WO2019049300A1 - Combustion method - Google Patents

Combustion method Download PDF

Info

Publication number
WO2019049300A1
WO2019049300A1 PCT/JP2017/032407 JP2017032407W WO2019049300A1 WO 2019049300 A1 WO2019049300 A1 WO 2019049300A1 JP 2017032407 W JP2017032407 W JP 2017032407W WO 2019049300 A1 WO2019049300 A1 WO 2019049300A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
combustion
boiler
gas
pipe
Prior art date
Application number
PCT/JP2017/032407
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 谷川
泰孝 和田
優 大内
輝夫 田中
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to JP2018500951A priority Critical patent/JP6332578B1/en
Priority to PCT/JP2017/032407 priority patent/WO2019049300A1/en
Publication of WO2019049300A1 publication Critical patent/WO2019049300A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus

Definitions

  • the present invention relates to a combustion method.
  • a boiler of a power generation facility such as a thermal power plant generates high-temperature high-pressure steam using heat obtained by burning a fossil fuel such as coal, natural gas, light oil, heavy oil or the like with a burner.
  • burning these fossil fuels generates carbon dioxide, which causes global warming.
  • carbon credits for this reason, in recent years there has been a move to curb carbon dioxide in the form of carbon credits (emission allowances).
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • LNG is used as a fuel.
  • Gas fuels, such as LNG need to be liquefied for convenience in transportation.
  • ammonia has a low burning rate, specifically, for example, where the burning rate of propane is 40 cm / s, the burning rate of ammonia is only 8 cm / s. For this reason, the flame when burning ammonia becomes long. Therefore, in the case of co-firing ammonia with other fuels, for example, if a co-axial burner such as shown in FIG. 3 and FIG. Therefore, depending on the size and shape of the combustion space, incomplete combustion may occur.
  • an object of the present invention is to provide a power generation facility and a combustion method that minimize the generation and incomplete combustion of nitrogen oxides.
  • the present invention has the following configuration.
  • the boiler includes a pulverized coal injection nozzle for injecting the pulverized coal, and an ammonia injection nozzle for injecting the ammonia, and the ammonia injection nozzle is for the pulverized coal injected from the pulverized coal injection nozzle
  • an injection port for injecting the ammonia may be provided in the tangential direction of the circle.
  • FIG. 1 is a schematic view of a thermal power plant 1 of the embodiment.
  • the thermal power generation facility 1 of the embodiment is a system capable of combusting ammonia gas, but is a mixed-fired power generation facility 1 capable of combusting other than pulverized coal, oil, natural gas or ammonia gas such as BOG (boil off gas).
  • BOG snow off gas
  • the thermal power generation facility 1 is a gas fuel supply that supplies gaseous fuel other than ammonia gas through the ammonia gas supply facility 2, the ammonia gas fuel piping facility 3, the boiler 6, the denitration facility 90, and the gas fuel piping 170. It comprises a unit 70 and a control unit 7 that controls the whole.
  • the ammonia gas supply facility 2 includes a storage tank 10, a vaporizer 20, an accumulator 30, an ammonia gas absorbing unit 80, and the like.
  • the ammonia gas absorbing unit 80 is a water storage tank for absorbing ammonia gas emitted from the blow valve 81 or the like provided in the ammonia gas supply facility 2 into water.
  • the storage tank 10 stores pressurized and liquefied liquid ammonia, and is connected to the vaporizer 20 through a pipe 110.
  • the pipe 110 is branched in two directions along the way.
  • a vaporizer start valve 11 and a vaporizer pressure control valve 12 for controlling the pressure in the vaporizer 20 are sequentially disposed from the upstream side.
  • a vaporizer bypass valve 13 is disposed in the other branched pipe 110b.
  • the vaporizer 20 heats and vaporizes the liquid ammonia supplied from the storage tank 10.
  • liquid ammonia is heated through the inside of a coiled pipe immersed in warm water and vaporized to be ammonia gas.
  • the downstream side of the vaporizer 20 is connected to the accumulator 30 via a pipe 120.
  • the pipe 120 is branched in two directions along the way.
  • An accumulator start valve 21 and an accumulator pressure control valve 22 for controlling the pressure in the accumulator 30 are sequentially disposed from the upstream side in one branched pipe 120 a.
  • An accumulator bypass valve 23 is disposed in the other branched pipe 120b.
  • the accumulator 30 is a device that accumulates ammonia gas and stabilizes the pressure.
  • a pipe 130 extends from the downstream side of the accumulator 30.
  • the pipe 130 is branched in two directions.
  • One branched pipe 132 is connected to the header 40.
  • the other branched pipe 131 is connected to the ammonia gas fuel pipe arrangement 3.
  • the pipe 140 is connected to the downstream side of the header 40, and the pipe 140 is branched into a plurality of denitration pipes 141, 142, 143, and the denitration pipes 141, 142, 143 respectively have denitration shutoff valves 41, 42, 43. It is connected to the denitrification equipment 90 through.
  • NOx removal pipes 141, 142 and 143 are connected to NOx removal units 91, 92 and 93, respectively.
  • the exhaust gas generated by combustion from the boiler 6 is fed into the denitration devices 91, 92, 93, and ammonia is introduced from the piping of the denitration piping 141, 142, 143 in which the denitration shutoff valves 41, 42, 43 are open.
  • the gas as a reducing agent nitrogen oxides in the exhaust gas are converted into harmless nitrogen gas and water.
  • Ammonia gas fuel piping system 3 As described above, the pipe 131 branched from the pipe 130 extending from the accumulator 30 is connected to the ammonia gas fuel pipe arrangement 3. A shutoff valve 31 is provided upstream of the pipe 131. On the downstream side of the shutoff valve 31, a purge pipe 133 extending from a purge gas supply unit 37 capable of flowing a purge gas such as nitrogen gas into the ammonia gas fuel piping installation 3 is connected via a purge valve 36.
  • the downstream side of the connection portion of the pipe 131 to which the purge pipe 133 is connected is branched in two directions.
  • a pressure control valve 32 is disposed in one of the branched pipes 131a.
  • a shutoff valve 33 is disposed in the other branched pipe 131b. The pipe 131 a and the pipe 131 b rejoin on the downstream side. The joined pipe 131 is connected to the flow meter 50 via the shutoff valve 34.
  • the flow meter 50 measures the flow rate of the gas flowing through the pipe 131.
  • a pipe 150 extends from the downstream side of the flow meter 50.
  • the piping 150 is branched in two directions along the way.
  • a flow control valve 51 is disposed in one of the branched pipes 150a.
  • a shutoff valve 52 is disposed in the other branched pipe 150b. The pipe 150 a and the pipe 150 b rejoin on the downstream side.
  • the downstream side of the joined pipe 150 is branched in two directions by the second connection portion 56.
  • One branched pipe is an ammonia gas outflow pipe 151 a, and is connected to the ammonia gas absorbing unit 80 of the ammonia gas supply facility 2 via an ammonia outflow blocking valve 55.
  • the ammonia gas absorbing unit 80 is a water storage tank, and dissolves ammonia gas in water.
  • a burner valve 53 is disposed in the other branched ammonia gas supply pipe 151b.
  • a cooling pipe 160 to which cooling air is introduced is connected via a cooling air valve 61.
  • the ammonia gas outflow pipe 151 a may be branched downstream of the burner valve 53.
  • the downstream side of the ammonia gas supply pipe 151 b is connected to the first connection portion 72 of the gas fuel pipe 170 extending from the gas fuel supply unit 70 to the burner 62 A of the boiler 6 via the shutoff valve 54.
  • the gas fuel supply unit 70 stores LNG (liquefied natural gas). When LNG is liquefied and stored, the LNG is vaporized by natural heat input from the outside, etc., and BOG off gas is generated.
  • the gas fuel pipe 170 is a pipe that sends the BOG as a fuel to the burner 62A.
  • the gas fuel pipe 170 is connected to the burner 62 A of the boiler 6 at the downstream side of the first connection portion 72.
  • a gas fuel pipe shutoff valve 71 is disposed upstream of the first connection portion 72 in the gas fuel pipe 170.
  • FIG. 2A is a view for explaining an arrangement example of the four-stage burners 62.
  • coal pulverized coal
  • gas fuel is further supplied to the topmost four burners 62A.
  • the gas ring 171 provided at the tip of the gas fuel pipe 170 is arranged in an arc at the outermost part of each of the burners 62A, and the five burner nozzles 172 branch from the gas ring 171.
  • An injection port 173 is provided at the tip of 172.
  • ammonia is co-fired by injecting ammonia from one of the five injection ports 173 of the burner 62A located at the rightmost side in FIG. 2A.
  • FIG. 2B is a configuration example of the burner 62A present at the rightmost side in FIG. 2A, and more specifically, shows a layout diagram of each component when the burner 62A is viewed from the opposite side to the furnace.
  • a gas ring 171 is provided at the end of the gas fuel pipe 170, and five burner nozzles 172A to 172E branch from the gas ring 171. Further, the burner nozzle 172A is connected to the injection port 173A, the burner nozzle 172B to the injection port 173B, the burner nozzle 172C to the injection port 173C, the burner nozzle 172D to the injection port 173D, and the burner nozzle 172E to the injection port 173E.
  • a pulverized coal burner nozzle 175 is provided at the center of the pentagon formed by the injection ports 173A to 173E so as to surround the heavy oil burner 174. Note that, hereinafter, the pulverized coal burner nozzle 175 may be referred to as "pulverized coal injection nozzle 175".
  • each of the burner nozzles 172A to 172E is provided with gas fuel piping shutoff valves 71A to 71E.
  • ammonia gas supply pipe 151b is connected to the burner nozzle 172B at the first connection portion 72 provided downstream of the gas fuel pipe shutoff valve 71B.
  • the burner nozzle 172B may be referred to as "ammonia injection nozzle 172B".
  • the ammonia gas supply pipe 151 b is provided with the shutoff valve 54, the return pipe 176 is branched upstream of the shutoff valve 54, and the shutoff valve 177 is provided in the return pipe 176.
  • the return pipe 176 is a pipe used when the ammonia gas is not supplied to the burner nozzle 172B from the ammonia gas supply pipe 151b.
  • the shutoff valve 54 is closed and the shutoff valve 177 is opened.
  • ammonia gas is supplied to the burner nozzle 172B, as shown in FIG. 2B, the shutoff valve 54 is opened, and the gas fuel pipe shutoff valve 71B and the shutoff valve 177 are closed.
  • the burner nozzle to which ammonia is supplied is one (172B) of the five burner nozzles 172 constituting the burner 62A
  • the embodiment of the present invention is not limited thereto.
  • Ammonia may be supplied to any number of burner nozzles 172 among the plurality of burner nozzles 172 constituting the burner 62A.
  • the plurality of burners 62A provided in the uppermost stage of the boiler 6 not only the rightmost burner 62A but also any number of burners 62A may mix and burn ammonia. More specifically, it is desirable to supply ammonia to one burner nozzle 172 not only in the rightmost burner 62A of the first stage but also in the other burners 62A.
  • all the burners 62A a total of four burners It is more desirable to supply ammonia to the five burner nozzles 172 at 62. Furthermore, it is possible to mix and burn ammonia not only in the burner 62A but also in the burners 62B to 62D.
  • FIG. 2C is an example of a cross-sectional view of the burner 62 in the long axis direction, and the right side of FIG. 2C corresponds to the furnace side of the boiler 6.
  • a burner nozzle 172B (ammonia injection nozzle 172B) connected to the gas ring 171 in the lower part has a heavy oil burner 174 at the center and a pulverized coal burner nozzle 175 (fine powder) so as to surround the heavy oil burner 174.
  • a coal injection nozzle 175) is a coal injection nozzle 175.
  • the burner nozzle 172B extends from the gas ring 171 in the direction opposite to the furnace and then bends to the furnace side, but the gas fuel pipe shut-off valve 71B is provided at the extension to the opposite side of the furnace and the first connection portion is bent 72 are provided.
  • the ammonia gas supply pipe 151b is connected to the burner nozzle 172B.
  • the burner nozzle 172B extends to the furnace side through the bent portion, and reaches the injection port 173B.
  • Ammonia gas is supplied from the ammonia gas supply pipe 151b to the injection port 173B through the first connection portion 72 and the extending portion of the burner nozzle 172B in the furnace direction, as shown by the arrow in FIG. 2C, and the injection port It is injected from 173B.
  • pulverized coal is injected from the pulverized coal burner nozzle 175.
  • FIG. 2D shows a configuration example of the burner 62A viewed from the furnace side, and corresponds to the back side of the configuration example shown in FIG. 2B. Also, in FIG. 2D, solid arrows indicate the flow of ammonia gas, and solid circles indicate the contour of a cross section perpendicular to the length direction of the pulverized coal flame.
  • the shutoff valve 54 provided in the ammonia gas supply pipe 151b is opened, and the gas fuel pipe shutoff valve 71B provided in the burner nozzle 172B and the shutoff valve 177 provided in the return pipe 176 are closed.
  • the ammonia gas is supplied to the injection port 173B via the ammonia gas supply pipe 151b, the first connection portion 72, and the burner nozzle 172B.
  • the injection port 173B is tangential to this circle. Ammonia is injected into the
  • Ammonia is injected so as to draw a spiral locus around the pulverized coal flame, and the combustion distance of the ammonia is increased, whereby the combustion time of the ammonia is secured and the ammonia can be completely burned.
  • the test period is 7 days, from 13 o'clock to 17 o'clock on the first day, from 10 o'clock to 17 o'clock on the second day to 6 o'clock, and from 10 o'clock to 13 o'clock on the seventh day
  • a maximum of 450 kg / h of ammonia (note that this is the maximum flow rate of the vaporizer 20 and corresponds to 400 kg of coal) was used. More specifically, 100 kg / h of ammonia is burned from 13 o'clock to 15 o'clock on the first day, and 200 kg / h of ammonia is burned from 15 o'clock to 16 o'clock on the first day.
  • liquid ammonia used for combustion has a purity of 99.98%, water content of 0.016%, and an oil content of less than 1.0 ppm, and coal species co-fired with ammonia is 60% for mount oren, and Bocabri premium Is 40%.
  • Boiler metal temperature The temperature of the metal portion of the piping or the like provided in the boiler 6, that is, the boiler metal temperature was measured at the time of coal-only combustion and at the time of mixed combustion of ammonia and coal. There are six measurement points: a primary superheater outlet, a reheater outlet, a secondary superheater inlet, a secondary superheater middle, and a secondary superheater outlet.
  • the boiler metal temperature at the primary superheater outlet is 400 to 450 ° C
  • the boiler metal temperature at the reheater outlet is 500 to 550 ° C
  • the boiler heat at the secondary superheater inlet The metal temperature is 400 to 450 ° C
  • the boiler metal temperature in the middle of the secondary superheater is 450 to 500 ° C
  • the boiler metal temperature at the outlet of the secondary superheater is 500 to 600 ° C.
  • the boiler metal temperature at the primary superheater outlet is 400 to 450 ° C
  • the boiler metal temperature at the reheater outlet is 500 to 600 ° C
  • the boiler metal at the secondary superheater inlet The temperature is 400 to 450 ° C
  • the boiler metal temperature in the middle of the secondary superheater is 450 to 550 ° C
  • the boiler metal temperature at the outlet of the secondary superheater is 500 to 600 ° C. And there was almost no change.
  • FIG. 4 shows the amount of used coal per hour before and after mixed combustion, and the difference between the amounts of coal used.
  • table of (b) shows the numerical value used by the graph of (a) in a tabular form
  • table of (c) shows the average value of the day shown by the leftmost column in (c).
  • the reduction in the amount of coal used after co-firing compared to before co-firing was 0.50 T / h on average for 7 days. That is, 450 kg / h of the amount of ammonia combustion became almost the same as 500 kg / h (anhydrous) of the amount of reduction of coal. Also, comparing the 1st to 7th days, the amount of reduction of coal on the 5th day became the maximum value of 1.96T / h.
  • the coal type of coal used for the combustion is 60% of Mount Oen and 40% of Boca-Bri Premium.
  • the table of (b) shows the numerical values used in the graph of (a) in tabular form
  • the table of (c) shows the power plant output, the mixed combustion rate, and the leftmost column in (c) Mean of the difference between
  • the value before mixed combustion is a value 30 minutes before the injection of ammonia
  • the value after mixed combustion is an average value of data of 4 to 5 points taken every 30 minutes after the injection of ammonia.
  • ammonia co-firing rate when ammonia is co-fired with coal, it is desirable that the ammonia co-firing rate be 0.8% or more, and it is suggested that the NOx value can be reduced as the ammonia supply amount is increased. This is, 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O It is presumed that the noncatalytic denitrification reaction has progressed as shown in the chemical reaction formula.
  • ammonia is injected in the tangential direction of the pulverized coal flame so that the ammonia draws a spiral locus around the pulverized coal flame, and the combustion time of the ammonia is secured by taking a long combustion distance of the ammonia. It is estimated that
  • FIG. 5 shows the composition of the exhaust gas from the boiler, the amount of injected ammonia, and the amount of CO 2 in the exhaust gas from the boiler.
  • the table of (b) shows the numerical values used in the graph of (a) in the form of a table. Where the initial amount of CO 2 is 12.8%, the mixed combustion rate of ammonia is 0.6% to 0.8%, so the amount of CO 2 is only about 0.1% which is the product of those numbers. It was not expected to decrease, but in practice it decreased by 0.2 to 1.3%.
  • the annual carbon dioxide reduction amount in the case where the mixed combustion rate is about 0.6% is about 3.99 (thousand t-CO 2 / year), and the annual carbon dioxide in the case where the mixed combustion rate is about 0.8%
  • the reduction amount was about 4.12 (thousand t-CO 2 / year).
  • the carbon dioxide emission factor was calculated using the emission factor by electric power company in FY 2015 (China Electric Power: 0.0007t-CO 2 / kWh) and the facility operation rate was 70%. Since it is possible to burn all mixed ammonia in the boiler, it is considered that carbon dioxide emissions can be reduced according to the ratio of mixed combustion.
  • the combustion method of the present embodiment is a combustion method executed by the thermal power generation facility 1 that generates power by burning pulverized coal and ammonia in the boiler 6, and the fine powder of ammonia used for combustion in the boiler 6
  • the rate of co-firing with charcoal is at least 0.8%.
  • the ammonia used for the combustion simultaneously has an effect of denitrifying NOx in the exhaust gas generated by the combustion, so that the ammonia can be effectively used.
  • the boiler 6 includes a pulverized coal burner nozzle 175 for injecting pulverized coal, and an ammonia injection nozzle 172B for injecting ammonia, and the ammonia injection nozzle 172B is a pulverized coal burner nozzle
  • an injection port 173B for injecting ammonia is provided in the tangential direction of this circle.
  • ammonia is injected so as to draw a spiral trajectory around the pulverized coal flame, and the combustion distance of the ammonia is increased, whereby the combustion time of the ammonia is secured and the ammonia is completely burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Provided is a combustion method that minimizes incomplete combustion and the generation of nitrogen oxides. In this combustion method, combustion is performed in a thermal power house 1 that generates electricity by combusting pulverized coal and ammonia in a boiler 6. The mixed burning ratio of the ammonia to the pulverized coal used in combustion in the boiler 6 is 0.8% or greater.

Description

燃焼方法Combustion method
 本発明は、燃焼方法に関する。 The present invention relates to a combustion method.
 従来、火力発電所等の発電設備のボイラは、石炭・天然ガス・軽油・重油等の化石燃料をバーナで燃焼させた熱を利用して高温高圧蒸気を発生させている。しかし、これらの化石燃料を燃焼させると二酸化炭素が発生するため、地球温暖化の原因になる。このため、近年、カーボンクレジット(排出枠)といった形で二酸化炭素を抑制する動きがある。
 例えば、LNG(液化天然ガス)は、二酸化炭素の排出量がLPG(液化石油ガス)より少ない。このため、LNGを燃料として用いることが行われている。LNG等のガス燃料は、輸送の際に便宜上、液化が必要である。しかし、LNGの場合、液化するためにマイナス180度程度の低温状態にする必要があるため、液化が容易ではなく、設備のコストもかかる。
 このため、二酸化炭素を発生しない燃料として、アンモニアガスの利用が提案されている(例えば特許文献1参照)。アンモニアはマイナス33度程度で液化する。このため、例えば、液化にマイナス180度程度必要なLNGと比べて液化が容易で、設備のコストも安価ですむ。
Conventionally, a boiler of a power generation facility such as a thermal power plant generates high-temperature high-pressure steam using heat obtained by burning a fossil fuel such as coal, natural gas, light oil, heavy oil or the like with a burner. However, burning these fossil fuels generates carbon dioxide, which causes global warming. For this reason, in recent years there has been a move to curb carbon dioxide in the form of carbon credits (emission allowances).
For example, LNG (liquefied natural gas) produces less carbon dioxide than LPG (liquefied petroleum gas). For this reason, LNG is used as a fuel. Gas fuels, such as LNG, need to be liquefied for convenience in transportation. However, in the case of LNG, it is not easy to liquefy, and the cost of equipment also increases, because it is necessary to bring the temperature to a low temperature of about -180 degrees to liquefy.
For this reason, utilization of ammonia gas is proposed as fuel which does not generate carbon dioxide (for example, refer to patent documents 1). Ammonia liquefies at around -33 ° C. For this reason, for example, liquefaction is easy compared with LNG which requires about -180 degrees of liquefaction, and the cost of equipment is low.
特開2016-183840号公報JP, 2016-183840, A 特開2007-17030号公報JP 2007-17030 A
 しかし、アンモニアを燃焼させると、アンモニア成分中に含まれる窒素分が酸素と結び付き、窒素酸化物となる懸念がある。 However, when ammonia is burned, there is a concern that the nitrogen content contained in the ammonia component will be combined with oxygen to form nitrogen oxides.
 また、アンモニアは燃焼速度が小さく、具体的には、例えばプロパンの燃焼速度が40cm/sであるところ、アンモニアの燃焼速度は、8cm/sにすぎない。このため、アンモニアを燃焼させた場合の火炎は長くなる。
 したがって、アンモニアを他燃料と混焼させる場合、例えば、特許文献2の図3及び図4に見られるような同軸バーナを用いて、水平に同軸で噴射して燃焼させると、アンモニアの火炎が伸びてしまい、燃焼空間の大小や形状によっては、不完全燃焼してしまう可能性がある。
Also, ammonia has a low burning rate, specifically, for example, where the burning rate of propane is 40 cm / s, the burning rate of ammonia is only 8 cm / s. For this reason, the flame when burning ammonia becomes long.
Therefore, in the case of co-firing ammonia with other fuels, for example, if a co-axial burner such as shown in FIG. 3 and FIG. Therefore, depending on the size and shape of the combustion space, incomplete combustion may occur.
 そこで、本発明は、窒素酸化物の発生や不完全燃焼を極力抑える発電設備及び燃焼方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a power generation facility and a combustion method that minimize the generation and incomplete combustion of nitrogen oxides.
 前記目的を達成するため、本発明は、次に記載する構成を備えている。 In order to achieve the above object, the present invention has the following configuration.
 (1) 微粉炭及びアンモニアをボイラにおいて燃焼させて発電を行う火力発電設備で実行される燃焼方法であって、前記ボイラでの燃焼に用いられるアンモニアの微粉炭との混焼率が、0.8%以上である、燃焼方法。 (1) A combustion method implemented by a thermal power generation facility that generates power by burning pulverized coal and ammonia in a boiler, wherein the co-firing rate of ammonia used for combustion in the boiler with pulverized coal is 0.8 % Or more, the combustion method.
 (2) 前記ボイラは、前記微粉炭を噴射させる微粉炭噴射ノズルと、前記アンモニアを噴射させるアンモニア噴射ノズルと、を備え、前記アンモニア噴射ノズルは、前記微粉炭噴射ノズルから噴射される微粉炭の燃焼火炎の長さ方向に対して垂直な断面を円に近似した場合、前記円の接線方向に、前記アンモニアを噴射する噴射口を備えてもよい。 (2) The boiler includes a pulverized coal injection nozzle for injecting the pulverized coal, and an ammonia injection nozzle for injecting the ammonia, and the ammonia injection nozzle is for the pulverized coal injected from the pulverized coal injection nozzle When the cross section perpendicular to the longitudinal direction of the combustion flame is approximated to a circle, an injection port for injecting the ammonia may be provided in the tangential direction of the circle.
 本発明によれば、窒素酸化物の発生や不完全燃焼の発生を極力抑える発電設備及び燃焼方法を提供することが可能となる。 According to the present invention, it is possible to provide a power generation facility and a combustion method that minimize the generation of nitrogen oxides and the occurrence of incomplete combustion as much as possible.
実施形態の発電設備の概略図である。It is the schematic of the power generation equipment of embodiment. 4段のバーナを説明する図である。It is a figure explaining a 4-stage burner. 最上段のバーナの構成例を説明する図である。It is a figure explaining the example of composition of the burner of the highest rank. 最上段のバーナの構成例を説明する図である。It is a figure explaining the example of composition of the burner of the highest rank. 最上段のバーナの構成例を説明する図である。It is a figure explaining the example of composition of the burner of the highest rank. 燃焼試験に用いたアンモニア量を示す図である。It is a figure which shows the amount of ammonia used for the combustion test. 燃焼試験に用いた石炭使用量の変遷を示す図である。It is a figure which shows transition of the amount of coals used for the combustion test. ボイラ出口での測定箇所を示す図である。It is a figure which shows the measurement location in a boiler exit. 燃焼試験におけるボイラ出口でのNOx量の変遷を示す図である。It is a figure which shows transition of the NOx amount in the boiler exit in a combustion test. ボイラからの排気ガス中のCO含有量の変遷を示す図である。Is a diagram showing the transition of CO 2 content in the exhaust gas from the boiler.
 以下、本発明の実施形態について各図面を参照しながら詳述する。
〔1.発明の構成〕
 以下、本発明の実施形態の火力発電設備1について説明する。図1は実施形態の火力発電設備1の概略図である。実施形態の火力発電設備1は、アンモニアガスを燃焼可能なシステムであるが、微粉炭、油、天然ガスやBOG(boil off gas)等のアンモニアガス以外も燃焼可能な混焼発電設備1である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[1. Constitution of the Invention]
Hereinafter, the thermal-power-generation installation 1 of embodiment of this invention is demonstrated. FIG. 1 is a schematic view of a thermal power plant 1 of the embodiment. The thermal power generation facility 1 of the embodiment is a system capable of combusting ammonia gas, but is a mixed-fired power generation facility 1 capable of combusting other than pulverized coal, oil, natural gas or ammonia gas such as BOG (boil off gas).
 火力発電設備1は、アンモニアガス供給設備2と、アンモニアガス燃料用配管設備3と、ボイラ6と、脱硝設備90と、ガス燃料配管170を介してアンモニアガス以外のガス燃料を供給するガス燃料供給部70と、これら全体を制御する制御部7等を備える。 The thermal power generation facility 1 is a gas fuel supply that supplies gaseous fuel other than ammonia gas through the ammonia gas supply facility 2, the ammonia gas fuel piping facility 3, the boiler 6, the denitration facility 90, and the gas fuel piping 170. It comprises a unit 70 and a control unit 7 that controls the whole.
[アンモニアガス供給設備2]
 アンモニアガス供給設備2は、貯蔵タンク10と、気化器20と、アキュムレータ30と、アンモニアガス吸収部80等を備える。なお、アンモニアガス吸収部80は、アンモニアガス供給設備2に設けられたブロー弁81等から出るアンモニアガスを水中に吸収する貯水槽である。
[Ammonia gas supply facility 2]
The ammonia gas supply facility 2 includes a storage tank 10, a vaporizer 20, an accumulator 30, an ammonia gas absorbing unit 80, and the like. The ammonia gas absorbing unit 80 is a water storage tank for absorbing ammonia gas emitted from the blow valve 81 or the like provided in the ammonia gas supply facility 2 into water.
(貯蔵タンク10)
 貯蔵タンク10は、加圧されて液化された液体アンモニアを貯蔵するもので、配管110を介して気化器20に接続されている。配管110は、途中が2方向に分岐されている。分岐された一方の配管110aには、気化器起動弁11及び気化器20内の圧力を制御する気化器圧力調整弁12が上流側から順次配置されている。分岐された他方の配管110bには、気化器バイパス弁13が配置されている。
(Storage tank 10)
The storage tank 10 stores pressurized and liquefied liquid ammonia, and is connected to the vaporizer 20 through a pipe 110. The pipe 110 is branched in two directions along the way. In one branched pipe 110a, a vaporizer start valve 11 and a vaporizer pressure control valve 12 for controlling the pressure in the vaporizer 20 are sequentially disposed from the upstream side. A vaporizer bypass valve 13 is disposed in the other branched pipe 110b.
(気化器20)
 気化器20は、貯蔵タンク10から供給される液体アンモニアを加熱して気化させるものである。気化器20において液体アンモニアは、温水中に浸漬されたコイル状配管内を通って昇温されて気化され、アンモニアガスとなる。気化器20の下流側は、配管120を介してアキュムレータ30に接続されている。
 配管120は、途中が2方向に分岐されている。分岐された一方の配管120aには、アキュムレータ起動弁21、アキュムレータ30内の圧力を制御するアキュムレータ圧力調整弁22が上流側から順次配置されている。分岐された他方の配管120bには、アキュムレータバイパス弁23が配置されている。
(Vaporizer 20)
The vaporizer 20 heats and vaporizes the liquid ammonia supplied from the storage tank 10. In the vaporizer 20, liquid ammonia is heated through the inside of a coiled pipe immersed in warm water and vaporized to be ammonia gas. The downstream side of the vaporizer 20 is connected to the accumulator 30 via a pipe 120.
The pipe 120 is branched in two directions along the way. An accumulator start valve 21 and an accumulator pressure control valve 22 for controlling the pressure in the accumulator 30 are sequentially disposed from the upstream side in one branched pipe 120 a. An accumulator bypass valve 23 is disposed in the other branched pipe 120b.
(アキュムレータ30)
 アキュムレータ30は、アンモニアガスを蓄積し、圧力を安定させる装置である。アキュムレータ30の下流側からは配管130が延びている。配管130は、2方向に分岐されている。分岐された一方の配管132は、ヘッダー40に接続されている。分岐された他方の配管131は、アンモニアガス燃料用配管設備3に接続されている。
(Accumulator 30)
The accumulator 30 is a device that accumulates ammonia gas and stabilizes the pressure. A pipe 130 extends from the downstream side of the accumulator 30. The pipe 130 is branched in two directions. One branched pipe 132 is connected to the header 40. The other branched pipe 131 is connected to the ammonia gas fuel pipe arrangement 3.
[ヘッダー40]
 ヘッダー40の下流側には、配管140が接続され、配管140は複数の脱硝配管141,142,143に分岐され、それぞれの脱硝配管141,142,143は、脱硝遮断弁41,42,43を介して脱硝設備90に接続されている。
[Header 40]
The pipe 140 is connected to the downstream side of the header 40, and the pipe 140 is branched into a plurality of denitration pipes 141, 142, 143, and the denitration pipes 141, 142, 143 respectively have denitration shutoff valves 41, 42, 43. It is connected to the denitrification equipment 90 through.
[脱硝設備90]
 脱硝設備90において、脱硝配管141,142,143は、それぞれ脱硝装置91,92,93に接続されている。脱硝装置91,92,93には、ボイラ6から燃焼で生じた排ガスが送り込まれ、脱硝配管141,142,143のうちの脱硝遮断弁41,42,43が開いている配管から流入されたアンモニアガスを還元剤として、排ガス中の窒素酸化物が無害な窒素ガスと水とに転換される。
[DeNOx Equipment 90]
In the NOx removal facility 90, NOx removal pipes 141, 142 and 143 are connected to NOx removal units 91, 92 and 93, respectively. The exhaust gas generated by combustion from the boiler 6 is fed into the denitration devices 91, 92, 93, and ammonia is introduced from the piping of the denitration piping 141, 142, 143 in which the denitration shutoff valves 41, 42, 43 are open. Using the gas as a reducing agent, nitrogen oxides in the exhaust gas are converted into harmless nitrogen gas and water.
[アンモニアガス燃料用配管設備3]
 上述のように、アキュムレータ30から延びる配管130から分岐した配管131は、アンモニアガス燃料用配管設備3に接続されている。配管131の上流側には遮断弁31が設けられている。遮断弁31の下流側には、窒素ガス等のパージガスをアンモニアガス燃料用配管設備3に流入可能なパージ用ガス供給部37から延びるパージ配管133が、パージ弁36を介して接続されている。
[Ammonia gas fuel piping system 3]
As described above, the pipe 131 branched from the pipe 130 extending from the accumulator 30 is connected to the ammonia gas fuel pipe arrangement 3. A shutoff valve 31 is provided upstream of the pipe 131. On the downstream side of the shutoff valve 31, a purge pipe 133 extending from a purge gas supply unit 37 capable of flowing a purge gas such as nitrogen gas into the ammonia gas fuel piping installation 3 is connected via a purge valve 36.
 配管131におけるパージ配管133が接続されている接続部よりも下流側は、2方向に分岐されている。分岐された一方の配管131aには、圧力調整弁32が配置されている。分岐された他方の配管131bには、遮断弁33が配置されている。配管131aと配管131bとは、下流側で再度合流している。合流した配管131は、遮断弁34を介して流量計50に接続されている。 The downstream side of the connection portion of the pipe 131 to which the purge pipe 133 is connected is branched in two directions. A pressure control valve 32 is disposed in one of the branched pipes 131a. A shutoff valve 33 is disposed in the other branched pipe 131b. The pipe 131 a and the pipe 131 b rejoin on the downstream side. The joined pipe 131 is connected to the flow meter 50 via the shutoff valve 34.
 流量計50は、配管131を流れるガスの流量を測定するものである。流量計50の下流側からは配管150が延びている。配管150は途中が2方向に分岐されている。分岐された一方の配管150aには、流量調整弁51が配置されている。分岐された他方の配管150bには、遮断弁52が配置されている。配管150aと配管150bとは、下流側で再度合流している。 The flow meter 50 measures the flow rate of the gas flowing through the pipe 131. A pipe 150 extends from the downstream side of the flow meter 50. The piping 150 is branched in two directions along the way. A flow control valve 51 is disposed in one of the branched pipes 150a. A shutoff valve 52 is disposed in the other branched pipe 150b. The pipe 150 a and the pipe 150 b rejoin on the downstream side.
 合流した配管150の下流側は、第2接続部56で2方向に分岐されている。
 分岐された一方の配管は、アンモニアガス流出配管151aであり、アンモニア流出遮断弁55を介して、アンモニアガス供給設備2のアンモニアガス吸収部80に接続されている。アンモニアガス吸収部80は、上述のように貯水槽であり、アンモニアガスを水に溶解させる。
 分岐された他方のアンモニアガス供給配管151bにはバーナ弁53が配置されている。配管150におけるバーナ弁53の下流側には、冷却空気が流入される冷却配管160が冷却空気弁61を介して接続されている。
 なお、アンモニアガス流出配管151aは、バーナ弁53の下流で分岐していてもよい。
 アンモニアガス供給配管151bの下流側は遮断弁54を介して、ガス燃料供給部70から、ボイラ6のバーナ62Aまで延びるガス燃料配管170の第1接続部72に接続されている。
The downstream side of the joined pipe 150 is branched in two directions by the second connection portion 56.
One branched pipe is an ammonia gas outflow pipe 151 a, and is connected to the ammonia gas absorbing unit 80 of the ammonia gas supply facility 2 via an ammonia outflow blocking valve 55. As described above, the ammonia gas absorbing unit 80 is a water storage tank, and dissolves ammonia gas in water.
A burner valve 53 is disposed in the other branched ammonia gas supply pipe 151b. On the downstream side of the burner valve 53 in the pipe 150, a cooling pipe 160 to which cooling air is introduced is connected via a cooling air valve 61.
The ammonia gas outflow pipe 151 a may be branched downstream of the burner valve 53.
The downstream side of the ammonia gas supply pipe 151 b is connected to the first connection portion 72 of the gas fuel pipe 170 extending from the gas fuel supply unit 70 to the burner 62 A of the boiler 6 via the shutoff valve 54.
[ガス燃料供給部70]
 ガス燃料供給部70には、LNG(液化天然ガス)が貯蔵されている。LNGを液化して貯蔵する場合に、外部からの自然入熱等によりLNGが気化してBOGガス(boil off gas)が発生する。本実施形態では、ガス燃料配管170は、このBOGを燃料としてバーナ62Aに送る配管である。
 ガス燃料配管170は、第1接続部72の下流側においてボイラ6のバーナ62Aに接続されている。ガス燃料配管170における第1接続部72の上流側には、ガス燃料配管遮断弁71が配置される。
[Gas fuel supply unit 70]
The gas fuel supply unit 70 stores LNG (liquefied natural gas). When LNG is liquefied and stored, the LNG is vaporized by natural heat input from the outside, etc., and BOG off gas is generated. In the present embodiment, the gas fuel pipe 170 is a pipe that sends the BOG as a fuel to the burner 62A.
The gas fuel pipe 170 is connected to the burner 62 A of the boiler 6 at the downstream side of the first connection portion 72. A gas fuel pipe shutoff valve 71 is disposed upstream of the first connection portion 72 in the gas fuel pipe 170.
[ボイラ6]
 ボイラ6には、バーナ62が複数段(本実施形態では高さ方向に4段(バーナ62A,62B,62C,62D)及び複数列(本実施形態ではそれぞれの段に4つずつ)配置されている。
 図2Aは4段のバーナ62の配置例を説明する図である。本実施形態では、4段のバーナ62A、62B、62C、62Dには、燃料として石炭貯蔵部75より石炭(微粉炭)が供給される。最上段の4つのバーナ62Aには、更に、ガス燃料が供給される。
[Boiler 6]
In the boiler 6, a plurality of stages of burners 62 (four stages in the height direction in the present embodiment ( burners 62A, 62B, 62C, 62D) and a plurality of rows (four in each stage in the present embodiment) are arranged There is.
FIG. 2A is a view for explaining an arrangement example of the four-stage burners 62. In the present embodiment, coal (pulverized coal) is supplied as a fuel from the coal storage unit 75 to the four stages of burners 62A, 62B, 62C, 62D. Gas fuel is further supplied to the topmost four burners 62A.
[バーナ62]
 図2Aにおいては、バーナ62Aの各々の最外部に、上記のガス燃料配管170の先端に設けられたガスリング171が円弧状に配置され、ガスリング171から5本のバーナノズル172が分岐し、バーナノズル172の先端に噴射口173が備わる。更に、図2Aにおいて最も右側に存在するバーナ62Aの5つの噴射口173のうち1つの噴射口173から、アンモニアが噴射されることにより、アンモニアが混焼される。
[Burner 62]
In FIG. 2A, the gas ring 171 provided at the tip of the gas fuel pipe 170 is arranged in an arc at the outermost part of each of the burners 62A, and the five burner nozzles 172 branch from the gas ring 171. An injection port 173 is provided at the tip of 172. Furthermore, ammonia is co-fired by injecting ammonia from one of the five injection ports 173 of the burner 62A located at the rightmost side in FIG. 2A.
 図2Bは、図2Aにおいて最も右側に存在するバーナ62Aの構成例であり、より具体的には、バーナ62Aを火炉と反対側から見た場合の各構成要素の配置図を示す。 FIG. 2B is a configuration example of the burner 62A present at the rightmost side in FIG. 2A, and more specifically, shows a layout diagram of each component when the burner 62A is viewed from the opposite side to the furnace.
 ガス燃料配管170の先端に、ガスリング171が設けられ、ガスリング171から、5つのバーナノズル172A~172Eが分岐する。更に、バーナノズル172Aは噴射口173Aに、バーナノズル172Bは噴射口173Bに、バーナノズル172Cは噴射口173Cに、バーナノズル172Dは噴射口173Dに、バーナノズル172Eは噴射口173Eに接続する。 A gas ring 171 is provided at the end of the gas fuel pipe 170, and five burner nozzles 172A to 172E branch from the gas ring 171. Further, the burner nozzle 172A is connected to the injection port 173A, the burner nozzle 172B to the injection port 173B, the burner nozzle 172C to the injection port 173C, the burner nozzle 172D to the injection port 173D, and the burner nozzle 172E to the injection port 173E.
 また、噴射口173A~173Eによって形成される五角形の中心には、微粉炭バーナノズル175が、重油バーナ174を包囲するように備わる。なお、以降では、微粉炭バーナノズル175を、「微粉炭噴射ノズル175」と呼称することもある。 Also, a pulverized coal burner nozzle 175 is provided at the center of the pentagon formed by the injection ports 173A to 173E so as to surround the heavy oil burner 174. Note that, hereinafter, the pulverized coal burner nozzle 175 may be referred to as "pulverized coal injection nozzle 175".
 また、図2Bにおいては、説明の便宜上、バーナノズル172Bに設けられた1つの弁のみ示すが、バーナノズル172A~172Eの各々には、ガス燃料配管遮断弁71A~71Eが備わる。 Further, in FIG. 2B, only one valve provided to the burner nozzle 172B is shown for convenience of explanation, but each of the burner nozzles 172A to 172E is provided with gas fuel piping shutoff valves 71A to 71E.
 また、アンモニアガス供給配管151bが、バーナノズル172Bに対し、ガス燃料配管遮断弁71Bの下流に設けられた第1接続部72において接続する。これにより、バーナノズル172Bへのアンモニアガスの供給、延いては、噴射口173Bによるアンモニアの混焼が可能となる。なお、以降では、バーナノズル172Bを、「アンモニア噴射ノズル172B」と呼称することもある。 Further, the ammonia gas supply pipe 151b is connected to the burner nozzle 172B at the first connection portion 72 provided downstream of the gas fuel pipe shutoff valve 71B. As a result, supply of ammonia gas to the burner nozzle 172B, and consequently, mixed combustion of ammonia by the injection port 173B becomes possible. Hereinafter, the burner nozzle 172B may be referred to as "ammonia injection nozzle 172B".
 アンモニアガス供給配管151bには、遮断弁54が設けられ、遮断弁54の上流において、戻り配管176が分岐し、戻り配管176には遮断弁177が設けられる。戻り配管176は、アンモニアガス供給配管151bから、アンモニアガスをバーナノズル172Bに供給しない時に用いる配管であり、供給しない場合、遮断弁54を閉じ、遮断弁177を開放する。
 一方、アンモニアガスをバーナノズル172Bに供給する際は、図2Bに示すように、遮断弁54が開放され、ガス燃料配管遮断弁71Bと遮断弁177が閉じられる。
The ammonia gas supply pipe 151 b is provided with the shutoff valve 54, the return pipe 176 is branched upstream of the shutoff valve 54, and the shutoff valve 177 is provided in the return pipe 176. The return pipe 176 is a pipe used when the ammonia gas is not supplied to the burner nozzle 172B from the ammonia gas supply pipe 151b. When the return gas is not supplied, the shutoff valve 54 is closed and the shutoff valve 177 is opened.
On the other hand, when ammonia gas is supplied to the burner nozzle 172B, as shown in FIG. 2B, the shutoff valve 54 is opened, and the gas fuel pipe shutoff valve 71B and the shutoff valve 177 are closed.
 なお、上記においては、アンモニアが供給されるバーナノズルは、バーナ62Aを構成する5つのバーナノズル172のうち1つ(172B)としたが、本発明の実施形態はこれには限られない。バーナ62Aを構成する複数のバーナノズル172のうち、任意個数のバーナノズル172に、アンモニアを供給してもよい。
 また、ボイラ6の最上段に設けられた複数のバーナ62Aのうち、最も右側のバーナ62Aのみではなく、任意個数のバーナ62Aにおいて、アンモニアを混焼してもよい。
 より具体的には、1段目の最も右側のバーナ62Aだけではなく、他のバーナ62Aにおいても、1つのバーナノズル172にアンモニアを供給することが望ましく、更に、バーナ62Aの全て、合計4つのバーナ62において、5つのバーナノズル172にアンモニアを供給することが、より望ましい。
 更に、バーナ62Aのみならず、バーナ62B~62Dにおいて、アンモニアを混焼させることが可能である。
In the above, although the burner nozzle to which ammonia is supplied is one (172B) of the five burner nozzles 172 constituting the burner 62A, the embodiment of the present invention is not limited thereto. Ammonia may be supplied to any number of burner nozzles 172 among the plurality of burner nozzles 172 constituting the burner 62A.
Further, among the plurality of burners 62A provided in the uppermost stage of the boiler 6, not only the rightmost burner 62A but also any number of burners 62A may mix and burn ammonia.
More specifically, it is desirable to supply ammonia to one burner nozzle 172 not only in the rightmost burner 62A of the first stage but also in the other burners 62A. Furthermore, all the burners 62A, a total of four burners It is more desirable to supply ammonia to the five burner nozzles 172 at 62.
Furthermore, it is possible to mix and burn ammonia not only in the burner 62A but also in the burners 62B to 62D.
 図2Cは、バーナ62の長軸方向の断面図の例であり、図2Cの右側がボイラ6の火炉側に対応する。なお、図2Cにおいては、下方に、ガスリング171に接続されたバーナノズル172B(アンモニア噴射ノズル172B)が、中央に重油バーナ174が存在し、重油バーナ174を包囲するように微粉炭バーナノズル175(微粉炭噴射ノズル175)が存在する。 FIG. 2C is an example of a cross-sectional view of the burner 62 in the long axis direction, and the right side of FIG. 2C corresponds to the furnace side of the boiler 6. 2C, a burner nozzle 172B (ammonia injection nozzle 172B) connected to the gas ring 171 in the lower part has a heavy oil burner 174 at the center and a pulverized coal burner nozzle 175 (fine powder) so as to surround the heavy oil burner 174. There is a coal injection nozzle 175).
 バーナノズル172Bは、ガスリング171から、火炉と反対方向に伸長した後、火炉側に屈曲するが、火炉と反対側への伸長部分にガス燃料配管遮断弁71Bが備わり、屈曲部分に第1接続部72が備わる。第1接続部72において、アンモニアガス供給配管151bが、バーナノズル172Bに接続する。バーナノズル172Bは、屈曲部分を経て、火炉側に伸長し、噴射口173Bに到達する。
 アンモニアガスは、図2C内の矢印で示されるように、アンモニアガス供給配管151bから、第1接続部72と、バーナノズル172Bの火炉方向への伸長部分を経て、噴射口173Bに供給され、噴射口173Bから噴射される。
The burner nozzle 172B extends from the gas ring 171 in the direction opposite to the furnace and then bends to the furnace side, but the gas fuel pipe shut-off valve 71B is provided at the extension to the opposite side of the furnace and the first connection portion is bent 72 are provided. In the first connection portion 72, the ammonia gas supply pipe 151b is connected to the burner nozzle 172B. The burner nozzle 172B extends to the furnace side through the bent portion, and reaches the injection port 173B.
Ammonia gas is supplied from the ammonia gas supply pipe 151b to the injection port 173B through the first connection portion 72 and the extending portion of the burner nozzle 172B in the furnace direction, as shown by the arrow in FIG. 2C, and the injection port It is injected from 173B.
 また、微粉炭は、微粉炭バーナノズル175から噴射される。 Also, pulverized coal is injected from the pulverized coal burner nozzle 175.
 図2Dは、バーナ62Aを火炉側から見た構成例を示し、図2Bに示す構成例の裏側に対応する。また、図2Dにおいて、実線の矢印はアンモニアガスの流れを示し、実線の円は、微粉炭火炎の長さ方向に対して垂直な断面の輪郭を示す。 FIG. 2D shows a configuration example of the burner 62A viewed from the furnace side, and corresponds to the back side of the configuration example shown in FIG. 2B. Also, in FIG. 2D, solid arrows indicate the flow of ammonia gas, and solid circles indicate the contour of a cross section perpendicular to the length direction of the pulverized coal flame.
 上記の繰り返しとなるが、アンモニアガス供給配管151bに設けられた遮断弁54が開放され、バーナノズル172Bに設けられたガス燃料配管遮断弁71Bと、戻り配管176に設けられた遮断弁177とが閉じられることにより、アンモニアガスは、アンモニアガス供給配管151b、第1接続部72、及びバーナノズル172Bを経由し、噴射口173Bに供給される。更に、微粉炭バーナノズル175から噴射される微粉炭火炎の、長さ方向に対して垂直な断面を円に近似した場合、図2Dの矢印に示すように、噴射口173Bは、この円の接線方向にアンモニアを噴射する。 Repeating the above, the shutoff valve 54 provided in the ammonia gas supply pipe 151b is opened, and the gas fuel pipe shutoff valve 71B provided in the burner nozzle 172B and the shutoff valve 177 provided in the return pipe 176 are closed. As a result, the ammonia gas is supplied to the injection port 173B via the ammonia gas supply pipe 151b, the first connection portion 72, and the burner nozzle 172B. Furthermore, when the cross section perpendicular to the length direction of the pulverized coal flame injected from the pulverized coal burner nozzle 175 is approximated to a circle, as shown by the arrow in FIG. 2D, the injection port 173B is tangential to this circle. Ammonia is injected into the
 アンモニアが微粉炭火炎の周囲を螺旋状の軌跡を描くよう噴射され、アンモニアの燃焼距離が長くなることにより、アンモニアの燃焼時間が確保され、アンモニアが完全燃焼されることが可能となる。 Ammonia is injected so as to draw a spiral locus around the pulverized coal flame, and the combustion distance of the ammonia is increased, whereby the combustion time of the ammonia is secured and the ammonia can be completely burned.
〔2.燃焼試験〕
 上記の「1.発明の構成」で構成を説明した火力発電設備1において、以下のアンモニア混焼による燃焼試験を行った。
[2. Combustion test]
In the thermal power generation facility 1 whose configuration has been described in the above “1. Configuration of the invention”, the following combustion test was conducted by ammonia mixed combustion.
 図3に示すように試験期間は7日間とし、1日目の13時から17時まで、2日目~6日目の10時から17時まで、及び7日目の10時から13時までにおいて、最大450kg/hのアンモニア(なお、これは気化器20の最大流量であり、石炭400kgに相当する)を使用した。
 より詳細には、1日目の13時~15時においては100kg/hのアンモニアを燃焼し、1日目の15時~16時においては200kg/hのアンモニアを燃焼し、1日目の16時~17時においては400kg/hのアンモニアを燃焼し、2日目以降は450kg/hのアンモニアを燃焼した。
 また、基本的には、ボイラを155MWの負荷で運転したため、アンモニアの混焼率は約0.6%(1MW相当)であったが、5日目のみにおいては、ボイラを120MWの負荷で運転したため、アンモニアの混焼率は約0.8%であった。なお、排ガス量超過がない範囲でアンモニアを燃焼した。
 また、燃焼に用いた液体アンモニアは、純度99.98%、水分0.016%、油分が1.0ppm未満であり、アンモニアと混焼した石炭の炭種は、マウントオーエンが60%、ボカブライプレミアムが40%である。
As shown in FIG. 3, the test period is 7 days, from 13 o'clock to 17 o'clock on the first day, from 10 o'clock to 17 o'clock on the second day to 6 o'clock, and from 10 o'clock to 13 o'clock on the seventh day In the above, a maximum of 450 kg / h of ammonia (note that this is the maximum flow rate of the vaporizer 20 and corresponds to 400 kg of coal) was used.
More specifically, 100 kg / h of ammonia is burned from 13 o'clock to 15 o'clock on the first day, and 200 kg / h of ammonia is burned from 15 o'clock to 16 o'clock on the first day. From the hour to 17: 00, 400 kg / h of ammonia was burned, and from the second day on, 450 kg / h of ammonia was burned.
Also, basically, the combined combustion rate of ammonia was about 0.6% (equivalent to 1 MW) because the boiler was operated at a load of 155 MW, but on the fifth day only, the boiler was operated at a load of 120 MW The mixed combustion rate of ammonia was about 0.8%. In addition, ammonia was burned in the range where there is no excess of exhaust gas.
In addition, liquid ammonia used for combustion has a purity of 99.98%, water content of 0.016%, and an oil content of less than 1.0 ppm, and coal species co-fired with ammonia is 60% for mount oren, and Bocabri premium Is 40%.
〔2.1 ボイラメタル温度〕
 ボイラ6内に設けられた配管等の金属部分の温度、すなわちボイラメタル温度を、石炭専焼時と、アンモニアと石炭の混焼時とにおいて測定した。測定箇所は、1次過熱器出口、再熱器出口、2次過熱器入口、2次過熱器中間、2次過熱器出口の6箇所である。
[2.1 Boiler metal temperature]
The temperature of the metal portion of the piping or the like provided in the boiler 6, that is, the boiler metal temperature was measured at the time of coal-only combustion and at the time of mixed combustion of ammonia and coal. There are six measurement points: a primary superheater outlet, a reheater outlet, a secondary superheater inlet, a secondary superheater middle, and a secondary superheater outlet.
 測定の結果、ボイラの負荷が155MWの場合には、1次過熱器出口のボイラメタル温度は400~450℃、再熱器出口のボイラメタル温度は500~550℃、2次過熱器入口のボイラメタル温度は400~450℃、2次過熱器中間のボイラメタル温度は450~500℃、2次過熱器出口のボイラメタル温度は500~600℃であり、石炭専焼時と、アンモニアと石炭の混焼時とでは、ほぼ変化がなかった。 As a result of the measurement, when the load of the boiler is 155 MW, the boiler metal temperature at the primary superheater outlet is 400 to 450 ° C, the boiler metal temperature at the reheater outlet is 500 to 550 ° C, and the boiler heat at the secondary superheater inlet The metal temperature is 400 to 450 ° C, the boiler metal temperature in the middle of the secondary superheater is 450 to 500 ° C, and the boiler metal temperature at the outlet of the secondary superheater is 500 to 600 ° C. With time, there was almost no change.
 同様に、ボイラの負荷が120MWの場合には、1次過熱器出口のボイラメタル温度は400~450℃、再熱器出口のボイラメタル温度は500~600℃、2次過熱器入口のボイラメタル温度は400~450℃、2次過熱器中間のボイラメタル温度は450~550℃、2次過熱器出口のボイラメタル温度は500~600℃であり、石炭専焼時と、アンモニアと石炭の混焼時とでは、ほぼ変化がなかった。 Similarly, when the load on the boiler is 120 MW, the boiler metal temperature at the primary superheater outlet is 400 to 450 ° C, the boiler metal temperature at the reheater outlet is 500 to 600 ° C, and the boiler metal at the secondary superheater inlet The temperature is 400 to 450 ° C, the boiler metal temperature in the middle of the secondary superheater is 450 to 550 ° C, and the boiler metal temperature at the outlet of the secondary superheater is 500 to 600 ° C. And there was almost no change.
 すなわち、ボイラ6内の温度分布に、アンモニアを石炭と混焼した影響は、ほぼ見られなかった。 That is, in the temperature distribution in the boiler 6, the effect of co-firing ammonia with coal was hardly observed.
〔2.2 石炭量評価〕
 図4は、混焼前と混焼後の1時間当たりの石炭使用量、及び、双方の石炭使用量の差を示す。なお、(b)の表は、(a)のグラフで用いた数値を表形式で示し、(c)の表は、(c)内の最も左の列で示される日にちの平均値を示す。
[2.2 Coal amount evaluation]
FIG. 4 shows the amount of used coal per hour before and after mixed combustion, and the difference between the amounts of coal used. In addition, the table of (b) shows the numerical value used by the graph of (a) in a tabular form, and the table of (c) shows the average value of the day shown by the leftmost column in (c).
 混焼前に比較した混焼後の石炭使用量の減少分は、7日間の平均で、0.50T/hとなった。すなわち、アンモニア燃焼量の450kg/hは、石炭減少量の500kg/h(無水)とほぼ同じとなった。また、1~7日目を比較すると、5日目の石炭減少量が、最大値の1.96T/hとなった。なお、上記の繰り返しとなるが、燃焼に用いた石炭の炭種は、マウントオーエン60%、ボカブライプレミアム40%である。 The reduction in the amount of coal used after co-firing compared to before co-firing was 0.50 T / h on average for 7 days. That is, 450 kg / h of the amount of ammonia combustion became almost the same as 500 kg / h (anhydrous) of the amount of reduction of coal. Also, comparing the 1st to 7th days, the amount of reduction of coal on the 5th day became the maximum value of 1.96T / h. As mentioned above, the coal type of coal used for the combustion is 60% of Mount Oen and 40% of Boca-Bri Premium.
〔2.3 ボイラ出口NOx値〕
 図5の[A系]及び[B系]で示される断面図中の十字で示されるような、ボイラ出口のA系24点、B系24点の合計48点において、ECO(節炭器)出口ガスのNOx値を測定した。
 図6は、混焼前と混焼後のボイラ出口におけるNOx値を示す。なお、1日目においては種々の機器の調整を実行し、3日目においてはNOx計の点検をしたために、データから除外している。また、(b)の表は、(a)のグラフで用いた数値を表形式で示し、(c)の表は、発電所出力、混焼率、及び(c)内の最も左の列で示される日にちの差の平均値を示す。また、混焼前の値は、アンモニア注入前30分の値であり、混焼後の値は、アンモニア注入後30分ごとに4点乃至5点のデータを取った、その平均値である。
[2.3 boiler outlet NOx value]
ECO (economizer) at a total of 48 points at the boiler outlet 24 points A and 24 points B as indicated by the cross in the sectional views shown in [system A] and [system B] in FIG. 5 The NOx value of the outlet gas was measured.
FIG. 6 shows the NOx values at the boiler outlet before and after co-firing. In addition, since adjustment of various devices was performed on the 1st day and the NOx meter was checked on the 3rd day, it is excluded from the data. Also, the table of (b) shows the numerical values used in the graph of (a) in tabular form, and the table of (c) shows the power plant output, the mixed combustion rate, and the leftmost column in (c) Mean of the difference between Further, the value before mixed combustion is a value 30 minutes before the injection of ammonia, and the value after mixed combustion is an average value of data of 4 to 5 points taken every 30 minutes after the injection of ammonia.
 アンモニアの混焼率が約0.8%の5日目においては、他の日に比較して、アンモニアの混焼率が約0.6%から約0.8%に上昇したのに反して、混焼後のボイラ出口におけるNOx値が、混焼前より大きく減少することを確認した。
 また、アンモニアの混焼率が約0.6%であった、2日目、4日目、6日目、7日目においては、混焼前に比較した混焼後のNOx値の増加量は安定しないと共に、その平均値は、0.17ppmとプラスの値を示した一方で、アンモニアの混焼率が約0.8%であった5日目の、混焼前に比較した混焼後のNOx値の増加量は、-13.75ppmとマイナスの値となったことを確認した。
 これにより、アンモニアを石炭と混焼させる場合、アンモニア混焼率は0.8%以上が望ましく、またアンモニア供給量を増加させるほど、NOx値を低減できる可能性が示唆された。
 これは、
 4NO+4NH+O→4N+6H
の化学反応式で示されるような、無触媒脱硝反応が進行したためであると推定される。
On the 5th day that the rate of mixed combustion of ammonia is about 0.8%, while the rate of mixed combustion of ammonia increased from about 0.6% to about 0.8%, compared to other days, mixed burning It was confirmed that the NOx value at the boiler outlet later decreased more than before mixed combustion.
In addition, on the second, fourth, sixth, and seventh days, the rate of increase in the NOx value after mixed combustion compared with that before mixed combustion is not stable, at which the ratio of mixed combustion of ammonia is about 0.6%. Along with that, the average value showed a positive value of 0.17 ppm, while the increase in NOx value after mixed combustion compared to before mixed combustion on the fifth day when the mixed ratio of ammonia was about 0.8% The amount was confirmed to be a negative value of -13.75 ppm.
Thus, when ammonia is co-fired with coal, it is desirable that the ammonia co-firing rate be 0.8% or more, and it is suggested that the NOx value can be reduced as the ammonia supply amount is increased.
this is,
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
It is presumed that the noncatalytic denitrification reaction has progressed as shown in the chemical reaction formula.
〔2.4 ボイラ出口アンモニア濃度〕
 図5に示すように、ボイラ出口の合計10点において、ECO(節炭器)出口ガスのアンモニア濃度を測定した所、燃料へのアンモニア注入前のアンモニア濃度は0.3ppmであり、燃料へのアンモニア注入後のアンモニア濃度は0.1~0.4ppmであった。すなわち、燃料へのアンモニア注入後においても、ボイラ出口にはアンモニアはほとんど残留しておらず、アンモニアは完全燃焼していることが確認された。
 これは、アンモニアが微粉炭火炎の周囲を螺旋状の軌跡を描くよう、アンモニアを微粉炭火炎の接線方向に噴射し、アンモニアの燃焼距離を長く取ったことにより、アンモニアの燃焼時間が確保されたためであると推定される。
[2.4 boiler outlet ammonia concentration]
As shown in FIG. 5, when the ammonia concentration of the ECO (carbon economizer) outlet gas was measured at a total of 10 points at the boiler outlet, the ammonia concentration before ammonia injection into the fuel is 0.3 ppm, and The ammonia concentration after the ammonia injection was 0.1 to 0.4 ppm. That is, even after the ammonia injection into the fuel, almost no ammonia remained at the boiler outlet, and it was confirmed that the ammonia was completely burned.
This is because ammonia is injected in the tangential direction of the pulverized coal flame so that the ammonia draws a spiral locus around the pulverized coal flame, and the combustion time of the ammonia is secured by taking a long combustion distance of the ammonia. It is estimated that
〔2.5 CO分析〕
 図5に示すように、ボイラの出口2点において、ボイラからの排気ガスの組成を測定した。図7は、ボイラの出力、アンモニア注入量と、ボイラからの排気ガス中のCO量を示す。なお、(b)の表は、(a)のグラフで用いた数値を表形式で示す。
 当初のCO量が12.8%である所、アンモニアの混焼率は、0.6%~0.8%であるため、CO量はそれらの数値の積である0.1%程度しか減少しないことが予測されたが、実際には、0.2~1.3%減少した。
 また、混焼率が約0.6%の場合における年間二酸化炭素削減量は、約3.99(千t-CO/年)であり、混焼率が約0.8%の場合における年間二酸化炭素削減量は、約4.12(千t-CO/年)であった。(なお、算定にあたっては、二酸化炭素排出係数は、平成27年度の電気事業者別排出係数(中国電力:0.0007t-CO/kWh)を使用し、設備稼働率は70%として算出した。)混焼したアンモニアがボイラ内で全て燃焼できたため、混焼した率に応じて、二酸化炭素排出量が削減できたものと考えられる。
[2.5 CO 2 analysis]
As shown in FIG. 5, the composition of the exhaust gas from the boiler was measured at two points at the outlet of the boiler. FIG. 7 shows the output of the boiler, the amount of injected ammonia, and the amount of CO 2 in the exhaust gas from the boiler. The table of (b) shows the numerical values used in the graph of (a) in the form of a table.
Where the initial amount of CO 2 is 12.8%, the mixed combustion rate of ammonia is 0.6% to 0.8%, so the amount of CO 2 is only about 0.1% which is the product of those numbers. It was not expected to decrease, but in practice it decreased by 0.2 to 1.3%.
Moreover, the annual carbon dioxide reduction amount in the case where the mixed combustion rate is about 0.6% is about 3.99 (thousand t-CO 2 / year), and the annual carbon dioxide in the case where the mixed combustion rate is about 0.8% The reduction amount was about 4.12 (thousand t-CO 2 / year). (In calculation, the carbon dioxide emission factor was calculated using the emission factor by electric power company in FY 2015 (China Electric Power: 0.0007t-CO 2 / kWh) and the facility operation rate was 70%. Since it is possible to burn all mixed ammonia in the boiler, it is considered that carbon dioxide emissions can be reduced according to the ratio of mixed combustion.
 以上、本実施形態によると以下の効果を有する。
(1)本実施形態の燃焼方法は、微粉炭及びアンモニアをボイラ6において燃焼させて発電を行う火力発電設備1で実行される燃焼方法であって、ボイラ6での燃焼に用いられるアンモニアの微粉炭との混焼率が、0.8%以上であるである。
 本実施形態によると、燃焼に用いたアンモニアが、同時に、燃焼により発生する排気ガス中のNOxを脱硝する作用を有することにより、アンモニアを有効活用することが可能となる。
As described above, the present embodiment has the following effects.
(1) The combustion method of the present embodiment is a combustion method executed by the thermal power generation facility 1 that generates power by burning pulverized coal and ammonia in the boiler 6, and the fine powder of ammonia used for combustion in the boiler 6 The rate of co-firing with charcoal is at least 0.8%.
According to the present embodiment, the ammonia used for the combustion simultaneously has an effect of denitrifying NOx in the exhaust gas generated by the combustion, so that the ammonia can be effectively used.
(2)また、本実施形態の燃焼方法において、ボイラ6は、微粉炭を噴射させる微粉炭バーナノズル175と、アンモニアを噴射させるアンモニア噴射ノズル172Bと、を備え、アンモニア噴射ノズル172Bは、微粉炭バーナノズル175から噴射される微粉炭の燃焼火炎の長さ方向に対して垂直な断面を円に近似した場合、この円の接線方向に、アンモニアを噴射する噴射口173Bを備える。
 本実施形態によると、アンモニアが微粉炭火炎の周囲を螺旋状の軌跡を描くよう噴射され、アンモニアの燃焼距離が長くなることにより、アンモニアの燃焼時間が確保され、アンモニアが完全燃焼される。
(2) Further, in the combustion method of the present embodiment, the boiler 6 includes a pulverized coal burner nozzle 175 for injecting pulverized coal, and an ammonia injection nozzle 172B for injecting ammonia, and the ammonia injection nozzle 172B is a pulverized coal burner nozzle When the cross section perpendicular to the longitudinal direction of the combustion flame of the pulverized coal injected from 175 is approximated to a circle, an injection port 173B for injecting ammonia is provided in the tangential direction of this circle.
According to this embodiment, ammonia is injected so as to draw a spiral trajectory around the pulverized coal flame, and the combustion distance of the ammonia is increased, whereby the combustion time of the ammonia is secured and the ammonia is completely burned.
 1  火力発電設備
 2  アンモニアガス供給設備
 3  アンモニアガス燃料用配管設備
 6  ボイラ
 7  制御部
 10  貯蔵タンク
 11  気化器起動弁
 12  気化器圧力調整弁
 13  気化器バイパス弁
 20  気化器
 21  アキュムレータ起動弁
 22  アキュムレータ圧力調整弁
 23  アキュムレータバイパス弁
 30  アキュムレータ
 31、33、34、52、54  遮断弁
 32  圧力調整弁
 36  パージ弁
 37  パージ用ガス供給部
 40  ヘッダー
 50  流量計
 51  流量調整弁
 53  バーナ弁
 55  アンモニア流出遮断弁
 60A  バーナ
 61  冷却空気弁
 62 バーナ
 62A、62B、62C、62D  ガスバーナ
 70  ガス燃料供給部
 71、71B  ガス燃料配管遮断弁
 72  第1接続部
 80  アンモニアガス吸収部
 90  脱硝設備
 110、110a、110b、120、120a、120b、130、131、131a、131b、132、140、150、150a、150b  配管
 133  パージ配管
 151a  アンモニアガス流出配管
 151b  アンモニア供給配管
 160  冷却配管
 170  ガス燃料配管
 171  ガスリング
 172、172A、172B、172C、172D、172E  バーナノズル
 173、173A、173B、173C、173D、173E  噴射口
 174  重油バーナ
 175  微粉炭バーナノズル
 176  戻り配管
 177  遮断弁
DESCRIPTION OF SYMBOLS 1 Thermal power generation installation 2 Ammonia gas supply installation 3 Piping installation for ammonia gas fuel 6 Boiler 7 Control part 10 Storage tank 11 Vaporizer start valve 12 Vaporizer pressure control valve 13 Vaporizer bypass valve 20 Vaporizer 21 Accumulator start valve 22 Accumulator pressure Regulator valve 23 Accumulator bypass valve 30 Accumulator 31, 33, 34, 52, 54 Shut-off valve 32 Pressure regulator valve 36 Purge valve 37 Gas supply unit for purge 40 Header 50 Flow meter 51 Flow regulator valve 53 Burner valve 55 Ammonia outflow cutoff valve 60A Burner 61 Cooling air valve 62 Burner 62A, 62B, 62C, 62D Gas burner 70 Gas fuel supply unit 71, 71B Gas fuel piping shutoff valve 72 First connection unit 80 Ammonia gas absorption unit 90 Denitrification equipment 110, 11 a, 110b, 120, 120a, 120b, 130, 131, 131a, 131b, 132, 140, 150, 150a, 150b Piping 133 Purge piping 151a Ammonia gas outflow piping 151b Ammonia supply piping 160 Cooling piping 170 Gas fuel piping 171 Gas ring 172, 172A, 172B, 172C, 172D, 172E Burner nozzle 173, 173A, 173B, 173C, 173D, 173E Injection port 174 Heavy oil burner 175 Pulverized coal burner nozzle 176 Return piping 177 Shutoff valve

Claims (2)

  1.  微粉炭及びアンモニアをボイラにおいて燃焼させて発電を行う火力発電設備で実行される燃焼方法であって、
     前記ボイラでの燃焼に用いられるアンモニアの微粉炭との混焼率が、0.8%以上である、燃焼方法。
    A combustion method performed by a thermal power generation facility that generates power by burning pulverized coal and ammonia in a boiler,
    The combustion method, wherein the mixed combustion rate of ammonia used for combustion in the boiler with pulverized coal is 0.8% or more.
  2.  前記ボイラは、前記微粉炭を噴射させる微粉炭噴射ノズルと、前記アンモニアを噴射させるアンモニア噴射ノズルと、を備え、
     前記アンモニア噴射ノズルは、前記微粉炭噴射ノズルから噴射される微粉炭の燃焼火炎の長さ方向に対して垂直な断面を円に近似した場合、前記円の接線方向に、前記アンモニアを噴射する噴射口を備える、請求項1に記載の燃焼方法。
    The boiler includes a pulverized coal injection nozzle for injecting the pulverized coal, and an ammonia injection nozzle for injecting the ammonia,
    The ammonia injection nozzle injects the ammonia in the tangential direction of the circle when the cross section perpendicular to the longitudinal direction of the combustion flame of the pulverized coal injected from the pulverized coal injection nozzle is approximated to a circle The combustion method according to claim 1, comprising a mouth.
PCT/JP2017/032407 2017-09-08 2017-09-08 Combustion method WO2019049300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018500951A JP6332578B1 (en) 2017-09-08 2017-09-08 Combustion method
PCT/JP2017/032407 WO2019049300A1 (en) 2017-09-08 2017-09-08 Combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032407 WO2019049300A1 (en) 2017-09-08 2017-09-08 Combustion method

Publications (1)

Publication Number Publication Date
WO2019049300A1 true WO2019049300A1 (en) 2019-03-14

Family

ID=62236381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032407 WO2019049300A1 (en) 2017-09-08 2017-09-08 Combustion method

Country Status (2)

Country Link
JP (1) JP6332578B1 (en)
WO (1) WO2019049300A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485500B2 (en) * 2018-09-11 2024-05-16 株式会社Ihi Combustion equipment and boilers
JP7081407B2 (en) * 2018-09-11 2022-06-07 株式会社Ihi boiler
CN114893767B (en) * 2022-05-10 2023-03-10 华中科技大学 Mix ammonia cyclone burner with baffling structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187709A (en) * 1982-04-26 1983-11-02 Hitachi Ltd Pulverized coal burning system utilizing nitrogen in coal
JPS62909U (en) * 1985-06-17 1987-01-07
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP2016183839A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Pulverized coal firing boiler and power generation facility
JP2016183840A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Power generation facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187709A (en) * 1982-04-26 1983-11-02 Hitachi Ltd Pulverized coal burning system utilizing nitrogen in coal
JPS62909U (en) * 1985-06-17 1987-01-07
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP2016183839A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Pulverized coal firing boiler and power generation facility
JP2016183840A (en) * 2015-03-26 2016-10-20 一般財団法人電力中央研究所 Power generation facility

Also Published As

Publication number Publication date
JPWO2019049300A1 (en) 2019-11-07
JP6332578B1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6296216B1 (en) Combustion apparatus and combustion method
Tamura et al. Experimental investigation of ammonia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace
Lee et al. Industrial gas turbine combustion performance test of DME to use as an alternative fuel for power generation
Huth et al. Fuel flexibility in gas turbine systems: impact on burner design and performance
JP6332578B1 (en) Combustion method
JP6906381B2 (en) Combustion equipment and gas turbine
JP2020112280A (en) Boiler device and thermal power generation facility, capable of carrying out mixed combustion of ammonia
Ito et al. New technology of the ammonia co-firing with pulverized coal to reduce the NOx emission
Elkady et al. Exhaust gas recirculation performance in dry low emissions combustors
JP6319526B1 (en) Power generation equipment
Ditaranto et al. Experimental study on combustion of methane/ammonia blends for gas turbine application
US20130086882A1 (en) Power plant
JP6304462B1 (en) Power generation equipment
JP5812740B2 (en) Oxyfuel combustion system and operating method thereof
JP6357701B1 (en) Combustion state judgment system
Lowe et al. Technology assessment of oxy-firing of process heater burners
Rimár et al. NOx formation in combustion of gaseous fuel in ejection burner
Gaba et al. Reduction of fuel consumption and pollutants emissions in a steam boiler using cerium nitrate additive
Dennis et al. A Literature Review of NOx Emissions in Current and Future State-of-the-Art Gas Turbines
WO2023140081A1 (en) Ammonia storage/supply station
WO2023234428A1 (en) Ammonia combustion furnace
Chudnovsky et al. Evaluation of methanol and light fuel oil blends firing at a 50 MW gas turbine
PH12017000155A1 (en) Device and method of dissociating water in a power plant
UCHIDA et al. Demonstration of direct spray combustion of liquid ammonia by 2MW-class gas turbine
Cygan et al. Super Boiler 2nd Generation Technology for Watertube Boilers

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018500951

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924192

Country of ref document: EP

Kind code of ref document: A1