御部22では、回転速度センサ20とトルクセンサ21等からの信号に基づいてエンジン1の運転状態の出力を検出する。エンジン1の加減速や海の荒れ等で出力(負荷)が上昇して、出力(負荷)が予め設定されたアシスト・オンラインを超えた場合、ガスモードGからアシストモードAsに移行する(図14参照)。
In the gas mode G operation, the output (load) of the engine is detected by the rotational speed sensor 20 and the torque sensor 21 provided on the crankshaft 2. The rotational speed sensor 20 measures the rotational speed (rotational speed) of the crankshaft 2, and the torque sensor 21 measures the engine torque. Measurement data measured by the rotational speed sensor 20 and the torque sensor 21 are respectively output to the control unit 22 of the engine 1.
The control unit 22 detects the output of the operating state of the engine 1 based on the signals from the rotational speed sensor 20 and the torque sensor 21 and the like. When the output (load) rises due to acceleration or deceleration of the engine 1 or rough seas and the output (load) exceeds the preset assist online, the gas mode G shifts to the assist mode As (FIG. 14). reference).
ガスモードGからアシストモードAsへの移行時において、ガスガバナ44によるガス燃料の調速制御が終了してガバナ指令値が急速に降下してガス燃料の供給量が所定値に低下すると同時に、ディーゼルガバナ48で液体燃料の供給量の調速制御が開始される。ガス燃料の供給量の低下は例えば1秒以内とごく短時間で行われる。同時にディーゼルガバナDによる調速制御により、目標となるエンジンの回転速度を維持するように液体燃料の供給量が増加する。その結果、エンジンの回転速度に大きな影響を与えないでガスモードGからアシストモードAsに短時間で移行する。これにより、ガスモードGにおけるノッキングや失火を未然に回避できる。
なお、アシストモードAsでの運転は一定割合の液体燃料を使用するため環境対策の側面から必要最小限の時間だけ運転するものとし、アシストモードAsが必要でなくなった時点で迅速にガスモードに復帰させる。
At the time of transition from the gas mode G to the assist mode As, the speed control of the gas fuel by the gas governor 44 is finished, the governor command value falls rapidly, and the supply amount of gas fuel drops to a predetermined value. At 48, regulation control of the liquid fuel supply amount is started. The reduction of the gas fuel supply amount is performed in a very short time, for example, within one second. At the same time, the speed control by the diesel governor D increases the amount of liquid fuel supplied so as to maintain the target engine rotational speed. As a result, the gas mode G is shifted to the assist mode As in a short time without largely affecting the rotational speed of the engine. Thereby, knocking and misfiring in the gas mode G can be avoided in advance.
Since operation in assist mode As uses a certain percentage of liquid fuel, operation is performed only for the minimum necessary time from the viewpoint of environmental measures, and when assist mode As is no longer needed, the gas mode is quickly restored. Let
アシストモードAsにおけるエンジン1の出力(負荷)が低下して、アシスト・オフライン以下になった場合、アシストモードAsを終了してガスモードGに移行させる(図15参照)。
アシストモードAsからガスモードGに復帰する際、ディーゼルガバナ48で液体燃料の供給量の調速制御を終了すると共に、ほぼ同時にガスガバナ44によってガス燃料の供給量の調速制御を開始する。しかも、ディーゼルガバナ48は、液体燃料の供給量を例えば2段階に亘って連続的に下げ、最終的にゼロまたは極めて小さい量とする。
When the output (load) of the engine 1 in the assist mode As is reduced to below the assist off-line, the assist mode As is ended to shift to the gas mode G (see FIG. 15).
When returning from the assist mode As to the gas mode G, the control of the supply amount of liquid fuel is finished by the diesel governor 48, and at the same time, the control of the supply amount of gas fuel is started by the gas governor 44. Moreover, the diesel governor 48 continuously reduces the supply amount of liquid fuel, for example, in two stages, and finally makes the amount zero or a very small amount.
液体燃料の供給量を下げる際、ディーゼルガバナ48の指令値は、第一段f1では急速に供給量を下げ、第二段f2では実質的に液体燃料を無噴射状態として比較的緩やかにガバナ指令値を下げる。液体燃料の供給量を連続的に下げる操作は、前述のアシストモード移行時にガス燃料の供給量を下げる操作と比較して長い時間、例えば数秒かけて行われる。
液体燃料の供給量が連続的に下げられると、ガスガバナ44によるガス燃料の調速制御により、エンジン1の目標となる回転速度を維持するようにガス燃料の供給量が急速に増加する。こうして、エンジン1の回転速度に大きな影響を与えずに、アシストモードAsからガスモードGへの復帰が実施される。
When reducing the supply amount of liquid fuel, the command value of the diesel governor 48 rapidly reduces the supply amount at the first stage f1, and at the second stage f2, the governor command is performed relatively gently with no liquid fuel being injected. Lower the value. The operation of continuously reducing the supply amount of liquid fuel is performed over a long time, for example, several seconds, as compared with the operation of reducing the supply amount of gas fuel at the transition to the assist mode described above.
When the liquid fuel supply amount is continuously reduced, the gas fuel control control by the gas governor 44 rapidly increases the gas fuel supply amount so as to maintain the target rotational speed of the engine 1. Thus, the return from the assist mode As to the gas mode G is performed without significantly affecting the rotational speed of the engine 1.
しかも、アシストモードAsの段階でガス燃料が継続して所定量供給されているため、ガスモードGへ復帰する時点で即座にガス燃料の調速制御を開始できる。そのため、速やかにガス燃料の供給量の調速制御を開始でき、開始後の調速制御の追従性と安定性が高くなる。従って、アシストモードAsからガスモードGへの移行に際し、実質的なガス燃料の調速制御と液体燃料の供給停止または規制を数秒で行うことができる。 Moreover, since the predetermined amount of gas fuel is continuously supplied at the stage of the assist mode As, at the time of returning to the gas mode G, it is possible to immediately start the speed control of the gas fuel. Therefore, the speed control of the supply amount of gas fuel can be started promptly, and the followability and stability of the speed control after the start becomes high. Therefore, at the time of transition from the assist mode As to the gas mode G, substantial gas fuel speed control and liquid fuel supply stop or regulation can be performed in a few seconds.
また、ガスモードGへ復帰するステップをエンジン1の出力が下がる過程において実施することで、短時間でのガスモードへの復帰が容易となる。ガスモードへの復帰の際は、ノッキングや失火の発生が起こり得るが、エンジン1の出力が下がる過程においては、十分な空気量が確保された状態であるため適正な空燃比を維持しやすい。
しかも、エンジン1の出力が下がる過程では、調速制御上は燃料の供給を制限する方向であるため、急激なガス燃料の増加を抑制できてノッキングや失火が生じにくい。そこで、エンジン出力低下のタイミングにあわせてガスモードGへの復帰を行うことで、適正な燃焼を維持しつつ短時間でのガスモードGへの復帰を可能とする。アシストモードAsでのガス燃料の供給量は、エンジン1の出力が大きいほど大きい値となる。これにより、エンジン1の出力が大きい領域においても、アシストモードAsからガスモードGへの復帰を迅速に行うことができる。
In addition, by performing the step of returning to the gas mode G in the process in which the output of the engine 1 is reduced, the return to the gas mode in a short time becomes easy. When returning to the gas mode, knocking or misfire may occur. However, in the process where the output of the engine 1 is reduced, it is easy to maintain an appropriate air-fuel ratio because a sufficient amount of air is secured.
Moreover, in the process of reducing the output of the engine 1, the regulation control is in the direction of restricting the supply of fuel, so it is possible to suppress the rapid increase of the gas fuel, and knocking and misfiring hardly occur. Therefore, by performing the return to the gas mode G in accordance with the timing of the engine output decrease, it is possible to return to the gas mode G in a short time while maintaining proper combustion. The amount of gas fuel supplied in the assist mode As increases as the output of the engine 1 increases. As a result, even in the region where the output of the engine 1 is large, the return from the assist mode As to the gas mode G can be quickly performed.
なお、ガスモードGによる運転では、負荷が増大してノッキングや失火の発生が予想される状況においても、ガスモードGからアシストモードAsに移行することで、エンジン1の運転を継続することができる。一方、アシストモードAsにおいては一定割合の液体燃料を使用するため、環境対策の側面からアシストモードAsでの運転は必要最小限とした。そして、アシストモードAsが必要でない状態に至ると、即座にガスモードGによる運転に復帰するようにした。 Incidentally, in the operation in the gas mode G, the operation of the engine 1 can be continued by shifting from the gas mode G to the assist mode As even in a situation where occurrence of knocking or misfire is expected due to an increase in load. . On the other hand, since a certain proportion of liquid fuel is used in the assist mode As, the operation in the assist mode As is minimized as necessary in terms of environmental protection. Then, when the assist mode As is not required, the operation in the gas mode G is immediately restored.
舶用三乗特性線は、エンジン1の出力と回転速度との関係を示すものであるため、アシストモードAsへの移行、ガスモードGへの復帰の制御において、エンジン1の出力と回転速度の相互関係と連続性を踏まえた切り換えが迅速に行われることになり、出力と回転速度が複雑に変化する現実の操船状態においても適切な移行と復帰が行われる。しかも、アシストモードAsは、舶用三乗特性線よりも出力が高いトルクリッチ領域で行われるため、環境対策の面からも好適である。 Since the marine cubic characteristic line indicates the relationship between the output of the engine 1 and the rotational speed, the control of the transition to the assist mode As and the return to the gas mode G Switching based on the relationship and continuity will be performed quickly, and appropriate transition and return will be performed even in the actual maneuvering state where output and rotational speed change in a complex manner. Moreover, since the assist mode As is performed in a torque rich region where the output is higher than that of the marine cubic characteristic line, it is also preferable from the viewpoint of environmental protection.
また、船舶推進用のエンジン1は定常的には概ね舶用三乗特性線上で運転されることから、アシストモードAsへの移行は必要な場合にのみ行われ、アシストモードAsの必要がなくなれば即座にガスモードGへ復帰する。そのため、本実施形態によるエンジン1及びその運転方法は、出力変動の激しいタグボートや作業船用のエンジンにおいて、より好適に使用できる。
本実施形態において、ガスモードGとディーゼルモードDでは、エンジン1の運転において制御が行われる運転パラメータ、例えば給気圧力に関する設定値、吸気弁の閉弁タイミングを変更する場合における可変吸気弁タイミング機構30の制御(VIVT指令値)の設定値、点火条件に関する設定値は、それぞれの運転モードに最適化された設定値とされる。一方、アシストモードAsでは、これら運転パラメータ、すなわち給気圧力に関する設定値、吸気弁の閉弁タイミングを変更する場合における可変吸気弁タイミング機構30の制御(VIVT指令値)の設定値、マイクロパイロット噴射弁11や点火プラグなどの点火装置の設定値、のうち少なくとも一つ以上についてガスモードGと共通の設定値が用いられる。
Further, since the engine 1 for ship propulsion is operated on a ship's cubic characteristic line in a steady state, the transition to the assist mode As is performed only when necessary, and immediately when the assist mode As is not necessary. To the gas mode G. Therefore, the engine 1 and the operation method thereof according to the present embodiment can be more suitably used in a tugboat with a large output fluctuation and an engine for a work boat.
In the present embodiment, in the gas mode G and the diesel mode D, variable intake valve timing mechanism in the case of changing the operation parameter for which control is performed in the operation of the engine 1, for example, the set value related to the air supply pressure and the valve closing timing The set values of the 30 controls (VIVT command value) and the set values related to the ignition conditions are set as the set values optimized for the respective operation modes. On the other hand, in the assist mode As, these operating parameters, that is, the set value for the air supply pressure, the set value of the control (VIVT command value) of the variable intake valve timing mechanism 30 when changing the valve closing timing of the intake valve, micro pilot injection The setting value common to the gas mode G is used for at least one of the setting values of the ignition device such as the valve 11 and the spark plug.
上述したように本実施形態によるデュアルフューエルエンジン1とその運転方法によれば、ガスモードGからアシストモードAsへの移行が例えば1秒、アシストモードAsからガスモードGへの復帰が数秒という極めて短時間で迅速に移行制御できる。そのため、ガスモードGにおける、ノッキングや失火の発生を未然に回避できる。アシストモードAsでの運転は出力(負荷)が大幅に増加したトルクリッチ領域に限られ、液体燃料を用いるアシストモードAsの必要がなくなった場合では、迅速にガスモードGに復帰するため、環境対策の面からも優れた効果を得られる。 As described above, according to the dual fuel engine 1 and the operation method thereof according to this embodiment, the transition from the gas mode G to the assist mode As is, for example, 1 second, and the return from the assist mode As to the gas mode G is several seconds. Transition control can be done quickly in time. Therefore, occurrence of knocking and misfire in the gas mode G can be avoided in advance. The operation in the assist mode As is limited to a torque rich area where the output (load) is greatly increased, and when the need for the assist mode As using liquid fuel is eliminated, the gas mode G is promptly returned. Excellent effects can be obtained from the aspect of
なお、本発明によるエンジンは、上述した実施形態によるデュアルフューエルエンジン1とその運転方法に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜の変更や置換等が可能である。以下に、本発明の変形例等について説明するが、上述した実施形態で説明した部品や部材等と同一または同様なものについては同一の符号を用いて説明を省略する。 The engine according to the present invention is not limited to the dual fuel engine 1 according to the above-described embodiment and its operating method, and appropriate changes, replacements, and the like can be made without departing from the scope of the present invention. Hereinafter, although the modification etc. of this invention are demonstrated, about the same or similar thing as the components, members, etc. which were demonstrated by embodiment mentioned above, description is abbreviate | omitted using the same code | symbol.
本発明は、気体燃料を熱源の大部分とする第一の運転と、当該運転時に出力(負荷)が増大した際に気体燃料と液体燃料の双方を燃料とする第二の運転との、二つの運転状態の間を出力(負荷)の変化に応じて相互に且つ迅速に移行することができるエンジン運転方法とエンジンシステムを提供する。 According to the present invention, the first operation in which the gaseous fuel is the major part of the heat source and the second operation in which both the gaseous fuel and the liquid fuel are fueled when the output (load) increases during the operation Abstract: An engine operation method and an engine system are provided which can shift between two driving states in accordance with a change in output (load) and rapidly.
1 デュアルフューエルエンジン
2 クランク軸
8 吸気弁
9 排気弁
10 燃料噴射弁
11 マイクロパイロット油噴射弁
12 燃料噴射ポンプ
13 吸気管
14 排気管
15 燃料ガス供給弁
20 回転速度センサ
21 トルクセンサ
22 制御部
24 第一マップ
25 第二マップ
30 可変吸気弁タイミング機構
44 ガスガバナ
45 燃料ガス供給弁タイミング機構
48 ディーゼルガバナ
DESCRIPTION OF SYMBOLS 1 dual fuel engine 2 crankshaft 8 intake valve 9 exhaust valve 10 fuel injection valve 11 micro pilot oil injection valve 12 fuel injection pump 13 intake pipe 14 exhaust pipe 15 fuel gas supply valve 20 rotational speed sensor 21 torque sensor 22 control unit 24 First map 25 Second map 30 Variable intake valve timing mechanism 44 Gas governor 45 Fuel gas supply valve timing mechanism 48 Diesel governor

Claims (9)

  1. デュアルフューエルのエンジンの運転方法であって、
    気体燃料を熱源の大部分とする第一の運転中に、前記気体燃料の供給量の調速制御を終了して前記気体燃料の供給量を所定値に下げると共に液体燃料の供給量の調速制御を開始することで、前記気体燃料と前記液体燃料の双方を燃料とする第二の運転に移行するステップと、
    前記第二の運転の運転中に、前記液体燃料の供給量の調速制御を終了して前記液体燃料の供給量を下げると共に前記気体燃料の供給量の調速制御を開始することで前記第一の運転に復帰するステップと、
    を有することを特徴とするエンジンの運転方法。
    The method of operating a dual fuel engine,
    During the first operation in which the gas fuel is the major part of the heat source, the control of the supply amount of the gas fuel is terminated to reduce the supply amount of the gas fuel to a predetermined value and the adjustment of the supply amount of liquid fuel Transition to a second operation in which both the gaseous fuel and the liquid fuel are used as the control is started;
    During the operation of the second operation, the regulation control of the supply amount of the liquid fuel is ended to reduce the supply amount of the liquid fuel and the regulation control of the supply amount of the gaseous fuel is started. Step of returning to one operation,
    A method of operating an engine comprising:
  2. 前記第一の運転に復帰するステップは、前記エンジンの出力が下がる過程において実施される、請求項1に記載されたエンジンの運転方法。 The engine operating method according to claim 1, wherein the step of returning to the first operation is performed in the process of decreasing the output of the engine.
  3.  前記第一の運転に復帰するステップにおいて、前記液体燃料の供給量を下げる工程は、比較的高速で液体燃料の供給量を下げる第一段と、比較的低速で前記液体燃料の供給量を下げる第二段とを有している請求項1または2に記載されたエンジンの運転方法。 In the step of returning to the first operation, the step of reducing the liquid fuel supply amount includes a first step of reducing the liquid fuel supply amount at a relatively high speed, and a second step of reducing the liquid fuel supply amount at a relatively low speed. The method of operating an engine according to claim 1 or 2, further comprising: a stage.
  4. 前記第一の運転に復帰するステップは、前記エンジンの出力が舶用三乗特性線に対して±10%の範囲に設定されたアシスト・オフラインの下側領域に入ると実施され、
    前記第二の運転に移行するステップは、前記エンジンの出力が前記アシスト・オフラインの上側に設定されたアシスト・オンラインの上側領域に入ると実施されるようにした、
    請求項1から3のいずれか1項に記載されたエンジンの運転方法。
    The step of returning to the first operation is performed when the output of the engine enters the lower region of the assist off-line set in a range of ± 10% with respect to the marine cubic characteristic line,
    The step of shifting to the second operation is performed when the output of the engine enters the upper region of the assist online set above the assist offline.
    The operating method of an engine according to any one of claims 1 to 3.
  5. 前記第二の運転に移行するステップにおける、前記気体燃料の供給量は前記エンジンの出力が大きいほど大きい値とされている請求項1から4のいずれか1項に記載されたエンジンの運転方法。 The engine operating method according to any one of claims 1 to 4, wherein the supply amount of the gaseous fuel in the step of shifting to the second operation is a larger value as the output of the engine is larger.
  6. デュアルフューエルのエンジンの運転方法であって、
    気体燃料と調速制御される液体燃料との双方を燃料として第二の運転を行うステップと、
    前記ステップにおける液体燃料の調速制御を終了させて液体燃料の供給量を連続的に低下させると共に、前記気体燃料を熱源の大部分とし且つ調速制御を行う第一の運転を行うステップと、
    を有することを特徴とするエンジンの運転方法。
    The method of operating a dual fuel engine,
    Performing a second operation using both gaseous fuel and liquid fuel subjected to temperature control as fuel;
    Performing a first operation of terminating the control of the liquid fuel in the step and continuously reducing the supply amount of the liquid fuel and using the gaseous fuel as the major part of the heat source and performing the speed control;
    A method of operating an engine comprising:
  7. デュアルフューエルのエンジンの運転方法であって、
    気体燃料を熱源の大部分として前記気体燃料の調速制御を行うガスモードと、
    前記気体燃料及び液体燃料の双方を燃料として前記液体燃料の調速制御を行うアシストモードと、
    前記液体燃料のみを燃料として調速制御を行うディーゼルモードと、のいずれかを択一的に切り換えてエンジンを運転し、
    前記アシストモードによる運転中に前記エンジンの出力が舶用三乗特性線に沿って設定されるアシスト・オフ領域に入ると前記ガスモードに移行し、
    前記ガスモードによる運転中に前記エンジンの出力が前記アシスト・オフ領域より出力の高いアシスト・オン領域に入ると前記アシストモードに移行する、
    ことを特徴とするエンジンの運転方法。
    The method of operating a dual fuel engine,
    A gas mode in which gaseous fuel is used as a major part of a heat source to control and control the gaseous fuel;
    An assist mode for controlling and controlling the liquid fuel using both the gaseous fuel and the liquid fuel as fuel;
    The engine is operated by selectively switching one of the liquid fuel as a fuel and the diesel mode in which the speed control is performed.
    When the output of the engine enters an assist-off region set along a marine cubic characteristic line during operation in the assist mode, the gas mode is entered,
    Transition to the assist mode when the output of the engine enters an assist on region where the output is higher than the assist off region during the operation in the gas mode
    A method of operating an engine characterized by:
  8. 前記アシストモードによる運転では、エンジンの運転において制御が行われる運転パラメータは前記ガスモードと共通の設定が用いられる、請求項7に記載されたエンジンの運転方法。 The engine operating method according to claim 7, wherein in the operation in the assist mode, an operation parameter to be controlled in the operation of the engine is the same setting as the gas mode.
  9. デュアルフューエルのエンジンシステムであって、
    エンジンの運転制御を行う運転制御部と、
    気体燃料の供給量の調速制御を行うガスガバナと、
    液体燃料の供給量の調速制御を行うディーゼルガバナと、を有する制御部を備え、
    前記運転制御部による前記気体燃料を熱源の大部分とする第一の運転中に、前記ガスガバナによる気体燃料の調速制御を終了して前記気体燃料の供給量を下げると共に、前記ディーゼルガバナによる液体燃料の調速制御を開始することで、前記気体燃料及び液体燃料の双方を燃料とする第二の運転に移行させ、
    前記第二の運転中に、前記ディーゼルガバナによる前記液体燃料の調速制御を終了して前記液体燃料の供給量を下げると共に、前記ガスガバナによる気体燃料の調速制御を開始することで前記第一の運転に復帰させることを特徴とするエンジンシステム。
    It is a dual fuel engine system,
    An operation control unit that performs operation control of the engine;
    A gas governor that regulates the supply of gaseous fuel;
    A control unit having a diesel governor for controlling the supply amount of liquid fuel;
    During the first operation of using the gaseous fuel as the major part of the heat source by the operation control unit, the control of the gaseous fuel by the gas governor is terminated to reduce the supply amount of the gaseous fuel and the liquid by the diesel governor By starting the speed control of the fuel, it shifts to a second operation using both the gaseous fuel and the liquid fuel as fuel,
    During the second operation, the control control of the liquid fuel by the diesel governor is ended to reduce the supply amount of the liquid fuel, and the control control of the gaseous fuel by the gas governor is started. An engine system characterized by returning to the operation of
PCT/JP2017/032662 2017-09-11 2017-09-11 Engine operation method and engine system WO2019049362A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/032662 WO2019049362A1 (en) 2017-09-11 2017-09-11 Engine operation method and engine system
SG11202002151WA SG11202002151WA (en) 2017-09-11 2017-09-11 Engine operation method and engine system
CN201780094729.1A CN111094726B (en) 2017-09-11 2017-09-11 Engine operating method and engine system
JP2019540281A JP6843250B2 (en) 2017-09-11 2017-09-11 Engine operating method and engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032662 WO2019049362A1 (en) 2017-09-11 2017-09-11 Engine operation method and engine system

Publications (1)

Publication Number Publication Date
WO2019049362A1 true WO2019049362A1 (en) 2019-03-14

Family

ID=65633649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032662 WO2019049362A1 (en) 2017-09-11 2017-09-11 Engine operation method and engine system

Country Status (4)

Country Link
JP (1) JP6843250B2 (en)
CN (1) CN111094726B (en)
SG (1) SG11202002151WA (en)
WO (1) WO2019049362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201894A1 (en) * 2021-03-22 2022-09-29 ヤンマーホールディングス株式会社 Engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157259A (en) * 1983-01-25 1984-09-06 Nippon Steel Corp Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JP2017057774A (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012031521A2 (en) * 2011-02-16 2016-12-06 Toyota Jidosha Kabushiki multi-fuel internal combustion engine and control method for this
DK177572B1 (en) * 2012-01-20 2013-10-28 Man Diesel & Turbo Deutschland An internal combustion engine with a combined fuel oil and fuel gas operation mode
JP6049415B2 (en) * 2012-11-14 2016-12-21 三菱重工業株式会社 Diesel engine control device, diesel engine, and diesel engine control method
DK3121428T3 (en) * 2015-05-19 2019-10-14 Winterthur Gas & Diesel Ag Process for operating a large diesel engine, using this method and large diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157259A (en) * 1983-01-25 1984-09-06 Nippon Steel Corp Non-directional electrical sheet having low iron loss and excellent magnetic flux density and its production
JP2017057774A (en) * 2015-09-16 2017-03-23 ヤンマー株式会社 Engine device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201894A1 (en) * 2021-03-22 2022-09-29 ヤンマーホールディングス株式会社 Engine
JP2022146665A (en) * 2021-03-22 2022-10-05 ヤンマーホールディングス株式会社 engine

Also Published As

Publication number Publication date
SG11202002151WA (en) 2020-04-29
JPWO2019049362A1 (en) 2020-03-26
JP6843250B2 (en) 2021-03-17
CN111094726A (en) 2020-05-01
CN111094726B (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP4281610B2 (en) Operation method of premixed compression self-ignition engine and premixed compression self-ignition engine
JP6002235B2 (en) Combustion stabilization device for gas engines
CN107949689B (en) Engine device
JP2005307759A (en) Operation method for premixing compression self-igniting engine and premixing compression self-igniting engine
US10480426B2 (en) Method of controlling gas engine and gas engine drive system
WO2017047161A1 (en) Engine device
JP6450286B2 (en) Engine equipment
CN106285964B (en) Reciprocating piston type internal combustion engine, low-load operation method thereof and computer readable medium
JP6416410B2 (en) Engine system and control method thereof
JP6793824B2 (en) Engine control method and engine system
JP6843250B2 (en) Engine operating method and engine system
JP6831901B2 (en) Engine system and its control method
US10844796B2 (en) Gas engine drive system and method of controlling gas engine
CN113544374B (en) Gas engine with turbocharger and combustion method thereof
WO2017013939A1 (en) Engine device
JP6640950B2 (en) Engine system and control method
JP6404782B2 (en) Engine equipment
JP7394270B2 (en) Reciprocating engine system, how to operate a reciprocating engine
JP7409785B2 (en) Gas engine control device, gas engine system, and gas engine control program
KR20240089322A (en) Reciprocating engine system, operation method of reciprocating engine
JP2020197215A (en) Method of operating large-sized engine and large-sized engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924120

Country of ref document: EP

Kind code of ref document: A1